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Foxh1/Nodal Defines Context-Specific
Direct Maternal Wnt/b-Catenin Target Gene
Regulation in Early Development

Boni A. Afouda,1,6 Yukio Nakamura,1,4,6 Sophie Shaw,2,6 Rebekah M. Charney,3,5 Kitt D. Paraiso,3 Ira L. Blitz,3

Ken W.Y. Cho,3,7 and Stefan Hoppler1,7,8,*

SUMMARY

Although Wnt/b-catenin signaling is generally conserved and well understood,
the regulatory mechanisms controlling context-specific direct Wnt target gene
expression in development and disease are still unclear. The onset of zygotic
gene transcription in early embryogenesis represents an ideal, accessible exper-
imental system to investigate context-specific directWnt target gene regulation.
We combine transcriptomics using RNA-seq with genome-wide b-catenin associ-
ation using ChIP-seq to identify stage-specific direct Wnt target genes. We pro-
pose coherent feedforward regulation involving two distinct classes of direct
maternal Wnt target genes, which differ both in expression and persistence of
b-catenin association. We discover that genomic b-catenin association overlaps
with Foxh1-associated regulatory sequences and demonstrate that direct
maternal Wnt target gene expression requires Foxh1 function and Nodal/Tgfb
signaling. Our results support a new paradigm for direct Wnt target gene co-
regulationwith context-specificmechanisms that will inform future studies of em-
bryonic development and more widely stem cell-mediated homeostasis and hu-
man disease.

INTRODUCTION

The maternal-to-zygotic transition activates transcription of gene batteries under the control of transcrip-

tion factors and signaling pathway components that are deposited in the egg by the maternal genome.

Zygotic gene activation (ZGA) is initially controlled solely by these maternal factors, but maternal control

is handed over to the zygotic genome following the synthesis of new gene products. How genes are differ-

entially regulated by transcription factors to specify tissue-specific progenitor cells during this transition is

an area of active investigation (reviewed by Nakamura and Hoppler, 2017). How transcription factors part-

ner with one another to regulate expression of genes specifying different cell states is critical to this pro-

cess. Xenopus has been used as an experimental model for the elucidation of germ layer specification

(reviewed by Cao, 2015; Kiecker et al., 2016) and the maternal-to-zygotic transition (reviewed by Jukam

et al., 2017).

Wnt signaling,mediated by the intracellular transducerb-catenin (Ctnnb1), plays drastically different roles before

and after the maternal-to-zygotic transition (reviewed by Hikasa and Sokol, 2013; Zylkiewicz et al., 2014). Wnt/

b-catenin functions in a regulatory switch mechanism to specify very different cell fates within a narrow window

of developmental time. First, maternal Wnt signaling-regulated b-catenin protein controls subsequent expres-

sion of direct target genes (Blythe et al., 2010), including siamois (Brannon et al., 1997; Laurent et al., 1997) and

nodal3 (McKendry et al., 1997; Smith et al., 1995), by the midblastula stage. These genes are among the earliest

zygotically expressed factors (Collart et al., 2014; Gentsch et al., 2019a, 2019b; Owens et al., 2016; Skirkanich

et al., 2011; Tan et al., 2013; Yang et al., 2002) and function to establish dorsal embryonic cell fates (e.g., Ding

et al., 2017; Kessler, 1997; Smith et al., 1995) together with subsequently expressed dorsal genes, such as goose-

coid (gsc) and noggin (nog) (Ding et al., 2017;Wessely et al., 2001).Within an hour, zygoticWnt8a signaling func-

tions to regulate a radically different set of direct target genes (Christian et al., 1991; Ding et al., 2017; Hamilton

et al., 2001; Hoppler et al., 1996; Nakamura et al., 2016), which then function to restrict dorsal and promote lateral

and ventral cell fates (Christian and Moon, 1993; Hoppler et al., 1996). Context-specific direct Wnt/b-catenin
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Figure 1. Identification of Maternal Wnt/b-Catenin Target Genes by Combining Transcriptomics (RNA-Seq

Analysis) and b-Catenin-Association to Genomic Sequences (b-Catenin ChIP-Seq Analysis)

(A) Experimental design of transcriptomics analysis involved targeted injection into the prospective dorsal mesoderm

(dorsal marginal zone) of four-cell-stage morula embryos with b-catenin Morpholino (MO, to knock down endogenous

b-catenin protein expression) and (where indicated) with b-catenin mRNA (to experimentally rescue maternal Wnt/

b-catenin signaling), with RNA expression subsequently sampled at the onset of ZGA (stage 8) and 1 h later (st. 9; with

validated triplicate samples [see (C)] used for RNA-seq analysis).
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target gene expression during theseearly gastrula stages is definedby co-regulationwithBmpandFgf signaling

(Nakamura et al., 2016); i.e., zygotically expressed Wnt8a regulates b-catenin recruitment to cis-regulatory se-

quences, whereas target gene transcription is determined by Bmp (Hoppler and Moon, 1998) or Fgf signaling

(see also Kjolby et al., 2019). Remarkably, regulation by Bmp and Fgf signaling occurs independently of

Wnt8a-regulated b-catenin recruitment to target loci (reviewed by Nakamura and Hoppler, 2017; and Ramak-

rishnan and Cadigan, 2017).

Here we investigate the regulation of direct gene targets of maternal Wnt/b-catenin signaling at the

genome-wide level. Different from the later zygotic direct Wnt8a/b-catenin target genes, we find these

direct maternal targets are co-regulated by Foxh1-mediated Nodal/Tgfb signaling. Our results further

define two distinct classes of direct maternalWnt target genes, which differ both in persistence of b-catenin

association and temporal expression, with early genes involved in controlling expression of later ones in an

apparent feedforward regulatory loop.

RESULTS

Defining the Maternal Wnt/b-Catenin-Regulated Transcriptome

To identify genes regulated by maternal Wnt/b-catenin signaling, we used an experimental design

involving not only knockdown of endogenous b-catenin expression (Ding et al., 2017; Gentsch et al.,

2019a, 2019b) but also rescue with re-instated b-catenin expression (Figures 1A and 1B). We validated

experimental samples using RT-qPCR by monitoring expected changes in expression of known marker

genes (i.e., sia1 and nodal3) at midblastula stage (Figure 1C).

Samples were then processed for RNA sequencing (RNA-seq) analysis. Remarkably, our knockdown and

rescue experimental design identify transcripts of only ten genes significantly regulated by maternal

Wnt signaling at the early onset of ZGA (midblastula). All turn out to encode paralogs of siamois or nodal3,

5, 6 (Table S1A). Since other known Wnt-regulated, dorsally expressed genes (such as gsc, nog, chrd, and

fst1, e.g., Wessely et al. [2001] and Ding et al. [2017]) were not among these genes, we analyzed from the

same experiment samples collected later, 1 h after the initial onset of ZGA (late blastula, Table S1B). At this

stage, we find transcripts of 128 genes significantly regulated by maternal Wnt signaling, among them the

ten already identified at the initial onset of ZGA (Figure 1D).

Figure 1. Continued

(B) Experimental conditions were initially optimized by monitoring expected morphological changes caused by b-catenin

knockdown and maternal b-catenin rescue (shown phenotypes are representative of five independent experiments

scoring a total of 157, 72, and 174 embryos, respectively, from top to bottom).

(C) Extracted RNA samples were validated by monitoring the expected reduced and recovered expression of known

maternal Wnt/b-catenin target genes (sia1, nodal3.1; and a zygotic Wnt8/b-catenin target [hoxd1] as a negative control)

by qPCR following knockdown and rescue, respectively (error bar represents standard deviation from two independent

biological experiments with three technical replicates each), before three independent experiments were sequenced.

(D) Venn diagram illustrating the number of genes identified (false discovery rate [FDR] <0.05) to be transcriptionally

regulated by maternal Wnt/b-catenin signaling at the onset of ZGA (st.8, Table S1A) and 1 h later (st. 9, Table S1B and

Figure S1), compared with genes regulated by zygotic Wnt8/b-catenin signaling (st. 10, Table S1C, experimental data

from Nakamura et al. [2016], Figure S2); for these two groups of maternal Wnt/b-catenin signaling-regulated genes, also

see Figure 2 and Table S1D.

(E) Experimental design of b-catenin ChIP-seq analysis at early blastula stage (st.7; before the onset of ZGA) involved

pooling of many embryos, since there are fewer cells at early embryonic stages, and therefore fewer nuclei and less DNA.

(F) Genomic mapping of b-catenin ChIP-seq experiment with two independent software tools (see Transparent Methods

for detail) identifying 39,884 b-catenin-associated genomic locations, near to 12,436 annotated genes.

(G) Comparing b-catenin association to the genome before (st.7) and after the onset of ZGA (in the early gastrula, st.10,

experimental data from Nakamura et al. [2016]) reveals 3,931 shared b-catenin-associated locations (i.e., same genomic

location occupied at st. 7 by maternal b-catenin and at st. 10 by zygotic b-catenin), exclusively maternal b-catenin-

associated (35,953), and exclusively zygotic b-catenin-associated locations (6,918).

(H) Identification of direct maternal wnt/b-catenin target genes from overlap between maternal b-catenin-associated loci

(F and G) with genes with maternal b-catenin-regulated transcripts (D) at stage 8 (first surge of gene expression) and at

stage 9 (second surge of gene expression) (Table S1E).

(I) As comparison, identification of zygotic Wnt8a/b-catenin targets from overlap between zygotic b-catenin-associated

loci with genes with zygotic Wnt8/b-catenin-regulated transcripts (Table S1F, experimental data from Nakamura et al.

[2016]).
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Figure 2. Two Surges of Maternal Wnt/b-Catenin Target Gene Expression

(A) First surge of maternal Wnt/b-catenin-regulated gene expression initiates between stage 7 and stage 7.5 (gray box),

although sia1 is slightly delayed (lighter gray box) relative to the other genes in this class (sia2, nodal3.1, nodal 5, nodal 6).

(B) Second surge of maternal Wnt/b-catenin-regulated gene expression initiates between stage 8 and stage 9.5 (gray box),

although admp and gadd45g are slightly earlier (lighter gray box) than the other genes in this class (e.g., eomes, gsc, chrd, frzb,

noggin, nodal 2, and others as indicated). Data were mined fromOwens et al. (2016) using the online tool http://genomics.crick.

ac.uk/cgi-bin/profile-search.exe?dbe=http&dbs=INFO-PUBLIC&uid=guest&species=Xt&profiles=KBAP&src=search&tgt=

main&menu=main_images&option=images&dataset=KBAP&project_key=0&version=0. The graphs shown are framed

between zero and 1million transcripts per embryo and between fertilization and stage 10.25.Of the tenmaternalWnt/b-catenin-

regulated genes identified as a first surge of expression in our analysis (using version 9 of the Xenopus tropicalis genome
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Our transcriptomics analysis therefore reveals two groups of maternal Wnt-regulated genes: the first surge

of expression includes what has previously been described as ‘‘pre-MBT’’ transcription (Yang et al., 2002),

and then the second surge of gene expression concurs with more general onset of ZGA, including dorsally

expressed genes, including gsc and nog, which had previously been shown to be Wnt regulated (Ding

et al., 2017; Wessely et al., 2001). These two distinct surges of gene expression related to these two groups

can also be seen in the staged transcriptomics data by Owens et al. (2016) (Figures 2A and 2B).

b-Catenin Protein Associates with Genomic Loci Prior to ZGA

In order to identify directWnt/b-catenin target genes amongmaternal Wnt-regulated genes, we embarked

on b-catenin chromatin immunoprecipitation sequencing (ChIP-seq) analysis. b-Catenin indirectly associ-

ates with genomic DNA sequences by binding sequence-specific DNA binding transcription factors, prin-

cipally of the LEF/TCF protein family (e.g., Nakamura et al., 2016). We performed b-catenin ChIP-seq anal-

ysis in the early blastula, revealing b-catenin association with 39,884 specific genomic sites (Figures 1E–1G),

which can be bioinformatically assigned to 12,339 annotated genes (Figure 1H).

We then compared this genome association of maternal Wnt-regulated b-catenin before with the genome

association of zygotic Wnt-regulated b-catenin well after ZGA (early gastrula, Nakamura et al., 2016, rean-

alyzed the same way as the new data). This comparison revealed 35,953 exclusively maternal b-catenin

bindings sites (peaks) distinct from 6,918 exclusively zygotic binding sites, with 3,931 overlapping (i.e.,

loci associated with b-catenin before and after ZGA, Figure 1G).

When comparing our transcriptomics with our genome association results, we find that all ten maternal

Wnt/b-catenin-regulated genes in the first group, i.e., with an early surge of expression, have nearby

maternal b-catenin association, indicating that, as expected, they are all direct target genes (cf. Blythe

et al., 2010), as are 82% of the second group of maternal Wnt/b-catenin-regulated genes with a later surge

of gene expression (Figure 1H, compare with direct Wnt8a/b-catenin target genes at gastrulation, Fig-

ure 1I). All maternal Wnt-regulated genes expressed in the first group show b-catenin binding in the early

blastula stage ChIP-seq data, but significantly, not at early gastrula stage (Figures 1G, S3A, and S3B). In

contrast, maternal Wnt-regulated genes expressed in the second surge show b-catenin binding both

before and after ZGA (Figures 1G, S3C, and S3D; data from Nakamura et al. [2016]).

Both transcriptomics and b-catenin ChIP-seq analyses therefore independently identify the same two

distinct classes of direct maternal Wnt/b-catenin target genes in the early embryo.

Coherent Feedforward Regulation of Direct Maternal Wnt/b-Catenin Target Genes of the

Second Class by Gene Products of the First

What could account for the temporal difference in timing of expression between these two classes of direct

maternal Wnt/b-catenin target genes? We wondered whether products of direct maternal Wnt target

genes expressed as part of the first surge might be required for regulation of direct maternal Wnt targets

in the second surge, since some of the genes in this second class of direct Wnt target genes had previously

been shown to be regulated by siamois (e.g., Bae et al., 2011; Carnac et al., 1996). MO knockdown of sia1

and sia2 indeed results in reduced expression of some direct maternalWnt target genes of the second class

(Figure 3A, as also previously shown in Bae et al. [2011]), which is reinstated by rescuing Sia activity (Fig-

ure 3B), whereas the earlier surge of expression of the first class of direct target genes (in midblastula),

such as sia1 itself and nodal3, is not affected (Figure 3C).

These results support our hypothesis that maternal Wnt/b-catenin regulates these two classes differently,

with second-class genes additionally requiring products of the first class. This suggests that a coherent

Figure 2. Continued

assembly, Figure 1D and Table S1A), the transcriptomics data from Owens et al. (2016, analyzed using version 7)

contained information for five (see Table S1D), whereas of the 112 maternal Wnt/b-catenin-regulated genes

expressed exclusively as part of the second surge of expression (118 minus the 10 genes already expressed from the

first surge), 22 were used in this analysis both because transcriptomics data from Owens et al. (2016) were available

and induction could be defined between low initial gene expression (less than 10k transcripts per embryo before st.6)

and increased expression (more than 100k by stage 10, see Table S1D). The gray boxes indicate the first (in A) and

second surge (in B) of expression, defined by 20,000 transcripts per embryo in the transcriptomics data from Owens

et al. (2016).
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feedforward regulatory mechanism (Figure 3D) promotes expression of direct Wnt target genes of the sec-

ond class.

Foxh1/Nodal Signaling Is Required for Context-Specific Regulation of Direct Maternal Wnt/

b-Catenin Target Genes in the Early Embryo

Previously we had found that b-catenin association with cis-regulatory sequences is insufficient for tran-

scriptional regulation of Wnt8a/b-catenin target genes in specification of ventral tissue in the early gastrula

(Nakamura et al., 2016; Nakamura and Hoppler, 2017). Bmp or Fgf signaling was identified as critical for the

context-specific expression of these zygotic Wnt8a/b-catenin target genes (Hoppler and Moon, 1998;

Kjolby et al., 2019; Nakamura et al., 2016). Here, we aimed to determine what context-determining mech-

anism is involved in regulating direct maternal Wnt/b-catenin target genes, which are expressed earlier in

the dorsal marginal zone of blastula-stage embryos.

We used de novomotif analysis to identify shared cis-regulatory sequences suggesting transcription factor

binding sites among direct maternal Wnt/b-catenin target genes. As expected, these genes share se-

quences for LEF/TCF-binding sites (also known as WRE, reviewed by Ramakrishnan and Cadigan, 2017).

Importantly, in addition, they also harbor motifs matching the consensus binding site for Foxh1 (Table 1).

Motif analysis of zygotic Wnt8a/b-catenin target sequences had not identified Foxh1 consensus binding

sequences (Nakamura et al., 2016). This difference suggests that Foxh1 plays a context-determining role

in selecting which of the many maternal b-catenin-bound genes are transcriptionally regulated by maternal

Wnt/b-catenin.

We used Foxh1 ChIP-seq data (as in Charney et al., 2017; Chiu et al., 2014) to explore this hypothesis.

Comparing b-catenin-bound with Foxh1-bound regions reveals a substantial (54%) correlation before

ZGA (Figure 4A), but not thereafter (9%) (Figure 4B). A similar finding of enrichment for Foxh1 was recently

reported by Gentsch et al. (2019b). There is also a strong correlation between these genomic loci that share

both b-catenin and Foxh1 association with thematernalWnt/b-catenin targets that we had identified above

(Figures 4C and 4D, 80% and 70%, respectively; but less so [25%] with zygotic Wnt8a/b-catenin targets Fig-

ure 4E). We also compared Wnt/b-catenin-regulated genes with altered gene expression in an MO-medi-

ated knockdown of foxh1 function (Figures 4F–4H, see Transparent Methods). There is higher correlation in

late blastula (Figure 4G, i.e., 23% of maternal Wnt/b-catenin-regulated transcriptome) than later in early

gastrula (Figure 4H, i.e., 5% of zygotic Wnt8a/b-catenin-regulated transcriptome). This analysis correlates

context-specific regulation of maternal Wnt/b-catenin target genes with a requirement for Foxh1 function.

Since Foxh1 function in the early embryomediates embryonic Nodal/Tgfb signaling (Chen et al., 1996; Chiu

et al., 2014; Hill, 2018), we compared the maternal Wnt/b-catenin-regulated transcriptome directly with

transcripts reduced after treatment with a pharmacological Nodal/Tgfb signaling inhibitor, SB431542 (Fig-

ures 4F–4H). We expected to find such a correlation, since cooperative regulation by Nodal/Tgfb andWnt/

b-catenin-signaling had been demonstrated for some of the genes identified here as direct maternal Wnt/

b-catenin target genes of class 1 (sia) and class 2 (gsc, chrd) (Crease et al., 1998; Nishita et al., 2000). As with

Foxh1 above, there is indeed correlation between Nodal//Tgfb- and maternal Wnt/b-catenin-regulated

genes (Figure 4G, 23%), which, however, is only slightly higher than with zygoticWnt8a/b-catenin-regulated

genes (Figure 4H, 18%), which may reflect a mostly Foxh1-independent role for Nodal/Tgfb signaling in

control of zygotic Wnt8a/b-catenin-regulated genes (e.g., Charney et al., 2017; Coda et al., 2017; Germain

et al., 2000; Kunwar et al., 2003). In conclusion, maternal Wnt/b-catenin signaling target genes could be co-

regulated by Foxh1/Tgfb.

b-Catenin Association with Target Genes Is Independent of Foxh1/Nodal Signaling

We directly validated the requirement of Foxh1 function and Nodal/Tgfb signaling activity for regulation of

direct maternal Wnt/b-catenin target genes using a foxh1 knockdown and a pharmacological Nodal/Tgfb

signaling inhibitor (Chiu et al., 2014). foxh1 knockdown (Figure 4I) and inhibition of Nodal/Tgfb signaling

(Figure 4K) caused reduced expression of direct maternal Wnt/b-catenin target genes at the late blastula

stage, both those of the first class (sia1, nodal3) and of the second class (gsc, nog).

Since we had previously shown that loss of context-defining Bmp or Fgf signaling had no effect on b-catenin

recruitment to zygotic Wnt8a/b-catenin target loci (Nakamura et al., 2016), we tested here whether Foxh1/

Tgfb signaling could influence b-catenin recruitment to relevant WREs in blastula stage embryo, using
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A: De Novo Motif Analysis First Surge Genes B: De Novo Motif Analysis Second Surge Genes

Rank Discovered Motif Best Match p Value % Rank Discovered Motif Best Match p Value %

1 TCF7L2 110�20 26 1 FOXH1 1 3 10�99 49

2 FOXH1 1 3 10�19 32 2 Tbx21-like T-box 1 3 10�41 14

3 LEF1 1 3 10�18 35 3 Helix-turnhelix

(homeobox?)

1 3 10�28 5

4 Pan/dTCF 1 3 10�18 23 4 TCF7L2 1 3 10�28 18

5 Pan/dTCF 1 3 10�18 16 5 C2H2 zinc finger 1 3 10�26 4

6 C4 zinc finger

(GATA?)

1 3 10�16 16 6 ROX1-like

HMGbox

1 3 10�25 7

7 Zinc finger 1 3 10�15 23 7 NFkB-like 1 3 10�25 42

8 SOX 1 3 10�14 13 8 TDA9-like

zinc finger

1 3 10�24 6

9 Meis1 1 3 10�13 42 9 MBP1-like

helix-turnhelix

1 3 10�22 15

10 TOD6-like 1 3 10�13 26 10 NHP10-like

HMG box

1 3 10�14 7

Table 1. De Novo Motif Analysis of b-Catenin-Associated Cis-regulatory Sequences

De novo motif analysis of sequences surrounding b-catenin-associated locations (at early blastula st.7) in maternal Wnt/b-catenin-regulated genes at the onset of zygotic transcription (ZGA) (Table 1A, mid-

blastula st.8, note Tcf/Lef and Foxh1 consensus motifs) and approximately 1 h later (Table 1B, late blastula st. 9, note Foxh1 and Tcf/Lef consensus binding motifs).
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b-catenin ChIP-qPCR. No reduction of b-catenin association at maternal Wnt/b-catenin target loci is de-

tected when Foxh1 function (Figure 4J) or Nodal/Tgfb signaling is inhibited (Figure 4L). These results

demonstrate that Foxh1 function and Nodal/Tgfb signaling are required independently of Wnt-regulated

b-catenin association at maternal Wnt/b-catenin target loci for their context-specific transcriptional

expression.

DISCUSSION

Initially two kinds of direct Wnt/b-catenin target genes were expected in the early embryo (reviewed by Zyl-

kiewicz et al. [2014], Nakamura andHoppler [2017] and Esmaeili et al. [2020]): direct maternalWnt/b-catenin

target genes, such as sia1 and nodal3 (involved in dorsal specification), and direct zygotic Wnt8a/b-catenin

target genes, such as hoxd1 and ventx1 (involved in ventral/lateral specification). Our previous analysis of

direct zygotic Wnt8a/b-catenin target genes had revealed at least two contexts (Bmp-regulated and Fgf-

regulated contexts, Nakamura et al., 2016). Here, we describe amuch greater developmental complexity of

direct maternal Wnt/b-catenin target genes, implicating an additionally dorsally expressed class of genes,

expression of some of which were known to be influenced by Wnt signaling (e.g., Ding et al., 2017; Wessely

et al., 2001). These two classes of direct maternal Wnt/b-catenin target genes can be defined both by their

timing of gene expression and by their dynamics of b-catenin-association with respective genomic loci.

Yet our analysis discovers a shared Foxh1- and Nodal/Tgfb signaling-dependent context-defining mecha-

nism for both the first and second class of direct maternal Wnt/b-catenin target genes. Cooperative regu-

lation of early dorsal embryonic development by Nodal/Tgfb and Wnt/b-catenin signaling is deeply

conserved among vertebrates and even with closely related invertebrate chordates (Kozmikova and Koz-

mik, 2020). Thus, maternal Wnt/b-catenin regulation of direct transcriptional targets occurs in a different

co-regulatory context (i.e., Foxh1 and Nodal/Tgfb) than for direct zygotic Wnt8a/b-catenin targets (i.e.,

Bmp or Fgf). Importantly, Wnt signaling regulates b-catenin association with direct Wnt/b-catenin target

loci in all these different contexts independently of any of those various context-defining co-regulatory

mechanisms, which in turn only regulate the expression of, not b-catenin-association with, theseWnt target

genes.

However, the first class of direct maternal Wnt/b-catenin target genes lose b-catenin association by gastru-

lation, precisely when chromatin accessibility at such loci is found to be restricted (Esmaeili et al., 2020).

Developmental competence of direct target genes to respond toWnt/b-catenin signaling in a context-spe-

cific way is therefore likely to be regulated not only by combinatorial signaling as highlighted here but also

by developmentally regulated chromatin modification, which we have not further explored (see also Hon-

telez et al., 2015).

Wnt-activated nuclear b-catenin associates widely with chromatin across the genome, including to many

loci that are not expressed at the stages analyzed (see also Nakamura et al., 2016). It is likely that such extra

binding, which is not regulating stage-specific transcription nearby, may function as a bufferingmechanism

to fine-tune the response and prevent inadvertent promotion of transcription (as initially proposed for tran-

scription factors by Lin and Riggs [1975] and discussed in the context of Wnt/b-catenin signaling in Naka-

mura and Hoppler [2017]).

Figure 3. Coherent Feedforward Regulation of Maternal Wnt/b-Catenin Target Genes in Late Blastula

(A) siamois1, siamois2 (also known as twin) and double Morpholino (MO) knockdown causes reduced expression of

maternal Wnt/b-catenin target genes (at late blastula stage 9) (see also Figures S4A–S4F).

(B) Rescue of siamois1 and siamois2 knockdown with constitutively activating siamois construct (which is not targeted by

either MO) re-instates expression of maternal Wnt/b-catenin target genes (nodal3, goosecoid, noggin).

(C) Stage-specific sampling of gene expression reveals that direct maternal Wnt/b-catenin target genes of the first class

(siamois1 and nodal3) remain unaffected (st. 8), whereas expression of direct maternal Wnt/b-catenin target genes of the

second class (goosecoid, noggin) is reduced (st.9). Also note that expression of zygotic Wnt8/b-catenin target genes

(hoxd1, msx1) is not reduced but may be increased presumably owing to indirect mechanisms.

(D) Coherent feedforward regulation of some direct maternal Wnt/b-catenin target genes of the second class (e.g.,

goosecoid) involves siamois genes, which are among direct maternal Wnt/b-catenin target genes of the first class. Control

Morpholino (control MO-injected embryos); Uninjected Control (uninjected embryos); sia1 MO, sia2 MO (embryos

injected with Morpholino targeting siamois1 or siamois2 [also known as twin], respectively; VP16-sia RNA (Xenopus

tropicalis embryos injected with Xenopus laevis constitutively active siamois mRNA [Kessler, 1997]). Data are from one

representative of three independent experiments; error bars represent mean G SEM of three technical replicates with p

% 0.05.
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The two classes of direct maternal Wnt/b-catenin target genes differ in that the specific context-defining

mechanism controlling gene expression of the second class includes a coherent feedforward mechanism

involving an additional input from products of genes of the first class of direct maternal Wnt/b-catenin tar-

gets (Figure 3D). Such a coherent feedforward regulatory network motif was shown to serve as a persis-

tence detector (a so-called sign-sensitive delay element, e.g., Mangan and Alon, 2003), suggesting here

that only persistent maternal Wnt/b-catenin signaling will promote second class target gene expression

and subsequent dorsal axis development. Additional gene regulatory mechanisms are not ruled out,

particularly since additional consensus transcription factor binding motifs were discovered in relevant

b-catenin-associated genomic DNA sequences (Table 1, e.g., Sox3, see also Doumpas et al., 2019; Gentsch

et al., 2019b; Kormish et al., 2010; Zhang et al., 2003).

The concepts we uncover about regulation of direct Wnt/b-catenin target genes in the early Xenopus embryo

provides a general novel paradigm for the role of context inWnt target gene regulation in other developmental

settings and in human disease, such as cancer (e.g., Koval and Katanaev, 2018; Madan et al., 2018).

Limitations of the Study

The concept of feedforward regulation emphasized here implies redundancy in gene regulation, which

may have evolved for improved robustness. This redundancy, by definition, makes it difficult to disentangle

direct from indirect inputs and demonstrate that both are required independently for gene activation.
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Data Availability

Raw sequencing data generated for this study have been deposited in the ArrayExpress database at EMBL-EBI

under the accession number E-MTAB-8555 (http://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-8555).

Figure 4. Foxh1/Nodal Signaling Is Required for Expression of Maternal Wnt Target Genes but Not for b-Catenin

Recruitment

(A and B) Bioinformatics analysis of overlap between genomic loci with maternal b-catenin and Foxh1 association before

the onset of zygotic transcription (Zygotic Gene Activation, ZGA) (A, st.7, Early Blastula); and after (B, st.10, Early Gastrula).

Note considerable overlap before the onset of ZGA (A, compared with B; also see Tables S2A and S2B).

(C–E) Overlap between Wnt/b-catenin-regulated gene loci and genomic loci sharing b-catenin and Foxh1 association;

comparing (C) maternal Wnt/b-catenin-regulated gene loci at the onset of ZGA (st. 8, midblastula) with shared b-catenin/

Foxh1-associated loci just before the onset of ZGA (st. 7, early blastula); (D) maternal Wnt/b-catenin-regulated gene loci

after the onset of ZGA (st. 9, late blastula) with shared b-catenin/Foxh1 loci at the onset of ZGA (comparing b-catenin-

associated loci at st.7 with Foxh1-associated loci at st. 8, midblastula); and (E) Wnt8a/b-catenin-regulated gene loci with

b-catenin/Foxh1 loci at early gastrulation (st. 10, early gastrula). Note correlation between maternal Wnt/b-catenin-

regulated gene loci and corresponding b-catenin/Foxh1 loci (80% and 70%, respectively) of maternal Wnt/b-catenin

signaling-regulated gene loci expressed in the first surge (C) and in the second surge of gene expression (D), compared

with less than 25% of zygotic Wnt8a/b-catenin signaling-regulated gene loci in (E) (see also Tables S2C–S2E).

(F–L) Overlap between Wnt/b-catenin-regulated genes and transcripts reduced in a zygotic Foxh1 morpholino

knockdown, and following pharmacological inhibition of Nodal/Tgfb signaling (with SB431542, SB), at the onset of ZGA

(F, st.8, midblastula), 1 h later (G, st. 9, late blastula), and during early gastrulation (H, st. 10, early gastrula) (see also Tables

S2F–S2H). Note correlation between maternal Wnt/b-catenin-regulated genes and those reduced in Foxh1 knockdown

and with inhibited Nodal signaling (G), compared with zygotic Wnt8a/b-catenin-regulated genes at st.10 in (H). Absence

of overlap when analyzed at midblastula stage (st.8 in [F]) is likely due tomaternal rescue, i.e., maternal FOXH1 protein not

affected by Foxh1 morpholino knockdown. Foxh1 Morpholino knockdown (I and J) and pharmacological inhibition of

Nodal signaling with SB431542 (K and L) cause reduced gene expression of representative maternal Wnt/b-catenin target

genes (I and K; analyzed with qRT-PCR, see also Figures S4G, S4H, S4J, and S4K) but does not cause reduced b-catenin

association at these loci (J and L; analyzed with b-catenin ChIP-qPCR, see also Figures S4I and S4L). Data are from one

representative of three independent experiments; error bars represent propagation error of three technical replicates

with p % 0.05.
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Previously published datasets used in this study are available from Gene Expression Omnibus at NCBI un-

der the accession numbers GSE53654, GSE72657, and GSE85273.

METHODS

All methods can be found in the accompanying Transparent Methods supplemental file.
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Supplemental Information can be found online at https://doi.org/10.1016/j.isci.2020.101314.
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Suppl. Figure 1: Transcriptomics of maternal Wnt/β-catenin signaling-regulated 

genes at stage 9 (late blastula), Related to Figure 1D 

Sequence counts for individual genes (in alphabetical order) in the individual 

samples of the experiment involving control, knock-down and rescue of maternal 

β-catenin signaling, as indicated. 
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Suppl. Figure 2: Transcriptomics of zygotic Wnt8a/β-catenin signaling-regulated 

genes at stage 10 (early gastrula), Related to Figure 1D 

Sequence counts for individual genes (in alphabetical order) in the individual 

samples of the experiment involving controls, knock-down and rescue of zygotic 

Wnt8a signaling, as indicated. Data from Nakamura et al. (2016) reanalyzed.  
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Suppl. Figure 3: Comparing maternal and zygotic β-catenin ChIP-seq signals at 

example gene loci, Related to Figure 1G  

Genome alignment of β-catenin ChIP-seq signals at example gene loci at stage 7 

(in blue, to illustrate genome association by β-catenin regulated by maternal 

Wnt/β-catenin signaling) and stage 10 (in red, to illustrate genome association by 

β-catenin regulated by zygotic wnt8/β-catenin signaling; data from Nakamura et 

al. (2016). A) siamois1 (sia1 gene locus), B) nodal3.2 gene locus C) gsc gene 

locus D) noggin (nog gene locus) E) hoxd1 gene locus and F) msx1 gene locus. 
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Suppl. Figure 4: Specificity of siamois Morpholino, FoxH1 Morpholino and 

SB431542 TGFβ inhibitor, Related to Figures 3 and 4 

A-E) Xenopus tropicalis embryos were injected into the two-dorsal blastomeres 

of the four-cell embryo with 10ng of either control Morpholino  MO (B; N=45), 

sia1 MO (C; N=27) or sia2 (twn) MO (D; N=32); or both sia1 and sia2 MO (F; 

N=22)(A is un-injected control, see Transparent Methods for MO sequences). 

Note lack of A-P and D-V patterning in the single-injected morphants (C, D) and 

more severe effects in the double-injected morphants (E). (F) Xenopus laevis 

embryos were injected at one-cell stage into the animal pole with 10pg of mRNA 

encoding Xenopus tropicalis sia1 (Haramoto et al., 2017) or combined with 

Xenopus tropicalis sia1 MO, as indicated. Animal caps explants (A/C) were 

excised at stage 8 and explants cultured until stage 12 to monitor protein 

expression using an anti-rabbit Sia antibody (Sudou et al., 2012). Note that MO 

efficiently blocks Sia protein production. IVT: In Vitro Translation. (G-I) Xenopus 

tropicalis Foxh1 MO (Chiu et al., 2014) was injected into Xenopus tropicalis 

embryos (see Transparent Methods) and embryos collected when control un-

injected embryos (G) reached stage 32. (H) Foxh1 morphant display severe A-P 

and D-V defects. (I) ChIP qPCR analysis; i.e. immunoprecipitation for chromatin-

associated β-catenin protein (see Transparent Methods). (J-L) Embryos were 

treated with TGFβ inhibitor SB431542 (see Transparent Methods) until stage 32 

when control untreated embryos reached stage 32 (J). (K) SB431542-treated 

embryos lack distinctive A-P patterning and (L) ChIP analysis performed using 

conditions and reagents as in (I). 
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TRANSPARENT METHODS 
Embryo manipulations: 

Xenopus tropicalis embryos were obtained by in vitro fertilization (del Viso and 

Khokha, 2012) and staged according to Nieuwkoop and Faber (1967). The 

fertilized embryos were either injected with morpholinos (MOs) and/or mRNA or 

treated with chemical inhibitors (see below), as indicated. The injected embryos 

were cultured in 0.1x Marc’s Modified Ringer (MMR) at 28°C. Sequences of MOs 

obtained from Gene Tools (Philomath, Oregon, United States) were as follow:  

• CoMO: 5’-CCTCTTACCTCAGTTACAATTTATA-3’ (Khokha et al., 2002);  

• Xenopus tropicalis (Xt) β-catenin (ctnnb1) MO (Khokha et al., 2002): 

5’-TTTCAACAGTTTCCAAAGAACCAGG-3’;  

• Xt foxh1 MO (Chiu et al., 2014): 

5’-TCATCCTGAGGCTCCGCCCTCTCTA-3’; 

• Xt sia1-1 MO: 5’ GCTCCATTTCAGCCTCACAGGTCAT 3’ (X. tropicalis 

equivalent to X.laevis sia1 MO from Bae et al., 2011, shown in Fig. 3 and 

Suppl. Fig. 4); 

• Xt sia1-2 MO: 5’ TTCGCCTCACAGGTCATGTCTGTC 3’ (X. tropicalis 

equivalent to X. laevis sia1 MO from Ishibashi et al., 2008, used as 

additional control, not shown); 

• Xt sia2-1 MO: 5’ GCTCAAGCTCAGAGTCACAAGTCAT 3’ (X. tropicalis 

equivalent of X. laevis twn MO from Bae et al., 2011, used as additional 

control, not shown); 

• Xt sia2-2 MO: 5’ CTCAGAGTCACAAGTCATCCTTGAA 3’ (X. tropicalis 

equivalent of X. laevis twn MO from Ishibashi et al., 2008, shown in Fig.3 

and Suppl. Fig. 4). 

The two sia1 and the two sia2 MOs were tested in pilot experiments and 

confirmed to induce the expected phenotype (Bae et al., 2011). Since they 

induced these phenotypes at lower injection amounts or in a higher percentage 

of embryos when injected at the same amount (2.5ng per blastomere, 5ng per 

embryo), we continued our experiments with sia1-1 and sia2-2 MOs. Capped 

mRNA was synthesized using mMESSAGE mMACHINE Kit (Ambion) according 
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to manufacturer instructions. β-catenin plasmid (Yost et al., 1996) and 

constitutively active siamois VP16-sia plasmid (Kessler, 1997) were linearized 

with NotI and in vitro transcribed with SP6. The VP16-siamois fusion construct 

was used as an additional rescue control for the sia1 and sia2 Morpholino 

knockdown (e.g. Fig.3B), since its sequence was not targeted by any of the four 

MO used to knockdown sia1 and sia2 gene expression. The 

Nodal/TGFβ-signaling inhibitor SB431542 (Tocris Bioscience) was reconstituted 

to 10mM and diluted to 100µM in the culture medium. Four-cell stage embryos 

were immersed in 100µM SB431542 in 1/9xMMR and cultured at 25°C until mock 

(solvent)-treated siblings reached desired stage (see also Chiu et al., 2014). 

 

Relevant regulatory standards 

Experiments conducted at the University of Aberdeen were initially assessed and 

approved and in 2017 reviewed and renewed each time first by the University of 

Aberdeen Ethical Review Committee and then by the United Kingdom Home 

Office Inspector. All animal experiments were subsequently carried out under 

license from the United Kingdom Home Office: PPL 60-04376 (until 19 

September 2017) and PPL PA66BEC8D (since 20 September 2017). For 

experiments conducted at the University of California Irvine, animals were raised 

and maintained in accordance with the University of California, Irvine Institutional 

Animal Care Use Committee (IACUC) and guided by husbandry methods 

developed by the National Xenopus Resource (Marine Biological Laboratory, 

Woods Hole, MA). 

 

RNA extraction and RNA expression analysis with qPCR and RNA-seq 

Total RNA was isolated from whole embryos using the RNeasy Mini Kit, 

according to manufacturer’s instructions (QIAGEN) for processing of animal 

tissues (see also Lee-Liu et al., 2012; Nakamura et al., 2016). The abundance of 

RNAs was determined using a LightCycler 480 and SYBR Green I Master 

Reagents (Roche). Relative expression levels of genes was determined using 

ΔΔC(t) or Livak method (Taneyhill and Adams, 2008). For the RNA-seq analysis 
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of the functional β-catenin experiments Illumina TruSeq RNA libraries were 

constructed and sequenced using Illumina HiSeq 2000 at the Earlham Institute, 

Norwich, UK. For the RNA-seq analysis of the foxh1 MO knockdown and the 

Nodal/TGFβ signaling inhibition experiments total RNA was extracted from ~25-

30 control and experimental early gastrula embryos using the acid guanidinium 

thiocyanate phenol chloroform method (Chomczynski and Sacchi, 1987) followed 

by selective precipitation of RNA using 2.5M LiCl. The quality of the RNA was 

examined using an Agilent BioAnalyzer 2100 instrument. 1µg of total RNA was 

subjected to oligo(dT) selection to extract polyadenylated RNA, which was then 

chemically fragmented and libraries were generated for single-end sequencing 

according to Illumina’s RNA-seq sample preparation kit (see also Chiu et al., 

2014). 

β-catenin ChIP and β-catenin ChIP-seq 

β-catenin ChIP qPCR and ChIP-seq experiments were conducted using anti-

β-Catenin (Ctnnb1) antibody (H-102). Xenopus tropicalis embryos were 

harvested at stage 7 and fixed at room temperature with 1% formaldehyde in 

phosphate-buffered saline (PBS) for 45 minutes. Immediately after fixation, the 

embryos were incubated with 125 mM glycine/PBS for 10 minutes and washed 

three times with ice-cold PBS for 5 minutes. Batches of 50 embryos were snap-

frozen in liquid nitrogen and stored at -80°C for future use. For the following 

procedures, all solutions and samples were kept on ice. RIPA buffer (50 mM Tris 

pH 7.4, 150 mM NaCl, 1 mM EDTA, 1% IGEPAL CA-630, 0.25% Sodium 

deoxycholate, 0.1% SDS, 0.5 mM DTT) supplemented with Protease Inhibitor 

Cocktail (Sigma, P8340) was added to frozen embryos. Embryos were thawed 

on ice for 10-15 minutes, homogenized, and then kept on ice for 10 minutes. 

After re-homogenization, the embryo extracts were transferred to TPX 

microtubes (Diagenode) and sonicated during 25 cycles with 30 seconds ON/30 

seconds OFF at high power setting using the Bioruptor Plus Instrument 

(Diagenode). The sonicated samples were centrifuged at 14,000 rpm for 10 

minutes at 4°C, and the supernatant was transferred to a 1.5ml tube for 

subsequent use for ChIP and input samples. A small aliquot of the supernatant 
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was used for checking chromatin shearing. The input samples were stored 

at -20°C for later usage. The supernatant for ChIP were incubated for 1 hour at 

4°C with Dynabeads Protein G (Life technologies) that had been blocked with 5% 

BSA/PBS for 1 hour at 4°C. After snap-spin, the supernatant was transferred to a 

1.5ml safe-lock tube and incubated with antibodies (2 ug) overnight at 4°C. On 

the following day, chromatin was precipitated with 5% BSA/PBS-blocked 

Dynabeads Protein G for 1 hour at 4°C and then the beads were successively 

washed with ChIP buffer 1 (20 mM Tris pH 8.0, 150 mM NaCl, 2 mM EDTA, 1% 

Triton X-100, 0.1% SDS), ChIP buffer 2 (20 mM Tris pH 8.0, 500 mM NaCl, 2 

mM EDTA, 1% Triton X-100, 0.1% SDS), ChIP buffer 3 (10 mM Tris pH 8.0, 250 

mM LiCl, 1 mM EDTA, 1% IGEPAL CA-630, 1% Sodium deoxycholate), ChIP 

buffer 4 (10 mM Tris pH 8.0, 1 mM EDTA) for 5 minutes each. Chromatin was 

eluted from the beads with elution buffer (50 mM Tris pH 8.0, 10 mM EDTA, 1% 

SDS) for 20 minutes in a Thermoshaker (65°C, 900 rpm). At this stage, the 

frozen input samples were supplemented with elution buffer. ChIP and input 

samples were incubated with RNase A at 37°C for 30 minutes. The samples 

were then added with NaCl and incubated for over 16 hours in a Thermoshaker 

(65°C, 900 rpm). The samples were further treated with proteinase K for 2 hours 

in a Thermoshaker (65°C, 900 rpm). The de-crosslinked DNA fragments were 

purified with phenol:chloroform:isoamylalcohol and precipitated in ethanol using 

50 embryos for qPCR (e.g. Fig.4J,K). For sequencing, sheared chromatin was 

collected from approximately 25,000 stage 7 embryos. Each ChIP DNA and input 

control DNA was purified using MinElute Reaction Cleanup Kit (QIAGEN) and 

pooled to one sample. The purified DNA was quantified using Qubit dsDNA HS 

Assay Kits (Life technologies) by Qubit 2.0 Fluorometer (Life technologies). 

Illumina TrueSeq ChIP libraries were constructed from the ChIP DNA and the 

input control DNA samples and sequenced using 50 bp single-end reads by 

Illumina HiSeq 2500 at the Earlham Institute, Norwich, UK (see also Akkers et al., 

2012; Nakamura et al., 2016).  

 

Foxh1 ChIP-seq experiment 
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Foxh1 ChIP-seq experiments were carried out with a custom anti-Foxh1 antibody 

(Chiu et al., 2014) using 4 µg of antibody per 100-embryo-equivalents of 

chromatin for ChIP. Embryos were cultured in 1/9X MMR at 25°C until the 

indicated stage and fixed in 1% formaldehyde at room temperature for 45 

minutes with gentle rocking. Crosslinking reactions were neutralized by the 

removal of the formaldehyde solution and incubation with 1ml 0.125M glycine 

solution for 10 minutes on ice. Embryos were then washed with cold RIPA buffer 

(50 mM Tris-HCl pH7.4, 150mM NaCl, 1mM EDTA, 0.25% sodium deoxycholate, 

1%NP40, 0.1% SDS, 0.5mMDTT, and Roche cOmplete protease inhibitor 

cocktail), flash frozen, and stored at -80°C. The fixed embryos were 

homogenized in RIPA buffer and incubated on ice for 10 minutes. Samples were 

then microfuged at 14,000 rpm for 15 minutes at 4°C. Pellets were resuspended 

in RIPA buffer and sonicated on ice using a Branson Digital Sonifier 450 resulting 

in an average fragment size between 200-500bp. The samples were microfuged 

at 14,000 rpm for 20 minutes at 4°C to remove insoluble cellular debris. The 

chromatin was then ‘‘pre-cleared’’ by incubating with Protein A-coated 

Dynabeads (Invitrogen) for 2 hour at 4°C with rotation. Antibodies were pre-

bound to blocked Protein A Dynabeads by incubating at 4°C for 30 min. A 

sample of sheared chromatin was frozen for use as an input control. Pre-cleared 

chromatin was added to antibody-bound Dynabeads, and incubated overnight at 

4°C  on an end-over-end rotator. The next day, the beads were washed for 20 

minutes each with ice-cold ChIP wash solution I (50mM HEPES-KOH pH7.5, 

2mM EDTA, 150mM NaCl, 0.1% sodium deoxycholate, 1% Triton X-100, 1mM 

DTT, and 0.4mM PMSF), ChIP wash solution II (50mM HEPES-KOH pH7.5, 

2mM EDTA, 500mM NaCl, 0.1% sodium deoxycholate, 1% Triton X-100, 1mM 

DTT, and 0.4mM PMSF), ChIP wash solution III (0.25 M LiCl, 1 mM EDTA, 10 

mM Tris-HCl pH 8.0, 0.5% NP-40, 0.5% sodium deoxycholate, 1 mM DTT, and 

0.4 mM PMSF), and TE (10mM Tris, 1mM EDTA, 1 mM DTT, and 0.4 mM 

PMSF). The DNA was then eluted with TE buffer containing 1% SDS, and 

reverse-crosslinked at 65°C overnight. The sonicated input control was diluted 3- 

fold with elution buffer, and also incubated at 65°C. All samples were treated with 
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RNAse A, Proteinase K, phenol/chloroform extracted, and ethanol precipitated 

overnight. DNA pellets were resuspended in Qiagen EB solution. 10-30ng of total 

ChIP DNA was used for library construction using the NEXTflex ChIP-seq kit 

(Bioo Scientific). Sequencing was performed using the Illumina HiSeq 2500 and 

50bp single-end reads were obtained (see also Charney et al., 2017; Chiu et al., 

2014). 

 

Bioinformatics: 

RNA-seq differential expression analysis 

Maternal Wnt/β-catenin-regulated transcriptome RNA sequencing data was 

quality control checked using FastQC (Andrews, 2015, version 0.11.3), aligned to 

the Xenopus tropicalis V9 reference genome (James-Zorn et al., 2015; Karpinka 

et al., 2015) using STAR (Dobin et al., 2013, version 2.4.0), converted to bam 

format and sorted using SAMtools (Li et al., 2009, version 1.2), and quantified at 

gene regions using HTSeq (Anders and Huber, 2010, version 0.6.1).  

RNA sequencing data from Foxh1 MO and TGFβ inhibitor (SB431542) 

experiments were quality control checked using FastQC (Andrews, 2015, version 

0.11.3)  and TrimGalore! (Krueger, 2015, version 0.4.0), aligned to the Xenopus 

tropicalis V9 reference genome (James-Zorn et al., 2015; Karpinka et al., 2015) 

using HISAT2 (Kim et al., 2015, version 2.1.0), converted to bam format and 

sorted using SAMtools (Li et al., 2009, version 1.2), and quantified at gene 

regions using featureCounts (Liao et al., 2014, from the Subread package 

version 5.0-p1) with the parameter enabled to split multi-mapped reads as a 

fraction across hits.  

In all cases, differential expression analysis was carried out with DESeq2 

(Love et al., 2014, version 1.14.1) using generalized linear models with the LRT 

function. For Foxh1 and SB data sets, significance was identified by an FDR < 

0.1. For the β-catenin samples, two models were used, incorporating the data 

from the rescue strain, genes with an FDR < 0.1 were selected, and an intersect 

of these genes between the two models was used to identify significance. 
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ChIP Sequencing analysis 

ChIP sequencing peak data for zygotic β-catenin (st.10) was obtained from 

Nakamura et al. (2016). Previously published raw ChIP sequencing data for 

Foxh1 from Chiu et al. (2014) and Charney et al. (2017) was downloaded from 

the Gene Expression Omnibus using SRA toolkit (Alnasir and Shanahan, 2015, 

www.ncbi.nlm.nih.gov/sra, version 2.8.2). To ensure consistency in the analysis, 

previously published and new Foxh1 sequencing data (stage 7) was analyzed in 

an identical manner to Nakamura et al. (2016). In short, this encompassed 

quality filtering with FastQC (Andrews, 2015, version 0.11.3) and TrimGalore! 

(Krueger, 2015, version 0.4.0), alignment to the Xenopus tropicalis v9 reference 

genome (James-Zorn et al., 2015; Karpinka et al., 2015) using BWA aln (Li, 2013, 

version 0.7.12), conversion to sam format with BWA samse (Li, 2013, version 

0.7.12), conversion to bam format with SAMtools (Li et al., 2009, version 1.2) 

incorporating removal of unmapped reads and non-primary alignments, peak 

calling independently with MASC2 (Zhang et al., 2008, version 2.1.20160309) 

and SPP (Kharchenko et al., 2008, version 1.14), before consensus peak calling 

with IDR (Li et al., 2011, version 2.0.2), and finally identifying common peaks 

between replicates, and between Foxh1 and β-catenin ChIP samples, using 

BEDTools (Quinlan, 2014; Quinlan and Hall, 2010, version 2.26.0). Peak 

selection was based on any genomic region that had overlapping regions of any 

length between two peak files. Closest adjacent genes were identified using 

BEDTools (Quinlan, 2014; Quinlan and Hall, 2010, version 2.26.0). Heatmaps of 

peak regions were created using Homer (Heinz et al., 2010, version 4.8.3). De-

novo motif analysis was performed using Homer (Heinz et al., 2010, version 

4.8.3) and MEME-ChIP (Machanick and Bailey, 2011, version 4.11.2).  
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