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Abstract
In previous work, we showed that a simple neurocomputa-
tional model The Model, or TM) trained on the Ekman &
Friesen Pictures of Facial Affect (POFA) dataset to catego-
rize the images into the six basic expressions can account for
wide array of data (albeit from a single study) on facial ex-
pression processing. The model demonstrated categorical per-
ception of facial expressions, as well as the so-called facial
expression circumplex, a circular configuration based on MDS
results that places the categories in the order happy, surprise,
fear, sadness, anger and disgust. Somewhat ironically, the cir-
cumplex in TM was generated from the similarity between the
categorical outputs of the network, i.e., the six numbers rep-
resenting the probability of the category given the face. Here,
we extend this work by 1) using a new dataset, NimsStims,
that is much larger than POFA, and is not as tightly controlled
for the correct Facial Action Units; 2) using a completely dif-
ferent neural network architecture, a Siamese Neural Network
(SNN) that maps two faces through twin networks into a 2D
similarity space; and 3) training the network only implicitly,
based on a teaching signal that pairs of faces are in either in
the same or different categories. Our results show that in this
setting, the network learns a representation that is very similar
to the original circumplex. Fear and surprise overlap, which
is consistent with the inherent confusability between these two
facial expressions. Our results suggest that humans evolved
in such a way that nearby emotions are represented by similar
appearances.
Keywords: facial expressions; similarity structure; deep
siamese neural network; multidimensional scaling (MDS); fa-
cial expression circumplex

Introduction
According to Darwin, facial expressions of emotion evolved
and adapted to prepare the organism to deal with its environ-
ment and to also serve to communicate the internal state of
the organism (Darwin, 1872; Hess & Thibault, 2009). If fa-
cial expressions of emotion are an outward manifestation of
an internal state, then similar internal states should lead to
similar expressions, in order to make the outward manifesta-
tions consistent and easy to understand. At the same time,
expression of different emotions should also be sufficiently
distinguishable in order to make it possible to properly re-
spond to them.

How are facial expressions represented in the brain? There
are two competing theories. One theory is based on exper-
imental evidence of categorical perception of expressions of

emotion, suggesting that the representation of facial expres-
sions is divided into discrete categories. Once an expression
has been categorized, the subtleties of the expression are lost.

An opposing theory suggests that perception of facial ex-
pressions is not as discrete as suggested by data supporting
categorical perception. This notion of facial expression per-
ception suggests that while some facial expressions have full
membership in one of the six basic emotion classes (happy,
disgust, angry, sad, fear, surprise), that nevertheless there is
an underlying similarity structure to the expressions. Rus-
sell is the strongest advocate of this view, and has presented
results that support this notion of perception of facial ex-
pressions (Russell & Bullock, 1986; Russell, 1980; Russell,
Lewicka, & Niit, 1989). This and other related research sug-
gests that there is a continuous underlying multidimensional
perceptual space in which there are clear neighborhood rela-
tionships between expression categories, where each expres-
sion is closer to some expressions than others.

Dailey et al. (2002) developed a neural network model
trained to classify facial expressions into six basic emotions
(this model is referred to as “The Model” (TM) in (Cottrell &
Hsiao, 2011)). The model was able to fit data usually taken to
support each of the two competing theories of facial expres-
sion recognition (Young et al., 1997). It displayed categori-
cal perception as well as graded reaction times near category
boundaries, and responses indicating that the model was sen-
sitive to mixed-in emotions even on the opposite side of the
category boundary.

Dailey et al. performed MDS on the human forced-choice
responses published by (Ekman & Friesen, 1976) and on their
model’s responses to the same stimuli. These are shown in
Figures 7 and 8, respectively. They showed that the order-
ing of emotions is the same in both the cases, a result that is
unlikely to have occurred by chance (the probability of this
outcome is 1/60, or 0.017). This reflects clear neighborhood
relationships between facial expressions.

In this work, we aim to reproduce these results from MDS,
albeit under more restrictive training conditions. In particular,
the model is only told which faces are in the same category
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and which faces are in different categories and is not explic-
itly given the categories themselves. To the best of our knowl-
edge, this is the first time the circumplex has been shown to
arise from facial expression data under such restrictive train-
ing conditions.

We design a siamese neural network and train it to learn
a 2D representation of facial expressions. The network is
trained on pairs of images with a binary label that indicates
if the two images belong to the same or different facial ex-
pression categories. In essence, this model is not explicitly
trained on the number of facial expressions categories in the
underlying data, or on the relative relationships among the
facial expressions. The low dimensional representation pro-
duced by the siamese network replicates to a large extent the
circumplex found by Dailey et al. (Dailey, Cottrell, Padgett,
& Adolphs, 2002).

Our results suggest that facial expressions of emotion have
evolved to make their appearance easily discriminable, and
that compatible inner states produce similar expressions. The
similarity structure in the low-dimensional space discovered
by the network indicates that human expressions of similar
emotions are closer to each other when compared to the dis-
similar ones. The inherent confusability between our per-
ception of facial expressions is explained by the overlapping
clusters in our representations. For example, the siamese
network overlaps the Fear and Surprise clusters, which are
known to be prone to confusion. The fact that we obtain
distinct clusters in our similarity structure demonstrates our
ability to express dissimilar emotions in a differentiable way.

Siamese Neural Network Model
Dimensionality Reduction and Siamese Neural
Networks
Two classical methods for dimensionality reduction are Prin-
cipal Component Analysis (PCA) and Multidimensional
Scaling (MDS). PCA finds a linear projection of the input
data to a low dimensional space that maximizes the explained
variance. MDS arranges the data in the low dimensional
space in a manner that best preserves the pairwise distances
between input points. However, facial expression images
pose several challenges, similar to those posed in any com-
puter vision application. Changes in lighting can make im-
ages of dissimilar emotions more similar, and similar ones
different. In emotion recognition, the identity of the individ-
ual is a confound; identity is noise with respect to expression,
and vice-versa. This suggests that a nonlinear embedding is
required. MDS provides this, but it does not provide a map-
ping of new data into the same space, so it is difficult to check
for generalization.

We require a dimensionality reduction technique that is ro-
bust to these changes in input, and that provides a way to gen-
eralize to new images in order to check that the embedding is
consistent. In this work, we aim to learn the low dimensional
structure of facial expressions data without relying on the to-
tal number of categories in our data and without associating

explicit category labels to each input data point. Siamese neu-
ral networks fit these modeling requirements perfectly.

Siamese neural networks are comprised of two neural net-
works that take a pair of images as input and share a common
contrastive loss function. Like siamese twins who share or-
gans, the two networks of a siamese neural network are iden-
tical to each other in their architecture, and they share the
same weights.

Figure 1 shows the layout of our siamese neural network.
It receives a pair of images that are resized to 227 x 227 as
input in its first layer. Each of these inputs is then processed
through a dedicated 6 layer feed forward network as shown
in the Figure. The first three layers are convolutional and the
last three layers are fully connected. The activations of the
last layer from each network are used to compute the loss.

The loss function is an energy-based one that is designed
to move the representations of pairs inputs that are supposed
to be “the same” closer together, and ones that are supposed
to be different farther apart. We use the loss developed
in (Hadsell, Chopra, & LeCun, 2006). Let X1 and X2 be two
images presented to the system, one to each network. Y is
a binary label assigned to the pair, with Y = 0 if the images
supposed to be similar, and Y = 1 if they are supposed to
be different. G1 and G2 are the activation vectors of the last
layer of each network, just before the contrastive loss function
in Figure 1. Let Dw = ||G1−G2|| be the Euclidean distance
between these vectors, where the subscript indicates the de-
pendence on the weights W of the network. Then the loss
function is:

L = (1−Y )
1
2
(Dw)

2 +Y (
1
2

max(0,m−DW ))2 (1)

where m > 0 is a margin. This loss function is inspired by
an analogy to springs, where minimizing the first term cor-
responds to a spring pulling G1 and G2 closer together, and
the second term corresponds to a repulsing spring, pushing
G1 and G2 farther apart. This loss function can be optimized
by gradient descent. In order to map the faces into a two-
dimensional space, G1 (and hence G2) are composed of two
units.

Siamese networks have been shown to work well in face
verification (Chopra, Hadsell, & LeCun, 2005), where the
categories are not known in advance, since there are an un-
bounded number of faces. The networks in this case map
faces of the same person to nearby places in the representa-
tional space (the last layer), and faces of different people far-
ther apart. Siamese neural networks have also been shown to
work well at dimensionality reduction (Hadsell et al., 2006).
We take our loss function from the latter publication. Both
these models use deep convolutional neural network archi-
tectures to extract features from the input images.

Dataset
We use facial images corresponding to the six basic emo-
tions, Happy, Surprise, Fear, Sad, Anger and Disgust from
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Figure 1: Siamese Neural Network Architecture

the NimStim dataset (Tottenham et al., 2009) for our analy-
sis. We create all possible pairs from the images correspond-
ing to these six basic emotions and use that as input to our
siamese network. In all, we train on 126,756 pairs of images.
The breakdown of category-wise pair counts is given in Ta-
ble 1. Originally, we tried to balance the number of similar
and dissimilar pairs, however, we ended up losing a signifi-
cant amount of data and the model did not generalize well to
unseen data. Hence we used all of the data, as shown in the
table.

Approximately 10% of the subjects in the dataset are set
aside for a validation set and 10% for a test set. The remaining
80 percent of the subjects contribute to the training set.

(a) Angry (b) Disgust (c) Fear

(d) Happy (e) Sad (f) Surprise

Figure 2: Sample Images from NimStim

Dealing with Limited Data
Deep convolutional neural networks (CNN) are trained on
several hundred thousands of images. A large data set is re-
quired to learn the large number of parameters in the network.
We are constrained by the relative small size of our dataset. A
workaround for a small dataset is to initialize our model with
a pre-trained model that will generalize to our problem.

The winning model of the ImageNet LSVRC-2012 contest
(Krizhevsky, Sutskever, & Hinton, 2012) (dubbed “Alexnet”)
broke new ground in CNNs by using a 8 layer deep convo-
lutional neural network. This model was trained to classify
natural images into 1000 different categories. This model,
along with its weights are publicly available. We use the first
three convolutional layers as a starting point to build and train
our siamese neural network.

Architecture
We experimented with several architectures, and we report
the one that gave the minimum loss on the training set.
Though we present only one architecture, all architectures
that resulted in a significant reduction in loss during training
yielded essentially the same representation. The network con-
tains 6 layers, the first three are convolutional, and the next
three are fully connected. Two such networks together form
our siamese architecture. The output of the last fully con-
nected layer serves as input to our loss function. We build our
first three convolutional layers from the pre-trained weights
on the ImageNet LSVRC-2012 dataset. We found this initial-
ization to work really well for our purposes and has helped us
cope with our limited dataset.

1. The first convolutional layer filters the 227×227×3 input
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image with 96 kernels of size 11×11×3 with a stride of 4
pixels.

2. The second convolutional layer takes as input the
(response-normalized and pooled) output of the first con-
volutional layer and filters it with 256 kernels of size
5×5×96.

3. The third convolutional layer has 384 kernels of size 3×
3× 256 connected to the (normalized, pooled) outputs of
the second convolutional layer.

4. The fourth, fifth, and sixth layers are fully connected with
1024, 256, and 2 units, respectively.

The loss function takes its inputs from the 2 units of the
sixth layer from each of the two individual networks. We have
chosen to have two units in the last fully connected layer in
order to extract a two dimensional representation of our data.

The siamese neural network was developed using the Caffe
deep learning framework (Jia et al., 2014). We use ReLU
(recitified linear units) activation functions throughout our
architecture. We use a base learning rate of 0.0001, a step
learning rate policy with a step size of 5000. The margin m
in Equation 1 is set to 1. We use dropout after the fourth
and the fifth fully connected layers. Training the model on
a single GPU took around 5 hours. The layers were initial-
ized with Xavier initialization and stochastic batch gradient
descent was used during training.

Training
We started with pre-trained weights on the first three convo-
lutional layers and trained only the subsequent layers. We
stopped training when there was no additional improvement
in the performance on the validation set. We then fine tuned
the first three convolutional layers as well. Fine tuning was
done for 5000 epochs at which point the loss did not reduce
any further. The representations learned through the process
of training are shown in figure 3. We plot the activations in
the last layer of the network for each image in the training set
to generate these plots.

Evaluation
Figure 3 shows how the different categories are organized
by the network during the course of training. Each point in
the plots represents one image in the NimStim dataset corre-
sponding to one of the six basic emotions of happy, sad, an-
gry, fearful, surprised and disgusted. At the start of training,
the network is unable to differentiate the facial expressions as
shown in Figure 3(a). The six basic emotions begin to form
clusters around the 4000 epoch mark (Figure 3(d)), and be-
come distinct after 5000 epochs as shown in Figure 4. Until
this point the convolutional layers were fixed at their initial
values, and at 5000 epochs the loss reached its minimum. At
this point, we started fine-tuning the pre-trained layers and
there is a further drop in loss. As expected, the representation
becomes more distinct after fine tuning as seen in Figure 5.

The model generalizes to unseen data within the NimStim
dataset. Its performance on test set, shown in Figure 6, is
similar to that on the training set.

Table 1: Image Pairs by Emotion Catogory
Emotion Angry Disg. Fear Happy Sad Surpr.
Angry 3741 7134 6960 11049 7308 3828
Disgust 3321 6560 10414 6888 3608
Fear 3160 10160 6720 3520
Happy 8001 10668 5588
Sad 3486 3696
Surprise 946

The reader should compare the organization of the facial
expressions in Figure 5 with that seen in Figures 7 (the MDS
of human responses) and 8 (the MDS of The Model’s re-
sponses). The human MDS is derived from the human sub-
jects’ averaged six-alternative forced choice responses for
each face in the POFA dataset, as published by (Ekman &
Friesen, 1976) and on The Model’s responses to the same
stimuli as reported by Dailey et al. (2002).

Of particular interest here is the ordering of the represen-
tations of facial expressions in two dimensions. The order-
ing of the emotions in the results reported by Dailey et al.
and in the representations produced by the siamese network
model are very similar. However, we do not get a perfect
circumplex. Surprise and fear images completely overlap in
our representation, which is consistent with the inherent con-
fusability between them. Disgust and anger are just barely
separated, and these too are expressions that are confused by
human subjects.

The resulting order is unlikely to have happened by chance.
The probability of a random ordering of six emotions match-
ing the representation in Figure 7 is only 1/60: starting with
any emotion, there are 5 to choose from next, 4 after that, etc.
This gives 120 possibilities, but whether they are clockwise
or counterclockwise does not matter, so there are 60 possible
events.

To compute the probability of the current results, we can
consider that we have a failure to separate two emotions, so
the results are consistent with an ordering of Happy, Sur-
prised, Fearful, Sad, Angry and Disgusted, or Happy, Fearful,
Surprised, Sad, Angry and Disgusted. Since each of these or-
dering have a probability of 1/60, both together have a prob-
ability of 1/30, or 0.033.

Dailey et al. (2002) found that happy faces were the easiest
to classify fear faces the most difficult to classify, consistent
with the literature (Katsikitis, 1997; Ekman & Friesen, 1976;
Matsumoto, 1992). The results of the siamese network model
are consistent with these patterns. Happy images have been
pushed into a tight cluster in the two dimensional representa-
tion, such that they are essentially linearly separable from the
others, even in this very low dimensional space, and fear is
completely overlapping with surprise, making it impossible
to separate from the others.

The siamese network model has not been trained to classify
the emotions into the six categories used by humans; rather it
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(a) Start of Training (b) 2000 epochs

(c) 3000 epochs (d) 4000 epochs

Figure 3: Representations during training. Refer Figure 4 for
legend.

Figure 4: Representation after training for 5,000 epochs with-
out fine tuning. Legends used in Figures 3-6: an: Angry, fe:
Fear, di: Disgust, ha: Happy, sa: Sad, sp: Surprise.

has simply been trained on what humans consider “same” or
“different” categories. These results, therefore, suggest that
the similarity structure learned by the network is inherent in
the similarity structure of the faces and the fact that some are
different from others. We further hypothesize that, not only
have the expressions evolved to be discriminable, but similar
emotions have similar expressions.

Conclusions
We have presented a siamese neural network model that de-
rives low dimensional representations of facial expressions
under restrictive training conditions.

The network is only given same/different information
about the images, it is not given any similarity information,
so the structure of the clusters reflects the similarity between
the expressions themselves. In Dailey et al., 2002, the cir-
cumplex was derived from the softmax output of the network,
which also reflects confusability, but here, the network is de-
riving the similarity structure solely from the images and the
information that some are the same, and some are different.
It is never told which categories are similar to each other, so
that is induced by the network from the similarity in the im-
ages. If Darwin is correct, and emotional expressions signal

Figure 5: Representation after fine tuning. Refer Figure 4 for
legend.

Figure 6: Test set representation. Refer Figure 4 for legend.

internal states, then the model predicts that anger and disgust
have similar internal states, and fear and surprise also signal
similar internal states.

Our results suggest that, through evolution, our facial ex-
pression of emotions and their perception have developed to
communicate an inner state that is easily differentiable, and
that associated emotional states are communicated similarly.
Disgust and anger are often combined in everyday life, and
in more exciting, if unfortunate, circumstances, fear and sur-
prise are highly compatible and tend to co-occur. Our net-
work has no access to these notions, no access to culture, yet
it places these pairs of emotions either next to each other (as
in disgust and anger), or overlapping (as in fear and surprise).
The fact that we obtain relatively distinct clusters in our sim-
ilarity structure suggests that our emotional expressions are
inherently differentiable.
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