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Abstract

The “Window to the Brain” is a transparent cranial implant under development, based

on nanocrystalline yttria-stabilized zirconia (nc-YSZ) transparent ceramic material. Pre-

vious work has demonstrated the feasibility of this material to facilitate brain imaging

over time, but the long-term stability of the material over decades in the body is

unknown. In this study, the low-temperature degradation (LTD) of nc-YSZ of 3, 6, and

8 mol % yttria is compared before and after accelerated ageing treatments following

ISO standards for assessing the ageing resistance of zirconia ceramics. After 100 hr of

accelerated ageing (equivalent to many decades of ageing in the body), the samples do

not show any signs of phase transformation to monoclinic by X-ray diffraction and

micro-Raman spectroscopy. Moreover, the mechanical hardness of the samples did not

decrease, and changes in optical transmittance from 500 to 1000 nm due to ageing

treatments was minimal (below 3% for all samples), and unlikely to be due to phase

transformation of surface crystals to monoclinic. These results indicate the nc-YSZ has

excellent ageing resistance and can withstand long-term implantation conditions with-

out exhibiting LTD.

K E YWORD S

ageing resistance, implant, low-temperature degradation, transparent nanocrystalline yttria-

stabilized zirconia, zirconia ceramic

1 | INTRODUCTION

Polycrystalline zirconia-based ceramics have become the focus of recent

investigations because of their unique combination of properties. Their

high hardness and chemical inertness (high temperature stability and cor-

rosion resistance) make them important target materials for various

applications. Well-proven biocompatibility, low thermal conductivity, and

high oxygen diffusivity (Nakamura, Kanno, Milleding, & Ortengren, 2010)

have made zirconia-based ceramics a favorable option for biomedical

applications. By decreasing the grain size of the polycrystalline ceramics

to nanoscale, novel characteristics such as high density (low porosity),

transparency/translucency, and high refractive index and Abbe number

have been reported (Anselmi-Tamburini, Woolman, & Munir, 2007;

Casolco, Xu, & Garay, 2008; Grasso, Kim, Hu, Maizza, & Sakka, 2010;

Rosenflanz et al., 2004; Xiong, Fu, Pouchly, Maca, & Shen, 2014).

Recently, we have investigated the application of transparent

nanocrystalline yttria-stabilized zirconia (nc-YSZ) ceramics as a bio-

medical transparent cranial implant, referred to in the literature as

“Window to the Brain” (WttB) implant. The concept is illustrated in

Figure 1. These transparent implants aim to provide chronic optical

access to the brain (Aminfar, Davoodzadeh, Aguilar, & Princevac,

2019; Cano-Velázquez et al., 2018; Davoodzadeh et al., 2019;

Davoodzadeh, Cano-Velázquez, et al., 2018; Davoodzadeh, Cuando,

Aminfar, Cano, & Aguilar, 2018; Halaney et al., 2018) to facilitate the

diagnosis and treatment of neurological diseases (Damestani et al.,

2013). A recent study also demonstrated the ability of this implant to
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improve ultrasound imaging of the brain compared to imaging through

skull (Gutierrez et al., 2017). The transparency of the nc-YSZ is

achieved by using ultra-fine yttria-stabilized zirconia (YSZ) powder

and an innovative ceramic processing method, current-activated

pressure-assisted densification (CAPAD), leading to transparent nc-

YSZ ceramics (Alaniz, Perez-Gutierrez, Aguilar, & Garay, 2009).

CAPAD enables reduction of the number of pores as well as reduction

of their dimensions to nanometric scale and at these length scales,

porosity is sufficiently small to minimize scattering in the spectral

range of interest for medical imaging and laser therapies of the brain

(Casolco et al., 2008).

Although zirconia-based implants have been known for their

excellent mechanical properties, the in vivo application was found to

be affected by long-term failures for some samples with micrometric

grain sizes, due to low temperature degradation (LTD). By contrast,

YSZ with nanometric size grains are significantly more resistant to

LTD (Anselmi-Tamburini et al., 2007). LTD is due to a crystal phase

transformation from tetragonal to monoclinic, which is associated

with a volume increase of about 4–6% (Chevalier, Cales, & Drouin,

1999). This expansion induces localized compressive stresses and

eventually microcracks around the transformed zirconia particles

(Lughi & Sergo, 2010). These microcracks propagate through the sam-

ple bulk, and internal defects such as pores and crack surfaces

(Chevalier, Gremillard, & Deville, 2007). Under such conditions, the

material loses its cohesion and mechanical properties. Therefore, small

amounts of porosity contribute to enhance the nucleation and propa-

gation of the monoclinic phase, so the use of very dense implants is

required to reduce the transformation rate (Lughi & Sergo, 2010;

Muñoz-Saldaña & Balmori-Ramírez, 2003).

As a modest amount of transformation can change optical charac-

teristics such as transparency, in this study we investigated the optical

properties of transparent nc-YSZ ceramics with different stabilizer

contents (yttria dopant levels) of 3, 6, and 8 mol % before and after

extended accelerated ageing treatments. Further, because mechanical

properties become compromised when LTD occurs, we also compared

the hardness of our samples before and after the accelerated ageing

treatments. The treatment simulates in vivo ageing, according to the

ISO 13356:2008 recommendations (Chevalier et al., 2007; Deville,

Chevalier, & Gremillard, 2006) (i.e., autoclave processing at 134�C at a

water partial pressure of 2–3 bar).

To our knowledge, this is the first study to compare the LTD of

transparent nanocrystalline YSZ with differing stabilizer content

(3, 6, and 8 mol % yttria). Most studies conducted on LTD of

zirconia-ceramic have involved opaque micrometric-grained YSZ.

The objective of this current study is to assess the LTD of nc-YSZ

through simulated ageing protocols, to model how the WttB implant

will perform optically and mechanically over decades of ageing in

the body.

2 | EXPERIMENTAL SECTION

2.1 | Implant fabrication and preparation

Commercial (Tosoh USA Inc., Grove City, OH) nanocrystalline 3YSZ,

6YSZ, and 8YSZ powders (respectively doped with 6, 12, and 16 mol

%YO1.5 nc-YSZ) with reported crystallite sizes of 55 nm, were densi-

fied via the current activated pressure assisted (CAPAD) technique, to

produce transparent yttria-stabilized zirconia ceramics (Garay, 2010).

In the literature, this technique is often called spark plasma sintering

(SPS). We used CAPAD here to emphasize the fact that it is compli-

mentary contributions of the current and an applied pressure that

makes it successful (Garay, 2010). During the fabrication processes of

all samples for this work, 1.5000 g ± 0.0001 g of starting powder was

poured into a graphite die of inner diameter measuring 19 mm, and

secured between two plungers with the same outer diameter. The die,

plungers, and powder assemblies were placed into the CAPAD appa-

ratus and secured between two graphite spacers and copper elec-

trodes, all enclosed within a vacuum chamber. A vacuum of

1 × 10−3 Torr was attained in all cases.

All powder compacts were prepressed to a maximum load of

30 kN, applied linearly, to produce a nominal compressive pressure of

106 MPa on the sample, and held for 2 min to achieve a green body

of appreciable density. The load was then released, and the green

body subjected to another uniaxial compressive stress of 106 MPa

over a 3-min interval. Once the set-point temperature was reached, a

second load ramp ( kN min−1) was applied. This ramp bringing the uni-

axial pressuring on the sample up to 141 MPa, was maintained for

10 min, the duration of processing, and thereafter linearly released. In

addition to the aforementioned load parameters, the green pellet was

simultaneously heated to high temperature by applying electric cur-

rent through the die and plunger assembly, consequently creating

joule heating. All samples were processed at 1200�C, with an average

heating rate of approximately 160�C/min, from room temperature,

and held for 10 min.

The density of the samples was measured using the Archime-

des method, and the ASTM standard designated B962-13 was

followed (ASTM B962-13, 2009). Grain size measurements of the

bulk sample made from fracture surfaces were evaluated

using SEM.

The samples thicknesses were reduced by polishing with

30-micron diamond slurry on an automatic polisher (Pace Technolo-

gies, Tucson, AZ). The two faces were then polished using progres-

sively finer abrasives (from 30 μm diamond slurry down to 0.2 μm

F IGURE 1 Illustration of the Window to the Brain cranial implant
concept. The implant will be attached to the skull beneath the scalp,
to allow for optical and ultrasonic transmission to and from the brain
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colloidal silica slurry) to reduce light scattering by the implant sur-

faces and thus increase transparency as well as to create a uniform

surface area between different samples. As ageing begins at surface

and propagates into bulk, surface area is an important factor to

control between samples when comparing ageing results. After

preparation process, the polished samples underwent ageing tests.

2.2 | Ageing test

The test for simulating in vivo ageing, per the ISO 13356:2008 recom-

mendations (ISO, 2008), uses hydrothermal treatment at 134�C, at a

steam partial pressure of 2–3 bar which is known as autoclave

processing. As seen in Figure 2, the samples were placed in a steel

pressure chamber, and saturated high-pressure steam was generated

by a boiler and sent to the sample chamber through an electronic

valve. An electric heating jacket surrounded the chamber to prevent

steam condensation and stabilize the temperature at 134�C. Two K-

type thermocouples were used to measure the sample chamber and

the boiler temperature, and an electronic pressure sensor was con-

nected to the pressure chamber. A microcomputer (Raspberry Pie 3)

coupled to the sensors controlled the heating jacket power and the

valve status. The ageing treatments were performed in cycles of 5, 10,

10, 25, 25, 25 hr, for a total of 100 hr for each sample. At the end of

the treatments, the samples were cooled down to room temperature

and dried.

2.3 | Material characterization

X-ray diffraction (XRD) analysis was used to detect any phase trans-

formation due to the ageing treatments (Figure 3a). Due to its simplic-

ity, this technique has been considered as a first step to investigate

the ageing sensitivity of a particular zirconia. However, this technique

suffers some limitations, such as poor precision during the first stages

of ageing (which have also been reported with a much higher sensitiv-

ity using grazing incidence angles of 1–5� (2θ)) (Chevalier et al., 2007;

Keefer & Michalske, 1987) as well as the absence of local information

on ageing processes (Chevalier, 2006). Data were acquired on an X-

ray diffractometer (PANalytical Empyrean Series 2) using a step size

of 0.03� (2θ) and an acquisition time of 5 s per step. Various (hkl)

planes were used to evaluate crystal structures, including cubic (111),

F IGURE 3 For 3YSZ, 6YSZ, and 8YSZ, XRD diffractogram (a) and micro-Raman patterns (b) obtained after up to 100 hr of hydrothermal
treatment at 134�C. XRD, X-ray diffraction; YSZ, yttria-stabilized zirconia

F IGURE 2 Hydrothermal treatment experimental setup
schematic. Samples were placed inside a pressure chamber.
Thermocouples and a pressure sensor coupled to a microcomputer
maintained the temperature and pressure at 134�C and 2–3 bar
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tetragonal (101), and monoclinic (�111 �111 and 111) peaks at 30.2�,

30.2�, 28.2�, and 31.5� (2θ), respectively. It must be noted that the

distance between cubic and tetragonal peaks is smaller than the width

of the peaks which makes them indistinguishable and detected at the

same angle (30.2�).

Raman spectroscopy was additionally performed to investigate

the impact of ageing on the phase transformation (Figure 3b). Raman

spectroscopy has been reported to show higher sensitivity to the

smaller trace of monoclinic phase (Kim, Jang, & Lee, 1997), associated

with a higher lateral resolution than XRD (Grasso et al., 2010). Micro-

Raman spectrum were recorded by using a spectrometer (Horiba's

LabRam) with acquisition time of 60 s. The incident laser light with a

wavelength of 532 nm was focused on the sample within a spot of

10 μm in diameter. Presence of monoclinic phase was assessed by

comparing monoclinic doublet at 179 and 190 cm−1 in the Raman

spectra.

2.4 | Optical characterization

To qualitatively compare the transparency of the densified and

polished 3YSZ, 6YSZ, and 8YSZ samples, photographs of a NBS

1963A resolution target (18 cycle/mm target, each black line width is

27.78 μm) through the ceramics were taken (Figure 4). For quantita-

tive comparison, optical transmittance of the nc-YSZ samples were

evaluated by optical spectrometry in visible and near-infrared light.

The optical transmittance was measured using a white light source

(HL2000 FHSA, Ocean Optics, FL) and a spectrometer (SD2000,

Ocean Optics, FL) in the 500–1000 nm wavelength range. The sam-

pling system used for specular transmittance consists of a rail coupled

with two fiber holders including collimating lenses (MP-74-UV, Ocean

Optics, FL) with a wavelength range of 185–2500 nm. A space for

placing the samples was incorporated on one of the fiber holders.

After placing the sample, the fiber holders were fixed by screws to

mitigate the effects of ambient light. A couple of multimodal optical

fibers (P400-2-VIS-NIR, Ocean Optics, FL) were connected from the

light source to the fiber holder and from the other fiber holder to the

spectrometer. The spectra were acquired as an average of 10 mea-

surements, with integration time of 100 ms.

The normalized transmittance was calculated considering the ratio

of light transmitted through the sample to the total light incident upon

that sample [Equation (1)].

F IGURE 4 Photographs of an NBS 1963A resolution target
(a) through the 3YSZ (b), 6YSZ (c), and 8YSZ (d) samples. The
resolutions shown are the 18 cycle/mm target (each black line width
is 27.78 μm). NBS, National Bureau of Standards; YSZ, yttria-
stabilized zirconia

F IGURE 5 Mean T(λ) values obtained at
wavelength range of 500–1000 nm to compare
the transmittance values of various nc-YSZ
samples (3YSZ, 6YSZ, and 8YSZ) before and after
ageing. The inset shows the maximum difference
in optical properties curves between the pristine
and aged samples. YSZ, yttria-stabilized zirconia
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T λð Þ= S λð Þ−D
I λð Þ−D ð1Þ

where T is transmittance, S(λ) is the measured spectral intensity, I

(λ) is the total light incident, and D represents the reference in dark

environment.

2.5 | Mechanical characterization

To compare the mechanical properties between the pristine samples

and aged samples, indentation tests were performed using a micro

Vickers hardness tester (900-391A, Phase II Plus, NJ). The indentation

was performed using loading force of 4.9 N and 15 s duration. The

instrument was recalibrated before and after testing, by performing a

series of indentations on a certified steel reference sample. The aver-

age value and SD of 10 indentations were calculated for each sample

before and after the ageing treatments.

3 | RESULTS

3.1 | Densified samples

The density of the CAPAD processed samples (discs of 1 mm thick-

ness and 19 mm diameter) were 99.8%, 99.9%, and 99.9% for the

3YSZ, 6YSZ, and 8YSZ, respectively. Grain size measurements of the

bulk samples were made from fracture surface measurements of SEM

micrographs and showed an average grain size (AGS) of 147 ± 45 nm

across all compositions. The polished sample thicknesses were 610

± 1 μm, 584 ± 1 μm, and 601 ± 1 μm for 3YSZ, 6YSZ, and 8YSZ,

respectively.

3.2 | Material characterization

Phase transformation to monoclinic was assessed with XRD and

micro-Raman Spectroscopy. XRD patterns of samples before and after

50 and 100 hr of accelerated ageing via hydrothermal treatment are

shown in Figure 3a. XRD patterns in the range of 28�–38� are shown

in Figure 2a. Only cubic (111) and tetragonal (101) (both peaks insepa-

rably appeared at 30.2�) can be seen in the XRD patterns, confirming

that there is no monoclinic phase present. The peaks and patterns

remained the same for all samples following ageing treatments, indi-

cating that no phase transformation occurred. In Figure 3b, the com-

parison of micro-Raman patterns in the 100–900 cm−1 region shows

stability of tetragonal and cubic phases after the treatments, further

confirming that no phase transformation to monoclinic (doublet at

179 and 190 cm−1) occurred.

3.3 | Optical characterization

Figure 4 shows images of a National Bureau of Standards resolution target

imaged through the transparent nc-YSZ samples. All of the samples clearly

show the highest resolution (18 cycles/mm) on the resolution target when

transmitted light is observed through them. As seen in Figure 3, all the

samples transmit light and appear as different shades of orange.

To assess any change in optical properties due to the accelerated

ageing hydrothermal treatment, optical transmittance of the transparent

samples was measured over the wavelength range of 500–1000 nm at

baseline and after 50 and 100 hr of ageing. Figure 5 presents the nor-

malized optical transmittance, T(λ), for both pristine and aged 3YSZ,

6YSZ, and 8YSZ samples. As shown in the figure, the transmittance cur-

ves for all three samples have approximately the same trend. However,

for any given wavelength, the transmittance increases as the yttria con-

tent is increased. In addition, the samples transmit a higher percentage

of light as the wavelength of the incident light is increased. These results

are consistent with our previous measurements, showing relatively low

transmission in the blue-green end of spectrum caused by absorption of

oxygen vacancy related defects (Alaniz et al., 2009). The insets in

Figure 4 show the maximum difference between the transmittance cur-

ves between pristine and aged samples. The changes in transmittance

values after the treatments (compared to the pristine samples), were less

than 3%.

3.4 | Hardness characterization

As the phase transformation to monoclinic compromises mechanical

properties, we compared the hardness of 3YSZ, 6YSZ, and 8YSZ

before and after ageing. The averaged results and the standard devia-

tions calculated from 10 indentation experiments per sample are sum-

marized in Table 1 as a function of ageing treatment time and yttria

content. For the pristine samples, the highest hardness value was

obtained for 3YSZ sample. The 6YSZ and 8YSZ samples had slightly

lower hardness values (6.64% and 4.26%, respectively). For 3YSZ and

8YSZ samples, changes in hardness were not significant (paired two-

tail t test), with t values greater than 0.05. For the case of 6YSZ,

changes in hardness between pristine sample and sample after 50 or

100 hr of ageing treatment was found to be significant (t = 0.00094

and 0.0037, respectively), although these changes were small (less

than 2% increase in hardness compared to pristine sample).

4 | DISCUSSION

The transparent nc-YSZ ceramics evaluated in this study show prom-

ise for medical and nonmedical applications. Previously, we have

TABLE 1 Hardness of the pristine and aged samples

Sample

Hardness (GPa)

Pristine After 50 hr After 100 hr

3YSZ 13.84 ± 0.20 13.80 ± 0.16 13.71 ± 0.21

6YSZ 12.92 ± 0.10 13.16 ± 0.11 13.13 ± 0.13

8YSZ 13.22 ± 0.12 13.16 ± 0.18 13.17 ± 0.13

Note: Data is given with SD (statistical processing of multiple indentations

for each sample).

Abbreviation: YSZ, yttria-stabilized zirconia.
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investigated the application of 8YSZ for creating transparent cranial

implants. By performing biocompatibility tests and brain imaging stud-

ies, we have demonstrated the feasibility of this application (Aguilar,

Davoodzadeh, Halaney, Uahengo, & Garay, 2018; Aminfar et al.,

2019; Cano-Velázquez et al., 2018; Damestani et al., 2013; Dam-

estani, Galan-Hoffman, Ortiz, Cabrales, & Aguilar, 2016;

Davoodzadeh, 2017; Davoodzadeh et al., 2019; Davoodzadeh, Cano-

Velázquez, et al., 2018; Davoodzadeh, Cuando, et al., 2018; Gutierrez

et al., 2017; Halaney et al., 2018). Phase transformation (ageing) resis-

tance and the effect of hydrothermal treatment on optical and

mechanical properties of the ceramics are crucial to understand for

any medical or nonmedical application of the transparent nc-YSZ

ceramics. Recently, fabrication of translucent and transparent YSZ

with grain size on the microscale and nanoscale have been reported

(Aguilar et al., 2018; Casolco et al., 2008; Xiong, Fu, Pouchly, Maca, &

Shen, 2014; Zhang et al., 2015). However, a thorough investigation

on preparation and evaluation of LTD and its influence on mechanical

and optical properties in transparent nanocrystalline stabilized zirconia

ceramics with various yttria dopant levels of 3, 6, and 8 mol % have

not been reported.

Ageing caused by the transition of the tetragonal-to-monoclinic

phase represents a common problem of zirconia ceramics stabilized by

acceptor dopants. The process is triggered by the hydroxyl groups (with

bound –OH) which can penetrate into the lattice over time through oxy-

gen vacancies resulting from the doping process (Alaniz et al., 2009).

Degradation due to this transformation has been known to propagate

gradually to the bulk of the material (Chevalier et al., 1999). Unlike the

porosity of micrometric-structured stabilized zirconia ceramics, the nano-

scale grain and high densities of our nc-YSZ have proven highly effective

in preventing the transformation, as shown by our results here as well as

others (Tredici et al., 2016; Wei & Gremillard, 2018).

Considering the self-ionization of water, a greater number of OH−

ions produced at higher temperatures and pressures can accelerate

the LTD process (Pitzer, 1982). Accelerated ageing treatment has

been a common method to evaluate zirconia ceramic LTD. Chevalier

and Gremillard's evaluation based on actual observations of zirconia

femoral heads implanted in vivo for 4 and 8 years, showed that 1 hr

of autoclave treatment at 134�C had a similar effect as a 3–4 years

in vivo ageing (Chevalier et al., 2007). They proved that the ISO stan-

dard recommendations for determining the long-term duration of

prosthetic zirconia were inadequate (Perrichon et al., 2017) and the

ISO recommendation was revised according to Gremillard's sugges-

tions (ISO 13356:2008, 2008). Advances in grain size reduction

resulted in YSZ ceramics that are more resistant against LTD, and for

this reason Sanon et al. recommended to increase the ageing test up

to 100 hr for better observation of the LTD process. Our simulation

was extended to 100 hr following Sanon's proposal (Sanon, Chevalier,

Douillard, & Cattani-Lorente, 2015). Given the very high LTD resis-

tance that nanostructured YSZ ceramics have shown compared to

conventional microcrystalline YSZ ceramics, a new accelerated age-

ing simulation protocol will be needed to characterize any transfor-

mation and degradation which may occur in these samples (Sanon

et al., 2015).

We have shown our 3YSZ, 6YSZ, and 8YSZ samples with AGS of

147 nm ± 45 nm, prepared using CAPAD, satisfy the requirements for

long-term performance as an optical implant. Indeed, for all the inves-

tigated samples the increase in monoclinic phase content was below

the XRD and micro-Raman detection range, in agreement with our

previous findings (Aguilar et al., 2018). The ageing tests showed the

ability of these materials to withstand common sterilization treat-

ments as well. LTD resistant YSZ samples have been reported

recently, however they are produced using the conventional zirconia

doped 3 at% of yttria (Lucas, Lawson, Janowski, & Burgess, 2015;

Wei & Gremillard, 2018), often codoped with other cations (Zhang

et al., 2016). In these studies, the samples were sintered by pressure-

less techniques with resulting grain sizes of hundreds of nanometers

(Lucas et al., 2015; Zhang et al., 2015, 2016). YSZ samples prepared

by CAPAD (or SPS) with nanometric grain size have also been shown

by others to have very high LTD resistance and density (Tredici et al.,

2016; Xiong et al., 2014). It should also be noted that YSZ samples

with similar grain size, mechanical properties, and aging resistance

have been produced using more conventional multistep sintering

methods (Wei & Gremillard, 2018).

Optical characterization of the pristine samples shows the optical

transmittance is highly dependent on the yttria dopant level. Higher

transmittance was found for the sample Fs with higher yttria dopant

content, although the spectral behaviors are similar for the three sam-

ple types (3YSZ, 6YSZ, and 8YSZ). This indicates the increase in the

yttria content which resulted in higher cubic content favors increased

transparency (Casolco et al., 2008). Decreased symmetry of the

tetragonal structure causes asymmetric scattering in the 3YSZ sample

while the more isotropic structure in the 6YSZ and 8YSZ reduces light

scattering (Casolco et al., 2008; Kodera, Hardin, & Garay, 2013). This

difference in crystal structure is the likely cause of the differences in

light transmittance. 8YSZ is the most transparent sample, allowing the

transmittance of light in a wider wavelength range, starting on

610 nm. The 3YSZ sample is the least transparent. In addition, we

have shown the optical property values have a maximum change of

3% after 100 hr of the hydrothermal treatments in wavelength range

of 500–1000 nm for all the samples. This small change is unlikely to

be caused by surface crystal phase changes, and may instead be due

to measurement error.

The hardness of our nanometric YSZ samples, both pristine and

aged, compare well with similar YSZ materials reported in the litera-

ture (Luo & Stevens, 1999; Tredici et al., 2016). A reduced yttrium

(~3 mol % yttria) content is generally associated with better mechani-

cal properties. In samples with higher yttria dopant contents, the hard-

ness values are lower, whereas, the transparency is notably increased.

The 3YSZ sample (tetragonal structure) showed the best mechanical

hardness and 6YSZ and 8YSZ showed slightly lower hardness, due to

higher yttria dopant content which results in the presence of a mixed

tetragonal-cubic structure (6YSZ) and cubic structure (8YSZ). The

changes in the averaged hardness values after the treatments for the

3YSZ and 8YSZ were not significant (paired two-tailed t test) while a

slight increase (<2%) was found for the hardness of 6YSZ after ageing

treatment. Increased hardness due to ageing was an unexpected
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result, and may be due to measurement error of the hardness of pris-

tine 6YSZ, which was notably lower than the hardness of the other

pristine sample compositions.

5 | CONCLUSION

The combination of YSZ nanopowder and CAPAD offers a procedure

for the preparation of high-density, transparent implant material suit-

able for the production of WttB cranial prosthesis. All the samples

with yttria dopant levels ranging between 3 and 8 mol %, showed a

strong resistance to LTD due to nanostructuring, as demonstrated by

extended ageing simulations performed following the ISO

13356:2008. The samples were able to sustain tens of hours of treat-

ments at 134�C; conditions equivalent to many decades of ageing

in vivo. A higher yttria dopant level (8YSZ) showed higher transmit-

tance but presented slightly lower hardness. Finally, comparison of %

monoclinic transformation, optical transparency, and mechanical prop-

erties of nc-YSZ samples at baseline and following up to 100 hr

hydrothermal treatments shows our implant can withstand the

extended ageing treatment.
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