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Reduces Neuropathic Pain after Oral Administration in Mice

Roberto Russo, Jesse LoVerme, Giovanna La Rana, Timothy R. Compton, Jeff Parrott,
Andrea Duranti, Andrea Tontini, Marco Mor, Giorgio Tarzia, Antonio Calignano, and
Daniele Piomelli
Department of Experimental Pharmacology, University of Naples, Italy (R.R., G.L., A.C.); Department of Pharmacology
and Center for Drug Discovery, University of California, Irvine, Irvine, California (J.L., D.P.); Kadmus Pharmaceuticals Inc.,
Irvine, California (T.C., J.P.); Institute of Medicinal Chemistry, University of Urbino “Carlo Bo,” Urbino, Italy (A.D., A.T., G.T.);
and Pharmaceutical Department, University of Parma, Parma, Italy (M.M.)

Received January 17, 2007; accepted April 4, 2007

ABSTRACT
Fatty acid amide hydrolase (FAAH) is an intracellular serine
hydrolase that catalyzes the cleavage of bioactive fatty acid
ethanolamides, such as the endogenous cannabinoid agonist
anandamide. Genetic deletion of the faah gene in mice elevates
brain anandamide levels and amplifies the antinociceptive ef-
fects of this compound. Likewise, pharmacological blockade of
FAAH activity reduces nocifensive behavior in animal models of
acute and inflammatory pain. In the present study, we investi-
gated the effects of the selective FAAH inhibitor URB597 (KDS-
4103, cyclohexylcarbamic acid 3�-carbamoylbiphenyl-3-yl es-
ter) in the mouse chronic constriction injury (CCI) model of
neuropathic pain. Oral administration of URB597 (1–50 mg/kg,
once daily) for 4 days produced a dose-dependent reduction in

nocifensive responses to thermal and mechanical stimuli,
which was prevented by a single i.p. administration of the
cannabinoid CB1 receptor antagonist rimonabant (1 mg/kg).
The antihyperalgesic effects of URB597 were accompanied by
a reduction in plasma extravasation induced by CCI, which was
prevented by rimonabant (1 mg/kg i.p.) and attenuated by the
CB2 antagonist SR144528 (1 mg/kg i.p.). Oral dosing with
URB597 achieved significant, albeit transient, drug levels in
plasma, inhibited brain FAAH activity, and elevated spinal cord
anandamide content. The results provide new evidence for a
role of the endocannabinoid system in pain modulation and
reinforce the proposed role of FAAH as a target for analgesic
drug development.

The endogenous cannabinoid ligand anandamide (Devane et
al., 1992; Di Marzo et al., 1994) and the analgesic and anti-
inflammatory factor palmitoylethanolamide (PEA) (Calignano
et al., 1998) are members of the fatty acid ethanolamide (FAE)
family of lipid mediators. These compounds are found in most
mammalian tissues, where they are thought to be stored as the
phospholipid precursor N-acylphosphatidylethanolamine and

to be produced in a stimulus-dependent manner by activation of
phospholipase D or phospholipase C activities (Okamoto et al.,
2004; Liu et al., 2006).

After release from cells, anandamide may be eliminated
via a two-step process consisting of high-affinity transport
into cells (Di Marzo et al., 1994; Beltramo et al., 1997) fol-
lowed by intracellular degradation, catalyzed by fatty acid
amide hydrolase (FAAH) (McKinney and Cravatt, 2005). On
the other hand, saturated and monounsaturated FAEs, such
as PEA, are poor substrates for the anandamide transport
system, and their deactivation may be primarily mediated by
intracellular hydrolysis catalyzed by FAAH and/or a distinct
N-acylethanolamine acid amidase (Sun et al., 2005).

Mutant mice lacking the gene encoding for FAAH (faah)
display reduced FAE hydrolysis and elevated brain levels of
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these lipid amides (McKinney and Cravatt, 2005). Further-
more, FAAH-null mice show signs of enhanced anandamide
signaling at cannabinoid CB1 receptors (e.g., decreased pain
sensation) and increased sensitivity to exogenous anandam-
ide, although their overall behavioral phenotype is similar to
that of wild-type mice (McKinney and Cravatt, 2005). This
finding suggests that drugs targeting FAAH might heighten
the tonic actions of anandamide while avoiding unwanted
psychotropic effects due to direct activation of CB1 receptors.

We have recently identified a class of highly selective O-
arylcarbamate inhibitors of FAAH activity (Kathuria et al.,
2003; Mor et al., 2004). Systemic administration of a lead
compound in this class, URB597 (KDS-4103, cyclohexylcar-
bamic acid 3�-carbamoylbiphenyl-3-yl ester), produces pro-
found inhibition of brain FAE hydrolysis in rats and mice,
which is accompanied by elevations of brain FAE content and
potentiation of the actions of anandamide (Kathuria et al.,
2003; Fegley et al., 2005). Furthermore, URB597 exerts
anxiolytic-like (Kathuria et al., 2003; Patel and Hillard,
2006), antidepressant-like (Gobbi et al., 2005), antihyperten-
sive (Bátkai et al., 2001), and analgesic (Jayamanne et al.,
2006; Jhaveri et al., 2006) effects in rodents. In particular,
URB597 reduces pain behaviors in the hot-plate model of
thermal nociception (Kathuria et al., 2003) and the adjuvant
model of inflammatory pain (Jayamanne et al., 2006). How-
ever, the effects of URB597 in neuropathic pain, a condition
that affects more than 2 million patients in the United States
alone, have not been established. In a recent study, intrathe-
cal administration of URB597 reduced the responses of spi-
nal wide dynamic range neurons in spinal nerve-ligated neu-
ropathic rats (Jhaveri et al., 2006). In contrast, a single
systemic injection of URB597 did not reduce mechanical al-
lodynia in neuropathic rats with partially ligated sciatic
nerves (Jayamanne et al., 2006). These contradictory find-
ings prompted us to ask whether repeated treatment with
URB597 could effectively reduce pain behaviors in chronic
nerve constriction-injured (CCI) mice, a widely used model of
neuropathic pain (Bennett and Xie, 1988).

Materials and Methods
Chemicals. URB597 (KDS-4103) was provided by Kadmus Phar-

maceuticals, Inc. (Irvine, California) and the Institute of Medicinal
Chemistry, University of Urbino “Carlo Bo” (Urbino, Italy). We pur-
chased fatty acid chlorides from Nu-Chek Prep (Elysian, MN),
[2H4]ethanolamine from Cambridge Isotope Laboratories (Andover,
MA), and [2H8]2-arachidonoylglycerol (2-AG) from Cayman Chemi-
cal (Ann Arbor, MI). SR144528 and rimonabant (SR141716) were
provided by RBI (Natick, MA) as part of the Chemical Synthesis
Program of the National Institutes of Mental Health. Standard 2H4-
labeled FAEs were synthesized by the reaction of the corresponding
fatty acid chlorides with 2H4-labeled ethanolamine. Fatty acyl chlo-
rides were dissolved in dichloromethane (10 mg/ml) and allowed to
react with 1 Eq of 2H4-labeled ethanolamine for 15 min at 0 to 4°C.
The reaction was stopped by adding purified water. After vigorous
stirring and phase separation, the upper aqueous phase was dis-
carded, and the organic phase was washed twice with water to
remove unreacted ethanolamine. The reaction results in quantita-
tive formation of 2H4-labeled FAEs, which were concentrated to
dryness under a stream of N2 and reconstituted in chloroform at a
concentration of 20 mM. FAE solutions were stored at �20°C until
use. Identity and chemical purity (�99.9%) of the synthesized FAEs
were determined by thin-layer chromatography and liquid chroma-
tography (LC) coupled to mass spectrometry (MS). All other chemi-

cals were from Sigma-Aldrich (St. Louis, MO). Fresh drug solutions
were prepared immediately before use: KDS-4103 and gabapentin
were prepared in a vehicle of 0.5% sodium carboxymethyl cellulose
and 0.4% polysorbate 80 in water (w/w/w). Rimonabant and
SR144528 were prepared in a vehicle of 90% saline-5% polysorbate-
80–5% polyethylene glycol (PEG-400) for i.p. administrations
(12 ml/kg).

Animals. All procedures met the National Institutes of Health
Guidelines for the Care and Use of laboratory Animals and those of
the Italian Ministry of Health (Decreto Legge 116/92). Male Swiss
mice (20–25g) were obtained from Charles River Laboratories, (Wil-
mington, MA). All animals were maintained on a 12-h/12-h light/
dark cycle with free access to water and chow (RMH 2500; Prolab,
Framingham, MA) and were habituated to their surroundings for 2 h
before experimentation.

CCI Model. Sciatic nerve ligation was performed following the
method of Bennett and Xie (1988). Mice were first anesthetized with
xylazine (10 mg/kg i.p.) and ketamine (100 mg/kg i.p.), the left thigh
was shaved and scrubbed with Betadine, and a small incision (2 cm
in length) was made in the middle of the left thigh to expose the
sciatic nerve. The nerve was loosely ligated at two distinct sites
(spaced at a 2-mm interval) around the entire diameter of the nerve
using silk sutures (7-0). The surgical area was dusted with strepto-
mycin powder and closed with a single muscle suture and two skin
clips and finally scrubbed with Betadine. In sham-operated animals,
the nerve was exposed but not ligated. The animals were placed
under a heat lamp until they awakened.

Behavioral Tests. Pain withdrawal thresholds to mechanical or
thermal stimuli were measured on both the ipsilateral paw (ligated)
and contralateral paw (nonligated) 2 h after drug administration for
acute administration experiments or 2 h after the last drug admin-
istration for chronic administration experiments. Cannabinoid an-
tagonists were administered 30 min before behavioral testing. Me-
chanical hyperalgesia was assessed by measuring the latency in
seconds to withdraw the paw away from a constant mechanical
pressure exerted onto its dorsal surface. A 15-g calibrated glass
cylindrical rod (diameter � 10 mm) chamfered to a conical point
(diameter � 3 mm) was used to exert the mechanical force. The
weight was suspended vertically between two rings attached to a
stand and was free to move vertically. A cutoff time of 180 s was
used. Thermal hyperalgesia was assessed by the method of Har-
greaves et al. (1988) by measuring the latency to withdraw the hind
paw from a focused beam of radiant heat (thermal intensity: infrared
3.0) applied to the plantar surface, using a commercial apparatus
(Ugo Basile, Varese, Italy). The cutoff time was set at 30 s. Mechan-
ical allodynia was assessed using a Dynamic Plantar Anesthesiom-
eter (Ugo Basile, Italy) by measuring the latency to withdraw the
hind paw from a graded force applied to the plantar surface of the
paws using a Von Frey filament. The cutoff force was set at 50 g.
Locomotor activity was assessed using a fully automated system
(Technical and Scientific Equipment, Bad Homburg, Germany).
The motility system consists of 2 � 6 infrared light-barriers per
cage disposed at right angles on the x-y axes to determine the
animal’s center of gravity and its displacement over time. Animals
were habituated to test cages for 3 days before trials. Animals
were monitored for 96 h immediately after the first drug admin-
istration on day 3.

Plasma extravasation was assessed by the method of Joris et al.
(1990). In brief, on day 7 after CCI, Evans’ blue dye was injected i.v.
(75 mg/kg), and 30 min later, the mice were sacrificed, and the paws
were excised. Plantar skin biopsies (6-mm-diameter punches) were
taken from the hind paws, and the dye was extracted with 1 ml of
formamide for 72 h. Evans’ blue dye concentrations were determined
by measuring optical density at � � 550 nm.

FAAH activity was measured in homogenates under conditions
that were linear with respect to protein concentration and time as
described previously (Fegley et al., 2005). In brief, homogenates were
incubated with anandamide[ethanolamine-3H] (60 Ci/mmol; Ameri-
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can Radiolabeled Chemicals, St. Louis, MO) at 37°C for 30 min in 0.5
ml of Tris buffer (50 mM, pH 7.5) containing fatty acid-free bovine
serum albumin (0.05%). Radioactivity was measured in the aqueous
phase after chloroform extraction.

Lipid Extractions. Frozen tissue samples were weighed and
homogenized. Tissue homogenates were spiked with [2H4]oleoyl-
ethanolamide (OEA), [2H4]PEA, [2H4]anandamide, and [2H8]2-AG
and were subjected to methanol-chloroform (1:2, v/v) extraction. Af-
ter centrifugation, the organic layer was carefully removed and
transferred to another vial. The aqueous layer was reextracted with
additional methanol-chloroform-water (1:2:1, v/v/v), and the organic
layers from the first and second extractions were combined and
concentrated under N2 and fractionated by open-bed Silica Gel G
column chromatography. In brief, the lipid extracts were reconsti-
tuted in chloroform and loaded onto small glass columns packed with
Silica Gel G (60-Å 230–400 mesh ASTM; Whatman, Clifton, NJ).
Analytes were eluted with 9:1 (v/v) chloroform-methanol. Eluates
were dried under N2 and reconstituted in 0.1 ml of chloroform-
methanol (1:4, v/v) for LC/MS analyses. LC/MS analysis of FAE and
2-AG was performed using an 1100-LC system coupled to a
1946A-MS detector (Agilent Technologies, Palo Alto, CA) equipped
with an electrospray ionization interface. An XDB Eclipse C18 col-
umn (50 � 4.6 mm i.d., 1.8 �m, Zorbax; Agilent Technologies) was
eluted with a gradient of methanol in water (from 85 to 90% meth-
anol in 2.5 min) at a flow rate of 1.5 ml/min. Column temperature
was kept at 40°C. Mass spectrometric detection was in the positive
ionization mode, capillary voltage was set at 3 kV, and fragmentor
voltage was varied from 120 to 140 V. N2 was used as drying gas at
a flow rate of 13 liters/min and a temperature of 350°C. Nebulizer
pressure was set at 60 psi. We monitored Na� adducts of the molec-
ular ions [M�Na]� in the selected ion-monitoring mode.

Analysis of URB597 in Plasma. Plasma samples (0.1 ml) were
subjected to protein precipitation with acetonitrile (0.25 ml) contain-
ing an internal standard (KDS-0017). KDS-0017 is a sulfonamide
derivative of URB597, in which the carbamoyl (CONH2) moiety of
URB597 is substituted with a sulfamoyl (SO2NH2) (Mor et al., 2004).
Samples were immediately vortexed and centrifuged (21,000g) for 5
min, and supernatants were transferred to 96-well plates for LC-
MS/MS analysis. LC separations were performed on a Waters 2790
Alliance system (Milford, MA). Separations were carried out using a
Luna C18 column (2 � 50 mm, 5 �; Phenomenex, Torrance, CA) and
a gradient consisting of 0.1% formic acid in water and 0.1% formic
acid in acetonitrile. The flow rate was 0.3 mm/min, column temper-
ature was 45°C, and run times were 7 min. The LC system was
interfaced with a Micromass Quattro Ultima tandem mass spectrom-
eter (Micromass, Beverly, MA). The samples were analyzed using
electrospray in the positive ionization mode with the cone voltage set
at 40 V and capillary voltage of 3.2 kV. The source and desolvation
temperature settings were 130 and 500°C, respectively. The voltage
of the collision-induced dissociation chamber was set at �15 eV.
Multiple reaction monitoring was used for the detection of URB597
as [M�H]� (m/z 339 � 214) and KDS-0017 as [M�H]� (m/z 375 �
250).

Statistical Analyses. Results are expressed as the mean �
S.E.M. of n experiments. Analyses of data were conducted using
GraphPad Prism software (GraphPad Software, San Diego, CA). The
significance of differences between groups was determined by one-
way analysis of variance followed by a Dunnett’s or Tukey’s test for
multiple comparisons where appropriate. Within group analysis was
conducted with a Student’s t test. A value of P 	 0.05 was considered
significant.

Results
URB597 Is Systemically Absorbed after Oral Admin-

istration. To determine whether URB597 is absorbed after
oral administration, we measured the drug in plasma at

various time points after single p.o. dosing in mice (10 or 50
mg/kg). LC/MS/MS analyses of plasma samples taken 15 min
after administration revealed that URB597 reached maximal
concentrations (Cmax) of 16 ng/ml at the 10 mg/kg dose and 90
ng/ml at the 50 mg/kg dose (Fig. 1A; Table 1). The drug was
cleared from circulation within 1 h of administration at the
10 mg/kg dose and within 12 h at the 50 mg/kg dose (Fig. 1A;
Table 1). To assess the pharmacodynamic consequences of
oral URB597 treatment, in the same set of experiments we
determined the ability of this agent to inhibit brain FAAH
activity. Ex vivo measurements in brain homogenates
showed that URB597 produced a long-lasting inhibition of
FAAH activity (Fig. 1B). It is noteworthy that the lower dose
of URB597 (10 mg/kg) was cleared more rapidly and pro-
duced lower plasma exposure levels (AUC(0�T): 26 ng�h/ml)
than did the higher dose (50 mg/kg) (AUC(0�T): 170 ng�h/ml)
(Fig. 1A; Table 1). Both doses caused maximal inhibition of
FAAH activity (Fig. 1B), albeit with different time courses.
The results indicate that URB597 is systemically absorbed
and inhibits brain FAAH activity after oral administration.

Oral URB597 Reduces Mechanical Hyperalgesia. We
next asked whether oral URB597 inhibits pain behavior in
neuropathic mice. We produced peripheral neuropathy by
loosely ligating the left sciatic nerve, a surgical procedure
that results in the development of mechanical and thermal
hyperalgesia (Bennett and Xie, 1988), as well as plasma
extravasation in the operated limb. Three days after surgery,
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when pain behavior is maximal in mice [day 0, presurgery:
54.5 � 2.1, day 3: 23.9 � 3.1, day 7: 21.3 � 1.4; results are
paw withdrawal latencies(s) for a mechanical stimulus], we
initiated a 4-day treatment regimen with either vehicle or
URB597 (10 mg/kg p.o.) administered once daily. On the
fourth day of treatment, 7 days after surgery, paw with-
drawal latencies were significantly decreased in ligated mice
(Fig. 2A), but not in sham-operated animals (Fig. 2B). Ad-
ministration of URB597 (10 mg/kg p.o.) significantly reduced
mechanical hyperalgesia in the operated paw (Fig. 2A) with-
out affecting withdrawal latencies in the nonoperated (con-
tralateral) limb (Fig. 2A). Administration of a single acute
dose of URB597 (10 mg/kg p.o.), 7 days after surgery and 2 h
before pain testing, produced only a limited effect (Fig. 2C).
The antihyperalgesic effects of repeated URB597 dosing were
dose-dependent (Fig. 3A) and comparable in magnitude with
those elicited by the clinically used analgesic gabapentin (50
mg/kg p.o., once daily for 4 days) (Fig. 3B). Moreover, these
effects were not accompanied by any significant change in
locomotor activity when measured for 24 h after the last dose
on day 4 (vehicle, 18,256 � 1095; URB, 17,241 � 1705;
results are expressed as total beam breaks).

To explore the contribution of cannabinoid receptors to
URB597-mediated antihyperalgesia, on day 7 after nerve
ligation, we administered the CB1-selective antagonist
rimonabant (SR141716) or the CB2-selective antagonist
SR144528 to CCI mice 30 min before pain assessment. Con-
firming a role for CB1 receptors, rimonabant (1 mg/kg i.p.)
(Fig. 4A) completely prevented the antihyperalgesic actions
of URB597 (10 mg/kg p.o.), whereas SR144528 (1 mg/kg i.p.)
had no such effect (Fig. 4B). These findings suggest that
multiple oral dosing with URB597 reduces mechanical hy-
peralgesia in neuropathic mice through a CB1-dependent
mechanism.

Oral URB597 Reduces Thermal Hyperalgesia and
Mechanical Allodynia. Treatment with URB597 (10 mg/kg
p.o., once daily for 4 days) reduced thermal hyperalgesia (Fig.
5A) and mechanical allodynia in CCI mice (Fig. 5B). In both
tests, the analgesic effects of URB597 were prevented by
rimonabant (1 mg/kg i.p., 30 min before pain assessment)
(Fig. 5, A and B) and attenuated by SR144528 (1 mg/kg i.p.,

30 min before pain assessment) (Fig. 5, A and B). In agree-
ment with our previous findings (Fig. 2B), URB597 did not
change nocifensive responses to thermal stimuli (Fig. 5A) or
mechanical pressure (Fig. 5B) applied to nonoperated paws.

Oral URB597 Reduces Plasma Extravasation. The
predominant mechanism by which CB1 receptor activation
produces analgesia involves the suppression of nociceptive
neuron activity (Walker and Hohmann, 2005). However, CB1

agonists may also exert local anti-inflammatory effects that
might reduce pain sensation (Marchalant et al., 2007). To
investigate whether URB597 affects the neurogenic inflam-
matory response produced by sciatic nerve ligation, we ex-
amined whether this drug influences plasma extravasation
in the paws of CCI mice. On day 7 after surgery, vehicle-
treated mice (once daily for 4 days p.o.) displayed a signifi-
cant increase in Evans’ blue dye permeability in paw tissue
compared with control, nonligated animals (Fig. 6). Oral
administration of URB597 (10 mg/kg) for 4 days markedly
reduced this response (Fig. 6), without changing Evans’ blue
dye permeability in nonligated paws (Fig. 6). These anti-
inflammatory effects of URB597 were completely prevented
by rimonabant (1 mg/kg i.p., 30 min before pain assessment)
and significantly reduced by SR144528 (1 mg/kg i.p.).

Oral URB597 Increases Spinal Cord FAE Levels. In-
hibition of FAAH by URB597 has been shown to increase the
levels of anandamide and other noncannabinoid analgesic
FAEs, such as PEA, in regions of the brain that process
nociceptive stimuli (Fegley et al., 2005; Gobbi et al., 2005;
Bortolato et al., 2007). To examine whether similar changes
occur in the spinal cord, we quantified FAE levels in lumbar
spinal cord segments (L1–L5) of CCI mice treated with either
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TABLE 1
Pharmacokinetic profile of URB597 after oral administration in mice
(n � 3–4)

Dose AUC Cmax Tmax

mg/kg ng�h/ml ng/ml min

10 26 16 15
50 170 90 15
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vehicle or URB597 (10 mg/kg, once daily for 4 days). As
anticipated, URB597 selectively increased spinal levels of
anandamide (Fig. 7A), PEA (Fig. 7B), and OEA (Fig. 7C),

without affecting levels of 2-AG (Fig. 7D), an endocannabi-
noid lipid that is not a substrate for FAAH.

Discussion
The main finding of the present study is that repeated oral

administration of URB597 produces significant antihyperal-
gesic and antiallodynic effects in the mouse CCI model of
neuropathic pain (Bennett and Xie, 1988). These effects are
accompanied by an increase in spinal cord anandamide lev-
els, are prevented by the CB1 antagonist rimonabant, and are
reduced by the CB2 antagonist SR144528 when the stimuli
are thermal or tactile, suggesting that they are caused by
anandamide-mediated activation of both CB1 and CB2 recep-
tors. It is noteworthy that the analgesic actions of URB597
are associated with a marked reduction in plasma extrava-
sation, a finding that supports a role for anandamide in the
modulation of neurogenic inflammation (Richardson et al.,
1998).
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A large body of evidence indicates that direct-acting can-
nabinoid agonists reduce nocifensive behaviors in animals
and alleviate pain in humans. In animals, systemic or intra-
cerebral administration of cannabinoid agonists exerts pro-
found antinociceptive effects and suppresses activity of CB1-
expressing nociceptive neurons in the thalamus, midbrain,
and brainstem (Walker and Hohmann, 2005). In addition to
these central actions, cannabinoid agonists also prevent for-
malin-evoked pain responses in mice (Calignano et al., 1998;
Jaggar et al., 1998) and capsaicin-evoked pain in monkeys
and human volunteers (Ko and Woods, 1999; Rukwied et al.,
2003) presumably by interacting with CB1 or CB2 receptors
localized on peripheral sensory neuron terminals or resident
non-neural cells (Hohmann et al., 1999; Ibrahim et al., 2003).

Three sets of results support the idea that the FAAH
inhibitor URB597 produces its analgesic effects by blocking
anandamide hydrolysis, thus magnifying the ability of this
endocannabinoid ligand to activate CB1 and CB2 receptors.
First, CB1 receptor blockade enhances pain behaviors in var-
ious pain models (Calignano et al., 1998; Strangman et al.,
1998) and abrogates nonopioid stress-induced analgesia, sug-
gesting the existence of an analgesic endocannabinoid tone
mediated by anandamide. Second, genetic deletion of the
faah gene and pharmacological inhibition of FAAH activity,
each of which elevates brain anandamide levels, reduce no-
cifensive behaviors in mice and rats (Kathuria et al., 2003;
McKinney and Cravatt, 2005). Third, genetic linkage studies
have identified FAAH haplotypes in humans, which are
linked to variations in pain sensitivity (Kim et al., 2006).

In the present study, we show that URB597 reduces hy-
peralgesia and allodynia associated with CCI and increases
spinal cord levels of anandamide. URB597 does not directly
interact with cannabinoid receptors (Kathuria et al., 2003;
Piomelli et al., 2006), yet its analgesic effects are blocked by
the CB1 antagonist rimonabant. This suggests that one
mechanism by which URB597 produces analgesia is elevat-
ing anandamide levels at CB1 receptors. In addition, recent
studies in neuropathic rats have identified analgesic effects
mediated by CB2 receptors (Ibrahim et al., 2003; Scott et al.,
2004; Whiteside et al., 2005), raising the possibility that
URB597 might modulate pain through both cannabinoid re-
ceptor subtypes. Supporting this hypothesis, we found that
the CB2 antagonist SR144528 reduced URB597-mediated
reductions in plasma extravasation, neuropathic thermal hy-
peralgesia, and allodynia. In contrast, SR144528 did not
affect URB597-mediated analgesia when the pain stimulus
was mechanical. These differences may be partly explained
by the predominant localization of CB1 receptors to neurons,
which contrasts the more predominant expression of CB2

receptors in immune cells and microglia, where they are
thought to regulate neuroinflammatory processes (Cabral
and Marciano-Cabral, 2005).

An additional possibility is that anandamide and PEA, a
noncannabinoid FAE that produces broad spectrum analge-
sia by activating the nuclear receptor peroxisome prolifera-
tor-activated receptor-� (LoVerme et al., 2006), cooperate to
reduce pain synergistically. Indeed, synergistic interactions
between PEA and anandamide have been reported (Calig-
nano et al., 1998; Russo et al., 2007).

The analgesic effects of URB597 reported here, when the
drug is administered for 4 days, contrast those of a previous
study reporting that a single dose of URB597 does not affect

mechanical allodynia in neuropathic rats (Jayamanne et al.,
2006). Indeed, experiments in our laboratory have confirmed
that acute URB597 administration (10 mg/kg p.o.) has only
limited effects in CCI mice (day 0, presurgery: 54.5 � 2.1, day
3: 23.9 � 3.1, day 7: 21.3 � 1.4; results are paw withdrawal
latencies (seconds) from a mechanical stimuli). One plausible
explanation for this result is that short-term dosing with
URB597 might induce neuroplastic changes that are respon-
sible for the enhanced efficacy of the drug. Similar enhance-
ments in efficacy after repeated administrations have been
observed with the ability of URB597 to increase serotonergic
neuron firing in the dorsal raphe nucleus (Gobbi et al., 2005),
as well as with the analgesic effects of cannabinoid agonists
(Costa et al., 2004) and gabapentin (Fox et al., 2003). The
alternate possibility that repeated dosing with URB597
causes incremental elevations in anandamide levels, for ex-
ample, through alterations in cellular uptake (Kaczocha et
al., 2006), is rendered less likely by our finding that single or
repeated administration of URB597 elicits similar changes in
spinal cord FAE levels (unpublished data).

The side effects and abuse potential of agonists that target
CB1 receptors are well documented, making these drugs less
than ideal for clinical use. Previous experiments have shown
that URB597 does not share the pharmacological profile of
direct-acting cannabinoid agonists (Piomelli et al., 2006). In
particular, FAAH inhibition does not cause hypothermia,
catalepsy, or hyperphagia, three typical signs of CB1 receptor
activation (Kathuria et al., 2003). Moreover, URB597 does
not produce rewarding effects in the rat conditioned place
preference test and does not substitute for cannabinoid ago-
nists in a rat drug discrimination test (Gobbi et al., 2005).
This lack of overt cannabinoid effects has been attributed to
the ability of URB597 to inhibit FAAH activity without di-
rectly activating CB1 receptors (Kathuria et al., 2003). The
favorable pharmacological properties of URB597 underscore
the value of FAAH as a target for innovative analgesic drugs.
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