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ABSTRACT OF THE DISSERTATION

Self-limited Etching for Atomic Scale Surface Engineering of Metals: Understanding and

Design

by

Yantao Xia

Doctor of Philosophy in Chemical Engineering

University of California, Los Angeles, 2023

Professor Philippe Sautet, Chair

Plasma-thermal atomic layer etching (ALE) is an emerging direct metal etch (DME) method

that can potentially enable integration of many metals previously considered impossible to

pattern. By combining a low-temperature plasma activation with thermal removal, metal

layers can be patterned directionally and selectively. However, little is understood about

the surface chemistry that leads to directionality and selectivity. In this dissertation, a suite

of modeling tools is developed, ranging from thermodynamic screening of potential process

chemistries, to development of accurate interatomic potential models, large-scale atomistic

simulation of plasma processes, and finally the analysis of trajectories. The thermodynamic

screening model is applied to combinations of oxygen/nitrogen plasma activation on nickel/-

copper surfaces, using formic acid/formamidinate as the etchant. In total 8 processes were

screened computationally, predicting a nitrogen-plasma based process on nickel metal etch

will yield similar etching characteristics as previously demonstrated oxygen-plasma based

process. On all combinations of modifier/substrates it is predicted that higher surface cover-

age generally leads to more favorable etching, and there exists a critical coverage below which

etching is unfavorable thermodynamically. It is found that inserting ions into the subsurface

sites (possible through the impact ion energy) makes etching highly favorable. This protocol

can be readily extended to other combinations of metals/modifiers/etchants to allow for a
ii



rapid screening of etching chemistries. The demonstrated complex site-dependence of the

etching energetics is accounted for explicitly in molecular dynamics simulations enabled by a

machine learning interatomic potential for copper and oxygen trained on ab-initio calculation

data. A large scale simulation protocol for atomisitc plasma-surface interaction simulation

is developed, and used to obtain atomically-resolved trajectory of copper oxidation. The

simulation results show that for a low-energy plasma (kinetic energy ≤ 20 eV), the ions do

not penetrate into the substrate lattice. The oxidation process in the bulk of the film is

still diffusion limited. The effect of ion energy lies in delivering additional, depth-dependent

thermal energy that promotes diffusion within the oxide film. It is confirmed that at 80 ◦C

the oxidation is not self-limiting. The chemical identity of the oxide film is determined to

be mainly CuO. The crystalinity is further studied in a separate set of simulations that

increased ion flux 4-fold, effective accelerating simulation. Repeated, prolonged ion-impact

on the already-oxidized film (2 nm thick oxide) leads a layer of crystalline CuO beneath an

atomically-thin, but rough top layer of amorphous CuO. This is not observed in other non-

accelerated simulations, which always gave amorphous CuO structures. Presumably this

is due to crystallization being a slow process dominated by rare events. By investigating

the effect of process-relevant parameters (temperature, ion-to-neutral ratio, and ion kinetic

energy), it is found that self-limited growth may be possible by lowering the subtrate tem-

perature. In such conditions, the limiting thickness is controllable by tuning the ion energy

distribution function (IEDF) in the plasma. This is due to the limited range of energy

delivery through collision cascade in the oxide film.
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CHAPTER 1

Research Background

All solids terminate by a surface. As a result, surface processes are key for a vast array of

applications. For the ultimate control of the composition and structure of surfaces, selec-

tive and accurate engineering methods of surfaces at the nanometer/subnanometer scale are

required. This is especially the case for the microelectronics industry, which, following the

trend predicted by Moore’s Law, has entered the nanoelectronics era. As of 2023, critical

dimensions (i.e. “feature length”) in major producers have entered the single-digit nanome-

ter scale.125 Specifically, the precise control of film thickness is becoming necessary with

applications such as extreme ultraviolet (EUV) lithography masks and 3D devices. This is

in addition to the already stringent requirement of patterning planar features.104

An overview of the photolithographic pattern transfer process is depicted in figure 1.1.

A photosensitive polymeric material, called the photoresist (PR), is first coated onto the

substrate to be patterned. The resist is then exposed via a photomask. In the case depicted

here (for positive PR), the exposed region becomes soluble in the developer solution and is

removed from the substrate during development. Now the pattern is transferred from the

photomask to the photoresist. In the etching step, the photoresist acts as a mask for etching.

Only the exposed parts of the substrate would be etched, transferring the pattern onto the

substrate.”

The focus of the present dissertation is etching. Conventional wet etching approaches

used in the fields of metallurgy and art expose patterned metals to various acids. The

metal becomes oxidized and dissolves into the liquid phase. Wet etching offers fast etch

speed but the Brownian motion of the etchant molecules always results in uniform etching

in all directions (isotropic etching), rendering it unsuitable to pattern the high aspect ratios

1



Figure 1.1: A: photoresist (PR) is coated onto the substrate. B: The exposure via a

photomask transfers the pattern from the mask to the PR. C: The exposed regions dissolve

in the developer solution and expose the target region on the substrate. D: These regions

are then brought into contact with an etching environment. E: The resist is then ashed,

leaving the transferred pattern on the substrate.

structures today. In addition, the harsh chemical conditions may be corrosive to existing

structures.

Today, dry etching is the dominant technique for patterning. Two mechanisms are at

work in dry etching: (1) chemical etch process, in which neutral radicals react with the

surface, producing volatile products, and (2) sputtering, which relies on the kinetic energy of

inert ions to disrupt the lattice and eject substrate atoms. Common dry etching techniques

are shown in figure 1.2. Neutral chemical etch (A) is similar to wet etching, is always

isotropic, and able to reach underneath the masking material. In sputtering (B), the ions

are accelerated toward the substrate, leading to vertical direction being preferred, but the

side wall slopes outward due to the finite mean free paths of the ions, making it difficult

to create high-aspect-ratio structures. In reactive ion etching (RIE, C), nearly vertical side

walls are achieved when chemical etch is re-introduced. In this technique, mechanisms (1)

and (2) cooperate. Structures with still higher aspect ratios are possible with inhibitor

films in ion-enhanced inhibitor etching (D), where the sidewalls are protected from etchant

contamination by repeated deposition of the polymeric inhibitor film.

A major drawback of the aforementioned existing continuous dry etching techniques is

their inability to precisely control vertical etch thickness, which provides the opportunity

window for atomic layer etching (ALE).
2



Figure 1.2: Schematic of different vertical etching profiles. A) neutral radicals in chemical

etching produce isotropic profiles. The substrate underneath the mask is etched away. B)

sputtering is anisotropic, but cannot create deep trenches due to the non-vertical sidewall. C)

Ion-enhanced etching is able to create near-vertical sidewalls. D) Inhibitor etching protects

the sidewall by an inhibitor, enabling even higher aspect ratio and prevents excessive sidewall

damage from neutrals (reactive radicals).

3



The conceptual reverse of atomic layer deposition (ALD), ALE was first reported in the

1980s. While ALD has since seen wide-range industry adoption, ALE was considered too

slow to be practical until developments in the last decade brought it back under intense

investigation when applications emerged where precision rather than speed is the bottle-

neck.108 The technique can be thought of as RIE with time-separated doses. In RIE, both

ions and radicals are present at all times. In ALE, the ions and radicals are introduced in

time-separated pulses. The ions are used to modify the surface, creating a surface layer of

different chemical composition, but do not themselves sputter etch. The neutrals are intro-

duced after ions are purged. The removal is accomplished either by sputtering with inert

species (e.g., Ar) or a reaction that forms a volatile compound. Under both scenarios, only

the activated pattern is removed, and material removal stops when the pristine substrate is

exposed. In both steps, the reaction limits itself to the surface layers. In contrast to RIE,

in ALE the energy of the ions must be kept as low as possible to avoid sputtering and/or

diffusion deep inside the substrate. The self-limiting nature of the reaction enables digital

thickness control, as the etch rate no longer depends on exposure time.

The main engineering challenge in ALE is that surface reactions must be mutually ex-

clusive. Consider the plasma ALE process on Si,110 depicted in figure 1.3. In the activation

step, plasma-assisted chlorine adsorption activates the Si surface. The energy source for the

removal step is Ar+ plasma. In the activation step, the ion energies must be kept low to stay

in the ALE regime. In this case, the process window that allows for ALE is 40V–60V in

terms of RF bias in the chlorination step. Higher energies result in a loss of selectivity due

to spontaneous etch. Etching at lower energies is too slow. At the middle of this range, the

etch-per-cycle (EPC) is approximately 12Å, corresponding to roughly 3 layers of atoms.

The fact that the same chemistry can be used in both ALE and continuous modes enables

an interesting comparison. If Cl2 and Ar doses are not time-separated, a continuous etch

results. The advantage of a low-energy process is seen through the Si to SiO2 selectivity:

selectivity of ALE is an order of magnitude higher than that of RIE within the ALE operating

window.110

The requirement of self-limiting surface reactions can be examined in more detail given
4



Figure 1.3: Si/Cl2/Ar plasma ALE Process. Chlorination-activated Si surface is sputter-

etched with Ar+ plasma.

this context. Here, the chlorine activation must be self-limiting because if Cl atoms diffuse

spontaneously into the Si lattice, the thickness of the SiCl4-like layer formed (and subse-

quently etched) would be dependent on Ar+ exposure time. Similarly, Ar+ plasma must not

be energetic enough to sputter the Si substrate on its own.

The Si/Cl2/Ar+ example is entirely plasma-based. The alternative, thermal ALE, is

discussed in the next example. Consider the process depicted in figure 1.4. HF gas adsorbs

on the surface of alumina (Al2O3) to form a stable and nonvolatile AlF3-like layer, releasing

H2O as a by-product. After purging HF, the AlF3 layer is reacted with trimethylaluminum

(TMA) to form the volatile AlF(CH3)2 complex that must be purged before the HF is re-

introduced. The dangling methyl groups on the surface are removed at the next cycle by HF

to form methane. In addition to the same requirement that fluorination does not proceed

indefinitely and that TMA is not reactive on Al2O3, the case here is complicated by the fact

that TMA and HF are used for ALD of AlF3 at lower temperatures. The ALE reaction can
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be written overall (unbalanced) as follows:

AlOx(CH3)3–x + HF AlF3 + H2O↑ + CH4↑ {1.1a}

AlF3 + Al2O3 + Al(CH3)3 AlF(CH3)2↑ + AlOx(CH3)3–x {1.1b}

The competing ALD reaction is as follows:

AlFx(CH3)3–x + HF AlF3 HF + CH4↑ {1.2a}

AlF3 HF + Al(CH3)3 AlFx(CH3)3–x↓ + CH4↑ {1.2b}

The competition between ALE of Al2O3 and ALD of AlF3 makes the time separation

of doses critical, as the simultaneous presence of the etchant HF and the etching product

Al(CH3)3 leads to the deposition of AlF3.

Figure 1.4: Al2O3 thermal ALE Process. Fluorine-activated Al2O3 is etched with tetram-

ethylaluminum (TMA).

Given the two examples above, it is apparent that the defining feature of ALE is not

the single atomic layer resolution of material removal but rather the digital control of etch
6



thickness given by the well-defined etch-per-cycle, EPC, independent of the exposure time.

From a practical point of view, it is difficult to determine exactly the number of atomic

layers removed. In this sense, demanding the strict “atomic-layer” level of control is not

meaningful at the present.

Whereas the preceding examples are on silicon and aluminum oxide, the most dramatic

increase in material choices for integrated circuits lies in metals. Metals offer many desirable

traits for microelectronics integration, such as high electrical and thermal conductivities.

On the other hand, effective patterning techniques are most lacking for metals. Next, the

application of copper (Cu) and nickel (Ni) in the integrated circuit fabrication process is

highlighted here to motivate the development of self-limiting, highly-controllable removal

processes.

Copper has been the most prevalent metal in circuitry by far since the late 1990’s as the

standard metal for interconnects. While it boasts superior conductivity, it is at the same

time notorious for migrating into the silicon substrate.39 Additionally, the industry had been

unable to develop an effective low-temperature gas phase etching process to pattern Cu.

This resulted in the Damascene and chemical mechanical polishing (CMP) process, where

the interlayer dielectrics are patterned lithographically, after which Cu is plated to fill the

void. This clever trick avoided the need to pattern Cu,51 but the challenges of high-aspect

ratio trench filling uniformity178 and CMP-induced cracking63 still arose. Despite advances

in Cu etching techniques at lower temperatures since then,54,145 the Damascene and CMP

process remained the industry standard. In recent years, 13 to 15 levels of metal layers are

typically required to support technology nodes beyond 10 nm.130 figure 1.5 shows a high-

performance dense interconnect that meets computing needs and reliability requirements.142

This structure clearly places a lot of constraint on the fragile low-k material, necessitating the

development of a low-temperature gas phase process to etch Cu. The most viable strategy is

a chemically controlled ALE process that can effectively pattern copper at designated regions

without a grain size effect. A high selectivity to the barrier layer at the bottom would also

be required.

The introduction of extreme ultraviolet (EUV) lithography technology represents a dras-
7



Figure 1.5: Illustration of the lowest 10 layers of metal (copper) of a 10 nm Interconnect

Stack.[20]

tic transition from transmission optics to reflective optics for photolithography. The pat-

terning of absorbers on Si/Mo multilayer-based EUV masks becomes a real challenge. It

was thought that a thick layer of absorbers (e.g., 60 nm Ta) would be necessary to ensure

the complete absorption of EUV in designated regions on the mask.75 On the other hand,

reducing the absorbing layer thickness generally improves the pattern transfer fidelity as the

mask shadowing effect becomes less perceivable. The improvement is especially noticeable

for extreme dimension features where the feature sizes are comparable to the errors intro-

duced by shadowing. A thinner absorbing layer would require a metal that has an index of

refraction (n) close to 1 and a large extinction coefficient (k). It has been measured experi-

mentally114 and simulated computationally134 that Ni is such a candidate material. A thin

Ni layer ( 30 nm) is found to be as effective as the 60 nm Ta. However, nickel integration is

prevented by the challenges involved in patterning this inert metal selectively.

The copper interconnects and nickel photomask absorption layers are just two out of

the many urgent applications of nanometer-level metal patterning techniques. However, in

sharp contrast to the rapid rise in application needs, metal patterning on the sub-micron scale

8



Figure 1.6: An idealized atomic layer etching (ALE) process, depicted here for Ni/O/-

formic acid plasma-thermal ALE. The metal surface (A) is first subjected to a plasma ion

bombardment (B) until saturation (C). An etchant molecule is then introduced (D) after

the plasma has been switched off. The etchants adsorb dissociatively on the activated sur-

face (E), etching the top layers by the formation of volatile metal-complexes. The reaction

stops when all the modifier atoms are consumed, exposing the metal surface again (F). The

idealized scheme here removes exactly one atomic layer (dark green), but the actual etch-

per-cycle (EPC) may differ.
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remains largely unsolved, as many of these metals are etch-resistant. Nickel, for instance,

has long been used as an anti-corrosion additive in various alloys. Despite a few reports

of controllable etching processes for metals, a systematic understanding of the underlying

chemistry is still lacking.

Etching on metals is conventionally done in the solution phase byusing harsh chemicals.

This is still used, for instance, in printing circuit boards. For the nanoscale patterning,

dry etching involving high vacuum chambers and plasmas is now routinely used on silicon

substrates. However, the techniques discussed in figure 1.2 isare not directly usable for

metals, because (1) the chemical inertness of the metals requires, for dry etching, a high

-energy ion source to getachieve perceivable removal, often resulting in poor selectivity, and

(2) metal leaves the surface in the form of unstable, high -energy species that readily redeposit

on the chamber walls and other parts of the wafer, among other reasons.

The two ALE examples given before use either plasma or thermal reactions for both

modification and removal steps. In fact, these conditions can and should be combined for

metals, for the reasons discussed below. To avoid metal redeposition, the removal step

is best done similar to that in thermal ALE, so that metal atoms are stabilized by organic

ligands. If a directional etching profile is desired, the activation step must be plasma-assisted.

Plasma can also act as an energy source in the activation step. An extra source of energy is

especially important for noble metals (e.g., Cu). These fundamental considerations suggest

that a thermal/plasma mixed process is ideal for plasma-thermal ALE. The general features

of the proposed plasma-thermal ALE process are described in figure 1.6. Proof-of-concept

experimental studies have shown that this combined plasma-thermal ALE is able to etch

metals (Ni and Cu) with directionality, specificity, and selectivity.

At the center of the plasma-thermal ALE process is the plasma activation of the metal

substrate. Plasma is formed when the electrons in gas phase atoms/molecules are excited.

The molecules can dissociate and/or ionize, creating a dilute gas of energetic free electrons

and excited species. By increasing the energy of the reactant, activation energy Ea is de-

creased, and a normally endothermic reaction can be made exothermic since the final product

on the surface is not excited. The working principle of plasma-assisted reactions is illustrated
10



in figure 1.7.

Figure 1.7: Energetics of plasma-enhanced chemistry. A thermal reaction with a positive

reaction energy ∆ET
rxn (endothermic) is converted to a plasma reaction with a negative

∆EP
rxn. The large thermal activation energy barrier ∆ET

a is decreased to ∆EP
a in the plasma

process, resulting in a much higher reaction rate.

Two types of plasma exist. Depending on whether the heavy species (e.g. atoms,

molecules) are in thermal equilibrium with the electrons or not, the plasma is termed ther-

mal plasma and cold plasma, respectively. A thermal plasma typically requires thousands

of degrees to ionize all the species, hence cannot be used for materials processing. At the

temperatures processes can operate at, electric fields can selectively transfer energy to the

ions and electrons, creating a cold plasma. For our purpose, a plasma is an inter-penetrating

fluid of free electrons, radicals, excited states of molecules, molecular fragments, atoms, and

ions. The bulk of the plasma is charge-neutral, but a thin, negatively charged sheath is

maintained at the boundary of the plasma. The sheath keeps the electrons inside the bulk

plasma but accelerates the ions toward the surface. The accurate description of the chemical

composition, including electrons, ground state molecules, and various dissociated and excited

state molecules, is difficult8,55 due to the inherent complexity of the reaction network and

the disparate time and length scales. Fortunately, the problem can be greatly simplified by

the fact that 1) ions are accelerated by the sheath to impinge nearly vertically on the surface

11



Figure 1.8: The sheath near a plasma-surface interface. The sheath creates an electric field

pointing perpendicularly into the surface. This field accelerates cations toward the surface,

enabling directional etching, but repels anions and electrons back into the bulk plasma to

maintain the quasi-neutral condition.
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with negligible speed in the lateral direction, and 2) the secondary electrons from the surface

neutralize most of the ions before they reach the surface, so that ions and excited states may

be approximated by fast ground state molecules. These aspects are discussed in detail in

chapter 2.

The recent development of plasma-thermal ALE (Atomic Layer Etching)161 has expanded

the possibilities to include metals. However, to design and realize ALE for a wide range of

metals, a thorough understanding of the underlying chemical mechanisms is essential. The

validation and optimization of candidate chemistries and processes can be costly and labor-

intensive if a trial-and-error approach is adopted, as reaction mechanisms depend on target

materials, modifiers, and etchants. Moreover, in many cases, probing the etching chemistry

experimentally is difficult due to the low concentration of gas phase products, which hinders

the search for optimal chemistry and process conditions.

Computational chemistry techniques have significantly improved in accuracy over the

years, providing precise estimations of thermochemical data.118 These techniques have the

potential to assist in the design and improvement of ALE chemistries, as it is easier to build

and test various reactions on a computer than to perform them experimentally, provided

the appropriate theoretical tools are available. As part of the eventual goal of developing

a ”virtual reactor” for ALE, this project serves as a proof-of-concept study using the best

currently available computational tools in surface chemistry. The project can be roughly

divided into thermodynamics and kinetics components.

In the thermodynamics part, the main objective is to screen chemistries (modifier and

etchant pairs) for a given substrate. This means that theoretical thermochemical predictions

must yield favorable energetics for a process that has already been demonstrated feasible in

the laboratory, and vice versa. The energetics criteria primarily apply to the removal step.

The reactivity of plasma is controllable to a great extent, so the post-plasma surface is

considered an input to this model rather than a prediction output of the thermodynamics

part. To facilitate the screening process, some potentially oversimplifying assumptions are

necessary. However, these assumptions can be adjusted later when more information about

the surface is available, without significantly affecting the model itself.
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However, it is important to note that thermodynamics can only provide a lower bound

for process feasibility. If a process is not thermodynamically feasible, it would not occur. On

the other hand, a thermodynamically feasible chemistry might still be kinetically limited. If

this is the case for the removal step, it is necessary to sample a sufficient number of low-lying

pathways to obtain the required kinetic behavior. The challenges associated with this aspect

are highlighted below, and an initial attempt at addressing them is provided.

The difficulty in etching energetics simulation arises from the uncertainty surrounding the

post-plasma structure, which requires a realistic model of plasma-surface interaction. Sim-

ulations of plasma processing are a multiscale problem and are typically divided into four

categories. At the reactor scale, Monte Carlo techniques are used to solve continuum equa-

tions for flow, temperature, and electromagnetic fields. The solutions provide information

about species concentrations over time and space,50 allowing predictions of wafer uniformity,

among other factors. Increasingly, reactor scale simulations are being coupled with sheath

scale simulations, such as the hybrid plasma equipment model (HPEM).40 Sheath models

aim to characterize the ion energy distribution (IED) function, a critical boundary condi-

tion for simulations at smaller scales. Feature simulations focus on the evolution of feature

profiles, considering information about the flux, IED, surface reaction network, and surface

diffusivity of adsorbed species.91,101 At the smallest scale lies atomic simulations, which ex-

plicitly follow the trajectories of each atom in the process, using forces obtained from first

principles or empirical interaction potentials. As devices become smaller, understanding the

atomic scale etching behavior becomes increasingly important for process design. However,

atomic scale simulations depend on information from larger scales, and a truly predictive

multiscale model integrating all levels is still not available.

At the atomistic scale, there are two main categories of methods for treating plasma-

surface interactions: kinetic Monte Carlo (KMC) and molecular dynamics (MD).20,57,99,133

Both methods are typically trained and validated against ab initio calculations, with density

functional theory (DFT) being the most common approach. In KMC, a library of events

and their probabilities is required to propagate the trajectories. The main advantage is the

ability to access long time scales, but this correspondence and the trajectory itself rely on the
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accuracy of the library, which can be poorly transferable. Within the general MD paradigm,

methods can be classified into empirical, semi-empirical, and ab initio, in order of increas-

ing accuracy, transferability, and cost. Empirical MD methods are the fastest but often

inaccurate and not transferable. DFT ab initio methods are accurate but computationally

expensive, making dynamical calculations impractical for systems with more than approxi-

mately 100 atoms and time scales of a few picoseconds. Semi-empirical methods (e.g. DFTB)

are typically two orders of magnitude faster than DFT, with acceptable transferability, but

at the cost of sacrificing some accuracy.33,71

The modeling of plasma activation is complicated by the fact that the substrate is ex-

posed to electrons, neutrals, radicals, and radiation in the plasma. While the electrons,

radiation, and excited species are generally not treated in current models, describing the

heavy ions alone presents a significant challenge. The kinetic energies of these ions, typically

ranging from 10 eV–20 eV, far exceed the thermal energies associated with Brownian motion

at practical process temperatures. Consequently, the distances between ions and substrate

atoms cover larger ranges than those involved in typical thermal reactions, making interac-

tion potentials (MD)/probabilities (MC) developed for thermal chemical reactions unusable.

As a result, existing work often relies on specifically trained potentials.

For instance, the Stellinger-Weber potential is commonly employed to treat Si/Cl in-

teractions,26,69 while the Tersoff-Brenner potential is another popular choice.84 In the case

of metallic systems, the Embedded Atom Method (EAM) is often used,13 while inert ions

(e.g., Ar+) are typically treated with purely repulsive Moliere potentials.31 Reactive force

fields (e.g., ReaxFF) are also widely recognized for their unique ability to reproduce bond

breaking/formation events. These force fields use bond-order formulations fitted to quantum

chemistry data, yielding good results in related projects.88,120,131,165

Traditional empirical potentials are fundamentally limited in accuracy because their an-

alytical forms are approximate. To address this limitation, artificial neural networks (ANNs)

have been proposed as a potential solution since they can be fitted to complex functions.68

This approach has been successfully applied to the simulation of complex material sys-

tems.123,154 Another development in this area is the delta neural network potential, which
15



aims to improve existing empirical potentials by appending an additional NN-generated en-

ergy term, effectively fitted to the errors of the original force field.148 This approach can be

easier to implement, as much of the complexity is already treated in the empirical force field.

However, it is essential to note that in classical potentials, physics-inspired functional

forms ensure that the short-distance, exponential growth of the kinetic energy is described

correctly, at least qualitatively. In contrast, machine-learning potentials do not inherently

provide such guarantees, and special care must be taken to obtain stable and accurate

dynamics, as explored in this dissertation.

Besides the availability of accurate reactive force fields, the notorious time scale problem

prevents MD simulations from reaching realistic time scales comparable to laboratory pro-

cesses: accurate dynamics require discrete time steps of femtoseconds, yet many important

processes (e.g. diffusion) happen on much slower timescales, and laboratory processing is in

seconds or minutes. As a result, plasma impact simulations often rely on an artificially high

ion incidence rate to reduce the computational cost, sacrificing accuracy and correspondence

to physical time.

To overcome this problem, a class of accelerated molecular dynamics techniques have

been developed.122 These techniques can be classified into parallel replica MD, temperature

accelerated MD, and hyperdynamics, of which only hyperdynamics promises to bridge the

time scale gap of approximately nine orders of magnitude. Hyperdynamics adds a bias

potential to the true potential energy surface in an effort to uniformly lower the transition

barriers, thus accelerating the simulation of slow events (e.g. bond breaking).41,42 While the

construction of such a bias potential is far from trivial, recently a class of methods has been

developed to construct bias potentials on-the-fly, eliminating the need for expert knowledge

of the system on the user’s end.103,127

On the other end, kinetic Monte Carlo methods bypass the timescale problem by convert-

ing the trajectory to a chain of discrete system states and pre-defined transition rates among

them. Provided such barriers are accurate and the event library is complete, the KMC

method allows the system trajectory to be mapped out very efficiently. However, KMC
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is not suitable for discovery of new processes since the event library must be constructed

beforehand.72 It also does not allow the calculation of free energy, unlike MD sampling.

While the mechanisms of thermal ALE were recently reviewed,155 the focus was mainly on

high-level, abstract reaction routes (e.g., fluorination and ligand exchange). Studies involv-

ing explicit surface-etchant interaction models are limited, and they often yield qualitative

and explanatory results rather than quantitative predictions. For example, some studies

examined the reaction of hexafluoroacetylacetone (hfacH) with nickel and nickel oxide sur-

faces.150–152 On the pristine nickel surface, the etchant was found to fragment, consistent

with experimental observations. On the oxide surface, deprotonation was observed, leading

to strong bonding between the nickel atom and carbonyls in the etchant molecule, forming

surface hydroxyls. Desorption of the product was found to be difficult due to high electronic

energies. However, the surface models used in these studies were relatively simple, limiting

the scope of the results.

There are only a few examples of DFT modeling for the thermal ALE mechanisms of

other metals. For instance, the reaction of hfacH and chlorine with a cobalt surface139,144

and the reaction of acetylacetone (acacH) with iron.167 These studies compared the energy

cost of extracting metal atoms from an adatom site or from the terrace. Still, fewer studies

provided kinetic information for the etching step. Some recent works calculated the kinetic

energy barriers for specific steps in the thermal ALE process of cobalt176 and studied the

simpler Si/Cl2/Ar+ ALE process using time-dependent DFT (TDDFT) due to the use of

photons as the desorption energy source.177

In contrast, the activation step has received more attention in previous studies.109,117,139,155,157

However, it’s worth noting that many of these mechanisms are educated guesses with limited

experimental or computational support.137 For instance, the activation step of thermal ALE

involving HF on alumina,119 HfO2, and ZrO2
157 were studied using ab-initio methods with

DFT calculations of reaction pathways for HF dissociative adsorption and H2O formation.

The apparent lack of attention on the removal step mechanism is attributed to its com-

plexity and the uncertainty surrounding the atomistic structure of the post-activation sur-
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face. In the thermal removal step, the kinetic energy from ions that could break any chemical

bond in the modification step is no longer available. The limited thermal energy means that

low-lying pathways must be known to accurately predict the kinetics of etching. If the

macroscopically observed self-limited reaction is kinetically rather than thermodynamically

limited,60,102 relying solely on thermodynamics becomes inadequate. Additionally, the chang-

ing surface condition (depletion of the modifier and thinning of the activation layer) suggests

that preference for branching reactions may be time-dependent, even if the cycle-averaged

phenomena is cycle-independent. Given the uncertainty surrounding the atomistic structure

of the post-activation metal surface, a full exploration of all pathways appears unwarranted.

The present dissertation aims to address the challenges discussed by developing a set of

computational tools. In chapter 3, a thermodynamic model is utilized to calculate an etch-

ing free energy descriptor, which enables the screening of candidate chemistries using first

principles simulation data. The accuracy and descriptive power of these models rely signifi-

cantly on the chosen post-plasma surface model. Therefore, in chapter 5, an outline for the

development of a machine learning-based plasma-surface interaction potential is given. This

potential allows for more accurate and efficient simulations of plasma-surface interactions.

In chapter 6, the developed potential is applied in molecular dynamics simulations, which

provide insights into process tuning directions for achieving a truly self-limiting plasma

oxidation. The simulations predict the formation of an amorphous oxide surface. Overall,

the combination of thermodynamic modeling, machine learning-based potential development,

and molecular dynamics simulations offers a comprehensive approach to tackle the challenges

in plasma-thermal ALE and provides valuable tools for designing and optimizing metal

patterning techniques at the nanoscale.
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CHAPTER 2

Theoretical backgrounds

2.1 Density Functional Theory

In this chapter, the theoretical background of the computational tools used in this disserta-

tion is provided. The primary goal is to offer an intuitive physical understanding to serve

as a starting point for interested readers.

Most of the problems in this dissertation involve finding the ground state energy of a

system ofM atoms andN electrons (and the inability to find it efficiently), which corresponds

to solving the time-independent Schrödinger equation:37

HΨ = EΨ (2.1)

Here, H is the Hamiltonian operator, given by:

H =−
N∑
i=1

1

2
∇2

i −
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2MA
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+
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B>A

ZAZB

RAB

(2.3)

Except in special cases, nuclei move much slower than electrons due to the significant mass

difference. Therefore, it is reasonable to assume that electronic and nuclear degrees of

freedom are decoupled, and the nuclei are considered fixed, leading to the Born-Oppenheimer

approximation:
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Since the nuclear Hamiltonian (second term on the right) is a constant Coulombic sum and

does not affect the eigenstate, the main problem lies in solving the electronic problem:

Helec =−
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+

N∑
i=1

N∑
j>i

1

rij
(2.6)

HelecΨelec =EelecΨelec (2.7)

In general, Ψ represents a many-body function in the spatial and spin coordinates

(x, y, z, σ) of all the electrons in the system. For N electrons, this corresponds to 4N degrees

of freedom. This is a computationally intractable problem. For instance, if each degree of

freedom can take one of 10 values, storing the wavefunction would require 10N numbers. For

a system of 100 electrons, this amounts to 10400 or 389 TB of data if one byte is used for

each number to even store the solution, let alone solving it. Clearly, further approximations

are needed to tackle this problem.

There are essentially two main approximations used to tackle this problem. In wave

function methods, the many-body wave function is decoupled into a construction of one-

body wave functions within the Hartree-Fock approximation:

|Ψ⟩ = |χ1χ2 · · ·χaχb · · ·χN⟩ (2.8)

Where |χi⟩ is a single-body wave function (orbital) dependent only on 4 (or 3 in restricted

systems), and the |Ψ⟩ is a Slater determinant satisfying the Pauli exclusion principle: |Ψ⟩

changes sign with respect to exchange of two spin coordinates. For the problem of storing

the wavefunction, we now only need 100 × 104 or 1 MB of data. Note that Hartree-Fock

by itself is hardly useful for chemistry problems, and modern wave function methods rely

heavily on post-Hartree-Fock corrections.
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The other direction is density functional theory (DFT). In 1964, the first, existential

Hohenberg-Kohn theorem stated that “the external potential Vext is (to within a constant)

a unique functional of ρ(r⃗); since, in turn, Vext(r⃗) fixes H, we see that the full many-particle

ground state is a unique functional of ρ(r⃗).”2 This implies that, in principle, knowing ρ(r⃗) is

sufficient to obtain all properties of interest. The way to obtain the density is stated by the

second, variational Hohenberg-Kohn theorem: the true ground state energy can obtained

from the functional only when the true ground state electronic density is used. Thus, one

can find the true ground state density by the variational principle if the exact functional is

known.

E0 = E[ρ0] ≤ E[ρ̃] (2.9)

In principle, density functional theory is exact. However, the Hohenberg-Kohn theorem

stated nothing about the form of the true functional and, except in a few simple systems

for which high-level wave function calculations are possible, various approximate functionals

must be used for practical calculations.

First, the exact functional E[ρ] can be written as the sum of the external potential

functional, the kinetic energy functional, and the electron-electron interaction:

E[ρ] = ENe[ρ] + T [ρ] + Eee[ρ] (2.10)

The term ENe[ρ] is simply given by

ENe[ρ] =

∫
ρ(r⃗)VNedr⃗ (2.11)

Where VNe is the coulombic potential of the nuclei. The electron-electron interaction can

be decomposed into a classical Coulomb term and a non-classical term containing effects

that cannot be mapped onto a classical picture.

Eee[ρ] =
1

2

∫
ρ(r⃗1)ρ(r⃗2)

r12
dr⃗1dr⃗2 + Encl[ρ] (2.12)

To describe the kinetic energy, Kohn and Sham re-introduced orbitals back into the theory
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by writing the kinetic energy as:

TKS = −1

2

N∑
i

⟨χi|∇2|χi⟩ (2.13)

Where Kohn-Sham orbitals χi are the single-electron wave functions.3 Of course, this choice

of the kinetic functional is by no means exact, and the residual error is swept into the

so-called exchange-correlation functional:

EKS[ρ] = ENe[ρ] + TKS[ρ] +
1

2

∫
ρ(r⃗1)ρ(r⃗2)

r12
dr⃗1dr⃗2 + EXC[ρ] (2.14)

The Kohn-Sham wave function is the ground state for the non-interacting reference system

that gives the same density as the true ground state, if the exchange-correlation functional

is known exactly. However, in practice such functional must be approximated. Note that

the term “exchange-correlation” neatly summarized the effects missing from the other terms,

and is inspired from the exchange integral and the correlation effects (dynamical and fermi

correlation). Nonetheless, since the KS orbitals do not correspond to the single-particle

orbitals that constitute a manybody wavefunction, the exchange energy calculated from the

KS orbitals do not cleanly correspond to the physical exchange energy. For the same reason,

one cannot use post-HF methods on these Kohn-Sham orbitals to treat correlation. This

lack of a “Jacob’s ladder” to progressively improve the accuracy is a major drawback for

DFT.

The exchange-correlation functional is the key to the success of DFT. The simplest func-

tional is inspired by the simple case of the uniform electron gas, for which the exchange-

correlation functional is known exactly. The local density approximation, LDA, is given

by:

ELDA
xc [n↑, n↓] =

∫
drϵunifxc (n↑, n↓)n(r) =

∫
dr[ϵunifx (n↑, n↓) + ϵunifc (n↑, n↓)]n(r) (2.15)

This is exact only for the fictitious system of a uniform electron gas, where the exchange ϵx
can be calculated analytically and the correlation is accurately approximated by Monte Carlo

simulations and tabulated. In real systems, the exchange-correlation energy is approximated

assuming the exchange and correlation energy is the same as in the uniform electron gas,

taking the local electronic density as the reference density.30
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Obviously, real systems do not have a uniform density. The generalized gradient approx-

imation (GGA) uses information from the gradient of density.[30] Most approximate func-

tionals separately design the exchange and correlations parts, as shown in equation (2.16).

EGGA
xc [n↑, n↓] = EGGA

x + EGGA
c (2.16)

EGGA
x [n↑, n↓] =

1

2
{Ex[2n↑], Ex[2n↓]} (2.17)

The exchange energy functional is typically given in terms of an “enhancedment factor”

that depends on the dimensionless gradient t. A typical functional form is given by equa-

tion (2.18):

Ex(r) =
∫

d3rEunif
x [ρ(r)] · fx(t(r)) (2.18)

t(r) = |�ρ(r)|
2kF(r)ρ(r)

(2.19)

With fx(t) designed to satisfy certain known constraints of the exact functional. The cor-

relation functional is given by the sum of a LDA contribution and the gradient-dependent

contribution H, as shown in equation (2.20).

Ec[n↑, n↓] =

∫
drn[ϵunifc (rs, ζ) +H(t, ρ, ζ)] (2.20)

Where ζ = (n↑ − n↓) /n is the dimensionless spin polarization.

Note that in contrast to the LDA functional which is grounded firmly in the physical

picture of a uniform electron gas, the GGA functionals have considerable freedom in their

design. Various forms / parametrizations of the enhancement factor fx in the exchange

and the gradient-dependent contribution H to the correlation have been proposed, relying

either on empirical fit or various known constraints on the exact functional. Therefore, there

are many GGA functionals. In general, the choice of the exchange-correlation functional is

problem-dependent and the results must be carefully benchmarked.

The work presented in this thesis uses the Perdew-Burke-Ernzerhof (PBE) exchange-

correlation functional.36 This functional has been shown to yield good accuracy for study-

ing the adsorption on metal surfaces, as well as generally good performance in the solid
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state.107,143 The functional is given by:

fx(s) = 1 + κ− κ/
(
1 + µs2/κ

)
; (2.21)

H =
(
e2/a0

)
γϕ3 ln

{
1 +

β

γ
t2
[

1 + At2

1 + At2 + A2t4

]}
(2.22)

A =
β

γ

[
exp

{
−ϵunifC /

(
γϕ3e2/a0

)}
− 1

]−1
; (2.23)

Here, spin polarization is accounted for in the dimensionless gradient s = |∇n|
2ϕksn

. rs is

the density given in Seitz radius as n = 3/4πr3s , ks =
√

4kF/πa0 is the Thomas-Fermi

screening wave number (a0 is Bohr radius). ϕ(ζ) =
∣∣(1 + ζ)2/3 + (1− ζ)2/3

∣∣ is a spin-scaling

factor. The remaining symbols κ = 0.804, µ = 0.21951, β ≈ 0.066725, γ ≈ 0.031091 are all

physically-derived constants.

2.2 The self-consistent field solution of Kohn-Sham DFT

With the functionals defined, the problem translates to finding a self-consistent solution of

the Kohn-Sham eigenvalue problem:(
− ℏ2

2m
∇2 + veff(r⃗)

)
ψi(r⃗) = εiψi(r⃗) (2.24)

The effective one-particle potential Veff is a functional of the density, as shown in equa-

tion (2.25):

veff(r) = vext(r) + e2
∫

ρ(r′)

|r− r′|
dr′ +

δExc[ρ]

δρ(r)
(2.25)

The density is simply the sum of squares of the orbitals (fi is the occupation):

ρ(r⃗) =
N∑
i

|ψi(r⃗)|2fi (2.26)

The self-consistent field method iteratively update the KS orbitals ψi, typically expanded in

terms of the analytical basis functions:

|ψi⟩ =
∑
α

ci,α |ϕi,α⟩ (2.27)

Assuming a complete basis set is used, at each step of the SCF iteration scheme, the problem

is translated to a linear eigenvalue problem over the Hilbert space spanned by the basis
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functions {ϕ}. Upon successful solution of this problem, Veff is updated by the new density,

which forms a new eigenvalue problem. The self-consistent solution is obtained when the

eigenvalues do not change between iterations.

Note that in contrast to Hartree-Fock, the Kohn-Sham equation does not involve the

manybody wave-function. The manybody effect is treated as a mean-field approximation

of the density, where every other orbital contributes only through the one-body integrals

|ψi(r)|2dr. In other words, there are no costly construction of overlap and exchange integrals

to evaluate the effective operator, as in Hartree-Fock theory. This is the fundamental reason

for the computational efficiency of DFT. With modern exchange-correlation functionals, an

accuracy similar to the high-level post-HF methods is routinely achieved at a tiny fraction

of the cost.

2.3 The PAW method

As explained above, the efficient solution of the self-consistent field (SCF) problem requires

a basis set. In solid state system, a natural choice of the basis set is the Bloch functions:

ϕ(r⃗) = exp
(
i⃗k · r⃗

)
u(r⃗) (2.28)

where u(r) is a periodic function periodic for any vector T commensurate with the unit cell:

u(r⃗ + T⃗ ) = u(r⃗) (2.29)

Projecting the electronic wavefunction ψ onto such plane waves is efficient with fast fourier

transforms (FFT) when ψ varies slowly in space. This is true for regions far away from

the nuclei. However, for regions close to the nuclei, the wave function varies rapidly with

respect to space. An accurate projection thus requires many high-frequency (large |⃗k|) plane

waves, making it computationally very inefficient. The pseudopotential approach sought to

address the efficiency problem by replacing core electrons with an effective potential. In

this approach, only the slow-varying valence electron wave functions are represented using a

plane wave basis, allowing a much reduced basis set to be used.
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The key idea behind the PAW method is to introduce a linear transformation operator

T , known as the augmentation operator, that transforms the pseudowave
∣∣∣ψ̃nk

〉
to the all-

electron wavefunction |ψnk⟩. The pseudowave, similar to the pseudopotential method, varies

smoothly near the core region, while the transformed all-electron waves preserve the fast-

varying nodal features but need not be represented during calculation.7,19,28 The operator

TR =
∑

i

(
|ϕi⟩ −

∣∣∣ϕ̃i

〉)
⟨p̃i| is only non-zero in the region within distance R from the nuclei,

ensuring that the total electron density and the valence electron density obtained from the

all-electron wavefunctions match the corresponding densities obtained from the pseudized

wavefunctions:

|ψnk⟩ =
∣∣∣ψ̃nk

〉
+
∑
i

(
|ϕi⟩ −

∣∣∣ϕ̃i

〉)〈
p̃i

∣∣∣ψ̃nk

〉
(2.30)

T = 1 +
∑
i

(
|ϕi⟩ −

∣∣∣ϕ̃i

〉)
⟨p̃i| (2.31)

The pseudowaves
∣∣∣ψ̃nk

〉
are expanded in the plane wave basis (equation (2.28)). The

all-electron (AE) partial waves ϕα are the solutions to the radial schrodinger equation for

the non-spin polarized atom. By construction the pseudo partial waves ϕ̃α are equal to ϕα

outside the core region.

The PAW method provides several advantages over pseudopotential methods.,27 Firstly,

it brings the core-electrons back into the Kohn-Sham orbitals, allowing for electron-electron

interactions between the core and the valence to be evaluated. This is important for systems

where the core electrons play a significant role in the electronic structure. Secondly, this

method allows the reconstruction of all-electron waves from pseudowaves, making it more

accurate for total energy, forces, and response functions. Finally, these added advantages

lead to improved convergence with respect to plane wave cutoff and faster calculations.
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2.4 Ab-initio Thermodynamics

While DFT operates at 0K to reach the electronic ground state, chemistry occurs at finite

temperatures. Therefore, it is desirable to model the energetics accounting for thermody-

namics at various temperatures, pressures, compositions, etc., since it is the free energy G,

not the electronic potential energy, that governs reaction spontaneity. Statistical mechani-

cal ensembles provide the necessary link between electronic structure and thermodynamics.

Specifically, the effects of zero-point energy, vibrations, rotation, and translation need to be

accounted for. The free energy is given by:

G = H − TS (2.32)

For an ideal gas (all gaseous systems considered here are dilute, therefore satisfying the ideal

gas assumptions). The enthalpy H is given by:

H(T ) = Eelec + EZPE +

∫ T

0

CP dT (2.33)

The zero-point energy is simply 1
2

∑
i ℏωi. The heat capacity is evaluated from the canonical

partition function.

CP = kB + CV ,trans + CV ,rot + CV ,vib + CV ,elec (2.34)

In equation (2.34), the equations to evaluate the terms are well documented and can be

found in standard stastical mechanics textbooks.62 For computational evaluation, CV ,trans

requires the molar mass of the molecule, CV ,rot requires the rotational inertia, and CV ,vib

requires the vibrational eigenmodes. The electronic contribution CV ,elec is not important at

temperatures considered here. A similar observation is made for the relevant terms in the

entropy contribution to free energy:

S(T, P ) = S(T, P ◦)− kB ln
P

P ◦ (2.35)

= Strans + Srot + Selec + Svib − kB ln
P

P ◦ (2.36)

Therefore, the only additional computation needed for thermochemistry is the calculation

of vibrational eigenmodes (phonon modes for solids). These frequencies can be calculated

using finite difference or linear response methods (density functional perturbation theory,

DFPT).
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2.5 Machine learning interatomic potentials

In order to perform large-scale dynamical simulations, a force field is needed since density

functional theory does not scale well with respect to the number of electrons. Traditional

force fields, such as empirical potentials or semi-empirical methods, are often based on prede-

fined functional forms and parameters. In contrast, machine learning interatomic potentials

(MLIPs) use highly flexible functional forms, combined with, in some cases, complete de-

scriptors of the local atomic environment, to directly interpolate the atomic potential energy

surface. These potentials are designed to accurately describe the interactions between atoms

in a system.

The training process involves generating a diverse set of atomic configurations. The

ground-state electronic energies are used as training labels. The trained potential interpolates

between atomic coordinates in the training dataset using the provided labels. In some cases,

the corresponding DFT-derived Hellmann-Feynman forces and stresses are also used for

training.

While a myriad of methods exist, MLIP models generally consist of two parts. The

featurization part converts the 3-dimensional atomic configurations to a feature vector, or,

in kernel-based methods, a vector of kernel-transformed environments. Featurization encodes

relevant information about the local atomic environment. It is important that the featurizers

are translationally, rotationally, and permutationally invariant (see below). Respecting such

physical symmetries typically results in much better data efficiency and improved accuracy.

The state-of-the-art featurizers are summarized in a recent review..171

After featurization, the MLIP transforms the features into an output “atomic energy”.

The transform can be as simple as a linear combination of the features, or as complex as

message-passing neural networks. As an intuitive rule of thumb, higher resolution in the

featurization allows the use of less nonlinearity in the transform to achieve a given accuracy,

and vice versa. Combining a high-resolution featurizer and highly flexible nonlinear trans-

formation leads to state-of-the-art models. As a last step, the atomic energy contributions

are aggregated (usually a summation pool) to yield the system’s total energy. Forces are
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obtained as the negative gradient of atomic positions, calculated by analytical expressions

obtained from chain-ruling back to the featurizers and auto-differentiation through the non-

linear part. Note that the “atomic energy” contributions do not have a physical meaning

but merely serve as a mathematical trick to enable size-extensivity of the predicted total

energy. See section 5.5 for an discussion about the potential problems.

As an example of such models, the Behler-Parinello high-dimensional neural network

potential is described. Here, the local atomic environments are featurized using the so-

called atom-centered symmetry functions (ACSFs), whose functional forms are given in

equations (2.38) and (2.39) for the radial and angular variants.

Grad
i,µ =

Natom∈Rc∑
j ̸=i

e−η(Rij−Rs)
2

fc (Rij) (2.37)

Gang
i,µ =21−ζ

∑
i,j,k

(1 + λ cos θijk)
ζ e−η(R2

ij+R2
ik+R2

jk)fc (Rij) (2.38)

fc (Rik) fc (Rjk) (2.39)

Where η, ζ, λ are hyperparameters, typically chosen according to certain heuristic rules. The

functions fc are smooth cutoff functions that enforce the locality of featurization. Typically,

a reasonably accurate model (energy mean error ⪅ 10meV/atom) requires around N =

100 such symmetry functions, resulting in a vector of N dimensions, thus the name “high-

dimensional” neural network. The feature vector is then sent through a multilayer perceptron

typically with a few (around 3) hidden layers. At the output node only a single energy label is

produced, and the forces are back-propagated by differentiating the total energy. The length

of feature vectors, the number of hidden layers, and the number of nodes in each hidden layer,

together with the parameters in the symmetry functions, constitute the hyperparameters in

this model and can be optimized by standard hyperparameter optimization methods (e.g.,

cross-validation).

Note that the ACSFs include only 2-body and 3-body interactions. As shown in recent

work, such schemes are limited and cannot resolve certain differences in the environment,

and higher body-order terms are needed to be complete. This represents a fundamental limit

to accuracy attainable with such descriptors, but practically this is often not a significant
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concern as successful models were demonstrated for a wide range of chemical environments.

In state-of-the-art models, equivariant models were proposed with great success for re-

producing the accuracy. These models relax the strict invariance requirement but instead

propose strict rules on how features may vary with respect to e.g. certain symmetry op-

erations. For instance, it is obvious that the forces acting on the atom should be rotated

along with the local atomic environment. The equivariant models allow such information

to propagate through the model (typically a message-passing neural network). Doing so

preserves more information at intermediate stages in the nonlinear part and leads to better

data efficiency and extrapolation behavior.

As with all machine learning methods, it is important to validate machine learning in-

teratomic potentials carefully. Testing against experimental data and reference calculations

is necessary to assess their accuracy and reliability for specific applications. This is partic-

ularly true when applying MLIPs to environments not encountered in their training data

(i.e., extrapolating).
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CHAPTER 3

Thermodynamic Model of Atomic Layer Etching

3.1 Introduction

As the general aspects of ALE modeling have already been laid out in chapter 1, here, only

the parts relevant for the thermodynamic study are emphasized briefly.

Atomic layer etching, derived from plasma etching, involves two self-limited steps. In

the activation step, the surface’s top atomic layer is transformed by modifiers, constrained

by the formed surface compound. Then, in the removal step, etchant molecules eliminate

the surface compound until depletion. This cycle repeats until the desired etch thickness is

achieved.

While the underlying principles remain consistent, the actual processes employed vary

in terms of chemistries and conditions. Specifically, the process being considered here is

plasma-enabled ALE on metals. Metal is a leading choice for integrated circuits due to its

desirable traits like high electrical and thermal conductivity. However, using metals in micro-

electronics requires new metal patterning techniques. Conventional metal etching involves

harsh chemical solutions, resulting in isotropic etching due to random molecular motion.

To achieve anisotropic etching, modern techniques utilize the directional behavior of ions in

the plasma sheath. While plasma etching has been successful with silicon-based materials,

it poses challenges for metals. Metal species form unstable, high-energy compounds during

plasma etching, leading to redeposition on chamber walls and the wafer.

A recent innovation combines plasma activation and thermal removal to achieve direc-

tional etching of Ni and Cu.159,160 This process, termed plasma-thermal ALE, utilizes an

oxygen plasma for surface activation and organic etchants for removal, eliminating the need
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for an additional energy source and preventing redeposition. The plasma-driven activation

imparts directionality, resulting in an anisotropic etching profile.159,160

A recent review by Fischer166 provides an excellent overview of experimental and theoret-

ical work on thermal atomic layer etching (ALE). Another review in 2020 by George et al.155

discusses various strategies for implementing thermal ALE on different substrates. Current

thermal ALE processes for metal substrates involve oxidizing the metals with oxygen (O2

and/or O3) or halogens, followed by the introduction of diketone molecules to form volatile

metal complexes. Several studies have proposed mechanisms using a combination of ex-

perimental and computational approaches,144,151,157 allowing for the classification of existing

ALE processes. However, in-situ characterization challenges and low product pressures limit

the confirmation and atomistic understanding of these mechanisms.

To address these limitations, a computational thermodynamic model known as the Natarajan-

Elliott analysis (N-E analysis) has been developed.172 This model focuses on the temperature

dependence of the thermal ALE fluorination step and incorporates surface models at different

coverages, improving upon previous work. However, the N-E analysis does not consider the

effects of surface morphology due to arbitrarily chosen crystal terminations and coverages.

Additionally, it primarily focuses on the activation step, whereas plasma-thermal ALE relies

on energetic ions for activation, with the substrate temperature playing a secondary role in

determining the post-activation surface.

Surface morphology is highly relevant in plasma-thermal atomic layer etching (ALE).

The current setup lacks a self-limited oxidation reaction, as oxides with thicknesses on the

order of ∼ 5 nanometers are observed. Modifying the plasma’s modifier or ion energy could

potentially create a self-limited process that offers better control. These drawbacks highlight

the need for a computational model to quickly determine the feasibility of proposed processes

under new conditions and/or chemistries. Ideally, given the specifications of the substrate,

modifier, etchant, and relevant reaction conditions (temperature, pressure, and ion energies),

one should be able to predict, on a thermodynamic basis, whether an ALE process would be

possible.
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This work aims to provide a thermodynamic prediction for the removal step of plasma-

thermal ALE processes. The core of the model is the layer model energy expression, which

allows the calculation of the removal step energy change from quantum chemical calculations

on a slab structure. The activated surfaces, after interaction with the modifiers, are sampled

using the ”greedy” algorithm for adsorption configuration search. The etching products are

determined computationally, utilizing literature data as input structures whenever available.

The removal step energies on different terminations are combined via a weighted sum, with

weights obtained through equilibrium crystal shape construction. This combined approach

yields a single-valued prediction for the removal step energies based on post-plasma surface

structure, modifier, and etchant. Thus, the model establishes a link between post-activation

surface morphology and removal step thermodynamics, which can be used to evaluate and

screen potential plasma-thermal ALE processes.

The systems chosen to test the models involve two metal substrates (Cu and Ni), two

modifiers (O and N), and two etchants (formamidine (HFAmd) and formic acid (HFA)). Ni,

O, and formic acid are selected for computational investigation due to their demonstrated

process viability. Additional chemistries involving Cu, N, and HFAmd are included to iden-

tify useful trends. Cu is the most commonly used metal in circuitry, particularly as an

interconnect material. As feature sizes shrink, the existing process that combines additive

patterning (damascene process) with chemical-mechanical polishing (CMP), developed to

overcome the inability to etch Cu, becomes too harsh for the bottom layers of the inter-

connect. Therefore, new ”gentle” etching approaches must be developed for this specific

application. N is chosen because a nitridation-based activation process allows for easier

ex situ surface characterization compared to oxidation-based processes. The inclusion of

formamidine is inspired by the success of the amidinate family of ligands in atomic layer

deposition and the fact that the removal step in plasma-thermal ALE is the reverse reaction.

It is important to note that the results presented here solely consider thermodynamics

and do not account for reaction barriers. While kinetic barriers are not expected to be

significant in the activation step, they may play a role in the removal step, particularly in the

formation of hydrides and the desorption of formed complexes.150,152 Existing data suggests
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that desorption of the metal-organic complex is the rate-limiting step, often requiring high

temperatures to overcome the barrier.166 However, the magnitude of these barriers is likely

dependent on surface morphology.151 The post-plasma surface morphology remains unclear,

and it should be noted that the surface structure employed in this study may not precisely

correspond to the actual post-plasma surface. Therefore, the impact of ion kinetic energy

represents a missing link that is explored in chapters 5 and 6.

3.2 Methods

The reactions studied are listed in reaction {3.1a} - reaction {3.3b}. HL refers to a generic

protonated etchant since formic acid and formamidine etchings have the same stoichiometry.

The symbol | indicates surface species, as in the Ni|Ni species for the Ni etching reaction

(reaction {3.1a}). The right part (|Ni) represents the surface atomic layer that is etched, and

the left part (Ni|) represents the subsurface part of the slab that is exposed after one full cycle.

For the discussion below, the Ni/O/HFA system is used as our working example. The etching

reactions on the pristine and activated surfaces are given respectively by reaction {3.1a} and

reaction {3.2b}, where the activated surface is modeled by a NiO slab. The “bulk model”

expressions for the Gibbs free energy change for the surface layer removal step are given

in equation (3.1) and equation (3.2), respectively. The nickel complexes have a range of

nuclearities from monomer to tetramer. For simplicity, these molecules are referred to as

Ni(L)2. The specific oligomer used is clear from the context. Notation for Cu complexes is

not ambiguous since only the dimers are used (see Page 37).

Ni|Ni + 2HL Ni| + [Ni(L)2] + H2 {3.1a}

Cu|Cu + HL Cu| + 1
2 [Cu2(L)2] +

1
2 H2 {3.1b}
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Ni3N|
2
3 Ni3N + 2HL

Ni(L)2
+ 2

3 NH3 + Ni3N|Ni {3.2a}

NiO|NiO + 2HL NiO| + [Ni(L)2] + H2O {3.2b}

Cu3N|
1
3 Cu3N + HL Cu3N| +

1
2 [Cu2(L)2] +

1
3 NH3 {3.3a}

Cu2O|12 Cu2O + HL Cu2O| + 1
2 [Cu2(L)2] +

1
2 H2O {3.3b}

The plasma-thermal ALE process is made possible by a change in the metal oxidation state

during the activation step. Take our working example, metallic Ni is converted from Ni(0)

to Ni(II) after activation. During the etching step, the Ni(II) oxidation state is preserved.

In the absence of activation, the change of oxidation state would occur during the etching,

with Ni oxidizing to Ni(II), and protons from the etchant reducing to form H2. The same

can be said of copper: Cu has an oxidation state of +1 in both the activated surface and the

product complex.

This brief consideration shows that the redox potential of the metal is a key factor for

the practicality of plasma-metal ALE processes, and in general any oxidation state-based

metal etching processes. For both metals studied, the oxidation of the pristine surface with

protons is shown to be highly unfavorable on both metals studied, a prerequisite for the

self-limiting behavior observed.

∆Grm,Ni = [G[Ni(L)2] +GH2 +GNi|]− [GNi|Ni + 2GHL] (3.1)

∆Grm,NiO = [G[Ni(L)2] +GH2O +GNiO|]− [GNiO|NiO + 2GHL] (3.2)

The bulk model simplifies the problem by assuming that the same pristine nickel/nickel

oxide surface is exposed after one cycle. Therefore, the surface formation energies are un-

changed, and surface effects cancel out. For the pristine surface, the two surface terms cancel

out to give the bulk formation energy:
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Figure 3.1: Structures of the Ni(II) and Cu(I) complexes considered. Only the formates are

shown. Respective formamidinates can be found by replacing oxygen atoms with secondary

amine groups. The relative stabilities are shown in figure 3.2. The dimer and tetramer struc-

tures are found to be the most stable for formate and formamidinate complexes, respectively.

Oligomers are not investigated for Cu (see Page 37).

GNi| −GNi|Ni = −GNi,bulk

The bulk model further assumes that the activated surfaces are thick enough so that

they can be approximated as a bulk oxide or nitride. Under this assumption, removing one

atomic layer from the activated surface is equivalent to removing one layer from the bulk

oxide/nitride lattice, energetically corresponding to the Gibbs free energy of formation of

bulk oxide or nitride.

GNiO| −GNiO|NiO = −GNiO,bulk

GNi3N| −GNi3N|Ni3N = −GNi3N,bulk

The energy expression of the bulk model is given in equation (3.3) - equation (3.4) for

etching on pristine and activated Ni systems. Note that this model avoids any calculation
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of surface species, and hence can be applied easily. However, since the bulk oxide or nitride

structure is assumed, this model cannot be applied to processes where only a thin surface

activation layer is expected. For such processes, the layer model would be more appropriate.

∆Grm,Ni = G[Ni(L)2] +GH2 − 2GHL −GNi,bulk (3.3)

∆Grm,NiO = G[Ni(L)2] +GH2O − 2GHL −GNiO,bulk (3.4)

The structures and energies of the bulk crystals used are detailed in the table A.1. The

molecular structures of the metal formate complexes considered are shown in figure 3.1.

The corresponding formamidinate complexes are trivially found by replacing oxygen atoms

with secondary amine groups. These structures are based on a combination of experimen-

tal4–6,29,58,64,65,67,81 and simulated results.

X-ray diffraction spectroscopy on a range of copper(I) amidinates of the formula [R’NC(R)NR”Cu]2
(where R’ and R” = n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl; R = methyl,

n-butyl) in the solid phase suggest a planar dimer structure.64 Early mass spectroscopy sug-

gests that the Cu formate dimerizes in the vapor phase.4,5 Although no direct structural

determination exists for the formate complex, the related copper acetate complex is shown

to crystallize in the P21/m space group as infinite sheets of 8-membered rings.6 The high

saturation pressure of the complex5 suggests that there is little structural difference between

the vapor and solid phases of the copper acetate complex. Taking clues from these, the

copper(I) complexes are assumed to have a dimer structure that forms an 8-membered ring

containing 2 Cu atoms.

The nickel complexes (written as Ni(L)2 for simplicity, by factoring out the nuclearity)

have extended covalent bonds in the solid phase; hence their gas-phase structures have been

searched by constructing different structures and comparing their stabilities. The structures

of the determined complexes are shown in figure 3.1.

The layer model accounts for the effects of surface termination and coverage, defined as

the area density of modifier atoms. Here the stoichiometry is allowed to differ from that of

the bulk model. The post-etch surfaces are assumed to terminate in the same orientation
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as the pre-activation surfaces. A full-layer removal is still desirable as it avoids the explicit

consideration of the post-removal surface. Therefore, the post-etch surface is assumed to

be modifier-free. The energies of dimers, trimers, and tetramers of the nickel complex are

normalized to the monomer formula unit for use in equation (3.3) - equation (3.4).

Suppose, for instance, that the modifier coverage after activation is less than that specified

by reaction {3.2b} for the Ni/O/formic acid system. Since the reaction is constrained to

proceed at the stoichiometry, such “insufficient” coverages would result in an incomplete

etching of the surface layer, with Ni islands remaining at the termination of the etching

process because the pristine surface cannot be etched by the etchant (see section 3.4.2). To

account for this, the surface oxide is multiplied by a factor so that just enough oxygen atoms

are present in the balance (x
y
× y = x O atoms) to satisfy the stoichiometry required for

the etching of x Ni atoms. This ensures that the stoichioimetry of the etching reaction is

maintained, even with “insufficient” modifier coverage.

x

y
Nis|NixOy + 2 xHL Nis|Ni0O0 + (

x

y
− 1)Nis|NixO0 + xNiL2 + xH2O {3.4}

The extra (x
y
− 1) activated nickel slabs that are brought into the reaction balance only

serve contribute the oxygen atoms. The unetched metal atoms correspond to the islands that

remain on the surface after etching (one layer higher than the etched regions). The notations

s and x refer to the structure models used, with s denoting the total number of metal atoms

in the un-activate layers of the slab and x denoting the number of metal atoms per layer.

Hence, Nis|Ni0 and Nis|Nix are slab models differing by one layer in vertical thickness. See

the next paragraph for more details. The coefficients in reaction {3.4} and the factors of

Gibbs free energies in equation (3.5) would depend on the specific substrate/modifier/etchant

combination. The molecular terms in reaction {3.4} are obtained directly from the bulk

model reaction. The reaction energy normalized to one Ni atom removed is expressed in

equation (3.5), providing a quantitative measure of the energy change associated with etching

of one layer of Ni atoms from the surface.
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∆Grm,layer =
1

x
{[GNis| + (

x

y
− 1)GNis|Nix + xG[Ni(L)2] + xGH2O]− [

x

y
GNis|NixOy +2xGHL]} (3.5)

In the subscripts, following the convention set forth in equation (3.1) - equation (3.2), the

species on the left and right of the symbol | refer to the unactivated atomic layers and the

activated layers, respectively. The meanings of “Nis” and “Nix” are already explained above.

“NixOy” refers to the slab activated by y oxygen modifier atoms. The molecular terms are

self-explanatory and the same values are used as in the bulk model. The terms in equa-

tion (3.5) can be regrouped to yield equation (3.6), in which the three terms can be assigned

physical meanings: The first term on the left ( 1
x
[GNis| −GNis|Nix]) differs only in the number

of layers included in the slab model, and can be replaced by −µNi,bulk if the surface formation

energy (equation (3.10)) is converged with respect to the number of layers. The second term

( 1
y
[GNis|NixOy −GNis|Nix]) corresponds to the energy of the modified surface per modifier atom,

and is similar to the adsorption energy of the modifier (equation (A.2)) to a constant term.

The third term ([G[Ni(L)2] + GH2O − 2GHL]) describes the bond breaking and formation of

the etchant, hydride, and metal complex. For a given substrate/modifier/etchant combina-

tion, the first and last terms are constants. The information about activation (ion species,

coverage, etc) is expressed through the second term only, thus decoupled from that of the

etchant. It is shown that the number of atoms (x) is canceled out, and there is no need to

specify the number of atoms per layer.

∆Grm,layer =
1

x
[GNis −GNis|Nix]−

1

y
[GNis|NixOy −GNis|Nix] + [G[Ni(L)2] +GH2O − 2GHL] (3.6)

While the layer models are derived for the case of deficient modifier coverage (less than

the bulk model reaction stoichiometry), there is no limit on their applicability since the

number of metal atoms per layer does not appear in the energy expression. In fact, the layer

model reduces to the bulk model if the same assumptions are reimposed. In equation (3.6),

the molecular term is the same as that in the bulk model. In the case of bulk NiO, x = y,
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therefore, the left two terms can be re-written as:

1

x
[GNis −GNis|Nix]−

1

y
[GNis|NixOy −GNis|Nix] =

1

x
[GNis −GNis|NixOx]

Since the activation layer is assumed to take the form of the bulk oxide,

GNis|NixOx ≈ GNis|(NiO)x

following the bulk model, a thick oxide layer is assumed so that the interface and surface

formation energies are negligible compared with the energy to etch,

1

x
[GNis −GNis|(NiO)x ] ≈ −GNiO,bulk

and the bulk model energy expression is immediately recovered by adding back the molec-

ular terms. However, it is important to note that the layer model on the pristine surface

does not fully match the bulk model at low coverages, as it is restricted to hydride formation,

while the pristine surface bulk model forms H2 molecules. This observation may suggest that

the layer model is more applicable at significant coverages. However, this aspect was not

pursued.

The configurations of the adsorbates are obtained by using a greedy-search algorithm

that proceeds iteratively. At each iteration, one adsorbate is added to each available adsorp-

tion site, forming a pool of candidate structures for the next round. The adsorption sites

themselves are determined by symmetry on the primitive pristine surface unit cell: every

unique atom defines a top site, every unique pair of atoms defines a bridge site, and so on.

The supercell is not varied. Figure A.2 gives the supercell used and the adsorption sites.

Each candidate is then fully relaxed, and the most stable candidate is selected to enter the

next round. Figures A.7 to A.10 gives the structures of the selected candidates at every

round. The configuration search determines a unique configuration for every termination at

discrete coverages. The method adopted here is a static one, meaning that effect of finite

temperature is included in the entropy contribution to the free energy, obtained via the

calculation of the surface phonon frequencies. A full computational treatment of the tem-

perature effect on activation, requiring dynamic calculations (e.g. as molecular dynamics

simulation of ion impact), is presented later in chapter 6.
40



While the energy expression determines the reaction energy normalized to one Ni atom

removed (∆Grm) for a given termination, the results for different terminations span a large

range of values at any coverage. As a descriptor for process feasibility, a single-valued

prediction is desirable. To minimize the experimental input required, a weighted average

of the per-termination etching energies is calculated, with weights given by the equilibrium

crystal shape construction (ECS) (equation (3.7)). The Wulff construction is applied to the

activated surfaces so that more stable structures with a low surface formation energy are

preferred over less stable ones and are assigned a larger weight (ai).

∆Ḡrm =
∑

i∈{(100),(110),...}

ai∆Gi
rm (3.7)

The determination of ai requires the surface energies, which, in turn, depend on the modifier

coverage, the chemical potential of the modifier, and the substrate. Thermodynamically, the

substrate is connected to a large reservoir of pristine atoms, hence (e.g., for Ni):

µNi = Gf,Ni = Gibbs free energy of formation of fcc Ni bulk, per Ni atom (3.8)

The chemical potential of the modifier is difficult to determine confidently due to the various

excited species present. Plasma diagnostics or simulation of ion energy distributions (IED) is

not attempted. Instead, the assumption of surface-plasma equilibrium allows us to indirectly

determine the chemical potential through the simulated modifier coverage (area density). At

the coverage observed (the coverage that self-limited adsorption stops at), no termination

should have a positive adsorption energy. The chemical potential of the modifier is thus

chosen to be the minimum required to set the adsorption free energy of all terminations

greater than or equal to 0, leading to a modifier chemical potential as a function of coverage

(equation (3.9)).

µO(θO) = min
i∈{(100),(110),...}

Gi
Nis|NixOy

(θO)−Gi
Nis|Nix

y
(3.9)

In effect, substituted the chemical potential, the usual control parameter for reaction ther-

modynamics, has been substituted with the experimentally observable parameter of modifier

area density (coverage). The surface energies can be calculated by equation (3.10), where γiNi
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represents the surface energy of the pristine substrate (needed to correct for the bottom pris-

tine surface exposed in asymmetric slab structures), and s is the number of metal atoms in

the pristine substrate. The resulting surface energies are shown in figure A.5. The set of sur-

face energies for a given coverage now allows the Wulff construction to be performed, which

minimizes the total surface energy of exposed terminations on crystal grains constrained by

a fixed volume. The fractions (ai) resulting from the minimization (see figure A.6) are used

as weights for averaging the per-termination removal step energies.

The rationale behind using the Wulff construction is that terminations more favorable

to etching are also less stable and hence may be present in less significant fractions in the

ensemble. Admittedly, the ECS method is not entirely consistent with our process, since

it minimizes the total surface energy subject to a fixed grain volume, whereas the surface

faceting behavior is limited by a fixed cross-sectional area. Hence, no claim is made for

the ECS-based model to accurately describe the microfaceting that might occur in response

to adsorbate coverage changes. Solving the cross-sectional area constrained minimization

problem is outside the scope of the present work, and the ECS method is adopted as a physics-

inspired way to systematically assign the weights. Nor is it claimed that microfaceting

reconstruction would happen at the target process temperature. The inspiration came from

the transient heat spikes present locally near the ion impact region during plasma oxidation,

which can temporarily bring the local temperature close to the melting point. Nevertheless,

the ECS is an ad hoc addition to the model to allow for calculation of single-valued etching

energies that can be more readily compared between different proposed ALE processes. Since

the per-termination removal step energies are independent of this assumption, when more

reliable information on the surface is available (e.g., via the crystal orientation distribution

function from X-ray diffraction), the weights can be substituted in.

γiNis|NixOy
= [Gi

Nis|NixOy
− (x+ s)µNi − yµO]/A0 − γiNi (3.10)
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3.3 Computational Details

All electronic energy calculations are performed with density functional theory as imple-

mented in the Vienna ab initio Simulation Package (VASP).27,34,35 The electron-ion inter-

actions are treated using the projector augmented wave (PAW) method48 and the valence

one-electron functions are developed on a basis set of plane waves. The Perdew-Burke-

Ernzerhof (PBE) exchange-correlation functional36 is used throughout. The van der Waals

correction to the PBE functional was tested, for example, with the DFT-dDsC method,92,93

but not applied due to the overestimated bulk formation energies (see appendix A.2). The

bulk crystal parameters are obtained by starting from their experimental values1,25,61,115 and

performing a two-step direct volume relaxation.

The configuration search is done in two steps. A reasonably crude but fast computational

setup is used to relax all candidate structures and a slow but accurate setup is used for single-

point calculations of the most stable structures. The two setups differ in Monkhorst-Pack

k-space sampling density with the (3× 3× 1 versus 5× 5× 1 mesh) and plane wave cutoff

(300 eV versus 400 eV). The relaxed structure and the relative stability of each adsorption

site do not change with respect to these parameters. All other parameters are identical.

Energies are converged to 1×10−6 eV. Forces are converged to 0.02 eV/Å. For the molecules,

the plane wave cutoff is maintained at 400 eV.

For the Gaussian113 calculations on the gas phase molecules, the PBE functional and

the triple-zeta split valence basis set of Ahlrichs et. al.(def-TZVP)24 were used. Geometric

structures were converged with forces converged to 1.5×10−5 Hartree/Bohr, and displacement

were converged to 6 × 10−5 Bohr on an “Ultrafine” grid. These calculations were only used

to confirm the relative stabilities and the resulting energies were not used in the reported

data.

Free energies reported include translational, rotational, and vibrational contributions to

the entropy, whenever appropriate. The phonons of the bulk systems are calculated with

density functional perturbation theory (DFPT).16 The surface vibrational frequencies are

calculated for the Γ point only with the bottom two layers frozen. The many degrees of
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freedom prevented the practical use of a more accurate setup. The vibrational analysis for

molecules are also performed with finite difference, with a step size of 0.015Å. Soft vibra-

tional modes (resulting from the internal rotations of the Ni(II) complexes) with frequencies

smaller than 100 cm−1 are shifted to the threshold value. Performing this shift resulted in

a change in removal step energy on the order of 0.01 eV to 0.03 eV, depending on the etch-

ing chemistry (HFA vs. HFAmd) and the coverage. The free energies are evaluated at 80◦C

throughout the paper. The pressures are estimated according to the fluxes in the experiment

(see equation (A.1)).

The Wulffpack package is used to obtain the evolution of the surface termination dis-

tribution158 with respect to the modifier coverage θ. Since the adsorbates are added to

substrates with finite area, the available coverages are discrete. The discrete dataset is inter-

polated linearly to yield a continuous γ − θ curve, which is then used to perform the Wulff

construction. At high coverages, terminations that saturate below a given coverage are not

considered and are removed from the Wulff construction calculations (i.e., no extrapolation

is performed).

3.4 Results and Discussion

3.4.1 Formate and formamidinate complexes of Ni and Cu

The energetics of the nickel complexes simulated are shown in figure 3.2. For the monomer

case, three structures (monodentate, bidentate planar, bidentate tetrahedral) are searched

and the bidentate planar structure is found to be the most stable. Our results contradict an

earlier study74,81 that suggested the tetrahedral structure being more stable. We confirmed

the trend by performing atomic basis set calculations in Gaussian113 (see the computational

details section). Dimers, trimers, and tetramers of various configurations are built and

compared. Three tetramers are built (figure 3.1) and only the most stable structures’ energies

are plotted in figure 3.2. For the dimers, trimers, and tetramer #3, the chelation angles are

the same as the tetrahedral monomer. The bonds from the metal center to the ligand atoms

44



Monomer Dimer Trimer Tetramer
-2.0

-1.5

-1.0

-0.5

0.0

En
er

gy
 p

er
 m

et
al

 a
to

m
 

 re
la

tiv
e 

to
 m

on
om

er
 [e

V]

ΔEFA
ΔEFAmd

ΔG80∘∘
FA

ΔG80∘∘
FAmd

Figure 3.2: Electronic potential energies (∆E) and Gibbs free energies (∆G80 ◦C) of nickel

formate (Ni(FA)2) and formamidinate (Ni(FAmd)2) oligomers (olig.) complexes relative to

the monomer (mono.) complex. Energy differences are normalized by nuclearity (nucl.) for

comparison on a per metal atom basis.

are progressively elongated with respect to the nuclearity to accommodate more ligands. The

formate and formamidinate complexes follow the same pattern, although the metal-nitrogen

bonds in amidinate complexes are slightly longer than the corresponding metal-oxygen bonds

in formate complexes, presumably due to steric repulsion among the amine groups. By

the Gibbs free energy, the most stable formate complex is the dimer, and the most stable

formamidinate complex is the trimer. Since thermodynamics cannot preclude kinetic barriers

that may prevent the formation of these large complexes, the main results are recalculated

with the monomer complex as the product in Figures figure A.11 and figure A.12.

3.4.2 The bulk model

The results from the bulk model on the pristine (∆Grm,pris) and activated (∆Grm,act) sub-

strates are shown in table 3.1 and table 3.2, respectively.

Both Ni and Cu in their pristine forms are found to resist etching by HFA and HFAmd
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due to the large positive values of ∆Grm,pris, making self-limited reactions possible. The

results on bare metal substrates involving HFAmd are expected since substituted derivatives

of the formamidinate complex are used to deposit Cu and Ni in atomic layer deposition

(ALD).64 The reducing agent used is H2, hence the ALD reaction is the exact reversal of the

ALE reaction. Overall, Ni has a higher (more unfavorable) removal step energy than Cu for

the pristine surface.

Table 3.1: Gibbs free energy of the removal step reactions (reaction {3.1a} - reaction {3.1b})

on pristine substrates from the bulk model (∆G80 ◦C
rm,pris, equation (3.1)). The energy values

are normalized to one metal atom etched.

Substrate Etchant ∆G80 ◦C
rm,pris[eV]

Ni HFA 1.00

Ni HFAmd 0.76

Cu HFA 0.50

Cu HFAmd 0.44

Table 3.2: Gibbs free energy of the removal step on activated substrates (reaction {3.2a}

- reaction {3.3b}) from the bulk model (∆G80 ◦C
rm,act, equation (3.2)). The energy values are

normalized to one metal atom etched.

Substrate Modifier Etchant ∆G80 ◦C
rm,act[eV]

Ni N HFA 0.34

Ni N HFAmd 0.10

Ni O HFA 0.26

Ni O HFAmd 0.02

Cu N HFA −0.15

Cu N HFAmd −0.22

Cu O HFA −0.06

Cu O HFAmd −0.12

The results on activated surfaces show a sharp contrast between Cu and Ni. Throughout
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the text, the units for reaction energies are eV per metal atom etched, unless otherwise stated.

All four modifier and etchant combinations give a slightly favorable (negative) removal step

energy on Cu, whereas on Ni the same four combinations are unfavorable (positive). The

calculated∆Grm,act is 0.10 eV for the HFAmd etching of Ni3N, which is consistent with reports

of Ni3N deposition using amidinate complexes of nickel (which can be subsequently reduced

by H2 to give Ni films), although the ligands in the report are heavily substituted.86 We

highlight the fact that etching O-activated Ni with formic acid is predicted to be unfavorable

by 0.26 eV, inconsistent with the experimentally observed etching.162

The bulk model results suggest that formamidine etching is preferable compared to formic

acid by 0.24 eV and 0.07 eV, respectively on Ni and Cu. The differences between oxygen and

nitrogen activation (0.08 eV favoring oxygen on Ni, 0.09 eV favoring nitrogen on Cu) are not

significant.

To better understand the trend, energy decomposition is performed. The decomposed

reactions (reaction {3.5a} - reaction {3.6b}) on the pristine surfaces separate the influence of

the metal substrate from that of the etchant. In table 3.3, it can be seen that it is more costly

to atomize Ni than Cu, yet Ni binds the complexes more strongly. The two effects cancel

somewhat, and the overall result is that Ni is less favorable to etch. A similar conclusion

can be drawn from the energy decomposition of the activated substrates (reaction {3.7a} -

reaction {3.10b}) where the activation with nitrogen or oxygen is separated from the binding

of the metal to the complexes and the formation of hydrides. Table 3.4 shows the results.

First, note that the oxides are thermally stable with respect to O2, while the nitrides are not

stable with respect to N2. Second, activation with both N and O are more favorable on Ni

(e.g., by comparing Ni/N/FA and Cu/N/FA, Rxn. a) relative to Cu), effectively stabilizing

the Ni metal. Since the relative differences on the b reactions for each set are the same

as that of the pristine metal (which already indicates that pristine Cu is more favorable to

etch), this further stabilization makes the nickel nitride less favorable to etch compared to

Cu3N. The same can be said of the oxides, hence giving the global qualitative difference

between Ni and Cu, Ni being harder to etch.

The role of oxidation states can be seen clearly in the data. The fact that reaction {3.8a}
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on NiO is 0.93 eV less favorable than reaction {3.10a} on Cu2O can be partially attributed to

the difference in oxidation state change. This is evident since the difference for the nitrides,

between reaction {3.7a} on Ni3N and reaction {3.9a} on Cu3N, is only 0.15 eV, much smaller

compared with that on the oxides.

On the other hand, note that the decomposed reactions cannot be used to compare N and

O activation (e.g. by comparing reaction {3.7a} to reaction {3.8a}), as the reference points

to N2 and O2 are arbitrary and they bear no significance for the actual plasma activation

process. The decomposed reactions obviously do not correspond to the actual reaction

mechanisms, and their sole purpose here is to separate the influences of the substrate, the

modifier, and the ligand on a thermodynamic level.

Ni(bulk) Ni(atom) {3.5a}

Ni(atom) + 2HL
NiL2

+ H2 {3.5b}

Cu(bulk) Cu(atom) {3.6a}

Cu(atom) + HL 1
2 [Cu2L2] +

1
2 H2 {3.6b}

2
3 Ni3N 2Ni(bulk) + 1

3 N2 {3.7a}

2Ni(bulk) + 1
3 N2 + 2HL

NiL2
+ 2

3 NH3 + Ni(bulk) {3.7b}

NiO Ni(bulk) + 1
2 O2 {3.8a}

Ni(bulk) + 2HL + 1
2 O2

NiL2
+ H2O {3.8b}
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1
3 Cu3N Cu(bulk) + 1

6 N2 {3.9a}

Cu(bulk) + HL + 1
6 N2

1
2 [Cu2L2] +

1
3 NH3 {3.9b}

1
2 Cu2O Cu(bulk) + 1

4 O2 {3.10a}

Cu(bulk) + HL + 1
4 O2

1
2 [Cu2L2] +

1
2 H2O {3.10b}

Table 3.3: Energy decomposition of bulk model on pristine surfaces. Steps a, b correspond

to the labels in reaction {3.5a} - reaction {3.6b}, and refer to bulk metal evaporating and

complex/H2 formation, respectively. The energy values are normalized to one metal atom

etched.

Substrate Etchant ∆G80 ◦C
a [eV] ∆G80 ◦C

b [eV]

Ni HFA 4.19 −3.23

Ni HFAmd 4.19 −3.47

Cu HFA 3.05 −2.55

Cu HFAmd 3.05 −2.62

3.4.3 The layer model - per termination

The fact that HFA is able to etch nickel films activated with oxygen plasma suggests that

the substrate resulting from the plasma activation could be quite different from the bulk

nickel oxide. The predicted unfavorable Gibbs free energy for the removal step of 0.26 eV is

significant enough to conclude that the bulk model is inadequate to offer qualitatively correct

predictions for the plasma-activated surface. While the bulk model lacks the flexibility to

account for the variety of surface structures, as it is limited to the few known bulk lattices,

its simplicity makes it useful as a reference and sanity check for the more sophisticated layer

model.
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Table 3.4: Energy decomposition of bulk model on activated surfaces. Step a, b correspond

to the labels in reaction {3.7a} - reaction {3.10b}, and refer to reverse of oxidation/nitrida-

tion (modifier desorption) and complex/hydride formation, respectively. The energy values

are normalized to one metal atom etched.

Substrate Modifier Etchant ∆G80 ◦C
a [eV] ∆G80 ◦C

b [eV]

Ni N HFA −0.37 0.71

Ni N HFAmd −0.37 0.47

Ni O HFA 1.45 −1.19

Ni O HFAmd 1.45 −1.43

Cu N HFA −0.52 0.37

Cu N HFAmd −0.52 0.31

Cu O HFA 0.52 −0.58

Cu O HFAmd 0.52 −0.64

The layer model energy expression given in equation (3.6) relies on the adsorption energy

as the central coverage-dependent term. As the adsorption energy is the more established

metric to quantify adsorbate-surface interaction, the sampling of the surface structures is

discussed in terms of it. The adsorption energies of the structures picked by the configuration

search are shown in figure 3.3. The reference points are arbitrarily chosen to be gas phase

O2 and N2 for O and N adsorption, respectively. This choice does not affect the rest of

the model. The general trend in all four combinations is that the adsorption energies tend

to increase (become less favorable) with increasing coverage as the more favorable sites are

preferentially occupied by our algorithm. The lateral repulsion among adsorbates at high

coverages also makes the high-coverage configurations less favorable. However, on the Cu/N

system, the trend is not completely followed. In figure 3.3, around 0.06Å−2, all adsorption

energies on all terminations except (100) decreased to form a “dip”. This is explained by

referring back to the structures shown in figure A.8. On the Cu (111) termination, the most

significant “dip” occurred between structures with 2 and 3 nitrogen atom adsorbates. On

the 3-adsorbate structure, the surface in the vicinity of one of the adsorbed nitrogen atoms
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relaxed into a square pseudo-(100) structure, as previously reported both experimentally47

and computationally.73 The 4-adsorbate structure has two adsorbates forming the pseudo-

(100) structure. Eventually, the increasing trend resumed due to inter-adsorbate repulsion

as the adsorbates become closer. It also explains why the “dip” is not observed on the (100)

termination. The (211) and (221) terminations follow a similar trend due to the large (111)

terraces present.

The adsorption energy of nitrogen is ∼ 1.5 eV less favorable on Cu than on Ni, while

oxygen adsorption is∼ 0.5 eV less favorable. In particular, nitrogen adsorption is unfavorable

with respect to N2 at all coverages for Cu surfaces and at coverages above ∼ 0.10Å−2 on

Ni surfaces, suggesting that these surface nitrides on Cu and Ni are not thermodynamically

stable. Without significant energy barriers, the surface nitride may spontaneously decompose

to form N2 and the pristine surface. The practical implication is that if nitrogen is used as the

modifier, the activated surface must present a significant kinetic barrier to prevent desorption

once the nitrogen plasma is purged. The O adsorption on both substrates is favorable with

respect to O2 for all terminations and coverages considered.

The adsorption energies of oxygen on Cu and Ni in some experimentally known low-

coverage configurations are indicated in figure 3.3. The complete list of structures investi-

gated is shown in table A.3. The comparison reveals that the adsorption energy trajectories

discovered by the configuration search lie very close to the experimentally observed surface

structures, as can be seen for the Ni(100), Ni(111), and Cu(100) terminations. The surface

supercell used is briefly investigated for the (100), (111), and (211) surfaces by considering a

few supercells with symmetries different from the ones used for the configuration search. The

results (see figure A.3) indicate that the errors introduced by supercell selection are small.

Furthermore, in the event that the configuration search misses some more stable structures

at a given coverage, this error does not propagate significantly through the Wulff construc-

tion to the final, averaged removal step energy. For structures with extended reconstruction

(e.g., missing row (MR) and pairing-row (PR) reconstructions on the (110) termination),

the adsorption energies are much more favorable than found here. Since these structures

require the addition or removal of metal atoms, our algorithm cannot recover them. De-
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Figure 3.3: Adsorption energies of different terminations of the Ni/N, Cu/N, Ni/O, Cu/O

systems as a function of coverage. The labels “PR” and “MR” represent “pairing row” and

“missing row” reconstructions of the (110) surfaces, respectively.
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pending on the size of the crystalline domains on the amorphous or polycrystalline surface,

these reconstructed domains may or may not be important. The comparison indicates that

our configurations lie close to the global minimum when extended reconstructions are not

considered.

The removal step energies for each surface termination are shown in figure 3.4. The formic

acid and formamidine results are shown on the left and on the right y-scales, respectively.

The results from the bulk model are indicated with horizontal lines. Unlike the adsorption

energies, here the absolute scales are meaningful.

For the Ni surfaces, the layer model produces removal step energies similar to those of

the pristine bulk model at low coverages. As the coverages increase, all terminations become

more favorable to etch than the pristine bulk. The curves of different terminations decrease

with roughly the same slope, but some terminations saturates (terminate) at lower coverages.

At the highest coverages explored (the “saturation coverage”), ∆Grm is slightly below 0.0 eV

for all terminations except (110) which saturated just above 0.0 eV. In particular, on Ni (111)

surfaces, at the coverage of 0.18Å−2, etching is the most favorable (−0.50 eV and −0.75 eV

for Ni/N and Ni/O with formic acid, respectively) among all terminations investigated.

For the Cu systems, all terminations lie below the line of the bulk metal (figure 3.4 b & d,

solid black line). The curves do not have an easily recognizable slope due to reconstructions

discussed earlier. The terminations for the Cu/N system saturate early compared with those

in the other three systems, suggesting nitrogen-based modification may not persist long

enough for thermal activation, as noted earlier. As with the Ni surface, most of the curves

crossed the 0 eV line, resulting in favorable etching at high enough coverage.

3.4.4 The layer model - ECS averaged

While a lot of information is presented in the per-termination ∆Grm, it is difficult to relate

it to the experimental data. At a given coverage, the difference between the most favorable

and least favorable terminations is on the order of 0.5 eV for every system. To proceed, one

must average the removal step energies on the different occurring terminations. The present

53



0.5

1.0

1.5

∆
G

et
ch
,H

F
A
 [
eV

]
0.00 0.05 0.10 0.15 0.20

θN[Å−2]

1.0

1.5

2.0

∆
G

et
ch
,H

F
A

m
d
 [
eV

]

Ni/N

-0.6

-0.4

-0.2

0.0

0.2

0.4

∆
G

et
ch
,H

F
A
 [
eV

]

0.00 0.05 0.10 0.15 0.20

θN[Å−2]

-0.6

-0.4

-0.2

0.0

0.2

0.4

∆
G

et
ch
,H

F
A

m
d
 [
eV

]

Cu/N

0.0

0.5

1.0

1.5

∆
G

et
ch
,H

F
A
 [
eV

]

0.00 0.05 0.10 0.15 0.20 0.25

θO[Å−2]

0.5

1.0

1.5

2.0

∆
G

et
ch
,H

F
A

m
d
 [
eV

]

Ni/O

-0.6

-0.4

-0.2

0.0

0.2

0.4

∆
G

et
ch
,H

F
A
 [
eV

]

0.00 0.05 0.10 0.15 0.20 0.25

θO[Å−2]

-0.6

-0.4

-0.2

0.0

0.2

0.4

∆
G

et
ch
,H

F
A

m
d
 [
eV

]
Cu/O

Figure 3.4: Removal step energies by terminations on the Ni/N, Cu/N, Ni/O and Cu/O

systems as functions of coverage, evaluated at 80 ◦C. Two axis are shown. The y-axis on the

left corresponds to formamidine chemistry. The y-axis on the right corresponds to formic acid

chemistry. The bulk model results on the pristine and activated substrates are respectively

marked with colored and black horizontals lines for comparison. The values are in eV per

metal atom etched.
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work relies on the equilibrium crystal shape with the inverse definition of modifier chemical

potentials, as described in the methods section. The chemical potential determined for four

pairs of substrates and modifiers are shown in figure A.4. The resulting surface energies

and fractions of surfaces are shown in figure A.5 and figure A.6, respectively. The average

removal step energies ∆Ḡrm, the final result of the layer model calculated via equation (3.7),

are given in figure 3.5. The results from the bulk model (both pristine and activated) are

also provided for comparison.

To illustrate the effect of the surface-averaging method, compare figure 3.4(a) to fig-

ure 3.5. On the Ni substrate, both O and N modifiers show a significantly more favorable

etching on the (111) termination compared with the rest. However, the averaged curves in

figure 3.5 do not follow this trend indicated by the (111) termination due to its diminishing

surface fractions (see figure A.5 - figure A.6) according to the ECS method. Above 0.08Å−2

on Ni/N and 0.10Å−2 on Ni/O, the (111) termination is essentially absent, and the aver-

aged removal step energies are dominated by the higher-indexed terminations. The method

therefore prevents biasing the final averaged removal step energy toward any particular ter-

mination.

The Ni/N and Ni/O curves follow a smooth, nearly linear decrease with respect to cov-

erage. Both rapidly decrease below the bulk oxide and nitride lines. Over the coverage

investigated, the bulk model results lie near the center of the range of removal step energies

found. It can be seen that the bulk model predictions lie close to the center of the range

spanned by the layer model predictions. The N and O curves give very similar energetics in

the middle of the range observed, and both cross the ∆Ḡrm = 0 eV line to become favorable

for etching at ∼ 0.14Å−2. Thus, our layer model predicts that with overlayer adsorption

structures and oligomer product structures, etching on Ni can become favorable already.

The experimental fact is that O2 plasma-activated Ni can be favorably etched with formic

acid at 80 ◦C. Our results thus qualitatively agree with the experiments, despite significant

difference in activation layer thickness.

On the Cu substrates, the most striking observation is that the two curves of Cu/N and

Cu/O are nearly parallel to each other. This is especially surprising when one realizes that
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in figure A.6 the parallel curves are results of contributions from different terminations. The

Cu/N curve mostly consists of contributions from (100) and (221) terminations, where as on

the Cu/O curve, the (100) is suppressed at low coverages, and the significant contributors

are (210) and (211). Our results clearly indicate that the energetics of surface adsorption

structures are similar between N and O adsorbates, as was previously demonstrated by a

DFT study.79

Additionally, the layer model predicts that etching N-activated Cu stays ∼ 0.2 eV more

favorable than O-activated Cu, consistent with the bulk model prediction of 0.09 eV more

favorable etching with N. This can be understood in terms of the difference in bonding:

Cu3N has 1/3 Cu-N bonds per Cu atom, while Cu2O has 1/2 Cu-O bonds per Cu atom.

Since etching 1 Cu atom leads to 1 O-H/N-H bond being formed in both cases, etching Cu/N

breaks fewer bonds in total, and a more favorable removal step energy is expected. The same

cannot be said of the Ni etching due to its nitride and oxide having different valences.

As shown earlier, the layer model reduces to the bulk model and would give identical

removal step energies if additional assumptions of the bulk model are imposed. Our results

show that the energetics of etching oxide/nitride on top of the pristine crystal are different

from that predicted by the bulk model. Indeed, the integral heats of adsorption at high

coverages of oxygen on Ni have been determined to be much lower than the bulk NiO

formation energy.43

The most useful results obtained are as follows:

Nitrogen activation could lead to working processes similar to oxide (already demon-

strated with formic acid) on both substrates, as nitrogen activation gives a more favorable

removal step than the oxygen activation.

Formamidine leads to more favorable removal step energies compared with formic acid.

This is potentially important as formamidine is a much more volatile etchant than formic

acid (337mmHg vs 40mmHg at 298K). Potentially formamidine could yield higher etch

rates than formic acid, which is important for industry and for characterizing the etching

product.
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The trend toward more favorable removal step energies at higher coverages suggests that

activation should always aim for higher modifier content.

It is important to note that the configuration search is limited to surface adsorption

sites. As shown in chapter 4, following the general trend of more favorable etching at higher

coverages, the inclusion of subsurface sites into the configuration search scheme continues

this trend and yield more favorable energetics.

This study also reveals that the viability of the ALE process is determined by several

factors. As expected, the cohesive energy of the metal plays a significant role. The easier it

is to atomize the metal crystal, the more favorable the etching would become. The relative

strength of metal-modifier, hydrogen-modifier, and hydrogen-hydrogen bonding, as well as

the number of bonds broken and formed, also influence the removal step energy outcome.

In particular, the redox potential of the metal plays a role in the strength of the metal-

modifier bond, as this interaction involves a change in the metal oxidation state. Moreover,

the difference between the hydrogen-modifier bond energy and the hydrogen-hydrogen bond

energy affects the selectivity of etching the activated surface compared to the pristine surface:

the stronger hydrogen binds to the modifier compared to another hydrogen atom, the stronger

the driving force for the etching reaction on the activated surface, and the more likely

the removal step is self-limited. The free energy of the metal complex is also of utmost

importance. While the most stable structure can be searched in a straightforward manner

as done here, there is little guarantee that the most stable molecule is the actual molecule

formed. The case in point is the nickel complexes (figure 3.1). While the dimers, trimers, and

tetramers are all thermodynamically more stable than the monomer, the formation of these

large complexes on the surface may be prohibitively slow. In such cases, the monomer-based

thermodynamics could be more relevant to the design of ALE processes.

The factors discussed above can be estimated easily through simple calculations or refer-

ence to standard thermochemical data tables. However, influences related to surface effects,

such as evolution of surface morphology on the same termination under modifier adsorption

and surface heterogeneity effects cannot be determined a priori without a detailed study.

The influence of surface morphology is clearly indicated when the layer model (assuming a
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mononuclear nickel formate complex) predicts etching with formic acid to be unfavorable on

Ni (111), but favorable when the subsurface sites become occupied (as shown chapter 4).

The heterogeneity among different terminations must be treated carefully for thermodynamic

predictions to guide the experiments. The approach taken in the present work relies on the

surface energies to summarize the results from various terminations (higher surface energy

structures are suppressed). Whenever experimental crystal orientation distribution functions

are available, such information can be directly utilized to yield more accurate pictures. Note

that the model here is still an ‘miller-index-averaged‘ energy: within each miller index, the

model here does not provide information on which etching site is preferrable, unless specific

structures that isolate certain sites are provided as input, as demonstrated in chapter 4.

To summarize, the factors favoring metal-plasma ALE processes are: weaker metal-metal

bonding (that still allows self-limited etching), stronger modifier-hydrogen bonding, more sta-

ble (small) complexes, and less stable activation layer (that does not desorb spontaneously).

As a final note, it is evident from the results of the layer model that “atomic layer

etching” is not removing strictly removing atomic layer for certain substrates. To achieve

the precise atomic layer removal, the activation has to be limited to the top layer. However,

for some substrates, this constraint might make it difficult to find modifiers and etchants

that give a favorable removal step energy at these coverages. Alternatively, etching may stop

before all the modifiers are consumed, since the low coverage of modifiers left on the surface

would lead to unfavorable etching. Thus, the observed etch per cycle can still be one layer

or less but the modification penetrates deeper than that, persisting to the next activation

step. In both cases, the etching process influences more than one atomic layer. The reader

is reminded that the layer model itself was derived with the hypothetical reaction that leads

to complete removal of modifier atoms and exposure of the underlying pristine metal. In

essence, it is a thermodynamic average of the removal step, where, as the etch proceeds,

modifier coverage continuously decreases. It is not possible to pinpoint the coverage or

activation thickness at which the etching stops with the present model. Such a prediction

would require equation (3.5) to be re-written with the post-removal surface on the product

side, which is outside the scope of this work.
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3.5 Conclusions

Atomic layer etching (ALE) is a promising technique that has the potential to revolutionize

semiconductor manufacturing processes. It relies on time-separated steps of self-limited sur-

face reactions to achieve high selectivity, specificity, and anisotropy, making it suitable for

etching a wide range of materials. However, the vast chemical space involved in ALE, in-

cluding choices of substrate, modifier, etchant, and process parameters, makes it challenging

to explore using a trial-and-error approach.

In this work, the thermodynamics of the removal step is proposed as a descriptor for ALE

chemistries. A computational framework has been developed to evaluate this descriptor,

requiring only minimal input from experiments. Experimental data on the etch product,

crystal termination distribution, and post-plasma surface structure can be used to enhance

the model’s accuracy.

Two models have been proposed and evaluated: the bulk model and the layer model.

The bulk model is simpler but lacks the flexibility to address complex surface effects. To

overcome this limitation, the layer model relies on surface adsorption calculations to yield a

single-valued removal step free energy change. The layer model study indicates that etching

becomes more favorable at higher coverages of modifier atoms. Surface oxides and nitrides at

high coverages are more favorable to etch than bulk oxides and nitrides. Nitrogen activation

leads to more favorable etching than oxygen activation on Cu surfaces, while Ni surfaces

show similar removal step energies for both nitrogen and oxygen activation. The layer model

demonstrates qualitative agreement with experimental results, achieved by destabilizing the

surface through sublayer adsorption structures or stabilizing the products through polynu-

clear metal complexes.

As simulating molecular impact at the DFT level remains computationally expensive, the

surface activation layers were obtained using the greedy-search algorithm. Free energies were

extrapolated from 0K using ab-initio thermodynamics. Once an atomistic model of plasma

activation becomes available, the layer model energy expression can be directly applied to

such realistic structures.
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The modeling efforts can aid ALE process development in several ways. First, it al-

lows the separation of the effects of etchants from the rest of the process, facilitating rapid

screening of etchant structures using high-throughput calculations. Second, it highlights the

importance of surface morphology and heterogeneity, calling for diverse sampling of surface

structures and physically consistent termination-averaging models. Existing concepts in sur-

face science, such as adsorption energy and surface formation energy, provide additional

insights into the parameters controlling the calculated removal step energy descriptor.
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CHAPTER 4

Site Specificity of the Thermodynamic Model

4.1 Introduction

As discussed in chapter 1, most reported reactive ion etch (RIE) processes on Si use reactive

neutrals (e.g. halogens) to weaken the binding between substrate atoms. Fast but inert

ions are then introduced solely as a source of directional kinetic energy to volatilize the

activated surface species. The same concept is applied to Si atomic layer etching (ALE),

with the difference that the doses of ions and neutrals are now time-separated to achieve

digital control of the etch thickness. As the ions are inert, the material removal process is

essentially a physical sputtering process. The etching selectivity, in this case, relies on the

sputtering threshold difference between the activated surface species and the non-activated

parts,38

Y = A
(√

Eion −
√
Ethreshold

)
(4.1)

where Y is the sputtering yield, Ethreshold is the sputtering threshold, and Eion is the ion

energy. Using reactive species along with ions change the prefactor A and the threshold

energy but the energy dependence remains the same, indicating that a similar physical

picture remains true.

This approach has been successful for materials like silicon and oxides. However, for more

complex materials such as metal oxides, both etching and deposition can occur simultane-

ously, and the relative rates of these processes become crucial. The simple dependence on

ion energy is lost, especially in the case of metals where reactive ions can modify surfaces at

energies below the sputtering threshold. This opens up new possibilities for highly selective

etching since the chemical reactivity can be tailored to the substrate species more readily
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than just relying on the 1-dimensional ion energy.

This is the physical motivation behind using a low-energy plasma-based modification

step combined with a thermal removal step. For etching metals, a significant oxidation

state barrier must be overcome. Localizing electrons to the surface layer via oxygen (or

other oxidative species) plasma exposure is a viable approach. Subsequently, it has been

demonstrated that organic chemistries can selectively eliminate the surface metal oxide layer

without reacting with the underlying pristine metal material. This selectivity in etching

enables precise control over material removal and opens up various practical applications.

In such a process, selectivity is defined solely from the oxidation process, the controllable

formation of the surface oxide layer is thus critical in realizing the subsequent material

removal, including both selectivity and directionality.

In section 4.2 such a process is demonstrated to show the modification effect of low-

energy reactive ions. A thin surface layer of Ni (�5 nm) is intentionally transformed from

metallic Ni to NiO using low-energy oxygen ion exposure. This transformation creates new

reaction pathways specifically for removing NiO without affecting Ni substrate. The chemical

contrast between surface NiO and bulk Ni results in nearly infinite etching selectivity, similar

to etching SiO2 and Si using HF. This high selectivity is due to the different reactivity of

NiO compared to metallic Ni, allowing NiO to be selectively removed while leaving the Ni

substrate intact.128,129 Note that the experimental work is performed by Sang Xia and Jane

P. Chang and reproduced here for completeness.

In chapter 3, a thermodynamic model is developed that yields a coverage-dependent,

structure sensitive thermodynamic estimate of the energy to etch the activated film. As

noted in passing in that chapter, since this model relies on the total energies on a slab

structure, it gives the surface averaged etching energy. In this chapter, the model is adapted

to study the effect of site-specificity of the nickel oxide-based ALE process, removing the

surface-averaging by constructing structure models that contain only well-defined sites. The

modeling results, along with the experimental results, suggest that site-dependency needs

to be explicitly accounted for. This motivates the subsequent chapters (e.g., chapter 5 and

chapter 6), where the plasma oxidation dynamics are explicitly considered.
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4.2 Experimental collaboration

In the assessment of controlled surface oxidation, a low-energy plasma oxidation process was

used on 30 nm to 40 nm thin films of Ni. The plasma oxidation was performed at a pressure

of 30mTorr, with a source power of 500 W, and no applied substrate bias or heating, for

a duration of 2 min. The surface atomic composition and chemical bonding configuration

before and after oxidation were analyzed using X-ray photoelectron spectroscopy (XPS) with

a monochromatic Al Kα source and a pass energy of 20 eV. The change in film thickness was

measured using scanning electron microscopy (SEM) and transmission electron microscopy

(TEM).

Prior to the plasma oxidation, the Ni sample was sputter-cleaned using 4 keV Ar ions

to remove the native oxide layer and establish a baseline for compositional analysis. The

sample was then exposed to oxygen plasma for 2 minutes. Due to ambient exposure, some

adventitious carbon was observed, which caused signal attenuation of other elements. The

ion energy during the plasma oxidation was about the plasma self-bias potential, which was

approximately 10 eV, lower than the reported sputtering threshold of Ni, which is approxi-

mately 16 eV.14 Thus, the main effect of the low-energy ions was oxidation, and no significant

sputtering was expected due to the small populations of ions at the high-energy tail of the

ion energy distribution function.

The formation of NiO is confirmed from the ex-situ XPS analysis where the signal inten-

sity of metallic Ni (852.6 eV) is considerably reduced and that of NiO (854.1 eV) is greatly

increased. Increase in signal intensity is also noticed for Ni(OH)2 (855.8 eV) and satellite fea-

tures (858.1 eV and 859.9 eV) (see figure 4.1). Using the relation λ = 2170/E2+0.72(aE)0.66

where E is the electron kinetic energy and a is the molecule size in nanometer as derived

from the relation ρNAna
3 = 1× 1024 A0, where ρ is the material density, n is the atoms per

“molecule” and A0 is the molar mass, the mean freepaths of Ni and O were determined to

be 2.1 nm and 1.7 nm, respectively. The oxide thickness was then determined to be 6 nm.

I tox/I
t
Nt = I∞ox

[
1− exp

(
− tox
λoox sin θ

)]
/I∞Ni exp

(
− tox
λNt
ox sin θ

)
(4.2)
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Figure 4.1: (a) ex-situ XPS detail scan of Ni 2p and SEM cross-sectional image for Ni

blanket sample (b) before and (c) after 2 min of oxygen plasma exposure, 500 W power, and

0 W applied bias.

The calculated NiO thickness obtained from XPS analysis is supported by SEM measure-

ments, which show a thickness increase of approximately 5 nm on the oxidized Ni thin film

compared to the non-oxidized surface. It is worth noting that the formation of a native oxide

layer of approximately 2 nm takes about 24 h under ambient conditions, which is consider-

ably longer than the time required for the ex-situ XPS measurements on the post-oxidation

samples.

In Figure 4.2(a), Ni 2p, C 1s, and O 1s spectra are shown with various oxidation times

under the same plasma conditions. As the oxidation time increases, more oxides of Ni are

formed. The relative concentration between hydroxides and oxides begins to change at longer

oxidation times (between 1 min to 4 min). The changes in the amount of metallic, oxide,

and hydroxide states of Ni are depicted in Figure 4.2(b).

In Figure 4.3(a), Ni 2p, C 1s, and O 1s spectra are shown with various substrate bias

powers applied for 30 s under the same plasma oxidation conditions. With increasing sub-

strate bias power (0 W to 20 W), a nearly monotonic increase in the amount of oxidized

nickel is observed. This indicates that the extent of oxidation can be controlled by adjusting

the substrate bias power. See chapter 6 for a theoretical model of ion-energy controlled oxide
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growth.

The formic acid chemistry in the gas phase is only reactive with oxidized nickel. There-

fore, the extent of oxidation achieved during the directional oxidation step translates to the

attainable etching rates during the subsequent material removal step, while maintaining very

high selectivity. The targeted reaction in the directionally oxidized region enables directional

removal, where the reaction viability is determined by the thermodynamics of the reaction,

rather than the energy of the ions. In situ mass spectrometry analysis was attempted to

identify and characterize the gas phase etch products but was not successful due to both

the low etch rates and small concentrations of the reaction products. Computational insight

is therefore needed to elucidate the reaction pathways and products involved in the ALE

process.

Note that here the influence of gas phase products is not explicitly accounted for, but it

can be easily re-incorporated since the energy offset between different products is a constant

equation (3.6).

4.3 Methods

To provide molecular scale understanding and determine the thermodynamic balance and

reaction products during formic acid etching of oxidized nickel, density functional theory

(DFT) calculations were performed. The PBE exchange-correlation functional was used

with the VASP code.27,34–36,48 One-electron functions were developed on a basis set of plane-

waves, with an energy cutoff at 400 eV. The energies and forces are converged to 1×10−6 eV

and 1 × 10−2 eV/Å, respectively. The Gibbs free energies of the reaction were evaluated at

a specific processing temperature, 80 ◦C, and at a pressure of 350Torr.132

Three nickel surfaces, (100), (111), and (211), were selected since they are representative

of facet and edge sites present on polycrystalline surfaces. To create an oxidized nickel sur-

face, atomic oxygen was chemisorbed on nickel. At the coverages of interest, the most stable

phase is surface adsorption (overlayer). The metastable structures likely to be present after

oxygen adsorption are probed by placing oxygen in the sublayer interstitial sites (sublayer
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Figure 4.2: (a)ex-situ XPS of Ni 2p, C 1s, and O 1s and (b) the relative atomic percentage

of different nickel chemical states as a function of oxidation time. All experiments started

with 15 s Ar sputtering, followed by in situ oxidation at 500 W power and 0 W applied bias.
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Figure 4.3: (a) XPS of Ni 2p, C 1s, and O 1s, and (b) the relative atomic percentage of

different nickel chemical states as a function of substrate bias. All experiments started with

15 s Ar sputtering, followed by in situ oxidation at 500 W power for 30 s.
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structures). In a real oxidation process, some overlayer sites are likely to be populated first

due to the kinetic barriers of accessing the sublayer sites; therefore, a mixed structure pre-

senting overlayer and sublayer sites is also included. Figure 7 shows the structures for the

three surfaces. The sites on the stepped (211) surface deserve some explanation. While the

overlayer and mixed structures initially had different site occupation, after relaxation they

became very similar. Two types of oxygen atoms are present, namely 4-coordinated (4c) and

3-coordinated (3c). The overlayer structure has one 4c O atom and two 3c O atoms. The

mixed structure hastwo 4c O atoms (one in (100) hollow site, one in tetrahedral interstice

site) and one 3c atom (in (111) surface site). The sublayer structure has only 3c O atoms.

The PAW basis set employed by the VASP code is cut off at 400 eV. Surface species are

calculated with orbital occupancies evaluated using second order Methfessel-Paxton electron

smearing at 0.2 eV. Molecular species are calculated with gaussian smearing at 0.02 ev. Ge-

ometry optimization were terminated when forces are smaller than 0.02 eV/Å. Electronic

steps are converged to 10 eV to 6 eV. Vacuum layers of 16Å were used to pad the slabs

to avoid unphysical slab interactions. Surface dipole corrections were used to obtain cor-

rect electrostatic energies. Spin polarization was included for all periodic systems and all

molecules except H2, where spin polarization leads to an incorrect ground state energy.

To study coverage effects, three scenarios are considered here, represented in the chemical

reactions below:

Pristine Ni·Ni + 2HCOOH→· + [Ni(HCOO)2] + H2 {4.1a}

Low O coverage·NiOθ + 2θHCOOH→· + [Ni(HCOO)2] + θH2O {4.1b}

1MLOadsorption·NiO + 2HCOOH→· + [Ni(HCOO)2] + H2O {4.1c}

The monolayer (ML) coverage is redefined with respect to the number of nickel atoms

exposed to modifiers (O). For p(2×1) cells used in (111) mixed structure, for instance, two

nickel atoms are exposed, hence 1ML corresponds to 2 oxygen atoms, one in the overlayer

and the other in the sublayer. The θ’s of low coverage cases are specified in table 4.1.

Since no experimental characterization of the gas phase nickel di-formate complex [Ni(HCOO)2]

is available, various structures were considered with DFT, and the most stable one is used in
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Table 4.1: Details of slab models. Explanation of abbreviated labels is as follows. O:

overlayer, M: mixed, S: sublayer, LC: low-coverage limit

Surface Supercell #O Coverage /

ML

#Layers /

#Relaxed

KPOINTS

Ni(100)–O p(1×1) 1 1 5L/3R 9×9×1

Ni(100)–M p(2×1) 2 1 5L/3R 5×9×1

Ni(100)–S p(1×1) 1 1 5L/3R 9×9×1

Ni(100)–LC p(3×3) 1 1/12 5L/3R 3×3×1

Ni(111)–O p(1×1) 1 1 5L/3R 9×9×1

Ni(111)–M p(2×1) 2 1 5L/3R 5×9×1

Ni(111)–S p(1×1) 1 1 5L/3R 9×9×1

Ni(111)–LC p(3×3) 1 1/9 5L/3R 3×3×1

Ni(211)–O p(1×1) 3 1 12L/8R 9×3×1

Ni(211)–M p(1×1) 3 1 12L/8R 9×3×1

Ni(211)–S p(1×1) 3 1 12L/8R 9×3×1

the energy calculation. The formate structure candidates are shown in Figure 7 (on the right

from top to bottom: monodentate, bidentate-planar, bidentate-tetrahedral). The monoden-

tate structure corresponds to the configuration in solid-state nickel formate dihydrate,23 but

it is not stable in the gas phase. The bidentate planar structure is the most stable one. Note

that this is a 16-electron square planar structure, common for d8 metal complexes.

The reaction energy for the simpler 1ML case is given by the following equation.

∆Get = [Gl+,NiO −Gl,Ni + (n◦
NiG[Ni(HCOO)2] + nNiGH2O − 2n◦

Ni ·GHCOOH)] ·
1

n◦
M

(4.3)

The derivation of the reaction energy for the low coverage limit using the layer-removal

model is given by equations (3.5) and (3.6).
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Figure 4.4: (a) Illustration of the relaxed structures of (100), (111), and (211) surfaces

with (1) overlayer, (2) mixed, and (3) sublayer oxygen adsorption. The (111) and (100)

surfaces are shown in side view, and the (211) surface is shown in perspective. (b) From

top to bottom: monodentate, bidentate planar, bidentate tetrahedral geometry for the Ni

diformate complex. The bidentate planar geometry is calculated to be the most stable of

all, being 0.41 eV lower in energy than the tetrahedral stereoisomer, which is in turn 0.99 eV

lower in energy than the monodentate structure.
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4.4 Results

: Figure 4.5 shows the reaction energy of various activated surfaces considered (per Ni atom

removed). Notably, for the 1ML case, oxygen-activated nickel surfaces can be favorably

etched via formate chemistry, consistent with the experimental work. Etching of the pristine

nickel surface to produce Ni diformate and gas-phase hydrogen is calculated to be endergonic

by 1.7 eV and is hence highly unlikely. This is consistent with experiments where the

unmodified clean nickel is not etched. Purple bars on figure 4.5 show that the etching reaction

for Ni surfaces modified by a low coverage of oxygen adatoms is also thermodynamically

unfavorable by more than 1.5 eV. Hence only surfaces modified by a high coverage of O

atoms, with occupation of subsurface sites and the formation of a surface NiO layer, result

in a favorable etching reaction with formic acid, in agreement with experiments. Note that

the favorable etching reaction for these oxidized surfaces does not result from a greater

stability of the products (Ni di-formate and water) since the energies are already normalized

with respect to the number of metal atoms, but from a reduced binding of the Ni atoms in

the “reactant” surface.

The site dependence trend is quite complex. For the (111) surface, increasing access to

sublayer sites increasingly destabilizes the surface, while (100) and (211) surfaces are not

significantly destabilized by occupying a fraction of the sublayer sites in a mixed adsorption

structure. Results for (100) and (211) surfaces indicate that occupying the sublayer sites

using low energy oxygen ions can make the etching reaction favorable. A closer look at

figure 4.5 reveals that the etch becomes more favorable when Ni atoms in the top layer have

a longer bonding distance with the layers underneath due to occupation by oxygen atoms

in the sublayer. In particular, all the sublayer structures show a large vertical relaxation

of the top layer, moving away from the bulk, while the mixed and overlayer structures still

have one or more Ni atoms at a short bonding distance from the underlying metal. This

suggests that the geometry distortion caused by the oxygen modifier provides a favorable

driving force. However, a more detailed search of the configuration space is required to

validate this. Overall, the (211) surface has a higher reaction energy compared to (100) and
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Figure 4.5: Etching reaction energies (∆Get in eV) of oxidized nickel (111), (100), and (211)

surfaces using a layer-by-layer removal model (negative values indicating favorable etching,

see supplementary material), normalized to one Ni atom removal. Low oxygen coverage

does not result in a favorable etch, as indicated by positive reaction energies of over 2 eV.

Sublayer sites significantly reduce the energy cost, in some cases resulting in a favorable etch,

as observed experimentally. The energy level for a pristine nickel surface (1.74 eV, black line)

is calculated with Ni bulk formation energy since the same surface is exposed if the entire

atomic layer of nickel is etched and removed.
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(111) surfaces. This is due to the fact that while the (211) surface itself has a higher surface

energy, occupying the undercoordinated sites on the edge initially stabilizes the surface to a

higher extent than that of (100) and (111) surfaces, where the terrace atoms have a higher

coordination number. These results suggest that site specificity can play a role in atomic

layer etching of surface species.

The feasibility of using low-energy oxygen ions from a plasma, as specified above, to

convert a metal to a metal oxide surface without physical sputtering, followed by a formic acid

reaction to form volatile reaction products, is therefore established. The effect of modification

from low energy oxygen ions could be further leveraged for directionality, enabling anisotropic

chemical activation in selected open areas of a pattern. An example shown in section 4.4

illustrates the effectiveness of such an ALE process. Starting with a 40 nm Ni film that was

patterned with a hard mask of SiO2 lines (SiO2 thickness = 95 nm, line width = 125 nm,

and line pitch = 1 µm, initial sidewall angles of 60◦ to 80◦), low energy oxygen plasma was

used to tailor the formation of nickel oxide, followed by nickel oxide removal with formic

acid vapor exposure. The zoom-out TEM images confirm the process uniformity (over at

least hundreds of nanometer), while the electron dispersion spectroscopy (EDS) mapping of

Ni shows an 87◦ final sidewall angle. Ni was completely removed in all exposed region, while

slight variations in the sidewall profiles were noted from elemental mapping by EDS. These

variations may be attributed to the grain size and grain boundary effects, which are beyond

the scope of this current work but an important aspect to be researched further.

To further enhance the control of surface oxide layer formation, an ideal approach would

involve using a mono-energetic and reactive ion source. This would result in a narrower ion

energy distribution, leading to a more precisely defined oxide layer and ultimately enabling

greater precision in atomic layer etching. The intrinsic directionality of oxygen ions would

also contribute to a directional formation of NiO in the presence of hard masks, resulting in

an anisotropic removal of the oxides.

It is important to note that the results presented in this chapter are calculated for the

nickel formate monomer product (see figure 4.6), while the product used in chapter 3 is the

most stable nickel oligomer. To facilitate comparison, the relevant energetics for the results
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Zoom in

EDS

in chapter 3 are reproduced in appendix A.6.

4.5 Conclusions

The results presented here highlight the effect of low-energy reactive ions and a low neutral-

to-ion ratio on atomic layer etching. This opens up a new pathway to tailor surface reactions

for selectivity and directionality. It is shown that the now much greater chemical design

space is best explored using computational tools that can rapidly investigate selectivity

and site-specificity. While the focus of this work is on oxidation-enabled nickel ALE, the

principles explored are expected to be general. With the computational tools developed, it

is possible to extend the process to less-studied materials with tighter dimension constraints

and reduce the time from lab-scale research to commercial-scale processes. Plasma-thermal

ALE of metals is motivated and discussed, in combination with first-principles calculations

and experimental confirmation, to demonstrate how surface reactivity and selectivity, rather

than the etch rate, are the focus of realizing nanometer-level patterning of etch-resistant
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Figure 4.6: The optimized structure of nickel formate complex in bidentate square planar

configuration. The bond lengths and bond angles are marked in degrees and angstroms,

respectively. The two ligands are completely in plane with no distortion.

materials.

In the next chapters, armed with machine learning tools that can explicitly probe many

of these effects, the problem of controlling ion energy and ion-to-neutral ratio are revisited

with atomic resolution to complement the XPS results presented here.
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CHAPTER 5

Neural Network Potential for Cu surface - O2 Plasma

Interaction

5.1 Introduction

In this chapter we discuss the development of an machine-learning interatomic potential

(MLIP) to describe the interaction between the copper surface and the oxygen plasma.

Particular attention is paid to the practical aspects of MLIP development regarding training,

inference efficiency, dataset gathering, and accuracy. The chapter is divided as follows. In

section 5.1 an motivation of the interatomic potential is given and the state of the art is

reviewed regarding both the methodology and the results. The computational details are

given in section 5.3.5. In section 5.3 a detailed discussion is given regarding how the dataset

is constructed. This process is presented illustrating the logic involved, as the problems

encountered here are general and the solutions applicable to other systems. In section 5.4,

chemically-intuitive validation results were shown. We discuss and quantify some inherent

errors involved in our approach in section 5.5 and conclude in section 5.6.

To the author’s knowledge, there have been no molecular dynamics studies on the in-

teraction between a metal surface and the nonthermal oxygen plasma. Here, “nonthermal

plasma” refers to the fact that in the plasma used for material processing, the electronic

temperature is typically much hotter than the temperature of the heavy species (ions and

neutrals). Plasmas are sustained by scattering of accelerated electrons with heavy species,

causing excitations and ionizations. Previous surface-plasma interactions studies usually

involve Si-based materials,32,70,80,85,136 and are performed with classical interatomic poten-

tials (e.g. Tersorff-Brenner17,18 & Stillinger-Weber15). These simulations set the ground for
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computational studies of surface-plasma interaction at the atomic scale, but they are funda-

mentally limited in accuracy by the functional forms of the potentials. Roughly speaking,

there are two families of classical interatomic potentials, based respectively on the embedded

atom method (EAM,13 MEAM,22 MEAM-Qeq21) and the bond order method (COMB,87,96

ReaxFF52,120). These formalisms are designed with metallic and covalent systems in mind,

respectively, and there is little knowledge on their accuracy when the same set of parameters

is required to reproduce the metallic (in the pristine layers), the covalent (in the plasma,

in the physisorbed molecules, and to some extent the oxide), and the ionic bonds (in the

oxide) interactions at the same time. Recently ReaxFF90 and COMB89,96 have been applied

successfully to the thermal oxidation of copper, but their functional forms prevent the accu-

rate description of the regions of the potential energy surfaces encountered during plasma

oxidation, which could involve structures with very short interatomic distances.

The development of machine learning potentials such as the Behler-Parinello high-dimensional

neural network potentials (HDNNP)68 and the Gaussian approximation potentials (GAP)82

provide functional forms that are versatile enough to be parametrized to describe highly

diverse chemical environments at or near the accuracy, previously only achievable with ex-

pensive first-principles calculations.

To provide a comprehensive description of the plasma, it is crucial to accurately account

for the various components, including charged ions and neutrals in their ground and ex-

cited states (both electronically and vibrationally), free electrons, fast ions, and radiation.

However, in existing explicit atomistic treatments of plasma-surface interactions known to

the author, most components except for fast ions are often disregarded. Additionally, the

ions are typically treated as fast neutrals, assuming that the neutralizing species are the

secondary electrons repelled by the sheath. In this work, we adopt the same approach.

Most machine-learning models face challenges in effectively handling long-range Coulomb

interactions. Moreover, since we have adopted plane-wave Density Functional Theory (DFT)

as the reference method, the treatment of charged systems necessitates implicit solvation

methods and charge balancing, significantly increasing computational costs. Even with these

considerations, the ambiguity in charge partitioning schemes in plane-wave DFT introduces
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Figure 5.1: Overall process of plasma-thermal ALE on Cu metal. a): Starting with a

pristine surface, reactive oxygen neutrals and ions are generated by the plasma. The ions

are accelerated by the plasma sheath toward the surface, indicated by the long arrows. The

neutrals, much larger in number, diffuse toward the surface with thermal motion. b): The

top layers of the surface is converted to a copper oxide. c): Plasma is purged, and etchant

molecules introduced to the chamber. Etchant reacts with the surface oxide, producing

volatile organometallic complexes that diffuse away. d): etch stops when the oxide is con-

sumed.
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further complexity.

Regarding electronically excited states, explicit time-dependent DFT (TDDFT) or its

linear-response variant is required, but both approaches are still computationally expensive

for dataset generation. On the other hand, vibrationally excited states are adequately ac-

counted for on the surfaces. The ions utilized in our study are atomic ions and do not possess

vibrational degrees of freedom.

In this chapter, it is shown that high-dimensional neural network potential (HDNNP)

is capable of describing all stages of copper oxidation at an accuracy close to that of the

underlying DFT method and hence can be used as a reliable alternative to existing reactive

force fields. Practical limitations of the current machine-learning approaches are highlighted

and future directions of improvement are specified.

5.2 Theoretical Methods

All electronic structure calculations are performed with the density functional theory as

implemented in the Vienna ab initio Simulation Package (VASP).27,34,35 The electron-ion in-

teractions are treated using the projector augmented wave (PAW) method48 and the valence

one-electron functions are developed on a basis set of plane waves. The PBE exchange-

correlation functional36 is used throughout. While it is true that hybrid-functional generally

yield better descriptions of metal oxides, it is inapplicable due to the computational cost (see

section 5.2.1) and its poor description of the pristine metal. The bulk crystal parameters are

obtained by a two-step direct volume relaxation starting from their experimental values.115

For all systems, the cutoff energy of the plane wave basis is set to 460 eV. The energies

are converged to 10−6 eV. For the metal slabs in the training set calculations, second-order

Methfessel-Paxton smearing was used with a width of 0.2 eV. For the oxides, Gaussian smear-

ing with a width of 0.02 eV was used. All calculations were done spin-polarized. Magnetism

in most cases is small (< 3µB for the (3× 3) slab) but not negligible.
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5.2.1 Active learning and delta learning at hybrid level of theory

The number of required structures was estimated to determine the feasibility of training

a neural network potential at a higher level of theory (e.g. hybrid functionals), following

the automatic training method proposed in Ref[163]. This method estimates the minimum

number of structures required to train a neural network potential. The method is outlined

as follows:

1. From a large pool of structures labelled with energies and forces at the PBE level,

randomly select 10 structures.

2. Train two neural network parametrizations NNP-1 and NNP-2, differing by the random

seeds of their starting points.

3. Evaluate energies and forces on all the structures in the dataset, using both potentials.

4. Select the 10 structures where NNP-1 and NNP-2 disagree the most in terms of energy,

and add to the training set.

5. Retrain both parametrizations. This constitutes one round of the automated training

process.

6. After each round, the RMSE between NNP-1 and NNP-2, between NNP-1 and DFT, and

between NNP-2 and DFT are recorded.

figure 5.2a shows that at 150 structures, the validation set error cannot be minimized to a

satisfactory value. Note that the unit of the error is in eV per atom as opposed to meV per

atom. For all data points shown, the error in the training set is less than 5 meV per atom.

Training with such a small training data set is prone to overfitting, hence the learning curve

is monitored to ensure error on the validation set (the rest of the pool) does not increase

with increasing epochs. Since the disagreement between the two networks is much smaller

than those between the networks and the ground truth, we clearly do not have enough data

in the training set.
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Figure 5.2: a: validation errors for the automated training method. “diff 1-2” represents

the difference between the two network potentials. “diff 1-DFT” and “diff 2-DFT” represent

the difference between the network potentials and the DFT ground truth. All data points

are evaluated over the whole pool of structures.

Additionally, attempt was made to use the delta learning approach, which has been

shown to require a much smaller dataset. The corresponding result is shown in figure 5.2b.

To save on computational cost in this proof-of-concept investigation, the network potential

is used to fit the differences between the PBE and RPBE exchange-correlation functionals,

as opposed to a high-level method. Note that the error is decreased by a factor of almost 10

compared with the brute-force fitting to the PBE potential energy surface, indicating that

a smaller training set may be used. However, at 150 structures (15 rounds), we do not see

a significant decrease in the NNP-DFT difference.

Given the high cost of hybrid functional calculations, a training set much larger than

150 structures cannot be afforded. Therefore, we conclude that from a practical point of

view, we can only use the GGA-level of theory. We also note in passing that the exchange-

correlation functional must describe properties of both the metal, the molecular and atomic

modifier, and the oxide phases accurately. While hybrids could improve the description of

the correlated oxide, they in general do not describe the metals well. Hence, the versatile

PBE functional is used.
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The molecular dynamics simulations were performed using the Large-scale Atomic /

Molecular Massively Parallel Simulator (LAMMPS).,175 in conjunction with the ReaxFF

package94 and the NNP interface to the n2p2 neural network potential library..146 The stan-

dalone ReaxFF package was used to reparameterize the inner-wall parameters to stabilize

the very initial ReaxFF simulations.

In this contribution the high-dimensional neural network potential (HDNNP) of Behler

and Parinello was chosen as the machine-learning framework. This is motivated by theoret-

ical and practical reasons.

In chronological order, the first potential attempted was the ReaxFF potential. However,

it was difficult to fit the ReaxFF functional form due to three reasons. The first two reason

is physical: on the one hand, the functional form is inspired by physics and in diverse

environments it is difficult to know a-priori which contributions to the energy should be

fitted, and how the dataset should be prepared. On the other hand, when using ReaxFF

for MD simulation, it is impossible to know if the potential explored regions not fitted

well by the hand-crafted training dataset. Arguably, the protection against extrapolation

in HDNNP is limited as well, but better than nothing. The third reason is practical: the

ReaxFF fitting program works by optimizing one parameter at a time by probing the loss

function (sum of reaction energy errors) at three points using a 3-point sampling around

the current parametrization. From these three points a parabola was constructed and the

parameter value that give the minimum of this parabola is chosen as the next parameter

value. This rudimentary method clearly is not suitable for large datasets, and in practice

we found this optimization method highly sensitive to the ordering of optimized parameters,

since the code works on one parameter at a time. Note that the situation has improved

significantly with tools constructed since this work.

The high-dimensional neural network potential formalism was chosen mostly because of

practical constraints. While the rapid advancement of machine learning techniques have

improved the situation dramatically, at the time of project onset, the n2p2 package was the

only package offering very fast (∼ 5 µs per atom per core) inference speed through intelligent

intermediate result re-use in the featurization step and stable, efficient LAMMPS interface,146
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very fast training convergence with the Kalman filter method.147 These practical constraints

lead to n2p2 being chosen.

In terms of the neural network potential architecture, the atomic neural networks of Cu

and O consist of 85 nodes in the input layer and 2 hidden layers with 30 nodes each. Neural

network potential training was carried out using n2p2’s training routines (nnp-train)..147

The fingerprints were chosen to be Behler-Parinello style symmetry functions, with the η, rs,

λ, ζ parameters generated automatically according to Ref.[138]. The fingerprints are then

“pruned” based on the variance of their values across the entire dataset: fingerprints whose

value stays constant do not capture the variations in chemical environment and are removed.

The n2p2 input file input.nn is given in listing B.1. The architecture, the symmetry function

parameters, etc. can be viewed directly from this file.

5.2.2 The physics-informed potential: ZBL at short distances

To readily capture the strong, exponentially growing potential energies at extremely short

distances that occur during ion impact and ensure the ML-enabled simulation is stable, the

neural network potential formalism has been revised to include a physics-inspired functional

form at very short distances. Specifically, an “inner cutoff” radius rc, is introduced the

smoothly suppress the energy result from the fitted neural network over a range of r ∈ (1, rc).

This suppression is performed using a function of the shifted cosine form:

f(x) =
1

2
[− cos(2πx) + 1]

x =
r − r1
rc − r1

The updated cutoff function with both the “inner cutoff” introduced here and the original

neighborlist “outer cutoff” rc,nn are shown in figure 5.3. With the underestimated, unreliable

short-distance repulsion from NNP removed, a strong repulsion must be added. For this

purpose, a screened Coulomb potential of the form proposed by Ziegler-Biersack-Littmark
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Figure 5.3: The inner cutoff function introduced for smoothly suppressing the NNP energy

contribution at short distances

(ZBL) is introduced for the bond distances r < ri. The ZBL functional form is given below:

EZBL
ij =

1

4πϵ0

ZiZj e
2

rij
ϕ(rij/a) + S(rij)

a =
0.46850

Z0.23
i + Z0.23

j

ϕ(x) = 0.18175e−3.19980x + 0.50986e−0.94229x+

0.28022e−0.40290x + 0.02817e−0.20162x

S(r) =C r < r1

S(r) =
A

3
(r − r1)

3 +
B

4
(r − r1)

4 + C r1 < r < rc

A =(−3E ′(rc) + (rc − r1)E
′′(rc))/(rc − r1)

2

B =(2E ′(rc)− (rc − r1)E
′′(rc))/(rc − r1)

3

C =− E(rc) +
1

2
(rc − r1)E

′(rc)−
1

12
(rc − r1)

2E ′′(rc)

It can be easily verified the switching function S(r) ensures the potential is smooth and

differentiable to the second order at the inner cutoffs r1 and rc. The parameters r1 and rc
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are pairwise-specific and are fitted to the Cu Cu, Cu O, and O O dimer potential energy

surfaces. Two comments are due here. First, this modification does not change the potential

Figure 5.4: Comparison of fitted 0 eV to 400 eV ZBL+NNP potential energy surface with

DFT

energy surface within 20 eV from the minima. Therefore the validation results are unaffected.

Second, the usage of a pairwise interaction is motivated by the fact that it is unlikely for an

atom to be simultaneously close to multiple neighbors, as it would require these neighbors

to be close themselves before the impact. Since the energies considered here far exceed those

involved in chemical bonding, any near-equilibrium structures, as found on the ion impact

targets, would not have such structures. Therefore, using a pairwise potential should not

incur significant error compared to a many-body description. Third, to perform simulation

using this potential, a patch to the n2p2 package is available from its public repository. An

extra statement inner_cutoff f1, fc in the input.nn is required to switch on this smooth

inner-wall suppression of the NNP. The parameters f1 = r1
rc,nn

and fc = rc
rc,nn

refer to the

ratios of the newly introduced inner cutoff parameters with to the outer, neighborlist cutoff

distance. Then, within LAMMPS, the pair_style hybrid/overlay command is used to

combine the ZBL and the NNP potentials.
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5.3 Dataset generation

There are several types of structures used in the training set generation and production

MD simulations. Throughout this paper, the convension (w × l × t) is used in denoting the

dimension of the slab, where w, l, and t refer to the width, the length, and the thickness of

the slab structure with reference to the conventional Cu(100) primitive surface cell (1 atom,

single layer). In training set generation, the majority of the structures started from a Cu(100)

(3×3×5) surface which is subsequently oxidized. A small subset of training MD simulation

started with (3×3×10) Cu(100) surfaces. For these surfaces, a (3×3×1) k-space mesh was

used. Furthermore, bulk oxide structures Cu2O and CuO were used with (2×2×2) supercells

of conventional unit cell for both. The reciprocal space was sampled with (3 × 3 × 3) and

(5× 5× 3) meshes for Cu2O and CuO, respectively. Additionally, a (8
√
3× 8

√
3) supercell

for the Cu(111) surface was used in appendix C.3. In these simulations, the number of layers

is not of interest because the oxide never exhausted the copper layers.

5.3.1 MD sampling procedure

To train a neural network that is able to describe all the stages of oxidation (chemisorption,

surface oxide growth, and bulk oxide growth), an iterative approach based on molecular

dynamics was adopted. This procedure requires a starting energy engine to generate the very

first dataset. For the present study, a ReaxFF parameterization reported in the literature165

was chosen. A slight reparametrization of the inner-wall repulsion terms was necessary to

stabilize the training set generation MD simulations, as the original potential was used for

thermal surface catalysis conditions.

The starting point of the parametrization was taken to be the ReaxFF potential. Since

original training set does not include short-distance interactions of Cu/O, the as-found po-

tential is not very stable to plasma impact even at a kinetic energy of 5 eV. As a result, the

inner wall repulsion term, implemented in ReaxFF, was re-parametrized to the potential en-

ergy curves of Cu-Cu, Cu-O, and O-O dimers, calculated at the PBE level. The comparison

of refitted O2 diatomic molecular potential energy surface is compared with DFT values in

87



figure 5.5. This step ensures the exponential inner wall repulsion is reproduced.
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Figure 5.5: comparison of potential energy of a O2 molecule using literature ReaxFF pa-

rameter set (FF original), reparametrized ReaxFF parameter set (FF-retrained), and DFT.

After MD1 was generated, ReaxFF is no longer used. This leads to the dataset MD0,

used to train the first-generation NNP1. After this point, the approach is summarized in the

following steps:

1. Starting with potential NNPi, trained using MDi and possibly earlier datasets.
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2. Perform MD simulations for training set generation using NNPi, using setup similar

to production MD, but on small substrates efficient for DFT.

3. Using DFT, calculate the ground state energies and forces on the snapshots extracted

from the trajectories. This yields MDi+1. In this case, ∼ 1000 structures was included

every iteration. This number is not optimized and is likely to be more than what is

necessary.

4. If NNPi gives low errors (< 5meV/atom) relative to DFT, stop. Else, add MDi+1 to

the dataset, or replace the whole dataset with MDi+1. Whether the new dataset is

used to (partially) compound or replace the existing dataset is mainly motivated by

the need to keep the size of the training set manageable in terms of training time. Note

that often it is reasonable to replace the old datasets with the new ones because the

PES covered by the new dataset encompasses that of the old one, in addition to better

sampling the configurations reachable in the DFT PES.

5. Using the new dataset, retrain to obtain NNPi+1, and repeat.

Note that, while the training procedure is applicable to different substrate/modifier pairs,

a usable interaction potential may not always be available. In that case, this step can be

replaced with DFT-driven ab initio molecular dynamics at crude computational accuracy, or

a semi-empirical method.

The training set generation MD involves oxygen species (O2 at early iterations, O atoms

at late iterations) impacting Cu(100) (3 × 3) surfaces. The snapshots were sampled to

focus on the impact events (see section 5.3.2). Data cleaning is done before and after DFT

calculations, based on geometric and energetic criteria, respectively (see section 5.3.2).

In the procedure described above, when the neural network potential is deemed to perform

similarly well on the predicted snapshots as on the training snapshots, the training is stopped.

At this point, the kinetic energy Ek increases or the molecular species are replaced with the

atomic species. To cover the 0 eV to 20 eV kinetic energy range, the projectile is gradually

changed from 10 eV molecular, to 10 eV atomic, to 20 eV molecular, to 20 eV atomic. Given
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that the bond energy of O2 is 5.16 eV, using atomic projectile is equivalent to molecular

projectiles with ∼ 5 eV higher kinetic energy. Thus, this method is equivalent to ramping

up the kinetic energy in steps of 5 eV, while keeping the network aware of both O2 and

O interactions. This can be considered as an outer training loop on an energy scale. The

starting point in all these trajectories are (3 × 3 × 5) Cu (100) slabs. These datasets are

simply labelled md. The details are listed below: As can be seen from the table, the size of

Table 5.1: Details of the md part of the dataset

label ion type Ek number of configurations comments

md0 molecular 10 eV 5397 ReaxFF

md1 molecular 10 eV 741

md2 atomic 10 eV 1482

md3 molecular 20 eV 2565

md4 atomic 20 eV 424

md5 molecular & atomic 20 eV 206 resampled md3 and md4

the training set at each step is highly different, due to the attempt to (non-systematically)

minimize the number of DFT calculations. At each of effective Ek, much more structures are

generated than fed to DFT, which was performed in small batches until the prediction error

is lowered. This procedure is effective but tedious, and effort is being made to automate the

process. Below the details are given for the first iteration.

The training routines were able to minimize the energy and force errors on the test set

to 2.32meV/atom and 0.15 eV/Å, respectively. The new neural network parametrization,

termed NNP1, was used in identical MD impact simulations as those used to generate md0,

to generate a new set of snapshots. Again, 25 distinct MD runs were performed. After a

cleaning procedure identical to that applied to md0, yielding md1 dataset, containing 2716

structures. Before training was performed on this new dataset, the self-consistency of the

neural network potential nnp1 was tested by calculating its prediction error on the dataset

obtained via MD driven by itself (md1), as an benchmark for the out-of-sample error. Not
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surprisingly, the energy error is 88.67meV/atom and the force error is 1.98 eV/Å. The fact

that the out-of-sample error is almost two orders of magnitude higher than the in-sample

error is used as an indication that the sample (ReaxFF-generated at this stage) has a different

underlying “distritbuion” than the ground truth (in this case, the DFT PES), in accordance

with statistical learning theory. Therefore, the neural network potential is retrained on the

dataset composed of md1, to yield a test set error 3.14meV/atom and 0.17 eV/Å, respectively

on energies and forces. New MD structures were generated (md2), and again the out-of-

sample prediction error is calculated to be 2.78meV/atom and 0.13 eV/Å, respectively. This

indicates that the neural network potential, within the MD setup used to generate the

training configurations, does not extrapolate. As a finishing step, md1 and md2 are combined

to retrain the neural network potential, yielding nnp2. Thus, the inner loop is exited, the

kinetic energy increased, and sampling is performed again.

A similar process is applied for subsequent iterations. As noted from figure 5.6, the md0

and md1 datasets are not used in the training in the final neural network potential. The reason

for md0 is that it is drawn from an underlying probability distribution of structures according

to the ReaxFF PES. Hence, including it is detrimental to fitting the network to DFT. md1

is excluded because it is likely subsequent datasets can cover the potential energy surface

explored by it. Including it only makes the training time longer. md5 also deserves some

comment. It is a resampling from the trajectories in md3 and md4, but including structures

where a short Cu-O bond is present. Such structures was excluded by data cleaning in other

md datasets as discussed above, but here the criteria is relaxed slightly.

5.3.2 Heuristics for snapshot extraction

While the addition rate of ions is fixed at one per 10000 steps, the ions are added at vary-

ing heights and the surface is not smooth. Therefore, to sample short-distance structures

efficiently, an analysis program tracks the minimal distance between the O atoms and Cu

atoms at each time step in the trajectory. This signal is inverted and peak analysis is per-

formed. The peaks are treated as steps where collision events occurred and the steps near
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Figure 5.6: (a)-(d): structures used in training: (a): snapshots of Cu (100) slab under

oxygen bombardment MD, this comprises the majority of the dataset; (b): bulk copper ox-

ide structure; (c): O2-O2 interaction for oxygen clustering correction calculated by enforcing

high-spin state; (d): thick slab structures to minimize extrapolation error. (e): errors on

each subdivision of the dataset showing the potential performs well on all relevant environ-

ments.

the peaks are sampled at regular spacing. A collection of scripts for dataset generation and

data analysis used in this study are available at GitHub.

It was found during training, that data cleaning is crucial to the success of training. Due

to deficiencies in the early iterations of the network potential, the training MD often leads to

unphysical atomic configurations that are few in number but problematic for DFT calcula-

tions. These structures cause the DFT calculations to either fail to reach self-consistency or

give very high energies. The training routine cannot properly account for these scarce out-

liers, leading to persistent high errors during training. Therefore, data cleaning is performed

to remove configurations with extremely short bond lengths. The cutoff values of the bond

length depends on the target kinetic energy, and is determined by the corresponding bond

length on figure 5.9. Additionally, in the very early stages, clearly impossible structures with
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lost Cu atoms, disintegrated slabs, etc. are removed.

5.3.3 O2 clustering problem

During testing simulations using early parameterization, it was observed that oxygen molecules

occasionally form large adsorbed clusters on the oxide surface. The root cause of these

clearly unphysical phenomena is found to be some incorrect behavior of the potential energy

surface at short O2-O2 separation from the underlying electronic structure method. Fig-

ure 5.7 shows the potential energy surfaces of quintet (3Σ−
g +3 Σ−

g ) and singlet (1∆g +
1 ∆g)

dimers. At typical van der Waals distances (d >∼ 3.5Å), the quintet is ∼ 2 eV more sta-

ble than the singlet, in accordance with the well-known singlet-triplet energy difference of

O2.59 The adjacent triplet molecules adopt an antiferromagnetic (AFM) coupling to form

an overall singlet ground state complex, qualitatively consistent with the literature.76 At

d < 2.3Å, however, the PBE functional erroneously gives a stabilization of the singlet state

on each O2 molecule, (1∆g+
1∆g), resulting in a strong attractive interaction at too short dis-

tances compared with experimental intermolecular potentials and high-level multireference

calculations.44,56,111 On such structures, DFT electronic relaxation adopts the unphysical

singlet configuration(1∆g +
1 ∆g), which is only 0.7 eV above the van der Waals distance

minimum(3Σ−
g +3 Σ−

g ), and hence is easily reached in impact dynamics simulations if the

DFT-based “ground state” PES is followed blindly. A better description can be obtained

by forcing the O2 molecules to maintain a triplet state, as in the most stable configuration

at van der Waals separation distance. Note that the erroneous and strong binding state

is unrelated to the well-known true and weak binding state (at d > 3Å, regardless of spin

state), which is captured by PBE and high-level wavefunction methods alike.46,98

To fix the clustering problem, additional cleaning was performed to automatically remove

problematic configurations with inter-O2 distances smaller than 2.2Å from the training set.

The “correct” dimer interaction is added back to the dataset by performing new O2-O2

interaction MD simulations (data set o4). In these simulations, two O2 molecules are placed

in a large simulation box and attached to each other by a spring. High-temperature MD is
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Figure 5.7: Comparison of the potential energy surfaces of O2 complex in the “H” config-

uration, shown in inset. The corrected NNP is shown to follow the triplet state PES.

run to sample a total of 1990 configurations, which were subsequently calculated with DFT

and forcing the high-spin state. Including this augmentational dataset leads to DFT PES

being closely followed by the NNP (see figure 5.5).

The solution here (to the first problem) effectively used an overwhelming number of data

points forced to have the correct orbital occupations to “convince” the model that the few

lower energy points remaining in the dataset are outliers, and “drag” the model back to give

the correct description. The successful application of this approach relied on two aspects: 1)

the poorly described part of the potential energy surface can be isolated and is explainable

using chemical reasoning. In other words, the deficiency in the underlying electronic structure

method is clearly identifiable and the design of the correction data set (molecular O2-O2

interaction) is possible; 2) the correction dataset is much less computationally intensive

than the problematic dataset. For situations with a larger chemical search space, both may

become impossible. The error introduced by fluctuating orbital/band occupations when the

underlying electronic structure method is applied to a large, diverse set of systems could

become a major obstacle in parameterizing machine learning potentials.

In addition to the o4 sub-dataset, other sub-datasets are used to correct for technical

problems such as slight extrapolation when the cell size increased. The overall energy error
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Figure 5.8: Comparison of average adsorption energies on realistic test cases including

single adatom adsorption, epitaxial oxide on metal, and fully oxidized slabs. (a): result on

a (6× 6× 3), thin Cu(100) slab. (b): result on a (3× 3× 10) Cu(100) slab.
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of the resulting network is 4.17meV/atom, and the overall force error is 0.11 eV/Å. The

accuracy on each sub-dataset is shown in figure 5.6. It can be seen that all of the datasets

have similarly low energy errors.

5.3.4 Low coverage problem

To prevent network extrapolation when moving from the small (3× 3) training structure to

the big (20 × 20) production structures (see chapter 6), additional DFT calculations were

performed to sample better the initial impact where few oxygen atoms were present on the

surface. Especially problematic was the case of a single O atom. Since the cell used in

training MD is smaller in the lateral direction than twice the cutoff radius (12Bohr) of the

potential, the neighbor list of oxygen atoms likely includes other oxygen atoms if the are

slightly separated from the center atom. Therefore, the O-O fingerprints did not sample

enough isolated O environments. This leads to extrapolation errors when the simulation is

moved to 20×20 slabs where oxygen are prone to being in isolated environment (i.e., having

no other oxygen atom in its neighbor list). Thus, additional sampling is performed where

only one oxygen is added to the surface at different locations. This constitutes the initial

sub-dataset, which includes 604 configurations.

Note that while this solution suppressed the extrapolation warnings, the periodicity prob-

lem is still not fully solved as the Cu atoms still have their own periodic images included

in the neighborlist. In the present approach, the movement of the adsorbates are correlated

between the periodic images. This may introduce artificial periodicity and limit the degrees

of freedom sampled. For our system, such problems were not observed when moving to large,

production size slabs. However, in systems where long-range lateral interactions dominates

dynamics, the ideal solution, arguably more expensive, is to include slabs with larger lateral

dimension, as opposed to limiting the coverage. Fortunately, as we have shown here, intro-

ducing a small number of corrective structures can alleviate the problem, so the stronger

and more complex short-range interactions can still be sampled with cheaper calculations.

96



5.3.5 Other problems

Extrapolation could also occur along the vertical direction. While 5 layers is thick enough to

converge DFT calculated properties, it is not thick enough for NNP in the sense that none of

the Cu atoms are completely surrounded by other Cu atoms in its neighbor list. A sphere of

rc = 12Bohr always includes some vacuum, even on the middle layer. Therefore, when the

network potential is evaluated on a thick slab, the Cu-Cu fingerprints extrapolate. An anal-

ogous problem exists when the thick oxide is produced, because the 5 layer Cu slab cannot

produce a thick enough oxide to create a “bulk oxide-like” environment. It is readily fixed by

including a small number of 8 layer slabs in the dataset. These slabs are completely oxidized

in MD to generate training set structures that covers the “bulk oxide-like” environments.

This constitutes the thick sub-dataset, which includes 256 configurations.

Bulk Cu, CuO, and Cu2O equilibrium MD simulations were added to the training set to

ensure bulk properties are well described. High-temperature (1000K and 2000K) are used

to make sampling more efficient. These constitute the bulk sub-dataset, which includes 300

configurations.

5.4 Validation

The average adsorption energies on representative configurations from 3 different phases of

oxidation are shown in figure 5.8. Two types of slab structures are used: the (6 × 6 × 3)

slab and the (3 × 3 × 10) slab. These structures are chosen as surrogates for the (20 × 20)

production size slabs, since the latter is prohibitively expensive to calculate directly. Despite

the adsorption energy being a stricter test than the error per atom, the final neural network

performed well to give adsorption energies within 0.1 eV for most of the configurations. In

the worst case, the adsorption energy is within 0.2 eV of the DFT value. Note that this

accuracy is close to the inherent error in DFT itself.

Following many machine-learning potential studies in the literature, the ground state

potential energy surface is used to parametrize our model. As a word of caution, this
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PES is only valid under the Born-Oppenheimer approximation where the motion of the

nuclei is assumed to be much slower than the electrons, so that the electrons always have

sufficient time to relax to the ground state specified by the nuclei positions. Given our target

application of plasma-surface interactions, this approximation may not hold when the ions

are moving at velocities far exceeding thermal velocities. The error introduced by using the

ground state PES is quantified via the local density friction approximation, which is exact

in the limit of an ion moving in a homogeneous electron gas. The resulting friction force

are evaluated (see section 5.5.2) to be small compared with the errors of the neural network

potential, and hence ignored. Also note that there is no concern about ion kinetic energy

exciting the vibrational modes since O atoms are used in the production simulations.

As validation specific to the target plasma oxidation process, the potential energy surfaces

that would be explored during oxygen impact on the metal surface are probed by manually

placing adsorbates at short distances above the pristine Cu surface. Three surface sites

(top, bridge, and hollow) are probed with atomic oxygen(figure 5.9a), vertical (figure 5.9b)

and flat (figure 5.9c) O2 molecules. The structures are illustrated in figure 5.6. Very good

agreement between the DFT value and the NNP prediction is found up to 20 eV above the

minimum energy adsorption height. Based on these observations, it is safe to conclude that

the neural network potential can reproduce Cu-O interaction for the purpose of simulating

plasma-metal surface interaction.

As further validation, the potential energy surface of O2 dissociation on Cu (100) surface

were calculated. On the dissociation pathway calculated on the top, bridge, and hollow sites

using nudged elastic band method using the reference DFT method, the energies were re-

evaluated using the trained NNP potential. On all the NEB images, the energies difference

is less than 0.02 eV.
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Figure 5.9: Comparison of potential energy surfaces on short-distance, high-energy struc-

tures likely present in impact events. (a): a single O atom; (b): a vertical O2 molecule; (c):

horizontal O2 molecule. The energies are plotted against the distance above the adsorption

sites on a Cu (100) surface.
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5.5 Discussion

5.5.1 The “sample small, produce large” methodology

One of the greatest promises of machine-learning interatomic potentials is to perform large

scale simulations, with PES sampled using (less than 100 atoms) DFT calculations that can

be performed efficiently. This approach has a few caveats:

First, the errors can accumulate when going to a large system. The machine learning

potentials rely on partitioning the total energy to local, atomic contributions. Each of these

contributions Ei are predicted with an variance σi, assumed equal to the model error. When

using the model on large systems, this error can accumulate. In the case where the errors

are completely uncorrelated, a system with N atoms have an variance of
√
Nσi. For a large

system this can be significant. Therefore, the energy predictions from large, uncorrelated

structures may not be comparable. In DFT, error cancellation is heavily relied upon for

reasonable energy differences. Here, it is less applicable due to the random nature of the

errors.

On the other hand, if only local dynamics is the target, as is the case in chapter 6, the

error in the forces do not scale with system sizes and the dynamics are correctly captured

as long as the model reproduces the PES well, independent of system sizes. This brings

naturally the question of ensuring model transferability across sizes, i.e. how do we know

the model gives the same per-atom error on a large, production stucture as on the training

structure?

One obvious approach is to generate slightly larger structure that can still be treated in

standard DFT packages. This is the approach adopted here when the validation is performed

on slabs of different shapes in figure 5.8. This can also be done on production-size slabs using

efficient scalable DFT packages. This is the ultimate test, but can only be performed on a

few selected structures.

Another possibility relies on comparing atomic environments encountered in production

runs to those already seen in the dataset. The simulation can be stopped if the model is

100



operating outside the range explored in the training set. This is reminiscent of active learning

approaches where, in addition to the warning, the offenders are sent to DFT and the results

added to dataset.

At the core of such methods is an extrapolation measure. There are 2 ways of doing

this. The first, the so-called query-by-committee method, requires training a “committee”

of models from different random starting points. On the test structure, each member model

performs a prediction on the test structure and the variance among the prediction is taken

as the extrapolation measure. This approach is conceptually simple and can be applied to

any machine learning framework, but retraining the committee frequently may be a practical

bottleneck. The second approach relies on the atomic environment featurizer themselves.

For the kernel methods, the prediction variance is defined when the kernel itself is defined.

Therefore, kernel methods (e.g. GAP) has natural built-in bayesian extrapolation measure.

The downside is that inferrence time scales with the size of the training dataset. For feature

vector-based methods, the extrapolation grade based on the MaxVol algorithm can be used.

However, this algorithm rely on the volume spanned by active set, therefore suffering from

being unstable with respect to outliers in the training set. A single outlier datapoint can

greatly expand the said volume, so the algorithm considers points near it to be “intrap-

olating”, even when such regions of the PES are not sampled adequately. In the present

contribution, a similar, but more simplistic approach is used when the range of the feature

vectors is used directly, suffering from similar drawbacks.

5.5.2 Error introduced by the adiabatic assumption

As discussed in the main text, the neural network potential is fitted to the ground state

potential energy surface. Dynamics on this potential are valid as long as the nuclear and

electronic degrees of freedom is separated (i.e. the adiabatic assumption is valid). However,

situations exist where the nuclear motion can lead to electronic excitations, and vice versa.

On metals, due to the absence of band gaps, it is known that electron-hole pairs can be

created by the motion of adsorbates, leading to what is known as nonadiabatic adsorption.

101



To quantify the error introduced by neglecting this energy dissipation mechanism, we have

calculated the forces felt by an oxygen ion moving above an Cu (100) surface in the local

density friction approximation (LDFA).[77] In LDFA, the friction force on ion is directly

proportional to the velocity v, with a density dependent scalar friction coefficient η:

F⃗ = −ηv⃗ (5.1)

The steps taken to evaluate the friction force is outlined below. First, the densities are

converted to the Wigner-Seitz radius as:

rs = (
3

4πρ
)1/3 (5.2)

Then, the correspondence between the Wigner-Seitz radius and the friction coefficient and

an oxygen atom moving in a homogeneous electron gas is obtained from Ref.[156]. The

tabulated results are interpolated via a smoothing spline to obtain a continuous relation,

as shown in figure 5.10. The full-electron density traversing vertically normal along a Cu

(100) slab through one of the surface atoms is obtained via the PAW method and shown in

figure 5.11. The sampling line traversed through the atomic cores, and the plotted density

is truncated to show only the relevant regions. Visual aids were inserted in figure 5.11 to

indicate regions within 1Å of the nuclei. In MD impact simulations, the Cu-O distances

were never observed to be shorter than this cutoff distance, so the forces inside this shaded

region is irrelevant. The friction coefficients are shown in the left axis, and the friction force

on an oxygen ion with 20 eV kinetic energy is shown on the right axis. It can be seen that

the friction force never exceeds 0.08 eV/Å, which is less than the error in our neural network

potential. Hence, we conclude that friction due to electronic friction is insignificant for our

purposes.

5.6 Conclusions

A machine learning potential is developed and validated for the Cu/O system that covers

atomic and molecular adsorption with initial kinetic energies up to 20 eV. While the potential

was used to study plasma oxidation of copper, the approach used is quite general and could
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Figure 5.10: Tabulated correspondence between local electron density (expressed as

Wigner-Seitz radius) and the friction coefficient. The curve corresponds to spline inter-

polation. The friction coefficient for rs > 10 is assumed to be 0.

be extended to other binary metal-modifier interactions, limited only by the ability of the

underlying electronic structure method to produce a large set of consistent and accurate

training data.
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Figure 5.11: Calculated LDFA friction coefficients and forces for oxygen atom moving

through an Cu (100) slab with a kinetic energy of 20 eV, plotted for density values along a

vertical line normal to the surface and passing through the Cu nuclei. Note: this overesti-

mates the actual density experienced by the oxygen ion, hence the actual forces are lower

than what is suggested here.
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CHAPTER 6

Molecular Dynamics Simulation of Plasma Oxidation

of Copper

6.1 Introduction

In chapter 5 the development of the general Cu/O interaction potential discussed. In this

chapter, the application of this potenital to plasma oxidation of copper to predict the in-

fluence of processing conditions such as substrate temperature, plasma power, and chamber

pressure. Suggestions on improving the existing experimental process are given on the basis

of the influences found.

After replacing aluminum decades ago, copper became the universal material of choice for

interconnects in integrated circuits.39 Traditionally, copper was introduced into the back-end-

of-line (BEOL) processing by a combination of the Damascene process which plates copper

onto patterned interlayer dielectrics, followed by a chemical mechanical polishing (CMP)

process.51 However, continuous scaling down in the push to follow Moore’s law is beginning

to render this harsh process unsuitable at the lowest levels of metallic interconnects, due to

requirements of high-aspect-ratio filling uniformity and cracking induced by CMP.179

In response to these problems, the semiconductor industry is looking for an atomic-level

engineering approach that is simultaneously capable of achieving high selectivity and high

directionality. One of the most promising techniques for this purpose is atomic layer etching

(ALE).105 To etch metallic copper, a specific variant, the plasma-thermal ALE process can

be used. It is composed of two steps (figure 5.1): 1) controlled conversion of the surface

layers of copper to copper oxide under oxygen plasma and 2) reaction of the oxide layer
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with an etchant molecule (e.g. HCOOH) to form volatile complexes, etching the oxide

layer and stopping at the metallic part.173 While plasma is required to impart the inherent

directionality of the ions accelerated by the electric field to the device profiles, the process

leads to relatively thick activated layers without being self-limiting, preventing a finer grain

of control over etch per cycle (EPC) from being achieved.126

Copper oxide is one of the enabler materials of modern technology. Stable under ambient

conditions with an optimal band gap of ∼ 2.0 eV, it is a highly desirable and readily available

material for photocatalysis and photovoltaic cells. Incidentally, the oxidation of copper is

one of the most heavily studied oxidation processes. The Cabrera-Mott theory of metal

oxidation was conceived partially as an explanation for the formation of thin copper oxide

films. While the classical theory was shown to be inaccurate as understanding improved,,116

copper oxidation is now considered somewhat of a model system to understand formation of

thin metal oxides in general.106

The oxidation of low-index copper surfaces has been extensively studied under surface

science conditions.95,112,124,153,170 Oxygen is known to adsorb dissociatively on the (100),

(111), and (110) terminations, forming well-characterized configurations and reconstructions

at temperatures below room temperature. As coverage increases, the oxide grows as nanois-

lands on all three terminations,45 as opposed to the uniform layer growth assumed in earlier

works. The size and shape of the islands depend on the orientation of the surface, the con-

ditions, and the oxygen dose. In conditions departing from the ultra high vacuum towards

the more realistic pressures, temperatures, and time scales, the process is far less well under-

stood. There is little consensus on the form of the rate law at temperatures near or above

room temperature, and the thickness and the composition of the native oxide is not well

understood yet, nor the influence of temperature, moisture, etc.135

In addition to the difficulties that make understanding thermal oxidation challenging, the

interaction of metal surfaces with the plasma is unique in having energetic particles impacting

the surface.133 The particles used in the corresponding experimental process (the “target

process”) have kinetic energies in the order of 10 eV,49,149 high above those possible from

thermal fluctuations, yet too low to cause ion implantation or sputter the substrate atoms.
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Unlike the case for higher energies (>1 keV) where simple screened Coulomb potentials

coupled to binary collision approximation give very reasonable results, here an accurate

description of the potential energy surface is still relevant, since the kinetic energy is within

an order of magnitude of the strength of a typical chemical bond. In other words, the plasma

serves to accelerate the underlying chemistry rather than obscuring it.

6.2 Methods

To successfully model the large system with a heavy machine-learning potential, a special

setup is created that adaptively includes more atoms into pair interaction calculation and

time integration only when necessary. Although the simulation has (20× 20× 50 = 2× 104

atoms at the beginning, only the top region (around 5 layers) is integrated. The interaction

among the Cu atoms deep inside the bulk lattice is not calculated, and their positions are not

updated by the time integration. The input script periodically checks for the coordinate of

the deepest-penetrating oxygen atom, and includes more copper atoms into the integration

and interaction calculations, so as to maintain a constant reservoir of pristine copper atoms

ahead of the progress of the oxidation front. In the current implementation, this check is

done every 10 impact events, and is found to be more than adequate. Using this setup

allows the simulation to have effectively much smaller number of atoms and thus proceed

much faster, without consuming the entire copper slab. It is noted that this method does

not corrupt the trajectory because ion impact is known not to cause Cu lattice defects a

priori.

A similar setup is created to recede the height at which new ions and neutrals are de-

posited. The goal is to minimize the travel distance of newly added oxygen species before

they reach the surface. All 3 regions depicted in figure 6.1 are receded adaptively. In this

case, the recede is based on the z-coordinate of the topmost copper atom.

To accurately capture impact event, the integration time step must be very small to

account for the very fast ion velocity. However, when the impact is finished, using such

small time steps are very inefficient. Therefore, the time step is made to scale with the
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maximum atomic velocity present in the system. The time step is rescaled periodically

(every 10 steps) such that no atoms move more than a distance of 0.01Å in each time step.

This distance is the maximum distance at which total energy is still conserved upon ion

impact, established by separate testing.

To preserve the thermal spikes created by the plasma impact, only the regions near the

edges are thermostated, as shown in figure 6.1 a). Hence, most of the atoms under the

impact approximate the microcanonical ensemble, while the system as a whole approximate

the canonical ensemble.

In the actual process, the pressure in the chamber is maintained by a line of vacuum

pumps. In the present simulation, pressure is not considered. However, a mechanism to

maintain the number of oxygen molecules in the system necessary to prevent the surface from

being fully covered due to recombined oxygen molecules (O2). After every ion impact, the

simulation is paused and the atomic configuration extracted. This configuration is analyzed

to obtain the indices of the recombined O2 molecules. A certain fraction of such bonded pairs

are removed, and the simulation is continued. This on-the-fly analysis is enabled through

the Python interface of LAMMPS. Likewise, in the simulations involving 400 eV ions, the

sputtered Cu atoms are removed using the same approach. This is necessary because the

training data did not include isolated Cu atoms and metal re-deposition is beyond the scope

of this work.

6.3 Results and Discussion

With the trained and validated potential, large-scale molecular dynamics simulations are

performed. Figure 6.1 shows the setup used to perform long-time simulations. Cu(100)

slabs are constructed from their DFT-optimized bulk unit cell. The vertical space in the

simulation box is divided into desorption, addition, buffer, and the substrate itself, as shown

in figure 6.1b). The oxygen plasma is modeled as a mixture of atomic ions and neutral

radicals, with ion to neutral ratios actively controlled as a parameter. The O2 molecules,

although correctly described by the potential, are not included because reactivity of the
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plasma is dominated by the ions and neutral radicals. Atomic oxygen ions are added to the

cell every 10,000 steps, roughly corresponding to 5 ps, with a uniform z-velocity calculated

from their specified kinetic energies Ek. The x, y-velocities are specified randomly from a

Gaussian distribution normalized to the root mean square velocity (vrms(Ts)) at the specified

temperature Ts. Slow neutrals are added at an interval set according to the specified ratio

(n/i) relative to the ion addition frequency. For example, a ratio of n/i = 10 would indicate

that 10 neutrals are added per ion. The three velocities components are initialized similarly

to the x, y-velocities of the ions. Such ratios are typical given the experimental conditions.173

Apart from the velocity, the charge is not explicitly modeled since most of the ions are

neutralized by Auger electrons before reaching the surface.133 All the ions are deposited

essentially vertically downward: a collision-free presheath is assumed. Frequently, oxygen

atoms recombine on the surface and desorb as O2 molecules. These molecules are removed

as soon as they reach the desorption region. No copper atom has been sputtered away from

the substrate during the MD simulations.

These slabs have square unit cells with 5 nm lengths in each lateral direction, and 12 nm

thickness to ensure that the oxidation never reaches the bottom layers. The horizontal

direction is divided into the center region where an NVE ensemble is used, and the edge

regions where an NVT ensemble is used. This maintains the system at the thermostat

temperature but avoids corrupting the thermal agitations created by the ions. In other

words, the kinetic energy imparted by ions has to propagate via phonons to the thermostated

region, where it is dissipated via the thermostat.

There are three variable parameters in the simulation of direct experimental significance:

substrate thermostat temperature (Ts), ion kinetic energy (Ek), and the ratio of neutral

to ions (γni). The temperature corresponds well to the temperature of the wafer. The ion

kinetic energy is affected simultaneously by the plasma power and the applied bias. The ratio

of neutral atoms to ions is affected by the chamber pressure and the plasma power. Although

the quantitative relations between simulation parameters and experimental parameters are

not known without careful plasma diagnostics, the trend is clear: Higher plasma power and

higher pressure correspond to more ions of higher energy, at the possible expense of decreased
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Figure 6.1: Overall setup of MD simulations. The production simulations used (20×20×50)

slabs. The schematic here is not drawn to scale. (a): the lateral cross section is divided into

thermostated edges and non-thermostated centers; (b): the vertical space in the simulation

box is divided into the desorption removal, new atoms addition, buffer, and the substrate

regions
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directionality.

In figure 6.2, the evolution of the Cu(100) slab structures under Ts = 293K, Ek = 10 eV,

γni = 10 is shown. Changing these parameters does not affect the general stages of oxide

growth discussed here. Starting with a pristine surface, the oxygen atoms adsorb to form an

overlayer. Higher energy ions transfer their energy to the surface atoms but do not penetrate

into the sub-surface. At this stage, the sticking coefficient S is very high, and almost all

the atoms added adsorb to the surface. As shown, the adsorption is not uniform on the

surface. The adsorbate atoms tend to migrate between different sites initially, during which

they impinge upon the copper atoms on the top layer and transfer the kinetic energy to the

surface. Once their kinetic energies fall below the diffusion barrier on the (100) surface, they

settle down at a four-fold hollow site. As the O coverage is increased, the bonding between

the first layer of copper atoms and the layer underneath is weakened. Thus, a “peel off”

phenomena is observed where small flakes of the copper oxide layer would detach slightly

from the layer underneath. This detachment lowers the barrier for oxygen diffusion to the

subsurface sites. In the process, a corrugated and disordered surface is created, with islands

of oxides and basins of pure copper (figure 6.2, t = 56 ps). Corrugation is significant in oxide

growth for two reasons. First, it allows the oxygen to migrate into the copper lattice before

the surface adsorption sites are completely occupied. In figure 6.2, t = 170 ps, when the

oxide is around 3 atomic layers thick, there remains a region on the surface not completely

covered by oxygen. Second, the same process is repeated at the interface between the oxide

and the copper underneath: Cu-O binding weakens the binding of Cu atoms to the copper

lattice, lifts the Cu atoms out , allowing oxygen atoms to diffuse through to the vacancy

created.

Beyond a few atomic layers, the growth of oxide slows down rapidly and transitions to a

diffusion- and/or interface-reaction-limited process, characterized by an amorphous copper

oxide layer resistant to further oxygen adsorption. In figure 6.2, the oxide growth between

1587 ps and 4892 ps only amounts to approximately two atomic layers, in stark contrast to

the faster growth earlier. The rate of oxygen incorporation decreases, and the rate of oxygen

recombination and molecular desorption increases. Figure 6.3a) shows the growth of oxide
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Figure 6.2: Snapshots along the oxidation trajectory of Cu(100) slab at four different points

in time. (a), (b): the very early stage where the growth is determined by the availability of

oxygen (controlled by the neutral to ion ratio since ions are deposited at fixed step intervals).

Between (a) and (b) the adsorption sites become exhausted, and the growth transitions to

much slower the kinetic energy limited regime. Between (c) and (d), the oxide thickness

grew only by approximately 2 atomic layers, despite a time elapse of 3.3 ns.
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thickness with time, and figure 6.3b) shows the amount of oxygen incorporated into the slab.

The details of determining this thickness from the MD trajectory are given in appendix C.1.1.

The recombined O2 molecules can be seen in the side views shown in figure 6.2. These

molecules can remain physisorbed for picoseconds, before they eventually acquire enough

energy from thermal fluctuations. Note that the simulation is likely to overestimate the

number of these molecules because the time between impacts is much shorter than that in

reality. In reality, these O2 molecules would have had much more time to desorb.

Comparing the results for the same temperature, at least 2 regimes of growth can be

identified: the fast regime at first, and the slow regime later. Two strands can be separated

from the fast regime, each corresponding to different neutral-to-ion ratios, and independent

of the kinetic energy of the ions. As exposed adsorption sites become occupied, growth slows

down significantly. No limiting thickness is observed. Instead, the oxides continue to grow

slowly at a rate of around 0.15 nm/ns. The growth rate in this regime seems to be determined

by Ek, where the thickness profiles gradually separate into two strands distinguished by a

faster growth at the larger Ek of 20 eV versus the slower growth at 10 eV.

The effect of the temperature of the substrate thermostat Ts can also be seen by com-

paring curves with the same line color and symbol, but with different symbol colors. Higher

substrate temperature is seen to promote oxide growth by postponing the transition to the

slower regime. Its effect is similar to but less pronounced than that of the ion kinetic energy.

The two regimes can be rationalized by considering the physical processes at work. Ini-

tially, when the pristine surface is exposed to oxygen plasma, the high-energy ions have a

large free energy driving force to adsorb. Hence, it is expected that most of the impinging

ions adsorb. Moreover, the ions do not have enough kinetic energy to penetrate even below

the first layer. In figure 6.2, from the first snapshot, it can be observed that all oxygen atoms

are stopped at the top layer. Therefore, the kinetic energy of the ions are transferred to the

Cu lattice and dissipated through lattice vibrations into the bulk copper. In the simulation,

they dissipate to the thermostated regions, without creating lattice or surface defects in the

process.
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Figure 6.3: Thickness and oxygen incorporation as functions of simulation time for all six

conditions explored. The growth curves start as two distinct strands, where the grouping

is determined by the neutral to ion ratio (indicated by the shape of the marker, cross vs

triangle). The strands quickly splits apart based on the kinetic energy of the ions. The

curves corresponding to Ek = 20 eV (red) grows faster than those corresponding to the

Ek = 10 eV (black), eventually separating into another pair of strands where grouping is

determined by Ek. The trend of oxygen incorporation is very similar to the thickness.
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As the oxide grows, fewer and fewer surfaces Cu atoms with low coordination are exposed,

reducing the sticking coefficient. Oxide growth becomes increasingly limited by the migration

of O atoms into the Cu lattice and the reaction of oxidation at the oxide-metal interface. Both

reactions are limited by the energy available to the oxygen atoms at the interface to overcome

the energy barrier. In the thermal oxidation process, the only source of energy would be

the random thermal fluctuations. Hence, growth rate is expected to depend mainly on the

substrate (thermostat) temperature. In a plasma-enhanced process, the impinging ions act

as additional source of thermal energy. The thermal spikes created by the ions propagate

through the oxide layer and the Cu lattice, increasing the kinetic energies of the atoms in its

path. Only a fraction of the energy is transferred to the next atom in each collision event.

The thermal spike heats the atoms along the path of its cascade to kinetic energies of several

orders of magnitude higher than the Maxwell-Boltzmann distributed thermal fluctuations

would allow. Such high energies would overcome reaction barriers easily. However, it is

demonstrated next that such highly concentrated energy is only available to atoms within

a few layers of the impact event, because of the fast dissipation. This is the case with the

amorphous copper oxide layers, where non-symmetric environment means that neighboring

atoms do not always exist in the direction of propagation, hence the energy is more likely to

dissipate.

To further explore this point, impact simulations were performed on an identical oxide

surface with a single ion. In these simulations, a snapshot is taken towards the end of the MD

trajectory shown in figure 6.2 as the starting point, corresponding to an thick (> 2 nm oxide

above the Cu substrate. 500 replica simulations were run in which one oxygen ion is launched

at the surface with a randomly chosen lateral starting coordinate. The trajectory is followed

for ∼ 3 ps. In figure 6.4a-b, an attempt is made to calculate the maximum depth of the atoms

agitated by the heat spikes and plot their distribution as a histogram. The penetration depth

is defined as the depth of the deepest atom that has a kinetic energy with probability less

than fcut = 1× 10−5 in the Maxwell-Boltzmann distribution and is connected by a series of

collision events to the impact site. The specific cutoff probability is motivated by practical

purposes: using a higher probability leads to random thermal fluctuations being mistakenly
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counted as ion-induced agitation (see appendix C.1.3). Hence, the quantitative value of the

penetration distance is less significant than the trend, which clearly shows that increasing

the kinetic energy from 10 eV (figure 6.4a) to 20 eV (figure 6.4b) shifts the distribution to

larger distances. This observation is reminiscent of the ion implantation technique, where

both the projected range and the straggle increase as the kinetic energy increases. Thus, the

ions serve as a transient, anisotropic, high intensity energy source to help thermally activate

the oxidation reaction. This contrasts with the thermal energy, which is persistent, isotropic,

and low in intensity.

In figure 6.4c, a more direct test is performed where either ions or neutrals deposition

were stopped mid-way in the simulation. Comparing the growth trends shows that oxide film

growth slows significantly when either ions or neutrals are stopped. In particular, stopping

the ions slows growth immediately, whereas the effect of stopping the neutrals does not

become apparent until ∼ 2 ns later. This is fully consistent with our observation that the

growth is accelerated by the kinetic energy imparted by the ion. Because the time scale of

thermal energy dissipation is short (lasting less than 1 impact event), the directional, intense

energy is depleted quickly, which is immediately reflected in the growth trends.

The effect of ion energy becomes even clearer when the ion energy range is increased

20-fold to 400 eV. This is enabled by the physics-informed NNP+ZBL model discussed in

section 5.2.2. The growth curve obtained with Ts = 353K, n/i = 100, with ion energies set

to 0 eV, 100 eV, 400 eV are shown in figure 6.5

On the basis of the distinct nature of heat sources, a third regime is likely to be present

where the growth rate is determined by the substrate temperature. However, extending the

simulation long enough to discern this regime is prohibitively expensive. If the rationale

holds, this temperature-limited regime would be present when the oxide grows beyond the

thickness affected by the thermal spikes. As a warning, note that the 6 ns of simulation time

covered does not correspond to the experimental time, since the deposition rate is much

higher than what is likely under experimental pressures (see the comparison in appendix C.2).

Voronoi tessellation averaged bond orientational order (BOO) parameters is used to study
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Figure 6.4: Distribution of the projected range of thermal agitation on copper oxide slabs.

The oxide slab is obtained by first taking an thick oxide slab resulting from the long-time

simulation. Oxygen ions are added to the slab with different random seeds determining

the lateral position. 500 replicas are performed for each kinetic energy levels. (a), (b):

results from using 10 eV and 20 eV atomic oxygen ions respectively. (c): growth curve after

stopping ion or neutral deposition at 1.91 ns
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Figure 6.5: MD growth curve obtained at Ts = 353K, neutral-to-ion ratio = 100, and ion

energies of 0, 100, 400 eV.

the crystal structure of the copper oxide layers.12,97 It has become a commonly used tool

used to identify different crystalline phases and clusters. Based on spherical harmonics, these

encode the orientations of the bonds around each atom, as given in appendix C.1.2. Shown

in figure 6.6a are the resulting q̄4 and q̄6 parameters for high-temperature equilibrium MD

of supercells of the two copper oxide bulk crystals Cu2O and CuO. The two structures are

clearly distinguishable on this figure. CuO has two clusters with similar q̄6 parameter values

around ∼ 0.40, but different q̄4 values at ∼ 0.35 and ∼ 0.70, corresponding to O and Cu

atoms, respectively. On the other hand, Cu2O has two clusters with similar q̄4 values at ∼

0.50, but different q̄6 values centered at ∼ 0.5 and ∼ 0.3, respectively, for O and Cu. The

spread is due to thermal fluctuations as a result of the high-temperature equilibrium MD.
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for distinguishing local environments of the oxide slab obtained from MD. The distinguishing

feature is similar q̄4 parameters and different q̄6 for CuO, but the opposite for Cu2O.
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Figure 6.7: Bond orientational order parameter q̄4 for a range of oxide thicknesses. The

structures used are taken from the Ts = 353K, Ek = 20 eV, n/i = 10. The z-coordinates

of atoms are plotted against the q̄4 values, showing a gradual horizontal separation of the

Cu atoms from O atoms that becomes more pronounced as the oxide increase in thickness.

The q̄6 parameters are relegated to supplementary information figure C.1 since the clusters

overlap one another. The sharp Cu clusters toward the bottom of each panel are due to

metallic copper atoms near the oxide-metal interface.
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In figure 6.7, the calculated BOO parameter are plotted against their vertical coordinate

(z-coordinate). For clarity, only q̄4 is shown. The q̄6 parameters of Cu and O overlap

each other and are shown in figure C.1. The graphs used in figure 6.7 are extracted from

Ts = 353K, Ek = 10 eV, n/i = 10 simulations and re-equilibrated at 353K to remove thermal

spikes that may have resulted from recent impact events. The structures clearly illustrate the

growth of an oxide-like local environment, distinct from the layered pristine copper atoms

toward the bottom of each panel. Furthermore, the parameters indicate the dominance of

local CuO-like environment, as indicated by the segregation of the q̄4 parameters derived

from Cu and O into clusters at values of 0.3 and 0.6, respectively. Such segregation is not

observed in the very thin oxide of figure 6.7 (a), but becomes pronounced only as the thickness

increases. The position of the clusters stabilize beyond a thickness of 2 nm. Comparison

with figure 6.6 suggests that the resulting oxide after long exposure to oxygen plasma is of

the structure and composition of CuO. This result is consistent with experimental X-ray

photoelectron spectroscopy study,173 although in that case the Cu2O is not ruled out. The

q̄6 result suggests no Cu2O structure is present (figure C.1). The overall stoichiometry of the

oxide film is close to 1 (see figure 6.14 for local atomic concentrations), which agrees with

the analysis of the local environment.

In figure 6.7, the point clouds of Cu and O atoms clearly cluster in the q̄4 − z plane.

Moreover, there are hints of clustering in the z-coordinate as well. It is suspected that the

repeated ion impact would cause repeated local heating-and-cooling, similar to annealing.

Another set of simulations was performed with the ion addition frequency maintained at

10000 steps per ion and neutral to ion ratio at 10, but on the smaller (10 × 10) Cu (100)

slab. In figure 6.8a, BOO analysis similar to that of figure 6.7 is performed on trajectory

obtained using the setup TS = 353K, Ek = 10 eV, n/i = 10. The structure selected is

at the end of a 1 ns trajectory. Effectively, the oxygen flux has increased by a factor of

four, compared with the simulation on the (20 × 20) slab. In other words, the oxygen

fluence at the 1 ns simulation time is comparable to that at 4 ns on the (20× 20) slab. The

resulting BOO parameters in figure 6.8a show clear clustering in the z-coordinate. The

structure itself shows quasicrystalline CuO regions within ∼ 5 layers above the oxide-metal
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interface, as also captured by the BOO parameter. Above the quasicrystalline region, the

film is amorphized by presumably repeated high-energy ion impacts. The segregation in z

allows density-based spatial clustering of applications with noise (DBSCAN) clustering to

be performed on the clusters. The centers of these clusters are shown in table 6.1, where

the q̄4 and q̄6 coordinates of O and Cu clusters match well with the reference coordinates in

figure 6.6 for CuO, confirming that the local environment closely resembles CuO. The top

layer of this film structure remains amorphous, due to roughening effect of ion impacts.

The z-coordinates of the clusters are labelled in figure 6.8. The distances between succes-

sive Cu and O clusters are calculated to be (1.27±0.02)Å, whereas the interlayer separation

in bulk CuO is 1.28Å along the [001] direction. This is another indication that the structure

is crystalline. Comparing to the simulation performed with the identical MD Ts, Ek, n/i

parameters but lower deposition rate on the (20× 20) surface, at equivalent fluxes, the film

thickness is reduced. The same thickness analysis performed on the (10 × 10) slab shown

in figure 6.8 gives thickness of 16.7Å, whereas at the point of equivalent oxygen fluence

(4 ns), the (20 × 20) slab has a thickness of 18.6Å, as shown in figure 6.3. Considering the

quasi-crystalline nature of the film formed on the (10× 10) surface, this is reasonable since

diffusion across the crystalline region is much more difficult.

It is clear that the (20×20) surfaces, with its lower oxygen flux, correspond much better to

experimental conditions. However, at the moment, it is unknown whether further decreasing

the flux can yield a different growth trend and film morphology. The results here suggest

that 1) the unrealistic ion and neutral fluxes used in plasma-surface simulation can have

a significant impact on the morphology of the simulated film and 2) it might be possible

to control film crystallinity, in addition to thickness, by controlling the plasma parameters.

As technical notes, it is acknowledged that 1) the observed crystallinity could be induced

by the increased artificial periodicity introduced by the smaller lateral dimension. This

possibility can be ruled out by performing a set of simulations on the (20 × 20) surface

with 4-fold increase in the deposition rate; and 2) the change in the BOO parameters near

the top of the oxide slab seen in figures 6.7 and 6.8 does not indicate a distinct structure,

but is a manifestation of the unreliable BOO parameters on surfaces due to the tendency
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Table 6.1: Centers of clusters in as given by DBSCAN analysis, showing alternating layers

of Cu and O atoms.

q4 q6 z-coordinate / Å Element

0.56 0.35 94.12 Cu

0.36 0.37 95.41 O

0.61 0.37 96.70 Cu

0.34 0.35 98.00 O

0.61 0.37 99.29 Cu

0.33 0.34 100.50 O

0.60 0.38 101.80 Cu

0.33 0.34 103.06 O

0.59 0.38 104.34 Cu

0.34 0.33 105.61 O

of the Voronoi tessellation definition of the nearest neighbors to overestimate the number

of neighbors.164 Lastly, the above results demonstrate that the accurate machine learning

potential is able to qualitatively capture the phase change from metallic Cu to amorphous

CuOx, and finally to crystalline CuO. Moreover, it did so without any prior assumptions or

external bias potential favoring certain phases. This capability has not been demonstrated

by classical force fields on this system but is essential to model this complex, polyvalent

oxidation process. Whether the transition occurs at accurate energy and time scales remains

to be seen by further studies.

An attempt was made to understand the extent to which oxidation can be described

by a single activated process. A “per-particle temperature” is calculated from the instan-

taneous particle kinetic energy according to the equipartition principle and used to obtain

the individual contribution dL
dt

as an Arrhenius-type relation (equation (6.1)), where L is the

thickness of the oxide layer. The contributions of the individual particles are averaged to

obtain the growth rate r̄(L), as a function of film thickness (equation (6.2)). Therefore, the
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Figure 6.8: Bond orientational order parameter (BOO) on (10× 10) CuO (100) slabs and

the corresponding structure. At 1/4 of the surface area, the ion impact frequency were

maintained at 10000 steps per ion. The neutral to ion ratio were kept at 10. This led to a

4-fold increase in effective ion and neutral flux. The surface temperature is still maintained

successfully (i.e. surface has enough time to cool down before next ion impact. The analysis

indicates clustering in the z-direction, in addition to in the BOO parameter values. Looking

at the structure suggests the presence of crystalline CuO domains.
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growth rate depends on the distribution of temperatures at different film thicknesses. To

obtain this distribution, MD simulations used to obtain the depth of agitations in figure 6.4

were reused, since the deposition frequencies matched those in long-time MD (figure 6.2).

The oxide layer is divided into 20 slices along the z-coordinate of the atoms, and the tem-

perature distribution in each slice was calculated separately within each slice for each atom.

Figure 6.9 provides an example. From this temperature distribution, the “per-particle rate”

could be calculated once the apparent activation energy EA and pre-exponential factor A

are specified, as a function of film thickness. The “per-particle rates” are then averaged

within each slice to obtain a thickness-rate relation. The rate is integrated over time to get

the reproduced film thickness (equation (6.3)). Optimization is performed on the objective

function in equation (6.4) over EA and A to minimize the difference between the thickness

of the reproduced film and the thickness of the MD simulated film, to obtain the optimal

EA and the prefactor A,
dL

dt
= A · exp

(
− EA

kBT

)
(6.1)

r̄(L) =
1

N

N∑
i

dL

dt
(6.2)

Lrp(ti) = Lrp(ti−1) + r̄(Lrp(ti−1))δt (6.3)

F =

√ ∑
t=t0,...,ti,...,tf

(Lrp(ti)− Lmd(ti))2 (6.4)

Temperature distributions in the film clearly depends on the kinetic energy of the impact

ions, the atomic configurations of the slab, and the thickness. The subject slab is taken

at the end of the long-time MD with the Ts = 353K, EK = 20 eV, n/i = 20, because

this structure reached the greatest thickness. The structure was re-equilibrated at 353K

for a long time to desorb all the physisorbed O2 molecules. In calculating the temperature

response of the oxide slab to ion impact, a single ion was launched at the surface at 500

different random positions above the slab, and the trajectory is followed in NVE ensemble

for 10000 steps, corresponding to roughly 4 ps. Two sets of simulations were performed with

Ek = 10 eV and Ek = 20 eV. The oxide region in the resulting trajectories (500 for one EK)

was divided into 20 layers in the z-direction, and the distributions of atomic kinetic energy
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were calculated and converted to the distribution of “atomic temperatures” based on the

equipartition principle.

The procedure is illustrated in figures 6.9 to 6.11. In figure 6.9, the temperature distri-

bution for different depths down the oxide film is visualized in a scatter plot. Due to the

enormous number of atoms, only points corresponding to atoms with temperatures above

500K are shown. One can clearly observe that “hot” atoms are limited to a short range. In

figure 6.10, the distribution at a fixed z-coordinate window is plotted as two histogram for

EK = 10 eV and EK = 20 eV, showing a large increase in the count of hot atoms as ion ki-

netic energy is increased. In figure 6.11, the averaged rates are plotted as a function of depths

(z) for a set of activation energies. The scale is arbitrary as the pre-exponential factor can

be used to scale the rates uniformly. The effect of temperature is clearly seen by the higher

rates at higher z-coordinate (closer to the oxide/plasma interface). This rate-thickness rela-

tion is then integrated from a chosen starting point on the MD-derived thickness-time curve,

following the shooting method for a initial value problem: at given thickness, the growth

rate is found from the figure 6.11, and the thickness is incremented by dz
dt
δt where δt is a

small integration time step.

Figure 6.9: Temperature distribution with 10eV ion impacts

figure 6.12 shows the result of this optimization. Fitting EA and A to the growth curve

of Ts = 353K, EK = 10 eV, n/i = 10 gives an apparent activation energy of 1.0 eV. The fit

starts at t0 > 0 to skip the early growth regime dominated by the neutral-to-ion ratio, which
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Figure 6.10: Temperature distribution at fixed vertical coordinate z = 52, near the middle

of the oxide film

is not captured by the simple model. Long-time behavior is emphasized in equation (6.4) due

to the larger number of points in this region, leading to the reproduced curve (figure 6.12,

dashed black curve) lying close to the MD curve (solid black curve) at 10 eV for simulation

times beyond 3 ns. The discrepancy at smaller oxide thicknesses cannot be eliminated by

adjusting the starting point of the fit (t0) or improving the fitting process. This could indicate

more than one activated process with distinct kinetic parameters, which is reasonable given

the different film characteristics at different depths, as observed with BOO parameters and

the atomic concentrations. It is possible that the transport of oxygen species is ballistic in

the porous, low-density region near the plasma-oxide interface and activated-diffusional near

the high-density oxide-metal interface. Another explanation for the initial mismatch could

be the unrealistic zeroth-order assumption in the form of the rate law. As shown next, the

existence of a chemical driving force suggests that the oxidation process is not of the zeroth

order even for thick oxides. At the long-time limit, the growth rates are well captured by the

fitting. Note that the kinetic parameters fitted to the temperature distribution from 10 eV

ion impacts can be used to directly predict the growth curves of 20 eV ion impacts(figure 6.12,

red curves), suggesting that the rate-limiting process is independent of the kinetic energy of

the ion.

The fitted activation barrier can be compared to a direct calculation of the diffusion
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Figure 6.12: Comparison of the fitted thickness curve to the MD result. The apparent

activation energy EA and pre-exponential factor A is fitted to the thickness-time relation of

the Ts = 353K, Ek = 10 eV, n/i = 10 trajectory from the temperature distribution obtained

using Ek = 10 eV ions. The resulting optimal values of EA = 1.01 eV and A = 5.63 ×

107 nm/ns are used to reproduce the Ts = 353K, Ek = 10 eV, n/i = 10 and Ts = 353K, Ek =

20 eV, n/i = 10, using temperature distribution obtained using Ek = 10 eV and Ek = 20 eV,

respectively.
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barriers in well-defined lattices. The activation energy of oxygen diffusion in crystalline

copper has been experimentally reported to be in the range of 0.6 eV to 0.7 eV,11,100 and

computationally calculated to be around 0.5 eV.140 The fitted result indicates that the plasma

oxidation process is quite different from the diffusion of oxygen atom impurities in copper

lattice. On the other hand, the barrier to oxygen vacancy diffusion in CuO is calculated to

be 1.11 eV,169 suggesting that O vacancy diffusion could be a mediating mechanism for oxide

growth, although a closer atomic level analysis of the trajectories is needed to fully establish

this. To put the fitted barrier in context, we have calculated the barrier of oxygen interstitial

diffusion in copper and oxygen vacancy diffusion in monoclinic CuO with our potential. The

results are shown in Figure 6.13. Nudged elastic band (NEB) method with 9 images were

used in these calculations.

The barrier to oxygen interstitial diffusion in Cu lies near 0.5 eV, similar to results cal-

culated using PW91 functional.[140] These calculations are performed with bulk Cu lattices

obtained directly from materials project (mp-30). The conventional cell is repeated 4 times in

each direction, and the initial and final positions are neighboring octahedral and tetrahedral

interstitial sites, respectively.

Similarly, for the CuO oxygen vacancy diffusion barrier, the lattice is obtained from

materials project (mp-704645).The paths selected follows the notation used in Li et. al.

[169]. The barrier to oxygen vacancy diffusion along the three paths are calculated to be

1.0 eV, 1.0 eV, and 1.8 eV, respectively for paths 1, 2, and 3, all of which lies very close to the

literature DFT values calculated using the PBE functional (1.11 eV, 1.11 eV, and 1.89 eV,

respectively).

The internal structure of the modeled oxide film can be considered to have two parts.

The atomic concentrations of the O and Cu atoms are shown in figure 6.14 as a function

of thickness. It suggests that the film has a porous region within ∼ 1 nm below the oxide-

plasma surface, indicated by the lower overall density, and a dense region beyond. In the

dense region, a gradient of oxygen and copper concentration can be seen. The observed

gradient is not a result of an uneven oxidation front: The onset of the gradient, at ∼ 8Å

above the oxidation front (as defined in appendix C.1.1), does not have local environments
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Figure 6.13: Barrier obtained using nudged-elastic band method with the trained NNP.

The lines labelled with CuO refer to oxygen vacancy diffusion in CuO, and the paths refer

to Li et. al. [169]. The line labelled with Cu refer to oxygen interstitial diffusion in Cu.

of metallic copper, as indicated by the bond orientation order parameters. The existence of

such a concentration gradient (and thus the chemical potential gradient) indicates a chemical

driving force behind the growth phenomena observed collectively in figure 6.3. It also explains

the trend observed when the neutrals are removed from the simulation (figure 6.4c), where

the growth seems to follow the case with both ions and neutrals for ∼ 2 ns, but eventually

becomes slower. Without the frequent addition of neutral oxygen species to the plasma-oxide

interface, the infrequent ion addition alone cannot sustain the same concentration gradient

for long. Once the driving force of the chemical potential is gone, the growth slows. The

time lag between stopping the neutrals and significant slowdown of the growth is related to

the characteristic mass diffusion time scale in the oxide film, which is certainly much greater

than the thermal diffusion time scale. Recalling the temperature gradient discussed earlier,

the plasma oxidation shows an ion-neutral synergy similar to that observed in reactive ion
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etch (RIE). Namely, two gradients are required to sustain fast growth: the chemical potential

gradient provided by the neutrals, and energy gradient provided by the ions. This explains

the effect of stopping ions or neutrals in figure 6.4c.
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Figure 6.14: Atomic concentration in the oxide film. The film is taken from the Ts =

353K, Ek = 20 eV, n/i = 10 trajectory at time t = 5.54 ns. The result here indicate a

porous region where the total atomic density is lower, a dense region where the Cu and O

concentration is nearly constant, a region where a concentration gradient of O is observed.

Some clarification is due in relation to a recent contribution by Kunze et. al.,168 where

in situ observation of plasma oxidation of single-crystal copper metal at room temperature

was reported. In their experiments on Cu (100), only Cu2O was observed initially, and only

prolonged exposure leads to a “sandwich” structure of CuO, Cu2O and Cu. This is consis-

tent with ex situ XPS results under conditions targeted by our model showing the existence

of CuO.173 The “sandwich” structure is not observed in the current MD simulation, likely

due to the much lower thickness that we were able to reach in the MD simulation: while

a concentration gradient is observed in our MD structures, a Cu2O-like environment is not

observed via the BOO parameters. The molecular dynamics technique also does not pro-

vide electronic structure information, preventing a direct comparison with the auger electron

spectroscopy (AES) and near-edge X-ray absorption fine structure (NEXAFS) characteriza-

tions. Fundamentally, our MD simulation only probes the very initial, transient stage of the

oxidation process, on the order of nanoseconds to microseconds. To be directly comparable,
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the notorious time scale gap in MD needs to be bridged.

Important differences exist between the work of Kunze et. al. and the target experimen-

tal process in this work. First, the pressures used in Kunzeet. al. are at least two orders of

magnitude lower than the experimental process targeted by our model. For thermal oxida-

tion, higher pressure and longer exposure times favor the formation of CuO over Cu2O, and

lead to a similar “sandwich” structure at intermediate temperatures.135 An analogous phe-

nomenon seems to be present when comparing the LEEM (low energy electron microscopy)

result with the NEXAFS result in Kunze et. al., conducted at different pressures. It is pos-

sible that increasing the pressure by 2 more orders of magnitude, as in our target process,

further diminishs the fraction of Cu2O. Second, the differences in substrate bias (400V DC

versus unbiased) and the plasma source (electron cyclotron resonance, ECR vs. inductive

coupled plasma, ICP) could lead to different plasma densities and ion energy distributions.

These considerations highlight the complexity of plasma reactions and the need for further

work.

A strategy is proposed to achieve a self-limited oxidation layer in plasma processing.

Because oxidation beyond the first few layers, as demonstrated here, is mostly a diffusion-

limited process, to contain a diffusion process to the surface, the substrate temperature

itself should be lowered to the point where diffusion practically stops during the processing

time window. The thickness is then tuned by varying the plasma power, which affects the

kinetic energy of the ions and, in turn, the penetration thickness of the thermal spike. The

thickness of the oxide created would be self-limiting in the sense that it depends only on the

kinetic energy but not on the exposure time. This can lead to a feasible ALE process if the

temperature can be cycled between the steps, since the subsequent removal step requires in

general higher temperatures to facilitate etching product desorption. Increasing the plasma

power is expected to give films with higher crystallinity since the impact frequency is higher.

While this is beneficial for self-limiting the oxidation, since a more crystalline film is shown

to slow oxidation down in this study, crystalline films may be more difficult to etch for the

subsequent removal step.174

To ensure the results is not particular to the Cu (100) slab, similar long-time MD simula-
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tions were performed on the Cu (111) surface. Figure C.3 shows the evolution of the chosen

rectangular unit cell on the Cu(111) surface, and figure C.2 shows the thickness and oxygen

content as functions of simulation time. Since the noise is considerably higher due to the

smaller number of atoms per layer, the analysis of thermal spike penetration, local concentra-

tion gradient, etc. is not performed. The surface undergoes similar stages of oxidation. The

thickness and oxygen incorporation curves show similar kinetic energy controlled behavior,

as on the (100) surface(see figure C.2). Since the kinetic energy of the ions is much higher

than the energies of Cu-Cu and CuO bonds, both surfaces should respond similarly. Since

(111) and (100) are the low-energy surfaces exposed in equilibrium conditions, qualitatively

the conclusions should hold on practical polycrystalline Cu surfaces. Quantitatively, the

close-packed [111] direction is expected to slow down diffusion.

6.4 Conclusions

The results demonstrate that the oxidation under reported experimental conditions is not

self-limiting, in agreement with the experimental observations. The oxide film is shown to be

porous and amorphous CuO on top of a potentially crystalline CuO. Whether a crystalline

CuO phase is formed depends sensitively on the ion flux and neutral flux used in the sim-

ulation. No Cu2O can be identified from the MD simulations under our chosen conditions.

The oxidation trajectories are explained in terms of an interplay between thermal fluctua-

tion at nominal process temperature and transient, intense thermal agitations resulting from

ion impacts. Namely, higher energy ions deliver thermal energy deeper into the oxide film,

accelerating diffusion/interface reaction in the substrate. Ion impact is found to create a

non-equilibrium “temperature gradient” inside the oxide film, which is subsequently fitted to

the oxide growth rate to obtain an apparent activation energy of 1.0 eV, ∼ 30% higher than

that of oxygen diffusion in Cu. On the other hand, an abundance of the reactive neutral

species is also important because they provide a chemical potential gradient through the film,

driving the oxidation front forward. The immediate consequences for creating a self-limited

oxidation process is that low-temperature substrate should be used whenever possible to
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limit the uncontrolled vertical oxidation. The thickness and potential film morphology at

the atomic scale could then be controlled via plasma power.

133



CHAPTER 7

Conclusion

In this dissertation, we have demonstrated the importance of atomistic understanding in

designing new plasma-thermal atomic layer etching (ALE) processes on metals and improving

existing processes. The combination of experimental and theoretical insights has led to

the discovery of a nitrogen plasma-based ALE process on metals, which exhibits similar

selectivity and directionality as the oxygen plasma-based process, as predicted theoretically.

Moreover, efforts are underway to validate the theoretical prediction of self-limited copper

oxidation at low temperatures.

Equally important, the theoretical tools developed in this dissertation can pave the way

for further discoveries. By utilizing the thermodynamic model, we have already discovered

(and experimentally confirmed) that a nitridation-based plasma yields similar etching char-

acteristics. The application of the free energy model, along with techniques for systematic

and grand-canonical exploration of potential energy landscapes, has seen significant improve-

ments in recent years. Combining these approaches could lead to rapid process screening

with impacts extending beyond metal ALE, as the model is not restricted to metallic systems.

The copper-oxygen interatomic potential is a general-purpose machine learning poten-

tial capable of describing high-energy plasma-surface interactions. Its first-principles level

description of interatomic interactions allowed us to draw confident conclusions about the

growth dynamics, including the effects of substrate temperature, ion kinetic energy, and

more. The development of this potential has shed light on fundamental difficulties associ-

ated with machine learning potential development. Presently, work is underway to develop

a similar potential for the nitrogen-plasma based process, and we are leveraging the experi-

ence gained from the oxidation potential development to automate the construction of binary
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interaction potentials as much as possible.

The simulation protocol for plasma oxidation of copper has undergone significant test-

ing, and we have obtained best practices regarding simulation parameters and computational

setup to efficiently perform such large-scale simulations. We were able to demonstrate that

energetic ions play a substantial role in promoting oxide growth within their range of influ-

ence, with the radius of influence strongly dependent on the kinetic energy. Furthermore,

the effect of substrate temperature has been shown to act as an isotropic heat source, driving

the oxygen profile towards increased isotropy. As the directionality of plasma-thermal ALE

solely derives from the plasma step, it also affects the directionality of the entire process.

Having an atomically-resolved oxidation trajectory opens up a fresh domain of character-

ization. For the first time, we can understand the film morphology, chemical composition,

local environment, etc., at the atomistic level. This thesis has included a few such charac-

terizations. Additionally, beyond simply calculating the growth rate, we have shown that

the local atomic environment of the amorphous oxide film derived from the plasma closely

resembles that of bulk CuO. Moreover, we demonstrated that repeated ”micro-annealing”

steps lead to the precipitation of crystalline domains from the amorphous CuO domains.

Such observations have significant implications for modeling etching reactions, and more

broadly, they demonstrate the power of machine-learning potentials to capture potential

energy surfaces with unprecedented accuracy.
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Appendix A

Supplementary information for the thermodynamic

model

A.1 Estimation of reactant and product pressures

The reactant and product pressures are estimated roughly based on the fluxes used in the

experiments. Assuming complete vaporization and perfect mixing, the etchant pressure is

calculated by:

Petchant =
fetchant

fetchant + fcarrier
Ptotal (A.1)

Where f ’s are the molar flow rates of etchant and the carrier gas. It is reported in Ref.159 that

the flow rate of N2 carrier gas is 100 sccm, the flow rate of formic acid into the vaporizer is 0.1

g/min, and Ptotal = 350Torr. Thus fetchant = 0.0021mol/min, and fcarrier = 0.0035mol/min.

This gives Petchant = 18 025Pa. The estimation of the product pressure is difficult and we

simply put it as 10% of the etchant pressure. The proposed processes using formamidine as

the etchant are simulated at the same conditions. We expect that the pressure of the product

does not significantly affect thermodynamics since at such low pressures, the deviation from

ideal gas can be neglected. We verified that alternative estimates of product pressure to

be 5% and 20% of the etchant pressure only changes the removal step energies by around

0.02 eV, and does not change our conclusions.
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A.2 Validation of Computational Methods

The relaxed crystal structure and their atomization energies are compared to experimental

values in table A.1. The free energy is used throughout our study. The enthalpies are

provided since the experimental free energy of formation of Cu3N is not available. The

results indicate that except for NiO, the calculated energies agree very well with experimental

energies. The calculated values for the oxides are shown but not used since they are known

pathological cases for the PBE exchange-correlation functional. The functional is retained

nevertheless due to the need to calculate and compare energies on diverse systems, that

include surfaces, bulk structures, organic molecules, and organometallic complexes.

Table A.1: Optimized bulk lattice and formation energy. All experimental values are

obtained from CRC Handbook of Chemistry and Physics115 unless otherwise stated. The

two numbers in Ni3N lattice correspond to a and c, respectively. The calculated values

are obtained via self-consistent minimization in VASP with the PBE exchange-correlation

functional. The values used are marked with boldface.

Lattice [Å] Cohesive enthalpy [eV] Cohesive free energy [eV]

System Exp. Calc. Exp. Calc. Exp. Calc.

Ni 3.52 3.52 4.45 4.60 3.98 4.19

Cu 3.62 3.64 3.50 3.44 3.09 3.05

NiO 4.18 4.20 9.521 8.82 8.58 7.78

Cu2O 4.27 4.31 11.32 11.46 10.09 10.03

Ni3N 4.64/4.3161 4.62/4.31 N/A 18.75 N/A 17.14

Cu3N 3.81 3.83 14.1525 14.25 N/A 12.71

Van der Waals interaction could have a potentially important influence on our removal

step energy results. The contribution of van der Waals interaction to the removal step

energy is not quantified directly, since the PBE+dDsC92,93 formalism does not accurately

reproduce the bulk formation energies, which is a significant term in equation (3.5). Al-

ternative methods, including the vdw-DF family of functionals, suffer similar problem..121
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Instead, we chose to quantify the contribution by comparing the adsorption energies with

and without this contribution. Figure A.1 shows the adsorption energies (equation (A.2))

calculated with and without the dDsC contributions on the Cu (100) surface and Ni (111)

surface, with N and O adsorbed. With the dDsC correction, the adsorption becomes more

favorable by ∼ 0.1 eV on both Cu and Ni systems. Notably, the magnitude of the correction

does not change much with increasing coverage. This uniformity over the entire range of

coverage investigated suggest that the deviation introduced by neglecting van der Waals in-

teraction is approximately 0.05 eV on the Cu systems and 0.1 eV on the Ni systems. Errors

of this magnitude influences the quantitative thermochemical predictions, but they do not

invalidate our results of whether given etching chemistry leads to favorable reaction.

Figure A.1: Adsorption energies with and without dDsC correction
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A.3 Adsorption configuration search setup

figure A.2 shows the supercell used in the configuration search and the “symmetry unique”

sites. Except for the sites that merged into the same post-relaxation structure, the single-

adsorbate adsorption energies of the four combinations of metals (Ni and Cu) and modifiers

(N and O) are shown in table A.2, calculated from equation (A.2) (written for Ni/O system).

∆Gads = (GNis|Oy −GNis| − yµO) ≈ (ENis|Oy − ENis| − yµO)/y (A.2)

Table A.2: Adsorption sites, labels, and adsorption energies (in eV) referenced to O2 and

N2 at 80◦C, 350 Torr. A blank cell means the site is not stable in relaxation and coalesced

to other sites.

∆Eads[eV]
Termination Site name Site label Ni/N Ni/O Cu/N Cu/O

(100)
t A1 2.43 −0.43 3.58 0.20

b A2 0.78 −1.63 2.15 −1.01

4h A3 −0.80 −2.34 0.56 −1.85

(110)

t-tr B5 0.24 −1.53 1.46 −1.09

t-pk B4 2.42 −0.58 3.96 0.43

sb B2 0.81 −1.76 2.37 −0.87

lb B3 −0.05 −1.54 1.52 −1.14

3h B1 0.29 −1.80 −1.21

(111)
t C3 2.58 −0.22 3.98 0.70

3h-hcp C2 0.11 −1.92 1.93 −1.00

3h-fcc C1 0.08 −2.04 1.85 −1.09

(210)

t-tr D6 2.23 −0.81

t-pk D1 2.41 −0.70

b-tr D2 0.31 −1.59 1.88 −0.81

b-pk D7 −0.48 −2.26 1.14 −1.55

4h D3 −0.06 −1.66 1.42 −1.20

3h-1 D4 0.34 −1.67 1.42 −1.12

3h-2 D5 0.34 −1.67
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…continued
∆Eads [eV]

Termination Site name Site label Ni/N Ni/O Cu/N Cu/O

(211)

t-st E9 2.70

t-pk E1 2.46 −0.59

b-pk E2 −1.86

b-cs E3 1.16 −1.22 2.35 −0.60

4h E4 −0.24 −1.82 0.98 −1.39

3h-hcp-st-l E6 0.28 −1.68 1.85 −1.07

3h-hcp-st-h E8 −0.04 −2.14 1.48 −1.45

3h-fcc-st-l E5 0.29 −1.62 −1.14

3h-fcc-st-h E7 0.24 −1.92 1.58 −1.30

(221)

t-tr F7 0.16 −0.58 1.29

t-pk F1 2.45 3.80

lb F6 −0.09 −1.56 1.40 −1.07

b-pk F2 −1.82

3h-hcp-st-l F5 0.20 −1.83 1.74 −1.16

3h-hcp-st-h F3 0.13 −1.84 1.67 −1.17

3h-fcc-st-m F4 0.14 −1.91 1.61 −1.34

3h-fcc-st-l F10 −1.58 −0.98

3h-fcc-st-h F8 0.00 −2.18 1.39 −1.60

3h-hcp-cs F9 0.26 −1.85 −1.38

(311)

b-tr G2 1.17 −0.59

b-pk G1 −1.88 2.23

4h G3 −0.20 −1.80 1.12 −1.36

3h-hcp G4 0.08 −1.99 1.61 −1.33

3h-fcc G5 0.41 −1.61 −1.07

For validation against experiments, the adsorption energies on selected experimentally

observed low-coverage surface adsorption structures are also calculated and shown in ta-

ble A.3. Experimental structures that do not allow a direct comparison(i.e., those with extra

or missing metal atoms) to the ones found through the configuration search are marked with

an asterisk.
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Figure A.2: Adsorption sites on (100), (111), (110), (210), (211), (221), and (311) ter-

minations of Ni and Cu. The supercells correspond to the actual slab model used in the

configuration search. The (211) and (221) are shown in side view in addition to top view.

Site labels are explained in table A.2
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Table A.3: Experimentally observed surface reconstructions and adsorption superstruc-

tures for the Ni/O and Cu/O systems. The adsorption energy values marked with * indicate

that these structures do not have a well-defined reference ‘bare’ surface, as metal atoms are

added/removed to these surfaces. The ‘bare’ surface term in equation (A.2) is approximately

calculated from that of pristine surface, adjusted by the number of atoms. The Ni(110) miss-

ing row reconstruction and the Cu(110) pairing-row reconstruction had their bare surfaces

recalculated, hence are not marked with *.

Substrate Termination θO [Å−2] Surface cell Ref. ∆Gads[eV]

Ni (100) 0.040 p(2× 2) 10 −1.92

Ni (100) 0.081 c(2× 2) 10 −2.27

Ni (110) 0.057 (2× 1) missing-row 53 −2.48

Ni (110) 0.076 (3× 1) missing-row 53 −2.13

Ni (111) 0.047 p(2× 2) 9 −1.52

Ni (111) 0.062 (
√
3×

√
3)R30◦ 9 −1.60

Cu (100) 0.076 c(2× 2) 83 −1.38

Cu (100) 0.076 (2
√
2×

√
2)R45◦ 83 −1.38

Cu (110) 0.054 (2× 1) pairing-row 83 −1.80

Cu (110) 0.071 c(6× 2) 83 −3.35 *
Cu (111) 0.087 p4 66 −2.66 *
Cu (111) 0.098 p4 + OF

66 −0.77 *
Cu (111) 0.076 p4 + OCu3

66 −1.02 *

The supercells used in this study (see figure A.2) are selected and not thoroughly searched.

Hence, it is possible that our configuration search cannot find more stable configurations

that require a different repeating pattern. To quantify the magnitude of this error, figure A.3

compares the adsorption energies of structures from the configuration on different supercells.

On (100), while the experimental adsorption structures of p(2×2), c(2×2) and
√
2×

√
2R45◦

is not representable by the supercell used in the main results, the deviation errors introduced

is on the order of 0.1 eV. On (111) and (211), the alternative supercells, through the same

configuration search algorithm, finds less stable structures than the supercell used. The

results here suggest that the structures used in this study are close to the true minima at

the coverages investigated. An error of 0.1 eV would not refute our conclusions.
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Figure A.3: Adsorption energies of structures found by configuration search on the Ni

(100)(a), Ni(111)(b), Ni(211)(c), Cu(100)(d), Cu(111)(e), and Cu(211)(f) surfaces. The re-

sults from alternative supercells are marked with green and black lines, whereas the original

supercells are marked with red lines. The adsorption energies are calculated with equa-

tion (A.2).
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A.4 Averaging terminations using wulff construction

The chemical potential used to obtain the surface formation energies are shown in figure A.4.

Its definition is given in equation (3.9). The surface energies resulting from the coverage-

dependent chemical potential is shown in figure A.5. Its definition is given in equation (3.10).

The fraction of surfaces given by the Wulff construction is shown in figure A.6. The use of

these quantifies are explained in section 3.2.
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Figure A.4: Relation of the chemical potential to the surface coverage(area density of

modifier atoms), obtained from equation (3.9).
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Figure A.5: Surface energies of terminations on the Ni/N, Cu/N, Ni/O and Cu/O systems

as functions of coverage.
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Figure A.6: Fractions of terminations on the Ni/N, Cu/N, Ni/O and Cu/O systems as

functions of coverage, determined by Wulff construction.
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A.5 Trajectories resulting from the configuration search

The relaxed structures at each step in the configuration search with the “greedy algorithm“

are shown in figure A.7 - figure A.10. The atomic coordinate files are provided as well. In

the images, the green and brown substrate atoms represent Ni and Cu, respectively. The

blue and red modifier atoms represent N and O atoms, respectively.
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Figure A.7: Configuration search iterations for Ni/N system
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Figure A.8: Configuration search iterations for Cu/N system
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Figure A.9: Configuration search iterations for Ni/O system
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Figure A.10: Configuration search iterations for Cu/O system
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A.6 Main results on Ni etching using monomer as product

We noted that the thermodynamically most stable product may not be possible if kinetic

barriers are significant. Hence we also provide the figures for the case where the nickel

monomers are formed as opposed to the dimer and trimer. Changing the product only

affects the absolute scale of the etching energy. Figure A.11 reproduces figure 3.4 when

the nickel monomer complex is produced. Neither oxygen nor nitrogen can lead to a suf-

ficiently activated overlayer adsorption structure that is favorable to etching on any of the

terminations investigated.
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Figure A.11: Removal step energies by terminations on the Ni/N, Ni/O systems as func-

tions of coverage using nickel formate and formamidinate monomers as products. Two axis

are shown. The y-axis on the left corresponds to formamidine chemistry. The y-axis on the

right corresponds to formic acid chemistry. The solid and dashed horizontal lines represents

the bulk model results on the pristine and activated substrates, respectively.

Similarly, figure A.12 reproduces figure 3.5 with monomer complex as the product. Here,

the dramatic effect of surface morphology is highlighted with crosses showing our previous

results with metastable surface structures. It can be seen that the occupation of sub-surface

sites are required for a favorable etch with the monomer complex as the product.
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Figure A.12: Wulff construction-averaged removal step energies as functions of coverage

for nickel system using nickel formate and formamidinate monomers as products.

153



Appendix B

Supplementary information for the neural network

potential

1000 ###############################################################################

# DATA SET NORMALIZATION

1002 ###############################################################################

# This section was automatically added by nnp-norm.

1004 mean_energy -4.0259082192812095E+00

conv_energy 1.6694596963626187E+00

1006 conv_length 3.8772079020784176E+00

###############################################################################

1008

###############################################################################

1010 # GENERAL NNP SETTINGS

###############################################################################

1012 # These keywords are (almost) always required.

1014 number_of_elements 2 # Number of elements.

elements O Cu # Specification of elements.

1016 atom_energy O 0.0 # Free atom reference energy (S).

atom_energy Cu 0.0 # Free atom reference energy (Cu).

1018 cutoff_type 1 0.0 # Cutoff type (optional argument: shift parameter alpha)

1020 # scale_symmetry_functions # Scale all symmetry functions with min/max values.

# center_symmetry_functions # Center all symmetry functions , i.e. subtract mean value.

1022 scale_symmetry_functions_sigma # Scale all symmetry functions with sigma.

scale_min_short 0.0 # Minimum value for scaling.

1024 scale_max_short 1.0 # Maximum value for scaling.

1026 global_hidden_layers_short 2 # Number of hidden layers.

global_nodes_short 30 30 # Number of nodes in each hidden layer.

1028 global_activation_short s s l # Activation function for each hidden layer and output layer.

# normalize_nodes # Normalize input of nodes.

1030

###############################################################################

1032 # ADDITIONAL SETTINGS FOR DATASET TOOLS

###############################################################################

1034 # These keywords are used only by some tools handling data sets:

# nnp-comp2, nnp-scaling , nnp-dataset , nnp-train.

1036

use_short_forces # Use forces.

1038 random_seed 1234567 # Random number generator seed.

1040 #########################################################################

# Radial symmetry function set, for elements ['O', 'Cu']

1042 #########################################################################
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# r_cutoff = 6.0

1044 # The following settings were used for generating sets

# of values for the radial parameters r_shift and eta:

1046 # rule = imbalzano2018

# mode = center

1048 # nb_param_pairs = 6

# Sets of values for parameters:

1050 # r_shift_grid = [0. 0. 0. 0. 0. 0.]

# eta_grid = [0.0278 0.0529 0.1007 0.1916 0.3648 0.6944]

1052

symfunction_short O 2 O 2.778E-02 0.000E+00 6.000E+00

1054 symfunction_short O 2 O 5.288E-02 0.000E+00 6.000E+00

symfunction_short O 2 O 1.007E-01 0.000E+00 6.000E+00

1056 symfunction_short O 2 O 1.916E-01 0.000E+00 6.000E+00

symfunction_short O 2 O 3.648E-01 0.000E+00 6.000E+00

1058 symfunction_short O 2 O 6.944E-01 0.000E+00 6.000E+00

1060 symfunction_short O 2 Cu 2.778E-02 0.000E+00 6.000E+00

symfunction_short O 2 Cu 5.288E-02 0.000E+00 6.000E+00

1062 symfunction_short O 2 Cu 1.007E-01 0.000E+00 6.000E+00

symfunction_short O 2 Cu 1.916E-01 0.000E+00 6.000E+00

1064 symfunction_short O 2 Cu 3.648E-01 0.000E+00 6.000E+00

symfunction_short O 2 Cu 6.944E-01 0.000E+00 6.000E+00

1066

symfunction_short Cu 2 O 2.778E-02 0.000E+00 6.000E+00

1068 symfunction_short Cu 2 O 5.288E-02 0.000E+00 6.000E+00

symfunction_short Cu 2 O 1.007E-01 0.000E+00 6.000E+00

1070 symfunction_short Cu 2 O 1.916E-01 0.000E+00 6.000E+00

symfunction_short Cu 2 O 3.648E-01 0.000E+00 6.000E+00

1072 symfunction_short Cu 2 O 6.944E-01 0.000E+00 6.000E+00

1074 symfunction_short Cu 2 Cu 2.778E-02 0.000E+00 6.000E+00

symfunction_short Cu 2 Cu 5.288E-02 0.000E+00 6.000E+00

1076 symfunction_short Cu 2 Cu 1.007E-01 0.000E+00 6.000E+00

symfunction_short Cu 2 Cu 1.916E-01 0.000E+00 6.000E+00

1078 symfunction_short Cu 2 Cu 3.648E-01 0.000E+00 6.000E+00

symfunction_short Cu 2 Cu 6.944E-01 0.000E+00 6.000E+00

1080

#########################################################################

1082 # Radial symmetry function set, for elements ['O', 'Cu']

#########################################################################

1084 # r_cutoff = 6.0

# The following settings were used for generating sets

1086 # of values for the radial parameters r_shift and eta:

# rule = imbalzano2018

1088 # mode = shift

# nb_param_pairs = 4

1090 # Sets of values for parameters:

# r_shift_grid = [1.5 2.1213 3. 4.2426]

1092 # eta_grid = [2.5904 1.2952 0.6476 0.3238]

1094 symfunction_short O 2 O 2.590E+00 1.500E+00 6.000E+00

symfunction_short O 2 O 1.295E+00 2.121E+00 6.000E+00

1096 symfunction_short O 2 O 6.476E-01 3.000E+00 6.000E+00

symfunction_short O 2 O 3.238E-01 4.243E+00 6.000E+00

1098

symfunction_short O 2 Cu 1.295E+00 2.121E+00 6.000E+00

1100 symfunction_short O 2 Cu 6.476E-01 3.000E+00 6.000E+00

symfunction_short O 2 Cu 3.238E-01 4.243E+00 6.000E+00

1102
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symfunction_short Cu 2 O 2.590E+00 1.500E+00 6.000E+00

1104 symfunction_short Cu 2 O 1.295E+00 2.121E+00 6.000E+00

symfunction_short Cu 2 O 6.476E-01 3.000E+00 6.000E+00

1106 symfunction_short Cu 2 O 3.238E-01 4.243E+00 6.000E+00

1108 symfunction_short Cu 2 Cu 1.295E+00 2.121E+00 6.000E+00

symfunction_short Cu 2 Cu 6.476E-01 3.000E+00 6.000E+00

1110 symfunction_short Cu 2 Cu 3.238E-01 4.243E+00 6.000E+00

1112 #########################################################################

# Narrow angular symmetry function set, for elements ['O', 'Cu']

1114 #########################################################################

# r_cutoff = 6.0

1116 # The following settings were used for generating sets

# of values for the radial parameters r_shift and eta:

1118 # rule = imbalzano2018

# mode = center

1120 # nb_param_pairs = 6

# Sets of values for parameters:

1122 # r_shift_grid = [0. 0. 0. 0. 0. 0.]

# eta_grid = [0.0278 0.0529 0.1007 0.1916 0.3648 0.6944]

1124 # lambdas = [-1. 1.]

# zetas = [ 1. 4. 16.]

1126

symfunction_short O 3 O O 2.778E-02 -1 1.000E+00 6.000E+00 0.000E+00

1128 symfunction_short O 3 O O 2.778E-02 1 1.000E+00 6.000E+00 0.000E+00

symfunction_short O 3 O O 2.778E-02 -1 4.000E+00 6.000E+00 0.000E+00

1130 symfunction_short O 3 O O 2.778E-02 1 4.000E+00 6.000E+00 0.000E+00

symfunction_short O 3 O O 5.288E-02 -1 1.000E+00 6.000E+00 0.000E+00

1132 symfunction_short O 3 O O 5.288E-02 1 1.000E+00 6.000E+00 0.000E+00

symfunction_short O 3 O O 5.288E-02 -1 4.000E+00 6.000E+00 0.000E+00

1134 symfunction_short O 3 O O 5.288E-02 1 4.000E+00 6.000E+00 0.000E+00

symfunction_short O 3 O O 5.288E-02 1 1.600E+01 6.000E+00 0.000E+00

1136 symfunction_short O 3 O O 1.007E-01 -1 1.000E+00 6.000E+00 0.000E+00

symfunction_short O 3 O O 1.007E-01 1 1.000E+00 6.000E+00 0.000E+00

1138 symfunction_short O 3 O O 1.007E-01 -1 4.000E+00 6.000E+00 0.000E+00

symfunction_short O 3 O O 1.007E-01 1 4.000E+00 6.000E+00 0.000E+00

1140 symfunction_short O 3 O O 1.007E-01 1 1.600E+01 6.000E+00 0.000E+00

symfunction_short O 3 O O 1.916E-01 -1 1.000E+00 6.000E+00 0.000E+00

1142 symfunction_short O 3 O O 1.916E-01 1 1.000E+00 6.000E+00 0.000E+00

symfunction_short O 3 O O 1.916E-01 -1 4.000E+00 6.000E+00 0.000E+00

1144 symfunction_short O 3 O O 1.916E-01 1 4.000E+00 6.000E+00 0.000E+00

symfunction_short O 3 O O 1.916E-01 1 1.600E+01 6.000E+00 0.000E+00

1146 symfunction_short O 3 O O 3.648E-01 -1 1.000E+00 6.000E+00 0.000E+00

symfunction_short O 3 O O 3.648E-01 1 1.000E+00 6.000E+00 0.000E+00

1148 symfunction_short O 3 O O 3.648E-01 -1 4.000E+00 6.000E+00 0.000E+00

symfunction_short O 3 O O 3.648E-01 1 4.000E+00 6.000E+00 0.000E+00

1150

symfunction_short O 3 O O 6.944E-01 -1 1.000E+00 6.000E+00 0.000E+00

1152 symfunction_short O 3 O O 6.944E-01 1 1.000E+00 6.000E+00 0.000E+00

symfunction_short O 3 O O 6.944E-01 -1 4.000E+00 6.000E+00 0.000E+00

1154 symfunction_short O 3 O O 6.944E-01 1 4.000E+00 6.000E+00 0.000E+00

symfunction_short O 3 O O 6.944E-01 -1 1.600E+01 6.000E+00 0.000E+00

1156

symfunction_short O 3 O Cu 2.778E-02 -1 1.000E+00 6.000E+00 0.000E+00

1158 symfunction_short O 3 O Cu 2.778E-02 1 1.000E+00 6.000E+00 0.000E+00

symfunction_short O 3 O Cu 2.778E-02 -1 4.000E+00 6.000E+00 0.000E+00

1160 symfunction_short O 3 O Cu 2.778E-02 1 4.000E+00 6.000E+00 0.000E+00

symfunction_short O 3 O Cu 2.778E-02 -1 1.600E+01 6.000E+00 0.000E+00

1162 symfunction_short O 3 O Cu 2.778E-02 1 1.600E+01 6.000E+00 0.000E+00
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symfunction_short O 3 O Cu 5.288E-02 -1 1.000E+00 6.000E+00 0.000E+00

1164 symfunction_short O 3 O Cu 5.288E-02 1 1.000E+00 6.000E+00 0.000E+00

symfunction_short O 3 O Cu 5.288E-02 -1 4.000E+00 6.000E+00 0.000E+00

1166 symfunction_short O 3 O Cu 5.288E-02 1 4.000E+00 6.000E+00 0.000E+00

symfunction_short O 3 O Cu 5.288E-02 -1 1.600E+01 6.000E+00 0.000E+00

1168 symfunction_short O 3 O Cu 5.288E-02 1 1.600E+01 6.000E+00 0.000E+00

symfunction_short O 3 O Cu 1.007E-01 -1 1.000E+00 6.000E+00 0.000E+00

1170 symfunction_short O 3 O Cu 1.007E-01 1 1.000E+00 6.000E+00 0.000E+00

symfunction_short O 3 O Cu 1.007E-01 -1 4.000E+00 6.000E+00 0.000E+00

1172 symfunction_short O 3 O Cu 1.007E-01 1 4.000E+00 6.000E+00 0.000E+00

symfunction_short O 3 O Cu 1.007E-01 -1 1.600E+01 6.000E+00 0.000E+00

1174 symfunction_short O 3 O Cu 1.007E-01 1 1.600E+01 6.000E+00 0.000E+00

symfunction_short O 3 O Cu 1.916E-01 -1 1.000E+00 6.000E+00 0.000E+00

1176 symfunction_short O 3 O Cu 1.916E-01 1 1.000E+00 6.000E+00 0.000E+00

symfunction_short O 3 O Cu 1.916E-01 -1 4.000E+00 6.000E+00 0.000E+00

1178 symfunction_short O 3 O Cu 1.916E-01 1 4.000E+00 6.000E+00 0.000E+00

symfunction_short O 3 O Cu 1.916E-01 1 1.600E+01 6.000E+00 0.000E+00

1180 symfunction_short O 3 O Cu 3.648E-01 1 1.000E+00 6.000E+00 0.000E+00

symfunction_short O 3 O Cu 3.648E-01 1 4.000E+00 6.000E+00 0.000E+00

1182

symfunction_short O 3 Cu Cu 2.778E-02 -1 1.000E+00 6.000E+00 0.000E+00

1184 symfunction_short O 3 Cu Cu 2.778E-02 1 1.000E+00 6.000E+00 0.000E+00

symfunction_short O 3 Cu Cu 2.778E-02 -1 4.000E+00 6.000E+00 0.000E+00

1186 symfunction_short O 3 Cu Cu 2.778E-02 1 4.000E+00 6.000E+00 0.000E+00

symfunction_short O 3 Cu Cu 2.778E-02 1 1.600E+01 6.000E+00 0.000E+00

1188 symfunction_short O 3 Cu Cu 5.288E-02 -1 1.000E+00 6.000E+00 0.000E+00

symfunction_short O 3 Cu Cu 5.288E-02 1 1.000E+00 6.000E+00 0.000E+00

1190 symfunction_short O 3 Cu Cu 5.288E-02 -1 4.000E+00 6.000E+00 0.000E+00

symfunction_short O 3 Cu Cu 5.288E-02 1 4.000E+00 6.000E+00 0.000E+00

1192 symfunction_short O 3 Cu Cu 5.288E-02 -1 1.600E+01 6.000E+00 0.000E+00

symfunction_short O 3 Cu Cu 5.288E-02 1 1.600E+01 6.000E+00 0.000E+00

1194 symfunction_short O 3 Cu Cu 1.007E-01 -1 1.000E+00 6.000E+00 0.000E+00

symfunction_short O 3 Cu Cu 1.007E-01 1 1.000E+00 6.000E+00 0.000E+00

1196 symfunction_short O 3 Cu Cu 1.007E-01 -1 4.000E+00 6.000E+00 0.000E+00

symfunction_short O 3 Cu Cu 1.007E-01 1 4.000E+00 6.000E+00 0.000E+00

1198 symfunction_short O 3 Cu Cu 1.007E-01 -1 1.600E+01 6.000E+00 0.000E+00

symfunction_short O 3 Cu Cu 1.007E-01 1 1.600E+01 6.000E+00 0.000E+00

1200 symfunction_short O 3 Cu Cu 1.916E-01 -1 1.000E+00 6.000E+00 0.000E+00

symfunction_short O 3 Cu Cu 1.916E-01 1 1.000E+00 6.000E+00 0.000E+00

1202 symfunction_short O 3 Cu Cu 1.916E-01 -1 4.000E+00 6.000E+00 0.000E+00

symfunction_short O 3 Cu Cu 1.916E-01 1 4.000E+00 6.000E+00 0.000E+00

1204 symfunction_short O 3 Cu Cu 3.648E-01 -1 1.000E+00 6.000E+00 0.000E+00

symfunction_short O 3 Cu Cu 3.648E-01 1 1.000E+00 6.000E+00 0.000E+00

1206

symfunction_short Cu 3 O O 2.778E-02 -1 1.000E+00 6.000E+00 0.000E+00

1208 symfunction_short Cu 3 O O 2.778E-02 1 1.000E+00 6.000E+00 0.000E+00

symfunction_short Cu 3 O O 2.778E-02 -1 4.000E+00 6.000E+00 0.000E+00

1210 symfunction_short Cu 3 O O 2.778E-02 1 4.000E+00 6.000E+00 0.000E+00

symfunction_short Cu 3 O O 2.778E-02 -1 1.600E+01 6.000E+00 0.000E+00

1212 symfunction_short Cu 3 O O 5.288E-02 -1 1.000E+00 6.000E+00 0.000E+00

symfunction_short Cu 3 O O 5.288E-02 1 1.000E+00 6.000E+00 0.000E+00

1214 symfunction_short Cu 3 O O 5.288E-02 -1 4.000E+00 6.000E+00 0.000E+00

symfunction_short Cu 3 O O 5.288E-02 1 4.000E+00 6.000E+00 0.000E+00

1216 symfunction_short Cu 3 O O 5.288E-02 -1 1.600E+01 6.000E+00 0.000E+00

symfunction_short Cu 3 O O 5.288E-02 1 1.600E+01 6.000E+00 0.000E+00

1218 symfunction_short Cu 3 O O 1.007E-01 -1 1.000E+00 6.000E+00 0.000E+00

symfunction_short Cu 3 O O 1.007E-01 1 1.000E+00 6.000E+00 0.000E+00

1220 symfunction_short Cu 3 O O 1.007E-01 -1 4.000E+00 6.000E+00 0.000E+00

symfunction_short Cu 3 O O 1.007E-01 1 4.000E+00 6.000E+00 0.000E+00

1222 symfunction_short Cu 3 O O 1.007E-01 -1 1.600E+01 6.000E+00 0.000E+00
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symfunction_short Cu 3 O O 1.916E-01 -1 1.000E+00 6.000E+00 0.000E+00

1224 symfunction_short Cu 3 O O 1.916E-01 1 1.000E+00 6.000E+00 0.000E+00

symfunction_short Cu 3 O O 1.916E-01 -1 4.000E+00 6.000E+00 0.000E+00

1226 symfunction_short Cu 3 O O 1.916E-01 1 4.000E+00 6.000E+00 0.000E+00

symfunction_short Cu 3 O O 1.916E-01 -1 1.600E+01 6.000E+00 0.000E+00

1228 symfunction_short Cu 3 O O 3.648E-01 -1 1.000E+00 6.000E+00 0.000E+00

symfunction_short Cu 3 O O 3.648E-01 1 1.000E+00 6.000E+00 0.000E+00

1230 symfunction_short Cu 3 O O 3.648E-01 -1 4.000E+00 6.000E+00 0.000E+00

symfunction_short Cu 3 O O 3.648E-01 1 4.000E+00 6.000E+00 0.000E+00

1232 symfunction_short Cu 3 O O 6.944E-01 -1 1.000E+00 6.000E+00 0.000E+00

symfunction_short Cu 3 O O 6.944E-01 1 1.000E+00 6.000E+00 0.000E+00

1234 symfunction_short Cu 3 O O 6.944E-01 1 4.000E+00 6.000E+00 0.000E+00

1236 symfunction_short Cu 3 O Cu 2.778E-02 -1 1.000E+00 6.000E+00 0.000E+00

symfunction_short Cu 3 O Cu 2.778E-02 1 1.000E+00 6.000E+00 0.000E+00

1238 symfunction_short Cu 3 O Cu 2.778E-02 -1 4.000E+00 6.000E+00 0.000E+00

symfunction_short Cu 3 O Cu 2.778E-02 1 4.000E+00 6.000E+00 0.000E+00

1240 symfunction_short Cu 3 O Cu 2.778E-02 -1 1.600E+01 6.000E+00 0.000E+00

symfunction_short Cu 3 O Cu 2.778E-02 1 1.600E+01 6.000E+00 0.000E+00

1242 symfunction_short Cu 3 O Cu 5.288E-02 -1 1.000E+00 6.000E+00 0.000E+00

symfunction_short Cu 3 O Cu 5.288E-02 1 1.000E+00 6.000E+00 0.000E+00

1244 symfunction_short Cu 3 O Cu 5.288E-02 -1 4.000E+00 6.000E+00 0.000E+00

symfunction_short Cu 3 O Cu 5.288E-02 1 4.000E+00 6.000E+00 0.000E+00

1246 symfunction_short Cu 3 O Cu 5.288E-02 -1 1.600E+01 6.000E+00 0.000E+00

symfunction_short Cu 3 O Cu 5.288E-02 1 1.600E+01 6.000E+00 0.000E+00

1248 symfunction_short Cu 3 O Cu 1.007E-01 -1 1.000E+00 6.000E+00 0.000E+00

symfunction_short Cu 3 O Cu 1.007E-01 1 1.000E+00 6.000E+00 0.000E+00

1250 symfunction_short Cu 3 O Cu 1.007E-01 -1 4.000E+00 6.000E+00 0.000E+00

symfunction_short Cu 3 O Cu 1.007E-01 1 4.000E+00 6.000E+00 0.000E+00

1252 symfunction_short Cu 3 O Cu 1.007E-01 -1 1.600E+01 6.000E+00 0.000E+00

symfunction_short Cu 3 O Cu 1.007E-01 1 1.600E+01 6.000E+00 0.000E+00

1254 symfunction_short Cu 3 O Cu 1.916E-01 -1 1.000E+00 6.000E+00 0.000E+00

symfunction_short Cu 3 O Cu 1.916E-01 1 1.000E+00 6.000E+00 0.000E+00

1256 symfunction_short Cu 3 O Cu 1.916E-01 1 4.000E+00 6.000E+00 0.000E+00

symfunction_short Cu 3 O Cu 1.916E-01 -1 1.600E+01 6.000E+00 0.000E+00

1258 symfunction_short Cu 3 O Cu 1.916E-01 1 1.600E+01 6.000E+00 0.000E+00

symfunction_short Cu 3 O Cu 3.648E-01 1 1.000E+00 6.000E+00 0.000E+00

1260 symfunction_short Cu 3 O Cu 3.648E-01 1 4.000E+00 6.000E+00 0.000E+00

symfunction_short Cu 3 O Cu 6.944E-01 1 1.000E+00 6.000E+00 0.000E+00

1262 symfunction_short Cu 3 O Cu 6.944E-01 1 4.000E+00 6.000E+00 0.000E+00

1264 symfunction_short Cu 3 Cu Cu 2.778E-02 -1 1.000E+00 6.000E+00 0.000E+00

symfunction_short Cu 3 Cu Cu 2.778E-02 1 1.000E+00 6.000E+00 0.000E+00

1266 symfunction_short Cu 3 Cu Cu 2.778E-02 -1 4.000E+00 6.000E+00 0.000E+00

symfunction_short Cu 3 Cu Cu 2.778E-02 1 4.000E+00 6.000E+00 0.000E+00

1268 symfunction_short Cu 3 Cu Cu 2.778E-02 -1 1.600E+01 6.000E+00 0.000E+00

symfunction_short Cu 3 Cu Cu 2.778E-02 1 1.600E+01 6.000E+00 0.000E+00

1270 symfunction_short Cu 3 Cu Cu 5.288E-02 -1 1.000E+00 6.000E+00 0.000E+00

symfunction_short Cu 3 Cu Cu 5.288E-02 1 1.000E+00 6.000E+00 0.000E+00

1272 symfunction_short Cu 3 Cu Cu 5.288E-02 -1 4.000E+00 6.000E+00 0.000E+00

symfunction_short Cu 3 Cu Cu 5.288E-02 1 4.000E+00 6.000E+00 0.000E+00

1274 symfunction_short Cu 3 Cu Cu 5.288E-02 -1 1.600E+01 6.000E+00 0.000E+00

symfunction_short Cu 3 Cu Cu 5.288E-02 1 1.600E+01 6.000E+00 0.000E+00

1276 symfunction_short Cu 3 Cu Cu 1.007E-01 -1 1.000E+00 6.000E+00 0.000E+00

symfunction_short Cu 3 Cu Cu 1.007E-01 1 1.000E+00 6.000E+00 0.000E+00

1278 symfunction_short Cu 3 Cu Cu 1.007E-01 -1 4.000E+00 6.000E+00 0.000E+00

symfunction_short Cu 3 Cu Cu 1.007E-01 1 4.000E+00 6.000E+00 0.000E+00

1280 symfunction_short Cu 3 Cu Cu 1.007E-01 -1 1.600E+01 6.000E+00 0.000E+00

symfunction_short Cu 3 Cu Cu 1.007E-01 1 1.600E+01 6.000E+00 0.000E+00

1282 symfunction_short Cu 3 Cu Cu 1.916E-01 -1 1.000E+00 6.000E+00 0.000E+00
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symfunction_short Cu 3 Cu Cu 1.916E-01 1 1.000E+00 6.000E+00 0.000E+00

1284 symfunction_short Cu 3 Cu Cu 1.916E-01 1 4.000E+00 6.000E+00 0.000E+00

Listing B.1: neural network potential architecture
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Appendix C

Supplementary information for the molecular

dynamics simulation

C.1 Post-processing and analysis of MD trajectories

C.1.1 Calculation of oxide film thickness

The film thicknesses calculation involves the following steps:

1. locating the top surface by identifying the interfacial atoms. This is done using the

pytim module, with the method described in Ref.[78].

2. The bottom surface is located in a similar fashion. However, the method cannot be

used to determine interfacial atoms where the density stays more or less constant but

the composition changes abruptly. Therefore, all the copper atoms were removed prior

to detecting the interfacial oxygen atoms.

3. The average z-coordinate of the atoms in the top and bottom surface are calculated,

and the difference δz = z̄top−z̄bottom is reported as the film thickness. In very thin films

the top and bottom surface atoms overlap. In such cases the thicknesses is directly set

to 0.

C.1.2 Characterization of oxide composition

To determine the chemical composition of the oxide film, the local environments of each

atom were analyzed using bond orientational order parameters.[12] The Voronoi tessellation
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Figure C.1: q6 parameters showing overlap of oxygen and copper atoms

averaged version, shown below, is used.[97]

q′l(a) =

√√√√ 4π

2l + 1

l∑
m=−l

|A(f)
A

∑
b∈NN(a)

Ylm(θab, ψab)|2

, where Ylm is a spherical harmonic function of degree l and orderm, θab and ψab are polar and

azimuthal angles of the distance vector between neighboring atoms in spherical coordinates,

A(f) and A are the separating surface in the Voronoi tessellation between neighboring atoms

and the total area of the Voronoi cell of the center atom, respectively.

C.1.3 Tracing the range of thermal agitations

Starting with the detection of the collision event detailed above, the atoms near the impact

site are monitored for their velocities. The atom with velocities exceeding the cutoff velocity

is added to the tracked hot atoms. The algorithm is repeated recursively in the list of “hot”

atoms for each time step, therefore accounting for all the atoms affected by the thermal

agitation. The cutoff velocity is a parameter specified in terms of the probability of particles

with such velocities being present in the integrated Maxwell-Boltzmann distribution, which

the velocity distributions in a amorphous solid are assumed to have.[141] In this work, this

cutoff probability is 1× 10−5
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C.2 Comparison of simulated and experimental impact rates

Given the pressure of the plasma processing step, the impact frequency can be calculated

using the kinetic theory of gases:

Jcollision =
P√

2πmkBT

At a pressure of 30mTorr, Jcollision = 4.378 × 10−10 1
nm2fs

. The slab used during production

MD had 26 nm2 area, corresponding to an impact frequency of 1.14× 10−8 fs−1. Therefore,

to capture even one impact event at laboratory time scale, 87.8 ns is needed, clearly beyond

current capabilities. At best, the MD simulations of plasma processing may be related to

laboratory times via fluences of the ions. For instance, for 353K/20eV/20, 23314100 MD

steps were performed. For every 10000 steps, 21 oxygen atoms (both ions and neutrals) were

deposited, leading to a total of 46628 ions. Since the impingement frequency is calculated

to be 87.8 ns per ion/neutral, equating the fluences would correspond to 4.09 × 10−3 s of

laboratory time, which is still much less than the real exposure time (∼ 1min). This four

order of magnitude difference in between can only be bridged by accelerated MD or hybrid

MD/MC(Monte Carlo) methods, and is the most significant challenge moving forward.

C.3 Additional results on the 111 surface
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Figure C.2: Thickness and number of oxygen in the growing oxide on Cu (111) surface.
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Figure C.3: Oxidation trajectory on the Cu (111) surface
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