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Abstract

Background: Clonal VDJ rearrangement of B/T cell receptors (B/TCRs) occurring during B/T lymphocyte development
has been used as a marker to track the clonality of B/T cell populations.

Methods: We systematically profiled the B/T cell receptor repertoire of 936 cancer cell lines across a variety of cancer
types as well as 462 Epstein-Barr Virus (EBV) transformed normal B lymphocyte lines using RNA sequencing data.

Results: Rearranged B/TCRs were readily detected in cell lines derived from lymphocytes, and subclonality or potential
biclonality were found in a number of blood cancer cell lines. Clonal BCR/TCR rearrangements were detected in several
blast phase CML lines and unexpectedly, one gastric cancer cell line (KE-97), reflecting a lymphoid origin of these cells.
Notably, clonality was highly prevalent in EBV transformed B lymphocytes, suggesting either transformation only occurred
in a few B cells or those with a growth advantage dominated the transformed population through clonal evolution.

Conclusions: Our analysis reveals the complexity and heterogeneity of the BCR/TCR rearrangement repertoire and
provides a unique insight into the clonality of lymphocyte derived cell lines.

Keywords: BCR/TCR receptor repertoire, EBV lymphocytes, Cancer cell lines

Background
Clonal V(D)] [variable (V), diversity (D) and joining (J)] re-
arrangement which occurs during development of B/T lym-
phocytes has been used as a marker to track the clonality of
B/T cell populations [1, 2]. This approach is feasible because
lymphoid neoplasm/lymphoproliferative cells originate and
expand from a single cell; and the progeny cells share the
same VD] rearrangement. A pattern of a monoclonal/oligo-
clonal population (manifested as the over-representation of
either one or a few uniquely rearranged sequences) suggests
the presence of a lymphoid neoplasm [or non-malignant
clonal lymphoproliferative disorder, such as monoclonal B
cell lymphocytosis [3] or monoclonal gammopathy of un-
determined significance (MGUS)].

In this study, we systematically profiled the B/T cell re-
ceptor repertoire of 936 cancer cell lines across a variety
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of cancer types, as well as 462 Epstein-Barr Virus (EBV)
transformed normal B lymphocyte lines, using RNA
sequencing data from the Cancer Cell Line Encyclopedia
(CCLE) [4] and Geuvadis RNA sequencing project of
1000 Genomes samples [5]. This study cohort contains
cell lines from a variety of solid tumors and 164 blood
cancer cell lines (annotated as haematopoietic and lymph-
oid tissue in CCLE), as well as immortalized “normal”
B-lymphocyte cell lines. Cancer cell lines are typically
deemed to be “pure”, due to the lack of normal stroma
cells and infiltrating T/B cells which are frequently
presented in primary tumor samples; thus, this cell line
collection provides a unique opportunity to profile faith-
fully and comprehensively the immunoglobulin/TCR gene
rearrangement events in different types of blood cancers.

Methods

Transcriptome sequencing data were downloaded from
the CCLE and Geuvadis RNA sequencing databases; and
the B/T cell receptor repertoire of each cell line was ana-
lyzed using MiXCR [6]. The 936 CCLE cancer cell lines
were authenticated before uniformly processed RNA
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sequencing (paired-end 100 x 2 bp) [4]. The growth and
uniformly processed RNA sequencing (paired-end 75 x
2 bp) of 462 Epstein-Barr Virus (EBV) transformed nor-
mal B lymphocyte lines were described in ref [5]. The B
cell and T cell gene expression signature and expression
of lineage specific markers (e.g., CD4/CDS8 for T cell and
CD19/CD20 for B cells) were analyzed from the cell line
microarray expression data. The relative clonal CPM
value (count per million RNA sequencing reads) was cal-
culated by dividing the clonal read counts by the total
RNA sequencing read counts. Each clonotypes were de-
termined based on a unique nucleotide sequence of the
VDJ junction (which codes for the CDR3 region) and
supported by =30 sequencing reads. Two clonotypes
have the same rearrangement pattern but have >1 bp
difference in their nucleotide sequence VDJ junction
were considered as different clonotypes. As we cannot
exclude the possibility of expression of biallelic rear-
rangements (where the second allele is usually
non-productive or has markedly decreased expression),
we refer to bi/oligoclonality as the observation of more
than two/four clonotypes within the same type of re-
arrangement within a cell line [7] (either >3 IGH or >3
IGL or >3 TRAY, or >4 IGKV or >4 TRBV [7]). For ex-
ample, a cell line with three different IGH rearrange-
ments (e.g., 60% of IGHV6-1-IGHD1-20-IGHJ4, 20%
IGHV3-23-IGHD2-8-IGHJ6 and 18% of IGHV3-
20-IGHD2-8-IGH]J5) will be regarded as potential bi/oli-
goclonality. Nonproductive rearrangement was re-
ferred as out of frame rearrangement (denoted with
“_” in the CDR sequence) or rearrangement with stop
codon inside the CDR3 region (denoted with “*” in
the CDR3 sequence).

Results

BCR repertoire of cancer cell lines derived from B
lymphocytes

Cancer cell lines derived/transformed from mature B
cells that have undergone BCR selection include mul-
tiple myeloma (n=25), mantle cell lymphoma (n=4),
Burkitt lymphoma (n=10) and chronic lymphocytic
leukemia-small lymphocytic lymphoma (CLL, n = 4) etc.
High expression of both IGH (heavy chain) and IGK/L
(light chain) rearrangement are detected in all of the
mantle cell lymphoma, Burkitt lymphoma and CLL-small
lymphocytic lymphoma cell lines (Fig. 1). In multiple mye-
loma (MM), except for cell line KMS-12-BM [in which only
a productive IGH rearrangement (IGHV3-7-IGHD4—
23-IGHJ6, 18,169 reads) is dominantly expressed], many of
the MM cell lines (Additional file 1: Tables S1 and S2) ex-
press a single dominant IGK or IGL rearrangement accom-
panying an either extremely low (<30 RNA sequencing
reads) or a completely undetectable heavy chain (IGH)
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rearrangement (Fig. 2), suggesting that these cell lines
(NCI-H929, KARPAS-620, L363, SK-MM-2, JJN3,
RPMI8226, KMS-28BM, KMS-11, KMS34, OPM-2,
KMS-26) likely belong to light chain multiple myeloma
(LC-MM) [8], a poor prognosis MM subtype constituting
15% of myelomas which are characterized by either deletion
or silencing of the IGH loci after VD] rearrangement [8].
While the majority of multiple myeloma cell lines express
either a single dominant IGK or IGL rearrangement, ex-
pression of biallelic-rearrangements (or potential biclonal-
ity) was found in a few cell lines (Additional file 1: Figure
S2). For example, two productive IGK rearrangements are
detected in cell line KMS-27 (625,058 reads of IGKV2—
40-IGKJ4 and 382,112 reads of IGKV1-39-IGKJ1).

Potential subclonality was found in several Burkitt
lymphoma cell lines (e.g, NAMALWA, EB1 and CA46,
Fig. 3). Subclonal rearrangements in these cell lines share
the same rearrangement and similar CDR3 sequence. For
example, three similar IGH rearrangements were detected
in cell line CA46 (Additional file 1: Table S1). These IGH
rearrangements share the identical IGH rearrangement pat-
tern (IGHV5-51-IGHD5-12-IGHJ4) but they are slightly
different in their CDR3 sequences (CARFNRGGDYW,
CARFDRGGDYW, CARARFDRGGDYW, Fig. 3b), sug-
gesting that subclonal rearrangements may have derived
from dominant rearrangements through somatic hypermu-
tations. Similarly, four IGLV4-60-IGL]3 rearrangements
were detected in the cell line NAMALWA. Three of them
were barely expressed (208 reads, 120 reads and 116 reads,
among which two of them are non-productive) and the se-
quences are highly similar to the dominant rearrangement
(67,629 reads, Additional file 1: Table S1). These three
minor subclonal rearrangements also appear to be derived
from the dominant clone through somatic hypermuation.

Potential subclonality was also found in diffuse large B
cell lymphoma (DLBCL) cell lines Pfeiffer and Toledo
(Additional file 1: Table S2). All DLBCL cell lines (n =17),
except two (A3/KAW, CPM =0.11, and U-937, CPM =
0.21), express high levels of clonal rearrangement of both
IGH and IGL/K (Additional file 1: Table S1) [9, 10]. In-
deed, U-937 is well recognized as an AML cell line instead
of a DLBCL, despite the fact that this cell line was origin-
ally established from pleural effusion of a patient with his-
tiocytic lymphoma and is still categorized as a histiocytic
lymphoma by both ATCC (https://www.atcc.org/Prod-
ucts/All/CRL-1593.2.aspx) and CCLE. The analysis of the
expression of major lineage genes also suggests that these
two cell lines should not be grouped together with other
DLBCL cell lines, as none of them express any typical B
cell genes such as CD19, CD20 or CD79. Notably, cell line
A4/Fuk also displays an abnormal expression pattern of
major lineage specific genes. Conclusions of experiments
reached from this cell line for DLBCL research may also
need to be interpreted with caution.
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Fig. 1 Heatmap of the BCR/TCR rearrangement pattern of cancer cell lines. a. Heatmap of the clonal rearrangement pattern of IGH, IGK/L and TRA/B in
936 cancer cell lines. The histogram indicates the number of samples with the given expression level. The line in the heatmap represents the gene
expression of the particular sample, with a line drawn more towards the right, indicating a higher level of expression. b. Heatmap of the clonal
rearrangement pattern of IGH, IGK/L and TRA/B, as well as the expression of the cell surface hematopoietic lineage marker in 164 blood cancer cell
lines. Values were normalized with either z score (left panel) or shown as log2 expression (right panel)
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Except for BCP-1 and CI-1, cell lines derived from un-
specified B cell lymphoma (n =4) also express high level
of heavy and light chain BCR rearrangements. Cell line
BCP-1 shows an inconsistent gene expression pattern as
compared with other B cell lymphoma lines (e.g., no ex-
pression of CD19, CD20), suggesting that it might need
to be reclassified into other blood cancer types. In con-
trast to the finding of subclonality in Burkitt lymphoma

or DLBCL, cell lines NU-DUL-1 and JM1 contain more
than 3 different IGLV rearrangements (Fig. 3c, e.g., in
cell line NU-DUL-1, 10,266 reads were detected for the
rearrangement IGLV1-40-1GL]J2; 3738 reads for IGLV1-
44-1GLJ3; 3005 reads for IGLV4-60-IGLJ3, 2974 reads
for IGLVI-70-IGLJ3, 1180 reads for IGLV1-44-IGLJ3
(encoding a different CDR3) and 507 reads for IGLV9—
49-1GLJ3), suggesting a potential bi/oligoclonaity of
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Fig. 2 IGHV, IGK/L V segment usage and consensus sequence of CDR3 region of blood cancer cell lines. a. IGHV and IGK/L V segment usage of
the highest expressed rearrangement of B-ALL, T-ALL, Burkitt lymphoma, diffuse large B cell lymphoma (DLBCL) and multiple myeloma. b.
Consensus sequence of CDR3 region of the dominant rearrangement in multiple myeloma, DLBCL and Burkitt lymphoma (left panel). CDR3
region sequences were aligned using ClustalW and the consensus sequences were plotted using weblogo (right panel)

these cell lines and that subclonal rearrangements had
likely evolved independently.

Hodgkin lymphoma cell lines (n = 8) were derived from
either mature B cells (germinal center (GC) or post GC B
cells), but are also known to have a global down-regulation

of B cell gene expression and a general loss of B cell pheno-
type [11]. Consistent with this notion, analysis of these cell
lines confirmed down-regulation of B cell genes such as
CD19, CD20, EBF1, etc. (except for the cell line HS.611 T,
which still expresses high levels of CD19/CD20 and
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Fig. 3 Potential subclonality and biclonality of cancer cell lines. a IGH and IGK/L rearranged fraction (filtered by > 30 reads) of Burkitt lymphoma
and unspecified B cell lymphoma. Blue color indicates the rearrangement fraction of the dominant rearrangement, Red color indicate the
rearrangement fraction of second dominant rearrangement, Yellow color indicate the third dominant rearrangement, while smaller subclonal
rearrangements (= 4) were aggregated and labelled in grey (See also Additional file 1: Figure S2B). The subclonality of Burkitt lymphoma cell lines
CA46, EB1, GA-10, NAMALWA and Hodgkin lymphomas cell line HS611.T. The RNA sequencing read counts are indicated in front of each VD)
junction nucleotide sequence. The translated CDR3 amino acids sequences are listed right after each nucleotide sequence. c. The potential bi/
oligoclonality of unspecified B cell lymphoma cell line NU-DUL-1. Multiple IGLV rearrangements were detected in this cell line. The translated
CDR3 amino acids sequences are listed right after each nucleotide sequence. d. Diagram shows the possible evolution path of cell lines with
subclonality or biclonality. Pattern |, subclonal rearrangements derived from the dominant rearrangement through somatic hypermutations.

Pattern Il, multiple rearrangements evolved independently

CD79A/B). Only two of 8 Hodgkin lymphoma cell lines ex-
press low levels of BCR rearrangements: cell line HS.611 T
(IGKV1-39-IGK]J1, 2517 reads, CPM = 14.1; this cell line is
EBV positive and has a high level of EBV viral gene expres-
sion) and KM-H2 (IGKV4-1-IGKJ4, 878 reads, CPM =
6.38). Notably, multiple subclonal rearrangements were
detected in the cell line HS611.T, and all of them share the
same IGH or IGKV rearrangement as well as highly similar
CDR3 junction sequences, these subclonal rearrangements
were likely derived from the major clonetypes through
somatic hypermutation (Fig. 3b, d).

In contrast to the aforementioned cell lines arising
from mature B cells, most of the B-ALL cell lines (1 =
15) express low levels of IGH rearrangement as their
dominant clonotypes. Consistent with the notion that
most of the ALL cells had arrested in early stages of B/T
cell development [12], RAG1/2 (the enzymes mediating
the VDJ rearrangement process) are highly expressed in
most ALL cell lines (both B and T cell ALL, Additional
file 1: Figure S1). Three of the ALL cell lines had either
extremely low or undetectable clonal BCR
[MHH-CALL-2 (CPM =0.06), SEM (no dominant BCR
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clone), REH (CPM = 0.66)]. This may suggest a lack of
complete IGH and IGK/L rearrangements in immature
lymphoid neoplasms, where transformation likely occurred
prior to BCR rearrangement (before the pre-B stage) [13].
Transcription of biallelic-rearrangements of IGH or IGK/L
or potential biclonality was found in 5 of 15 B-ALL cell
lines (33.3%, RCH-ACV, 697, KOPN-8, RS4;11 and
NALM-6) (Additional file 1: Figure S2 and Table S2). Intri-
guingly, in B-ALL cell line MHH-CALL-4, 214 reads of
nonproductive TCR (TRAV8-2-TRAJ8) and 163 reads of
nonproductive BCR (IGHV2-26-IGHD2-21-IGH]J5) rear-
rangements were detected. This cell line expressed typical
B cell lineage gene such as CD19, CD79 instead of T cell
lineage gene (such as CD3), suggesting cross lineage re-
arrangement [14, 15] or potential mixed immunophenotype
of this cell line (Additional file 1: Table S2).

In general, rearrangements of IGK and IGL were highly
expressed as dominant rearrangements in most B cell ma-
lignancy, highlighting the importance of examining the
IGK and IGL loci in future BCR repertoire and clonality
analysis. The usage of IGKV/IGLV gene segments with the
highest expressed rearrangement in the B-ALL, T-ALL,
Burkitt lymphoma, DLBCL and multiple myeloma cohorts
is summarized in Fig. 2. Most lymphocyte derived blood
cancer cell lines express high levels of a productive re-
arrangement, except for ALL. Almost half of all B-ALL (7
out of 15 B-ALL) cell lines carry non-productive BCR in
either both alleles or in the only expressed allele (Table 1).
This observation is in agreement with our recent finding
that ~41% primary pediatric ALL samples (91 out 219
cases) lack productive BCR expression [16]. B cells carry-
ing nonproductive BCR may bypass the BCR checkpoint
through acquisition of driver mutation(s) which mimic
BCR signaling (e.g., BCR-ABL1) [13, 17-24]. Alternatively,
as noted recently, the pre BCR may function as a tumor
suppressor in the majority of precursor B-ALL [19].

TCR repertoire of cell lines derived from T lymphocytes

T lymphocyte cancer cell lines include T-ALL and T cell
lymphoma. Remarkably, all of the five cell lines estab-
lished from patients with anaplastic large cell lymphoma
carry the same TCR alpha chain rearrangement
(TRAV40-TRAJ4) with an identical CDR3 sequence
(CLLGSISLGILSQ, 170-250 reads, Additional file 1:
Table S1). The identical rearrangement/CDR3 sequence
has also been detected in DEL, a cell line established
from malignant histiocytosis [25] but also been recog-
nized as an ALK-positive anaplastic large-cell lymphoma
cell line [26].

Mycosis fungoides-Sezary syndrome belongs to cuta-
neous T-cell lymphoma (cell lines = 3). This disease is a
neoplasia of T lymphocytes often possessing helper/in-
ducer cell surface phenotype [27]. Expression of pro-
ductive alpha and beta TCR rearrangements (200—5000
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reads) occur in all three cell lines in the cohort. Expres-
sion of productive alpha and beta TCR rearrangements
were also found in a peripheral T cell lymphoma cell line
(SUP-T11) and an adult T cell lymphoma-leukemia cell
line (HH) (Additional file 1: Table S2).

With the exception of the cell line ALL-SIL, which has a
TCR gamma rearrangement (TRGV7-TRGJ1), the other
14 T-ALL cell lines express TCR beta rearrangements as
their dominant clonotypes (TRBV-TRBD-TRB] or
TRBV-TRBJ). Most of the T-ALL cell lines express
biallelic-rearrangements [28-30] or potential biclonality,
containing more than one alpha or beta TCR rearrange-
ments (Additional file 1: Table S2, Additional file 1: Figure
S3). In line with allelic exclusion, the second TCR allele
often encodes a non-productive CDR3 or a poorly
expressed transcript (For example, in cell line MOLT-16,
15,457 reads were detected for the productive dominant re-
arrangement TRBV20-1-TRBD1-TRBJ2-3, while only 837
reads were detected for the putative second allele,
TRBV27-TRBD1-TRBJ1-1, which codes an out of frame
CDR3: CASTDPDR_EWTEAFF). Similar to B-ALL, a
number of T-ALL cell lines carry non-productive
rearrangements in either both alleles or in the only
expressed allele, resulting in a complete lack of expression
of functional TCR. For example, cell line ALL-SIL express
two TCR beta rearrangements and two gamma rear-
rangements, and all of these rearrangements code
for out of frame CDR3 (Table 1, Additional file 1:
Table S2). The prevalence of non-functional TCR/BCR
in ALL (both B and T ALL) again supports the recent hy-
pothesis that the TCR/BCR might play a tumor suppres-
sive role in most precursor ALL [19].

Myeloid derived cancer cell lines and solid tumor cell
lines
Cell lines derived from solid tumors and myeloid cells
do not undergo B/TCR rearrangements. In almost all of
the solid tumor cell lines (except for the few which
would be discussed here) and myeloid derived cancer
cell lines (AML, n = 31; blast phase CML, n =12; CML,
n =2; essential thrombocythaemia, n = 1), less than 50—
100 BCR/TCR reads were detected in the dominant re-
arrangement (CPM < 0.5). A few rearrangements appear
to be commonly detected in a number of solid cancer
and AML cell lines with very low read counts. For ex-
ample, the rearrangements TRAV8-7 (non-functional
segment)-TRAJ19 (non-functional segment) were com-
monly found in many cell lines with extremely low read
count (<30). These barely expressed rearrangements
may be caused by non-specific sequencing noise or pos-
sibly due to the trace amount of cross contamination
during sample preparation and sequencing [31-33].

For the 12 blast crisis CML cell lines, a few of them
(CML-T1, NALM-1, BV-173) carry  clonal
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Table 1 Blood cancer cell lines carry nonproductive BCR/TCR in either both alleles or the only expressed allele

Cell lines Reads Fraction % V genes D genes J genes CDR3 Sequences
B-ALL NALM-19 425 36.08 IGHV1-3 IGHD6-6 IGHJ4 CARDRV*QL_PPPLRDYW
MHH-CALL-4 214 14.33 TRAVS-2 TRAJ8 CWGL_QKLVF
163 10.92 IGHV2-26 IGHD2-21 IGHJ5 CARIRPRAVR_CGSP*GPDPW
KASUMI-2 3491 60.82 IGLV1-40 IGLJ3 CQSYD_AGVF
MUTZ-5 1632 76.30 IGLV2-34 IGLJ2 CSSYA_HLWF
REH 100 16.21 IGHV3-15 IGHD3-10 IGHJ6 CTTGMVRGVL_YYYYGMDVW
RS4;11 361 26.05 IGHV6-1 IGHD1-20 IGHJ4 CAREP*LELFDYW
241 17.39 IGHV3-20 IGHD2-8 IGHJ5 CARD*SRY*W_VCYTDWFDPW
173 1248 IGLV11-55 IGLJ7 CAMG_PQF
36 2.60 IGLV4-3 IGLJ3 CGESHTIDG_SRLRFWVF
NALM-6 15670 74.70 IGLV2-14 IGLJ7 CSSYTSS_ALGAVF
2479 11.82 IGLV4-3 IGLJ3 CGESHTIDGQ_RLQAPGGVF
2229 10.63 IGHV1-69 IGHD3-10 IGHJ6 CARDRRGEWPPSDYYYYYMDVW
T-ALL KE-37 656 56.21 TRBV3-2 TRBD1 TRBJ1-5 CASSQDSGTG_RVGNQPQHF
ALL-SIL 2364 5142 TRGV7 TRGJ1 CATWGSG_YYKKLF
909 19.77 TRBV18 TRBD1 TRBJ2-1 CASSPMEK_GHKGEQFF
482 1049 TRBV7-9 TRBD1 TRBJ2-7 CASSLDT_WYEQYF
221 4.81 TRGV9 TRGJ1 CALWR*_YYKKLF
86 1.87 TRDV2 TRDJ1 CACDK_DKLIF
MOLT-3 2913 6.95 TRBV10-3 TRBJ2-5 CAISEPTG_SEETQYF
231 0.55 TRAV1-1 TRAJ33 CAVRDHPW_SNYQLIW
97 023 TRAV1-1 TRAJ24 CAVKMEQ_WGKLQF
B cell lymphoma unspecified M1 10946 4832 IGLV3-1 IGLJ6 CQAWD_QPNVF
7877 3478 IGLV3-10 IGLJ6 CYSTDSS_VIIANVF
1135 501 IGLV8-61 IGLJ7 CV_VF
HT 18074 89.54 IGKV3-11 IGKJ5 CQQRTNWPITF
1488 737 IGHV3-53 IGHD1-1 IGHJ4 CARASFAT_*LYFDSW
Blast phase CML BV-173 764 57.83 IGHV3-21 IGHD2-15 IGHJ3 CASQIL*WW*_PYRGAFDIW
BALL 157 11.88 IGKV2-29 IGKJ3 *MQGIH_SSLFTF
35 265 TRAV8-7 TRAJ19 CAGADRLQTGMRGAF
DLBCL Toledo 11815 58.54 IGLV2-14 IGLJ7 CSSYTS_QHSVF
6830 33.84 IGLV3-21 IGLJ6 CQVWDSS_*SPNVF
316 1.57 IGLV8-61 IGLJ7 CV_VF
Asterisks “*" indicate stop codon; underscores “_" indicate out of frame CDR3 translation

# BV-173 is also been regarded as an B cell precursor ALL cell lines [47] despite its original establishment from a patient with blast phase CML

[48] (https://www.dsmz.de/catalogues/details/culture/ACC-20.html)

rearrangements (Additional file 1: Table S2), indicating
that these cell lines were established from “lymphoid”
blast crisis [34]. For example, rearrangements of BCR
heavy chain (IGHV3-9-IGHD2-21-IGHJ6, 5346 reads)
were detected in NALM-1. Indeed, similar to ALL,
NALM-1 expresses high levels of RAG1/2 and CD19/
20/CD79A/B as well as antigens specific to ALL [35].
Remarkably, one gastric cancer cell line, KE-97, ex-
presses high levels of IGL and IGH rearrangements
(IGLV3-21-1GLJ1, 19,374 reads, IGHV1-46-IGHD3-—

10-IGHJ4, 2129 reads). This cell line was derived from a
mucinous gastric adenocarcinoma from a 52-year-old
Japanese male [36]. Considering 1-4% of the gastrointes-
tinal malignancies are gastric lymphoma [37], this cell
line was likely derived from a gastric lymphoma instead
of a gastric carcinoma. Alternatively, as suggested by a
previous single-nucleotide polymorphism (SNP) array
analysis, the SNP pattern of this cell line was highly
similar to that of KMS-18 [4], a multiple myeloma cell
line established in Japan a few years after KE-97 [38].
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This could represent a potential mix-up between these
two cell lines.

EBV transformed normal B lymphocyte cell lines (cohort
462 lines)

The same bioinformatics pipeline was used to analyze
462 EBV transformed normal B lymphocyte cell lines
which were immortalized from healthy donor’s B cells.
Rearrangements of both IGH and IGK/L were readily
detected in almost all of the lymphocyte cell lines (Fig. 4a).
IGH rearrangements were found in 459 cell lines, while
IGK and IGL rearrangements were detected in 426 and 421
cell lines, respectively, supporting a notion that most of the
EBV immortalized cells were derived from mature B cells.
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In contrast to the highly diversified repertoire of normal
circulating B cell population, clonality occurred in the ma-
jority of EBV transformed B lymphocyte cell lines, reflect-
ing a loss of diversity and clonal evolution during the
establishment, growth and subculture of these cell lines.
Among the 462 B-lymphocyte cell lines, 54 appeared to be
monoclonal as only one IGH or IGK/IGL rearrangement is
detected (with comparable sequencing depth of other cell
lines). Potential biallelic rearrangement or biclonality (2
IGH or IGL or 2—4 IGK) was detected in the other 53 cell
lines. For the other 355 cell lines, bi/oligo or polyclonality
(>2 IGH or>2 IGL or >4 IGK [7]) was detected. Most of
these have less than 20 clonal rearrangements (with > 100
reads threshold) and many of them have one highly

Fig. 4 Heatmap and consensus sequence of CDR3 region of 462 EBV transformed normal B lymphocytes. a. Heatmap of IGH, IGK/IGL and TRA/
TRB in 462 EBV transformed normal B lymphocyte cell lines. Green color line in the heatmap represents the gene expression of the particular
sample, with a line drawn more towards the right, indicating a higher level of expression. b. Length of the CDR3 region (amino acids sequence,
AAs) of the dominant clone in 462 EBV transformed normal B lymphocytes. €. Consensus sequence of the CDR3 region of the dominant clone in
462 EBV transformed normal B lymphocyte cell lines. Sequences of the CDR3 region were aligned using ClustalW, and the consensus sequences
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expressed dominant rearrangement with high clonotype
faction (Fig. 5a, Additional file 1: Figure S4). The clonal
status of different loci appears correlated and cell lines
with polyclonality of one locus tend to display polyclonal-
ity at the other loci (Fig. 5a, b). A few cell lines still
retained a relatively diversified population. For example,
the cell lines ERR188358 and ERR188025 contain more
than 80 different IGK (83 and 85, respectively) and more
than 30 different IGH rearrangements (Fig. 5a). The in-
ferred phylogenetic trees based on the CDR3 region of the
dominant rearrangements of these 462 lymphocyte lines
are shown in Fig. 5c.

We hypothesize that EBV mediated transformation
occurred in a number of B cells, and during culture, some
clones outcompeted the others and gradually became dom-
inant clones. Therefore, diversity was lost and the popula-
tion became oligoclonal or even monoclonal [39, 40]. In
total, 9827 different rearrangements of IGH/IGK/IGL (with
a cut off of at least 100 sequencing reads, here after referred
as index rearrangement) were detected in 426 EBV trans-
formed B lymphocytes lines; 8 of them are highly expressed
as prominent rearrangements which occupies more than
90% of the clonotype fraction in their corresponding cell
lines (Additional file 1: Table S3). All (except two) of the
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dominant rearrangements of the 462 B lymphocyte lines
encode a productive BCR. Among the 9827 index rear-
rangements detected in these cell lines, only 363 subclonal
rearrangements codes for nonproductive BCR (353 out of
frame, 50 interrupted by inside stop codon, 40 have both
inside stop codon and out of frame rearrangements). The
majority of these non-productive BCR rearrangements were
barely expressed. Among all the 462 lymphocyte cell lines,
only one TCR rearrangement was detected (TRBV7-
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9-TRBJ2-1, 143 reads) in cell line ERR188361 (Additional
file 1: Table S4). To gain further insight into the BCR reper-
toire of EBV transformed normal B lymphocyte, we gener-
ated a heatmap of heavy/light chain gene segment usage of
these 462 lymphocyte lines (Fig. 6, Additional file 1: Figure
S4). Analysis of the IGH gene usage revealed a modest, po-
tential population bias of the IGHV segments usage (for ex-
ample, increase of IGHV3-23 usage was noted in cell lines
established from Finnish (FIN) and British (GBR)
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individuals, Fig. 6a), which may reflect an exposure history
of certain common antigens in each population [41-43].

Discussion

One of the potential pitfalls of profiling the BCR/TCR
repertoire using RNA sequencing is that non-transcribed
rearrangements may not be detected, and the clonality
analysis may be biased by the expression level of BCR/
TCR loci. Nevertheless, in comparison to traditional
PCR based method which is labor intensive and requires
well trained staffs, NGS/RNA sequencing based analysis
is more standardized and can be simply outsourced to
big sequencing centers. In contrast to PCR based ana-
lysis which is limited by the number of loci that can be
feasibly examined, NGS based profiling can comprehen-
sively detect all expressed TCR/BCR rearrangements, in-
cluding some rearrangements which are not usually
included in PCR based analysis (e.g., TCRA alpha re-
arrangement). The BCR/TCR repertoire identified using
RNA sequencing were consistent with previous studies
using BIOMED-2 PCR Sanger sequencing [29, 30] (The
TCR gene names in their paper utilized old aliases and
need to be converted to standard gene name using Gen-
ecards https://www.genecards.org). In addition, the feasi-
bility of profiling BCR repertoires from RNA sequencing
data have recently been explored in CLL [44]. In their
study comparing two approaches, BCR repertoire profil-
ing using RNA sequencing showed equal or superior re-
sults as compared with traditional PCR and Sanger
sequencing (clinical technique) [44]. In addition, with a
few exceptions which are likely caused by accidental
mix-up, a consistent BCR/TCR repertoire could be ob-
tained when comparing the RNA sequencing data from
CCLE with sequencing results for blood cancer cell lines
generated by different researchers (for example, cancer
cell lines RNA sequencing data in SRA database, https://
www.ncbi.nlm.nih.gov/sra). This suggests that the BCR/
TCR repertoire pattern may be used as an alternative/
complement authorization method for lymphocyte de-
rived cell lines. The advantage of this approach is that
when RNA sequencing data is available (which is already
widely applied in many kinds of research), the cell lines
(need to be lymphocyte derived cells) used in these stud-
ies can be simultaneously validated based on the BCR/
TCR profile. As such, the RNA sequencing data depos-
ited in the online public database (GEO, SRA) can be
further checked and authenticated independently by any
researchers. Crucially, we noticed that poly A selection
before sequencing is important for examining the BCR/
TCR repertoire, as poly A enriched samples generated
100-fold more BCR/TCR sequencing reads as compared
to samples which were not subjected to poly A selection
but were sequenced at similar sequencing depth. None-
theless, RNA sequencing of samples without poly A
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selection can still discover the majority of BCR/TCR rear-
rangements. However, accuracy of clonotype fraction of
subclonal rearrangements may be significantly affected.

Currently, multiplex PCR based T/B cell receptor re-
arrangement testing has been used as a clinical approach
to detect suspected lymphoproliferative disease [45]. This
has occasionally been hindered by a deletion/translocation
(e.g., t(11;14)) event in the Ig loci and different set of pri-
mer panels may be tested before clonality can be inferred.
Recently, the cost of next-generation sequencing (NGS)
has quickly decreased and gradually become comparable
with traditional PCR-Sanger analysis. RNA sequencing is
straightforward with standardized procedures, eliminating
the need of patient based personalized BCR/TCR primer
sets selection and optimization. Furthermore, RNA
sequencing can be scaled up to a large number of sam-
ples easily, allowing simultaneous examination of gene ex-
pression, SNP and somatic mutations, in addition to the
B/TCR rearrangement repertoire. Our analysis highlights
the potential of using RNA sequencing as a diagnostic test
to examine the BCR/TCR clonal rearrangement in lymph-
oid malignancy.

The observation of subclonality or potential biclonality
in a number of blood cancer cell lines is interesting. In
most of these cases, the subclones appear to have been
derived from the major clones through somatic hyper-
mutation (e.g., Burkitt lymphoma cell lines NAMALWA,
GA-10, EB1, CA46 and Hodgkin lymphoma cell line
HS611.T etc.). However, in the B cell lymphoma cell
lines NU-DUL-1, JM1 and the Multiple myeloma cell
line AMO-1, more than three different IGL (cell lines
NU-DUL-1, JM1) or IGH (cell lines AMO-1) rearrange-
ments were detected, suggesting independent biclonal-
ity in these cell lines. As cancer cell lines are
generally regarded as of monoclonal origin, the poten-
tial biclonality at these cell lines is interesting and
may require further detailed study. On the other
hand, our observation of high clonality and potential
clonal selection/evolution in EBV transformed normal
B lymphocytes suggests that careful experimental de-
sign and interpretation of the result may be required
when using EBV transformed lines as a model to
study normal B cell population, B cell gene expres-
sion or quantitative trait loci (QTL) [40, 46].

Conclusions

In summary, we comprehensively profiled the B/T cell
receptor repertoire in 936 cancer cell lines and 462 sam-
ples of EBV transformed normal B lymphocytes. The
relative “pure” feature of cancer cell lines circumvents
the problem of tumor infiltrating T/B and stroma cells
in primary tumor samples. Our analysis provides unique
insights into the BCR/TCR rearrangement repertoire
and clonality of cell lines derived from lymphocyte cells.
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Additional files

Additional file 1: Figure S1. Expression of CD19/CD20, CD79A/B and
RAG1/RAG2 in blood cancer cell lines. X axis: 164 blood cancer cell lines
grouped base on the disease types (rectangle color bar below the X axis),
each dot in X axis represent one cell line, and the Y axis, expression level
(log2 value) of indicated genes. Figure S2. Clonal fraction (filtered by
>30 reads) of B-ALL, multiple myeloma, diffuse large B cell lymphoma,
Burkitt lymphoma, B cell lymphoma (unspecified) and mantle cell lymph-
oma base on IGH or IGHK/L. Blue color indicates the clonotype fraction
of the most dominant clone, Red color indicate the clonotype fraction of
second dominant clone, Yellow color indicate the third dominant clone,
while any smaller subclones were aggregated and labelled in grey. Figure
S3. Clonal fraction (filtered by >30 reads) of T-ALL and anaplastic large cell
lymphoma base on TRCA or TRCB. Blue color indicates the clonotype frac-
tion of dominant clone, red color inidicate the clonotype fraction of second
dominant clone, while gray color indicate the third dominant clone. Figure
S4. Heatmap showing the usage of IGK/L V genes (A), IGK/L J genes (B), and
constant region (C) in 462 samples of EBV transformed normal B lympho-
cytes. Figure S5. The phylogenetic tree inferred based on the rearrange-
ment of the CDR3 region of IGH, IGK and IGL of EBV transformed B
lymphocyte samples ERR188025, ERR188358 and ERR188212. These three
cell lines have much higher number of rearrangement types than the other
B lymphocyte lines. Clonal Fraction (upper panel) and the read counts
(lower panel) of the dominant clone of 462 samples of EBV transformed nor-
mal B lymphocytes. (ZIP 1290 kb)
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