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Abstract

Difficulties and Opportunities for Effective Field Theories of Beyond the Standard

Model Physics

by

Ian Banta

In this thesis, we study some possible extensions of the Standard Model and the insight

they provide into treating the Standard Model as an effective field theory. Following

an introduction highlighting the uses and difficulties of effective field theory in study of

the Standard Model and physics beyond the Standard Model (BSM), we first focus on

Loryons, particles which acquire most of their mass from the Higgs. We explain how

BSM Loryons necessitate the use of HEFT as an effective field theory description and

examine the experimental viability of scalars and vector-like fermions. We then investi-

gate how BSM Loryons could affect the electroweak phase transition and gravitational

wave background. Finally, we analyze the effective field theory of the two Higgs doublet

model, demonstrating the importance of choosing an appropriate flavor basis for the two

doublets and introducing a new basis particularly suited to effective field theory analysis.
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Chapter 1

Introduction

Since its development in the second half of the twentieth century the Standard Model

of particle physics has been enormously successful, culminating in the discovery of the

Higgs boson in 2012. However, there are many outstanding experimental results which

are not explained by or accounted for in the Standard Model, including, e.g., neutrino

masses, dark matter, dark energy, the matter-antimatter asymmetry, and gravity. We

thus know there must be additional physics beyond the Standard Model.

There are two broad ways one can imagine discovering new beyond the Standard

Model (BSM) physics. The most obvious would be a “smoking gun”: a direct discovery

of a new particle. Alternatively, we could have some flavor of indirect detection, with

the new particle(s) not explicitly seen but inferred through their effect on other, known

particles. Direct detection would be the more satisfying and is what we would ultimately

like to achieve in order to say that we have discovered some new physics. Indeed, we could

identify experimental observation of the previously highlighted issues with the Standard

Model as already being indirect detection of new physics; for example, we have indirectly

detected dark matter through its gravitational effects. Despite these indirect detections,

we continue to search for an explanation of what exactly this BSM physics is, and to
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Introduction Chapter 1

confirm any particular explanation we would ideally make a direct detection. However,

history suggests that we are much more likely to discover new physics indirectly, with

direct detection only coming later, and it is thus worthwhile to make significant efforts

towards indirect detection (both in the sense of actually working towards experimentally

making such a detection and understanding which indirect effects we are most likely to see

and thus should look for). While any particular indirect effect will not uniquely identify

a particular BSM candidate, indirect observations are still useful for narrowing the space

of possibilities and providing direction as to which are the most likely candidates.

To pursue indirect detection, one could imagine taking some specific model of BSM

physics (henceforth referred to as a UV model), calculating a number of indirect signa-

tures it would produce (e.g. how it changes various scattering cross sections between

Standard Model particles), and then searching for these indirect signatures. Unless there

are reasons to consider only a handful of UV models of interest, this quickly becomes

infeasible given the number of possibilities. We would prefer to proceed in a more model-

independent way, which is provided by effective field theory (EFT) [7].

An EFT is a quantum field theory which is only valid up to some energy cutoff Λ.

It contains an infinite series of operators with higher-dimension operators suppressed by

powers of Λ; thus, at energies significantly below Λ, higher-dimension operators quickly

become negligible as their mass dimension increases. From a top-down perspective, it is

useful for highlighting the relevant behavior of a UV theory at some low energy scale.

Suppose one has a UV theory with a particle of mass M and is running experiments at an

energy scale Λ, with M � Λ. The particle is thus too massive to be produced and will not

be seen directly; however, it can still have an effect on the interactions of other particles

in the theory. In order to calculate needed amplitudes and cross sections, one could

just use the UV theory. However, from a practical point of view, the physics can often

be better understood by integrating out the heavy particle to produce a new, effective

2
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theory which contains only the lighter particles as degrees of freedom and has additional

tree-level interactions not present in the UV theory. The infinite tower of new operators

is suppressed by appropriate powers of M , and this effective theory will thus be valid up

to an energy cutoff Λ ≈M . A specific example of this is the Fermi theory of beta decay.

At energies below the W mass, propagating W bosons are not observed, but they can still

mediate decay of a neutron to a proton, electron, and electron antineutrino. Starting with

the theory of the weak interactions and then integrating out the W/Z bosons produces

an effective theory with a new four-fermion interaction in the Lagrangian, the size of

which is controlled by the mass of the W boson.

One can also think about an EFT from a bottom-up perspective. In this case, instead

of starting with a UV theory and integrating out heavy particles, we start with a collection

of low-energy degrees of freedom and add in higher-order interactions which could be

mediated by some (unknown) heavy particles. For example, if we are interested in indirect

detection of BSM physics, we have

LEFT = LSM +
∑

i

Ci
Λpi
Oi , (1.1)

where Oi are various operators with mass dimension pi > 4 and Ci are dimensionless

coefficients. We expect the mass scale Λ, where the EFT breaks down, to be around

the mass of the (unknown) heavy particles in the underlying UV theory. On the closer-

to-experiment side, one can then place bounds on the EFT coefficients Ci and scale Λ;

on the closer-to-models side, one can calculate from a given UV model what the EFT

coefficients Ci and scale Λ are (see, e.g., [8, 9] for recent examples).

An EFT is not, however, entirely agnostic about the UV physics. Writing down the

higher-dimension operators requires not just knowing the particle content of the EFT

but also knowing the symmetries of the theory. It may be that the symmetries can be

3
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copied over from the low-energy particle content, but it may also be that not all of these

are good symmetries of the EFT. For example, it could be that there are some accidental

symmetries of the low-energy degrees of freedom which are not preserved in the UV

theory. Assuming a symmetry persists will forbid some operators on the EFT side and

a priori rule out some UV models. For extending the Standard Model as an EFT, there

are two common choices. One is to assert that the EFT obeys the full SU(2)L × U(1)Y

electroweak symmetry of the Standard Model (there is also the SU(3)C of the strong

force, but unless otherwise mentioned this will always be along for the ride). This is

known as SMEFT, for Standard Model Effective Field Theory; see [10] for a review. The

other is to assert that the EFT only obeys the U(1)em of electromagnetism, which is

the unbroken portion of the symmetry at low energies; this is known most commonly as

HEFT, for Higgs Effective Field Theory [11, 12, 13, 14].

Because of its more restrictive symmetry structure, SMEFT has fewer additional op-

erators and is less complicated, and it is thus often preferred. However, not all UV models

obey the full electroweak symmetry at low energies; those models which do not require

the use of HEFT rather than SMEFT. In general, those models which require the use of

HEFT have either (1) new particles which acquire most of their mass from electroweak

symmetry breaking and the Higgs vev; or (2) an additional source of electroweak symme-

try breaking beyond the Higgs vev. For a more detailed discussion of which UV models

require HEFT, see [11].

In this work, we will examine UV models which may require the use of HEFT. Such

models are interesting for several reasons. First, to the extent that such models remain

experimentally viable, they provide support for not considering only SMEFT in EFT

analyses. Next, from the other side, such models could in fact be ruled out; to require

HEFT, they must intrinsically interact with the electroweak scale, and thus could be

ruled out as we push the energy frontier forwards rather than merely being shifted to

4
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higher energies (whether fine-tuned or not). If they were to be ruled out, then SMEFT

could be taken as the way of treating the Standard Model as an EFT. Such models

can also produce striking experimental signatures, either through deviations which are

not possible in SMEFT due to its symmetry structure or through simply having a large

coupling to the Higgs. For these reasons, it is useful to understand the features of such

models and the proper way to treat them using effective field theory.

This work is organized as follows. In Chap. 2, we consider the case of new scalars

and vector-like fermions which receive most of their mass from the Higgs (“Loryons”)

and determine whether such particles remain experimentally viable. Due to receiving

most of their mass from the Higgs, integrating out Loryons to produce an EFT requires

the use of HEFT. Since unitarity constraints prevent the coupling to the Higgs from

being too large, there is an upper bound on the mass of Loryons, and they could be

experimentally ruled out. In Chap. 3, we examine the effect of experimentally viable

Loryons on the electroweak phase transition. Since by definition Loryons have a sizable

coupling to the Higgs, they generically have a significant effect on the electroweak phase

transition and could contribute to the matter-antimatter asymmetry or a gravitational

wave background. In Chap. 4, we treat the two Higgs doublet model. In particular, we

consider the effect of different basis choices in the UV model and the extent to which

HEFT is required as the EFT description. Supplementary calculations appear in a set

of appendices.
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Chapter 2

Non-Decoupling New Particles

This chapter is based on work with Timothy Cohen, Nathaniel Craig, Xiaochuan Lu, and

Dave Sutherland, published as [4].

Have we discovered all of the particles that acquire most of their mass from the Higgs?

Thanks to decoupling, whether we have discovered all particles that acquire any of their

mass from the Higgs is essentially unknowable with finite experimental precision. But par-

ticles acquiring a fixed fraction of their mass from the Higgs are effectively non-decoupling

as the strength of their interaction with the Higgs necessarily grows in proportion to their

mass. Among these, perhaps the most interesting are particles acquiring the majority of

their mass from the Higgs.1 The low-energy effects of such particles must be described

by the U(1)em-symmetric HEFT rather than the SU(2)L × U(1)Y -symmetric SMEFT.

The underlying reason is that the low-energy theory obtained by integrating out such

particles does not admit a SMEFT-like expansion around a SU(2)L × U(1)Y -preserving

point in the EFT field space that converges at our observed vacuum [11]. In this sense,

1We will sharpen the notion of “majority” in what follows; the detailed criteria varies weakly depend-
ing on the quantum numbers of the new particles and the nature of their couplings to the Higgs, but in
all cases it roughly corresponds to particles obtaining more than half of their mass from the Higgs.
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particles acquiring most of their mass from the Higgs provide simple, perturbative UV

completions of HEFT that cannot be described using SMEFT [11, 12, 13, 14]. Insofar as

their masses are bounded from above by unitarity considerations to be . 4πv (where v

is the Higgs boson vacuum expectation value), these particles provide a well-defined and

entirely finite target for experimental searches.

We follow in the footsteps of Gell-Mann and refer to such particles as Loryons.2 Most

of the fundamental particles in the Standard Model are themselves Loryons, with the

exception of the photon and gluon (though the pedantic among us might argue for their

inclusion as well, inasmuch as their Higgs-independent masses are not larger than their

Higgs dependent-ones, both being zero). This classification is perhaps even more apt

when applied to mesons and baryons, whose masses arise only in part from electroweak

symmetry breaking; pions, kaons, and B mesons are Loryons, while protons and neutrons

are not. Our goal here is to explore the phenomenology of BSM Loryons, with a particular

eye towards the parameter space that could yield a future discovery.

The search for BSM Loryons has a long history. Perhaps the most notable example

is the extension of the Standard Model (SM) that includes a chiral fourth generation,

the smallest anomaly-free set of entirely chiral fermions that all carry SM charges. Fa-

mously, this model is excluded by a combination of unitarity bounds, Higgs coupling

measurements, precision electroweak tests, and direct searches [16, 17]. But this leaves

the door open for vector-like fermions, scalars, or vectors in various representations of

SU(3)C ×SU(2)L×U(1)Y . In the case of vector-like fermions, even though their vector-

like masses are allowed by their gauge quantum numbers, it is technically natural for them

2From Finnegan’s Wake, “with Pa’s new heft...see Loryon the comaleon.” Note that Loryons whose
masses vanish as v → 0 were referred to as “Higgs descendents” in [15]. Such particles form a particularly
interesting subset of Loryons, as the EFT manifold obtained by integrating them out does not contain
an SU(2)L×U(1)Y -preserving fixed point. But our interest lies in the broader class of perturbative UV
completions of HEFT that cannot be described using SMEFT, for which imposing m → 0 as v → 0 is
too strong of a requirement.
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to receive the majority of their mass from electroweak symmetry breaking since these

terms may still violate global symmetries. Aspects of this scenario and its implications

for the EFT of the Higgs were recently studied in [18]. For scalars, there are (famously)

fewer symmetries available to protect possible mass terms. So while such BSM examples

are still phenomenologically interesting, justifying a small mass that is independent of

electroweak symmetry is harder from a symmetry perspective.3 In the case of vectors,

gauge symmetry provides a natural way of controlling mass terms, but strong constraints

exist for models where the Higgs is directly charged under the new gauge group so that it

can be primarily responsible for generating the associated gauge boson masses. A more

viable option is for the non-zero Higgs vacuum expectation value to induce spontaneous

symmetry breaking of the BSM local symmetry via another scalar, in which case the

vector bosons can acquire most of their mass from the Higgs without coupling to it via

renormalizable operators. Such indirect scenarios were highlighted in [15]. For simplicity,

in what follows we will focus on scalar and fermionic Loryons obtaining the majority of

their mass from a direct coupling to the Higgs. As we will see, there is no shortage of

such candidates, but it would also be interesting to further explore the space of Loryon

candidates indirectly acquiring the majority of their mass from the Higgs.

To the extent that they remain viable, BSM Loryons provide compelling motivation

to use HEFT to parameterize possible deviations in Higgs coupling measurements. Of

course, it is reasonable to ask whether one should use an EFT to describe the low-energy

effects of Loryons in the first place given that their masses are necessarily bounded to

lie below ∼ 4πv. Here it bears emphasizing that the vast majority of collisions at the

LHC involve partonic energies below 1 TeV, and in particular the events most relevant to

precision Higgs measurements involve partonic energies much closer to the weak scale. In

3But not impossible – for instance, a Goldstone boson whose coupling to the Higgs provides the
leading violation of its shift symmetry can naturally acquire most of its mass from electroweak symmetry
breaking.
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this regime, EFTs truncated at lower orders in their derivative expansion (as is the case

in the practical application of HEFT and SMEFT) are appropriate. While it is possible

that some Loryons may be discovered (or excluded) predominantly by direct searches, as

we will see, Higgs couplings and other Standard Model precision measurements provide a

complementary (and perhaps even the best) probe of Loryon parameter space. Signals in

these channels are generally well-described by an EFT, and the first signs of a deviation

are likely to be presented in an EFT framework. As such, the existence of Loryons

consistent with current data provides a strong motivation to use HEFT as the BSM

parameterization when performing future searches for Higgs coupling deviations.

This chapter is organized as follows: In Sec. 2.1, we enumerate scalar and fermionic

Loryons obtaining the majority of their mass from direct coupling to the Higgs. For sim-

plicity, and to minimize constraints from precision electroweak measurements, we only

study candidates that can be expressed as multiplets of the approximate SU(2)L×SU(2)R

custodial symmetry of the SM. We allow for all custodially symmetric renormalizable cou-

plings to the Higgs that respect a Z2 symmetry acting on the Loryons. Imposing the Z2

symmetry allows us to highlight the irreducible loop-level signatures of Loryons; tree-level

signatures in the absence of this symmetry typically lead to stronger constraints but are

not inherent to the definition of Loryons. We present a sharp criterion for determining

when the local EFT obtained by integrating out these custodial irreducible represen-

tations (irreps) must be HEFT (in that it cannot be written in terms of a convergent

SMEFT at our vacuum) and use this to define the parameter space of interest for Lo-

ryons. In these cases, the mass scale of weakly-coupled Loryons is bounded from above by

perturbative unitarity considerations. While it is certainly possible for Loryon couplings

to exceed these bounds, we use them to determine the regime in which our perturbative

calculations remain under control. In Sec. 2.2, we consider constraints on the Loryon

candidates coming from Higgs coupling measurements, most notably LHC bounds on

9
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h→ γγ, h→ gg, h→ invisible, and h→ untagged. We then turn to consider precision

electroweak limits in Sec. 2.3, which largely stem from bounds on the S parameter given

our imposition of custodial symmetry. In Sec. 2.4, we determine the current state of direct

limits on the Loryon candidates that remain viable after imposing perturbative unitarity

bounds, Higgs couplings, and precision electroweak measurements are taken into account.

We summarize the surviving parameter space of Loryons in Sec. 2.5, finding a number

of compelling candidates that are consistent with all known data, thereby providing a

sharp target for future searches. We briefly sketch the future prospects for the HL-LHC

in Sec. 2.6, focusing on projected improvements in Higgs coupling measurements; both

h→ Zγ and h pair production are expected to provide qualitatively new sensitivity. We

present our conclusions in Sec. 2.7. The calculation of the mass spectrum and one-loop

contribution to the Higgs wave function renormalization is relegated to App. A.

2.1 Loryon Catalog

Our starting point is to enumerate the BSM Loryons that have a possibility of being

phenomenologically viable. Our first goal will be to specify their SM quantum numbers

and to understand the implications for the allowed mass terms and couplings to the

Higgs field in Sec. 2.1.1. We will then discuss the connection to HEFT in Sec. 2.1.2 by

specifying the conditions under which integrating out a Loryon requires matching the

resulting theory onto HEFT. In these cases, the mass of the Loryons are bounded from

above by perturbative unitarity considerations, which we will explore in Sec. 2.1.3.

10
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2.1.1 Representations and Mass Spectrum

New physics that badly violates the approximate SU(2)L×SU(2)R custodial symme-

try of the SM is strongly constrained by precision electroweak measurements.4 In order

to focus on the candidates that are most compatible with current data, we will restrict

our attention to Loryons that preserve custodial symmetry. There are, of course, viable

Loryon candidates that violate custodial symmetry, albeit with parameter spaces more

tightly constrained by precision electroweak data; we leave the study of this broader class

of candidates to future work.

Given this assumption, we will refer to the representation of the BSM Loryons in

two ways, depending on the context. One useful approach is to denote the representation

under the SM gauge groups; this will be written using the notation (C,L)Y for the charges

under SU(3)C , SU(2)L, and U(1)Y . The other notation is to specify the representation

under custodial symmetry; this will be written as [L,R]Y , where we suppress the color

information, and use the integers L/R to denote the dimensions of the representations

under SU(2)L/R. In this notation, Y denotes the hypercharge of the states on top of the

eigenvalues of the SU(2)R generator T 3
R, so the custodial representation [L,R]Y contains

SM fields (C,L)−(R−1)/2+Y to (C,L)(R−1)/2+Y in steps of unit hypercharge. We require a

priori that all BSM Loryons satisfy the following three conditions:

• The color singlets have integer electromagnetic charges.

• Those possessing electromagnetic charges can promptly decay.

• Fermionic Loryons are introduced in pairs such that one can write a custodial

singlet Yukawa term.

4In fact, the lack of evidence for additional custodial symmetry violation is often taken as a reason
for preferring to interpret experimental results using SMEFT over HEFT. We caution that this is not a
valid argument since both EFT frameworks admit custodially symmetric limits.

11



Non-Decoupling New Particles Chapter 2

The prompt decay constraint is taken to be cτ . 1 mm. A rough calculation taking

a benchmark suppression scale Λ & 5 TeV gives a conservative bound dim ≤ 9 for

the decay operator, which is only logarithmically sensitive to the chosen value of Λ.

This constrains the allowed color, electroweak, and hypercharge representations of BSM

Loryons. In Table 2.1 and Table 2.2, we enumerate the custodial irreps considered, list

their maximum allowed hypercharge, and give the labeling of the SM representations

following the conventions of [19]. We do not explicitly enumerate the possible color

representations; virtually all of these will be easily ruled out by constraints on the Higgs

coupling to gluons parameterized by κg (see Sec. 2.2.3).

Scalars: We start with the case of scalar Loryons, listing their SM and custodial repre-

sentations in Table 2.1. For each custodial irrep [L,R]Y , we define a L×R matrix field Φ

that transforms as Φ→ ULΦU †R under the chosen irrep UL/R of SU(2)L/R. The custodial

irrep is real iff L+R is even and Y = 0. We can write an explicit mass term for Φ,

L ⊃ −m
2
ex

2ρ
tr
(
Φ†Φ

)
, (2.1)

where ρ = 0 (1) for a complex (real) representation.

Arranging the components of the Higgs doublet (φ+, φ0)T into the [2, 2]0 custodial

representation,

H =




φ∗0 φ+

−φ− φ0


 unitary gauge−−−−−−−−→ v + h√

2




1 0

0 1


 , (2.2)

we can also write down a Higgs portal interaction,

L ⊃ −λhΦ

2ρ
tr
(
Φ†Φ

) 1

2
tr
(
H†H

)
, (2.3)

12
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Scalars

SM Reps (1, 1)Y (1, 2)Y (1, 3)Y (1, 4)Y (1, L)Y (3, 1)Y (3, 2)Y

Field SY Φ2Y ΞY Θ2Y XL,Y ω|3Y | Π|6Y |

R = 1 2 3 4 5 6 7 8

L = 1 |Ymax| = 3 5
2

2 3
2

1 1
2

0 ×

2 7
2

4 7
2

4 9
2

5 11
2

5

3 3 7
2

4 9
2

4 9
2

5 11
2

4 7
2

3 7
2

4 9
2

5 11
2

5

5 3 7
2

4 7
2

4 9
2

5 11
2

6 5
2

3 7
2

4 9
2

5 9
2

4

7 3 7
2

3 5
2

2 3
2

1 1
2

8 3
2

1 1
2

0 × × × ×

Table 2.1: The representations and corresponding fields for the scalar BSM Loryons
considered in this work. We express “SM charges” as (C,L)Y and “custodial charges”
as [L,R]Y ; the custodial representation [L,R]Y contains SM fields (C,L)−(R−1)/2+Y

to (C,L)(R−1)/2+Y in steps of unit hypercharge. Hypercharges Y are restricted so that
any new charged particles can promptly decay.

which provides a contribution λhΦv
2/2 to the mass for all the components of Φ. We will

be interested in the Loryon parameter space where the BSM state gets the majority of

its mass from electroweak symmetry breaking. To this end, it is convenient to define

the dimensionless quantity λex ≡ 2m2
ex/v

2. Thus the explicit mass term gives a mass-

squared λexv
2/2 to each component of Φ (though we emphasize that the explicit masses

are independent of the Higgs vev).

Additionally, for the representations that are charged under both SU(2)L and SU(2)R,

13
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there is another contraction for the quartic term,

L ⊃ −λ
′
hΦ

2ρ
2 tr

(
Φ†T aLΦT ȧR

)
2 tr

(
H†T a2HT

ȧ
2

)
, (2.4)

involving Hermitian SU(2) generators T adim(irrep), indexed by a, ȧ = 1, 2, 3. In our notation,

these generators are canonically normalized,

tr
(
T adimT

b
dim

)
= δab

1

3
dim C2(dim) , (2.5)

with the Casimir (note that dim = 2j + 1)

C2(dim) = j(j + 1) =
1

4
(dim +1)(dim−1) . (2.6)

After electroweak symmetry breaking, the interaction in Eq. (2.4) leads to a mass splitting

among the components of Φ. The remaining degeneracies in the mass spectrum arrange

into irreps of the unbroken diagonal subgroup SU(2)V ⊂ SU(2)L × SU(2)R. Explicitly,

one can collect the L×R components of the matrix Φ into a direct sum of V -dimensional

vectors φV that are SU(2)V representations:

Φ→ ⊕
V ∈V

φV , (2.7)

with

V =
{
L+R− 1 , L+R− 3 , · · · , |L−R|+ 1

}
. (2.8)

As a concrete example to illustrate Eq. (2.7), we consider the complex custodial irrep

Φ ∼ [2, 3]−1/2. It has six components and decomposes into a quadruplet and a doublet

14
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under SU(2)V :

Φ =




Φ11 Φ12 Φ13

Φ21 Φ22 Φ23


→ φ4 ⊕ φ2 . (2.9)

Working with the T 3
R-spin basis, namely each column of the matrix Φ above has a definite

T 3
R-spin of SU(2)R (or equivalently of SU(2)V ), respectively−1, 0, 1 in order, we can write

out each SU(2)V irrep φV from the Φ elements using the Clebsch-Gordan coefficients,

φ4 =




Φ13

1√
3

(
−
√

2 Φ12 + Φ23

)

1√
3

(
Φ11 −

√
2 Φ22

)

Φ21




, φ2 =




1√
3

(
Φ12 +

√
2 Φ23

)

1√
3

(
−
√

2 Φ11 − Φ22

)



. (2.10)

Then the interaction in Eq. (2.4) reads (in the unitary gauge)

L ⊃ −λ′hΦ 2 tr
(
Φ†T aLΦT aR

) 1

2
(v + h)2 = −1

2
λ′hΦ(v + h)2

(
−φ†4φ4 + 2φ†2φ2

)
. (2.11)

General cases are worked out systematically in App. A. In the end, we obtain the

decomposition of Eq. (2.4) as

L ⊃ − 1

2ρ
1

2
λ′hΦ(v + h)2

∑

V ∈V

φ†V

[
C2(L) + C2(R)− C2(V )

]
φV . (2.12)

This leads us to a convenient form of the quadratic piece of the Lagrangian for an [L,R]Y

15
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scalar Loryon:

Lquad = − 1

2ρ

∑

V ∈V

φ†V

[
D2 +

1

2
λexv

2 +
1

2
λV (v + h)2

]
φV , (2.13)

where we have introduced the notation

λV ≡ λhΦ + λ′hΦ

[
C2(L) + C2(R)− C2(V )

]
. (2.14)

Note in particular that the mass spectrum of the scalar Loryon is

m2
V = m2

ex +
1

2
λV v

2 =
1

2
v2 (λex + λV ) , ∀ V ∈ V . (2.15)

Here and henceforth we assume λex, λex +λV ≥ 0 in order to ensure stability of the Φ = 0

vacuum for any background value of the Higgs.

We will find it useful to scale the mass splitting by the mass common to all the

components. To this end, we define

rsplit ≡
λ′hΦ

λex + λhΦ

. (2.16)

In principle, some scalar BSM Loryons could also couple linearly to various powers

of H, leading to Higgs-Loryon mixing after electroweak symmetry breaking. We assume

these couplings are small, consistent with an approximate discrete symmetry acting on

the BSM scalars. We further assume that the Higgs-independent potential for the new

scalars is such that they are stabilized at the origin. Under these assumptions, mixing

between new scalars and components of the Higgs is a subleading effect on low-energy

physics.

Fermions: For fermionic Loryons, we consider vector-like fermions whose SM and custo-
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dial representations are summarized in Table 2.2. As in the scalar case, for each custodial

irrep [L,R]Y , we define an L× R matrix field Ψ that transforms as Ψ→ ULΨU †R. Each

element in Ψ is a Dirac field that contains both a left-handed Weyl fermion and a right-

handed Weyl fermion. We can then write down an explicit mass term,

L ⊃ −Mex tr
(
ΨΨ
)
. (2.17)

As before, it is convenient to define yex ≡
√

2Mex/v. This facilitates the comparison

between the fraction of the fermions’ masses that is independent of electroweak symmetry

breaking and the fraction that arises from electroweak symmetry breaking. The latter

comes from the Yukawa interactions that can be schematically written as

L ⊃ −y12 Ψ1 ·H ·Ψ2 + h.c. . (2.18)

The representations [L1, R1]Y and [L2, R2]Y (of Ψ1 and Ψ2 respectively) are chosen such

that contracting their indices with the [2, 2]0 Higgs representation (as schematically de-

noted by the dot products above) can yield a custodial singlet. This enforces the equality

of the hypercharges of two representations and means that L1 = L2±1 and R1 = R2±1.

Henceforth we refer to such a pairing as [L1, R1]Y ⊕ [L2, R2]Y .

Upon electroweak symmetry breaking, the Yukawa interaction in Eq. (2.18) leads to

mass splitting among the components of Ψ1 and Ψ2. To keep track of this, we decompose

each of them into their respective irreps under the diagonal subgroup SU(2)V ⊂ SU(2)L×

SU(2)R, similar to the scalar case in Eq. (2.7):

Ψ1 → ⊕
V1∈V1

ψ1,V1 , Ψ2 → ⊕
V2∈V2

ψ2,V2 , (2.19)
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Vector-like Fermions

SM Reps (1, 1)Y (1, 2)Y (1, 3)Y (1, L)Y (3, 1)Y

Field EY ∆2Y ΣY KL,Y P|3Y |

R = 1 2 3 4 5 6 7 8

L = 1 |Ymax| = 3 5
2

2 3
2

1 1
2

0 ×

2 7
2

3 7
2

4 9
2

5 11
2

5

3 3 7
2

3 7
2

4 9
2

5 11
2

4 5
2

3 7
2

4 7
2

4 9
2

5

5 3 5
2

3 7
2

4 9
2

5 9
2

6 5
2

3 7
2

3 5
2

2 3
2

1

7 2 3
2

1 1
2

0 × × ×

8 × × × × × × × ×

Table 2.2: The representations and corresponding fields for the vector-like fermionic
BSM Loryons considered in this work. We express “SM charges” as (C,L)Y and
“custodial charges” as [L,R]Y ; the custodial representation [L,R]Y contains SM fields
(C,L)−(R−1)/2+Y to (C,L)(R−1)/2+Y in steps of unit hypercharge. Hypercharges Y
are restricted so that any new charged particles can promptly decay and so that the
Yukawa terms with the Higgs are gauge singlets.

with

V1 =
{
L1 +R1 − 1 , L1 +R1 − 3 , · · · , |L1 −R1|+ 1

}
, (2.20a)

V2 =
{
L2 +R2 − 1 , L2 +R2 − 3 , · · · , |L2 −R2|+ 1

}
. (2.20b)

In the overlap of these two sets V = V1 = V2, the two fermions ψ1,V1 and ψ2,V2 get mass

mixings through the interaction in Eq. (2.18).

As a concrete example to illustrate this mass mixing, we consider the pair of custodial
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irreps Ψ1 ∼ [2, 3]−1/2 and Ψ2 ∼ [1, 2]−1/2. The contraction of indices in Eq. (2.18) can be

written out as

L ⊃ −y12 Ψ1,αȧHαα̇
1√
2
σȧγ̇α̇εγ̇β̇ Ψ2,1β̇ + h.c. , (2.21)

where undotted (dotted) indices are for SU(2)L (SU(2)R) and Greek (Latin) indices

are used to denote fundamental (adjoint) representations. Upon electroweak symmetry

breaking, we have Hαα̇ = 1√
2
(v + h)δαα̇ and hence (dropping dots on indices)

L ⊃ −1

2
y12 Ψ1,αa σ

a
γαεγβ Ψ2,1β̇ + h.c. = − 1√

2

√
3

2
y12(v + h)ψ1,2 ψ2,2 + h.c. , (2.22)

from which we can make the identification

(ψ1,2)β =
1√
3
σaαβΨ1,αa , (ψ2,2)β = εβαΨ2,1α . (2.23)

As expected from Eq. (2.20), Ψ2 in this example has a single SU(2)V irrep with V2 ∈ {2}.

On the other hand, Ψ1 has two SU(2)V irreps with V1 ∈ {4, 2}. The interaction in

Eq. (2.18) gives a mass mixing between the components in the overlap of the two sets

V1 = V2 = 2.5

The general cases of a pair of custodial irreps [L1, R1]Y ⊕ [L2, R2]Y have been worked

out systematically in App. A. This leads us to the following general form of the Lagrangian

that is quadratic in the fermions,

Lquad =
∑

V ∈V1−V2

ψ1,V

(
i /D −M1

)
ψ1,V +

∑

V ∈V2−V1

ψ2,V

(
i /D −M2

)
ψ2,V

5The expression for ψ1,2 in Eq. (2.23) appears to be different from its scalar counterpart (namely φ2
in Eq. (2.10)). This is because in Eq. (2.21) we used the adjoint basis for the columns of Ψ1, as opposed
to the T 3

R-spin basis used for Φ in Eq. (2.9). Carrying out the basis change, one can verify that they are
the same linear combination.
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+
∑

V ∈V1∩V2

(
ψ1,V ψ2,V

)

i /D −




M1
1√
2
yV (v + h)

1√
2
y∗V (v + h) M2









ψ1,V

ψ2,V


 , (2.24)

with

yV = (−1)j1+r1+l2+ 1
2 y12 ×

√
L1R1 ×




r2 l2 j1

l1 r1
1
2




, (2.25)

where 2li + 1 = Li, 2ri + 1 = Ri, 2j1 + 1 = V , and the quantity in brackets is a Wigner 6j

symbol. In the analysis that follows, we will take the vector-like masses of the two

custodial irreps to be equal M1 = M2 = Mex for simplicity; we have checked that

this assumption has a minimal impact on our conclusions. Under this choice, the mass

spectrum of the fermionic Loryon is

MV = Mex =
v√
2
yex , V ∈ V1 − V2 or V2 − V1 , (2.26a)

M±V = Mex ±
v√
2
|yV | =

v√
2

(yex ± |yV |) , V ∈ V1 ∩ V2 . (2.26b)

Note that for each rep in the second line, V ∈ V1 ∩ V2, the fermion masses come in

pairs. When |yV | > yex, one of the eigenvalues become negative. For this eigenstate

of the Dirac fermion, one could flip the relative sign between its two chiral components

to absorb the negative sign, so the physical mass of the particle is still positive (at the

expense of introducing additional signs into the interactions).

2.1.2 Criteria for HEFT

Given our finite list of BSM Loryons, this section will delineate the regions of Loryon

parameter space that require HEFT as the EFT description that emerges at low energies.

In principle, the Loryons can give tree- and loop-level effects. The loop-level effects are
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an irreducible consequence of coupling to the Higgs. Although the tree-level effects would

give more striking signatures, to highlight the irreducible effects we assume there is an

approximate Z2 symmetry acting on the BSM Loryon fields, which is respected by all

their interactions with the Higgs discussed above; see Eqs. (2.1), (2.3) and (2.4) for scalars

and Eqs. (2.17) and (2.18) for fermions. Close to the perturbative unitarity bound on

the Z2 symmetric couplings, we expect the loop-level effects to be appreciable within the

regime of validity of the EFT. As we will see, indirect constraints from Higgs properties

are relevant in the parameter space of interest.

Relaxing the assumption of an approximate Z2 symmetry acting on the BSM Loryons

(due to either explicit or spontaneous breaking) would give rise to a variety of additional

signatures that are interesting but not inherent to the definition of Loryons. In the

absence of this symmetry, Loryons can couple linearly to Standard Model operators with

appreciable strength. This leads to large tree-level effects on Standard Model observables

at low energies, as well as resonant or associated production of single Loryons at colliders.

Direct and indirect constraints on Loryons are correspondingly stronger in this case. The

signatures associated with large spontaneous or explicit breaking of the Z2 symmetry

may lead to additional experimental opportunities for discovering BSM Loryons, which

we leave to future work.

In order to compute the leading matching contributions, we utilize functional methods

(see [11]) to derive the effective (scalar sector) Lagrangian that results if the UV theory

includes a scalar Loryon (including all orders in the Higgs field H),

Leff ⊃
1

2ρ(4π)2

∑

V ∈V

V

{
m4
V (H)

2

[
ln

µ2

m2
V (H)

+
3

2

]
+

λ2
V

6m2
V (H)

[∂|H|2]
2

2
+O

(
∂4
)
}
,

(2.27)

for an arbitrary custodial irrep Φ; this result is derived in App. A, see Eq. (A.11). App. A

also includes the analogous calculation for fermions, see Eqs. (A.21) and (A.22).
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Noting that the (non-derivative) dependence on H in Eq. (2.27) is captured by the

effective mass,

m2
V (H) =

1

2
λexv

2 + λV |H|2 , (2.28)

we can then obtain a SMEFT description of Eq. (2.27) by expanding about H = 0 in

powers of λV |H|2/
(

1
2
λexv

2
)
. However, the SMEFT description is only useful for pre-

dictions of low energy observables if it converges when evaluated about the electroweak

breaking vacuum, |H| = 1√
2
v. This requires that6

λV < λex , ∀ V ∈ V . (2.29)

If this condition is not satisfied, then one is forced to use the HEFT description; see [11].

We will find later that it is useful to introduce the parameter

fV ≡
λV

λex + λV
, (2.30)

which corresponds to the fraction of a scalar Loryon’s physical mass-squared that results

from its interactions with the Higgs (see Eq. (2.15)). Note that this parameter will

generically differ among the states φV within a given custodial representation. The

criterion for necessarily matching onto HEFT then becomes

fmax ≥
1

2
, (2.31)

where we have defined fmax ≡ maxV ∈V fV as a shorthand for the fV value of the heaviest

scalar state.

6Eq. (2.27) shows a non-analyticity whenever m2
V (H) = 0, which corresponds to a non-analyticity

in the complex plane of |H| at Im |H| = ±λex

λV

v√
2

that limits the radius of convergence of the SMEFT

expansion, see [20, 21].

22



Non-Decoupling New Particles Chapter 2

A similar story holds for fermionic Loryons. In this case, the all-orders-in-H effective

Lagrangian is given in Eq. (A.21). Its terms are simple functions of the (signed) Higgs-

dependent masses of the states,

M±V (H) = Mex ± |yV ||H| , (2.32)

and some of them become non-analytic when M±V (H) = 0.7 Then the SMEFT expansion

of the effective Lagrangian converges at our vacuum if

|yV | < yex , ∀ V ∈ V1 ∩ V2 . (2.33)

Therefore, in terms of the fraction of mass that fermionic Loryons get from interacting

with the Higgs (see Eq. (2.26)),

f±V ≡
± |yV |

yex ± |yV |
, (2.34)

the criterion for necessarily matching onto HEFT is

fmax ≥
1

2
, (2.35)

where we have defined the shorthand fmax ≡ maxV ∈V1∩V2 f+V .

2.1.3 Mass Bounds from Unitarity

For particles getting some fixed fraction of their mass from electroweak symmetry

breaking, the coupling to the Higgs increases with the mass. Since scattering into Higgses

or via Higgs exchange will violate unitarity if this coupling is too large, requiring that

7Despite appearances the effective Lagrangian is well behaved when M+V = M−V .
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the theory be under perturbative control places an upper bound on the mass of the BSM

Loryons. To account for these bounds, we impose partial wave unitarity on scattering

processes involving Loryons and Higgses. We emphasize that partial wave unitarity does

not provide an invariant bound on the Loryon parameter space, and the detailed bound

is sensitive to conventions. However, it does provide a useful indication of the region of

parameter space in which perturbation theory remains valid. If Loryons exist outside of

the region delineated by unitarity, their properties are likely to be poorly described by

the treatment presented here. For instance, the formation of bound states is likely to be

interesting and merits further study.

Of course, there are other theoretical bounds that may be placed on the couplings of

new particles to the Higgs. Chief among these is the vacuum (in)stability of the Higgs:

new particles interacting strongly with the Higgs may cause the Higgs self-coupling to

run negative at lower scales than in the Standard Model, leading to a prohibitively short

lifetime of the metastable vacuum or an outright instability. However, these concerns may

be mitigated by additional UV physics (whether in the form of additional particles – not

necessarily Loryons – or irrelevant operators contributing to the Higgs potential). As

such, in what follows we focus on bounds from perturbative unitarity, but considerations

involving Higgs vacuum stability would be an interesting target for further exploration.

We focus on 2-to-2 scattering processes at the tree level for simplicity. The strongest

bounds on the Loryon masses come from the scattering of a Loryon pair into a Higgs

pair, or a Loryon pair into a Loryon pair, as depicted in Fig. 2.1. For technical simplicity,

only contributions from the exchange of scalars and fermions are considered. Diagrams

with SM vector boson exchange give subdominant effects.

For a general 2-to-2 scattering process taking an initial state i to a final state f ,

one can project onto the spin-0 partial wave component by averaging over the scattering
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Figure 2.1: Tree-level 2-to-2 scattering processes considered for placing an upper
bound on Loryon masses from perturbative unitarity: (upper) Loryon pair scattering
to a Higgs pair, and (lower) Loryon pair scattering to a Loryon pair. Dashed lines
denote physical Higgs boson h and solid lines are for Loryons. Crossed channels are
not explicitly drawn. The last diagram in each row is only available for scalar Lo-
ryons assuming renormalizable interactions. For each process, the t-channel exchange
diagram dominates the contribution.

angle with normalization appropriate for arbitrary values of s:8

a0

(√
s
)

=

√
4 |~pi| |~pf |
2δi+δf s

1

32π

∫ 1

−1

d(cos θ) M(i→ f) , (2.36)

where δi/δf is 1 if the initial/final state particles are identical and 0 otherwise. Unitarity

of the S matrix then imposes the bound

|Re(a0)| ≤ 1

2
. (2.37)

Of particular note is that the bound applies for all values of the center-of-mass energy

√
s, not just in the high energy limit [23]. For example, in the 2-to-2 scattering of

heavy Loryons via t-channel exchange of a Higgs (bottom-left diagram in Fig. 2.1), the

8When fermions are involved in the initial or final states, in principle one also needs to project the
spinor part onto states with definite helicities using the Wigner d-matrix [22], although when projecting
into an overall spin 0 state the formula Eq. (2.36) remains valid for the collision of two spinning particles
of equal helicity.
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Figure 2.2: An example of the behavior of the zeroth partial wave coefficients a0 (
√
s).

The plot is for a neutral singlet scalar Loryon S0 getting all of its mass m = 525
GeV from the Higgs. The two curves correspond to the two eigenvalues of the 2 by 2

scattering matrix
(
S0S0, hh

)T →
(
S0S0, hh

)T
.

maximal value of |Re (a0)| occurs not in the high energy limit but close to the threshold,

as illustrated in Fig. 2.2. This channel typically gives the strongest upper bound on the

Loryon masses.

For scalars, the limit we derive on its mass depends on the quartic self-coupling of

the new field. An upper bound on the quartic self-coupling can be obtained from the

high energy limit; we then report the weakest bound after marginalizing over the allowed

self-couplings. The final result depends on the representation of the Loryon as well as the

fraction of mass that it gets from electroweak symmetry breaking. For a singlet Loryon,

the upper bound varies smoothly from 530 to 810 GeV as fmax goes from 1 to 1/2. For

larger representations, the bounds are stronger by up to O(50 GeV), depending on the

precise representation chosen and amount of mass splitting. For fermions, the upper

bound on the heaviest mass varies smoothly from about 470 to 780 GeV as fmax goes

from 1 to 1/2 for all possibilities not ruled out by electroweak precision measurements

(see Sec. 2.3).

In addition to constraints on elastic scattering, there are unitarity constraints on the
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cross-quartic couplings λ
(′)
hΦ, or Yukawa squared y2

12, arising from the inelastic process

hh → Loryon Loryon, for which
∑

states |a0|2 . 1. They provide a constraint on λ
(′)
hΦ or

y2
12 that scales as N−

1
2 in the number of states N . This is inconsequential for the smaller

individual viable custodial irreps plotted below, but is to be borne in mind for larger

solutions, particularly when considering their effect on Higgs wavefunction normalization

(see Sec. 2.6).

2.2 Higgs Coupling Constraints

Having defined the landscape of Loryons, we now turn to consider the constraints

from current experimental data. We begin with Higgs coupling measurements, which

are particularly impactful given the non-decoupling nature of Loryons. By assumption,

our BSM Loryons have an approximate Z2 symmetry and therefore would only correct

Higgs couplings starting from one-loop order. This makes the following measurements

potentially important:

hγγ coupling , hgg coupling , h→ invisible or untagged width . (2.38)

Although Loryons modifying the couplings hγγ and hgg generically also modify other

Higgs couplings, these latter effects are loop-level corrections to tree-level Standard Model

couplings and hence not as significant. The constraints from current hZγ coupling mea-

surement is also typically subdominant compared to that from hγγ, but could potentially

play an important role at HL-LHC in future; we briefly discuss this in Sec. 2.6, where

we will also comment on the potential impact of Higgs wavefunction and self coupling

corrections.
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2.2.1 General Formalism

The leading contribution to the hγγ (hgg) coupling in the SM occurs via loops of

charged (colored) particles that have tree-level couplings to the Higgs. As has long been

appreciated, any new charged (colored) particles can run in the loop and modify these

couplings [24]. These modifications can be captured by the parameter κγ (κg), which

simply rescales the hγγ (hgg) vertex, with κγ = κg = 1 for the SM.

For a scalar Loryon φ or a fermionic Loryon ψ discussed in Sec. 2.1, we can read off

the tree-level Higgs-Loryon-Loryon coupling from Eqs. (2.13) and (2.24), facilitated by

our definitions in Eqs. (2.30) and (2.34):

L ⊃ − 1

2ρ
fφ

2m2
φ

v
h φ† φ− fψ

mψ

v
hψ ψ , (2.39)

where fi is fV for the ith particle. Generally, particles coupled to the Higgs in this form

contribute to κγ and κg as [25]

κγ ∝
∑

i

fiQ
2
i Asi(τi) , (2.40a)

κg ∝
∑

i

fiCiAsi(τi) . (2.40b)

The sum runs over all contributing complex scalars, Dirac fermions, or vector bosons.

For each contributing particle i, Qi denotes its electromagnetic charge; Ci is the Dynkin

index of its SU(3)C representation, namely tr
(
tAi t

B
i

)
= Ciδ

AB with tAi denoting the

SU(3)C generators; τi = 4m2
i /m

2
h parameterizes the mass; si denotes the spin; and the

spin-dependent form factors Asi(τ) are given by

A0(τ) = τ
[
1− τF (τ)

]
, (2.41a)
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A1/2(τ) = −2τ
[
1 + (1− τ)F (τ)

]
, (2.41b)

A1(τ) = 2 + 3τ
[
1 + (2− τ)F (τ)

]
, (2.41c)

with

F (τ) =





arcsin2 (1/
√
τ) τ ≥ 1

−1
4

[
log 1+

√
1−τ

1−
√

1−τ − iπ
]2

τ < 1

. (2.42)

When the particles running in the loop are asymptotically heavy, namely τi →∞, these

form factors asymptote to constants,

A0 → −1/3 , A1/2 → −4/3 , A1 → 7 . (2.43)

In practice, this is a good approximation (. 10% error) for particles heavier than the

Higgs, which is the case for most BSM Loryons of interest.

2.2.2 hγγ Coupling

To compute κγ for a particular BSM model, we can simply use (see Eq. (2.40))

κγ = 1 +

∑
BSM fiQ

2
i Asi(τi)∑

SM fiQ2
i Asi(τi)

. (2.44)

In the SM sum, we include the W± bosons, the top, bottom, charm quarks, and the tau

lepton. Contributions from other charged SM particles are negligible due to their tiny

form factors.

For the experimental constraints on κγ, we use the most recent ATLAS and CMS

measurements. In particular, we use each collaboration’s joint fit to κγ, which holds

in the absence of deviations to tree-level Higgs couplings and untagged/invisible Higgs

decay width. Upon neglecting these small effects, the 2σ allowed region from ATLAS
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Figure 2.3: The contribution to |κγ | from the addition of a new charge-1 complex
scalar or Dirac fermion getting all of its mass from electroweak symmetry breaking as
a function of the mass of the new particle. Limits on |κγ | from the ATLAS [26] and
CMS [27] collaborations are shaded.

is |κγ| ∈ (0.877, 1.15) [26], while CMS finds |κγ| ∈ (0.949, 1.23) [27]. In Fig. 2.3, we

show these bounds against contributions from a typical scalar or fermion Loryon. Note

in particular that for a BSM Loryon heavier than the Higgs, the relevant asymptote in

Eq. (2.43) is already effective. Nevertheless, a larger deviation of |κγ| happens near the

threshold mass mi = mh/2.

Current bounds on |κγ| constrain the sum of the contributions from BSM Loryons,

∑

BSM

fiQ
2
i Asi(τi) → −1

3

∑

BSM

ηi fiQ
2
i , (2.45)

with ηi = 1 (4) for scalars (fermions). One way to satisfy the experimental constraints is

of course to ensure that the contribution in Eq. (2.45) sufficiently small. However, there is

a second way to satisfy the constraint. Note that the SM contribution to κγ is dominated

by W± bosons; contributions from BSM scalar and fermionic Loryons (if heavier than
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Figure 2.4: The contribution to |κγ | from new particles heavier than ∼ 500 GeV as a
function of their fraction fi of mass from EWSB and their electric charge Qi; ηi = 1 (4)
for complex scalars (fermions). Large values of

∑
i ηifiQ

2
i are sufficient to flip the sign

of κγ while maintaining the same magnitude. ATLAS and CMS limits are shaded.

half the Higgs mass) would come with an opposite sign compared to this dominant piece

in the SM sum. Therefore, there is also a viable window where the magnitude of the

second term in Eq. (2.44) becomes big enough to flip the sign of (the real part of) κγ,

while keeping the magnitude close to the SM-only result. This is illustrated in Fig. 2.4.

To summarize, requiring BSM Loryons to satisfy both the ATLAS and CMS bounds

on the hγγ coupling measurements, we find the constraints

∑

i

ηi fiQ
2
i < 0.995 or

∑

i

ηi fiQ
2
i ∈ (38.4, 42.4) , (2.46)

for asymptotically heavy BSM Loryons, with ηi = 1 (4) for complex scalars (fermions).

If the BSM Loryons are not asymptotically heavy, they will contribute more. Therefore,

for lighter Loryons, the first limit would become stronger while the second would shift to

a window with lower values (see Fig. 2.8).
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Field [1, 1]1 [2, 2]0 [3, 3]0 [2, 3]−1/2 [2, 1]1/2 ⊕ [1, 2]1/2 [1, 3]0 ⊕ [2, 2]0
∑
ηiQ

2
i 1 1 6 7 8 16

Table 2.3: Values of
∑
ηiQ

2
i for some possible BSM Loryons with fmax = 1. The first

four entries are scalars; the last two are fermions.

Scalar Scorecard

R = 1 2 3 4 5 6 7 8

L = 1 |Ymax| = 1,∼3 1
2
,∼ 5

2
0,∼2 ∼ 3

2
∼1 ∼ 1

2
∼0 ×

2 1
2
,∼ 7

2
1,∼4 3

2
,∼ 7

2
1,∼3 1

2
,∼ 3

2
1 1

2
0

3 0,∼3 3
2
,∼ 7

2
1,∼2 1

2
,∼ 3

2
0,∼1 1

2
0 ×

4 ∼ 7
2

1,∼3 1
2
,∼ 3

2
∼1 ∼ 1

2
∼0 × ×

5 ∼3 1
2
,∼ 3

2
0,∼1 ∼ 1

2
∼0 × × ×

6 ∼ 5
2

1 1
2

∼0 × × × ×

7 ∼2 1
2

0 × × × × ×

8 ∼ 3
2

0 × × × × × ×

Table 2.4: The representations of scalar BSM Loryons still viable after considering
constraints on κγ . A ∼ means the representation requires flipping the sign of κγ .

Values of
∑

i ηiQ
2
i for select Loryons are listed in Table 2.3. The impact of the

constraints in Eq. (2.46) on scalar and fermionic Loryons in various custodial irreps is

indicated by the “scorecards” of Table 2.4 and Table 2.5, respectively. (In what follows,

these scorecards will be updated as successive constraints are taken into account.) If the

new Loryons receive all or almost all of their mass from their coupling to the Higgs, the

first limit in Eq. (2.46) can be satisfied by adding at most one charge-1 scalar (and possibly

some neutral particles). It can also be satisfied by adding a scalar representation with a

large mass splitting. Since the largest representation of the unbroken SU(2)V receives a
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Vector-like Fermion Scorecard

R = 1 2 3 4 5 6 7 8

L = 1 |Ymax| = 0,∼2 ∼ 3
2

∼1 × × × × ×

2 ∼ 3
2

0,∼2 ∼ 3
2
∼1 × × × ×

3 ∼1 ∼ 3
2

∼0 × × × × ×

4 × ∼1 × × × × × ×

5 × × × × × × × ×

6 × × × × × × × ×

7 × × × × × × × ×

8 × × × × × × × ×

Table 2.5: The representations and corresponding fields for the vector-like fermionic
BSM Loryons still viable after considering constraints on κγ . A ∼ means the repre-
sentation requires flipping the sign of κγ .

mass shift opposite in sign to the others, a large mass splitting will drive the value of fV

towards 0 for the particles in the largest representation, thereby satisfying the limit on

κγ. Other possibilities, including larger electroweak representations, representations with

larger hypercharge, and fermionic representations, make a large enough contribution to

Eq. (2.45) that flipping the sign of κγ is required. Among other things, this implies that

the only way for fermionic Loryons to satisfy constraints on κγ is to flip the sign, as

indicated in Table 2.5.
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Field ω|3Y | Π|6Y | P|3Y |
∑
ηiCi 1/2 1 2

∑
ηiQ

2
i 3Y 2 6Y 2 + 3/2 12Y 2

Table 2.6: Values of
∑
ηiQ

2
i and

∑
ηiCi for some possible new SM representations.
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Figure 2.5: The allowed electric charge Qi as a function of the color charges Ci of
new fields due to κγ − κg constraints. ATLAS constraints [26] are shaded blue, CMS
constraints [27] are shaded red.

2.2.3 hgg Coupling

As with κγ, we can compute κg for a particular BSM model simply using (see

Eq. (2.40))

κg = 1 +

∑
BSM fiCiAsi(τi)∑
SM fiCiAsi(τi)

. (2.47)

In the SM sum, we include the top, bottom, and charm quarks; contributions from other

quarks are negligible due to their tiny form factors. For κg, BSM scalar and fermionic

Loryons (if heavier than half the Higgs mass) contribute with the same sign as the

dominant piece (from the top quark) in the SM sum, so there is no flipping sign option

34



Non-Decoupling New Particles Chapter 2

and the sum of the BSM Loryon contributions must not be too large. We constrain these

contributions at the 2σ level using the results from ATLAS and CMS expressed in the

κγ vs κg plane [26, 27], again neglecting deviations to tree-level Higgs couplings and new

untagged or invisible Higgs decay width. The bounds are translated into the constraints

on the
∑
ηifiQ

2
i vs

∑
ηifiCi plane in Fig. 2.5. We find that these constraints essentially

exclude all colored Loryons, except for scalar Loryons of the SM representations (3, 1)Y

with |Y | ≤ 1, as summarized in Table 2.6.

2.2.4 h→ invisible or untagged

Loryons lighter than half the Higgs mass will also make new channels for the Higgs

to directly decay at the tree level. For each scalar Loryon φ or Dirac fermion Loryon ψ,

the partial width is

Γh→φφ(†) = f 2
φ

GF mhm
2
φ

2ρ · 8
√

2 π

4m2
φ

m2
h

(
1−

4m2
φ

m2
h

)1/2

, (2.48a)

Γh→ψψ̄ = f 2
ψ

GF mhm
2
ψ

4
√

2π

(
1−

4m2
ψ

m2
h

)3/2

. (2.48b)

Constraints on new Higgs decay channels depend on the properties and fate of the

new particles. If the particle is neutral and detector stable, or if it decays promptly

into neutral and detector-stable final states, it would contribute to the Higgs invisible

decay width. If it decays promptly into visible final states, it generally contributes to the

Higgs “untagged” decay width, which is less constrained than the invisible width (though

sufficiently distinctive final states can lead to stronger constraints). There are more exotic

possibilities, such as long-lived decays, but these are typically more strongly constrained

than invisible or untagged decays. For the purposes of the current discussion, we assume

that Loryons which are lighter than half the Higgs mass contribute to the “untagged”
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Figure 2.6: Allowed region (unshaded) in the mass vs
∑
f2
i

(∑
21−ρf2

i

)
plane for new

Dirac fermion (scalar) particles whose mass is less than half the Higgs mass, arising
from the upper limit on the Higgs branching ratio to ‘untagged’. The plot assumes
all new particles have the same mass.

decay width of the Higgs. In this case, the branching ratio to the new decay channels

must be less than 0.47 [27], which constrains the size of the BSM Loryon contribution

to the Higgs partial widths in Eq. (2.48). For fixed values of f 2
i , the mass of the Loryon

has to be either small enough or close enough to the kinematic threshold, such that the

partial width is not too big. Allowed regions for scalar and fermionic Loryon are shown

in Fig. 2.6.

2.3 Precision Electroweak Constraints

Extending the SM with new particles that carry electroweak quantum numbers could

potentially be subject to strong constraints from electroweak precision measurements.

In the case of the BSM Loryon models studied here, the oblique framework [28, 29] is a

good approximation since they interact with SM primarily through the Higgs and gauge

bosons. The leading order (one-loop) corrections therefore modify the electroweak gauge
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boson self-energies, which up to O(p4) can be parameterized by the seven (extended)

electroweak parameters S, T, U, V,W,X, Y [30, 31, 32, 33]. Among these seven parame-

ters, S, T,W, Y arguably capture the most important effects as they are the leading ones

in their respective symmetry classes [33]. Since we are considering custodially symmetric

BSM Loryon models, the correction to T (and also its higher O(p2) analog U) vanishes

at one loop order. This leaves us to focus on the parameters S, W , and Y :

S = −4 cos θW sin θW
α

Π′3B(p2 = 0) , (2.49a)

W = −1

2
m2
W Π′′33(p2 = 0) , (2.49b)

Y = −1

2
m2
W Π′′BB(p2 = 0) , (2.49c)

where the Πs are the gauge boson self energies, primes denoting differentiation with

respect to p2.

For a scalar Loryon of the custodial irrep [L,R]Y , we find its contributions given by

∆S =
2

π

n∑

i,j=1

T 3
ij Yji Π

′
S (mi,mj) , (2.50a)

∆W = m2
W

g2
2

16π2

n∑

i,j=1

T 3
ij T

3
ji Π

′′
S (mi,mj) , (2.50b)

∆Y = m2
W

g2
1

16π2

n∑

i,j=1

Yij Yji Π
′′
S (mi,mj) , (2.50c)

where n = LR denotes the total number of components of the Loryon, and the scalar

form factors are

Π′S (mi,mj) =
1

2ρi

∫ 1

0

dx

[
x(1− x) log

µ2

xm2
i + (1− x)m2

j

]
, (2.51a)
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Π′′S (mi,mj) =
1

2ρi

∫ 1

0

dx
x2(1− x)2

xm2
i + (1− x)m2

j

. (2.51b)

Note that T 3
ij and Yij are (elements of) the SM generators in the mass basis of the

Loryon representation, which are generically not diagonal due to the mass mixings among

different gauge eigenstates.

We see that ∆S is only nonzero due to the mass splitting among the Loryon com-

ponents, namely that Π′S (mi,mj) is not the same for all i, j; terms that are indepen-

dent of i, j (such as the RG scale µ dependence) will drop upon the sum, as they yield

tr (T 3 Y ) = 0. On the other hand, ∆W and ∆Y do not depend on the mass splitting,

and can in principle constrain any custodial irrep of Loryons. However, their values

are typically more than one order of magnitude smaller than ∆S, due to a combination

of the extra mass suppression factor m2
W/m

2
i , and the smallness of the form factor in

Eq. (2.51b). This makes the current constraints from W and Y parameters [34] numeri-

cally unimportant for the Loryon mass range of our interest.

Moving on to the fermionic cases, we focus on the S parameter. We find that a pair

of fermionic Loryons of the custodial irreps [L1, R1]Y and [L2, R2]Y contribute to S as

∆S =
4

π

n∑

i,j=1

T 3
ij Yji

[
ξΣ Π′F,Σ (mi,mj) + ξ∆ Π′F,∆ (mi,mj)

]
, (2.52)

with n = L1R1 +L2R2 denoting the total number of Dirac fermions and the form factors

Π′F,Σ (mi,mj) =

∫ 1

0

dx

[
2 log

µ2

xm2
i + (1− x)m2

j

− 1

]
x(1− x) , (2.53a)

Π′F,∆ (mi,mj) =

∫ 1

0

dx
mimj

xm2
i + (1− x)m2

j

x(1− x) . (2.53b)
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Rep [2, 2]0 [3, 3]0 [4, 4]0 [2, 4]0 [2, 3]−1/2

Allowed rsplit (−.67, 1.98) (−.25, .28) (−.05, .05) (−.36, .44) (−.46, .58)

Table 2.7: Examples of the magnitude of allowed mass-splitting Eq. (2.16) if a par-
ticular scalar representation is the only new field contributing to S parameter.

Rep [2, 1], [1, 2]1/2 [2, 2], [1, 1]0 [2, 3], [1, 2]1/2

Allowed fmax (.66, 1) ∅ (.51, .58)

∑
ηifiQ

2
i (11, 8) ∅ (207, 17)

Rep [3, 1], [2, 2]0 [1, 3], [2, 2]0 [3, 2], [2, 3]1/2

Allowed fmax (.71, 1) (.71, 1) (.68, .81)

∑
ηifiQ

2
i (19, 16) (19, 16) (109, 61)

Table 2.8: Examples of the allowed fmax for new fermionic fields if they are the only
new contribution to the S parameter. Also shown is the range of values of

∑
ηifiQ

2
i

for the given range of fmax. The vector-like mass is taken to be the same for both
fermions involved in the Yukawa interaction; this gives a weaker bound than allowing
two different vector-like masses.

Here our notation in Eq. (2.52) allows for a generic coupling between a Dirac fermion ψ

and a gauge boson V ,

L ⊃ g ψ̄ γµ
(
ξV − ξAγ5

)
ta ψ V a

µ , (2.54)

and ξΣ (ξ∆) tracks the contributions from vertex insertions with the same (opposite)

chiralities,

ξΣ = ξ1,V ξ2,V + ξ1,Aξ2,A , ξ∆ = ξ1,V ξ2,V − ξ1,Aξ2,A . (2.55)

Applying it to our case of vector-like fermions, we can aggregate the contributions from

all the chiral component insertions which all share the same form of the generator; this

effectively leads us to plugging in ξΣ = ξ∆ = 1.

We take the current 2σ bound on S to be 0.14 [35]. Note that this corresponds to the

projection of the combined S, T fit onto the S axis, rather than the 2σ bound on S with
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Scalar Scorecard

R = 1 2 3 4 5 6 7 8

L = 1 |Ymax| = 1,∼3 1
2
,∼ 5

2
0,∼2 ∼ 3

2
∼1 ∼ 1

2
∼0 ×

2 1
2
,∼ 7

2
1,∼4 1

2
,∼ 7

2
0,∼3 ∼ 3

2
∼1 ∼ 1

2
∼0

3 0,∼3 1
2
,∼ 7

2
0,∼2 ∼ 3

2
∼1 ∼ 1

2
∼0 ×

4 ∼ 7
2

0,∼3 ∼ 3
2

∼1 ∼ 1
2
∼0 × ×

5 ∼3 ∼ 3
2

∼1 ∼ 1
2

∼0 × × ×

6 ∼ 5
2

∼1 ∼ 1
2

∼0 × × × ×

7 ∼2 ∼ 1
2

∼0 × × × × ×

8 ∼ 3
2

∼0 × × × × × ×

Table 2.9: The representations of scalar BSM Loryons still viable after considering
constraints on S. A ∼ means the representation is not viable on its own but can be
added together with other BSM representations to flip the sign of κγ .

T = 0, which would lead to a tighter bound. Although we focus on custodial multiplets

to minimize contributions to T , small amounts of soft custodial symmetry breaking in the

explicit mass terms allow most of the positive region of the S, T ellipse to be explored.

For each choice of representation, we consider the limits placed by requiring that the

contribution to S from the Loryons obey this bound.9

For scalars, the contribution to S is only non-zero if there is a mass splitting among

the Loryon states. We therefore report the magnitudes of allowed mass splitting among

scalar Loryons in Table 2.7. This is expressed in terms of the parameter rsplit, a rescaling

of λ′hΦ defined in Sec. 2.1.1. Table 2.9 shows the scalar Loryons which remain viable after

applying the constraint from the S parameter.

9We emphasize that it is possible to go beyond our minimal models to include multiple Loryons that
are in various representations. In particular, a representation can yield a negative contribution to S, and
so it is possible to exceed the limits in Table 2.7 and Table 2.8 with judicious choice of representations.
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Vector-like Fermion Scorecard

R = 1 2 3 4 5 6 7 8

L = 1 |Ymax| = × ∼ 3
2
∼1 × × × × ×

2 ∼ 3
2

∼1 ∼ 1
2
× × × × ×

3 ∼1 ∼ 1
2

× × × × × ×

4 × × × × × × × ×

5 × × × × × × × ×

6 × × × × × × × ×

7 × × × × × × × ×

8 × × × × × × × ×

Table 2.10: The representations and corresponding fields for the vector-like fermion
BSM Loryons still viable after considering constraints on S. A∼means the representa-
tion is not viable on its own but can be added together with other BSM representations
to flip the sign of κγ .

For fermions, the situation is more complicated. The Yukawa interaction couples

two different representations, so even if there is no vector-like mass and no mass split-

ting, there can be a significant contribution to S. It is straightforward to interpret the

constraints in terms of fmax, and this is presented in Table 2.8. There are generally a

number of large individual contributions to S which manage to cancel each other. These

possibilities can then be ruled out by other constraints. If the lightest mass eigenvalue

coupled to the Higgs is less than half the Higgs mass, the scenario is ruled out by Higgs

decay constraints. If the lightest mass eigenvalue is greater than half the Higgs mass, the

constraint comes from κγ. This motivates also presenting the results in terms of
∑
ηfQ2,

to make the interplay with constraints on κγ clear.10 Some examples of the range of al-

10Note that this is in fact an underestimate of the contribution to κγ , since the constraint on
∑
ηfQ2

is for asymptotically heavy particles and lighter particles give a larger contribution than asymptotically
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lowed fmax for fermionic Loryons are summarized in Table 2.8, and the scorecard showing

those fermionic Loryons which remain viable is presented in Table 2.10.

2.4 Direct Search Constraints

We now turn to consider constraints from direct searches on the Loryon candidates

that remain viable when confronted by the indirect constraints studied above. In con-

trast to indirect bounds, direct bounds are strongly sensitive to Loryon couplings to SM

particles other than the Higgs as these interactions typically govern the final state that

would be observed at colliders. Our aim here is not to consider all possible direct limits

on all possible spectra and couplings but rather to understand the qualitative parameter

space allowed by direct searches under generic assumptions.

As noted in Sec. 2.1, we have restricted our attention to Loryon candidates whose

hypercharge assignments allow all BSM charged particles to decay into SM final states

through either marginal or irrelevant interactions. This is because heavy stable charged

particles (HSCPs) are strongly constrained by LHC searches for anomalous ionization

energy loss and time of flight, with current bounds above the TeV scale for HSCPs

carrying a range of quantum numbers [36, 37, 38]. Although bounds are somewhat

weaker on scalars carrying only hypercharge (around 430 GeV per [38]), these limits

are still considerably stronger than the corresponding limits on their promptly-decaying

counterparts.

For Loryons neutral under SU(2)L, we identify the lowest-dimensional operators that

would allow such decays and assume that (1) all allowed decay operators of the lowest

nontrivial dimension are present, and (2) Loryon decays are dominated by the combina-

tion of these operators giving the weakest bound. We do not require the decay couplings

heavy ones. Properly considering the effect of particles which are not asymptotically heavy on κγ does
not meaningfully extend the bound past the region excluded by Higgs decays.
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to respect custodial symmetry as these couplings may be numerically quite small – con-

sistent with bounds on custodial symmetry violation – while still allowing for prompt

decays. In the same spirit, we assume the decay couplings are small enough that they do

not provide significant new production modes. In many cases, the leading operators carry

SM flavor indices; we assume the flavor structure is such that strong flavor-dependent

constraints (from e.g. flavor-changing neutral currents or proton decay) are avoided. In

many cases, the bound on a given Loryon candidate depends on the flavor composition

of the final state; in quoting a limit we highlight the flavor structure that results in the

weakest limit.

For Loryons charged under SU(2)L, there are typically one or more electrically neu-

tral particles in the multiplet that may be the lightest mass eigenstate. In this case,

the charged components of the multiplet can decay into the neutral component and SM

bosons without assuming any additional couplings. This leads to a missing energy signa-

ture whose strength depends sensitively on the mass spectrum of the new particles, with

large splittings leading to correspondingly larger (and better-constrained) missing energy

signals. In such cases, the bounds on SU(2)L-charged Loryons are typically weakest if

no additional interactions are assumed beyond the irreducible couplings to the Higgs.

For scalar Loryons, the bounds from precision electroweak constraints can be avoided

by minimizing the mass splitting within a given electroweak multiplet, in which case gauge

eigenstates are also approximate mass eigenstates. As such, in determining the state of

direct limits on scalar Loryons, it suffices to consider searches for distinct SU(3)c ×

SU(2)L × U(1)Y representations. An approximate direct limit on scalar Loryons in a

given custodial representation can then be found by stacking the limits on the SU(3)c×

SU(2)L × U(1)Y representations that compose the custodial multiplet.

For fermionic Loryons, electroweak symmetry breaking mixes components of differ-

ent gauge eigenstates, so that gauge eigenstates are no longer approximate mass eigen-
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states. Moreover, as a custodial multiplet of fermionic Loryons necessarily contains a

field charged under SU(2)L, the strength of direct search limits depends sensitively on

the mass splitting between the lightest neutral fermion and heavier fermions, which con-

trols the amount of missing energy in the final state. As such, obtaining the direct limit

on fermionic Loryons in a given custodial multiplet requires reinterpreting the relevant

searches in the space of couplings for that multiplet. We first present the simpler direct

limits on scalar Loryons before treating the more complicated direct limits on fermionic

Loryons.

Note that direct search limits on Loryons can be further modified in the presence of

couplings between multiple Loryon states. Such couplings can lead to cascade decays

into final states different from those we have considered here. The effect of multiple

coupled Loryons on direct search constraints depends sensitively on the states involved;

cascade decays can either weaken constraints (for example, by softening missing energy

signals in the spirit of Stealth Supersymmetry [39]) or strengthen them (by increasing

the multiplicity or distinctiveness of the final state). To the extent that these variations

are not irreducible signals of BSM Loryons, we leave their study to future work.

2.4.1 Scalar Loryons

The state of direct search limits on the SU(3)C × SU(2)L×U(1)Y representations of

states that appear as components of the viable custodial multiplets of scalar Loryons is

summarized in Table 2.11, subject to the above considerations.

The neutral scalar S need not possess additional couplings that would allow it to

decay, leading to a missing energy signature if it remains stable on detector length scales.

We assume that it does not couple linearly to invariants constructed purely from the Higgs

doublet H as this would lead to mass mixing with correspondingly tighter constraints.
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Field Charge Decay Couplings Limit Ref.

S (1, 1)0 – or S ×OSM
4 – [40]

S1 (1, 1)1 S†1L̄iiσ2L
c
j ∼ 325 GeV [41]

ω1 (3, 1)−1/3 ω†1
(
Q̄iσ2Q

c + d̄uc
)

∼ 520 GeV [42]

ω2 (3, 1)+2/3 ω†2d̄d
c ∼ 520 GeV [42]

Φ1 (1, 2)1/2 − (if inert) ∼ 70 GeV [43]

Ξ0 (1, 3)0 Mixing via ΞaH†σaH ∼ 230 GeV [44]

− (if inert) ∼ 275 GeV [45]

Φ3 (1, 2)3/2 (Φ†3)Hd̄u ∼ 80 GeV [46]

Ξ1 (1, 3)1 ΞI
1[σIε]αβH

†
αH
†
β ∼ 350 GeV [47]

Θ1 (1, 4)1/2 (Θ†1)(abc)H
aHbH̃c & 350 GeV [47]

Θ3 (1, 4)3/2 (Θ†3)(abc)H
aHbHc & 350 GeV [47]

Table 2.11: Assumed decay couplings and direct search limits on scalar Loryons or-
ganized by SM representation.

This leaves open the possibility that S may decay through dimension-5 operators in which

S couples to dimension-4 gauge-invariant SM operators OSM
4 , excluding OSM

4 = |H|4.

When mS < mh/2, it may be produced in the decay of on-shell Higgs bosons and is

subject to the constraints on the Higgs invisible or BSM width discussed in Sec. 2.2; the

strength of these constraints depends on the fraction fmax of mass-squared that S acquires

from the Higgs. As we account for these bounds in terms of Higgs coupling measurements

rather than direct searches, we omit them in Table 2.11. For mS ≥ mh/2, S is produced

via off-shell Higgs bosons with a modest rate that remains essentially unconstrained by

missing energy searches [40]. The low production rate is such that prompt decays through

a variety of SM operators OSM
4 are likewise unconstrained. The HL-LHC with 3/ab is

not expected to attain sensitivity to off-shell production for 0.5 ≤ fmax ≤ 1.
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The hypercharged scalar S1 admits a marginal coupling to two lepton doublets, which

is antisymmetric in flavor space due to the antisymmetry of the SU(2)L contraction. The

quoted bound on S1 in Table 2.11 is obtained in [41] from the reinterpretation of LHC

slepton searches, most notably a
√
s = 13 TeV ATLAS analysis with 139/fb of data

[48]. The detailed mass reach depends on the relative branching ratios into different

lepton flavors; it is maximized at m ∼ 325 GeV when BR(S1 → e+ν) = 0.5(0),BR(S1 →

µ+ν) = 0(0.5) and minimized at m ∼ 200 GeV when BR(S1 → e+ν) = BR(S1 →

µ+ν) = 0.25 using only the same-flavor bins (note that the sum of branching ratios into

electrons and muons can never be less than 50%). However, we note that the ATLAS

search also includes different-flavor bins, although these are not used in the single-slepton

interpretation. These bins have comparable sensitivity to the same-flavor bins, and so we

expect the limit from opposite-flavor final states to be comparable to those from same-

flavor final states. We thus take the limit to be m ∼ 325 GeV regardless of the relative

branching ratios into electrons and muons. The projected HL-LHC bound with 3/ab is

expected to reach m ∼ 400 GeV under the same assumptions [41].

The colored and hypercharged scalars ω1 and ω2 admit marginal couplings allowing

them to decay. The ω1 has the quantum numbers of a leptoquark and can couple to SM

fermion bilinears involving one lepton and one quark, as well as SM fermion bilinears

consisting solely of quarks. Given the relatively stronger bounds on leptonic decays of

colored particles, we assume that the branching ratios into quarks dominate. In contrast,

the ω2 only admits a marginal coupling to pairs of down-type quarks. Assuming that

decays into quarks dominate, the quoted bound on ω1 and ω2 in Table 2.11 comes from

a
√
s = 13 TeV CMS search with 36/fb for pair-produced resonances decaying to pairs

of quarks [42], which excludes stops decaying into light-flavor quarks up to m ∼ 520

GeV. We are currently unaware of projections for the performance of this search at the

HL-LHC.
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The electroweak doublet scalar Φ1 extends the Higgs sector to a two Higgs doublet

model, with a range of signatures and constraints depending on the parameters of the

potential and couplings to fermions. However, a simple irreducible limit may be obtained

by treating Φ1 as inert, forbidding renormalizable couplings to fermions by imposing the

discrete symmetry Φ1 ↔ −Φ1 and assuming the potential is such that Φ1 does not

acquire a vev. Although Φ1 admits a range of marginal couplings that would allow it to

decay, these may be forbidden by the discrete symmetry. The lightest mass eigenstate

is typically a neutral scalar, which can be stable on detector length scales. The charged

components of Φ1 are split from the lightest neutral component by both tree-level and

one-loop effects; the former effects are bounded by perturbativity constraints, while the

latter lead to splittings on the order of ∼ 350 MeV. This leads to an experimentally

challenging scenario in which the charged-neutral mass splitting is too small to produce

distinctive decay products and significant missing energy, but too large to generate a

long disappearing track. We take the inferred LEP bound of mH± > 70 GeV appearing

in [43].

The electroweak triplet, hypercharge-neutral scalar Ξ0 admits a marginal coupling

Ξa
0H
†σaH that allows it to decay via mixing with the Higgs after electroweak symmetry

breaking; this mixing can be sufficiently small to allow for prompt decays without running

afoul of indirect constraints. In this case, [44] obtained a limit of m ∼ 230 GeV by

the reinterpretation of
√
s = 13 TeV ATLAS [49] and CMS [50] multi-lepton searches

with 36/fb, noting that a naive extrapolation to results of the full Run 2 data set were

expected to improve the bound to m ∼ 330 GeV. Alternately, mixing may be forbidden by

imposing the discrete symmetry Ξ0 ↔ −Ξ0, rendering it inert and the neutral component

stable. In this case, the ∼ 160 MeV radiative splitting between the charged and neutral

components gives rise to a disappearing track signature, leading [45] to obtain a bound

of m ∼ 275 GeV by reinterpreting a
√
s = 13 TeV ATLAS search with 36/fb [51]. An
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HL-LHC bound of ∼ 520 GeV was projected by [45].

The electroweak doublet, hypercharge-3/2 scalar Φ3 does not admit marginal cou-

plings that would allow its doubly-charged or singly-charged components to decay. Rather,

they may decay via operators coupling Φ3 to a Higgs boson and two fermions [52]. If

the dominant decay coupling involves leptons, strong constraints from same-sign dilepton

searches imply m & 700− 900 GeV depending on the flavor composition of the leptonic

branching ratios [53]. If the dominant decay coupling involves quarks, however, the elec-

troweak production cross section is too small to be meaningfully constrained by the CMS

paired dijet resonance search [42]. Instead, the leading bound arises from LEP searches

for hadronically decaying singly-charged Higgses, of order m ∼ 80 GeV [46].

The electroweak triplet, hypercharge-1 scalar Ξ1 admits marginal couplings to either

two same-sign leptons or two Higgs bosons. The former leads to a strong bound of

m & 700 − 900 GeV from same-sign dilepton searches [53], while the latter leads to a

somewhat weaker constraint ∼ 350 GeV from same-sign WW signals in multi-lepton

searches [47]. The situation is similar for the electroweak quartet, hypercharge-1/2 or

3/2 scalars Θ1 and Θ3. Both admit renormalizable couplings to three Higgs bosons that

lead to same-sign WW production similarly constrained by multi-lepton searches [47].

Note that the higher-dimensional SU(2)L representations have correspondingly larger

cross sections, which we do not account for here; this has a modest effect on the mass

limit.

2.4.2 Fermionic Loryons

As noted above, the significant mass mixing among different gauge eigenstates of

fermionic Loryons in a given custodial multiplet requires a more detailed treatment of

direct search limits. For each of the fermionic Loryon candidates that remains viable
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after imposing indirect bounds, mass mixing leads to a split mass spectrum and qualita-

tively similar collider signatures: heavy mass eigenstates are pair produced via Drell-Yan

before decaying into light mass eigenstates via the emission of W,Z, and Higgs bosons.

The light mass eigenstates typically include both charged and neutral fermions that are

degenerate at tree-level in the limit of exact custodial symmetry, but one-loop corrections

induce small splittings that allow the light charged fermions to decay into their neutral

counterparts plus soft SM particles. If the splittings are sufficiently small, the light

charged fermions give rise to a distinctive disappearing track signature. If the splittings

are somewhat larger, above about 400 MeV, the disappearing tracks are too short to be

picked up in existing searches. For fermionic Loryons in larger custodial representations,

the spectrum includes additional mass eigenstates intermediate between the light and

heavy states. These can lead to two-step cascade decays with higher multiplicities of SM

vector bosons in the final state.

To determine limits on fermionic Loryons coming from the decay of heavy mass eigen-

states into lighter ones via W,Z, and h, we reinterpret a series of ATLAS and CMS elec-

troweakino searches at
√
s = 13 TeV, namely the CMS search for two oppositely charged

same-flavor leptons and missing transverse momentum [54] and the ATLAS search for

three leptons from on-shell W,Z bosons plus missing transverse momentum [55], both

of which are sensitive to pair production events in which one heavy eigenstate decays

via a W boson and the other via a Z boson; the ATLAS [56] and CMS [57] searches

for final states with one lepton, missing transverse momentum, and a Higgs decaying to

bb̄, are sensitive to pair production events in which one heavy eigenstate decays via a

W boson and the other via a Higgs boson; and the ATLAS search for two leptons and

missing transverse momentum [48] is sensitive to pair production events in which both

heavy eigenstates decay via a W boson. For each of these searches, the collaborations

present excluded cross sections for an exclusive channel as a function of the heavy and
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light fermion masses, allowing for straightforward reinterpretation. Although both col-

laborations also pursue searches sensitive to pair production events with hh, ZZ, or hZ

plus missing transverse momentum, these limits are presented as a function of the heavy

mass assuming a (small) fixed value of the light mass, so we are unable to reinterpret

these constraints in the full parameter space of interest. The reach of these searches is

comparable to the corresponding limits of the searches we reinterpret. For larger custo-

dial representations with additional mass eigenstates intermediate between the light and

heavy states, we have estimated the sensitivity of ATLAS and CMS multi-lepton searches

[58, 59] to the resulting multi-boson final states; we find that they do not significantly

improve the limits set by searches for single-step decays into di-boson final states.

In addition, we must consider possible limits on the light mass eigenstates coming from

disappearing track searches, which are controlled by the splitting between the lightest

charged and neutral fermions. If the splitting is sufficiently small, the light charged

fermions become long-lived, and the resulting disappearing track signature may provide

an even stronger constraint on the parameter space. For the custodial multiplets under

consideration, the splitting between the charged and neutral fermions depends on possible

soft breaking of custodial symmetry at tree level, as well as two different types of one-loop

corrections. At tree level, it is possible to softly break custodial symmetry by introducing

different vector-like mass terms for the Standard Model representations within a given

custodial multiplet. For example, in the [2, 1]1/2⊕[1, 2]1/2 model, differences in the vector-

like masses of the E0 and E1 fields comprising the [1, 2]1/2 custodial irrep will split the

masses of the lightest charged and neutral fermions. In principle, a small soft breaking

of custodial symmetry can always be introduced to generate a sufficiently large charged-

neutral mass splitting to avoid constraints from disappearing track searches without

significantly worsening precision electroweak constraints.

However, it is perhaps more compelling to assume exact custodial symmetry at tree
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level and consider the two types of irreducible splitting due to radiative corrections.

The first of these is the familiar finite radiative correction due to the Coulomb energy

stored in the charged fields [60, 61]. The second is the logarithmically divergent radiative

correction due to the breaking of custodial symmetry by hypercharge. The latter effect

can be straightforwardly computed from e.g. the renormalization group evolution of the

Loryons’ vector-like masses and Yukawa couplings proportional to the hypercharge gauge

coupling. For the [2, 1]1/2 ⊕ [1, 2]1/2 and [1, 3]0 ⊕ [2, 2]0 models, the resulting one loop

splitting between the lightest charged and neutral mass eigenvalues m±1 ,m
0
1 at leading

logarithmic order is given by

m±1 −m0
1 '

3g′2

16π2
m0

1 log
Λ

µ
, (2.56)

where Λ is a UV scale at which custodial symmetry is presumed to be exact and µ is the

renormalization scale. The logarithmic enhancement of this effect causes it to dominate

over the finite correction and for Λ & TeV yields a mass splitting large enough to evade

current limits from disappearing track searches [62]. As such, the direct search limits on

fermionic Loryons remain dominated by the decays of heavy mass eigenstates into light

ones, even before including possible tree-level soft breaking of custodial symmetry.

In order to determine the bound on fermionic Loryons in a given custodial multiplet

from these searches, we compute the leading-order production cross sections and branch-

ing ratios for the heavy mass eigenstates in a given multiplet using FeynRules [63],

FeynArts [64], and FormCalc [65, 66] and compare the relevant production cross sections

times branching ratios to the excluded cross section in each search. In doing so, we

include decays into both charged and neutral fermions among the light mass eigenstates

as the charged mass eigenstates subsequently decay into the neutral mass eigenstates

plus additional soft particles that should not significantly impact the acceptance of the
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Figure 2.7: Exclusions on fermionic Loryons from LHC searches for missing energy plus
WZ (blue, solid) or WW (green, dashed) bosons, along with the the LEP II bound
(orange, dotted) on charged fermions, as a function of the mass of the heaviest fermions
and the fraction fmax of their mass which is Higgs-dependent. Only combinations
of custodial representations that remained viable after imposing the constraints in
previous sections are shown.

searches in question. We further include the combined LEP bound on charged fermions

[67], taking the limit to be m± & 90 GeV in light of the possible variations in the

charged-neutral mass splitting [68]. The results are summarized in Fig. 2.7.

The parametric behavior of the limits in Fig. 2.7 can be most clearly understood for

the [2, 1]1/2⊕[1, 2]1/2 model shown in the first panel. The LHC searches are most sensitive

when the splitting between heavy and light mass eigenstates is large, for this leads to the

largest amount of missing energy. In the parameter space of Fig. 2.7, this corresponds

to smaller values of fmax, for which mass splittings are induced by competition between

EWSB-dependent and -independent contributions. At lower values of the heavy mass,

52



Non-Decoupling New Particles Chapter 2

the available phase space for producing electroweak bosons begins to close off, while at

higher values of the heavy mass, the production cross section falls off. The shape of the

LEP exclusion in this parameter space is set by the mass of the light mass eigenstates,

which include a charged Dirac fermion; at lower values of fmax the large mass splitting

drives the light mass eigenstates below the LEP bound, and less splitting is required to

reach the LEP bound as the heavy mass decreases. The shape of the limits for larger

custodial representations in the remaining panels of Fig. 2.7 is governed by the same

logic but no longer takes a simple form in the plane of fmax and the heavy mass. This is

because the higher-dimensional custodial representations lead to more than two clusters

of mass eigenstates, so direct search limits are most sensitive to the splitting between

intermediate and light mass eigenstates. The precise values of these splittings and the

electromagnetic charges of the light eigenstates varies from multiplet to multiplet, leading

to the observed pattern of exclusion regions.

2.5 Viable Loryons

Putting everything together, we may now address the animating question of this work:

does current data allow for Loryons beyond the Standard Model? Surprisingly, a number

of Loryon candidates remain viable in light of direct and indirect limits, although the

situation is far more optimistic for scalar Loryons relative to their fermionic counterparts.

The current status of scalar Loryons is summarized in Fig. 2.8 and Fig. 2.9. The

parameter space has particularly large regions of viability for the custodial representations

[1, 1]0, [2, 2]0, [1, 3]0, and [3, 1]0 since the current direct search bounds on the SM singlet

S0, the charged singlet S1, the bi-doublet Φ1, and the hypercharge-neutral triplet Ξ0

vary from essentially nonexistent to ∼ 325 GeV, while the indirect bounds from Higgs

coupling measurements are modest. Among the scalar Loryons, constraints from κγ
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Vector-like Fermion Scorecard

R = 1 2 3 4 5 6 7 8

L = 1 |Ymax| = × ∼ 1
2
∼0 × × × × ×

2 ∼ 1
2

∼0 × × × × × ×

3 × × × × × × × ×

4 × × × × × × × ×

5 × × × × × × × ×

6 × × × × × × × ×

7 × × × × × × × ×

8 × × × × × × × ×

Table 2.12: The representations for the vector-like fermionic BSM Loryons still viable
after considering direct search constraints. A ∼ means the representation is not viable
on its own but can be added together with other BSM representations to flip the sign
of κγ .

permit a charge-1 scalar Loryon without flipping the sign of κγ, but they narrowly exclude

charged Loryons acquiring all of their mass from the Higgs. The custodial symmetry

representations [1, 1]0, [2, 2]0, [3, 1]0, and [1, 3]0 each include a single charge-1 particle. For

the [1, 1]Y representation, constraints on κg leave open the possibility for the Loryon to be

a color triplet. In addition, scalars in larger custodial representations can remain viable if

sufficient mass splitting is introduced so that only a single charge-1 state has a significant

coupling to the Higgs; this can be done for the representations [3, 3]0, [2, 4]0, and [4, 2]0

(see Fig. 2.9). Another avenue by which larger custodial representations can survive the

bounds is to give them larger hypercharges; this yields enough charged particles to flip

the sign of κγ. Direct searches place lower bounds on the masses ranging from ∼ one

hundred to several hundred GeV, while perturbative unitarity places upper bounds on
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Figure 2.8: Regions of parameter space for scalar Loryons which are ruled out by one of
the constraints described earlier. The orange, dotted region is ruled out by constraints
on κγ or κg; the blue, solid region is ruled out by unitarity bounds; the green, dashed
region is ruled out by constraints on Higgs decay; and the purple, dot-dashed region
is ruled out by direct search bounds. All plots assume no mass splitting between
the components of the Loryon multiplet, which is a non-trivial assumption for [2, 2]0.
Note that the bottom middle and right plots are indicated by their SM gauge quantum
numbers.

their mass to be at most ∼ 800 GeV.

The current status of fermionic Loryons is summarized in Fig. 2.10. In contrast with

the scalar case, the viable parameter space is much more tightly constrained. As noted

above, fermionic Loryons are only viable if the model results in flipping the sign of κγ.

While any individual custodial multiplet is insufficient to achieve this, flipping the sign of

κγ can occur if there are multiple copies of a given multiplet. However, these additional

copies increase the contribution to the S-parameter such that the constraints of κγ and S

cannot be simultaneously satisfied by multiple copies of a given multiplet. We conclude
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Figure 2.9: Regions of parameter space for scalar Loryons which are ruled out by
one of the constraints described earlier. The orange, dotted region is ruled out by
the electroweak precision parameter S; the purple, dot-dashed region is ruled out by
constraints on κγ ; the blue, solid region is ruled out by unitarity bounds; the green,
dashed region is ruled out by direct search bounds. The first row has fixed fmax = .5;
the second row has fixed the heaviest mass eigenvalue at 800 GeV.

that fermionic Loryons, in isolation, are excluded by current data. In principle, it is

possible to satisfy the constraints from κγ and S by adding a set of additional states to

flip the sign of κγ without running afoul of precision electroweak measurements.

Assuming the κγ constraints are satisfied in this way (and assuming these other states

do not impact the Loryon phenomenology), there are two combinations of custodial

representations which still have viable regions of parameter space: [2, 1]1/2⊕ [1, 2]1/2 and

[1, 3]0⊕[2, 2]0. For fermionic Loryons transforming in the [2, 1]1/2⊕[1, 2]1/2 representation,

direct search bounds and precision electroweak constraints both exclude regions where
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Figure 2.10: Regions of parameter space for fermionic Loryons which are ruled out by
one of the constraints described earlier. The blue, solid region is ruled out by unitarity
bounds; the green, dashed region is ruled out by precision electroweak measurements;
the orange, dotted region is ruled out by direct search constraints. Note that we do not
include constraints from Higgs couplings, which nominally rule out all fermionic Lo-
ryon candidates in combination with precision electroweak measurements; constraints
from κγ may only be satisfied by including some additional number of scalar Loryons
or non-Loryons coupling to the Higgs.

the Higgs-independent contributions to fermion masses are comparable in size to the

Higgs-dependent contributions. In this limit, there is large splitting among the mass

eigenstates, which both increases the contribution to the S-parameter and increases the

sensitivity of direct searches that require large missing energy. LEP limits place a lower

bound on the overall mass scale, while perturbative unitarity places an upper bound. In

the remaining viable region for the [2, 1]1/2⊕ [1, 2]1/2 model, the heavy mass eigenstate is

between ∼ 100 − 600 GeV, and the Higgs-independent contributions to fermion masses

are no more than about one-third the size of the Higgs-dependent contributions.

Constraints are tighter still for the [1, 3]0 ⊕ [2, 2]0 model; it is likely that the viable

parameter space could be entirely closed by a proper statistical combination of all limits,

an exercise beyond the scope of this work. As with the [2, 1]1/2⊕ [1, 2]1/2 model, precision

electroweak measurements exclude regions where the Higgs-independent contributions

to fermion masses are comparable in size to the Higgs-dependent contributions. How-
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ever, direct searches exclude disjoint regions where the Higgs-independent contributions

to fermion masses are either comparable in size to, or much smaller than, the Higgs-

dependent contributions, on account of how these contributions translate into the spec-

trum of mass eigenstates. In conjunction with LEP and perturbative unitarity bounds,

this essentially closes the parameter space for the [1, 3]0⊕ [2, 2]0, with the exception of a

very small window, see Fig. 2.10.

2.6 Future Prospects

Given the viable parameter space for scalar and fermionic Loryons in light of current

data, it is natural to wonder what the prospects might be for discovering or excluding

Loryons at the HL-LHC. In particular, we anticipate that the HL-LHC will significantly

improve the precision with which Higgs couplings are determined. This improved sensi-

tivity will either lead to increased coverage of the Loryon parameter space or point the

way towards a discovery.

For the most part, we use the HL-LHC Higgs coupling projections in [69]. We begin

with the channels that already provide nontrivial constraints with current data. Using

the projected improvement for κγ and κg in [69], we find that color triplet scalar Loryons

could be entirely ruled out. None of the color singlet cases would be ruled out by

the improvement in κγ alone since the constraint is not expected to tighten enough

to eliminate a single charge 1 scalar; the increased precision narrows the open parameter

space that survives by flipping the sign of κγ.

The HL-LHC is also projected to make a fairly precise determination of κZγ. While the

overall magnitude of the resulting constraint is expected to be much weaker than the ones

derived using κγ, the interplay of κZγ and κγ is quite powerful. In particular, the expected

constraint on κZγ would probe scenarios that currently remain viable by flipping the sign
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Rep [1, 1]1 [3, 1]0 [1, 3]0 [2, 2]0 [3, 3]0 [4, 2]0 [2, 4]0 [2, 3]−1/2∑
ηiC

Zγ
i∑

ηiQ2
i
−.12 .38 −.12 .13 .13 .30 −.032 −.008

Table 2.13: The contribution of viable scalar Loryons to κZγ as a ratio to the contri-
bution to κγ . To maintain κZγ within 20 percent of the SM value while flipping the

sign of κγ requires |
∑
ηiC

Zγ
i /

∑
ηiQ

2
i | < .074.

Rep [2, 1]1/2 ⊕ [1, 2]1/2 [1, 3]0 ⊕ [2, 2]0∑
ηiC

Zγ
i∑

ηiQ2
i

−.019 −.019

Table 2.14: The contribution of viable fermionic Loryons to κZγ as a ratio to the
contribution to κγ . To maintain κZγ within 20 percent of the SM value while flipping

the sign of κγ requires |
∑
ηiC

Zγ
i /

∑
ηiQ

2
i | < .074.

of κγ since the relevant parameter space generally also yields a significant contribution

to κZγ. The contribution of viable Loryons to κZγ relative to their contribution to κγ is

shown in Tables 2.13 and 2.14. Weak singlet scalars and the viable fermions contribute

to κZγ with opposite sign relative to the SM, while the other viable new scalar Loryons

contribute to κZγ with the same sign as the SM. The contribution to κZγ is too small to

flip the sign of κZγ and κγ simultaneously. In more complicated models, a combination

of some new singlets and fermions and/or some new non-singlet scalars could conspire to

have their contributions to κZγ cancel while flipping the sign of κγ.

Higgs cross section measurements at the LHC are sensitive to the wavefunction renor-

malization of the physical Higgs scalar h, which is expected to become relevant in the

HL-LHC era. For Loryons carrying SM quantum numbers, this constraint is typically

weaker than the bounds from κγ and κZγ. However, for the SM singlet S0, this will even-

tually provide a non-trivial constraint on the parameter space that is complementary to

the existing bounds from exotic Higgs decays or partial wave unitarity. To determine the
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projected HL-LHC sensitivity to this effect, we use the single-operator bound on

OH ≡
CH
Λ2

1

2

(
∂µ|H|2

)2
. (2.57)

The HEPFit collaboration projects a 95% CL bound of Λ/
√
|CH | = 1.4 TeV [69]. Two

comments are in order. First, although the bound is quoted on the Wilson coefficient of

a SMEFT operator (which is never the appropriate EFT description for the low-energy

effects of Loryons), the fit simply reflects a bound on a common shift to single-Higgs

production processes. As such, it may be equivalently interpreted as a limit on the

parameter κh defined via

L ⊃ κh ×
1

2
(∂h)2 , (2.58)

which uniformly shifts single-Higgs production rates when h is canonically normalized.

With this interpretation, the projected 95% CL HL-LHC limit on Λ/
√
|CH | translates

to

κh ∈ [0.97, 1.03] . (2.59)

Second, although integrating out any heavy state typically generates multiple EFT op-

erators and lead to bounds weaker than those expected from single-operator projections,

in the case of the SM singlet S0 the only low-energy effects at the LHC are the common

shift in production rates noted above and a shift in the di-Higgs rate from radiative

corrections to the Higgs potential. As the anticipated bounds on κh are much stronger

than those expected from di-Higgs measurement, the projected single-operator bound on

OH provides a reasonable approximation of the expected sensitivity of a global fit to the

specific low-energy effects of S0.
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Unfortunately, the expected HL-LHC precision lies parallel to, and is somewhat

weaker than, the bound from perturbative unitarity, so the HL-LHC is unlikely to signif-

icantly improve constraints on an individual singlet scalar Loryon in this channel within

the regime of perturbative validity. That being said, if there are some number N of

singlet scalar Loryons, the HL-LHC bound on κh scales with N , while the leading con-

tribution to the perturbative unitarity bound is unaffected. Subleading contributions to

the perturbative unitarity bound scale with N ; further study is required to understand

if HL-LHC sensitivity may play an interesting role.

A more promising observable at the HL-LHC is the Higgs self-coupling. Although

the anticipated sensitivity of the HL-LHC to deviations in the Higgs self-coupling is sig-

nificantly less than its sensitivity to wavefunction renormalization effects, the Loryon

contribution to the Higgs cubic coupling is enhanced relative to wavefunction renormal-

ization when the Higgs-Loryon coupling is large. Near the perturbative unitarity bound,

the correction becomes a O(1) effect. The leading effect of Loryons on di-Higgs produc-

tion in the large-coupling limit comes from the direct shift in the coefficient of h3, while

subleading effects at large coupling include the above-mentioned shift due to wavefunc-

tion renormalization as well as new momentum-dependent contact interactions between

h and longitudinal vectors. For simplicity, we consider only the leading effect. As shown

in Fig. 2.11, the 95% CL constraint 0.1 < κλ < 2.3 [69] on modifications to the Higgs

self-interaction – as projected for the HL-LHC – would provide sensitivity to regions of

parameter space otherwise allowed by the perturbative unitarity bound. As the unitarity

bound is fixed, more precise measurements of the Higgs self-interaction (such as that

expected from the ILC) will have a significant effect on the viable parameter space for

new Loryons.

There is also scope for improvement in direct searches for Loryon resonances. Of

the scalars with large amounts of viable parameter space remaining in Fig. 2.8, [1, 1]0
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Figure 2.11: Expected sensitivity of the HL-LHC to Loryons based on the Higgs
coupling projections in [69]. The orange, dotted region is projected to be ruled out
by improved constraints on κγ or κg; the green, dashed region can be ruled out by
the HL-LHC measurement of the Higgs cubic; the blue, solid region is ruled out by
unitarity bounds; and the purple, dot-dashed region is ruled out by current direct
search bounds.

and [2, 2]0 are assumed inert and are difficult to see directly. However, the neutral triplet

[3, 1]0, if inert, has a projected HL-LHC bound from displaced vertices that rules out most

of the viable parameter space – see Sec. 2.4 and [45]. If, on the other hand, the neutral

triplet has a small mixing with the Higgs, there are many potential dedicated searches for

the pair production of (charged or neutral) heavy Higgses, decaying to e.g. WW,WZ, tb,

that could fill in the gap [44]. For the [1, 1]1, a dedicated interpretation of the opposite-

flavor bins in the existing ATLAS dilepton analysis [48] and future analyses would be

valuable. For the fermion models, there would be immediate gains from an analysis of

neutral diboson signals (hh, hZ, ZZ) in the plane of heavy and light fermion masses,

analogous to those provided for charged diboson final states that were reinterpreted in

Sec. 2.4.2.
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2.7 Conclusions

Our goal in this chapter was to classify non-decoupling new particles (“Loryons”) that

are still experimentally viable. By non-decoupling, we mean that the Loryons acquire at

least half of their mass from the Higgs vacuum expectation value; this implies that the

low energy effective theory obtained by integrating out the Loryons must be described

using HEFT. Taking a mild set of phenomenologically reasonable assumptions, including

imposing approximate custodial symmetry, approximate Z2 symmetry, and prompt de-

cays of electromagnetically charged particles, the list of possible new states is finite. We

determined the allowed parameter space by imposing partial wave unitarity, along with

a set of indirect and direct experimental constraints. The available parameter space for

scalar Loryons remains large, while the fermionic cases are essentially ruled out.

Loryons provide a set of concrete targets for future searches. One can either search

for the Loryons directly, or indirectly by interpreting constraints on the HEFT parameter

space. In both cases, the HL-LHC stands to significantly improve on existing bounds.

Such improvement is strongly motivated as the persistence of Loryons demonstrates that

HEFT remains a viable framework for the interpretation of current Higgs data. The ex-

clusion of Loryons would represent significant progress towards verifying that electroweak

symmetry can be linearly realized by the known particles. On the other hand, evidence

for a Loryon – above and beyond the thrill of discovery – would imply that electroweak

symmetry is not linearly realized by Standard Model particles on their own.

The viability of many Loryon models adds further motivation to the study of the

correlated effects of individual SMEFT operators over different final states at the HL-

LHC. For example, [70] details pairs of processes (with different Higgs multiplicities) that

could yield comparable HL-LHC sensitivity to the same SMEFT operator. Notably, these

pairs include κγ/κZγ with vector boson scattering, and Higgs trilinear measurements with
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rates in W±W±jjh. As future measurements of κγ, κZγ, and the Higgs self coupling can

give a signal in the presence of Loryons (see Sec. 2.6), it is likely that these accompanying

measurements would exhibit decorrelated deviations that would tension a combined fit

to dimension 6 operators in the SMEFT. Along similar lines, [21] shows how single and

di-Higgs measurements can be measureably decorrelated from the SMEFT expectation

in the presence of a scalar multiplet that gets an extra electroweak symmetry breaking

vev — another class of UV models whose low energy effects require a HEFT description.

There are many future directions to explore. In principle, now that the viable Lo-

ryon parameter space is known, it is possible to design new LHC searches to target

these interesting regions either directly or indirectly. We discussed many potential new

searches/reinterpretations in Sec. 2.6, but there is considerable room for further devel-

opment. The complete Loryon parameter space is unlikely to be fully probed at the

LHC, and so a dedicated study determining the reach of future colliders is warranted. It

would also be interesting to relax some of the assumptions shaping our definition of the

Loryon parameter space, which would lead to new signatures. For example, one of the

phenomenological requirements made here was that the Loryon decays are all prompt;

relaxing this assumption leads to signals in a variety of long-lived particle searches that

would open up new pathways to discovery. We have also assumed that Loryon contri-

butions to flavor- or CP-violating observables are minimized; exploring a wider flavor

structure and/or allowing for CP violating couplings would yield many interesting com-

plementary probes of these non-decoupling new particles. Finally, we have assumed a

Z2 symmetry acting on the Loryons to highlight their irreducible loop-level signatures,

but relaxing this assumption would lead to additional experimental opportunities (and

constraints) from tree-level signatures.

There are also implications for cosmology. Many of the multiplets include an elec-

trically neutral lightest state, which is an obvious candidate for dark matter. Some of
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the Loryons have been studied as dark matter, e.g. the singlet extension of the Standard

Model [71, 72, 73], singlet-doublet dark matter [74], or the minimal dark matter program

[61], but others have not been as widely explored. In general, the relic density of Loryon

dark matter candidates is expected to be a rich subject since there are a number of non-

trivial allowed couplings between Loryons and the electroweak/Higgs bosons. Imposing

a relic density requirement could be used to further motivate regions of viable Loryon

parameter space. The Loryons are also expected to have an impact on the stability of

the Higgs potential, and in fact, one might need to add some additional new physics to

(meta-)stabilize the Higgs potential to make these models viable. Finally, in Chap. 3 we

study the impact of Loryons on the electroweak phase transition. With this exception,

we leave the exploration of these connections to cosmology and their impact on the viable

Loryon parameter space for future work.

It is remarkable that new particles obtaining most of their mass from electroweak

symmetry breaking could still be lurking under our noses. This work serves to highlight

the fact. Our hope is that this provides a new set of concrete targets to both motivate

new searches at current experiments and augment the case for future colliders.
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Chapter 3

A Strongly First-Order Electroweak

Phase Transition from Loryons

This chapter is based on work published as [3].

The electroweak phase transition (EWPT), the point in the universe’s history when

the Higgs boson acquires a vev and the SU(2)L × U(1)Y electroweak symmetry is bro-

ken to the U(1)em symmetry of electromagnetism, is of great physical interest. It is

possible that the matter-antimatter asymmetry observed today is created during the

EWPT, a phenomenon termed electroweak baryogenesis (EWBG) [75, 76, 77, 78]. Doing

so requires that the three Sakharov conditions [79] be satisfied at the EWPT. It is also

possible for the EWPT to source a stochastic background of gravitational waves (GW),

which could be detected by a near-future GW observatory such as LISA [80, 81], BBO

[82], or DECIGO [83]. Both of these possibilities require the EWPT to be first-order and

sufficiently strong. This is not the case in the Standard Model, as the Higgs mass is too

small to give a first-order EWPT [84]. However, by extending the Standard Model with

additional particles which couple to the Higgs, the Higgs potential can be modified to
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give a strongly first-order phase transition, potentially enabling both EWBG1 and the

creation of a stochastic GW background. In addition to the possibility of an observable

GW background, such extensions are generally also potentially observable at future col-

liders through modification of Higgs properties [85, 86]. Much work has explored these

possibilities; see, e.g., [44, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102,

103, 104, 105, 106, 107, 108, 109, 110].

In Chap. 2, we examined the phenomenological viability of BSM Loryons, particles

which receive most of their mass from the vev of the Higgs boson. Such particles are

a notable class because the effective field theory obtained by integrating out Loryons

must be described using HEFT, not SMEFT [11, 12, 13, 14]. We found a number of

examples of Loryons which are consistent with current constraints. By definition, Loryons

have a sizable coupling to the Higgs and thus make a significant contribution to the

Higgs effective potential. In this chapter, we leverage the Loryon parametrization and

the experimental constraints from Chap. 2 to determine where in the experimentally

viable parameter space the EWPT is strongly first-order. We both examine the Loryon

parameter space to investigate how prevalent it is to have a strongly first-order EWPT

and extend our analysis beyond Loryons to see how relevant the category of Loryons is

in picking out extensions which furnish a strongly first-order EWPT.

Apart from the focus on Loryons, this work also improves on previous analyses. We

consider a complete enumeration of viable scalars and vector-like fermions, subject to

some assumptions, as opposed to picking out a subset of benchmark models. We have

carefully considered direct search bounds on the variety of possible Loryons as well as

used the most up-to-date collider constraints and projections, thus providing a more

1Sufficient CP-violation is one of the Sakharov conditions which must be satisfied for EWBG, and a
fully viable theory of EWBG requires additional CP-violation; this can be added independently through
an additional extension of the SM, and in this work we consider only making the EWPT strongly
first-order.
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comprehensive and detailed analysis of the constraints. In addition to these, we also

impose partial wave unitarity bounds to give an additional constraint. While previous

studies (e.g. [93]) have included some consideration of unitarity bounds, our treatment is

more thorough and leads to a significantly stronger constraint. Exceeding this constraint

does not mean a model is absolutely ruled out, but it does mean perturbation theory

cannot be relied on to give accurate answers. Finally, much previous work has analyzed

the phase transition by focusing on the dynamics at the critical temperature; as discussed

in [100, 106], it is better and makes a significant difference to calculate at the nucleation

temperature, and we do so here.

For scalar Loryons, a neutral singlet, charged singlet, hypercharge 0 electroweak

triplet, hypercharge 1/2 electroweak doublet, and charge 2/3 and -1/3 color triplet are

experimentally viable for broad swathes of their parameter space. A few additional scalar

Loryons, such as a hypercharge 1 electroweak triplet and hypercharge 1/2 electroweak

quadruplet, have small regions of viability. Additional possibilities, including fermionic

Loryons and scalar Loryons in larger representations or with larger charges, are experi-

mentally ruled out when added on their own but viable when added in combination with

other BSM particles. There are a large number of possibilities which generally have deli-

cate cancellations to evade the experimental constaints; see the previous chapter for more

detailed discussion. Due to the number of possibilities, we do not perform a complete

analysis of the parameter space for these cases, but do discuss the general features and

compute with particular models to check that these hold.

The rest of this chapter is organized as follows: In Sec. 3.1, we describe our process

for determining whether a particular model possesses a strongly first-order EWPT and

sources a stochastic GW background. In Sec. 3.2, we then show for specific models where

in their parameter space they predict a strongly first-order EWPT and detectable GW

background. Finally, we present our conclusions in Sec. 3.3.
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3.1 Calculating the EWPT Characteristics

The characteristics of the EWPT can be calculated from the effective potential for the

Higgs boson. Doing so with a perturbative calculation in finite-temperature field theory

has problems such as gauge-dependence, infrared divergences, and others; see, e.g., [111,

112, 113, 114, 115, 116]. A non-perturbative calculation using e.g. lattice computations

is necessary for a fully accurate result; here, we do not deal with these issues, using

standard perturbative techiniques to estimate the properties of the EWPT (see, e.g.,

[78, 105, 106, 108]). We expect, given the approximations inherent in doing a perturbative

calculation, that the borders of the region we determine to have an appropriate EWPT

will be fuzzy; for any particular model, a more precise calculation resolving the issues

described above could be carried out to give a more definitive answer. However, our

intention is only to characterize the broad regions of parameter space and show the

degree to which they overlap with the viable parameter space from the previous study,

and for this the perturbative calculation presented here is sufficient.

This section is split into three subsections. In Sec. 3.1.1, we describe the procedure we

use to compute the effective potential for the Higgs boson. In Sec. 3.1.2, we discuss how we

use this effective potential to determine whether there is a strongly first-order EWPT.

In Sec. 3.1.3, we discuss our criteria for whether an EWPT will source a detectable

stochastic background of gravitational waves.

3.1.1 The Effective Potential

Our construction of the effective potential follows standard methods; see, e.g., [117].

At zero temperature and to one-loop order, the effective potential can be written

Veff,T=0(h, φ) = V0(h, φ) +
∑

i

niVCW,b(m2
i (h, φ)) +

∑

i

niVCW,f(m
2
i (h, φ)) . (3.1)
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Here h is the Standard Model Higgs; φ are the BSM Loryons; V0 is the tree-level po-

tential; VCW,b/f is the one-loop Coleman-Weinberg correction for bosons/fermions; ni is

the number of degrees of freedom of the particle; and the sum runs over all particles but

in practice receives significant contributions only from those with significant coupling to

h, φ. The one-loop corrections take the form

VCW,b/f(m
2
i (h, φ)) = ± 1

64π2
m2
i (h, φ)

(
m2
i (h, φ) log

(
m2
i (h, φ)

m2
i (vh, vφ)

)
+ 2m2

i (vh, vφ)

)
, (3.2)

where the ± is for bosons/fermions and (vh, vφ) are the tree-level vacuum expectation

values of h, φ; this form has fixed counterterms such that the tree-level relations between

the Lagrangian parameters and the Higgs mass and vev are preserved. At finite temper-

ature, there are two corrections. The first is the addition of a one-loop thermal potential

to the Coleman-Weinberg term,

∆Veff,T>0(h, φ, T ) =
∑

i

niVT,b(m2
i (h, φ), T ) +

∑

i

niVT,f(m
2
i (h, φ), T ) , (3.3)

where

VT,b/f(m
2
i (h, φ), T ) =

T 4

2π2
Jb/f

(
m2
i (h, φ)

T 2

)
, (3.4)

Jb/f(y
2) = ±

∫ ∞

0

dx x2 log
(

1∓ exp
(
−
√
x2 + y2

))
. (3.5)

The second correction is due to the resummation of hard thermal loops, which are nomi-

nally of higher-loop order but give a significant numerical contribution due to the presence

of the additional dimensionless ratio T/m, where m is a mass scale [118, 119]. This can
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be handled by making the substitution

m2
i (h, φ)→ m2

i (h, φ) + Πi(T ) , (3.6)

where Πi is found by differentiating VT; typically only the non-zero contribution of

leading-order in T is kept, for which

Jb,lo

(
m2

T 2

)
= 2Jf,lo

(
m2

T 2

)
≈ π2

12

m2

T 2
, (3.7)

and thus all the Πi are directly proportional to T 2.

The calculation described above is not the state of the art even for a perturbative

calculation; it can be improved through methods such as dimensional reduction [120],

higher loop order [110, 121], and renormalization group improvement [86, 122]. As our

intention is only to characterize broad regions of parameter space, we do not improve

our calculation in any of these ways. For a particular model of interest, a more precise

calculation using these methods would be desirable to obtain a more robust answer.

Due to the assumptions of Z2 symmetry and positive quadratic terms for the new

Loryons, we assume that only the Higgs field acquires a non-zero vacuum expectation

value (and have checked models throughout the parameter space to confirm that this

assumption holds). This means that we can drop all φ dependence in the above formulae

so that the effective potential is a function of just h, T .

3.1.2 Conditions for a Strongly First-Order EWPT

Given an effective potential, we now need to determine whether it gives a strongly

first-order transition. As noted earlier, this is a necessary (but not sufficient) condition for

electroweak baryogenesis. A first-order transition can occur between two local minima,
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the symmetry-preserving minimum at h = 0 and the symmetry-breaking one at h > 0.

At the critical temperature Tc, these two minima are degenerate,

Veff(0, Tc) = Veff(hc, Tc) , (3.8)

where hc > 0 minimizes Veff(h, Tc). Below this temperature, the symmetry-breaking mini-

mum becomes the global minimum, and bubbles of the symmetry-breaking minimum can

nucleate by tunneling through the barrier between the two minima. The nucleation tem-

perature Tn is defined as the temperature at which the probability of a bubble nucleating

within one Hubble volume per Hubble time is O(1); this corresponds to S3/T ≈ 140,

where S3 is the three-dimensional Euclidean action of the critical bubble [117, 123, 124].

For the EWPT to be strongly first-order and potentially suitable for electroweak baryo-

genesis, the Higgs vev in the broken phase must be large enough to suppress sphalerons.

We make the standard approximation of using vn/Tn to measure the strength of the phase

transition, with vn/Tn & 1 the condition for strong enough to be suitable for electroweak

baryogenesis [117]. We then make a rough estimate of the precision of our computation

by varying the thresholds for S3/T and vn/Tn. For S3/T we vary by a factor of 1.4,

computing with a threshold of S3/T = 100, 200; for vn/Tn we vary by a factor of 1.6,

computing with vn/Tn > .6, 1.6.

In the Standard Model, the EWPT is a crossover, not a first-order transition [84];

the minimum moves smoothly away from h = 0 rather than having two degenerate local

minima and tunneling between them. Adding new particles coupled to the Higgs can

lower the symmetry-breaking minimum relative to the symmetry-preserving minimum

and enhance the barrier between the two minima, leading to a first-order transition.

Requiring a strongly first-order EWPT thus requires some minimum contribution from

BSM physics; in Sec. 3.2, we will see this play out as requiring sufficiently large mass and
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fmax. There is also a maximum workable contribution; adding too many new scalars too

strongly coupled to the Higgs can stabilize the Higgs effective potential at the symmetry-

preserving minimum in violation of the observed zero-temperature symmetry breaking.

We impose as a condition Tn > 10 GeV; the location of the upper bound in the parameter

space is only weakly sensitive to the precise condition imposed as long as it is below ∼ 50

GeV.

3.1.3 Gravitational Wave Background

We are also interested in when the EWPT sources a GW background which could be

detected by a near-future GW observatory such as LISA, BBO, or DECIGO. GW are

primarily sourced from the EWPT through collision of bubble walls, sound waves, and

turbulence during and after collisions of bubbles of broken phase [80]. It is possible to

calculate spectra for the GW and compare these to sensitivity curves; see, e.g., [80, 81,

125, 126, 127, 128, 129]. An approximate answer can be obtained based on only two

properties of the phase transition: the ratio of the vacuum energy density released in the

transition to the radiation energy density,

α =

(
∆Veff −

Tn
4

∆
dVeff

dT

)/
g∗π

2T 4
n

30
, (3.9)

and the inverse duration of the phase transition over the Hubble parameter [80, 81],

β/H∗ =
dS3

dT

∣∣∣∣
Tn

− S3

Tn
. (3.10)

Physically, both a larger energy release in transitioning out of the metastable minimum

(large α) and a longer duration (small β) source a stronger GW signal. Both large α and

small β tend to apply for stronger transitions; thus, the regions of the parameter space
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with the strongest transitions are expected to produce a detectable GW background.

Based on [81, 128], we use

log(β/H∗) . 1.2 logα + 8.8 (3.11)

as the condition for the phase transition to source a GW background detectable by

LISA. The cutoff for where in the model parameter space we expect a detectable GW

background is only weakly dependent on the condition chosen; adjusting the required

value of β/H∗ by an order of magnitude only shifts the bound on the Loryon mass by

O(3) GeV. For BBO and DECIGO, we estimate from [126] that the constant 8.8 should

be increased to around 9.2. Again we emphasize that this is an approximate estimate,

but the end result as displayed in the Loryon parameter space is only weakly dependent

on the condition chosen. For a more precise estimate for a particular model, a more

detailed calculation would be needed; however, as stated before, we are interested only

in characterizing broad regions of parameter space, for which this estimate is sufficient.

3.2 Results

Results for a selection of viable Loryons are shown in Fig. 3.1. We see that the

region of parameter space in which there is a strongly first-order EWPT overlaps heavily

with the region of parameter space consistent with current experimental and theoretical

constraints. There is a much smaller region for which the EWPT sources a GW back-

ground detectable by near-future GW observatories; however, this also lies within the

experimentally viable parameter space for all models except the neutral singlet Loryon.

For purposes of comparison, the plots show the parameter space through smaller

values of fmax, going below the cutoff for Loryons of fmax = 1/2. The unitarity bound
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Figure 3.1: The allowed parameter space for which there is a strongly first-order
electroweak phase transition. The mass quoted is the physical mass of the Loryon.
fmax is the fraction of its mass-squared the particle gets from its coupling to the Higgs;
fmax > 1/2 is the condition for a Loryon. The orange region (dotted boundary) is
ruled out by experimental constraints; the blue region (solid boundary) is ruled out
by perturbative unitarity. The green region (dashed boundary) is where a strongly
first-order phase transition is predicted. The solid red line through this region is the
lower bound for production of a stochastic gravitational wave background detectable
by LISA, which is only marginally below the upper bound for an appropriate phase
transition.
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increases sharply outside the Loryons regime, as does the band with a viable phase

transition. It is thus not required to add Loryons in order to achieve a strongly first-order

EWPT; however, the viable region overlaps with a larger portion of the experimentally

viable parameter space for Loryons as compared to non-Loryons, with (typically) ∼30-

50% of the experimentally viable region producing a suitable phase transition for Loryons

and ∼10% for non-Loryons. These estimates vary significantly with fmax and with the

representation chosen; we refer the reader to Fig. 3.1 for more detailed information.

The larger viable region for Loryons is not an artifact of the chosen parametrization of

(m, fmax); if viewed in terms of the cross-quartic between the Higgs and the new field

rather than the mass, smaller values of fmax require a cross-quartic larger by a factor of

O(3), while the range of cross-quartics giving a viable EWPT remains approximately the

same size.

The plots are shown for our standard values of S3/T = 140, vn/Tn > 1. Varying the

value of S3/T shifts the bounds by O(3) GeV, a negligible effect. Varying the value of

vn/Tn has a stronger effect; a factor of 1.6 variation shifts the lower bound of the viable

region by O(50) GeV. Increasing the Loryon self-coupling increases both the upper and

lower bound by O(30) GeV. The curve for a detectable GW background is drawn using

our estimate for LISA; for BBO or DECIGO, the curve would shift to the left by O(5)

GeV.

As shown in Fig. 3.1, larger representations have the region for a strongly first-order

phase transition shifted to lower masses. This is due to the greater number of degrees

of freedom in the larger representations. The viable region depends principally on the

number of degrees of freedom added; the exact electroweak representation has only a

small effect on the region for which there is a viable phase transition. One can thus read

the first four panels of 3.1 as showing the approximate viable region for adding 1, 2, 3,

and 4 real scalar degrees of freedom; adding 5, 6, etc. would continue to shift the viable
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region to lower masses. The principal experimental constraint, due to Higgs decay to

two photons, is that there may be at most one charged particle, so additional Loryons

beyond the representations given would need to be neutral singlets. Of course, there are

a larger number of parameters when adding Loryons in multiple representations, as the

different representations can have different masses and values of fmax; interpreting the

plots as showing the viable region for an appropriate number of new fields in different

representations is projecting the allowed region into a slice wherein all new particles have

the same mass and coupling to the Higgs.

In Chap. 2, we also discussed the possibility of fermionic Loryons and scalar Loryons

in larger representations being viable by adding enough charged BSM particles; this flips

the sign of the Higgs coupling to two photons but matches the magnitude of the SM

[130]. There are a number of possibilities for doing so and we have not exhaustively

characterized where in their parameter spaces one predicts a strongly first-order EWPT;

however, a few general comments are in order. Adding too many scalar degrees of freedom

renders the symmetric minimum too stable. How many is too many depends on the mass

and fraction of that mass from the Higgs; as an example, only up to 6 electroweak

quadruplet scalars getting half their mass-squared from the Higgs with mass 400 GeV

can be added in isolation, while 8 would be required to flip the hγγ coupling. It is thus

not possible to add only scalars while flipping the hγγ coupling. The one-loop correction

to the effective potential from fermions is of opposite sign to that from scalars, and so

it is possible to add a mix of scalar and fermionic Loryons and get the desired behavior

for the EWPT. While the parameter space is too extensive to perform a broad scan,

we have checked particular examples in detail to confirm that we can in principle get a

strongly first-order phase transition. For a model with an appropriate mix of scalars and

fermions, there is a non-trivial mass range at a mass of several hundred GeV for which

we predict a strongly first-order electroweak phase transition.
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Figure 3.2: The allowed parameter space based on the projections for near-future
colliders. We use the one-sigma projections for the FCC-ee at 240 GeV from [131],
doubled to give an estimate of the two-sigma bound; other colliders, such as ILC and
CLIC, have comparable projections [131]. Labels are as Fig. 3.1. The two principal
constraints are hγγ, which comes down from the top in the middle panel, for which
the projected two-sigma constraint is 2.6%; and the Higgs cubic self-coupling, which
comes in from the left in the figure, for which the projected two-sigma constraint is
38%.

In Fig. 3.2, we show the viable parameter space with projected two-sigma constraints

from the FCC-ee; other near-future colliders, such as ILC and CLIC, have similar pro-

jections [131]. The measurement of the hγγ interaction is projected to be precise enough

to rule out charged and colored Loryons, leaving some number of neutral singlets as the

only viable possibility. The Higgs cubic self-coupling then places a stringent constraint;

we predict that achieving a strongly first-order EWPT while evading the constraint from

the Higgs cubic would require singlets getting at least ∼ .7 of their mass-squared from the

Higgs and occupying a narrow mass range. However, recall that our calculations of the

viable region are approximate, with an estimated error of O(50) GeV. This is enough for

the boundary of the viable region to move substantially relative to the projected Higgs

cubic constraint, and so a more precise calculation of the phase transition would be re-

quired for definitive conclusions. Nevertheless, it is likely that a model of Loryons giving

a strongly first-order EWPT would furnish a detectable signal at a near-future collider
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such as the FCC-ee. Additionally, a model which produces a stochastic GW background

would be expected to be observable at a near-future collider.

3.3 Conclusions

In this chapter we have examined particles getting most of their mass from their

coupling to the Higgs field (“Loryons”), subject to some modest assumptions, and their

potential effect on the electroweak phase transition. As Loryons by definition have a

significant coupling to the Higgs, it is reasonable to expect that they have a significant

effect on the Higgs effective potential and can enable a strongly first-order EWPT. For

BSM Loryons which are viable when added by themselves, we performed scans over the

parameter space and calculated the properties of the EWPT. We find that the region of

parameter space in which the Loryons are experimentally viable overlaps heavily with

the parameter space for which a strongly first-order phase transition is predicted.

Loryons cut off at fmax = 1/2, as this is the point at which a BSM particle requires

HEFT for an effective field theory description. The viable band has generally not yet

run into the unitarity bound by fmax = 1/2, and so it is not required to add Loryons to

achieve a strongly first-order EWPT. However, beyond the Loryon regime the viable band

turns sharply to higher masses, so the portion of the experimentally allowed parameter

space which gives a strongly first-order phase transition is significantly larger for Loryons

as compared to non-Loryons. This is not an artifact of the chosen parametrization of

(m, fmax); if viewed in terms of the cross-quartic between the Higgs and the new field

rather than the mass, smaller values of fmax require a cross-quartic larger by factor of

O(3), while the range of cross-quartics giving a viable EWPT remains approximately the

same size.

There are Loryons which are not viable on their own but which can satisfy the ex-
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perimental constraints when added with enough appropriate other Loryons. For these

cases, not as much of the parameter space gives an appropriate EWPT since adding too

many new scalar Loryons stabilizes the effective potential at the origin. However, when

both scalar and fermionic Loryons are added there are still broad ranges of the parameter

space which would predict a strongly first-order EWPT.

The parameter space for which the EWPT produces a stochastic gravitational wave

background detectable by near-future observatories is much smaller. However, it once

again overlaps with the experimentally viable parameter space. Of particular note, how-

ever, is that it does not overlap with the viable parameter space for the neutral singlet;

we conclude that the bound from imposing partial wave unitarity on the S-matrix is suf-

ficient to rule out a detectable stochastic GW background from a (one-step) first-order

EWPT driven by a neutral singlet. The Z2-symmetric neutral singlet is popularly re-

ferred to as a “nightmare scenario” due to its paucity of collider signals, and this would

mean that a viable model obeying our assumptions could not be detected by near-future

GW observatories. However, a few points of caution are in order. First, as stated before,

we have made only an approximate calculation of the phase transition and its characteris-

tics; nevertheless, our result is consistent with more detailed calculations in the literature

such as [81, 99]. Second, we have only considered the possibility of a one-step phase tran-

sition, with no vev for the singlet; the partial wave unitarity bound does not rule out the

region of parameter space with a two-step transition and a detectable GW background.

Third, only a model with a single neutral singlet is ruled out in this way; the partial wave

unitarity is only slightly affected by adding more singlets, while the region of parameter

space with a detectable GW background shifts down.

Due to their coupling to the Higgs, new Loryons would have a significant effect on

Higgs properties and could be detected via this avenue at future colliders. Improveed

measurement of hγγ could detect or rule out charged Loryons. Measurements of the
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Higgs cubic self-coupling are projected to overlap heavily with the region predicted to

have a strongly first-order phase transition, with a measurement of order tens of percent

probing much of this region and potentially leading to a discovery. For a precision such

as that projected for the FCC-ee, ILC, or CLIC, a more detailed calculation of the phase

transition would be required to give precise results, but we expect only Loryons getting

at least ∼ .7 of their mass-squared from the Higgs in a narrow mass range could provide a

strongly first-order EWPT while evading detection via modifications to the Higgs cubic.

In particular, this means that the viable region for non-Loryons could be entirely ruled

out.

We imposed a Z2 symmetry on the new Loryons and required that they have positive

mass-squared terms. It is possible to relax these assumptions; doing so would be partic-

ularly notable for EWBG as it would allow the possibility of a two-step transition where

one of the new fields acquires a vev. Relaxing these assumptions leads to tree-level signa-

tures and thus additional experimental constraints on the new Loryons, but it would be

interesting to examine this broader parameter space for the existence of a viable EWPT.

The calculations herein have only characterized broad regions of parameter space. For

models of particular interest, one could make a more precise calculation of the effective

potential, the phase transition, and its properties. In addition, we have only examined the

question of whether the phase transition is strongly first-order. While this is a necessary

condition for electroweak baryogenesis, it is not the only one. Future work could develop

a model with additional CP-violating ingredients added to one or more BSM Loryons

to give a full theory of electroweak baryogenesis. Similarly, more precise calculations

could be done for specific models of interest to confirm their possible detectability via

gravitational wave backgrounds.

BSM particles which receive most of their mass from couplings to the Higgs bo-

son remain experimentally viable. Thanks to this coupling, they not only have novel,
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detectable collider phenomenology but also have a strong effect on the physics of the

electroweak phase transition, may contribute to baryogenesis, and could potentially be

detected through gravitational wave observation.
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Chapter 4

Effective Field Theory of the Two

Higgs Doublet Model

This chapter is based on work with Timothy Cohen, Nathaniel Craig, Xiaochuan Lu, and

Dave Sutherland, published as [2].

They say good things come in pairs. This is certainly true in the search for new

particles, where a second Higgs doublet has long been a quintessential candidate for

BSM physics. The resulting two Higgs doublet model (2HDM) has been a subject of

active study since its introduction in the 1970’s (the original goal was to provide a model

with spontaneous CP violation that could explain the CKM phase) [132, 133]. Two

Higgs doublet models arise in many motivated extensions of the Standard Model and

provide perhaps the simplest realization of a spin-0 sector that matches the richness of

the observed spin-1/2 and spin-1 sectors. Subsequent exploration of the many facets of

2HDMs has given rise to a vast literature; see e.g. [134] for a classic review.

The model predicts the addition of four new physical degrees of freedom to the Stan-

dard Model. The existence of these BSM states may be inferred from both their direct
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production and their indirect imprints on the couplings of the already observed Higgs

boson. Over time, dedicated searches for these experimental signatures have been used

to constrain the allowed parameter space. This has engendered the generic expectation

that the extra Higgs bosons in the 2HDM are likely to be at least several hundreds of

GeV (barring a number of known loopholes in certain regions of parameter space). If the

new states in the 2HDM are heavy compared to the electroweak scale, an effective field

theory description becomes a useful way to characterize the resulting deviations from the

Standard Model at low energies.

Subtleties arise when matching a 2HDM onto an EFT with only one light Higgs boson.

Integrating out the BSM Higgs bosons generically leads to an EFT for the observed Higgs

boson h in which electroweak symmetry is nonlinearly realized, often referred to as the

Higgs EFT (HEFT). Alternately, integrating out an SU(2)L doublet of approximate mass

eigenstates can lead to an EFT for a Higgs doublet H in which electroweak symmetry is

linearly realized, often referred to as the Standard Model EFT (SMEFT). In this case, the

misalignment between the gauge and mass eigenstates is encoded by irrelevant operators

in the EFT. Whenever SMEFT is admissible, it is often the preferred framework due

to its compact parameterization and more transparent power-counting in the decoupling

limit.

In a general 2HDM, there is a global U(2) flavor symmetry acting on the two Higgs

doublets. Hence, there are infinitely many different basis choices one can specify in the

UV description from which an infinite number of EFTs can be derived by integrating out

one doublet. These EFTs are only formally equivalent when the full tower of effective

operators are included; different choices lead to different EFT Wilson coefficients and

potentially different linearly realized symmetries.

Given the freedom to choose a UV basis, what constitutes a good choice? Among

many possible criteria, two stand out. First, the relative advantages of SMEFT over
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HEFT makes it preferable to choose a basis in which the low-energy theory is SMEFT,

provided such a basis exists. Second, a good basis should allow the resulting EFT to

accurately reproduce the effects of the full theory with as few operators as possible

(e.g. at low orders in the EFT expansion).

In previous literature [135, 136, 137, 138, 139, 140], satisfying the first criterion has

favored a particular basis for constructing 2HDM EFTs. Integrating out a doublet that

acquires a vacuum expectation value implies that the low-energy theory does not in gen-

eral contain an electroweak symmetric point and thus requires HEFT instead of SMEFT.

This fate can be avoided by using the Higgs basis [141], for which the light doublet con-

tains all of the vacuum expectation value that breaks electroweak symmetry.1 Further-

more, the Higgs basis and the mass eigenstate basis become approximately aligned in the

decoupling limit [142, 143] of CP-conserving 2HDMs, making the Higgs basis sensible for

constructing the 2HDM SMEFT in this limit. However, exclusive use of the Higgs basis

to meet our first criterion often makes it hard to meet the second criterion. The Higgs

basis typically results in a poorly-convergent EFT expansion away from the decoupling

limit even when SMEFT is formally appropriate for describing the low-energy theory.

A more convergent EFT expansion can be obtained away from the decoupling limit by

integrating out heavy mass eigenstates, but this generically yields HEFT. This tension

has been a long-standing obstruction to the general EFT treatment of 2HDM.

For better insight, it helps to recognize that the two criteria involve different points in

field space. The origin in field space (where electroweak symmetry is restored) is essential

for determining whether SMEFT can describe the low-energy theory, while our physical

vacuum determines the composition of the mass eigenstates. It is therefore useful to

rethink the basis choice in terms of a trajectory in field space that connects the origin,

1As emphasized in [137], this definition of the Higgs basis leaves a U(1)PQ subgroup of the original
U(2) flavor symmetry intact, leading to a U(1) family of Higgs bases.
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where electroweak symmetry is linearly realized, to the physical vacuum. This motivates

interpreting the field space of the theory in a geometric language where the EFT defines a

submanifold of the UV description, as detailed in [11]. The submanifold picture presents

a new perspective on matching calculations: instead of integrating out approximate mass

eigenstates or fields without vevs, one instead attempts to find a basis in the full theory

that yields a simple parameterization of the EFT submanifold.

In this chapter, we follow this strategy and identify a new basis for the 2HDM that

simplifies integrating out the BSM states and matching to SMEFT (when possible) while

also vastly improving convergence away from the decoupling limit. The key observation

is that when there is a charge-preserving global minimum, there exists a basis choice for

which (the zero-derivative part of) the classical solution of the heavy Higgs doublet is a

linear function of the light Higgs doublet; this defines what we call the “straight-line”

(SL) basis.2 This basis — which can be defined in any 2HDM with a charge-conserving

global minimum — unsurprisingly simplifies the matching calculation.

Whether the EFT that results from matching in the SL basis can be SMEFT-like (lin-

early realizing electroweak symmetry) or must be HEFT-like depends on the parameters

of the 2HDM itself; the SL basis is useful in either case. Since the vev of the heavy Higgs

doublet vanishes at the same point as the vev of the light Higgs doublet (preserving an

electroweak symmetric point in the EFT even though the heavy doublet acquires a vev

elsewhere on the EFT submanifold), the SL basis satisfies our first criterion by enabling

matching onto a SMEFT-like EFT whenever the parameters of the 2HDM admit it. This

is not guaranteed in the Higgs basis, for which matching may lead to a HEFT-like EFT

even if the 2HDM admits a SMEFT-like description.

As we will see, matching in the SL basis also satisfies our second criterion by resum-

2While SL nominally denotes “straight-line,” four of the five authors would prefer to think of it as
standing for “SutherLand”, after its discoverer. The fifth author is too modest to contemplate naming
a basis after himself. We leave it to the reader to decide.
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ming the zero-derivative Higgs field dependence to all orders in the Wilson coefficients

of the EFT, similar to the so-called “vev-improved matching” prescription introduced

in [136]. When the 2HDM allows it, the resultant EFT is SMEFT-like in the sense that

it linearly realizes electroweak symmetry, but it has a power-counting expansion deter-

mined by counting derivatives and SM fermion fields.3 The resummation of Higgs field

dependence leads to improved convergence away from the decoupling limit. In the de-

coupling limit, one can of course expand the field dependence contained in these Wilson

coefficients, thereby obtaining a conventional SMEFT expansion (which is understood

to involve both linearly-realized electroweak symmetry and a power-counting expansion

in operator dimensions). We concretely demonstrate the advantages of the SL basis by

comparing the predictions for three pseudo-observables — the Higgs coupling to gauge

bosons, the Higgs self-coupling, and the Higgs coupling to fermions — between the full

theory and EFTs obtained from matching in the Higgs basis and the SL basis, finding

that the SL basis generically outperforms the Higgs basis by a significant margin away

from the decoupling limit.

The rest of this chapter is organized as follows. In Section 4.1 we begin by reviewing

the general 2HDM parameterization and conditions for charge conservation. We then

define the SL basis and the transformation relating it to the Higgs basis and explore

the circumstances under which each basis admits a SMEFT expansion. We carry out

tree-level matching in the SL basis using functional methods in Section 4.2. Matching

in the SL basis involves an expansion in powers of derivatives and fermions, which we

carry out up to six derivatives and/or fermions, and all orders in the light Higgs doublet.

Matching to all orders in the light Higgs doublet — a feat enabled by the simplicity

3This combination of symmetries and power-counting is reminiscent of geoSMEFT [144], although our
matching procedure incorporates higher-derivative structures that lie outside the scope of geoSMEFT
(and Riemannian field-space geometry in general), and we do not organize the field dependence of Wilson
coefficients geometrically.
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of the SL basis — effectively resums zero-derivative terms in the SMEFT expansion

associated with the physical masses of the heavy Higgs bosons. In Section 4.3 we compare

numerical predictions for key Higgs pseudo-observables between the full theory, the EFT

obtained from matching in the Higgs basis, and the EFT obtained from matching in the

SL basis, demonstrating the improved precision of the SL basis. We illustrate aspects of

the mapping between EFTs obtained from the Higgs basis and the SL basis in Appendices

B and C.

4.1 More Higgses, More Bases

The goal of this section is to introduce the general 2HDM and to provide a discussion

of its vacuum structure. Many intricacies of the 2HDM stem from the ability to change

basis by mixing the two doublets with each other. This freedom allows us to define the

straight-line (SL) basis, for which (the zero-derivative part of) the classical solution of the

“heavy” Higgs doublet will be proportional to the “light” doublet. We will then provide a

map between the SL basis and the Higgs basis, which will facilitate a comparison between

the convergence properties of the EFTs that result when integrating out the BSM states

for these two basis choices.

4.1.1 Defining the 2HDM

The 2HDM is defined as the most general renormalizable Lagrangian built out of

the Standard Model fermions and gauge bosons along with two SU(2)L doublet complex

scalar fields with U(1)Y hypercharge 1/2. We denote them by Φα
a , together with their

conjugate Φ†aα. There are two types of indices on the Higgs fields: a flavor index a = 1, 2

differentiates between the two doublets and the upper gauge index α transforms in the

fundamental representation of SU(2)L.

88



Effective Field Theory of the Two Higgs Doublet Model Chapter 4

The Lagrangian comprises a set of kinetic terms (including the minimal coupling to

gauge bosons through the covariant derivative Dµ), the scalar potential, and Yukawa

couplings,

L = L2 + L0 + LJ , (4.1a)

L2 =
(
DµΦ†a

)(
DµΦa

)
, (4.1b)

−L0 = Yab
(
Φ†aΦb

)
+

1

2
Zabcd

(
Φ†aΦb

)(
Φ†cΦd

)
, (4.1c)

−LJ = yDijaQidjΦa + yU†ija ui(εQj)Φa + yEija LiejΦa + h.c.

≡ J†aΦa + h.c. , (4.1d)

where we have suppressed SU(2)L gauge indices and omitted terms that are independent

of the Φ fields for brevity. The Q, d, u, L, and e represent the three families of Standard

Model fermions. We have expressed the scalar potential in terms of the mass-dimension-2

couplings Yab and dimensionless couplings Zabcd introduced in [145] (see also [146, 147]),

which satisfy

Yab = Y∗ba , Zabcd = Zcdab = Z∗badc . (4.2)

These can be related to the standard 2HDM notation,

(Y11,Y12,Y22) =
(
m2

1,−m2
12,m

2
2

)
, (4.3a)

(Z1111,Z1112,Z1122,Z1221,Z1212,Z1222,Z2222) = (λ1, λ6, λ3, λ4, λ5, λ7, λ2) . (4.3b)

The Yukawa matrices y are a priori arbitrary complex matrices, and together with the

SM fermions they are subsumed into the SU(2)L doublet scalar currents Jαa , which couple

to the Higgs fields.
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The kinetic term L2 is invariant under a U(2) flavor symmetry,

Φa → Uflavor
ab Φb , with Uflavor ∈ U(2) . (4.4)

Under this transformation, the couplings Yab, Zabcd, and ya rotate accordingly. One

consequence of this freedom is that, starting from the 14 real parameters in the scalar

potential (of which 4 are phases), only 11 (of which 2 phases) are physical.4

Within the 11-dimensional physical parameter space of the scalar potential, one

can identify phenomenologically viable subspaces. Requiring explicit CP conservation

amounts to turning off the 2 physical phases, which is equivalent to demanding that

there exists a basis, accessed by flavor rotations, where all Yab and Zabcd parameters are

real [148]. If we further require explicit custodial symmetry conservation in the scalar

potential, then this is equivalent to further requiring Z1221 = Z1212 in the basis with real

valued Yab and Zabcd [149] (see also [150]). In spite of their explicit conservation, CP and

custodial symmetry may yet be spontaneously broken by the vacuum configuration of

the two Higgses.

Electric charge can be spontaneously broken by the vacuum configuration of the

2HDM with or without explicit CP conservation. It is understood that a vacuum config-

uration conserves charge if and only if a unitary gauge rotation can be found to simulta-

neously set the upper components of both Higgs vevs to zero [151, 152],

Φ1

∣∣
vev

=
1√
2




0

v1


 , Φ2

∣∣
vev

=
1√
2




0

v2


 . (4.5)

4Note that the central U(1) subgroup of the U(2), which just rephases both doublets equally, leaves
the parameters invariant.
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We introduce a complex number (assuming w.l.o.g. that v1 is real)

k ≡ v2

v1

∈ C , (4.6)

where |k | = tan β. This allows us to recast the above criterion in a general gauge basis

as the requirement that the two Higgs vevs are multiples of each other (i.e. aligned in

the gauge space),

Φα
2

∣∣
vev

= k Φα
1

∣∣
vev
. (4.7)

On phenomenological grounds, we work with the 2HDM parameter space for which this

criterion is satisfied. Note that if this criterion is satisfied in one flavor basis, it is satisfied

in any flavor basis, but the ratio k is different in different bases.

4.1.2 The Straight-line Basis

We assume that we are working in a region of parameter space where the BSM Higgs

states are sufficiently heavy for it to be useful to integrate them out. There then exists a

direction in flavor space such that the second Higgs doublet Φ2 is “heavy,” meaning that

its components are sufficiently well aligned with the larger eigendirections of the mass

matrix at the global minimum. Our goal is then to integrate out Φ2 in order to obtain

an EFT describing the low energy behavior of the “light” doublet Φ1. Here, we employ

the functional approach for matching onto the EFT by integrating out the heavy states

in the path integral in the semiclassical approximation (see [153, 154] for recent reviews

of functional matching and implementation). At tree level this amounts to finding a

classical solution, Φ2,c[Φ1], to the equations of motion for the heavy doublet,

D2Φ2 + Y2bΦb + Z2bcdΦb

(
Φ†cΦd

)
+ J2 = 0 , (4.8)

91



Effective Field Theory of the Two Higgs Doublet Model Chapter 4

and substituting the classical solution back into the 2HDM action to yield the tree-

level EFT. This generates the EFT operators and their Wilson coefficients together and

facilitates working to all orders in the field Φ1.

Eq. (4.8) is solved by working order-by-order in powers of derivatives and fermions.

First, we require that the zero-derivative-and-fermion part of the classical solution,

Φ2,c[Φ1] = Φ
(0)
2,c(Φ1) +O

(
∂2, J

)
, (4.9)

solves the zero-derivative-and-fermion part of Φ2’s equation of motion, namely,

−∂L0

∂Φ†2

∣∣∣∣
Φ2=Φ

(0)
2,c(Φ1)

= Y2bΦb

∣∣
Φ2=Φ

(0)
2,c(Φ1)

+ Z2bcdΦb

(
Φ†cΦd

)∣∣
Φ2=Φ

(0)
2,c(Φ1)

= 0 . (4.10)

This is a cubic equation in Φ2; in a generic 2HDM basis it yields an EFT submanifold

curve Φ
(0)
2,c(Φ1) that is a complicated function. Now we will show that one can find a

special 2HDM basis in which the solution curve Φ
(0)
2,c(Φ1) is simply a straight line as long

as the 2HDM has a global minimum that preserves electric charge. We refer to this basis

as the SL basis.

We begin by noting that Eq. (4.10) must be satisfied at the point corresponding to

the global minimum because by definition this is a point that minimizes the potential,

Y2bΦb

∣∣
vev

+ Z2bcdΦb

(
Φ†cΦd

)∣∣
vev

= 0 . (4.11)

Let us focus on the first term. The key observation is that it is the lower component of

the “vector”

YabΦb

∣∣
vev
, (4.12)

which transforms in the fundamental representation of the flavor rotation group in
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Eq. (4.4). Therefore, one can always find a flavor basis such that its lower component

vanishes,

Y2bΦb

∣∣
vev

= 0 (SL basis condition) . (4.13)

This defines our SL basis. We adopt a convention of Roman letters Yab, Zabcd, va, and k

to denote quantities Yab, Zabcd, va, and k evaluated in the SL basis. In the SL basis, the

two terms in Eq. (4.11) both vanish independently,

Y2bΦb

∣∣
vev

= Z2bcdΦb

(
Φ†cΦd

)∣∣
vev

= 0 . (4.14)

Note that if a homogeneous function of Φa vanishes at a certain charge-conserving point

(where their values are multiples of each other), then it vanishes on the whole (charge-

conserving) straight line that connects that point with the origin. Since the two terms

in Eq. (4.10) are both homogeneous functions of Φa, Eq. (4.14) implies that they both

also vanish on the straight line,

Y2bΦb

∣∣
Φ2=kΦ1

= Z2bcdΦb

(
Φ†cΦd

)∣∣
Φ2=kΦ1

= 0 . (4.15)

Therefore, in the SL basis the EOM Eq. (4.10) has the straight line solution

Φ
(0)
2,c(Φ1) = kΦ1 , with k ≡ v2

v1

∈ C in the SL basis. (4.16)

Although in the SL basis Eq. (4.16) is always a solution to the EOM in Eq. (4.10),

this straight-line EFT submanifold can only correspond to a well-behaved SMEFT when

Y22 > 0 in the SL basis; see Sec. 4.1.4.
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4.1.3 Mapping Between the Straight-line and Higgs Bases

Let us write the doublets in the SL basis as Φa (a = 1, 2), and the doublets in the

Higgs basis as Φȧ (ȧ = 1̇, 2̇), adopting a convention of dotting Higgs-basis indices on the

fields and the corresponding parameters Yȧḃ and Zȧḃċḋ.
5 We seek the unitary matrix Uȧb

that relates the two sets of doublets,

Φȧ = UȧbΦb . (4.17)

The vevs in the two bases are similarly related,

vȧ = Uȧbvb . (4.18)

As the vevs in the respective bases are defined as

vȧ =



v

0


 , va =



v1

v2


 =

v√
1 + |k|2




1

k


 , (4.19)

where v2 = v2
1 + |v2|2, it follows that

Uȧb =
1√

1 + |k|2




1 k∗

−k 1


 . (4.20)

Rearranging the definition of the SL basis in Eq. (4.13) allows us to define k in terms

of quadratic pieces of the SL basis potential,

k =
v2

v1

= −Y21

Y22

. (4.21)

5Note that k = 0 in the Higgs basis, and k always refers to ratio of vevs in the SL basis, see Eq. (4.16).
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As U relates the quadratic parameters in the SL and Higgs bases via

Yȧḃ = Uȧc Ycd U
†
dḃ
, (4.22)

k can also be written in terms of Higgs basis quantities,

−k =
Y2̇1̇

Y1̇1̇

=
Z2̇1̇1̇1̇

Z1̇1̇1̇1̇

. (4.23)

The last equality comes from the vev conditions in the Higgs basis, which relate

−v2 =
2Y1̇1̇

Z1̇1̇1̇1̇

=
2Y2̇1̇

Z2̇1̇1̇1̇

. (4.24)

The map between other SL and Higgs basis quantities that appear in the EFT matching

is provided in App. B.

We note that both the SL and the Higgs basis are actually a U(1) family of bases.

This corresponds to the freedom to rephase the second Higgs doublet, without affecting

the respective bases’ vev conditions of Eq. (4.13) and v2̇ = 0. The above procedure details

a one-to-one map between equivalent SL and Higgs bases. This means that real scalar

potential parameters unaffected by this rephasing — in the SL basis as in the Higgs basis

— are physical.6

4.1.4 Prospects for Matching onto SMEFT

As we emphasized in the introduction, SMEFT is the EFT extension of the Stan-

dard Model that is expressed about the origin in field space where |Φ1| = 0 such that

electroweak symmetry can be linearly realized. For SMEFT to be well defined, the EFT

must be built from analytic functions of Φ1, which admit a convergent expansion of local

6We thank H. Haber for pointing this out.
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operators at this point. If it is not, then the UV theory must be matched onto HEFT

[11]. This invites the question: is it possible to determine which regions of the 2HDM

parameter space can be matched onto SMEFT? Crucially, the answer depends on the

(basis-dependent) value of Y22.

Fig. 4.1 visualizes the charge conserving solutions Φ
(0)
2,c(Φ1) of Φ2’s zero-derivative

EOM, Eq. (4.10), by plotting

Re
(

Φ†1Φ
(0)
2,c

)√
2

|Φ1| v
versus

|Φ1|
√

2

v
. (4.25)

In these coordinates, the global minimum lies at (cos β, sin β), and in the SL basis, one of

the solutions is a straight line of gradient Re k. Fig. 4.1 shows two different custodially

symmetric UV parameter points in both their respective Higgs and SL bases; custodial

symmetry guarantees that Im
(

Φ†1Φ
(0)
2,c

)
= 0 and Im k = 0. Black contours show the

2HDM potential in the space of Φ1 and Φ
(0)
2,c. The global minimum is shown by a black

dot. The potential contours and global minimum are rotated between the Higgs and SL

bases.

The multiple solutions for Φ
(0)
2,c are the paths that extremize the potential in the

vertical direction. The solutions shown in blue are stable — the mass matrix of the Φ2

modes about blue solutions is positive definite; those shown in orange are not. Notably,

the solutions Φ
(0)
2,c in the Higgs and SL basis EFTs are not simple rotations of each other.

Even when starting from the same UV parameter point, the resulting Higgs and SL

basis EFTs are generally different (truncated to zero derivative order) and are not both

guaranteed to admit a SMEFT expansion.

Following the treatment of [11], consider the behavior of the EFTs in the |Φ1| → 0

limit. Y22 < 0 is a sufficient criterion for a given basis’ EFT not to match onto SMEFT.

In the SL basis, Y22 < 0 leads to tachyonic Φ2 modes in the |Φ1| → 0 limit. This EFT
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0 1

0

1

Higgs basis

0 1

SL basis

0 1

0

1

Higgs basis

0 1

SL basis

Figure 4.1: The Higgs and SL basis behavior for two example custodially symmetric
2HDM models. Black contours show the potential, and a black dot shows the global
minimum, which has coordinates (cosβ, sinβ) on these axes. The zero-derivative

solutions of Φ2’s EOM, Φ
(0)
2,c, are shown in blue if the Φ2 mass matrix is positive

definite and in orange otherwise. Top: an example where Y22 < 0 and Y2̇2̇ < 0, and
neither basis matches onto SMEFT. Bottom: Y22 > 0 in the SL basis, whereas Y2̇2̇ < 0
in the Higgs basis.
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does not have a region of small p2 where the effects of Φ2 are purely virtual. The sickness

is most apparent when matching at loop level: when |Φ1| → 0 the Lagrangian would

have an anti-Hermitian component corresponding to a rate for tunneling out of the false

vacuum Φ
(0)
2,c.

In the Higgs basis, Y2̇2̇ < 0 generally leads to Φ
(0)
2,c approaching a non-zero constant as

|Φ1| → 0. This does not yield a SMEFT, as can be verified by substituting Φ
(0)
2,c back into

the kinetic term Eq. (4.1b). As |Φ1| → 0, the W mass remains non-zero, which cannot

be reproduced using SMEFT operators.

Of course, whether Y22 < 0 can be a basis dependent statement. If both eigenvalues

of the matrix Yab are negative, then Y22 < 0 in all bases, and it is therefore guaranteed

that both Y2̇2̇ < 0 (in the Higgs basis) and Y22 < 0 (in the SL basis). This is the case

for the potential in the top half of Fig. 4.1. However, if only one eigenvalue of Yab is

negative, the sign of Y22 varies. In this case, Eq. (B.1a) guarantees that in the SL basis,

Y22 =
1

1 + |k|2
detY
Y1̇1̇

> 0 , (4.26)

because Y1̇1̇ < 0 in the Higgs basis.

When Y22 > 0, the SL basis EFT formally admits a SMEFT expansion, in the sense

that our expressions can be expanded in terms of local operators with powers of the

positive Y22 in the denominator, and powers of |Φ1|2 in the numerator. However, this

does not necessarily result in a useful SMEFT, because such an expansion may not

converge at the global minimum. In other words, the effects of dimension 8 operators in

observables may not be smaller than dimension 6 operators, and so on. Note also that

such an expansion is in any case impossible if Y22 = 0.

Even if only one eigenvalue of Yab is negative, and therefore Y22 > 0 in the SL basis,

it is still possible that Y2̇2̇ < 0 in the Higgs basis, as shown in the bottom example of
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Fig. 4.1. Thus, working in the SL basis improves the chances of matching onto SMEFT

as Y22 > 0 whenever possible. As we will see in Sec. 4.3, working in the SL basis also

improves the convergence of the resulting EFT expansion.

4.2 Matching in the SL Basis

We will now use the classical solution to the equation of motion of the second Higgs

doublet to integrate out Φ2 at tree level. In Sec. 4.1.2, we saw how the SL basis vastly

simplifies the zero-derivative-and-fermion solution of the equation of motion. Here, this

zero-derivative-and-fermion part is used to iteratively construct the higher order terms

in the classical solution, which are in turn vastly simpler in the SL basis. In the end,

we will include terms in the EFT up to six- derivative-and/or-fermion order and to all

orders in the light field Φ1.

4.2.1 Organizing the EFT Expansion

Since we need to derive terms involving as many as six derivatives and/or fermions

in the EFT, we begin by setting up the expansion of the UV action on the classical

equations of motion for the heavy doublet. We write the UV action derived using the

Lagrangian in Eq. (4.1) as

SUV[Φ2] = S0[Φ2] + ε
(
S2[Φ2] + SJ [Φ2]

)
= S0[Φ2] + εSε[Φ2] , (4.27)

where Sε[Φ2] is implicitly defined here, S0[Φ2] contains the zero-derivative scalar terms,

S2[Φ2] contains the two-derivative scalar terms, SJ [Φ2] contains the Yukawa interactions,

and ε is an order parameter which we use to track the sum of the number of fermions

99



Effective Field Theory of the Two Higgs Doublet Model Chapter 4

and derivatives,

2ε = # of derivatives + # of fermions . (4.28)

Ultimately, we will set ε = 1. Note that we are only writing the explicit functional

dependence on Φ2 here for brevity, but of course SUV also depends on the light Standard

Model fields.

We will denote the Higgs doublet we are integrating out at tree level as

Hx =




Φα
2 (x)

Φ†2α(x)


 , (4.29)

where the x label simultaneously stands for 1) the spacetime coordinate, 2) the SU(2)L

index, and 3) the Higgs doublet versus its conjugate, as we need to vary with respect to

all of them. We want to find Hc,x, the classical solution to the equation of motion for

Hx, order-by-order in ε,

Hc,x =
∞∑

n=0

εnH(n)
c,x . (4.30)

This allows us to derive the EFT action as a semiclassical expansion,

Stree
EFT = SUV[Hc,x] . (4.31)

Substituting the expansion defined in Eq. (4.30) into Eq. (4.27), we find

Stree
EFT = ε0S0

+ ε1
[
Sε + (δS0)xH(1)

c,x

]

+ ε2
[

1

2
(δ2S0)xyH(1)

c,xH(1)
c,y + (δSε)xH(1)

c,x + (δS0)xH(2)
c,x

]
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+ ε3
[

1

2
(δ2Sε)xyH(1)

c,xH(1)
c,y +

1

6
(δ3S0)xyzH(1)

c,xH(1)
c,yH(1)

c,z

+ (δ2S0)xyH(1)
c,xH(2)

c,y + (δSε)xH(2)
c,x + (δS0)xH(3)

c,x

]

+O
(
ε4
)
. (4.32)

We use a bar to denote quantities evaluated on the zeroth-order classical solution H(0)
c,x,

and we have defined the shorthand

(δS)x ≡
δS

δHx

, (δ2S)xy ≡
δ2S

δHxδHy

, (δ3S)xyz ≡
δ3S

δHxδHyδHz

. (4.33)

Note that a repeated index implies an integral over the associated spacetime coordinate

as well as a sum over the components of the Higgs doublet and their conjugates.

To find Hc,x, we expand the equation of motion in powers of ε ,

0 =
δSUV

δHx

∣∣∣∣
Hx=Hc,x

= ε0 (δS0)x + ε1
[
(δSε)x + (δ2S0)xyH(1)

c,y

]

+ ε2
[

(δ2Sε)xyH(1)
c,y + (δ2S0)xyH(2)

c,y +
1

2
(δ3S0)xyzH(1)

c,yH(1)
c,z

]
+O

(
ε3
)
. (4.34)

Each order in ε must independently be zero. This gives

(δS0)x = 0 , (4.35a)

(δSε)x + (δ2S0)xyH(1)
c,y = 0 , (4.35b)

(δ2Sε)xyH(1)
c,y + (δ2S0)xyH(2)

c,y +
1

2
(δ3S0)xyzH(1)

c,yH(1)
c,z = 0 , (4.35c)

which can be solved to give Hc,x order-by-order in ε. Note that Eqs. (4.35) imply an
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immediate simplification of Eq. (4.32),

Stree
EFT = ε0 S0 + ε1 Sε + ε2

[
− 1

2
(δ2S0)xyH(1)

c,xH(1)
c,y

]

+ ε3
[

1

2
(δ2Sε)xyH(1)

c,xH(1)
c,y +

1

6
(δ3S0)xyzH(1)

c,xH(1)
c,yH(1)

c,z

]
. (4.36)

We thus only need to compute H(1)
c,x, which amounts to solving Eq. (4.35b). This requires

inverting the mass matrix (δ2S0)xy, as described in the next section.

4.2.2 Inverting the Mass Matrix

The general expansion derived in the preceding subsection is valid in a general fla-

vor basis. As mentioned above, deriving the EFT to the desired order requires solving

Eq. (4.35b). We therefore must invert the mass matrix. To do so, we now specialize to

the SL basis as defined in Eq. (4.16), for which

(δ2S0)xy = −δ(4)(x− y)



Z1Φ†1αΦ†1β (Y22 + Z2|Φ1|2)δβα + Z3Φ†1αΦβ
1

(Y22 + Z2|Φ1|2)δαβ + Z3Φ†1βΦα
1 Z∗1Φα

1 Φβ
1


 , (4.37)

where

Z1 = Z1212 + 2k∗Z1222 + (k∗)2Z2222 =

(
1 k∗

)


Z1212 Z1222

Z1222 Z2222







1

k∗


 , (4.38a)

Z2 = Z1122 + 2 Re
[
kZ1222

]
+ |k|2Z2222 =

(
1 k∗

)


Z1122 Z1222

Z2122 Z2222







1

k


 , (4.38b)
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Z3 = Z1221 + 2 Re
[
kZ1222

]
+ |k|2Z2222 =

(
1 k∗

)


Z1221 Z1222

Z2122 Z2222







1

k


 . (4.38c)

Note that Z2 and Z3 are real valued. Note also that, if Y22 < 0, the eigenvalues of the

mass matrix are negative in the |Φ1| → 0 limit, as mentioned in Sec. 4.1.4.

Consistency with the SU(2)L structure implies an ansatz for the inverse,

(δ2S0)−1
yz = −δ(4)(y − z)




AΦβ
1 Φγ

1 B δβγ + C Φ†1γΦ
β
1

B δγβ + C Φ†1βΦγ
1 A∗Φ†1βΦ†1γ


 , (4.39)

with B = B∗ and C = C∗. The solution is given by

A = − Z∗1[
Y22 + (Z2 + Z3)|Φ1|2

]2 − |Z1|2|Φ1|4
, (4.40a)

B =
1

Y22 + Z2|Φ1|2
, (4.40b)

C = − 1

Y22 + Z2|Φ1|2
Z3

[
Y22 + (Z2 + Z3)|Φ1|2

]
− |Z1|2|Φ1|2[

Y22 + (Z2 + Z3)|Φ1|2
]2 − |Z1|2|Φ1|4

, (4.40c)

as can be checked by explicit matrix multiplication. With the result in Eq. (4.39), we

obtain an O(ε) solution to the EOM,

Φ
(1)
2,c = −

[
A
(

Φ†1R
)∗

+ C
(

Φ†1R
)]

Φ1 −BR , with R ≡ kD2Φ1 + J2 . (4.41)

These results simplify in the custodial limit, for which, without loss of generality, all

potential parameters and therefore k are real, and Z1221 = Z1212 [149] (implying Z1 = Z3).
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The coefficients of the inverse mass matrix defined in Eqs. (4.40) therefore simplify to

A = C = − Z1

(Y22 + Z2|Φ1|2) [Y22 + (Z2 + 2Z1)|Φ1|2]
, (4.42a)

B =
1

Y22 + Z2|Φ1|2
, (4.42b)

when the UV 2HDM respects custodial symmetry.

4.2.3 The EFT Result

We now have everything we need to determine an EFT action for the light doublet

Φ1. Combining Eq. (4.36) with Eqs. (4.16) and (4.41), we have

LEFT = −
(
1 + |k|2

)
m2

eff |Φ1|2 −
1

2

(
1 + |k|2

)2
λeff |Φ1|4

+
(
1 + |k|2

)
|DµΦ1|2 −

[(
J†1 + kJ†2

)
Φ1 + h.c.

]

+B |R|2 + C
∣∣Φ†1R

∣∣2 +
1

2

[
A∗
(

Φ†1R
)2

+ h.c.

]
+
∣∣∣DµΦ

(1)
2,c

∣∣∣
2

−
[
Z4

(
Φ†1Φ

(1)
2,c

) ∣∣∣Φ(1)
2,c

∣∣∣
2

+ h.c.

]
, (4.43)

where A,B,C are given in Eqs. (4.40); Φ
(1)
2,c and R are given in Eq. (4.41). We have also

introduced the notation m2
eff and λeff,

(
1 + |k|2

)
m2

eff = Yab




1

k∗



a




1

k



b

, (4.44a)

(
1 + |k|2

)2
λeff = Zabcd




1

k∗



a




1

k



b




1

k∗



c




1

k



d

, (4.44b)
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as well as Z4, which populates the elements of (δ3S0)xyz,

Z4 = Z1222 + k∗Z2222 =

(
1 k∗

)


Z1222

Z2222


 . (4.45)

4.2.4 EFT Predictions for Benchmark Pseudo-observables

We will use the matching result Eq. (4.43) to compute three pseudo-observables: the

shift in the hW+W− coupling relative to the Standard Model κV , the shift in the Higgs

self-coupling h3 relative to the Standard Model κλ, and the shift in the hf̄f coupling

relative to the Standard Model κf . We will compute all of these to the leading order

in ε at which a correction to the Standard Model value appears. In the SL basis, these

corrections are suppressed by powers of
m2
h

M2
SL

, where M2
SL is a characteristic heavy mass

scale defined in Eq. (4.55).

We can drop the last line of Eq. (4.43) — which originates from the second O
(
ε3
)

term in Eq. (4.36) — because it does not contribute to our pseudo-observables at the

truncation order imposed in this section. Note also that the kinetic term for Φ1 is not

canonically normalized. Rewriting with the normalized field,

H ≡
(
1 + |k|2

)1/2
Φ1 , (4.46)

we get

LEFT ⊃ |DµH|2 −m2
eff |H|

2 − 1

2
λeff |H|4 −

(
1 + |k|2

)−1
[(
Ĵ†1 + kĴ†2

)
H + h.c.

]

+ B̂
∣∣R̂
∣∣2 + Ĉ

∣∣H†R̂
∣∣2 +

1

2

[
Â∗
(
H†R̂

)2
+ h.c.

]
+
(
1 + |k|2

) ∣∣∣DµΦ̂
(1)
2,c

∣∣∣
2

, (4.47)
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with a variety of rescaled quantities,

Ŷ22 ≡
(
1 + |k|2

)
Y22 , (4.48a)

Ĵi ≡
(
1 + |k|2

)1/2
Ji , (4.48b)

Â ≡
(
1 + |k|2

)−2
A = − Z∗1[

Ŷ22 + (Z2 + Z3)|H|2
]2 − |Z1|2|H|4

, (4.48c)

B̂ ≡
(
1 + |k|2

)−1
B =

1

Ŷ22 + Z2|H|2
, (4.48d)

Ĉ ≡
(
1 + |k|2

)−2
C = − 1

Ŷ22 + Z2|H|2
Z3

[
Ŷ22 + (Z2 + Z3)|H|2

]
− |Z1|2|H|2[

Ŷ22 + (Z2 + Z3)|H|2
]2 − |Z1|2|H|4

, (4.48e)

R̂ ≡
(
1 + |k|2

)1/2
R = kD2H + Ĵ2 , (4.48f)

Φ̂
(1)
2,c ≡

(
1 + |k|2

)−1/2
Φ

(1)
2,c = −

[
Â
(
H†R̂

)∗
+ Ĉ

(
H†R̂

)]
H − B̂R̂ . (4.48g)

We see that when restricted to two-derivative/fermion order, i.e., the first line of Eq. (4.47),

the matching result is the Standard Model. This is peculiar to the SL basis, where

Φ
(0)
2,c = kΦ1. Working in a different basis would involve substituting a more complicated

function Φ
(0)
2,c(Φ1) into the ε1 piece of Eq. (4.36), resulting in higher dimension operators

at two-derivative/fermion order. Instead, in the SL basis, corrections to the pseudo-

observables come from terms at the four- and six-derivative/fermion orders presented in

the second line of Eq. (4.47). To compute these corrections, we will take Eq. (4.47) and

expand around the physical vacuum where H has a non-zero vev. We will only keep

terms that are relevant for κV (to six-derivative/fermion order), κf (to potentially six-

derivative/fermion order), and κλ (to four-derivative/fermion order). We also need the

propagator residue factors for all the external legs of these amplitudes. It is clear that the

four- and six-derivative/fermion terms in Eq. (4.47) do not yield nontrivial corrections
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to the propagator residues of the gauge bosons or the fermions, but they do modify the

Higgs propagator residue factor Zh.

In summary, when we expand Eq. (4.47), we would like to keep all the terms of the

forms

h2 ∂n , h3 ∂n , W+
µ W

−
ν h ∂

n , ĵi h ∂
n , (4.49)

where ∂n denotes an arbitrary power of derivatives (up to our truncation order) and ĵi

are the neutral components of Ĵi,

Ĵi ⊃




0

ĵi


 . (4.50)

Note that all the four- and six-derivative/fermion terms in Eq. (4.47) are quadratic in

R̂. For finding the terms listed in Eq. (4.49), it is therefore sufficient to keep only part

of R̂ ,

R̂ = kD2H + Ĵ2 ⊃




0

k√
2

[
(∂2h)− 1

2
g2

2vW
+
µ W

−µ]+ ĵ2


 , (4.51)

and make the replacement

H → 1√
2




0

v + h


 , (4.52)

for all the other factors of H fields in the four- and six-derivative/fermion terms in

Eq. (4.47) (including the implicit ones in Â, B̂, Ĉ). Performing these substitutions, we

obtain

LEFT ⊃
1

2
(∂h)2 − 1

2
m2h2 − m2

2v
h3 +

1

2
g2

2vW
+
µ W

−µh− 1√
2

v + h

1 + |k|2
(
ĵ1 + k∗ĵ2 + h.c.

)

+ b4
1

2
(∂2h)

[
(∂2h)− g2

2vW
+
µ W

−µ
]

+

[
f4√
2k∗

ĵ∗2 (∂2h) + h.c.

]
+
c4

2
h
(
∂2h
)2
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+ b6
1

2
(∂µ∂

2h)
[
(∂µ∂2h)− g2

2v ∂
µ(W+

ν W
−ν)
]
−
[

f6√
2k∗

ĵ∗2 (∂4h) + h.c.

]
, (4.53)

where the coefficients are

m2 = λeff v
2 = −2m2

eff , (4.54a)

b4 =
1

M4
SL

{
|k|2

[
Ŷ22 + (Z2 + Z3)

v2

2

]
− Re

(
k2Z1

v2

2

)}
, (4.54b)

Re f4 = b4 , (4.54c)

Im f4 =
1

M4
SL

Im

(
k2Z1

v2

2

)
, (4.54d)

c4 =
∂

∂v
b4 , (4.54e)

b6 =
1

M8
SL

(
1 + |k|2

) ∣∣∣∣k
[
Ŷ22 + (Z2 + Z3)

v2

2

]
− k∗Z∗1

v2

2

∣∣∣∣
2

, (4.54f)

Re f6 = b6 , (4.54g)

Im f6 =
1

M8
SL

(
1 + |k|2

) [
Ŷ22 + (Z2 + Z3)

v2

2

]
Im
(
k2Z1v

2
)
. (4.54h)

Note the appearance of the mass scale

M4
SL =

[
Ŷ22 + (Z2 + Z3)

v2

2

]2

− |Z1|2
v4

4
, (4.55)

which is closely related to the determinant of the mass matrix for the heavy Higgs doublet.

(The only difference is the factor of (1 + |k|2) in Ŷ22, which comes from canonically

normalizing Φ1 to H using Eq. (4.46).) MSL includes both the explicit mass parameter

Y22 and the vev-dependent contributions to the mass through the quartic couplings.

From Eq. (4.53), the terms that are quadratic in h with no other fields determine
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that the dispersion relation for h is

−m2 + p2 + b4p
4 + b6p

6 +O
(
p8
)

= 0 , (4.56)

which implies that the pole mass m2
h can be determined by solving

m2 = m2
h + b4m

4
h + b6m

6
h +O

(
p8
)
, (4.57)

and that the residue is

Z−1
h =

∂

∂p2

(
−m2 + p2 + b4p

4 + b6p
6 +O

(
p8
)) ∣∣∣

p2=m2
h

= 1 + 2b4m
2
h + 3b6m

4
h +O

(
p6
)
. (4.58)

Note that by including higher order momentum terms in the dispersion relation, we are

effectively resumming a class of EFT corrections into the propagator. This is one of the

systematic improvements that is facilitated by working in the SL basis. Using Eq. (4.53),

we have

κV = Z
1/2
h (1 + b4m

2
h + b6m

4
h) +O

(
m6
h

)
= 1− 1

2
m4
h

(
b6 − b2

4

)
+O

(
m6
h

)
, (4.59)

and

κλ = 1− 2m2
h

∂

∂v2

(
v2b4

)
+O

(
m4
h

)
. (4.60)

In particular, we note that the quantity appearing in κV is non-negative,

b6 − b2
4 =

1

M8
SL

{∣∣∣∣k
[
Ŷ22 + (Z2 + Z3)

v2

2

]
− v2

2
k∗Z∗1

∣∣∣∣
2

+

[
v2

2
Im(k2Z1)

]2
}
≥ 0 , (4.61)
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which guarantees that the correction κV − 1 ≤ 0 has the correct sign. Observe also that

the correction in Eq. (4.59) is formally O(ε4): b2
4 is the square of an O(ε2) piece, whereas

the b6 term is an O(ε3) piece multiplied by the 1 in Z
1
2
h , which is the uncorrected residue

coming from the O(ε1) kinetic term.

Determining κf is complicated by the fact that there are different possibilities for the

fermion couplings to the two doublets. It is most transparent to write the couplings to

fermions in the Higgs basis, for which the neutral components of the currents are

J1̇ =




0

j1̇


 , J2̇ =




0

j2̇


 . (4.62)

Using the mappings given in App. B, the SL basis currents are then

Ja =
1√

1 + |k|2




1 −k∗

k 1



aḃ

Jḃ . (4.63)

This implies

ĵ1 = j1̇ − k∗j2̇ , (4.64a)

ĵ2 = kj1̇ + j2̇ . (4.64b)

The part of Eq. (4.53) containing fermions can be expressed in terms of Higgs basis

currents as

Leff ⊃ −
1√
2
j1̇

(
v + h− f ∗4∂2h+ f ∗6∂

4h
)
− 1√

2

j2̇

k

(
−f ∗4∂2h+ f ∗6∂

4h
)

+ h.c. . (4.65)

We see that matching the fermion masses determines j1̇ and places no constraint on
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j2̇; this is why it is useful to write the Lagrangian in terms of these quantities. The

amplitude for a Higgs to decay to a particular chirality of fermions is then proportional

to the matrix element of the unconjugated currents,

Ah→f̄LfR = −〈j1̇〉√
2
Z

1/2
h

(
1 + f ∗4m

2
h + f ∗6m

4
h

)
− 〈j2̇〉
k
√

2
Z

1/2
h

(
f ∗4m

2
h + f ∗6m

4
h

)
+O

(
m6
h

)

= −〈j1̇〉√
2

[
1− 1

2

(
b6 − b2

4

)
m4
h

]
+ i
〈j1̇〉√

2

[
m2
h Im f4 +m4

h

(
Im f6 − b4 Im f4

)]

− 〈j2̇〉
k
√

2

[
b4m

2
h +

(
b6 − b2

4

)
m4
h

]
+ i
〈j2̇〉
k
√

2

[
m2
h Im f4 +m4

h

(
Im f6 − b4 Im f4

)]

+O
(
m6
h

)
, (4.66)

where we are using a shorthand 〈j〉 =
〈
f̄LfR|j|0

〉
.

To calculate κf , we then need to specify j2̇. There are a wide variety of possibilities

with rich phenomenological implications, including conventional choices satisfying the

Glashow-Weinberg condition [155]. In this work, we consider two specific choices. For

both, we require the UV 2HDM potential to be CP-preserving; this means Im f4 =

Im f6 = 0. For our first example, we set j2̇ = 0, such that the fermion currents only

couple to the linear combination of Higgses that gets a vev. In this case,

κf = 1− 1

2

(
b6 − b2

4

)
m4
h = κV . (4.67)

In other words, to this order in the EFT expansion there is simply a universal rescaling

of all Higgs couplings for this scenario. This is the unique choice for which κf does not

receive a contribution at leading order. For our second example, we set j2̇ = j1̇, in which

case,

κf = 1 +
b4

k
m2
h , (4.68)
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where we have truncated to the leading order correction. Note that both of the possibil-

ities we consider automatically ensure that there are no FCNC’s at tree level.

4.3 Numerical Comparison

We will now provide the results of a scan in the 2HDM parameter space in order to

compare the efficacy of the SL basis EFT with the Higgs basis EFT. We will provide

results for the three pseudo-observables derived in the previous section: the shift in the

hW+W− coupling κV , the shift in the h3 coupling κλ, and the shift in the hf̄f coupling

κf . For κf , we consider specifically the case when the Yukawa couplings of both doublets

are the same in the Higgs basis; see Eq. (4.68). We will present the results in terms of

the fractional error of the EFT prediction as compared to the UV prediction,

δκi,EFT ≡
κi,EFT − κi,UV

κi,UV − 1
, (4.69)

where κi,UV use the couplings computed in the full 2HDM; both the UV and the Higgs

basis EFT results are taken from [137].

To make this comparison, we reduce the general 2HDM down to a four-parameter

space of models. We first impose custodial symmetry and work in the resulting Higgs

basis for which all parameters are real and Z1̇2̇1̇2̇ = Z1̇2̇2̇1̇. We then scan over the 4

parameters

Y1̇2̇ , Y2̇2̇ , Z1̇1̇1̇1̇ , Z1̇1̇2̇2̇ . (4.70)

Of the remaining parameters, Y1̇1̇ and Z1̇1̇1̇2̇ are fixed by the Higgs basis vev conditions

Eq. (4.24); the others we fix to satisfy

Z1̇2̇2̇2̇ = Z1̇2̇1̇2̇ = 0 ; Z2̇2̇2̇2̇ = Z1̇1̇1̇1̇ , (4.71)
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for simplicity. Note that it is important that Y1̇2̇ 6= 0 for the Higgs and SL bases to be

distinct.

The four free parameters, Eq. (4.70), are scanned in units of v = 246 GeV via a

Markov Chain Monte Carlo (MCMC) method, which samples from the Gaussian likeli-

hood of approximate current experimental constraints on mh and κV ≡ sin(β − α). Here

α is the familiar Higgs mixing angle and sin(β − α)→ 1 is known as the alignment limit.

Explicitly, we take

m2
h

v2
= 0.2587± 0.0007 , (4.72a)

κV = 1.0± 0.1 . (4.72b)

The κV constraint assumes a Standard Model central value, and a 10% error based on the

order-of-magnitude of ATLAS and CMS Run 2 1σ errors on κW and κZ , in the absence

of invisible or untagged decays [156, 157]. Note that κV ≤ 1 in the 2HDM. The MCMC

is seeded on a grid of inert 2HDMs, where

Y1̇2̇ = 0 , (4.73a)

Y2̇2̇ = m2
H(1− f) , (4.73b)

Z1̇1̇1̇1̇ = 0.2587 , (4.73c)

Z1̇1̇2̇2̇ = 2f
m2
H

v2
, (4.73d)

where m2
H is the heavy Higgs mass at the global minimum and f is the fraction of it

which comes through the cross quartic interaction 1
2
Z1̇1̇2̇2̇v

2. We sample m2
H and f from
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the discrete sets

m2
H

GeV
= {400, 500, 600, 700, 800} , (4.74a)

f = {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9} . (4.74b)

We discard all models whose quartic couplings either make the potential unbounded or

violate the perturbative unitarity constraints of [158]. This leaves ∼ 7000 2HDM model

points in the following analysis.

The performance of the SL basis EFT can be understood primarily by looking at two

parameters: the alignment of the 2HDM and the mass scale from the mass matrix of the

heavy doublet, MSL, defined in Eq. (4.55). Recall from Sec. 4.2.1 that the SL basis EFT

is an expansion in powers of derivatives (and fermions). We thus expect the nth order

corrections to our pseudo-observables to scale as

(
D2
)n ∼ m2n

h ∼ v2n . (4.75)

By dimensional analysis, the nth order corrections must also scale as some mass scale

to the power of −2n. From Eqs. (4.35), these powers of mass dimension come from

the inverse of the mass matrix for the heavy doublet; the nth order corrections to our

pseudo-observables thus scale as M−2n
SL . The corrections therefore scale as

SL basis power counting ∼
(

v

MSL

)2n

, (4.76)

and we expect that the SL EFT expansion will provide a good approximation when MSL

is large.

We plot our pseudo-observables in the cos(α− β) versus MSL plane in Figs. 4.2 to 4.4,
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Figure 4.2: This figure shows for which models the SL basis EFT makes an accurate
estimate of κV . Blue points are those for which δκV,SL < 0.1 and orange points (shown
on top of the blue points) are those for which δκV,SL > 0.1.
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Figure 4.3: This figure shows for which models the SL basis EFT makes an accurate
estimate of κλ. Blue points are those for which δκλ,SL < 0.1 and orange points (shown
on top of the blue points) are those for which δκλ,SL > 0.1.
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Figure 4.4: This figure shows for which models the SL basis EFT makes an accurate
estimate of κf . We have taken the Yukawa couplings to the two Higgs doublets to be
equal. Blue points are those for which δκf,SL < 0.1 and orange points (shown on top
of the blue points) are those for which δκf,SL > 0.1. If the Yukawa couplings of the
heavy doublet are instead set to zero, κf = κV .

where α is the Higgs mixing angle, β = arctan(v2/v1), and the combination cos(α− β)

is a measure of the alignment limit for the 2HDM. In the figures, we separate the points

into those for which the fractional error is above or below 10% to provide a proxy for

when the SL basis EFT prediction is accurate. As expected, we find better performance

for larger values of MSL. In addition, κV and κf are highly correlated with the measure

of alignment; this is because κV,UV and κf,UV depend only on the alignment of the 2HDM

(and, for κf , the Yukawa couplings of the Higgs doublets, which we have fixed). For κλ,

the behavior is more complicated as a larger number of parameters affect the value of κλ.

A comparison of the performance for the SL basis EFT against the Higgs basis EFT

is given in Figs. 4.5 to 4.7. The SL basis EFT typically outperforms the Higgs basis

EFT by a significant margin (around 1-2 orders of magnitude smaller fractional error)

for all three pseudo-observables; this is the case whether the SL basis EFT performs
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Figure 4.5: This figure shows the accuracy in computing κV for each of the EFTs.
The straight orange line denotes equality between the accuracy of the two EFTs, with
points above the line being those for which the SL basis EFT performs better than
the Higgs basis EFT.

relatively well or relatively poorly. We do find parameter points for which the Higgs

basis EFT outperforms the SL basis EFT, so the SL basis EFT is not universally better.

In addition, for a significant minority of points the Higgs basis EFT catastrophically fails

with a fractional error of several orders of magnitude; these catastrophic failures include

many points on which the SL basis EFT performs quite well. By contrast, while points

exist for which the SL basis EFT performs poorly, the Higgs basis tends to perform

poorly as well, and none of the points included in our scan show a catastrophic failure of

the SL basis.

The difference in performance of the two EFTs can be understood by looking at

the mass scales involved in the power counting. As we saw in Eq. (4.76), higher-order

corrections in the SL basis EFT are suppressed by powers of MSL; this mass scale is

comparable to the physical mass of the second Higgs doublet, so the EFT produces
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Figure 4.6: This figure shows the accuracy in computing κλ for each of the EFTs.
The straight orange line denotes equality between the accuracy of the two EFTs, with
points above the line being those for which the SL basis EFT performs better than
the Higgs basis EFT.

reliable results when the second Higgs doublet is heavy. The higher-order corrections in

the Higgs basis EFT are suppressed by powers of Y2̇2̇. If the second Higgs doublet receives

a large contribution to its mass from the vev, then Y2̇2̇ can be significantly smaller than

the mass of the second Higgs. We show how the relative performance of the two EFTs

depends on the ratio of their respective mass scales in Figs. 4.8 to 4.10. We indeed see

that when the mass scale of the Higgs basis EFT is significantly smaller than that of

the SL basis EFT, the Higgs basis EFT is significantly less accurate. In addition, for all

those points on which the Higgs basis EFT is more accurate than the SL basis EFT, the

mass scales of the two EFTs are comparable, as expected.

Finally, we remark on the decoupling limit where the extra Higgs bosons are very

heavy. As the quartic couplings of the 2HDM are constrained by perturbative unitarity

to be O(8π), this requires taking the quadratic couplings large, namely, in the Higgs

basis, Y2̇2̇ → ∞ with Y1̇1̇, Y1̇2̇ fixed (see [159] for a recent discussion). By Eqs. (4.55)
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Figure 4.7: This figure shows the accuracy in computing κf . We have taken the
Yukawa couplings to the two Higgs doublets to be equal. The straight orange line
denotes equality between the accuracy of the two EFTs, with points above the line
being those for which the SL basis EFT performs better than the Higgs basis EFT. If
the Yukawa couplings of the heavy doublet are instead set to zero, κf = κV .

and (B.1a), this means both Ŷ22 and M2
SL in the SL basis approach the value of Y2̇2̇.

In App. C, we show that the SL basis EFT can be expanded in this limit to reproduce

known results.

4.4 Conclusions

In this chapter, we have derived the tree-level matching coefficients by integrating out

the BSM states in the 2HDM. The novel aspect of this work is the introduction of the SL

basis, which is an optimal choice for performing the matching calculation. Working with

the SL basis allows us to match a far broader parameter space of 2HDM models onto

SMEFT and to resum all orders of the light Higgs field into the EFT Wilson coefficients

in a systematic way. This leads to significantly improved predictions when compared to
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Figure 4.8: This figure shows how the performance of the SL basis EFT and the Higgs
basis EFT prediction for κV depends on the ratio of the mass scales in the two EFTs.
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Figure 4.9: This figure shows how the performance of the SL basis EFT and the Higgs
basis EFT prediction for κλ depends on the ratio of the mass scales in the two EFTs.
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Figure 4.10: This figure shows how the performance of the SL basis EFT and the
Higgs basis EFT prediction for κf depends on the ratio of the mass scales in the two
EFTs. We have taken the Yukawa couplings to the two Higgs doublets to be equal.
If the Yukawa couplings of the heavy doublet are instead set to zero, κf = κV .

the computation performed using the Higgs basis in the UV across most of the 2HDM

parameter space. This demonstrates the utility of the EFT derived using the SL basis.

In particular, this is the basis to use if one is interested in exploring the EFT predictions

for the 2HDM for models that have alignment away from the decoupling limit. This

brings the 2HDM fully into the EFT fold, extending the validity of EFT interpretations

of Higgs coupling measurements across a wider range of 2HDMs.

There are many future directions to explore. As we have worked strictly at tree

level, extending the SL basis EFT matching calculation to loop level (potentially with

functional matching techniques) is a natural next step. Although we have focused our

numerical studies on CP-conserving 2HDM, the SL basis is applicable in the fully general

CP-violating 2HDMs, where further numerical studies are likely to be informative. It

would also be instructive to extend the SL basis to models with extra scalar fields beyond

the 2HDM.
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There are also more phenomenological studies that could be done. Our expressions

shed light on the physical combinations of parameters that can appear in the low energy

virtual effects of the heavy doublet. However, since we only explored the properties of

pseudo-observables here, it would be important to compute a set of full LHC observables

which would serve as inputs to provide constraints on the 2HDM parameter space. It

is possible that one could then identify novel indirect searches that could be performed

which would be particularly sensitive to the effects of the 2HDM. And in the event that

an indirect signal of BSM physics would be discovered, the results here would facilitate

our ability to interpret such a signal in terms of the 2HDM parameter space.
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Chapter 5

Conclusions

Effective field theory is a crucial tool in the search for physics beyond the Standard

Model. Like any other tool, it needs to be well understood in order to be properly

deployed and work to its full potential. One must understand how the choices made in

constructing an EFT affect the space of UV models the EFT could describe and how to

most efficiently analyze particular UV models using effective field theory.

In this work we have examined these questions. Loryons provide a family of simple UV

models which are nevertheless excluded a priori by using SMEFT as the EFT description

of the Standard Model. We have seen that Loryons remain experimentally viable, and

their sizable coupling to the Higgs gives them striking experimental signatures both at

colliders and in cosmology. On the other side, we have shown that an EFT description

for the two Higgs doublet model is of significantly varying utility depending on the basis

choice made in the UV. These results emphasize the need to think carefully about how

to use EFT in order not to make mistakes and to derive the maximum benefit.

It’s an exciting time in particle physics; there are physics phenomena in need of

explanations, new discoveries in the heavens, and future colliders on the horizon. May it

continue to produce wonder and joy as we learn more about the universe.
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Appendix A

Effective Lagrangian from Loryons

In this Appendix, we calculate the mass spectra of scalar and fermionic Loryons in

arbitrary custodial representations, as well as their one-loop corrections to the Higgs

effective Lagrangian.

A.1 Scalars

In unitary gauge, Eq. (2.2), tr
[
T a2HT

ȧ
2H

†] = 1
4
(v+h)2δaȧ. The part of the Lagrangian

that is quadratic order in Φ can be written1

Lquad = − 1

2ρ
tr

[
Φ†
(
D2 +

1

2
λexv

2 +
1

2
λhΦ(v + h)2

)
Φ + λ′hΦ(v + h)2 Φ†T aLΦT aR

]
, (A.1)

where Dµ is the covariant derivative.

To elucidate the mass spectrum, we decompose the matrix representation Φ of the

custodial group SU(2)L × SU(2)R into irreps φV of its diagonal subgroup SU(2)V . Here

φV are V -dimensional vectors built out of linear combinations of the matrix elements

1This is built from pieces Eqs. (2.1), (2.3) and (2.4), plus a canonically normalized kinetic term.
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Effective Lagrangian from Loryons Chapter A

Φαα̇:

tr
(
U iΦ

)
=

[
⊕
V
φV

]i
, (A.2)

with

V ∈ V =
{
L+R− 1 , L+R− 3 , · · · , |L−R|+ 1

}
. (A.3)

The explicit coefficients U i
α̇α are given by the appropriate Clebsch-Gordan coefficients.

U satisfies the resolution of the identity

(
U i
β̇β

)∗
U i
α̇α = δαβδα̇β̇ , (A.4)

and U is also covariant under arbitrary transformations under the diagonal subgroup,

tr
[
UΦ′

]
= ⊕

V
φ′V ⇒ tr

[
U exp(iεaT aL) Φ exp

(
−iεbT bR

)]
= ⊕

V
exp(iεaT aV )φV , (A.5)

for εa arbitrary. Finding the second order variation of Eq. (A.5) with respect to εa yields

tr
[
UT

(a
L T

b)
L Φ + UΦT

(a
R T

b)
R − 2UT

(a
L ΦT

b)
R

]
= ⊕

V
T

(a
V T

b)
V φV ; (A.6)

contracting with δab, and using the fact that T aLT
a
L = C2(L)1L in any irrep L then gives

tr [UT aLΦT aR] = ⊕
V

1

2

[
C2(L) + C2(R)− C2(V )

]
φV . (A.7)

Now inserting a resolution of the identity in Eq. (A.4), we get

tr
(
Φ†T aLΦT aR

)
= [tr (UΦ)]∗ tr (UT aLΦT aR) ,

=
∑

V

φ†V
1

2

[
C2(L) + C2(R)− C2(V )

]
φV . (A.8)
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Therefore, the Lagrangian in Eq. (A.1) decomposes into the sum

Lquad = − 1

2ρ

∑

V

φ†V

(
D2 +

1

2
λexv

2 +
1

2
λV (v + h)2

)
φV , (A.9)

where we have defined

λV = λhΦ + λ′hΦ

[
C2(L) + C2(R)− C2(V )

]
. (A.10)

Note that we only retain the strong and electromagnetic interactions in the covariant

derivative D in Eq. (A.9); weak interactions generically couple different irreps of V .

Eq. (A.9) generates one-loop corrections to the Higgs Lagrangian, which we calculate

up to two derivative order using (D.21) of [11],

Leff =
1

2ρ(4π)2

∑

V

V

{
1

2

[
1

2
λexv

2 +
1

2
λV (v + h)2

]2 [
ln

2µ2

λexv2 + λV (v + h)2
+

3

2

]

+
1

24

λ2
V

λexv2 + λV (v + h)2

[
∂(v + h)2

]2
+O(∂4)

}

→ 1

2ρ(4π)2

∑

V

V

{
1

2

(
1

2
λexv

2 + λV |H|2
)2(

ln
2µ2

λexv2 + 2λV |H|2
+

3

2

)

+
1

3

λ2
V

λexv2 + 2λV |H|2
[∂|H|2]

2

2

}
+O(∂4) , (A.11)

where we return to a general gauge by the substitution (v + h)2 → 2|H|2.

A.2 Fermions

The most general quadratic Lagrangian for a pair of Dirac fermions Ψ1,Ψ2, trans-

forming under [L1, R1] ≡ [2l1 + 1, 2r1 + 1] and [L2, R2] ≡ [2l2 + 1, 2r2 + 1] respectively, is
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Lquad = tr
[
Ψ1(i /D −M1)Ψ1

]
+ tr

[
Ψ2(i /D −M2)Ψ2

]
− (LYuk + h.c.) . (A.12)

We assume w.l.o.g. that M1,M2 > 0. In the Yukawa term, one needs to contract the

indices of fields properly to yield a custodial singlet,

LYuk = y12Ψ1αα̇Hββ̇Ψ2γγ̇

〈
1

2
β; l2γ

∣∣∣∣l1α
〉〈

r1α̇

∣∣∣∣
1

2
β̇; r2γ̇

〉
. (A.13)

Here we have shifted all the indices such that α runs in [−l1, l1] (instead of [1, 2l1 + 1])

and so on. This way we can identify the proper contraction coefficients as the standard

Clebsch-Gordan coefficients, written in bra-ket notation.

As in the scalar case, we decompose fermionic matrix fields Ψ1,Ψ2 into their respective

irreps under the diagonal subgroup SU(2)V ⊂ SU(2)L × SU(2)R:

Ψ1 → ⊕
V1
ψ1,V1 , Ψ2 → ⊕

V2
ψ2,V2 , (A.14)

where ψ1,V1(ψ2,V2) are V1(V2)-dimensional vectors whose components are explicitly given

by

Ψ1µµ̇ =

√
V1

L1

〈l1µ|j1m1; r1µ̇〉ψm1
1,V1

, (A.15a)

Ψ2νν̇ =

√
V2

L2

〈l2ν|j2m2; r2ν̇〉ψm2
2,V2

. (A.15b)

In Eq. (A.15), the sums over the diagonal subgroup indices are

2j1 + 1 = V1 ∈ V1 =
{
L1 +R1 − 1 , L1 +R1 − 3 , · · · , |L1 −R1|+ 1

}
,

with − j1 ≤ m1 ≤ j1 , (A.16a)
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2j2 + 1 = V2 ∈ V2 =
{
L2 +R2 − 1 , L2 +R2 − 3 , · · · , |L2 −R2|+ 1

}
,

with − j2 ≤ m2 ≤ j2 . (A.16b)

Using Eq. (A.15), we write the Yukawa piece of the Lagrangian Eq. (A.13) in terms

of ψ1,V1 and ψ2,V2 , in unitary gauge (Hββ̇ = 1√
2
(v + h)δββ̇):

LYuk = y12
1√
2

(v + h)ψ
m1

1,V1
ψm2

2,V2
×
√
V1

L1

√
V2

L2

× 〈l1α|j1m1; r1α̇〉 〈j2m2; r2γ̇|l2γ〉
〈

1

2
β; l2γ

∣∣∣∣l1α
〉〈

r1α̇

∣∣∣∣
1

2
β; r2γ̇

〉
. (A.17)

Summing over the Greek indices, the product of Clebsch-Gordan coefficients evaluates

to a Wigner 6j symbol [160, §12.1.4],

√
V1

L1

√
V2

L2

× 〈l1α|j1m1; r1α̇〉 〈j2m2; r2γ̇|l2γ〉
〈

1

2
β; l2γ

∣∣∣∣l1α
〉〈

r1α̇

∣∣∣∣
1

2
β; r2γ̇

〉

= (−1)j1+r1+l2+ 1
2 ×

√
L1R1 × δj1,j2δm1,m2 ×




r2 l2 j1

l1 r1
1
2




, (A.18)

so the Lagrangian Eq. (A.12) decomposes as

Lquad =
∑

V ∈V1−V2

ψ1,V

(
i /D −M1

)
ψ1,V +

∑

V ∈V2−V1

ψ2,V

(
i /D −M2

)
ψ2,V

+
∑

V ∈V1∩V2

(
ψ1,V ψ2,V

)

i /D −




M1
1√
2
yV (v + h)

1√
2
y∗V (v + h) M2









ψ1,V

ψ2,V


 , (A.19)

where

yV = (−1)j1+r1+l2+ 1
2 y12 ×

√
L1R1 ×




r2 l2 j1

l1 r1
1
2




. (A.20)
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To integrate out the above quadratic piece, we use the machinery from §6.3 of [11].

Up to two derivative order,

Leff = − 1

16π2

[ ∑

V ∈V1−V2

VM4
1

(
ln

µ2

M2
1

+
3

2

)
+

∑

V ∈V2−V1

VM4
2

(
ln

µ2

M2
2

+
3

2

)]

− 1

16π2

∑

V ∈V1∩V2

V

{ ∑

M=M±

(
M4 +

1

2
|yV |2(∂h)2

)(
ln

µ2

M2
+

3

2

)

+
4|yV |4(v + h)2(∂h)2

3(M+ −M−)2

+M+M−

[
(M2

+ +M2
−)

(M2
+ −M2

−)2
−

2M2
+M

2
−

(M2
+ −M2

−)3
ln
M2

+

M2
−

]

×
[
|yV |2(∂h)2 − 4|yV |4(v + h)2(∂h)2

(M+ −M−)2

]}
, (A.21)

where

M± =
1

2
(M1 +M2)± 1

2

√
(M1 −M2)2 + 2|yV |2(v + h)2 . (A.22)
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Appendix B

Mapping EFT Quantities from SL to

Higgs Basis

Using Eqs. (4.20), (4.21) and (4.23), quantities appearing in the EFT derived using

the SL basis can be written in terms of Higgs basis parameters as

Ŷ22 = (1 + |k|2)Y22 = Y2̇2̇ + k∗Y2̇1̇ + kY1̇2̇ + |k|2Y1̇1̇

= Y2̇2̇ −
|Y1̇2̇|

2

Y1̇1̇

= Y2̇2̇ − |k|
2Y1̇1̇ , (B.1a)

Z1 = (1 + |k|2)Z1̇21̇2

= Z1̇2̇1̇2̇ −
Z2

1̇1̇1̇2̇

Z1̇1̇1̇1̇

= Z1̇2̇1̇2̇ − (k∗)2Z1̇1̇1̇1̇ , (B.1b)

Z2 = (1 + |k|2)Z1̇1̇22

= Z1̇1̇2̇2̇ −
|Z1̇1̇1̇2̇|

2

Z1̇1̇1̇1̇

= Z1̇1̇2̇2̇ − |k|
2Z1̇1̇1̇1̇ , (B.1c)

Z3 = (1 + |k|2)Z1̇221̇
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= Z1̇2̇2̇1̇ −
|Z1̇1̇1̇2̇|

2

Z1̇1̇1̇1̇

= Z1̇2̇2̇1̇ − |k|
2Z1̇1̇1̇1̇ , (B.1d)

Z4 =

√
1 + |k|2Z1̇222

=
2|k|2Z1̇1̇1̇2̇ + k∗Z1̇2̇2̇1̇ + k∗Z1̇1̇2̇2̇ + kZ1̇2̇1̇2̇ + Z1̇2̇2̇2̇

1 + |k|2
, (B.1e)

m2
eff = Y1̇1̇ , (B.1f)

λeff = Z1̇1̇1̇1̇ . (B.1g)

In terms of the more conventional 2HDM parameters in Higgs basis (see Eq. (4.3)), the

map is given by

k = −λ
∗
6

λ1

, (B.2a)

Ŷ22 = m2
2 − |k|

2m2
1 , (B.2b)

Z1 = λ5 − (k∗)2λ1 , (B.2c)

Z2 = λ3 − |k|2λ1 , (B.2d)

Z3 = λ4 − |k|2λ1 , (B.2e)

Z4 =
2|k|2λ6 + k∗λ3 + k∗λ4 + kλ5 + λ7

1 + |k|2
(B.2f)

m2
eff = m2

1 , (B.2g)

λeff = λ1 . (B.2h)

Armed with these expressions, we can expand our expressions for our pseudo-observables

in the SL basis EFT and check that they agree with the Higgs basis EFT. The Higgs

basis EFT is an expansion in inverse powers of m2
2; from Eq. (B.2b), we see that this
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is equivalent to an expansion in inverse powers of Ŷ22 (to leading order), so we should

expand our expressions for κV , κλ, κf in the SL basis EFT to leading order in Ŷ22 and

then convert to Higgs basis quantities. We have

b4 '
1

Ŷ22

|k|2 , (B.3)

b6 '
1

Ŷ 2
22

|k|2(1 + |k|2) , (B.4)

c4 ' −v
1

Ŷ 2
22

[
|k|2(Z2 + Z3) + Re

(
k2Z1

) ]
, (B.5)

which gives

κV,SL = 1− 1

2

(
b6 − b2

4

)
m4
h ' 1− 1

2

|k|2λ2
eff v

4

Ŷ 2
22

' 1− 1

2

|λ6|2v4

m4
2

, (B.6)

κf,SL = 1 +
b4

k
m2
h ' 1 +

k∗

Ŷ22

λeff v
2 ' 1− λ6v

2

m2
2

, (B.7)

κλ,SL = 1− 2b4m
2
h − c4vm

2
h ' 1− 2

|k|2λeff v
2

Ŷ22

= 1− 2
|k|2λ2

eff v
4

Ŷ22m2
h

' 1− 2
|λ6|2v4

m2
2m

2
h

, (B.8)

all of which agree with the corresponding Higgs basis EFT expressions in Ref. [137].
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Appendix C

Equivalence of Decoupling-Limit SL

and Higgs Basis EFTs

The SL basis and Higgs basis EFTs are generally two different EFTs, equipped with

their own power counting, and regimes of validity. However, in the decoupling limit, we

can expand in inverse powers of large Y2̇2̇ ≡ m2
2 to reproduce the same effects.

At the Lagrangian level this manifests as a field redefinition equivalence between the

two EFTs. Whereas the two bases are related by a simple non-derivative field redefinition

in the UV, in the EFT this requires a more complicated field redefinition with derivatives

[?]. Here, we show the equivalence explicitly within the scalar parts of the two EFTs,

working in the custodial limit and up to dimension 8 order, i.e., O(1/m4
2).

Expanding the SL Basis EFT Eq. (4.47) in the custodial limit, we find

L =−H†D2H −m2
1|H|

2 − 1

2
λ1|H|4 +

(
k2

m2
2

+
k4m2

1

m4
2

) ∣∣D2H
∣∣2 − k2Z2

m4
2

|H|2
∣∣D2H

∣∣2

− k2Z1

2m4
2

(
H†D2H + h.c.

)2 − k2(1 + k2)

m4
2

(
D2H†

) (
D4H

)
. (C.1)

We have used Eq. (B.2) to convert the Wilson coefficients to Higgs basis parameters.
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Under the substitution

H → H +

{
−k

2λ1

2m2
2

+
k2m2

1

4m4
2

[
4Z1 + 2Z2 − (4− k2)λ1

]}
|H|2H

+
k2λ1

8m4
2

[
8Z1 + 4Z2 − (4− 9k2)λ1

]
|H|4H

+

[
k2

2m2
2

+
k2(1 + k2)m2

1

2m4
2

]
(D2H)− k2

4m4
2

[
2Z2 − (2− k2)λ1

]
|H|2(D2H)

+
k2(4Z1 + k2λ1)

4m4
2

|DµH|2H −
k2

4m4
2

[
2Z1 − (2− k2)λ1

] (
D2|H|2

)
H

+
k2λ1(4− k2)

4m4
2

(
Dµ|H|2

)
(DµH)− k2(4 + k2)

8m4
2

(D4H) , (C.2)

and with the use of the identity

2|DµH|2 = D2|H|2 −
(
H†D2H + h.c.

)
(C.3)

and the integration-by-parts relations

−2 |H|2
(
Dµ|H|2

) (
Dµ|H|2

)
= |H|4

(
D2|H|2

)
, (C.4a)

2 |H|2H†D2
(
|H|2H

)
= |H|4

(
H†D2H + h.c.

)
+ |H|4

(
D2|H|2

)
, (C.4b)

(
Dµ|H|2

) [
(DµH)†

(
D2H

)
+ h.c.

]
= −2|H|2

∣∣D2H
∣∣2

− |H|2
[
(DµH)†

(
DµD2H

)
+ h.c.

]
, (C.4c)

(
D2|H|2

) (
H†D2H + h.c.

)
= 2|H|2

∣∣D2H
∣∣2

+ 2|H|2
[
(DµH)†

(
DµD2H

)
+ h.c.

]

+ |H|2
(
H†D4H + h.c.

)
, (C.4d)
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together with the subsequent rescaling

H → H

[
1− k2m2

1

2m2
2

− k2m4
1(4 + k2)

8m4
2

]
, (C.5)

the expanded SL Basis EFT in Eq. (C.1) can be reduced to

L = −H†D2H − k2λ2
1

2m4
2

|H|4
(
D2|H|2

)
−
(
m2

1 − k2m
4
1

m2
2

− k2m
6
1

m4
2

)
|H|2

− 1

2

[
λ1 − 4k2λ1

m2
1

m2
2

+ 2k2m
4
1

m4
2

(2λ4 + λ3 − 3λ1)

]
|H|4

+

[
k2 λ

2
1

m2
2

− k2λ1
m2

1

m4
2

(4λ4 + 2λ3 − 3λ1)

]
|H|6 − k2 λ

2
1

m4
2

(2λ4 + λ3 − λ1) |H|8 . (C.6)

We have used Eq. (B.2) again to write Z1 = Z3 = λ4 − k2λ1 and Z2 = λ3 − k2λ1 in the

custodial limit.

We can compare Eq. (C.6) to known results in the Higgs basis EFT. Assuming cus-

todial symmetry, the scalar sector of the general results in [137] reduce to

L =

(
1 +

m4
12

m4
2

)
|DµH|2 +

2m2
12λ6

m4
2

[
1

2

(
∂µ|H|2

) (
∂µ|H|2

)
+ |H|2|DµH|2

]

+
λ2

6

m4
2

[
2 |H|2

(
∂µ|H|2

) (
∂µ|H|2

)
+ |H|4|DµH|2

]

−
(
m2

1 −
m4

12

m2
2

)
|H|2 − 1

2

[
λ1 −

4m2
12λ6

m2
2

+
2(λ3 + 2λ4)m4

12

m4
2

]
|H|4

+

[
λ2

6

m2
2

− 2(λ3 + 2λ4)m2
12λ6

m4
2

]
|H|6 − (λ3 + 2λ4)λ2

6

m4
2

|H|8 . (C.7)

This can be canonically normalized to O (1/m4
2) to give

L = |DµH|2 +
2m2

12λ6

m4
2

[
1

2

(
∂µ|H|2

) (
∂µ|H|2

)
+ |H|2|DµH|2

]
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+
λ2

6

m4
2

[
2 |H|2

(
∂µ|H|2

) (
∂µ|H|2

)
+ |H|4|DµH|2

]

−
(
m2

1 −
m4

12

m2
2

− m4
12m

2
1

m4
2

)
|H|2 − 1

2

[
λ1 −

4m2
12λ6

m2
2

+
2(λ3 + 2λ4 − λ1)m4

12

m4
2

]
|H|4

+

[
λ2

6

m2
2

− 2(λ3 + 2λ4)m2
12λ6

m4
2

]
|H|6 − (λ3 + 2λ4)λ2

6

m4
2

|H|8 . (C.8)

Using IBPs and the field redefinition

H → H − m2
12λ6

m4
2

|H|2H − λ2
6

2m4
2

|H|4H , (C.9)

we obtain

L = |DµH|2 −
λ2

6

2m4
2

|H|4
(
D2|H|2

)
−
(
m2

1 −
m4

12

m2
2

− m4
12m

2
1

m4
2

)
|H|2

− 1

2

[
λ1 −

4m2
12λ6

m2
2

+
2(λ3 + 2λ4 − 3λ1)m4

12

m4
2

]
|H|4

+

[
λ2

6

m2
2

− (2λ3 + 4λ4 − 3λ1)m2
12λ6

m4
2

]
|H|6 − (λ3 + 2λ4 − λ1)λ2

6

m4
2

|H|8 , (C.10)

where we have used m2
1λ6 = m2

12λ1 (a consequence of the vev condition in the Higgs

basis). As both kλ1 = −λ6 and km2
1 = −m2

12 (in the custodial limit), we see Eq. (C.10)

and Eq. (C.6) are equivalent.
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