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Abstract

Background—The genetic risk factors for susceptibility to chronic obstructive pulmonary

disease (COPD) are still largely unknown. Additional genetic variants are likely to be identified by

genome-wide association studies in larger cohorts or specific subgroups.

Methods—Genome-wide association analysis in COPDGene (non-Hispanic whites and African-

Americans) was combined with existing data from the ECLIPSE, NETT/NAS, and GenKOLS

(Norway) studies. Analyses were performed both using all moderate-to-severe cases and the

subset of severe cases. Top loci not previously described as genome-wide significant were

genotyped in the ICGN study, and results combined in a joint meta-analysis.

Findings—Analysis of a total of 6,633 moderate-to-severe cases and 5,704 controls confirmed

association at three known loci: CHRNA3/CHRNA5/IREB2, FAM13A, and HHIP (10−12 < P <

10−14), and also showed significant evidence of association at a novel locus near RIN3 (overall P,

including ICGN = 5•4×10−9). In the severe COPD analysis (n=3,497), the effects at two of three

previously described loci were significantly stronger; we also identified two additional loci

previously reported to affect gene expression of MMP12 and TGFB2 (overall P = 2•6x10−9 and

8•3×10−9). RIN3 and TGFB2 expression levels were reduced in a set of Lung Tissue Research

Consortium COPD lung tissue samples compared with controls.

Interpretation—In a genome-wide study of COPD, we confirmed associations at three known

loci and found additional genome-wide significant associations with moderate-to-severe COPD

near RIN3 and with severe COPD near MMP12 and TGFB2. Genetic variants, apart from alpha-1

antitrypsin deficiency, increase the risk of COPD. Our analysis of severe COPD suggests

additional genetic variants may be identified by focusing on this subgroup.

Funding—National Heart, Lung, and Blood Institute; the COPD Foundation through

contributions from AstraZeneca, Boehringer Ingelheim, Novartis, and Sepracor;

GlaxoSmithKline; Centers for Medicare and Medicaid Services; Agency for Healthcare Research

and Quality; US Department of Veterans Affairs.

Introduction

Chronic obstructive pulmonary disease (COPD), characterized by persistent and usually

progressive airflow obstruction, is one of the leading causes of morbidity and mortality

worldwide. While cigarette smoking is the major environmental risk factor, the burden of

COPD is increasing1,2 despite many successful efforts at tobacco control, and the response

to cigarette smoke is characterized by high inter-individual variability3. Genetic factors are a

major contributor to this variability4–6, but the specific genetic loci responsible for this

variation remain largely unknown7. Genome-wide association studies have successfully
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identified loci which are often novel for a range of complex diseases, including COPD, that

have subsequently replicated8–17, but the majority of genetic susceptibility due to common

variation remains unexplained18. Identifying genetic loci may lead to improved risk

prediction and subtype identification19, and is arguably the most promising unbiased

approach to understand disease mechanisms in humans and enable future specific and

rational therapies20.

We recently completed genome-wide genotyping in COPDGene, a large, genetic

epidemiology study of over 10,000 non-Hispanic White and African American cigarette

smokers (both current and ex-smokers) with and without COPD21. We sought to determine

whether a genome-wide association study (GWAS), combining the results from COPDGene

with previous association studies7, would reveal new genetic susceptibility loci.

Genome-wide association analyses in COPD to date have included subjects with mild or

moderately severe airflow limitation7,9,12,22. To our knowledge, a genome-wide association

case-control study of severe COPD has not been previously reported. The severity of airflow

limitation in COPD correlates with many other important disease characteristics, such as

emphysema23, functional limitation24, and higher mortality25. In addition to potentially

identifying novel signals unique to severe disease, a genome-wide association study of

severe COPD may have improved power compared with a study of moderate-to-severe

COPD due to decreased phenotypic heterogeneity and misclassification in severe COPD

cases, as well as enrichment for subjects with the highest genetic risk profile26–30, despite

the decreased sample size.

Methods

COPDGene (NCT00608764) is a large, multicenter study designed to investigate the genetic

and epidemiologic characteristics of COPD and other smoking-related lung diseases21.

COPDGene subjects were of self-described non-Hispanic white or African-American

ancestry, and genotyped using the HumanOmniExpress (Illumina, San Diego, CA).

Genotype imputation on the COPDGene cohorts was performed using MaCH and

minimac31,32 using 1000 Genomes33 Phase I v3 European (EUR) and cosmopolitan

reference panels for the non-Hispanic whites and African-Americans, respectively. Detailed

descriptions of the ECLIPSE, NETT/NAS, and Norway (GenKOLS) cohorts, including

genotyping quality control and imputation, have been previously published7,9,12,21,34–36.

In all cohorts, ‘moderate-to-severe’ cases had GOLD Grade 2-4 COPD (moderate, severe,

and very severe COPD; post-bronchodilator FEV1 < 80% predicted with FEV1/FVC < 0•7);

individuals with severe alpha-1 antitrypsin deficiency were excluded.

Controls had normal spirometry with a history of cigarette smoking. For the analysis of

‘severe’ COPD, cases were limited to those with GOLD 3 and 4 disease (severe and very

severe, post-bronchodilator FEV1 < 50% predicted). Baseline characteristics of each of the

genome-wide cohorts are shown in Table 1. Logistic regression was performed within each

cohort and racial / ethnic group adjusting for age, pack-years of smoking, and ancestry-

based principal components using plink (v1•07)37, as previously described7,12. Fixed-effects
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meta-analysis was performed using METAL (version 2010-08-01)38. Heterogeneity was

reported as both I239 using the meta package in R (v2•3•0) (www.r-project.org) and P-values

for Cochrane's Q. Markers were included for analysis if they passed genotyping or

imputation quality control (as appropriate) in all genome-wide cohorts. Regional association

plots were created using LocusZoom40, using the 1000 Genomes EUR reference data for

linkage disequilibrium (LD) calculations.

Results yielding a P value threshold of < 5×10−7 at loci not previously described7 in the

moderate-to-severe and severe COPD meta-analysis of COPDGene, ECLIPSE, NETT/NAS,

and GenKOLS (Norway) were subsequently genotyped in 983 probands and 1876 siblings

from the family-based International COPD Genetics Network study (ICGN)34. Association

analysis in ICGN was performed using PBAT (v3•61), under an additive model, adjusting

for age and pack-years of smoking. Results from the family-based ICGN study were

combined with case-control results using a joint meta-analysis41 weighted by sample size,

using the number of informative transmissions in ICGN and the effective number of cases in

each cohort. A joint meta-analysis P-value of < 5×10−8 was considered significant.

Differences in odds ratios between severe cases versus controls and between all cases

(moderate-to-severe) versus controls were assessed by permutation. Region-based

conditional analyses were performed using logistic regression, adjusting for the most

significant (lead) single nucleotide polymorphism (SNP) in each region using genotyped or

dosage data as appropriate, and testing all SNPs within a 250kb window on either side of the

lead SNP for association with affection status. To estimate the combined effect of genetic

risk variants, we constructed a genetic score based on the cumulative number of risk alleles

in a logistic regression in the COPDGene non-Hispanic whites including age, pack-years,

and ancestry-based principal components.

Additional analyses using the meta-analysis results included gene-based testing using

VEGAS42 and the literature mining using GRAIL43. Gene expression levels of TGFB2 and

RIN3 were measured in lung tissue samples from 15 COPD patients – 8 with moderate

(FEV1 < 80% predicted), and 7 with severe (FEV1 < 50% predicted) disease – and 15

control subjects with normal lung function, obtained from the NHLBI Lung Tissue Research

Consortium (LTRC), as described previously44.

Role of the funding source

GlaxoSmithKline was involved in study design and data collection for the ECLIPSE,

GenKOLS (Norway), and ICGN studies. No other study sponsors had a role in study design

or data collection, and none of the study sponsors had a role in data analysis, data

interpretation, or writing of the report. The corresponding author had full access to all of the

data and the final responsibility to submit for publication.

Results

Results from the GWAS of moderate-to-severe COPD in the COPDGene non-Hispanic

whites and African-Americans are shown in Tables S6 and S7. The analysis in the non-

Hispanic whites confirmed three previously known (CHRNA3/5/IREB2, HHIP, and
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FAM13A) COPD susceptibility loci, but neither study alone identified novel loci achieving

conventional genome-wide significance (P < 5•0×10−8, Table S7 and S8).

The combined GWAS of moderate-to-severe COPD included COPDGene non-Hispanic

whites, COPDGene African-Americans, ECLIPSE, NETT/NAS, and GenKOLS (Norway),

for a total of 6,633 cases and 5,704 controls. Both individual and overall quantile-quantile

(Q-Q) plots showed no evidence of significant population stratification (individual study

λGC all ≤ 1.04; overall λGC =1•03; λ 45
GC1000 = 1•01, Figure S1). The top results at each of

the loci with P < 10−7 are shown in Table 3 and Figure 1. The three most significant SNPs in

this meta-analysis were either identical to, or in strong LD – r2 > 0•5 – with the top SNPs

previously described at these three loci: 4q22 (FAM13A), 15q25 (CHRNA3/5/IREB2), and

4q31 (HHIP), confirming these previous association results 9,10,12.

We identified one novel additional locus with P < 5×10− at 14q32; the top SNP at this locus

was rs754388 (nearest gene – RIN3), with a P-value of 5•25×10−9. We genotyped this SNP

in the ICGN Study, and tested for association with COPD in ICGN using a family-based

test. While the evidence of association at this SNP did not achieve statistical significance

(one-sided P=0•20), the overall meta-analysis P-value (including ICGN) for rs754388

remained genome-wide significant (5•4×10−9). An analysis of the effect of this SNP on

FEV1 as a quantative trait was not statistically significant.

The analysis of severe COPD reduced the number of cases to 3,497, while the number of

controls remained the same. Baseline characteristics of the severe subsets of COPDGene,

ECLIPSE, and GenKOLS (Norway) cases are shown in Table 2 (characteristics of NETT

subjects are included in Table 1, as all NETT cases are severe). Similarly to the analysis of

moderate-to-severe cases, we found no evidence of inflation due to population stratification

(individual λGC ≤ 1.04; overall λGC = 1•04; λGC1000 = 1•01, Figure S2) among severe cases

and controls. We again confirmed the three previously described COPD loci: 4q22

(FAM13A), 15q25 (CHRNA3/5/IREB2), and 4q31 (HHIP) – as genome-wide significant for

severe COPD (Table 4 and Figure 2). We noted effect estimates for these loci tended to be

larger in severe COPD than in moderate to severe COPD cases; these differences were

statistically significant at two markers (P < 0•01 for rs13141641 (15q25), and rs12914385,

(HHIP)), and just above statistical significance for a third (P = 0•08 for rs4416442

(FAM13A)).

We also identified two new genome-wide significant loci in the analysis of severe COPD

versus controls. The first was at 11q22; the top-ranked SNP was rs626750 (nearest genes,

MMP3 and MMP12). We found supportive evidence for association with severe COPD in

ICGN (P = 0•06) and a genome-wide significant result in the joint meta-analysis (P =

2•6×10−9). This locus was previously reported in an analysis including subjects from NAS

and NETT46. After excluding NETT/NAS subjects, the joint meta-analysis P-value

remained significant (P = 7•0×10−9). The second locus was at 1q41, where the top-ranked

SNP was rs4846480 (nearest gene, TGFB2). This locus was just below-genome wide

significance in the genome-wide cohorts (1•3×10−). Including the results from ICGN (P =

0•007), brought the joint meta-analysis results to P = 8•3×10−9.
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To determine whether gene expression levels of these two genes not previously described in

association with COPD – RIN3 and TGFB2 – were different in lung tissue samples from

COPD cases versus controls, we performed real-time quantitative reverse transcription PCR

in 18 control samples and 15 COPD samples – 8 with moderate (FEV1 < 80% predicted),

and 7 with severe (FEV1 < 50% predicted) disease) – from the NHLBI Lung Tissue

Research Consortium. RIN3 expression was significantly lower in COPD cases versus

controls (P = 0•003, Figure S3). Differences in TGFB2 expression were not significant when

comparing all cases versus controls (P = 0•5), but were significant when the cases were

limited to those with severe disease (P = 0•002, Figure S4).

While the definitions of cases and controls within each study – based on GOLD criteria –

were similar, COPD is a highly heterogeneous disease, and differences exist between the

studies 47. To explore these considerations, we used alternative methods for meta-analysis

based on modified random-effects and binary effects model that may be more powerful in

the presence of heterogeneity among studies48,49 (see Supplement). However, we were not

able to identify new genome-wide significant results using these methods.

We next sought to determine whether there was evidence for secondary associations at each

described locus. We performed analyses conditioning on the top (lead) SNP at each genome-

wide significant locus reported in this analysis, examining all SNPs present in 250kb

flanking regions around the top signal. We found evidence suggestive of secondary

associations (P < 5×10−4) in the analysis of moderate-to-severe COPD at 15q25

(conditioning on rs12914385) for a SNP in strong LD (r2=0•92 in EUR) with the previously

reported rs13180 in IREB2 (rs12903295, intronic in IREB2, P = 9•9 × 10−5). Suggestive

evidence of a secondary association was also found near the 14q32 (RIN3) locus

conditioning on rs754388 (rs11849228, P = 1•3×10−4). In severe COPD, evidence

supporting a secondary association was found at 15q25 in another intronic SNP in CHRNA3

(rs3743073, P=3•3×10−4).

The number of loci identified as influencing risk to COPD to date is modest, despite the

relatively large sample size of this study; these loci explain < 5% of the liability-scale

variance. To explore whether additional true association signals of weaker effect – beyond

the ability to detect in our current analysis – might be present, we examined the

characteristics of the top results (P < 0•01) in a meta-analysis of three white cohorts

(ECLIPSE, NETT/NAS, and GenKOLS) within the COPDGene non-Hispanic whites. We

found the direction of effect in the first three cohorts was consistent with the direction of

effect in COPDGene more often than expected by chance alone (P = 0•03). This result

suggests additional signals of significance may be found in larger GWAS, and are consistent

with a recent analysis of COPDGene data18. As with most GWAS studies, the effect sizes of

these identified loci are relatively small; however one subject may carry multiple risk loci.

Within the COPDGene non-Hispanic whites, each additional copy of a risk allele within a

composite risk score resulted in an increase in odds for COPD of 1•24; this estimate was

similar whether the model included only loci previously discovered in studies not including

COPDGene (e.g. 15q25, HHIP, and FAM13A loci), or included the additional loci (RIN3,

TGFB2, MMP3/12) described in this study.
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To further explore additional signals not reaching genome-wide significance, we

additionally performed a gene-based analyses – under the hypothesis that a given gene or

genic region may harbor multiple susceptibility variants with p-values larger than the

traditional GWAS significance level – with VEGAS, and a SNP and text-mining based

analyses – identifying and prioritizing genes based on functional relationships identified

using literature – with GRAIL. The top genes from the VEGAS analysis, using a Bonferroni

correction for 17,640 genes, included previously implicated loci (FAM13A; CHRNB4,

IREB2, CHRNA3/5, HYKK, and PSMA4 at 15q25); as well as RIN3 andAPOBR (Table S9).

For the GRAIL analysis (Table S10), the top individual genes were OSM and OSMR; in

contrast, genes at or near well-validated loci – HHIP, IREB2, andFAM13A – did not give

significant P-values in the GRAIL analysis.

Discussion

In a large, genome-wide association meta-analysis of moderate to severe and severe COPD

(and the first genome-wide association analysis to include African-Americans), we

confirmed three previously described genome-wide significant loci, and identified three

additional loci achieving genome-wide significance in moderate-to-severe and severe

COPD. Our findings provide further evidence for a role of common genetic variants in

contributing to COPD susceptibility (panel).

The association at 11q22 is located in a cluster of matrix metalloproteinases including

MMP12 (matrix metalloproteinase 12, also known as macrophage metalloelastase or matrix

metallopeptidase 12). MMP12 is produced by macrophages and degrades elastin, and has

been extensively characterized in COPD both in mouse models50 and in human studies51,52.

Several studies have described genetic associations with COPD or lung function for a SNP

in the promoter region of MMP12, rs2276109 [-82A→G], where the minor allele leads to

decreased promoter activity through less efficient binding of AP-146,53–55. In a combined

analysis of a total of 7 cohorts, including subjects with both asthma and COPD, the minor

allele (G) of rs2276109 was associated with improved lung function46. Of note, two of the

COPD cohorts included in this study were enriched for severe disease. Similarly, in a study

of 977 European cases and 876 controls, an association was identified for a haplotype

including rs2276109 in MMP12 among severe cases (P = 0•0039) 54. SNP rs626750 is in

strong LD with rs2276109 (r2 = 0•63). Our study thus confirms, with the same direction of

effect, these previously described associations at genome-wide significance, and supports a

role for MMP12 in severe COPD.

Meta-analyses across large population-based cohorts have previously reported an association

at 1q41, near TGFB2, with FEV1 /FVC ratio56. However, the lead SNP for this association,

rs993925, is not in strong LD (r2=0•027 in EUR) and lies over 250kb away from the SNPs

reported here. Our top association is, however, in strong LD (r2=0•97 in EUR) with

rs6684205, recently identified as an expression quantitative trait loci (eQTL) for TGFB2 in

lung tissue57. The COPD risk allele has been associated with decreased expression,

consistent with our findings of decreased TGFB2 expression in lung tissue from severe

COPD cases versus controls. These lines of evidence strongly suggest effects of this locus

on COPD susceptibility operate via changes in lung TGFB2 expression. While genetic
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variants in or near TGFB1 have been studied in association with COPD58–60, an association

of variants near TGFB2 with COPD has not been previously described. Tgfb2 null mice have

dilated conducting airways and collapsed terminal and respiratory bronchioles61, and loss-

of-function mutations in TGFB2 have been associated with Loeys-Dietz syndrome, a

disorder of connective tissue showing phenotypic overlap with Marfan syndrome, and has

rarely been associated with emphysema62. TGF-β2 is also the predominant isoform present

in airway tissue in severe asthma63,64; it is secreted in airway epithelial cells in response to

injury or inflammatory cytokines (e.g. IL-13) and appears to play a major role in airway

inflammation and remodeling 65–68.

The association at the RIN3 locus, while genome-wide significant in the overall analysis,

was not significant in ICGN. This finding thus may represent a false positive, but it also may

be due to the lower power of the family-based analysis. In support of the latter explanation,

an alternative analysis using generalized estimating equations (which allows calculation of

effect sizes) resulted in an odds ratio of 1•14 (95% confidence interval, 0•92-1•41),

consistent with the estimates from our other cohorts. In addition, a lookup of a SNP in

strong LD (rs17184313, r2 = 0•94 in EUR) in a recently published meta-analysis of COPD

identified from population-based studies22 demonstrates nominal evidence of significance (P

= 0•009), though the direction of association was not given. RIN3 is a Rab5 GTPase binding

protein expressed in many tissues, including the lung, and is involved in transport from

plasma membranes to early endosomes69,70. High levels of expression of RIN3 have been

found on human mast cells71, a cell type that may be of interest in COPD72–74. Furthermore,

we demonstrated, in a small number of lung tissue samples, that RIN3 expression differs

between COPD cases versus controls. While RIN3 is the closest gene to the lead SNP, this

locus is also approximately 1•7 megabases away from SERPINA1, the gene encoding

alpha-1 antitrypsin, which could suggest an effect of distant rare variants75. For the loci

reported in this study, and for most loci reported for GWAS, the role of candidate SNP(s) on

a particular gene and on protein function cannot be deduced with certainty from linkage

disequilibrium patterns and simple measures of gene expression, and requires further

functional investigation including SNP-based functional studies76,77.

The 19q13 locus did not achieve genome-wide significant in this study, despite being

identified in our prior meta-analysis in the ECLIPSE, NETT/NAS, Norway (GenKOLS),

and the initial 1000 non-Hispanic White subjects from the COPDGene study7. In the current

analysis of moderate-to-severe disease, rs7937 (nearest gene, RAB4B) was just below

genome-wide significance (6•2×10−); however, the association was genome-wide significant

(1•0×10−9) in a model adjusting only for principal components of genetic ancestry, and

more significant when limited to non-Hispanic whites. A recent study in a Japanese

population confirmed an association with smoking behavior with SNPs in this region78, and

additional analyses of nicotine addiction and lung eQTLs suggest effects at this locus may

be mediated through several different variants in CYP2A6 as well as EGLN2 79–81. Together,

these data suggest effects of the 19q13 locus on COPD act through a mechanism involving

cigarette smoking, and are complex, potentially in the presence of locus heterogeneity across

populations.
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Our gene-based analysis using VEGAS identified an association with APOBR, the

apolipoprotein B receptor. Lipoproteins may have pathophysiologic importance in lung

disease 82; differences in apolipoprotein B have been described in association with lung

function and COPD83,84, and a recent study identified an association between SNPs near

APOM, lung function, and emphysema85. Similarly, our GRAIL analysis suggested a role

for oncostatin M and its receptor, which may be of interest in COPD and emphysema86,87.

Additional studies will be needed to confirm these findings.

Racial differences in COPD may exist88,89. Thus, we also examined the case-control results

only in the African-Americans. While underpowered, these results did not reveal any novel

genome-wide significant loci (Table S8); furthermore, at the loci described in this work,

there was no convincing evidence of heterogeneity (Tables 3 and 4) or differential effect

sizes compared with those in non-Hispanic whites (Table S4 and S5). These data are

consistent with a prior report finding little evidence that the relationship of smoking to lung

function differed by genetic ancestry90, as well as genetic studies of other traits that have

demonstrated overall similarities of loci shared between ethnically diverse groups91,92.

While these results support our decision to combine the African-Americans and non-

Hispanic whites to improve statistical power, our results should not be interpreted to imply

including other ethnic groups is generally redundant; indeed, genetic studies in specific

ethnic groups have led to discovery of novel loci93 and provided important information for

identifying specific variants at individual loci91,94.

Our study does not address other genetic contributors to COPD susceptibility. We did not,

for example, consider gene-gene interactions or gene-environment interaction. The

genotyping and imputation in this study are not well-suited to address the role of rare

variants, which may also be important in explaining COPD susceptibility95–97. Our

definition of cases and controls was based only on the presence of moderate, or moderate-to-

severe airflow obstruction, yet COPD is highly heterogeneous. Analysis of individual

characteristics (e.g. emphysema) or of specific subtypes (e.g. severe disease, as we

demonstrate here; radiographically defined subsets; or separate GOLD categories2,98) may

provide greater insight into the development of this complex and heterogeneous

disease27–30. Well-powered studies of lung function in the general population, as well as

COPD ascertained through population-based studies, have not identified several of the loci

reported here22,56,99–101. Additional studies will be helpful in determining whether

heterogeneity in COPD definitions, including varying degrees of severity and case

ascertainment, differential effects of genetic variants in disease versus lung function in the

general population, or Type 1 or Type 2 error could account for these discrepancies. The

number of loci achieving genome-wide significance described here for COPD is few

compared to other complex diseases102,103, and the markers described here account for a

very small fraction of the estimated heritability18. For unknown reasons, the number of

discovered loci confirmed by GWAS for any given sample size can vary widely104,105.

However, despite differences in this ‘rate of return’, increasing sample size appears critical

to discovering novel loci.
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While the effect of an individual genetic variant may be small, discounting small effects in

GWAS as unimportant would have ignored such critical effects as the insulin gene (INS) in

diabetes and the HMG-CoA reductase gene (HMGCR) in cholesterol metabolism106,107;

more dramatic perturbations of these causal genes – through experimental disruption76 or

through identification of rare, more deleterious genetic variants108 – can highlight the

importance of pathophysiology identified by GWAS. In addition, cumulative effects of these

loci may be substantial. Although more accurate risk prediction estimates will require

assessments in independent populations, the increased odds of 1·24 with each COPD GWAS

risk allele in the COPDGene population suggest that harboring three risk alleles could nearly

double odds of moderate to severe COPD. By comparison, the population-based BOLD

study109 estimated an odds ratio for COPD per ten pack-years of smoking from1•16 to 1•28.

These data, together with previous studies of familial aggregation and heritability of COPD,

highlight the importance of genetic risk factors apart from alpha-1 antitrypsin deficiency in

increasing risk of COPD.

Our work provides strong statistical support for association with moderate-to-severe or

severe COPD susceptibility for three previously-described9–17 (CHRNA3/5/IREB2, HHIP,

and FAM13A) and three additional (RIN3, MMP3/MMP12, TGFB2) loci. We provide

evidence that additional GWAS in larger samples are likely to identify additional genetic

determinants of COPD, and suggest using subsets of COPD (such as severe disease) may

provide additional insight to genetic risk factors. Our work also suggests further studies to

elucidate biological mechanisms77, which we hope will reveal new insights into COPD

pathogenesis, and ultimately, treatment for this important disease.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Panel – Research in context

Systematic Review

The genetic risk factors for COPD are still largely unknown. We searched PubMed with

the search terms “genome-wide association” and “COPD” or “airflow”, as well as the

genome-wide association study (GWAS) catalog (genome.gov/26525384). At the time of

our search, the largest studies to date included approximately 3,500 cases. Evidence from

GWAS in other diseases suggests larger sample sizes or analysis of specific subtypes

could increase power and identify new genetic determinants of COPD.

Interpretation

Our study in moderate-to-severe and severe COPD confirms genome-wide associations

near FAM13A, HHIP, and CHRNA3/CHRNA5/IREB2, and provides evidence in support

of new associations near RIN3, MMP12 and TGFB2. GWAS continues to have potential

to identify new genetic risk factors that could implicate novel disease mechanisms in

COPD. Genetic variants, apart from alpha-1 antitrypsin deficiency, increase the risk of

COPD; this burden may be higher in those with severe disease.
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Figure 1.
Local association plots for significant loci for the analysis of moderate-to-severe COPD in

COPDGene non-Hispanic whites and African-Americans, ECLIPSE, NETT/NAS, and

GenKOLS (Norway). The x-axis is chromosomal position, and the y-axis shows the –log10

P-value. The most significant SNP at each locus is labeled in purple, with other SNPs

colored by degree of linkage disequilibrium (r2).
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Figure 2.
Local association plots for significant loci for the analysis of severe COPD in COPDGene

non-Hispanic whites and African-Americans, ECLIPSE, NETT/NAS, and GenKOLS

(Norway). The x-axis is chromosomal position, and the y-axis shows the – log10 P-value.

The most significant SNP at each locus is labeled in purple, with other SNPs colored by

degree of linkage disequilibrium (r2).
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Table 2

Baseline characteristics of severe COPD subsets (COPDGene, ECLIPSE, and GenKOLS; all NETT subjects

have severe COPD and were included in the severe COPD analysis).

COPDGene ECLIPSE GenKOLS

NHW AA

n 1390 352 999 383

Age 65•2 (7•8) 60•6 (8•1) 63•5 (7•0) 66•7 (9•7)

Pack-years 58•7 (28•4) 43•9 (23•4) 50•7 (26•3) 33•0 (19•9)

FEV1, % predicted 34•0 (9•9) 34•8 (10•4) 36•5 (8•6) 34•4 (10•3)

Sex (% male) 57•8 58 69•9 61•5

Values given as mean (SD) or percent, as appropriate. NHW: Non-hispanic white. AA: African-American.
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Table 3

Top results for the genome-wide association analysis of moderate-to-severe COPD versus smoking controls in

COPDGene non-Hispanic white and African-American, ECLIPSE, NETT/NAS, and GenKOLS (Norway)

studies.

Locus Nearest gene SNP Risk Allele Frequency Meta-analysis

NHW AA OR (CI) P I2 Q

4q22 FAM13A rs4416442 C 0•42 0•54 1•28 (1•2-1•36) 1•12×10−14 0•23 0•27

15q25 CHRNA3 rs12914385 T 0•42 0•19 1•28 (1•2-1•36) 6•38×10−14 0•26 0•25

4q31 HHIP rs13141641 T 0•59 0•89 1•27 (1•19-1•36) 1•57×10−12 0•31 0•22

14q32 RIN3 rs754388 C 0•83 0•85 1•28 (1•18-1•39) 5•25×10−9 0 0•59

Allele coding represents + strand, hg19. Allele frequency is given for the risk allele. Nhw = Non-Hispanic white; AA = African-American.
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Table 4

Top results for the genome-wide association analysis of severe COPD versus smoking controls in COPDGene

non-Hispanic white and African-American, ECLIPSE, NETT/NAS, and GenKOLS (Norway) studies.

Locus Nearest gene(s) SNP Risk Allele Frequency Meta-Analysis

Nhw Aa OR (CI) P I2 Q

15q25 CHRNA3 rs12914385 T 0•42 0•19 1•39 (1•29-1•51) 2•70×10−16 0 0•76

4q31 HHIP rs13141641 T 0•59 0•89 1•39 (1•28-1•51) 3•66×10−15 0 0•44

4q22 FAM13A rs4416442 C 0•42 0•54 1•36 (1•26-1•47) 9•44×10−15 0 0•68

11q22 MMP3/12 rs626750 G 0•83 0•74 1•36 (1•23-1•51) 5•35×10−9 0 0•62

14q32 RIN3 rs754388 C 0•83 0•85 1•33 (1•2-1•48) 6•69×10−8 0 0•66

1q41 TGFB2 rs4846480 A 0•75 0•65 1•26 (1•16-1•37) 1•25×10−7 0 0•99

Allele coding represents + strand, hg19. Allele frequency is given for the risk allele. Nhw = Non-Hispanic white; AA = African-American.
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