
UC Merced
Proceedings of the Annual Meeting of the Cognitive Science 
Society

Title
On the instrumental value of hypothetical and counterfactual thought

Permalink
https://escholarship.org/uc/item/6nf1p85w

Journal
Proceedings of the Annual Meeting of the Cognitive Science Society, 40(0)

Authors
Icard, Thomas
Chushman, Fiery

Publication Date
2018

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6nf1p85w
https://escholarship.org
http://www.cdlib.org/


On the instrumental value of hypothetical and counterfactual thought
Thomas Icard (icard@stanford.edu)

Stanford University
Fiery Cushman (cushman@fas.harvard.edu)

Harvard University

Joshua Knobe (joshua.knobe@yale.edu)
Yale University

Abstract

People often engage in “offline simulation”, considering what
would happen if they performed certain actions in the future,
or had performed different actions in the past. Prior research
shows that these simulations are biased towards actions a per-
son considers to be good—i.e., likely to pay off. We ask
whether, and why, this bias might be adaptive. Through com-
putational experiments we compare five agents who differ only
in the way they engage in offline simulation, across a variety
of different environment types. Broadly speaking, our exper-
iments reveal that simulating actions one already regards as
good does in fact confer an advantage in downstream decision
making, although this general pattern interacts with features
of the environment in important ways. We contrast this bias
with alternatives such as simulating actions whose outcomes
are instead uncertain.

Introduction
People spend a remarkable amount of time asking “what
if?”—considering things they could have done but didn’t
(“counterfactuals”), or might do but haven’t yet (“hypothet-
icals”). Specifically, they tend to simulate options that they
regard as good (Kahneman and Miller, 1986; McCloy and
Byrne, 2000; Phillips and Cushman, 2017; Icard et al., 2017).
Suppose we observe a person saying something insulting and
thereby getting into a terrible argument. We might immedi-
ately find ourselves thinking: “What if he had instead said
something more tactful? What would have happened then?”
But we would not normally show the opposite tendency. If we
observe an individual saying something completely reason-
able and tactful, we would not spontaneously begin thinking:
“What if he had instead said something insulting?”

Here, we ask whether this tendency is an adaptive one. To
answer this question, we conduct a series of computational
experiments. These compare the performance of agents who
show a tendency to consider options they regard as good with
agents of several alternative designs. Is the “good action bias”
advantageous, and when?

At the core of our approach is the idea that hypotheti-
cal simulation might prove helpful in subsequent decision-
making. In our computational simulations, each agent faces
a decision among a range of options. At the time of the de-
cision, the agent is not able to reflect on all of these options,
and it therefore has to make the decision in a way that in-
volves only limited reflection. However, in the time prior to
the actual decision, the agent can engage in off-line simula-
tion of some options. The more the agent simulates a specific
option, the more accurate its representation of this option be-
comes. The key difference between the various agents is that
each one uses a different method to determine which options

to simulate. We can then ask which way of selecting options
at the time of off-line simulation leads to the best actions at
the time of actual decision-making.

How to Improve Action by Thinking Ahead If the func-
tion of simulation is to improve future action then, broadly
speaking, it must work by correcting errors in people’s cur-
rent assumption about the values of various actions. Such
errors could take two forms: The value could be set too high
(in which case the person would choose the action too often)
or the value could be set too low (in which case the person
might overlook the action too often). Moreover, if an error of
either type exists and can be corrected merely through sim-
ulation, then the error existed because the individual had not
yet devoted enough attention to simulating the action. This
analysis suggests three broad heuristic strategies to allocating
limited cognitive resources to simulation:

1. Focus on actions that you haven’t considered. If you
have already considered an action a large number of times,
you are unlikely to learn a lot more by considering that
same action again. Focus instead on considering those ac-
tions that you have thus far considered the least.

2. Focus on actions you currently think are low value. If
you now regard certain actions as having low value, focus
on simulating them and thereby learning more about them.

3. Focus on actions you currently think are high value. If
you now regard certain actions as having high value, focus
on simulating them and thereby learning more about them.

Of these three strategies, the first does the best job of max-
imizing the overall accuracy of the agent’s representations of
the expected value of each action. Thus, if the agent follows
one of the other two strategies, the overall accuracy of its rep-
resentations will be lower than it would have been if it had
simply followed the first strategy. But, of course, the aim is
not necessarily to have maximally accurate representations,
but rather to have representations that are optimal for guid-
ing action. It is therefore possible that one of the other two
strategies will be more adaptive in the relevant sense.

The second strategy will tend to generate especially ac-
curate representations of the lowest-value actions. Thus, to
return to our original example, suppose that there are a num-
ber of different ways of making insulting comments (insulting
the person’s weight, insulting the person’s family, etc.). This
strategy allows the agent to develop a highly accurate rep-
resentation of which of these actions would be the absolute
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worst, which would be somewhat less bad, and so forth. By
contrast, the third strategy will tend to leave the agent with
relatively inaccurate representations of the worst actions but
highly accurate representations of the best ones. An agent
who followed this strategy would tend to be inaccurate about
which specific insulting comment was the absolute worst.
However, it would tend to be highly accurate about which
specific tactful comment was the absolute best, which was
only second best, and so on.

There is reason to expect that this third strategy might be
especially adaptive. After all, the task at the time of decision-
making is to pick out the best of the available actions. Given
this task, it is far more important to be able to accurately dis-
tinguish the best from the second-best than it is to accurately
distinguish the worst from the second-worst.

Within existing research in computer science, reinforce-
ment learning, and planning, there is a sizable literature on
questions related to ours. Some of this research goes under
the heading of “pure exploration” (e.g., Bubeck et al. 2011),
where an agent may test the effects of various actions with-
out facing any concrete consequences. In this context, and
in other contexts related to planning, one popular approach
blends the first and third possibilities sketched above. That
is, simulation is devoted to actions (or sequences of actions,
e.g., chess plays) that are assumed to be good, but also rela-
tively unexplored (see Browne et al. 2012 for an overview).

Below, we explore the performance of agents showing (1)
a bias towards good actions, or (2) a bias towards bad actions,
(3) a bias towards unexplored actions, (4) a blend of good and
unexplored actions, following the current state of the art in
computer science, as well as (5) a baseline of random action
selection. Options 1, 3, 4 and 5 give us something approxi-
mating a factorial design, crossing the factors of whether the
agent shows a tendency to focus on actions regarded as good
and whether the agent shows a tendency to focus on actions
that have not been considered. This design thereby gives us
a number of different opportunities to explore the impact of
a tendency to focus on actions regarded as good. We can ask
whether it is better to focus on actions regarded as good than
simply to select actions at random (comparing 1 to 5). We can
ask whether it is better to focus on actions regarded as good
than to focus on actions that have not yet been considered
(comparing 1 to 3). Finally, we can ask whether it is better
to adopt a blend of focusing on actions that have not yet been
considered and focusing on actions regarded as good than it
is to focus only on actions that have not yet been considered
(comparing 4 to 3). We now elaborate on the details of our
setting and each of the five algorithms.

Computational Experiments
Consider a simple scenario in which some agent will be fac-
ing some future decision problem, but before this has the op-
portunity to perform a number of hypothetical simulations,
punctuated by occasional concrete actions and observation of
their consequences. These concrete actions we assume are
chosen by the agent itself in such a way as to give the highest

chance of gaining a reward, choosing the action with high-
est estimated reward, v(A), based on observations made so
far. But the hypothetical simulations can be determined in
any number of ways. We study five agent types representing
different simulation strategies. Three of these use v(A) itself.

1. Softmax: Stochastically chooses an action with probabil-
ity proportional to estimated success probability—that is,
choose A with probability ∝ exp(v(A)/τ). Throughout we
set the “temperature” parameter τ to 0.1.

2. Softmin: Stochastically chooses an action with probabil-
ity proportional to estimated failure probability—just like
softmax, but 1− v(A) is used in place of v(A).

3. Infomax: Deterministically chooses the action that will
maximize expected information gain. If action A has been
observed to succeed s times and fail f times, the expected
information gain for A is

( s
s+ f

(
H( s

s+ f )−H( s+1
s+1+ f )

))
+( f

s+ f

(
H( s

s+ f )−H( s
s+ f+1 )

))
, where H(p) is entropy of p.

4. Upper Confidence Bound (UCB): Deterministically
chooses an action that balances estimated goodness with
expected information gain by maximizing v(A)+c

√
2lnL
LA

,
where L is the total number of observations, and LA is the
number of times A has been observed (Browne et al., 2012).

5. Random: Chooses an action uniformly at random.

When making a concrete decision, all agents softmax-select
an action using the currently estimated success probabilities.

There are three key parameters in our scenario that are
worth highlighting. The first is the number N of possible ac-
tions that the agent might consider. The second is the distri-
bution of rewards among these actions. For instance, do we
expect there to be many good actions or only relatively few?
The third parameter of interest is the number R of actions that
the agent is able to retrieve for deliberation at decision time.
We assume that online deliberation reveals the true expected
value of an action to an agent, and thus the practical constraint
on optimal decision-making is that the agent cannot deliber-
ate about all actions—i.e., R < N. Thus, as R approaches N,
the importance of prior simulations decreases.

Before going into the details of our experiments, here is a
summary of the most important general patterns we observe:

1. When comparing two agents that differ only in whether
they incorporate a bias toward the good actions (Random
vs. Softmax, or Infomax vs. UCB), the agent that focuses
on good actions almost always performs better.

2. Even an agent biased toward good actions who ignores
uncertainty altogether (Softmax) generally outperforms an
agent who minimizes uncertainty without focusing on good
actions (Infomax). While this result appears to hold “on
average,” there are scenarios where we see the opposite.
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Figure 1: Performance of different agent types over 80 learning trials (x-axis), with N = 10, 25, and 100 actions. The color key
is as follows: yellow=Omniscient, orange=Softmax, red=Softmin, blue=Infomax, green=UCB, purple=Random.

3. Whereas good-seeking and information-seeking tenden-
cies are both generally helpful, the helpfulness of a good-
seeking bias (unlike that of the information-seeking bias)
seems to depend on the idea that the number (R) of actions
we can retrieve at decision time is relatively small.

These results thus demonstrate the sense in which the empiri-
cal tendency we observe may indeed be adaptive. The results
also raise a number of subtle empirical and theoretical ques-
tions, which we will discuss further below.

Initial Experiment: Actions Uniformly Distributed
Let us begin by assuming that at decision time each agent
will merely (softmax) retrieve a single action (i.e., R = 1).
Intuitively, these are scenarios that allow no time for delibera-
tion, and decision making thus depends entirely on the agent’s
view of the various actions as established through prior sim-
ulation and observation. Suppose each of the N actions has
some “success” probability, and as a very simple first assump-
tion, suppose that these success probabilities are drawn uni-
formly from the unit interval (0,1).

Fig. 1 shows the results. A learning trial involves observ-
ing of an action outcome (success/fail), where this action is
chosen according to one of the strategies above, or (every fifth
trial) by softmax selecting an action using current value esti-
mates. The latter is intended to simulate observations of ac-
tual (not just hypothetical or counterfactual) choices. At the
end of L trials (x-axis) we assess each of the five agents ac-
cording to how well they perform by using their currently es-
timated action values. (Success probabilities are drawn inde-
pendently 5,000 times for each value of L, ensuring no corre-
lation.) We include results for an “omniscient” agent (R=N),
revealing the average maximal success probabilities.

The most striking pattern here is that a bias toward good
actions is helpful no matter whether there are 10, 25, or 100
actions. That is (as a first illustration of point 1 above), the
Softmax Agent, who biases simulation toward good actions,
is significantly better than the Random agent; and the UCB
agent, who mixes uncertainty minimization with a bias to-
ward good actions, drastically outperforms the pure Infomax
agent. Moreover (in line with point 2 above), the Softmax
agent has a significant advantage over the Infomax agent,
whose performance is even slightly worse than Random.

Varying the Distribution on Success Probabilities
An obvious question is whether these results depend on the
distribution of success probabilities being uniform. What if
the distribution were instead highly skewed toward good or
bad actions? Or what if most actions were intermediate with
only a few very good or very bad actions?

To investigate this question it is convenient to think of
success distributions as themselves drawn from a beta prior,
Beta(α,β), giving a distribution over Bernoulli success prob-
abilities. The two parameters α and β have the following sig-
nificance: α

α+β
gives the mean of the distribution, while α+β

determines the shape of the distribution. For instance, if one
of α or β is much higher than the other, this will result in a
highly skewed distribution. The uniform distribution consid-
ered above is the simple case of Beta(1,1).

Two other familiar distributions on Bernoulli probabilities
are the so called Jeffreys distribution (which is equivalent to
Beta(0.5,0.5)) and a standard bell-shaped distribution (we
take Beta(2,2) as a representative example). These are both
symmetric distributions, meaning that there are typically as
many good actions as bad actions. However, they differ from
the uniform distribution in that success probabilities are more
concentrated either around 0.5 (bell-shaped) or closer to the
extremes, 0 and 1 (Jeffreys). The results for these two envi-
ronments, with N = 25 actions, are not appreciably different
from the uniform case, as shown in Fig. 2

A somewhat different pattern is revealed in environments
with highly skewed success probabilities. Again in Fig. 2 we
show the results for two distributions that are skewed toward
either very low or very high success probabilities (specifically
these are Beta(.05, .5) and Beta(.5, .05), respectively). In
these scenarios the advantage of good-seeking is either mod-
est or not present at all. What might explain this pattern?

Consider the extremely positive skewed case (that is,
Beta(.05, .5)). In this setting, the initial expectation for ev-
ery action is quite low (< .1), but there is a small set of ac-
tions that outperform this expectation significantly (typically
at least one > 0.8). When it stumbles upon just one of these
outliers in simulation, a Softmax agent will perseverate on
it, to the exclusion of discovering one of the few others (at
least one of which is likely to be quite superior). In con-
trast, the Infomax agent will gradually survey the full set of
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Jeffreys Bell-shaped

Skew-positive (extreme) Skew-negative (extreme)

Figure 2: Performance graphs for other distributions on action success probabilities. All simulations are with N = 25 actions.

options and eventually discover the true optimal action. In
other words, the positively skewed case presents the Softmax
agent with “distractors” that capture simulation because they
easily outperform the default expectation, while significantly
underperforming the optimal action.

These observations suggest at least two further questions.
First, how “typical” are these environments? Second, does
the pattern depend at all on the number (N) of actions?

Turning briefly to this second question, suppose that the
distribution on actions is the same, but that there are many
more possible actions, say 100. Intuitively, the relative ad-
vantage of Infomax should be reduced in this setting as the
number of candidate actions increases. This is because the
Infomax approach of exhaustive, balanced search becomes
especially inefficient as the space of actions grows. Fig. 3
shows that this intuition is indeed borne out with 100 actions.

Figure 3: N = 100 actions, Skew-positive (extreme).

In fact, with this scenario we see no apparent advantage of In-
fomax even over the Random agent (similar to what we saw

in Fig. 1). This suggests that the advantage of information-
seeking in this scenario may not be particularly robust. This
naturally leads us to the first question: what happens “on av-
erage” as we consider the entire parameter space?

As an illustration, let us return to the setting of only 25
actions. The example distributions so far have been cherry-
picked based on specifically notable characteristics (flat, bell-
shaped, skewed). But what happens when we average over
the environment parameters, α and β? To investigate this
question we present the results of a large-scale experiment in
which parameters are drawn from a hyper-prior. A relatively
neutral hyper-prior, used often in cognitive science (see, e.g.,
Griffiths et al. 2008), defines reasonably “unbiased” distribu-
tions on the mean ( α

α+β
) and the shape (α+β), which together

uniquely determine α and β. Specifically, we draw the mean
from the uniform distribution on (0,1), while the shape is
drawn from an exponential distribution with rate parameter 1
(meaning that the density function is simply e−x). The results
in this broader setting are shown in Fig. 4.

Figure 4: N = 25, averaged over environmental settings.
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This reveals that, even in the scenario of 25 possible actions
where we know the Infomax agent occasionally outperforms
the Softmax agent, this makes up a relatively low-probability
portion of the space. On average, Infomax performs only
slightly better than a Random agent. But most importantly
(and again, in line with point 1 above), both good-seeking
agents (Softmax and UCB) have a clear advantage over the
agents without this bias (Random and Infomax).

Adding Reflective Deliberation
Up to this point we have been assuming that each agent has
the capacity to consider only one possible action at decision
time. This means the quality of decision is dependent entirely
on how well previous observations and simulations have bi-
ased better actions to come to mind. We now turn to scenarios
in which an agent may have the capacity to deliberate over
several possible actions and then choose whichever of these
looks best upon reflection. In this kind of scenario, the aim of
prior hypothetical simulation is somewhat broader. A strat-
egy is effective to the extent that the set of R actions brought
to mind in a decision context will likely include at least one
very good action (for this particular context).

One straightforward way to formalize this type of scenario
is to associate each action, not with a specific Bernoulli suc-
cess probability, but with a distribution over such probabili-
ties. The intended interpretation is that actions may be good
or bad overall, but that the agent has the capability to figure
out the actual success probability in a given circumstance,
which might be quite different from what one would expect
on average. Thus, in these simulations we again test how well
different agents perform after learning, but decision making
is assumed to work in a more sophisticated way. Instead of
sampling an action in proportion to its expected goodness,
each agent (softmax-)selects some number R of actions and
then deterministically chooses whichever of these R actions
turns out to be best in the given situation, reaping that reward.
Intuitively, as R increases the learning problem becomes sig-
nificantly easier, since it is easier to find oneself with good
options to consider at decision time.

The setting we are now studying is similar to the scenario
studied earlier (and presented in Fig 4), except that in the
present case each action is associated with its own beta distri-
bution. Specifically, the distribution for each action is drawn
from a hyper-prior with α+ β ∼ Exp(1). Suppose first that
the means α

α+β
are drawn uniformly. In Fig. 5 we report on

the case of N = 25 actions with only 25 learning trials. We
show the results with R = 1, . . . ,10.

As is evident from the figure, the differences among algo-
rithms is relatively pronounced at R = 1 and is still noticeable
at R = 4. That is to say, even if an agent has the capability
to retrieve and reflectively deliberate over 4 actions at deci-
sion time, simulating better actions may still have an appre-
ciably positive effect on an agent’s success. However, closer
to R = 10 (just less than half the total) all differences vanish.

Once again, we can ask the question of whether this pattern
depends on the specific assumption that the (average) success

Figure 5: Uniform distribution on success probability means.
R actions retrieved at decision time.

probabilities are uniformly distributed, i.e., that we expect the
same number of actions for any particular range of success
probabilities. As one would expect, when the distribution of
means is at all favorable toward (generally) good actions, the
differences among algorithms disappears even more rapidly:
it is simply too easy to find at least one rewarding action.

Other symmetric distributions with mean 0.5 show the
same pattern as in the uniform case. In Fig. 6 are two ex-
amples, where the means themselves are drawn from Jeffreys
and bell-shaped priors (again, Beta(.5, .5) and Beta(2,2)).

Also presented in Fig. 6 is the scenario where means are
drawn from a highly (positively) skewed prior.1 In such a
scenario almost all of the actions are almost always very bad,
but there are a few that are typically very good. As dis-
cussed above, the aim of simulation is figure out which ac-
tions should be included among the R to retrieve at decision
time. If there is only one “needle in the haystack,” then an
agent will perform better the more likely it is to identify that
uniquely good option.

Notice that the x-axis on this third graph in Fig. 6 goes
all the way to R = 20. Remarkably, the advantage of info-
seeking is still apparent even when the agent can retrieve and
deliberate over 20 of the 25 possible actions. Also remark-
able is the observation that, while the Softmax agent clearly
outperforms the Random agent, the UCB agent’s attention to
goodness does not effect any significant gains over Infomax.
A reasonable conclusion from this study is that, in such a sce-
nario, efficient and exhaustive pure search is hard to beat.

This last case study uncovers an important caveat to the
general finding that a bias toward good actions in hypothetical
thinking is adaptive. In contrast to biases toward uncertainty-
minimization, the advantage of the good-seeking bias de-
pends on the assumption that the number (R) of actions that
a person can consider in deliberation is small relative to the
number (N) of possible actions that one could conceivably
consider. A worthy hypothesis is that this is exactly the kind
of situation people typically face.

1We do not show the graph for the negatively skewed prior. In the
present setting such a distribution results in too many good actions,
and there are no observable distinctions among agents.
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Jeffreys Bell-shaped Skew-positive

Figure 6: Distribution of means drawn from Jeffreys, bell-shaped, and positively skewed priors.

Discussion
We demonstrate three basic patterns in the way that a “good
action bias” during offline simulation later improves online
decision-making. First, we find that a good action bias im-
proves performance whether or not there is an additional
bias to reduce uncertainty. Second, although an uncertainty-
reduction bias typically improves performance, its effect is
usually smaller than the good action bias. Though we oc-
casionally see the opposite pattern—particularly in environ-
ments with just one or two very good actions and many
quite poor actions (“needle in a haystack” problems)—the
trend is robust when averaging over environmental parame-
ter settings. Third, the benefit of a good action bias depends
strongly on the assumption that the agent is unable to retrieve
and deliberate over a large number of actions at decision time.
By contrast, the benefit that minimizing uncertainty confers
(in those cases where the benefit is especially apparent) does
not seem to depend on this assumption.

These results strongly confirm our hypothesis that the bias
people empirically show toward thinking about actions they
deem good is adaptive. But the results also raise several new
theoretical and empirical questions and possibilities.

While our focus has been on the bias people show toward
good actions, our results also confirm a hypothesis that hy-
pothetical and counterfactual simulation aimed at minimiz-
ing uncertainty would be quite helpful. We saw several in-
stances in which Infomax outperformed Softmax. But more
strikingly, the UCB agent, who employs a blend of the two
approaches, seeking out good as well as informative actions,
outperforms every other agent in virtually every context. In-
deed, this is one of the reasons UCB-type agents have been so
heavily studied in computer science, including in the setting
of offline planning. Moreover, it is easy to imagine that in
many domains that have this “needle in a haystack” character
(in areas of science, for example), thinking more about less
explored possibilities could be especially rewarding.

Empirical research has clearly demonstrated the first type
of bias, toward good actions. An obvious question is whether
people also show a bias toward simulating more informative
actions. That is, in a case where actions A and B appear
equally good, but where the person simply has less informa-
tion or experience revealing how A might turn out, would she

then show a tendency to think about A more than about B,
for example, when imagining counterfactual scenarios? We
leave this as an intriguing open question.

Finally, the third result mentioned above—that the bias to-
ward good actions is only effective when the number R of
actions retrieved is relatively small—may point toward an
important fact about the kinds of problems that cognition is
adapted to solve. It seems evident that in any given decision
making context, people can only bring to mind and deliber-
ative over a very small number of options—certainly quite
small relative to the number of conceivable actions. As our
agent experiments show, these are precisely the cases where
such a bias is advantageous. Perhaps this pervasive feature
of our cognitive predicament explains a great deal about the
nature of hypothetical and counterfactual thought.
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