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ABSTRACT OF THE DISSERTATION 

 

Exploring the Challenges of Advancing 

Surface Enhanced Raman Spectroscopy-Based Biosensing 

From Research Laboratory to Clinics 

 

by 

 

Owen Suyuan Liang 

Doctor of Philosophy in Materials Science and Engineering 

University of California, Los Angeles, 2020 

Professor Ya-Hong Xie, Chair 

 

Healthcare has seen a big boon in technological advancement with the last few years with next-

generation genome sequencing, robotics, artificial intelligence, and bioinformatics.  While the origins of 

these breakthroughs are deeply rooted in biology, life sciences, and medical science, the new age of 

technological breakthrough require an interdisciplinary approach.  Materials science itself is an 

interdisciplinary field, with a huge contribution of physics and chemistry, and within the past few 

decades, advances in nanotechnology has allowed integration into healthcare giving materials science a 

new emerging role.  Such is the case with a vibrational spectroscopy technique called Surface Enhanced 

Raman Spectroscopy (SERS). 
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SERS has the ability to measure the molecular bonds of the target analyte at the single 

molecular level.  Yet, SERS is not a recognized spectrometry tool in healthcare.  This dissertation 

examines the fundamental challenges that require a technique like SERS to transition from the academic 

research laboratories to clinical applications.  While there are broad potential clinical applications, this 

dissertation focuses on the SERS measurement of diseases originating from cellular morphologies.  The 

two main focal topics are cancer and microbiology research, where the proteome identification can 

provide new diagnostic and therapeutic treatment options.   

The first major section is about testing the capabilities of our group’s unique graphene gold 

nanopyramid hybrid platform in controlled research laboratory environments.  Varies cases of cancers 

are examined: lung, skin, and breast, through their various size, morphology, and proteomic differences.  

Afterwards, the field of microbiology is explored with bacteria and fungus species. 

The second major section involves the SERS’s platform performance with clinical patient data.  

The first case study looks at the diagnosing meningitis from patients in China.  The second case study 

looks at multidrug resistance detection of tuberculosis in rural Pakistan. 

The last major section tries to consolidate the major lessons in this journey of bringing SERS to 

clinical applications.  In particular, this section tackles the main question of why a technique like SERS 

has not been fully recognized in clinics yet and brings the case to why our SERS hybrid platform is very 

close to it. 
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1. Motivation: Need of Alternative Biomedical Technologies 

1.1. Introduction 

Materials Science has pushed the frontiers of technology greatly in recent years with the advent of 

nanotechnology and Engineering has been able to make some these materials a reality.  While the 

recent decade has seen a major leap in computer science with artificial intelligence, the biomedical field 

has also seen major breakthroughs as well.  This has all been possible with the interdisciplinary 

combination of technologies that has allowed for novel applications into difficult clinical problems 

previously thought too difficult to solve.  Materials Science has always been a big mix of physics and 

chemistry and the recent decade has seen more mix of biology applications breathing new possibilities 

previously unimaginable.  One forefront aspect of Materials Science is characterization where various 

the underlining understandings or disciplines, e.g. surface science, crystallography, elemental analysis, 

can be applied to analyze any subject.  One of the key foundational pillars of my dissertation is the 

application of materials science characterization to two relevant clinical applications: invasive cancer 

and drug-resistance bacteria.  

1.2.  Cancer Diagnosis 

Cancer is a well-known disease affecting many lives in the US and in the world.  In the US, it is the 2nd 

most prevalent mortality disease behind cardiovascular diseases, and accounts for 21.3% of deaths or 

600,000 people in 2017 [1].  Currently, the causes of cancer are not completely understood but many 

risk factors can increase the likelihood of disease occurrence and/or severity.  It is currently understood 

that a portion of cancer can be prevented with 42% of diagnosed cancers, 740,000 cases in 2019, as 

potentially avoidable; examples of prevention usually are related to behavioral changes like smoking, 

excess body weight, physical inactivity, etc [1].  In terms of societal costs, the burden of cancer is 
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estimated to be $80.2 billion (2015 USD), or adjusted to be $86.5 billion (2020 USD) [2]; this calculation 

takes into account direct medical costs and the total of all healthcare expenditures [3].   

From the various cancer types, the top 5 new incidence cases are breast, lung, prostate, colorectal, 

and melanoma.  Of these, my dissertation looks into breast, lung, and melanoma, where the selection 

was made because of the cancer prevalence and on the sample availability from our collaborator.  While 

cancer prevention has come a long way and with cancer mortality dropping with better screening, the 

fundamental technology has not changed that much [3].  To this day, the early screening and diagnosis 

tools for breast, lung, and melanoma is still image based with mammograms for breast cancer, 

computational tomography for lung cancer, and by the naked eye from a physician for skin cancer [3].  

Breast cancer can be thought as one of the “best” cancers to get as the 5-year survival rate for invasive 

breast cancer is 90% [3].  However, the early screening of breast cancer is depended mostly only on the 

mammogram, some high risk patients require an accompanying magnetic resonance imaging (MRI), and 

the mammogram has a large range of sensitivity from 54% to 81% with an addition risk of extra 

radiation to promote tumor growth [4], [5].  As such, there is an unmet medical need to improve cancer 

diagnosis by supplementing current imaging techniques with modern biomarker diagnosis techniques 

that can be done with genomics and proteomics. 

1.3. Microbiology Drug Resistance Strains 

For infectious diseases, the pathogens that can harm a human body are clinically fit under the 

umbrella of microbiology.  In this field, the four main areas generally focused on in healthcare are 

bacteria, fungi, viruses, and parasites.  Of these, the two fields focused on in this dissertation are 

bacteria and fungi.  The main reason for selecting these two is because these two categories are cell-

based and relatively easy to culture.  The reason for exploring the field of microbiology is the well-

known fear of “superbugs”, which scientifically come from antibiotic resistance. This so called drug 
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resistance becomes a “superbug” when the single drug resistance becomes resistant to multiple 

antibiotic mechanistic pathways, typically antibiotics work through 5 typical mechanisms [6].  A 

bacteria’s resistance to one of these mechanisms can be thought of as a strain of the bacteria species.  

The current gold standard in identifying drug resistant strains is by doing a drug susceptibility test (DST), 

where a bacteria species is cultured along with the drug tablet to see if its growth is inhibited.  However, 

such a process takes at least a day and typical clinical lab result turnarounds are usually recommended 

with a timeframe of 3 working days; as such, it is typically in a clinician’s interest to just use a cocktail of 

antibiotics to treat a patient.  Overtime, from such rampant use of these cocktails, mutations develop 

and multiple drug resistance (MDR) strains become more readily prevalent.  Such a scenario happened 

previously when penicillin was overly used and is now an obsolete drug because of widespread bacterial 

resistance [7]. 

These concerns of overly used antibiotics is what the World Health Organization (WHO) calls 

antimicrobial stewardship [8].  Antimicrobial stewardship is the call for targeted usage of antibiotics to 

control the rapid spread of MDR strains.  The basic tenant is to only use one of the five types of 

antibiotics in curing a patient and not resort to the typical cocktail blanket usage of antibiotics.  This is 

theoretically possible with DST cultures but is rarely done in most countries, because of the long culture 

time.  As such, there is an unmet medical need for rapid identification of microbial species and possible 

drug-resistance strains.  For current technology in bacteria species identification, there is a gene called 

the 16s rRNA gene which can be broadly used to identify >90% of bacteria genus and 65-83% of bacteria 

species [9][10].  However, this genomic technique is not typically used in clinical microbiology 

laboratories because of its weak antibiotic resistance strain detection and its high reagent cost.  Thus 

current methods are not enough for sufficient antimicrobial stewardship and this is why there are still 

“superbugs” to this day [11], [12]. 
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1.4. Clinical Significance 

 The motivation of our research is simply in the clinical significance.  We believe that by using 

SERS for cell proteomic identification is a new alternative characterization method to help in the 

monitoring of a cell’s homeostatic and metabolic state.  To our knowledge, there are not that many 

techniques that can measure cells in vitro and especially not another technique that can measure the 

cell’s proteome in vitro.  The clinical significance comes from the application of our substrate to cancer 

cell differentiation; although at its core we can apply it to any cell.  In cancer therapy, cancer cell 

heterogeneity is a difficult issue to tackle as the changing cellular environment can cause unforeseeable 

mutations and can lead to unsuccessful treatments.  We believe our platform’s ability to monitor an 

individual cell’s state in that dynamic environment will shed some light into how a cell transforms itself 

into being untreatable.  The key to all of this is the transmembrane proteins on the surface that 

maintains the cell’s homeostatic state.  

1.5.  Cell Proteome Significance 

The human genome project was an ambitious endeavor sought to answer the many mysteries 

from cancer mutations to human evolution.  However, not every question could be answered as 

genotyping every sequence did not give insight to how certain cells behave.  A large number of genes 

are annotated as hypothetical proteins or proteins with unknown function.  This is because the role of 

each gene may be determined by phenotypic analyses followed by targeted gene disruption, which 

requires the construction of a deletion vector and transformation.  Such a laborious role could not 

determine a protein’s function, since transcriptome analysis does not reveal information of protein 

localization, quantification, and post-translational modifications; that is where proteomics comes in.  [13] 

 A proteome analysis is a powerful technology for understanding global regulatory networks.  

Proteome reference maps can be developed for cytoplasmic proteins, membrane proteins, 
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phosphoproteins, and secreted proteins.  These proteome networks will have to response dynamically 

to various environmental conditions such as nitrogen limitation, heat shock, pH changes etc.[13] Thus, 

developing a platform to help the study of the cell membrane’s proteome is a much needed endeavor. 

1.6.  Focus of Dissertation 

 The focus of my thesis will be to explore the feasibility of using a SERS proteomic fingerprint for 

cell identification.  The key term is to explore the feasibility and not to prove the feasibility.  This is 

important because proving the feasibility will be an on-going process and stretches beyond the work 

that I can accomplish at UCLA.  The idea of proving the feasibility will require a reasonably statistical 

average of cell proteome collected and to show that each one can be uniquely identified.  My work is 

the beginning of that step and to handle the difficulties in setting up a protocol for this massive data 

collection.  
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2. Background: Principle of Current Disease Diagnostics and SERS 

2.1. Current gold standard in disease diagnostics 

For disease diagnostics, there is a multitude of modalities which are beyond the scope of this thesis.  For 

now, the focus is on diagnostics that are relevant to SERS and for those techniques; they can be 

separated into proteomics and genomics.  

2.1.1. Proteomics 

 Proteomics is the comprehensive study of all proteins in a cell, tissue, body fluid or organism.  

Proteins have many functions ranging from catalyzing the biochemical reaction to monitoring the 

internal/external environments of a cell.  Proteins can differ amongst each cell and base themselves on 

the cell’s main function; in other words, it is based upon how the cell will respond to its developmental 

and environmental signals.  With that knowledge, analysis of the proteins of a cell under a controlled 

biological environment can provide insight into the activities of the cell or tissue.  Proteomics can 

explain the many different functions of a cell including structure, expression profiling, protein function, 

and protein-protein interactions. [14] 

 The next logical question to ask is then: what is the advantage of proteomics compared to 

genomics?  There are several advantages to studying the protein complement.  The first is that although 

analysis of the genomic sequence can often identify the protein coding sequences and pathways, in 

many cases the function of the protein and the post-translational modifications that influence protein 

activity and cellular localization cannot be directly predicted from the genome.  Thus, it is more 

straightforward to infer a protein’s function by determining the conditions under which the cell can 

express the protein and when they will activate.  In more biological terms, genomics can identify the 

expression profiles of the protein coding sequences with transcriptomics, however, mRNA levels do not 
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always correlate with protein levels and thus do not indicate the presence of active proteins.  

Transcriptomics measure the actively transcribed genes from the mRNA and these processes turn over 

rapidly thus information is lost.  Proteomics on the other hand is to monitor the relatively more stable 

proteins, giving us unparalleled knowledge. [14] 

2.1.1.1. Cell Proteome 

The cell’s proteomics can be generally thought of as the whole composition or the whole picture 

of a cell’s profile.  This picture will include the cell membrane proteome along with a portion of the inner 

cell membrane’s protein.   

2.1.1.2. Western Blot 

 Western Blot is another technique typically seen in proteomic analysis too.  However, there 

needs to be a technique done beforehand to separate the protein and typically SDS-PAGE is used in 

conjuncture with Western Blot.  After the proteins are separated, a specific antibody of the target 

protein is used so that the target protein can be seen in the photograph.  The difference between 

Western Blot and SDS-PAGE is that 1) Western Blot requires a separation of proteins onto a 

nitrocellulose membrane and then identified with a target antibody; 2) SDS-PAGE is a method based on 

charge and molecular weight separation and then afterwards put into Western Blot so without a 

denaturing/separation process, Western Blot cannot be done.  [14] 

2.1.1.3. 2D Gel Electrophoresis 

 One of the current proteomic analysis methods is called Two Dimensional Gel Electrophoresis 

(2D-GE).  This is a technique that uses a special gel to separate proteins by putting them through an 

immobilized pH gradient in one dimension.  An applied bias will separate by the protein’s net charge; 

this is because amino acids have ionizable groups that will contribute to the net charge of the protein.  

The degree of ionization is influenced by the pH of the solution.  Afterwards, electric current is applied 
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through the gel and then the proteins separate based on their specific pH and this is called the 

isoelectric point, or when the overall charge of the protein is zero and unable to move.  The second 

dimension of 2D-GE is by separating proteins by their molecular mass.  This can be done at right angles 

to the first dimension through a Sodium Dodecyl Sulfate (SDS) – Polyacrylamide gel.  Another name for 

this technique is called SDS-PAGE.  Typically a dye is used with this technique to stain the separated 

proteins into a photograph; there are typically two kinds of dyes: Coomassie Brilliant Blue and a silver 

colloid stain.  With SDS-PAGE, you can approximately separate 2,000 different proteins and it is typically 

used in conjuncture with a database of peptides. [14] 

2.1.1.4. Mass Spectrometry 

 Mass Spectrometry (MS) is a technique used in conjecture with SDS-PAGE.  First the SDS-PAGE is 

used to separate the proteins based on charge and molecular weight.  Afterwards, the proteins are 

denatured into ionized fragments of the molecules; this is done by a digesting the proteins into peptides 

using a protease, such as trypsin.  Next the MS will ionize the peptides and separate them according to 

their mass-to-charge ratio (m/z).  Once the m/z ratios are collected, they are run through a peptide 

database and compared with for protein identification; this is a process of analysis called peptide mass 

fingerprinting. [14] 

2.1.2. Genomics 

While the focus of this dissertation does not involve genomics, it is typically the field that 

proteomics gets compared to and consequentially, SERS as well. 

2.1.3. Relation to our platform 

 When comparing these gold standard techniques to our platform, we must be clear that these 

techniques are complementary to ours, but we will not use their techniques.  This is because what we 

do is fundamentally different than their technique and thus will only confuse the analysis.  An example 
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of this is comparing our technique with the Mass Spectrometry (MS).  MS is useful in that it is also a 

label-free technique, however it will give the peptides of all proteins and thus will give too much 

information; this will naturally convolute the information making analysis very difficult.  Instead, our 

platform will just look at the transmembrane proteins and in a 1 μm diameter spot size.  This small area 

is all we need to get a proteomic fingerprint which will give the same amount of information as the MS. 

Another benefit with our technique is that time and sample preparation is saved compared to 

the gold standards.  Our SERS substrate will only require a couple of droplets of the cell analyte (1-5 μL) 

and then can be scanned within seconds for a result.  There is no need to run the samples through 

multiple platforms or through other mechanisms for further refinement.  The proteins on our cancer 

surface are still intact and thus our method is a more straightforward choice; this will reduce the 

amount of error and loss of information, similar to a derivative requiring one dimension loss of 

information. 

While there are many advantages with our platform, it is not without flaws.  One large drawback 

of our technique is the established database for comparison.  Since our technique has just started 

measuring pure standards for comparison, obviously the MS peptide database and the Western Blot’s 

catalog of antibody-to-protein are much more reliable.  Of course such a flaw will be offset with more 

time and data collection.  Another flaw with our technique is that currently, the sample analyte needs to 

be dried onto the SERS substrate.  This is because intimate contact is required for SERS to be effective; 

compared with the current standard which has established denaturing protocols, the current standard 

has more reliable procedures while ours require more research and time.  
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2.2. Principles of SERS Hybrid Platform 

2.2.1.  Raman Spectroscopy 

As we can see from the previous gold standard of proteome techniques, these techniques give 

too much information and can convolute the analysis.  The argument can thus be made that measuring 

the proteomic fingerprint can give the necessarily information with many benefits and very little 

negatives.  To further understand our technique, one must first explain the Raman effect. 

2.2.1.1. Raman Effect 

 Raman scattering is an effect named after the scientist Chandrasekhara Venkata Raman in 1921 

in India.  What he discovered, was an interesting phenomena where scattered photons have a higher 

energy than the incoming photon after interaction with a sample.  Typical optical scattering phenomena, 

such as florescence, is a down-conversion of energy so when Raman discovered that his photons had 

actually increased in energy, he knew he had discovered a new optical scattering phenomenon [15].   

 Light can interact with matter in several ways: absorption, reflection, transmission, and 

scattering.  Both the material and color (or wavelength) of the light can affect this type of interaction 

and the study of these interactions is called light spectroscopy.  By using a Raman spectrometer, we can 

see that a tiny fraction of the scattered light has a different color because due to the scattering process, 

the photon has lost or gained energy from the vibrating atoms in the material.  In studying the vibrations 

of the atoms in the material, we can discover useful information, such as the chemical and structural 

composition, using this technique called Raman spectroscopy.  However, the Raman effect is actually 

inherently weak where only about 1 part in 10 million scattered photons will shift in wavelength.  Thus, 

although Chandrasekhara Raman discovered the phenomena in the 1920s, Raman spectroscopy didn’t 

see an explosion of usage until the invention of lasers and powerful detectors like the Charged Coupled 

Device (CCD).  In general, all materials produce a Raman spectrum, with the exception of pure metals, 
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thus making Raman spectroscopy a very versatile technique. It is also non-contacting and thus non-

destructive, requires little to no sample preparation since it only needs an optical microscope focusing 

lens, a laser spatial resolution of 1 μm, and can be analyzed in water unlike infrared absorption 

spectroscopy [15]. 

 A more widely known technique that occurs when light interacts with atoms in molecules and 

causes them to vibrate is infrared absorption spectroscopy.  However different selection rules apply and 

this is because for the Raman effect to occur, a change in the molecular polarisability is required during 

the vibration.  An example of this difference can be seen in the study of carbon atoms for the diamond 

structure where Raman spectroscopy is superb at doing while infrared absorption spectroscopy is not 

[15].  To further understand the Raman effect, the energy levels of a molecule must be explored.  

2.2.1.2.  Energy Levels in a Molecule  

 For dealing with the interaction of light and molecules, the energy levels of the degrees of 

freedom of the molecule must be determined.  These energy levels are either associated with the 

movement of the elections, the so called electronic energy levels and further differentiated by their spin, 

or by the movement of the atoms in the molecules called the motional energy states, differentiated by 

the vibrational, rotational, or translational energy levels.  A great way to visualize these energy levels 

and their various transitions among them is through the Jablonski diagram as seen in Figure 1 [15]. 
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Figure 1 – The Jablonski diagram that is typically seen in molecular spectroscopy.  The dark bold curves represent the 

electronic energy levels and the light thin flat lines represent the vibrational levels.  The possible radiative (dipole-allowed) 

transitions between states are indicated by the dotted lines, while the possible non-radiative transitions are represented by 

the solid lines. [15] 

 From Figure 1, we can see that molecular electronic states are represented as the dark bold 

curves where the X-axis is the nuclear atomic coordinates, represented as a single variable called the 

normal mode coordinate, and the Y-axis is in increasing energy.  As such, the minima of each curve 

represent the equilibrium position of the atoms in the molecule and the vibrational states are 

represented as the light thin flat lines.  The electronic ground state of a molecule (S0) is when the 

electrons occupy their lowest energy state as allowed by the Pauli exclusion principle.  When an electron 

in a pair is transferred to an excited state, the electrons can have the same spin because they are in 

different states; thus the electronic excited state is usually four-times degenerate, representing the four 
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possible spin states.  The singlet state (S1) represents the only excited state configuration with a total 

spin of zero, and the triplet state (T1) represents the triply-degenerate excited state with total spin of 

one.  A radiative transition will involve an interaction with a photon where absorption is a transition to a 

higher energy level and emission is a transition to a lower energy level.  A non-radiative transition will 

involve an interaction with the environment (solvent, or other molecules) or of internal interactions 

such as the intra-molecular vibrational redistribution (IVR).  IVR is the redistribution of energy into the 

lower-energy vibrational or rotational states with a typical timescale of ~10-12 seconds and can occur 

between the singlet and triplet states (inter-system crossing), unlike a radiative transition [15]. 

 A simplified Jablonski diagram is typically used to represent Raman scattering as seen in Figure 2.  

For a scattered photon, there are two main groups this can be classified: elastic scattering and inelastic 

scattering.  Elastic scattering is when the incident photon has exactly the same energy as the emitted 

photon, but typically of a different direction and/or polarization.  In molecules, this process is often 

referred as the Rayleigh scattering where the molecule is in the same energy level after the scattering.  

This means that there is no transfer of energy between the molecule and the photon and therefore does 

not reveal much information about the internal structure.  Inelastic scattering is when the incident 

photon (EL) has a different energy as the emitted photon (ES) and this energy difference correlates to a 

transition between two states in the molecule.  The Raman scattering process falls into the category of 

the inelastic scatting.  The important difference between Raman scattering and fluorescence is that the 

processes are instantaneous for Raman scattering while fluorescence is essentially a two step process, 

excitation and emission with a finite lifetime.  This is unique for Raman because this means that the 

emitted Raman photon can happen without a direct absorption of the photon and thus there does not 

need to be an electronic transition within the molecule at that incident wavelength.  Of course, such a 
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process is intrinsically a weak phenomenon compared to normal optical processes like absorption or 

fluorescence and thus requires the special equipment mentioned earlier [15]. 

 

Figure 2 – Simplified Jablonski diagram illustrating the Rayleigh (a) & (c) and Raman (b) & (d) scattering processes.  A normal 

absorption to the electronic state and then emission can be seen in (a) and (b).  However, the incident photon energy, EL, 

does not need to be tuned to a specific transition in the electronic structure of the molecule and can be seen in (c) and (d).  

This type of scattering is viewed as two simultaneous processes where an absorption of a photon to transition to a virtual 

state and then a following emission to the ground state (S0). [15] 

If the scattered photon has less energy than the incident photon (ES < EL), then this is called the 

Stokes process and represents the molecule excited to the first vibrational state with energy (EL-ES).  

However, if the scattered photon has energy larger than the incident photon (ES > EL), then this is called 

the anti-Stokes process and represents the molecule relaxing from an already excited vibrational state 

to its ground state.  These two processes are typically plotted in an axis called the Raman shift (units cm-
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1) and is defined as  which represents the energy lost by the photons during the 

scattering event. The graph will be plotted positive for a Stokes process and negative for an anti-Stokes 

process with the Y-axis labeled intensity, representing the number of photons hitting the detector and 

thus is in arbitrary units.  An example of a Raman spectrum can be seen in Figure 3.  For my research 

thesis regarding cell proteome however, the Raman signal is too weak and cannot be done with just 

normal Raman; thus Surface-Enhanced Raman Spectroscopy (SERS) is used to enhance the sensitivity of 

the platform and will be explain briefly in the next section [15]. 

2.2.2. Surface-Enhanced Raman Spectroscopy 

 Surface-Enhanced Raman Spectroscopy (SERS) uses the same spectrometer as regular Raman 

but involves some sort of a nano-feature metallic substrate to boost the signal of the Raman scattering 

from the molecules close to the substrate.  This type of boosting can give enhancement factors as large 

as ~109 and allows for very low concentrations of materials, even single molecules as soon in Figure 3.  

Of course since SERS is still an active research field, the complexity of it cannot be fully described in this 

prospectus; thus, a basic background of the plasmon resonance and the enhancement factors are 

presented to give the reader a better understanding of our platform [15]. 
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Figure 3 – Raman spectrum and SERS spectrum of rhodamine 6G molecules, a commonly used dye.  We can see the normal 

Raman spectrum on the bottom done with a long exposure time and with a large concentration of molecules.  This is 

compared with the SERS spectrum on top done with only one molecule and for less than a second. [15] 

2.2.2.1.  Plasmonics 

 Plasmonics is a relatively new term encompassing all areas of research and technology 

concerning the study, fabrication, and application of plasmon-supporting structures.  Plasmonics and 

SERS are two areas of research that strongly overlap with each other since plasmons are at the core of 

the SERS electromagnetic effects and/or enhancements.  To define a plasmon, we must first define 

plasma: the free electrons of a metal that move in the background of the fixed positive ions to ensure 

overall neutrality.  Thus a plasmon is a quantum quasi-particle representing the elementary excitations, 

or modes, of the charge density oscillations in a plasma.  A simple analogy can be described as this: a 
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plasmon is to the plasma charge density as photons are to the electromagnetic field.  However, a 

plasmon is a quasi-particle because it is always lossy and highly interacting.  Or in other words, the 

charge density oscillations must be maintained by an external source of energy, otherwise it will always 

decay due to various loss mechanisms, such as collisions.  [15] 

 To relate the above definition of plasmons to our SERS platform, we must also introduce the 

term polaritons.  Polaritons are modes where the electromagnetic wave excites the internal degrees of 

freedom inside a dielectric medium.  In other words, when a photon couples with the internal degrees 

of freedom in a medium, it is no longer a quantum particle and its energy is shared between itself and 

the medium.  Thus for a metal with a free-electron plasma and with an outside interaction of light, we 

get a plasmon-polariton.  Along with this, one must also know that the optical response of a metal and 

its plasmonic effects from SERS can be described by its relative dielectric function, ϵ (ω).  Coupling all 

these terms into something more qualitative and practical are the electromagnetic and chemical 

enhancement factors. [15] 

2.2.2.2. Enhancement Factors 

 By default, normal Raman spectroscopy has the average Raman intensity of a molecule directly 

proportional to the laser power density and to the Raman cross-section of the molecule (the portion of 

the molecule illuminated by the laser).  This can also be generalized to SERS in that a given vibrational 

mode is also directly proportional to the laser power density and its normal Raman cross-section, but 

now also affected by an enhancement factor.  The two main enhancement factors are the 

electromagnetic and chemical enhancement factor. [15] 

2.2.2.2.1. Electromagnetic Enhancement 

 The electromagnetic enhancement factor is due to the coupling of the incident and Raman 

electromagnetic fields with the SERS substrate.  The electromagnetic enhancement relies on the 
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localized surface plasmons that give large local field enhancements extremely close to the metallic 

surface.  The typical proximity distance from the SERS surface to the analyte is around 10 nm.  In most 

cases to profit from this, the target molecule must actually be directly adsorbed onto the surface 

through physisorption or chemisorptions. [15]  The concentration of the electromagnetic fields is 

typically coined the hotspot; for our SERS gold nano-pyramid platform, our range can go up to 100 nm 

along the faces of the pyramid, with the tip being the standard 10 nm (see Figure 4).  

 

Figure 4 – Our group’s SERS gold nano-pyramid platform under FDTD simulation of the electric field distribution.  The scale 

bar is 200 μm, the white arrows on the top right are the polarization direction of the incident light, and the incident light 

wavelength is 633 nm.  As we can see, the large electric field concentration is on the pyramid faces and on the tip of the 

pyramid with 50-100 nm and 10 nm respectively.[16] 

2.2.2.2.2. Chemical Enhancement 

 The other main enhancement for SERS is the chemical enhancement and is actually still a 

subject of debate to its definition.  The technical definition is any modification of the Raman 

polarizability tensor upon adsorption of the molecule onto the metallic surface, meaning this definition 

covers quenching and enhancement of the signal.  However, most researchers bring up the chemical 

enhancement when the situation gives rise to a more resonant modified Raman polarizability.  The most 
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studied mechanism at the moment is called the charge-transfer mechanism. This effect occurs when the 

adsorbate does not bind covalently to the metal and the metal causes a perturbation in the electronic 

structure of the analyte, which thus causes a mild change in its electronic distribution.  This mild change 

can be thought of as a corresponding change of the polarizability and thus ultimately the change in the 

Raman efficiency of the mode.  In more lament terms, the SERS surface material can have an affinity 

with the target analyte affecting the Raman signal [15].  For our platform, we have previously proved [16] 

that the addition of graphene has improved the Raman yield by one order of magnitude and we 

attribute this to the chemical enhancement as have others [17]. 

2.3. Hybrid Platform 

2.3.1.1. Graphene 

 Our SERS platform will not be complete without mentioning one of the key components: 

graphene.  Graphene is a single atomic layer of carbon arranged in a hexagonal honeycomb shape 

pattern.  It was discovered in the late 2000s as the first experimental proof of a stable 2D material and 

with its unique properties, became a hotbed for research topics.  Some of these properties include its 

material tensile strength, chemical inertness, and excellent thermal and electrical properties.  In our 

hybrid platform, graphene rests on top of the gold nanofeatures. 

2.3.1.1.1. Purpose 

 There are five main reasons for the usage of graphene.  1) Graphene is used as our calibrator for 

the plasmon resonance.  What this means is that we use the graphene’s Raman G-peak as a marker to 

determine the intensity of the SERS signal at the hotspot.  This can be continuously checked among all 

SERS substrates of the same type and this gives us repeatable results. 2) A monolayer thick of graphene 

also allows us to do some kind of quantitative SERS measurement.  This is because other groups use 

SERS markers with dye molecules and their concentration is unknown on the surface; compared to our 
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graphene which at its worst quality can be 2 layers, this will only introduce a known error of 2x the 

counts in the G-peak.  This is a quantifiable number compared to the uncertainty in dye molecule SERS 

measurements.  3) Graphene is chemically inert and allows for our substrate to be biocompatible.  The is 

because graphene is a natural diffusion barrier and thus can isolate the analyte from the metal.  This will 

open the possibility of using other metals beside gold, such as silver which has a better quality factor for 

better SERS resonance in visible light.  4) Since graphene can be used as a built-in gauge, we can also 

determine the spatial location of each hotspot within the error factor of the Raman spectrometer’s 

stage.  The current Renishaw spectrometer has a stage that can move in 100 nm increments and thus 

will give us error to half the pitch size of the current gold nano-pyramid setup (of course pitch size can 

be altered during the fabrication process).  5) Lastly, graphene has a chemical enhancement and this was 

proven by our group.  We did a SERS measurement with and without graphene and found that 

biomolecules are attracted to graphene and give an order of magnitude in enhancement.  [18] 

2.3.2. SERS substrate fabrication 

 The SERS substrate fabrication was headed by a previous group member, Ming Xia, and he did a 

lot to finalize a repeatable procedure.  This prospectus will not go into the details of the SERS substrate 

fabrication, since my thesis is on the application of the SERS substrate, and will only highlight the main 

parts.  More details on the fabrication process can be found in our published work. [19] 

 The SERS substrate fabrication currently consists of the following feature shapes: nano-pyramids, 

nano-triangles, and nano-pillars; these features can also be made out of silver and gold.  Figure 5 

displays a schematic diagram of the hybrid graphene-gold nano-pyramid substrate.  For this prospectus, 

only the gold nano-pyramid fabrication will be covered. 
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Figure 5 – Fabrication Diagram of the graphene/gold nano-pyramid 

First, the target SiO2/Si wafer is pre-cleaned in a Piranaha and RCA solution to ensure very good 

hydrophilicity.  After the pre-clean step, polystyrene (PS) nano-spheres are deposited onto the surface 

via a drip jig.  The PS nano-spheres will provide a mask for a dummy metal deposition and this metallic 

mask will be defining the nano-pattern feature for KOH etching.  The KOH is the key to forming the Si 

mold pits.  Once those pits are made (see Figure 6), gold is deposited on top and a simple glue like epoxy 

can be used to detach the gold film from the mold.  Copper grown Chemical Vapor Deposition (CVD) 

graphene is transferred onto this substrate and this is referred to as our hybrid SERS platform. 
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Figure 6 – SEM image of the Si pyramidal mold before gold sputtering.  We can see the periodicity of the nano-features due 

to the self-assembly of the PS nano-sphere mask with very little defects.  The scale bar is 1 μm. 

2.3.2.1.  Raman Measurement Procedure 

 Raman is typically done on the Materials Science & Engineering Department’s Renishaw Raman 

spectrometer located on the first floor of Engineering V.  Typically the 785 nm laser is used along with a 

50x Leica LWD (long working distance) lens.  The machine is usually calibrated to 10% of its max power 

(20 mW) and usually exposures run from 1-10 seconds.  Mappings are now normally done in 10 μm x 

10μm with 1 μm spacing, but there were variances in previous data collections; typically mappings are 

structured to the purpose of the experiment. A silicon reference wafer is used to calibrate the machine 

before every use. 

2.3.2.2. Raman Data Post-Processing  

 Raman post-data processing is done with the Wire 4.2 software provided by Renishaw.  This is a 

powerful software that allows us to subtract the baseline spectrum, eliminate cosmic ray peaks, run a 

noise filter software, and curve fit peaks if necessary.  After the data is post-processed, it is converted to 

individual text files and then run through our in-lab’s PCA software.  This software is comprised of a 

custom python code for vector input and then ran through R-studio, where the language R is more 

typically used by statistical students.  The R-studio program will run the converted python text files and 

form a PCA graph. 

2.4.  Multivariate Analysis 

2.4.1. Principle Component Analysis 

 With hundreds of SERS spectra being taken per Raman mapping, and multiple Raman mapping 

done on each cell, the amount of Raman spectra can easily run over the 1000s.  As such a computer 

aided tool is necessarily for data processing.  The reason we use Principle Component Analysis (PCA) for 
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our data analysis is because it is typically used as a standard in data processing in biology.  Although this 

is our initial reason, we are currently working on developing more advanced machine learning programs 

to further aid in the data analysis; but that is beyond the scope of this dissertation.   

 PCA works by being a dimension reduction tool.  This is essentially a useful technique to help 

humans interpret data in a more visual plane.  In other words, instead of taking into account 70+ 

variables from the dataset, PCA can reduce that number of variables down to 2 and this will make it very 

quick to interpret the result.  PCA works in a similar fashion as a change of coordinates; i.e. from 

Cartesian to spherical.  PCA looks for patterns within a dataset and separates them by their variance, or 

relationship to one another.  After finding the most variant data points, they are plotted on the PC1 axis 

and the second most variant axis is plotted orthogonal to PC1.  Thus, the processed data will cluster 

themselves into groups and this will allow us for easy identification; i.e. cleaning the left cluster as 

cancer and right cluster as normal healthy cells. 

2.5.  Machine Learning 

2.5.1. Supervised Learning vs Unsupervised Learning Algorithms 

 Two machine learning data analysis tools are used in this study: DNN and PCA, and both are 

chosen for their particular purposes.  The two important terms to understand are supervised learning 

and unsupervised learning.  Supervised learning is a class of tools that require a key or answer to be fed 

into the program so that the algorithms can provide feedback and mold the data to these labels.  In DNN, 

the program requires a large identified sample dataset to form its neural model.  Using this neural 

model, the program will then sample a test dataset and return the True Positives (TPs), False Positives 

(FPs), True Negative (TNs), and False Negatives (FNs).  These values can then be used to calculate the 

sensitivity and specificity of separating monocyte and lymphocyte.  The other class of tools is 

unsupervised learning and as the name suggests, it does not require an identified sample dataset to 
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form its conclusion.  Instead, PCA is purely a mathematical transformation of coordinates systems, 

similar to the analogy of Cartesian to Polar, but transforms the data based on the value of variance.  The 

end result is that the original data is viewed from another point of view for easier interpretation of 

results.  Both techniques will not be explained further as well as the benefits and disadvantages of each 

class. 

 While there are many examples of supervised learning, such as Linear Discriminant Analysis 

(LDA), Support Vector Machine (SVM), k-Nearest Neighbor (k-NN), the method used in this study is DNN.  

The main reason for selecting DNN over the other methods is the lack of a clear understanding in the 

relationship between a Raman spectrum and the cell species identification.  In other words, it is not 

known if a linear separator, hyperplane classifier, or majority voting of nearest entities is the best 

method for clearly identifying the Raman fingerprint.  As such, DNN is chosen to factor in these 

possibilities and form what it thinks is the best classifier model on its own, without inherent bias from 

the user.  The DNN model is formed on the basis of minimizing the loss function, the metric used to 

characterize the effectiveness of the model.  A back propagation function is included which updates the 

neural model for each correct and incorrect input, along with a hyperparameter, effectively the learning 

rate of the program and modifies the percentage change of the neural model for each input. 

 For unsupervised machine learning, the method selected in this study was PCA.  While there are 

also other unsupervised methods, such as hierarchal clustering or k-means clustering, PCA was chosen 

because it belongs to the blind signal separation category and this means that PCA requires the least 

amount of information for data separation when compared with other methods.  It is based on this that 

the assumption can be made that PCA is the check on the data, without any inherent data bias, to check 

the result of the DNN.  One of the biggest disadvantages of DNN is the requirement of an already 

labeled standard that the program can build its neural model and also a very large dataset to confirm 
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the model.  The obvious flaw in this approach is when an imperfect standard is given to the DNN and the 

neural model detracts from the true answer.  The other flaw of a large dataset is that while it is 

necessary for building a good model, it may introduce the issue of over-modeling; in this case, an over-

modeled neural model cannot handle slight differences in the data and immediately skews its answers 

as all right or wrong.  In this study, over-modeling occurred for 4% of evaluation rounds and to combat 

this issue, averaging is done.   

For PCA, over-modeling does not occur as it can be thought up as a simple orthogonal 

transformation.  The metric used for the separation of data in PCA space is variance, or the square of the 

standard deviation.  This allows the user to compare data based upon differences and similarities.  

Applying this to the Raman spectrum, the key Raman peaks selected are used for the whole dataset, and 

the intensity values are compared and variance calculated.  The eigenvalues and eigenvectors are 

calculated from a matrix of these variances and these two values form the Principal Components (PCs) 

of the original data.  Thus, a PC represents a linear combination of weighted values based on the 

important Raman peaks selected.  For ease of data interpretation, the two highest eigenvalue PCs, or 

the two PCs with the highest variance, are plotted into a 2D graph with a 68% Normal Probability oval 

for each dataset.  The sensitivities can be calculated from the amount of data nodes that fall into the 

correct confidence oval. 

2.5.2. Linear Discriminant Analysis 

In regards to clinical applicability, disease diagnosis is heavily dependent on the patient’s 

biovariability.  This variability is based on the inherent patient’s characteristics and there is always a 

question to whether the uniqueness of a SERS fingerprint is greater than the patient’s biovariability.  The 

SERS nature of the biovariability can be attributed to the various intricacies of proteins, e.g. size, 

molecular composition, SERS polarizability, etc.  In the SERS and PCA-LDA disase diagnosis scheme, 
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hundreds of SERS spectra are measured per patient or many patients per disease category.  Therefore 

the PCA representation can be depicted by ovals encompassing each dataset and the natural spread of 

the oval area can be thought as the inherent biological variability, as seen in Figure 7c.   To the best of 

our knowledge, biovariability is not an issue thus we believe the variations within SERS is greater than 

the biovariability found in patients, making clinical diagnosis possible [20].  Such a phenomenon will also 

mean this biovariability saturates in a line graph as seen in Figure 7d.  Doing such a study will give the 

necessary information of the minimum number of measurements needed per patient to make an 

effective diagnosis. 

 

Figure 7 – Schematic of the SERS measurement and analysis.  a) SERS measurement is done on a protein molecule with 
specific bonds of its amino acids, as shown in the insert black box.  Examples of those bonds are represented by their 
respective colors: green C-H, orange C-O, and blue O-H, and each of these bonds will have a unique SERS peak, as shown on 
the insert red box representing a possible SERS spectra.  b) will show the subsequent analysis done through PCA-LDA.  The 
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complex SERS spectra are re-represented into the PCA space by their respective cancer and healthy datasets.  A classifier 
algorithm such as LDA is performed on the PCA to give their respective classifying labels, in this case red is cancer and green 
is healthy.  Sensitivity and specificity can be calculated from the data points that fall into the correct/incorrect categories; in 
this example, the cancerous red square is misclassified into the healthy green region, termed a false negative, therefore the 
sensitivity is less than 100% as opposed to the 100% specificity.  c) PCA shows the inherent variance amongst its data and if 
an oval encompasses each dataset, the area of that oval can represent the biovariability.  This inherent biovariability will 
saturate if enough spectra are taken per sample, or enough patients are measured per disease.  d) a line graph can be used 
to represent such a phenomena where saturation is the biovariability of a target disease and also explains the minimum 
amount of patients necessary for a study. 

2.5.3. Deep Neural Network 

The  DNN model employed for this study is based on an object detection image-based neural 

network built on Tensorflow and pre-trained on the COCO dataset [21].  The basics of a neural network 

can be considered as a repeating algorithm that classifies the importance of an input based on an 

activation function.  An activation function is similar to the action potential of a human neuron cell, 

where a necessary stimulus causes the firing of the neuron and this is an all or nothing process.  This is 

analogous to artificial neural networks where the activation function is a mathematical threshold value 

and once that is met, the result is like the firing of a human neuron.  There are additional nuances to this 

mathematical equation with coupling of weights and bias values, and the resultant firing is not a step 

function, but a specialized mathematical function containing in-between 0 and 1 activation values; an 

example is the sigmoid function.  However, the main concepts translate to the idea that only the 

important characteristics of an image will be filtered through this activation function with each of these 

characteristics being represented as a neuron in one layer of the neural network.  The addition of 

multiple layers gives rise to the non-linearly of a DNN and these features allow a DNN to recognize an 

image, similar to mimicking the image processing of a human brain.  Coupled with the introduction of 

convolution neural networks (CNN), the processing requirement for image-based neural networks 

dropped significantly, paving the way for large advancements in the field [22].  However, the detailed 

description and workings of each of these improvements are beyond the scope of this study and a 

sample of this literature can be found in Ref. [23]–[25]. 
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2.5.4. Decision Trees 

Another form of supervised machine learning (ML) is called decision tree and in combination 

with boosting is our group’s current best answer for SERS ML-based data analysis.  In the decision tree 

model, one can get a classification result similar to the DNN model shown above, but the process is 

fundamentally different.  Where the DNN model builds upon the forward bias and each neuron can be 

thought up as an important spectral feature, the black box nature of a DNN does not elude to inform the 

data scientist a clear picture of what the ML model is doing.  It is from that high-level thinking that 

decision tree can help provide that ML insight were each tree can be back-tracked and provide a clear 

indication of each SERS fingerprint’s uniqueness in each spectra.   

 The basic format of a decision tree is shown in Figure 8 where a decision tree is composed of 

three parts: 1) the main node, 2) the branches, and 3) the sub nodes.  The simplest way to understand 

the decision tree format is to image each main node as a set of if-then statements typically found in 

computer programming.  As one can therefore imagine, a large set of if-then statements will form a 

case-structure and the conditions of that is the high level framing of a decision tree.  For each main node, 

the if-then statement is trying to reach a goal, which is a target threshold value and that is set by the 

user.  These threshold values are arbitrary but the goal is to represent key features in SERS spectra, 

therefore in a sense, each sub node is a SERS peak of great importance.  The branches in this tree 

represent the topological structure and unlike DNN, does not have a weight value.  The program follows 

along each main node, the if-then statements, satisfying each branch’s condition and repeats itself until 

arriving at the target threshold values represented in each sub node.  Thus as one can imagine, in a 

perfect decision tree classifier, enough sub nodes are selected with enough key main nodes to present a 

full SERS spectrum [26]. 
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 The following is an example of a SERS dataset broken down to fit an example clinical application.  

For a clinical report, the main output is the binary: patient or healthy.  The very first node is the first if-

then statement splitting this decision.  If we follow the patient branching line, each subsequent main 

node will represent important threshold requirements based upon the SERS intensity.  The number of 

layers of a decision tree is part of the art and will finally represent the “model” to classify the label 

patient.  The very end sub nodes are the SERS features that fit this classifier label and can be thought as 

of as the unique key biomarker SERS peaks.   

 The obvious follow-up question of how does one construct the “perfect” decision tree is the 

foundation of the machine learning algorithm.  If the perfect decision tree is known, then there is no 

need for the ML portion, but in real-world scenarios, this is part of the unknown and the ML portion 

defines a regressive learning portion to optimize the best decision tree structure.  To determine the 

structure of a decision tree, the ML algorithm follows a similar “greedy strategy” of minimizing a 

partition criterion called a Gini coefficient.  Details of this is beyond the scope of the thesis but can be 

found by literature [26] but the essential part is a minimization of the mean square error.  Therefore, the 

ML algorithm repeats itself to minimize this error, based upon the user set number of categories and 

number of samples.   



 

30 
 

 

Figure 8 – Decision Tree layout with circles representing the main nodes and the triangles representing the sub nodes.   

2.5.5. Boosting 

The second part in optimizing the decision tree ML is combining it with boosting.  Boosting is a 

common ensemble-based method which is a fancier way of saying it combines various models to 

determine a more accurate classifier.  For our case, this is achieved by boosting the various decision 

trees of each SERS spectra to give an overall database evaluation of labeling each dataset a patient or 

healthy control.  The general theory of boosting is similar to the DNN model where a learner determines 

which decision tree is the best based on their performance and through iterations, weights are assigned 

to each learner to give greater influence for the final ensemble’s final prediction.  The most popular 

boosting algorithm is called AdaBoost, short for adaptive boosting, and this is the final form our ML 
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platform uses.  The general idea of Adaboost is to optimizing the boosting method by focusing on the 

weakest classifiers or the outliers that are the most difficult to classify by the algorithm.  In the 

mathematical sense, normal boosting applies weights to learners giving a preference in the final 

prediction but this will only cover a majority of the dataset and outlier data gets lost in the average 

weighting.  Adaboost solves this focusing on these misclassified datasets and giving them more weight in 

subsequent iterations.  Thus, and adaboost function will try to lower its overall error rate with this 

additional constraint and give an overall better accurate classifier [27]. 

Coupling the adaboost with decision trees is our research group’s current solution at supervised ML.  

Following the same logic as before, the ensemble of decision trees are optimized by boosting where a 

learner is determining the importance of each decision tree for the final prediction of patient or healthy 

control.  As is the case with most clinical applications, outliers are the usual focus and thusly the 

adaboost philosophy fits rather well to this situation.  Where misclassified results may typically lower 

the weight value of other algorithms, adaboost inverts this and adds these weak classifiers to its overall 

error loss function.  The goal of the adaboost algorithm is to minimize this loss function therefore 

helping to select the best decision trees that represent both the majority features and the features that 

can handle the outlier datasets[26]. 
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3. Initial Evidence in Controlled Environments: Laboratory Setting 

3.1. SERS in Differentiating Biological Entities 

The decision to select the cancer cell lines as our first cell type to identify is as follows.  The first 

reason is the biomedical importance, where in 2015 it is estimated that there were 1.6 million new 

cancer cases and a reported 590,000 deaths.[28]  From this we can see why cancer research is being 

heavily researched upon and also why there are many established cancer cell lines.  Human cancer cell 

lines are essentially tumor cells that have been removed from patients and then genetically modified to 

be immortal so they can be mass-produced.  These immortal or continuous cell lines can divide 

indefinitely if given the correct cell culture conditions[29]; this make makes these continuous cell lines 

extremely useful in research. 

The systematic approach in understanding SERS application to clinics is to test the platform in the 

best case scenario of laboratory settings.  Human cancer cell lines represent these controlled 

environments by providing the key proteome signature for each cancer disease without the introduction 

of patient biovariability.  As noted in the background section, the SERS protocol stays the same with the 

only differentiating factor being the different cell lines measured.  The general protocol is to grow each 

cancer cell line, re-suspend them into liquid format via PBS, perform the SERS measurement, and then 

analyze the data with machine learning.  The main cancer diseases examined in this thesis are lung, skin, 

and breast cancer and for microbiology, E. coli is the main bacteria cell line along with cultured fungus 

species isolated from patient CSF. 
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3.1.1. Human Cancer Cell Lines 

3.1.1.1. Lung Cancer 

Lung cancer is the most prevalent cancer in terms of incidence and the largest cause of cancer 

deaths for both men and women today.  The current 5-year survival rate for late-stage diagnosis is 5% as 

opposed to 50% if the patient is screened early [3].  The current diagnostic tool is low-dose CT scan and 

while it has lowered mortality by 20% in the past decade it is not perfect.   

The overall theme of looking into lung cancer is to see if SERS proteome identification can lead 

to new diagnosis not previously known and our first attempt at a second cancer disease following the 

success of the previous study involving colon cancer [30].  One major difference from that study to this 

one is the free flowing of cancer cells in the liquid solution and allowing the cells to dry onto the 

substrate.  The previous study also involved colon cancer cells from a cell line, but those cells were 

cultured onto the substrate and then measured.  For these particular experiements, cells were released 

from their cultured dish with trypsin, an enzyme that attacks the adhesion proteins of a cultured cell to 

release it into the media, and the free float cells are resuspended into PBS via a regular centrifuge.  The 

purpose is to see the differentiability of the remaining cell membrane proteome when measured by 

SERS and if that is enough to identify the different between healthy and lung cancer cells.  To simulate a 

healthy control, a T-cell culture line is selected, and two different lung cancer cell lines were used: A549 

and H157.  One unique feature of these various cell lines is that with an optical microscope (OM), a 

technician can separate these two cell lines if needed. 

3.1.1.1.1. Preliminary Data 

For this dataset, the goal is to check if we can even differentiate a cancer cell from a healthy cell.  

For the lung cancer cell of this variant (A549), a T-cell is compared to as the healthy cell since the lung 

cancer disease is known to circulate in the blood stream.  So our comparison is to simulate a blood vial 
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sample with every component removed except for the lung cancer cell and the T-cell; this is of course 

not practically realistic but a good starting point.   

 

 

Figure 9 – Raman mapping of the substrate before adding the T-cell or Lung cancer cell.  The same SERS substrate was used 

for all the experiments.  The top image is the optical microscope image with a scale bar of 20 μm and depicts the area that 

was mapped out with 10 μm step size.  At the crosshair, we get an idea of what a typical Raman spectrum will look like in 

that mapping 
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Figure 10 – Raman mapping of the SERS substrate with the addition of T-cells.  The top image is the optical microscope with a 

scale bar of 20 μm and a Raman mapping step size of 10 μm.  The bottom Raman spectrum is an example of the typical 

Raman spectra in the mapping. 

 From Figure 9, we can see an idea of what the SERS substrate spectra looks like before the 

addition of the T-cells and the Lung cancer cells.  A large mapping dataset was taken and the bottom 

insert in Figure 9 shows a typical Raman spectrum of the mapping file.  Comparing Figure 9 with Figure 

10, we can already see peak differences in the Raman spectra, but we will need to use PCA to process 

the 500 datapoints. 
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Figure 11 - Raman mapping of the SERS substrate with Lung cancer cells.  The top image is the optical microscope with a scale 

bar of 20 μm and a Raman mapping step size of 10 μm.  The bottom Raman spectrum is an example of the typical Raman 

spectra in the mapping. 

 If we now compare Figure 10 with Figure 11, then we also see there are major differences in the 

SERS peaks. After processing all those datasets, they were put through the PCA program and this is the 

result. 
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Figure 12 – PCA graph of the lung cancer (A549), the healthy cells (t-cell), and of the substrate.  Each dot represents a 

complete Raman spectrum; unfortunately the PCA program is overlapping some data points and will be updated to shrink 

the dots in the future (for clearer viewing).  The colored ovals represent 67% of the dataset so the large red oval shows that 

there are two majority datasets and hence the large longitudinal split of the oval.  However, there is still clear differentiation 

among the datasets. 

 From Figure 12, we see three major colors where red represents the lung cancer dataset, green 

represents the SERS substrate, and blue represents the healthy cell dataset.  Each dot in Figure 12 

represents a complete Raman spectrum so we can clearly see the amount of data collected for this 

analysis to be statistically relevant.  Each oval in the PCA graph represents 67% of all their respective 

colored dataset; in particular the red oval stands out because we can see a split in the collected dataset 

where the 20ish red dots on the left are completely different from the substrate or t-cells.  We also see 

in Figure 12, that there is some overlap of the lung cancer dataset with the t-cell; this is most likely from 

the similar SERS peaks that represent a human cell.  We also see that there are some lung cancer 

datasets inside the green oval representing the substrate; this is most likely because the Raman 

mapping was done over a large area and thus some regions contained no lung cancer and only the 

substrate was measured.   

3.1.1.1.2. Combing all the Data Together 

Following the positive results of the preliminary data collection, another cell line was also 

measured, H157.  This is the same cell morphology as A549 but has a different shape thus if we just 

focus on size differences, the lung cancer cells are similar in size and the T-cell is smaller in size, when 

viewed by OM.  SERS mapping was done on each cell line and the resulting datasets were aggregated 

into the ML algorithm.  At the time of measurement for the preliminary dataset, PCA was our best data 

analysis tool.  As noted in the background section, PCA is inherently not a classifier but can be used to 

differentiate species if the datasets are distinctly different.  The differentiation process becomes difficult 
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when there are enough outliers that skew the ellipse shape and also the PCA is typically combined with 

LDA for binary differentiation.  In lieu of PCA+LDA, adaboost is used as the advanced form of the 

classifying tool.  The additional benefit of using adaboost is the ability of multi-classification so therefore 

the data of the two lung cancer cell line and the control data can be compared altogether.  Figure 13 

represent the confusion matrix produced from the adaboost algorithm that compares the predictions 

from the model against the actual labeled truth.  As can be seen in Figure 13, the diagonal represents 

the matched or correct predictions from the adaboost and any numbers in the squares beside the 

diagonal represent incorrect predictions.  Another way to think about this is if the focus is to 

differentiate lung cancer vs healthy, then the diagonal corners are the true positives values, the center 

square is the true negative values, and the remaining squares represent the false positive and false 

negative.   
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Figure 13 – This is a multi-classification of the lung cancer vs a control for cultured cells measured with SERS.  Adaboost is 
used to train a dataset and the trained model is used to test a separate dataset to produce the following confusion matrix.  
The left side represent the actual label for each classifier in each row and the top side represents the adaboost model’s 
prediction for each classifier in each column.  All matched up values, therefore along the diagonal, means successful match 
while any values outside the diagonal represent mismatched predictions from the ML model.  

Table 1 – The confusion matrix values and the calculated sensitivity and specificity.  To compare the effectiveness of the 
platform in differentiating lung cancer vs healthy patients, the last row and the highlighted red values show this.  In this case, 
the SERS platform was 99% sensitive in detecting lung cancer and 75% specific in detecting healthy control. 

Name TP FP TN FN Sensitivity Specificity 

A549 36 0 268 4 90% 100% 

H157 218 16 72 2 99% 82% 

T-Cell 36 2 258 12 75% 99% 

 

3.1.1.2. Skin Cancer 

Skin cancer is the most commonly diagnosed cancer in the US with a most recent study in 2019 

estimating 96,480 new cases in the US alone [3].  Signs of skin cancer typically require personal 

monitoring of skin lesions monthly and consistently evaluated by a health care provider.  An alternative 

proteomic technique can provide an alternative to this visual monitoring.   

For the purpose of proving out the SERS platform, the particular skin cancer cell lines chosen 

look similar in shape and size under a typical OM.  Thusly, clear differentiation needs to rely on 

alternative technique such as gene sequencing.  We believe that the SERS platform can provide a 

cheaper alternative with no reagents needed to detect the cell proteome differences.  Following the 

same protocol establish from our preliminary lung cancer study, a skin cancer cell line and the control 

cell line, a keratinocyte, are used for comparison.   
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3.1.1.2.1. Measurement and Data Analysis 

 For this dataset, we wanted to investigate the proteomic fingerprint for a cancer disease 

compared with another cancer disease.  The idea behind this is to check if the abnormal transmembrane 

proteins will be present in both cells and if these SERS peaks will show up and convolute the PCA.  Below 

are two example Raman spectra of the skin cancer control (HaCaT) in Figure 14 and the skin cancer 

(A431) in Figure 15. 

 

Figure 14 – Raman spectrum of the skin cancer control (healthy cell) taken with the 785 nm laser. This can be compared to 

the Raman spectrum of the skin cancer cells (Figure 15) for further analysis. 
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Figure 15 – Raman spectrum of the skin cancer cell (A431) taken with the 785 nm laser. This can be compared with Figure 14 

and we see some similarities which make sense for these similar cell types, but still have SERS peak differences as seen in the 

double peak at 650 cm
-1

 vs the single peak in Figure 14. 

 Doing a PCA analysis of the SERS dataset gives the following PCA graph as seen in Figure 16.  

Since this data analysis is just two different species, a PCA graph can clearly that most of the data is not 

overlapping and therefore mostly differentiable.  An easy way to visualize this separation is to trace the 

white vertical line when PC1 = 0 and therefore most of the cancer data points are on the left and the 

control data points are on the right.  Running the adaboost ML algorithm on this dataset shows an 

accuracy of 81.4% with 80% sensitivity and 82.5% specificity.  Our current consensus is if the ML 

program is >80%, then we deem the SERS platform a success. 
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Figure 16 – PCA of the SERS skin cancer cell line A431 vs the kertainocyte control cell line (HaCaT).  If only two species are 
being compared, then the PCA is a good visual representation than the confusion matrix.  The ovals represent 67% of all data 
points in each respective category.   

3.1.1.3. Breast Cancer 

Breast cancer is one of the top five cancers in the US with an estimated 268,600 new cases every 

year [3].  However, the prognosis is relatively good compared to other cancers due to the early 

detection and treatment options.  The current unmet medical needs for breast cancer is in improving 

the early detection by reducing the false positive rate and precision medicine for more targeted 

treatment options.   
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In regards to the SERS platform, doing a study on breast cancer cells gives the platform another 

data point in showing the adaptability of the platform and its ability to handle any type of cancer.  In 

addition, the two cell lines being studied here: MCF-7 and MDA-MB-231, are specifically chosen to be 

from the same disease (adenocarcinoma), same cell morphology (epithelial), same cell type (adherent), 

and from the same tissue (mammary gland, derived from metastatic site: pleural effusion).  The main 

differentiating factor between the two will be derived from the original host, or in other words, because 

they came from two different people.  Thus, at the time in planning this experiment, it was our group’s 

first attempt at seeing if SERS can differentiate two different “patient” samples and preliminary to the 

actual clinical setting.  

3.1.1.3.1. Data Analysis 

The SERS measurement was done in the same format as previously mentioned.  Only the SERS 

spectra of high quality were chosen and given to the ML algorithm.   However, before the ML was done, 

a simple dimension reduction, or PCA, was done to visualize the two datasets.  This can be seen in Figure 

17, where the two different breast cancer cell lines are completely separated as seen by the red and teal 

ovals.  Non-overlapping ovals mean 100% sensitivity and specificity if we rely purely on the PCA graph.  

To verify this, the adaboost algorithm was applied to the two datasets and resultant accuracy is 99.4%, 

with 99.6% sensitivity and 98.1% specificity.   
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Figure 17 – the PCA graph of the two breast cancer cell lines, MCF-7 and MDA-MB-231.  As can be seen, the datasets were 
not overlapping and were separated by a high degree of variance; this means that the SERS spectra are distinctly different. 

3.1.1.1. Combining All Cancer Data 

With the success of the breast cancer cell line study, we have preliminary shown that the SERS 

platform has the feasibility of differentiating cancer species down to the patient-level.  Thus with this 

clinical possibility, a quick summary of all cancer species is presented.  The next logical question for the 

SERS platform is to see if it has the ability to differentiate all cancer species if their data is mixed 

together.  This could simulate clinical situations of patients with isolated cancer cells from their 

biological fluid and being able to uniquely identify the cancer species from just measuring that cancer 

cell membrane’s proteome.    All the SERS dataset were combined and normalized so they could be 

effectively compared and the multi-classification adaboost was applied to check their differentiability.  
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Figure 18 shows the confusion matrix of all cultured cancer cell lines for breast cancer (MDA-MB-231 

and MCF7), skin cancer (A431), and lung cancer (A549 and H157).  Reading it in similar fashion as the 

previous confusion matrices, the left column is the actual labeled truths and the top row is the model’s 

predicted labels.  Therefore any diagonal values are true positive for each respective cancer cell line.  

The most notable observation can be seen in the middle row, representing skin cancer, which the 

adaboost program had difficulty differentiating among the other two cancers.  Upon closer examination 

of the skin cancer dataset, we determined that the amount of data was not sufficient to fully train the 

ML algorithm.  This also lines up with the skin cancer vs control study of being the lowest 

sensitivity/specificity.  However, even with this upset, breast and lung cancer are clearly differentiable, 

with skin cancer partially differentiable.  For each particular cancer species differentiability, Table 2 

shows these values, very clearly showing the weak differentiability of skin cancer. 
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Figure 18 – Confusion matrix of all cancer cell lines species normalized and combined together for adaboost data analysis.  
Similar to the other confusion matrices, the left column represents the actual labeled truths and the top row represent the 
model prediction labels.  The first two rows are for breast cancer (MDA-MB-231 and MCF7), the middle row is for skin cancer 
(A431), and the last two rows are for lung cancer (A549 and H157).  Right away, it is clear that most of the cancer species are 
correctly classified with skin cancer having the most difficulty.  

Table 2 – the sensitivity and specificity calculations of the cultured cancer cell line via the adaboost algorithm. The focus of 
this table is to focus just on the cancer species disease differentiability.   

Name TP FP TN FN Sensitivity Specificity 

Breast 245 0 129 9 96% 100% 

Skin 6 0 368 10 38% 100% 

Lung 123 19 251 0 100% 93% 
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3.1.2. Microbiology 

Microbiology is the study of bacteria, fungus (yeast), and viruses.  While the current talk of the 

time is focused on viruses due to the 2019 coronavirus pandemic, before this pandemic, the most talked 

about problem in this category is typically about antibiotic resistance.  In a report by the Center for 

Disease Control (CDC) published in 2019 [31], more than 2.8 million antibiotic-resistant infections occur 

in the US each year and more than 35,000 people die as a result.  Another worrying fact is that while 

antibiotic development has slowed down due to low attention and funding, the speed of antibiotic 

resistance strain evolution has not.  An evidence of this can be seen in a trendline in [31] where the first 

antibiotic (penicillin) was developed in 1943 and the first resistant strain was identified in 1967; 

nowadays a new antibiotic developed (e.g. ceftazidime-avibactam) can be developed in 2015 but the 

first antibiotic strain was also identified in the same year. 

In regards to proving out the SERS platform, the overarching theme is to figure out the 

fundamental limits of the platform.  Typically, a cell is referred to as an animal cell and that is the cell 

type we were measuring for cancer cells.  The thinking to switch to bacteria and to yeast is because the 

cell membrane also has an outer layer called a cell wall and most of the cell membrane proteins we 

typically measure with SERS are tucked behind this.  There was a concern that the differentiability in the 

cell wall proteins are not enough compared to the membrane and we wanted to test this limitation with 

the SERS platform.  For a potential clinical application, we also focused on another advantage of SERS in 

its fast measurement time.  To reiterate, SERS has an advantage over Raman in that with an 

enhancement of the signal, less time is needed for a usable SERS signal; this is at least a 2 order 

magnitude of time savings.  What this means is that for time sensitive clinical applications, SERS can help 

solve these unmet medical needs. 
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The medical disease that our group focused on is meningitis.  Meningitis is a pathogen infection 

in the central nervous system, typically found in the cerebral spinal fluid (CSF) in the spinal cord, and the 

most common pathogen is bacteria, followed by fungi.  The important thing about meningitis is the need 

for fast diagnosis, where a patient requires treatment within 24-48 hrs.  The typical treatment is to 

immediately start a cocktail of antibiotics when meningitis is suspected and that is where unnecessary 

usage of antibiotics introduces the evolution of these resistant strains.  The typical gold standard for 

meningitis diagnosis is culturing but such processes require 2-3 days thus the clinician gives the 

treatment at any suspected inflammation and not even wait for the diagnosis.  A targeted species 

treatment will help reduce the spread of antibiotic resistance and it’s one of the guiding principles of 

antibiotic stewardship [32][33].   

3.1.2.1. First Cultured Bacteria – E.coli 

The first species to test our platform on is Escherichia coli or E. coli.  E. coli was chosen because 

of it has very quick doubling time, the time it takes for one cell to double, therefore one can culture a 

complete petri within 18 hrs.  Additionally, E. coli is one of the possible species that can be found for 

meningitis so it was a good first feasibility check for our platform.   
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Figure 19 – This is an example SERS spectra of E.coli measured with the SERS nanochip. 

3.1.2.2. Fungus in CSF - Cryptococcus 

With the success of the E.coli SERS results, we were able to form a collaboration to measure 

meningitis patient samples.  But before we could handle patient samples, our platform had to be first 

tested and the opportunity to test out fungus samples came to be.  While fungal infections are much 

fewer in prevalence when compared with bacterial infections, the main fungal species related to 

meningitis is the Cryptococcus family.  Within the Cryptococcus family, there are two species of interest: 

neoformans and gattii.  Typically, to differentiate these two species, genome sequencing is needed and 

that is typically not done, except academically.  We were able to set out to investigate if SERS is able to 
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differentiate these two fungi species.  Although patient samples were used, these fungi were isolated 

and then grow in culture, thus only the dominant species is used for identification. 

In regards to proving out the SERS platform, the theme for the study is to continue testing the 

limitations of the SERS platform with another cell type: the yeast cell structure.  The yeast cell structure 

is an essentially a plant cell and thus for the SERS platform, it will be a mix of the previous bacteria and 

cancer cell studies.  Once again, the question of whether there is enough cell membrane proteome to 

differentiate species and potentially subspecies drew us to investigate this study. 

3.1.2.2.1. Cryptococcus neoformas vs Crytococcus gattii 

Following our established standard protocol of our SERS measurement, SERS data was collected 

for the two different fungus species.  The datasets were then first analyzed with PCA to see if they could 

be differentiated and Figure 20 is the result.  As one can see, while there is an overlap of the green and 

blue ovals, the majority of these two datasets can be separated as indicated by the horizontal black line.  

This shows that while imperfect, a simple PCA can differentiate these two species.  In fact, a follow-up 

ML analysis shows that the adaboost algorithm show 99.7% accuracy in differentiating between these 

two species.  The red oval is when we add in the E.coli data collected from the previous study.  This is to 

mimic the possibility of another meningitis pathogen and to see if the SERS platform will confuse the 

three species.  When we have shown this PCA graph to the doctors, they were quite impressed and gave 

us the go-ahead to measure their patient samples.  The vertical black line in Figure 20 shows complete 

separation between the bacteria and fungi species and for completion, the adaboost program had 99% 

accuracy in separating the bacteria from fungus. 
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Figure 20 – PCA graph of the SERS measurement of two Cryptococcus species (neoformans and gattii) when compared with 
E.coli.  These species can be potentially found for patients diagnosed with meningitis.  What is particular to note is the three 
different regions on the PCA graph for each species, as denoted by the black lines.  This shows that even with just a 
multivariate analysis, the data is unique enough to separate the three species. 

Another interesting part of the study is that we were actually given three fungi samples.  The 

third fungus species is another subset of the gattii species; however, their genetic sequence is a little 

different.  These two gattii species were labeled ST7 and ST106, and we labeled as two different 

subspecies.  To separate these two species, their complete genome had to be sequenced.  We measured 

their SERS spectra and while the PCA was not able to differentiate these two subspecies, the adaboost 

showed great differentiability with 99.8% accuracy.  This gave us great preliminary evidence that the 

SERS platform has great potential and that we were ready for the true clinical studies. 
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Figure 21 – Multi-classification adaboost of the fungus and bacteria species for meningitis.  What is interesting to note is the 
subspecies involved for the Cryptococcus gattii, ST7 and ST106.  Where these two subspecies can only be separated by 
genetic sequencing, SERS + ML has also shown the same differentiability with 99.8% accuracy.  
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4. Case Studies of Clinical Applicability 

Building upon the successes of the cell line datasets, I was given a couple of opportunities to test the 

SERS platform on clinical patient samples.  One of those opportunities occurred in China where I spent a 

year in the city of Suzhou and another year in the city of Xi’an working with our collaborator from Xi’an 

Jiaotong University.  The focus of this Chinese collaboration was to apply the SERS platform to a major 

high-tier hospital in the city of Xi’an where its prestige drew patients from all five nearby provinces.  

Because of this, their patient influx is incomparable compared to USA hospitals and this gave us the 

opportunity to test the SERS platform on actual meningitis patients, which we were able to preliminary 

show good proof in Chapter 3.  My second opportunity came through a collaboration effort with the 

Government College University of Faisalabad  (GCUF) where the project focused on applying the SERS 

platform to help diagnose multi-drug resistance for tuberculosis bacteria strains.  This was made 

possible by shipping the SERS platform to Pakistan and then working very closely with the collaborator 

at GCUF and then doing the data analysis back at UCLA.  Below are more detailed information for each 

particular study. 

4.1.  Meningitis in China 

With the increase of antibiotic resistant microorganisms in recent years, antimicrobial stewardship is 

a much debated and necessary topic.  However, the implementation of a gold standard, such as 

microbial culturing, is still not widely-enforced where doctors can most of the time diagnosis patients 

empirical with a high degree of accuracy.  This situation is further worsened in meningitis patients where 

patient survival is determined by the hours and the lengthy time of a culture for species identification 

may not change a doctor’s antibiotic treatment.  In addition, the scenario becomes even more complex 

in developing countries where patient influx is several orders of magnitude higher than developed 

nations.  Such a triage scenario leaves hospitals with no choice but to follow the diagnosis of 
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experienced doctors and relying on basic initial observations, such as cell count, white blood cell (WBC) 

type, CSF turbidity, etc, to determine a patient’s aliment. 

 A case study of the above-mentioned scenario can be seen in North-Western China, in the city 

of Xi’an, Shaanxi province.  Xijing Hospital is a top Chinese military hospital that is nowadays open to the 

general public.  Based on the country’s health care system, hospital visits are fairly inexpensive and the 

same price among the various tiered hospitals.  As such, generally the most prestigious of hospitals will 

receive the most influx of patients, as seen with Xijing Hospital which is currently ranked the best within 

its nearby five provinces.  This large influx of patients gives an unique situation in the neurological ward, 

where patients that are suspected of cerebrealspinal infections are brought in.  Typically, the hospital 

expects 5-30 patients per day that require a lumbar puncture; a comparative example with the Ronald 

Regan Hospital in Los Angeles, California, USA, is to expect 1 patient per month that requires a lumbar 

puncture.  In addition, Meningitis patients are more common in developing countries and around rural 

areas and these factors help boosts Xijing Hospital’s unique numbers.   However, the downside of large 

patient numbers is the strain on the hospital’s microbiology clinical testing laboratories, where it is more 

practical for doctor diagnosis based on initial white blood cell count differentials than the gold standard 

of culturing.  As outlined by the World Health Organization (WHO), the gold standard for Meningitis 

patients is for Cerebral Spinal Fluid (CSF) culturing [34].  

 An alternative method is present that does not require culturing and with its low patient analyte 

requirement, can be used in parallel with current methods: Raman Spectroscopy.  This spectroscopy 

technique is classified under vibrational spectroscopy, other examples include infrared spectroscopy, 

and it measures the vibrational bonds of molecules in a material.  The intriguing application of this 

technique to clinical studies is that the laser-induced bond vibrations are energy based and can provide 

a unique spectroscopic spectrum, when coupled with the proteins, lipids, and DNA of a cell.  This allows 
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Raman spectroscopy to produce unique identifying “fingerprints” that can be used to differentiate cells 

on a species taxonomy level.  The collection of multiple relevant disease species in the form of a Raman 

database can allow Raman spectroscopy to be used in clinical application with advantages such as single 

cell analysis, fast scan and disease diagnosis (when compared to the gold standard of culturing), and less 

human-error prone, based on reliance to automated computational analyses.   

4.1.1. Current Gold Standard – Cytology and Culture 

In this study, the identification and differentiation of two white blood cell species, Monocyte 

and Lymphocyte, are compared based on the Raman proteomic signature from hospital patient CSF 

samples.  It is shown that the conventional Raman signature is enough to clearly differentiate the two 

cell species and show the advantages of using this alternative technique compared to the current gold 

standard.  Figure 22 shows a schematic of the various protocols carried out by 1) Xijing Hospital’s typical 

routine, 2) the WHO’s gold standard for CSF patients involving cell culturing, and 3) the proposed Raman 

protocol for handling CSF patients.  As shown in Figure 22a, an outline of the typical patient protocol for 

Xijing Hospital is presented and it is seen that doctor diagnosis typically just relies on the white blood 

cell count differential.  There are some cases, based on the patient’s history, where additional 

procedures are requested, such as cell culturing and/or serological testing.  Figure 22b shows the WHO 

guideline which basically summarizes that all patient CSF needs to be cultured for microbe species 

identification before antibiotics can be given.  Figure 22c is the proposed Raman alternative that adapts 

most of the current Xijing Hospital protocol, but introduces Raman spectroscopy for cell species 

identification.  The obvious advantage of following the WHO guideline is to advance antimicrobial 

stewardship at the cost of time, while the protocol of Xijing Hospital shows the difficulty of 

implementing the culturing gold standard and the necessity of quick patient diagnosis.  The Raman 

alternative is introduced to take advantage of both methods by giving the ability of species identification 
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without the complications of culturing.  In addition, the process of Raman mapping each cell from a 

patient’s CSF can be automated and the result analyzed with high sensitivity and specificity such that the 

chance of human error is routinely minimized.   

 

Figure 22 – Schematic diagram of three different methods for handling CSF patients.  (a) Xijing Hospital’s staining and white 
blood cell count.  The basics of the protocol is outlined here: 1) Patient CSF is extracted via lumbar puncture, 2) aliquot to a 
hemocytometer for initial cell count, 3) based on the cell count, a set concentration is aliquoted for cytocentrifuge, 4) 
cytocentrifuge, 5) fix and stain cells and count/identify each species.  (b) WHO guideline for culturing patient CSF.  The 
protocol basics: 1) Patient CSF is extracted via lumbar puncture, 2) sample is cultured in incubator, 3) if positive, microbes 
will form colonies and isolated based on shape, 4) further identification can be done with Gram staining and cell morphology 
determined by optical microscope, 5) species identification can be determined via biochemical reagent testing.  (c) Proposed 
Raman protocol for handling patient CSF.  The protocol basics: 1) Patient CSF is extracted via lumbar puncture, 2) a gold film 
is prepared and the CSF is cytospun to concentrate the cells, 3) Raman mapping is done for each cell, 4) data is feed into a 
computer for analysis that reports the sensitivity and specificity. 

4.1.1.1. Typical Hospital Procedure 

 All patients gone through this study receive normal hospital treatment and only leftover CSF 

collected from the patient are used to test the Raman spectroscopy portion.  CSF is collected from the 
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patient via lumbar puncture and typically 1-10 mL of CSF is collected.  100 µL is set aside for the Raman 

protocol.  Meanwhile, 10 µL of CSF is aliquot for initial cell counting with the hemocytometer to get a 

concentration per µL.  A typical healthy patient contains 0 red blood cells (RBCs) and 0-5 WBCs per µL.   

Even if the patient at this point is deemed healthy, cell staining and WBC species identification is 

done for confirmation.  This is done by aliquoting a certain amount of CSF for cytocentrifuge from a 

conversion table based on the initial cell count.  At 800 xg for 10 mins, the cytocentrifuge  concentrates 

the cells onto a microscope slide and residual CSF are collected by the perimeter filter paper.  Cells are 

then fixed with acetonformaldehyde for 1-2 mins, and then the May-Grünwald-Giemsa (MGG) staining 

reagent is applied for 1-2 mins.  The slide is then washed with De-Ionized (DI) water several times.  Cells 

are then viewed under an Optical Microscope (OM) at 400x and 1,000x.  About 200 stained cells are 

counted and differentiated based on size, shape, granules, and number of lobes of nuclei according to 

the respective WBC type; RBCs are also stained but not counted. 

4.1.2. SERS Feasibility of Differentiation WBC Type via Proteome 

In this study, the focus will be on how to apply the proposed Raman protocol, as mentioned in 

Figure 22, to Xijing Hospital and evaluate its effectiveness.  Figure 22a depicts the Xijing Hospital 

protocol with the crucial step being the cell staining, identification, and counting.  An example of some 

stained cell images is depicted in Figure 23a showing some MGG-stained lymphocyte cells.  The MGG 

staining clearly shows the nucleus of the lymphocyte as compared to an unfixed lymphocyte that is dried 

onto a gold film substrate as seen in Figure 23b.  The identity or label of each cell is verified by a 

professional doctor from the hospital.  The OM image of Figure 23b is the typical cell shape to search for 

before a lipid Raman spectrum is measured to verify that this image imprint is a cell.  Figure 23c is an 

example of this lipid measurement and the vibration modes typically associated to these peaks are the 

C-H stretching and CH2 asymmetric stretching bond Table 3.  Once a cell is verified with this lipid 
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measurement, a mapping is done to extract the protein-rich Raman spectra of the cell.  An example of a 

typical Raman mapping can be seen in Figure 23d, where a lipid mapping measurement is done over the 

area of two lymphocyte cells.  Figure 23d is an OM image with the lipid mapping measurement overlaid 

on top; the faint blue is the substrate background noise with a dark blue color showing the outline of the 

cell, and finally, a bright green, yellow, or red representing the intense signal of the lipid of the cell.  

Once a cell is verified, a square protein-rich Raman mapping is collected.  The Raman mapping 

criteria are to ensure minimum overlapping of data via large step sizes and high signal/noise by 

restricting the map size to be within the cell.  Although some information may be lost by not measuring 

the cell boundary, it was found that typically each Raman spectrum in a mapping is very similar in 

intensity and shape.  Initially, it was expected that Raman spectra may vary due to dissimilar proteome 

lipid rafts on a cellular membrane surface; however, it is believed that the large laser spot size averaged 

out the differences.  Although it is well-known that various CSF proteins are present and should be 

everywhere, it is observed that there are very little salt and protein crystallization as most of this is 

suctioned away via the filter paper in the cytocentrifuge.  This reduced concentration of CSF proteins 

does not show up in the Raman spectra and it is believed that these residual proteins are coupled into 

our background noise. 

 One major advantage of this Raman technique is the automated process that can be carried out 

by the Raman computer.  For the typical Xijing Hospital protocol, each patient will need at least 200 cells 

counted by an individual doctor and these cells will need to be sorted by each cell species.  In contrast, a 

Raman mapping of a patient sample can be theoretically automated by first, a generic mapping with the 

lipid measurement, and then a protein-rich measurement for cell species fingerprint comparison.  Such 

an automated method will be less error-prone and free up the necessary hospital personnel from such a 

tedious task. 
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Figure 23 – 4 insert panel showing the Raman evidence of the presence of WBC.  (a) shows the MGG stasining of cytospun 
WBC cells onto a microscope slide. (b) shows the WBC viewed under the OM of the Raman spectrometer when dried 
normally and unfixed on our chip. (c) is the Raman spectrum of the WBC at the high wavenumber region showing the 
presence of lipid peaks. (d) is the Raman mapping cross-overlay ontop of an OM image similar to (b) where the red color 
represents high intensity of the lipid peak and the blue color represents the low intensity of the lipid peak. 

The averaged Raman spectrum of monocyte and lymphocyte is shown in Figure 24a.  The 

various peaks can be seen for each cell species and their respective vibrational mode is listed in Table 3.  

Although typically, a Raman fingerprint will have different wavenumber peak locations, yet as seen in 

the figure, the intensity is the major difference between the two species.  This is attributed to the 

similarity of the vibration modes in the various amino acids and the abundance of each mode, signifies 

the different functions of the two WBC species.  When the spectra are normalized, as seen in Figure 24b, 

the spectra similarities are further highlighted.  To differentiate between these species, a computerized 

analysis program is necessary and thus PCA and DNN were used.  For PCA, important peaks that can 
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differentiate between the two species are selected and highlighted in Figure 24 by the red dotted lines.  

The important peaks were chosen based on the greatest distance, peak-to-valley, and peaks of similar 

intensities were assumed to be essential proteins typically found in all cells.  These important peaks are 

the variables that form the linearly weighted vectors of a principal component.  The graphical 

representation of the two most important principal components is displayed in a PCA graph, as seen in 

Figure 25. 

 

Figure 24 – Raman spectra of the two types of WBCs typically found in the CSF of patients.  (a) shows the averaged Raman 
spectra of monocyte and lymphocyte.  (b) shows the averaged spectra but normalized to the lipid peak to accentuate the key 
differences between the two types.  The dashed red lines are the key Raman peaks listed in Table 3. 

Table 3 – Raman Assignment of the Biologically Rich Regime  
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The data analysis results on the possible meningitis patients are listed in Table 4.  All data was 

normalized before given to the PCA program and 70% of the data was used for the training, with the 

remaining 30% used for testing the model.  Columns 2-5 in Table 4 list the TP, FN, TN, and FP values 

assuming that Monocyte is listed as a positive result and Lymphocyte listed as a negative result.  

However, since labeling a cell species as positive or negative is arbitrary, the same is true for defining a 

sensitivity or specificity. Thus, the sensitivities are calculated for each species respectively; recall that 

sensitivity is the ratio of TP over the sum of the TP and FN.  Column 6-7 lists the sensitivity values of 

monocyte and lymphocyte respectively; these values are calculated for all the patient samples used in 

this study.  To compare the effectiveness of the DNN program, the results are compared with the 

routine hospital report.  However, since correctly identifying two white blood cell species does not 
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convey whether a patient is healthy or not, the ratio of the number of lymphocyte/monocyte cells are 

compared instead. 

For PCA, over-modeling does not occur as it can be thought up as a simple orthogonal 

transformation.  The metric used for the separation of data in PCA space is variance, or the square of the 

standard deviation.  This allows the user to compare data based upon differences and similarities.  

Applying this to the Raman spectrum, the key Raman peaks selected are used for the whole dataset, and 

the intensity values are compared and variance calculated.  The eigenvalues and eigenvectors are 

calculated from a matrix of these variances and these two values form the Principal Components (PCs) 

of the original data.  Thus, a PC represents a linear combination of weighted values based on the 

important Raman peaks selected.  For ease of data interpretation, the two highest eigenvalue PCs, or 

the two PCs with the highest variance, are plotted into a 2D graph with a 68% Normal Probability oval 

for each dataset.  The sensitivities can be calculated from the amount of data nodes that fall into the 

correct confidence oval.  An example of this PCA graph can be seen in Figure 25, where the red data 

points are from lymphocyte cells and the blue data points are from monocyte cells.  The colored ovals 

represent 80% of the dataset for each species and thus the core significance of each dataset.  It can be 

seen that some lymphocyte data points got misclassified as monocyte and thus are listed as FN.  These 

values can be seen in Table 4.  One best usage of PCA was a case where PCA identified some outlier 

datasets Figure 26, and upon closer inspection found that these cells were misclassified.  Once the 

correct labels were set, the PCA improved in sensitivity. 
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Figure 25 – PCA graph of the two types of WBC datasets with the red representing lymphocyte and the blue representing 
monocyte.  Clear separation can be seen for these two types with additional statistics of this PCA show in Table 4. 

Table 4 – Data Analysis of the PCA Graph shown in Figure 25 
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Figure 26 – An example of a PCA when poorly selected biomarker Raman peaks are used for the PCA.  It can be seen here 
that the two types of WBCs have more overlap.  In addition, the dashed box shows an outlier dataset of lymphocyte, but 
upon further investigate, it was found to be mislabeled by human error. 

Based on the clinical scenario of large patient influx in Xijing Hospital in northwestern China, this 

study proposes a combination of Raman test, supervised learning and unsupervised learning for data 

processing, to identify monocyte and lymphocyte in CSF. The pros/cons of the protocols from Xijing 

Hospital, WHO and Raman method are analyzed. Raman protocol is quick enough and can reduce the 

burden of labor and avoid artificial errors, in which cells are identified based on lipid peaks at around 

2900 cm-1 and the types were verified by doctors in this research. Raman measures bonds of molecules 

vibrational. However, spectra for lymphocyte and monocyte look quite similar after normalized, so 

special data processing methods are needed. DNN was chosen as supervised learning method for 

successfully avoiding the inherent bias from the users. For unsupervised learning, PCA was chosen since 

it's a blind signal separation category with no over-modeling. The separation sensitivities for lymphocyte 

and monocyte by PCA are 98 % and 100 %, respectively. This Raman protocol is designed to avoid 

manual errors, with its potential to automate, doctors could liberate from the repeated works such as 

cell identification and counting. 

While these results show off the ability of this Raman protocol to differentiate white cells in CSF, 

there is still future work to do in applying this Raman protocol to the real-world setting. To enhance the 

Raman signal and reduce measurement time, a SERS hybrid platform for Raman test needs to be built, 

which can also increase the sensitivity/specificity. It will also be necessary to investigate the antibiotic 

resistance proteome via Raman and its application in the clinical setting. This will reduce the need for 

susceptibility testing which can take days before a result; our technique can do this at the same time as 

species identification. 
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4.2.  Usage of Convolutional Neural Network in WBC Type Differentiation 

While the initial goal was to use the SERS platform for meningitis differentiation, it was very quickly 

determined that SERS differentiation is not practical in the clinical setting.  The doctors, upon seeing the 

power of machine learning, asked if it was possible to leverage our machine learning algorithm for 

image-based differentiation based purely on their MGG stained slides.  This was because the hospital 

has access to a biobank of a decade worth of MGG stained samples and this large cohort of patient data 

could be useful in seeing if an image-based machine learning algorithm has the ability to differentiate 

WBC types for clinical diagnosis.  If this is true, then this will have a direct application to the hospitals 

current diagnosis pipeline. 

4.2.1.  Motivation and Background 

The central nervous system (CNS) is one of the most important systems in the human body.  

One important aspect of the CNS is the cerebral spinal fluid (CSF), which is typically sterile and only 

contains around 1-5 white blood cells (WBCs) per microliter (µL).  This value, however, is only for a 

healthy individual. When perturbed by an infectious disease, the human body responds by increasing 

WBC population leading to an inflammation of the CNS.  The danger of these CNS infectious diseases is 

that if not treated within one or two days, the patient will most likely die so immediate medical 

response is necessary.  The global burden of CNS infections in 2016 was tabulated in a recent study [35] 

and estimated to be 9.4 million incidences with a mortality rate of 5%, or 458,000 deaths annually.  With 

such a high clinical priority and impact, there is always a need for improvement in this field.  

The current diagnostic method for CNS infections consists a series of tests, with the gold 

standard being cell count differentials, culturing, and gram staining.  In developing countries, the 

sensitivity of culturing and gram staining is low [36]. Treatment usually begins at the onset of signs of 

CNS inflammation, immediately after the cell count and differential cell count become abnormal.  This 
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WBC identification is typically achieved with May-Grüwald Giemsa (MGG) staining of the CSF, which 

stains the nucleus and granules of the WBCs.  In the case of one of the biggest hospital of the 

northwestern region in China where this study is conducted, the hospital annually treats 120,000 

outpatients with neurological diseases and among this, 4000 patients are suspected with CNS infections 

[37].  Because of this number, the hospital employs a large amount of resources with an estimated 10 

working hours per day dedicated just for CSF cell counting, cell staining, and cell identification alone.   

Recent years have seen the boon of machine learning for analyzing large datasets and in 

particular, DNN has been used to help analyze and differentiate red blood cells (RBCs) and WBCs in 

whole blood [38]–[44].  These studies imply different tactics such as image segmentation, clustering, 

thresholding, local binary pattern, edge detection, etc. [40].  However, initial implementation of these 

strategies for this application resulted in low clinical accuracies, thus to accommodate a more 

generalized model, a generic object detection neural network like region-based convolutional neural 

network (R-CNN) was explored and found to be more successful [23].  To date, there have not been any 

studies for WBC differentiation in CSF using any machine learning algorithms to the best of our 

knowledge.     

In this study, the objective is to explore the feasibility of letting DNN to completely replace the 

currently employed manual labor leading to significant improvement in cell counting accuracy and cost 

savings.  DNN is used in the differentiation of lymphocyte, monocyte, neutrophil, and erythrocytes for 

CNS inflammation diagnosis.  To highlight how DNN accomplishes this, there are three main pillars 

presented in this study: 1) systematic validation of the DNN to confirm similar quality of care to current 

standards, 2) analysis of accuracy and precision in automation, and 3) analysis of time savings if applied 

to the real case.  The first section describes the laboratory process and training regimen of the DNN.  

This includes examples of the optical microscope (OM) pictures of MGG stained cells and description of 
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the DNN architecture and its implementation for cell analysis.  Validation of the DNN software is done 

by ensuring the required minimum number of cell images for each patient case was inputted and the 

best complete training of the DNN was objectively analyzed with the lowest saturated value of the 

global loss function.  In the second section, the DNN accuracy is explored by comparing it to the current 

hospital’s gold standard procedure and with blind testing.  In addition, the precision of computerized 

image output is examined to highlight the benefits of automation.  The final section of time saving is 

scrutinized to determine the practicality of the DNN application in clinical settings. The achievements 

reported here are expected to greatly improve patient care when it comes to diagnosis of infectious CNS 

diseases.       

4.2.2. DNN training method for identifying RBCs and WBCs  

Images were organized into training and testing folders with a split in the database of 9:1 ratio.  

Each image was individually labeled with an open-source software called LabelImg [45] by trained 

technicians and labeled with each cell’s classification.  The LabelImg also helps to establish spatial 

locations of each cell by having the user draw boxes in each image.  The DNN software is of a region-

based convolution neural network so it has great edge detection and it uses the label mapping to 

separate labeled areas from the non-labeled background areas.  Preprocessing scripts were written in 

Python to organize the data for use in Tensorflow and training was done until the loss function saturated 

and observed via Tensorboard.  Once the newly trained model is frozen, validations were done on the 

test image folder and compared with the ground truths of the trained technicians.  After a reasonable 

accuracy is achieved, additional unlabeled images were evaluated with the frozen DNN model.     

4.2.3. Validating the Deep Neural Network 

The application of the DNN in this study is in the identification of the 4 main types of cells found 

in infectious CNS disease patients’ CSF.  The four main types of cells typically found are lymphocyte, 
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monocyte, neutrophil, and erythrocytes.  The routine procedure in the hospital when a doctor suspects 

a CNS infection is lumbar puncture and CSF withdrawal from the patient, which will be stained for clear 

cell identification by the hospital technicians.  The MGG staining provides a red acidic stain, a blue basic 

stain, and a purple color for cellular components.  This effectively gives the RBCs a dark grey or red-pink 

color, the WBCs a blue color with the lymphocyte a distinctive singular round purple nucleus, the 

monocyte with a large and bean-shaped purple nucleus, and finally the neurotphil with multi-lobed 

purple-colored nucleus[46].  An example of MGG staining is shown in Figure 27a, where all four types of 

the cells can be seen from one patient.   

 

Figure 27  – a) optical microscope image taken at 100x with scale bar of 10 µm.  Cells were fixed and stained with MGG which 
provides a light color to the cell’s cytoplasm and a purple color to the lobes of the nucleus.  Labels for the three WBCs and 
the RBC can be seen in the picture.  b) schematic of how the object-detection DNN model is trained to form its basic 
architecture.  The structure along with an online database was used to train the DNN model and then with the basic 
architecture, the weights and biases are optimized for the MGG-stained cell images of each classification 

The  DNN model employed for this study is based on an object detection image-based neural 

network built on Tensorflow and pre-trained on the COCO dataset [21].  The basics of a neural network 

can be considered as a repeating algorithm that classifies the importance of an input based on an 
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activation function.  An activation function is similar to the action potential of a human neuron cell, 

where a necessary stimulus causes the firing of the neuron and this is an all or nothing process.  This is 

analogous to artificial neural networks where the activation function is a mathematical threshold value 

and once that is met, the result is like the firing of a human neuron.  There are additional nuances to this 

mathematical equation with coupling of weights and bias values, and the resultant firing is not a step 

function, but a specialized mathematical function containing in-between 0 and 1 activation values; an 

example is the sigmoid function.  However, the main concepts translate to the idea that only the 

important characteristics of an image will be filtered through this activation function with each of these 

characteristics being represented as a neuron in one layer of the neural network.  The addition of 

multiple layers gives rise to the non-linearly of a DNN and these features allow a DNN to recognize an 

image, similar to mimicking the image processing of a human brain.  Coupled with the introduction of 

convolution neural networks (CNN), the processing requirement for image-based neural networks 

dropped significantly, paving the way for large advancements in the field [22].  However, the detailed 

description and workings of each of these improvements are beyond the scope of this study and a 

sample of this literature can be found in Ref. [23]–[25]. 

The application of the DNN to recognizing WBCs and RBCs was made possible by first applying 

the pre-trained DNN to a database of OM images labeled by doctors for each cell classification.  The 

specifics of the Faster R-CNN model used can be found in this study [23], [25] and the training on the 

open-source image database, COCO by Microsoft [21], allowed for a DNN architecture to handle the 

complexities of the various cell types.  As seen in Figure 27b, this pre-trained DNN model has already 

predetermined the number of layers and neurons are needed for an optimal score of the COCO 

database and by carrying out a process of transfer learning [47], this model has re-trained itself by 

adjusting its weights and biases for MGG-stained cell images. 
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The typical hospital protocol in WBC type classification involves checking around 200 cells per 

patient.  This is known as the cell classification step and it is one of the most time-consuming processes 

for the hospital.  As seen in Table 5, there is a significant amount of patients the hospital handles daily 

and as such, the hospital has the CSF Cytology Department to devote half-day daily to handle the 

suspected CSF samples.  According to the hospital, the 200 cell minimum is an arbitrary standard set a 

while ago without much scientific basis, but has not led to failure.  As such, an objective study was also 

done to determine the minimum number of cells needed per patient and also to determine the 

minimum number of images needed to be taken per patient.  Figure 28 shows the result of this focused 

study where only the three main WBC types are compared with the total number of cells identified per 

patient.  For a typical hospital CSF cytology report, the doctors base their diagnosis on the percentage of 

these WBCs.  From the variety of possible CNS infectious diseases, they were categorized into 5 different 

cases: 1) low initial cell count (W= 0 - 4), 2) high neutrophil cell count, 3) high RBC count, 4) medium 

initial cell count (W = 5 – 50), and 5) high initial cell count (W ≥ 50).  For Case 1, the low cell count 

typically means that the CSF of the patient is within the normal range and that the symptoms exhibited 

by the patient are from a different cause.  However, Case 1 also has another difficulty where the entire 

cytospun sample contains typically less than 200 cells.  As seen in Figure 28, the grey curves depict this 

and the saturation of the curves was not met.  For cases 2-5, there are enough cells present and Figure 

28 shows that saturation of the curves occurs after 315 cells are labeled.  This number was calculated 

from an average of all the curves and from interpolations between data points after the minimum 

condition of saturation occurred.  The onset of saturation can also be seen around 150 cells, but the 

error margin of 5% can be calculated. 



 

71 
 

 

Figure 28 – A trend graph of the number of cells per patient needed for certain patient condition examples.  It can be seen 
that after a certain amount of cells the percentage of the WBC type saturates thus determining the amount of cells needed 
for a successful and accurate hospital report.  The current hospital protocol requires at least 200 cells to be looked at and this 
trend graph shows that on average, 315 cells are needed with even the onset of saturation starting at around 150 cells. 

Table 5  – A collection of the time needed per major step in the MGG staining process 
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For the training of the DNN, 100x OM images were taken and every cell in each image was 

labeled by a trained technician and cross-checked with specialized doctors.  For the training process of 

the DNN, 1300 images, or around 30,000 cells were individually labeled and fed into the program.  To 

verify the effectiveness of the training process, Figure 29 shows the loss value plotted against the 

number of iterations.  The lower the value of the loss function indicates the more fully trained the DNN 

model has become to an absolute limit of 0, which indicates that the model is perfectly trained.  

Generally, all DNN models are given trained values with a certain amount of noise, or in this case a 

variety of images of different situations, so that the DNN can have flexibility and not be over-fitted to a 

degree that it cannot identify images not perfectly matching its initial training dataset.  Figure 29 shows 

the output loss values in grey along with a moving average for a better visual representation of the 

graph.  An exponential decay function is also fitted to highlight the saturation of the loss function.  The 

training of this DNN took around 20,000 iterations and around 2.5 days.  However, once a DNN is 

trained, it only needs around 7 seconds for an output.   
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Figure 29– The DNN model’s training accuracy showing its precision vs. number of iteration steps.  As can be seen that the 
graph takes on a 1/x, asymptotic relationship with saturation quickly established within the first few thousand steps.  After 
20,000 iterations, the precision % has not improved that much and the training of the model stopped, which took around 2 
days of nonstop training. 

4.2.4. Precision of the Neural Network 

Besides merely relying on the loss function plot, a cross-check of the validation was performed 

to verify the accuracy of the DNN model.  A certain portion of the image dataset was kept from training 

as the testing validation set and the ratio amount chosen was 9:1.  For a comparison, four trained 

technicians were also arranged to label the same validation dataset and then their results were 

compared with the DNN’s prediction.  Table 6 shows the labeling results of the validation dataset 

comparing the variations between the human labeling and the DNN’s labeling.  The immediate take-

away is the confirmation that the multiple evaluation rounds of the DNN will produce the same result, 
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however, that is not always the case.  As seen in Figure 30, there is a possibility for the DNN within the 

same validation round and with the same model version to produce two different image labeling 

outputs.  In this case, the four validation rounds did not produce any variations.  The other interesting 

factor comes from the human side with standard deviation amongst the technicians producing large 

variability.  However such inaccuracy is suitable in the clinical setting where speed is more important 

and the WBC typing percentage can have a swing of +/- 10% as the MGG cell classification report is only 

one of the many diagnosis tests typically done in series on a patient’s CSF.  This further shows the 

importance of implementing the AI in cell classification to improve the accuracy of the clinical results to 

reduce the reliance of subsequent tests in aiding the doctor’s diagnosis. 

 

Figure 30 – Two DNN output images showing the inconsistency of a model in determining cell classifications.  These two 
images happened to be run during the same evaluation round and same model, yet the model still produced two different 
results.  The red circle in a) and b) shows the difficulty in the model in identifying the two different monocyte cells as noted 
by the orange “unknown” label. 

 

Table 6 – The number of cells labeled in the validation dataset between human and AI for each cell type  

  Erythrocyte Lymphocyte Monocyte Neutrophil 

Human     

Person 1 13 66 67 41 

Person 2 12 43 48 40 

Person 3 20 77 70 43 

Person 4 27 80 73 54 
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Human Std Dev 7 17 11 6 

DNN     

Round 1 28 77 66 50 

Round 2 28 77 66 50 

Round 3 28 77 66 50 

Round 4 28 77 66 50 

AI Std Dev 0 0 0 0 

 

There are two outputs of the DNN program: 1) a labeled image with each DNN-recognized cell 

boxed with its prediction percentage and 2) a report with the statistics of the recently run evaluation.  

An example of the output image can be seen in Figure 31 where the four major cell types are labeled by 

the DNN program.  The program puts a predicted boxed area around the target cell and then gives each 

cell a classification prediction percentage.  If that percentage falls under 80%, then the program will 

instead add another orange box over the original label and give it the label “unknown” so that a human 

technician can manually check the cell.  Also coupled into the program is the label “unknown” with a 

light tan color to account for the more rare cell types (lymphoid, mitotic, basophil, etc.) and these will 

require the human technicians to check them as well.  While the spatial location is information not 

currently being used for the hospital diagnosis report, the percentage of WBC types is important for 

diagnosis and the program calculates and outputs a statistical report of the three major WBC types. 



 

76 
 

 

Figure 31 – An example output of the DNN model with boxed labels along with the model’s percentage prediction.  One can 
see the predicted outputs of neutrophil, monocyte, lymphocyte, and erythrocyte with their respective colors along with the 
DNN model’s percentage prediction.  In addition, some cells are labeled with the “unknown” label tag (tan and orange boxes) 
when the prediction percentage is below 80% or when the shape of the cell indicates a possibility of a rare cell type (i.e. 
basophil, eosinophil, mitotic, etc).  

4.2.5. Accuracy of the Neural Network 

 To determine the effectiveness of the DNN in a real-world application setting, a blind test was 

performed and the comparison can be found in Table 7.  During the blind test, the images were taken by 

operators without knowledge of the hospital report and given to a DNN operator, without any patient 

information except their ID number.  The ID number is scrambled with the key being kept by a third 

party.  From Table 7, the average differences show that the DNN model is fairly accurate when 

compared with the hospital report with the largest margin of error in cell classification with neutrophil 
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and the largest patient variability with Patient #1.  Overall, the DNN was able to handle the various 

infectious disease cases presented to it: 1) high neutrophil count, 2) high RBC count, 3) even distribution 

of WBC types, and 4) high lymphocyte count.  The average accuracy of this DNN for these three WBC 

types is 95%. Compared to similar studies done on whole blood, our result is on similar levels of 

accuracy [40]–[42], [44]. Upon closer inspection of the data discrepancy for Patient #1, it was found that 

the DNN had not previously encountered abnormal neutrophil images during its training phase. These 

abnormal neutrophil pictures had the individual nuclei lobes clustered together into a similar shape of 

the monocyte nuclei producing a false negative result; an example of this can be seen in Figure 32.  

These misclassifications led to the uneven monocyte/neutrophil percentage and thusly incorrect report.  

To better apply the DNN for future clinical situations, the training regime will have more of an emphasis 

on number of patients trained rather than the number of cells trained for each cell classification to 

account for the complex clinical patient situations. 
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Figure 32 – DNN output of the blind test with Patient 1 (ID# 190931).  The mislabeling of the neutrophils can be seen in this 
image with the only true lymphocyte cell classification in the bottom right; the rest of the image should be all neutrophil 
classifications but the various granulate aggregation confuses the DNN to label these cells as lymphocyte or monocyte 
instead of neutrophil. 

Table 7 – Blind testing results of the DNN vs the Hospital Diagnosis Report 

  % Lymphocyte % Monocyte % Neutrophil 

Hospital Technician    

Patient 1 (ID# 190931) 5 3 92 

Patient 2 (ID# 191155) 1 7 91 

Patient 3 (ID# 191172) 18 23 59 

Patient 4 (ID# 191158) 87 6 7 

DNN    

Patient 1 (ID# 190931) 7 18 75 
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Patient 2 (ID# 191155) 4 7 90 

Patient 3 (ID# 191172) 27 20 53 

Patient 4 (ID# 191158) 89 8 3 

Comparison Between Human vs AI    

Patient 1 (ID# 190931) 2 16 16 

Patient 2 (ID# 191155) 3 0 1 

Patient 3 (ID# 191172) 9 3 6 

Patient 4 (ID# 191158) 2 2 3 

Average Difference  4 5 7 

4.2.6. Time Saving Potential 

One of the main advantages of using the DNN program to replace the mundane task of cell type 

labeling is the time savings for the doctors so that their attention can be more focused on other tasks.  

To quantify this time savings, a short survey was conducted during a working week to estimate the time 

committed on per patient and daily basis.  An example of the complete survey can be found in Table 5.  

Table 8 shows the time needed by the hospital personnel for the two time saving procedures that the 

DNN can contribute: 1) cell classification and 2) report writing.  As seen in Table 8, the DNN can save 

around 16 minutes per patient and around 4 hours per day; this amounts to a doctor time reduction of 

86%, daily.  The DNN time was calculated from the validation dataset and extrapolated with average 

number of patients from the short survey.  The minimum number of cells per patient, extrapolated from 

Figure 29, and the average number of cells per image were also factors used.  In addition, the DNN 

processing time needed per image was also found to be independent to the number of cells present, 

with processing time slowing down as heat became more difficult to dissipate from the machine. 

Table 8 – The time saving potential when compared between the DNN and hospital technician 

  Average Time Per Day (mins) Average Time Per Patient (mins) % 
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Hospital Technician    

Cell Classification 211 ± 25.3 13.4 ± 0.86 N/A 

Report Writing 70 ± 13.4 4.4 ± 0.20 N/A 

Total Time 281 ± 38.5 17.8 ± 0.92 N/A 

DNN    

Cell Classification 34 ± 4.5 2.2 ± 0.04 N/A 

Report Writing 3 ± 0.3 0.2 ± 0.00 N/A 

Total Time 37 ± 4.8 2.4 ± 0.04 N/A 

Time Saved 243 ± 38.8 15.5 ± 0.92 86 ± 4 

4.2.7. Conclusion 

This study presents a pioneering application of image-based DNNs to patient samples in clinical 

setting. Image analysis of MGG-stained patient samples is analyzed for CSF cytology.  By applying the 

neural network technology to the clinical space of cell type classification, significant saving in time has 

been achieved. The daily saving in the time spent counting cells of hospital technician is estimated to be 

approximately 86% ±4%.  DNN further rendered more consistent analyses capability against the large 

variability common to human classification analyses.  Blind tests result in an average accuracy of 95% 

among the three WBC types, with the addendum being that the program’s accuracy can always be 

improved further with additional training from a wider variety of patients.  This report demonstrates 

clearly the promise of DNN in clinical practices pertaining to infectious diseases of central nervous 

systems. 

4.3. MDR Tuberculosis Differentiation in Pakistan 

Another important case study on the application of SERS is the rapid identification of 

Mycobacterium tuberculosis (MTB) in developing countries such as Pakistan.  Tuberculosis (TB) is a 

disease that is one of the top 10 leading causes of death, worldwide, and also the leading cause of death 
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from a single infectious agent [48].  While TB affects all countries and age groups, it is predominately an 

issue in developing countries where the top five most burdened countries are India, China, Indonesia, 

Philippines, and Pakistan [48].  Below in Figure 33 is the worldwide incidence cases of TB in 2017 where 

the area of the circles represent countries that are most affected by TB. 

 

Figure 33 – Estimated TB incidence worldwide in 2017 [48].  Pakistan was rated one of the top ten countries greatly affected. 
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Figure 34 – Estimated worldwide incidence of MDR MTB in 2017 [48].  Once again, this shows the heavy burden of the 

disease in Pakistan as one of the top countries with a heavy burden. 

4.3.1. Pulmonary TB and Drug Resistance 

Within the disease of TB, there can be complications such as HIV/AIDs and extrapulmonary TB, 

e.g. there are situations when a patient gets TB in their bones.  However, the predominatelyz TB is in the 

lungs and is called pulmonary TB (henceforth will just be referred to as TB in this dissertation).  As the 

name suggests, patients spread the disease through the air via coughing, sneezing and is transmitted 

when MTB is contained in the saliva bulbs.  The MTB can survive for several days outside the human 

body and when it settles inside the host body, and also if successful in overwhelming the patient’s 

immune system, the bacterium will grow itself new colonies.   
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4.3.2. Current Gold Standard – DST and GeneXpert 

The WHO gold standard for diagnosing TB is through culturing of the MTB, however 

such a process is quite lengthy.  This is because the MTB’s doubling time is in the order of days 

thus it can take 4-6 weeks for a complete culture and strain identification.  In recent years 

though, the WHO has made an effort to establish real-time polymerase chain reaction (rt-PCR) 

technology as a possible alternative.  Specifically, there is a company that has a product called 

GeneXpert, and that is the machine the WHO champion and uses in the various Pakistani 

hospitals.  However, one big weakness of the GeneXpert machine is that it can only detect 

antibiotic resistance for one drug, the main one rifampicin (RIF), even though there are a total 

of 4-5 main drugs as the 1st line of defense.  Yet, conversations with the doctors in the Pakistani 

hospital say the GeneXpert is quite useful with same day turnaround and the underlying 

assumption is that if a patient has RIF-resistant MTB, then most likely the patient also has multi-

drug resistance (MDR).  Thus our group set out to meet this unmet need by providing the same 

rapid detection, when compared to the typical gold standard of culturing MTB strains, and the 

ability to measure all the antibiotic resistant strains, since we are not limited by the primers of 

rt-PCR.   

4.3.3. SERS Feasibility of MDR Strain Separation 

Building off the lessons of the Chinese collaboration for meningitis, the focus of this 

Pakistani collaboration was to build the project from the ground-up with the clinician’s needs 

and usefulness, as well as balancing the successfulness of this project.  From that, it was 

established that since this will be our platform’s first handling of bacteria from patient samples, 

and the SERS measurements will be done by our Pakistani collaborator at Government College 



 

84 
 

University Faisalabad, GCUF, we did not shoot for the ultimate goal but an in-between to verify 

our success first before continuing.  Thus, the scope of the project was reduced to a more 

manageable goal of using the SERS platform on cultured MTB isolated from MDR patients and 

simple TB patients, these are the control patients that have the regular TB.  Culture was started 

early with a large focus on getting the MDR patient samples from the TB-specific hospitals in 

the rural regions.  Meanwhile, I worked with my collaborators remotely through video 

conferencing and remote desktop control to calibrate and optimize their SERS measurement 

protocol, based on the lessons I learned from the previous studies. 

4.3.3.1. Typical SERS Spectra 

Measuring the MDR MTB species is very similar to previous studies; at this point it is not about 

improving the SERS protocol but learning the ways to optimize the protocol for the current application.  

Figure 35 shows a typical good SNR SERS spectrum of a MDR MTB isolated from a patient.  Figure 36 is a 

comparison of the two SERS spectra when comparing the MDR samples with the simple TB control 

samples.  It can be seen that there are minute differences between the two spectra and thusly a ML 

algorithm is needed to separate the differences. 



 

85 
 

 

Figure 35  – Example of the MDR MTB SERS spectra with high signal to noise ratio (SNR).  We 
established a pre-processing filter to grab SERS spectra of this quality for the ML algorithm 

 

 



 

86 
 

 

Figure 36 – SERS spectra comparing the MDR and Simple TB.  It can be seen that there are minute differences between each 
spectra and thusly needing ML to differentiate between the two. 

4.3.3.2. DNN Results 

For the data analysis, we employed a deep neural network (DNN) to analyze the differences 

between the two types of samples.  In total, 16 patients samples of MDR MTB were analyzed and 6 

simple TB patients samples were also measured.  We initially planned for more of the control samples to 

be measured to balance out the ratio between MDR and control but the COVID-19 pandemic hit around 

that time and all our experiments had to stop.  Thankfully, we tackled the most difficult part of the study 

by measuring the MDR samples first so even if the balance is not equal, according to literature [49][50], 

a 3:1 ratio of patients to control is an acceptable number.  Table 9 shows the result of the DNN among 
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the dataset with an average of 79% sensitivity and 52% specificity after 10 evaluation rounds.  Adaboost 

was also done and showed similar results (not shown here).  The methodologies of both ML algorithms 

differ although the result ended up the same; it was our attempt to try and improve the specificity by 

using a different analysis method.  Upon closer review of the data, we concluded that the sample 

dataset for the simple TB was not sufficient enough to build a stable SERS fingerprint.  It is unfortunate 

due to the pandemic that all hospitals in Pakistan are focused on COVID-19 and TB has been pushed to a 

lower priority so we are not able to get any more patient samples.  Future iterations of this project will 

need more patient sample measurements to improve accuracy of this platform for TB. 

Table 9 – DNN results of MDR TB vs Simple TB.  10 cross-validation rounds were done and the average was taken. 

  TP FP TN FN Sensitivity Specificity 

Round1 236 28 27 42 85% 49% 

Round2 212 24 31 66 76% 56% 

Round3 209 20 35 69 75% 64% 

Round4 230 23 32 48 83% 58% 

Round5 238 30 25 40 86% 45% 

Round6 245 34 21 33 88% 38% 

Round7 197 32 23 81 71% 42% 

Round8 200 24 31 78 72% 56% 

Round9 230 27 28 48 83% 51% 

Round10 211 20 35 67 76% 64% 

Average 221 26 29 57 79% 52% 

Std Dev 17 5 5 17 6% 9% 
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5. Challenges Faced – Lessons to Bridge the Gap Between Laboratory 

and Clinic?  

The last few sections showed great advancement of Surface Enhanced Raman Spectroscopy (SERS) 

in research laboratory and in clinical applications.  However, such advancements were not without pain 

and were done through many trial and errors.  The following subsections are key lessons we learned 

from this PhD journey and will hopefully enlighten the next researcher on potential pitfalls and make the 

translation to clinical applications much quicker.   

5.1.   SERS Substrate Fabrication 

While the SERS fabrication technique is widely know with many in fabrication articles published in 

literature, the common theme is to use chemistry and fabricate metallic nanoparticles [51][52].  

Although this is the most popular method in the SERS platform, it comes with reproducibility issues as 

this bottom-up approach rely on the consistency and regularity of the chemicals involved.  Our group, 

coming from a semiconducting fabrication lab, looked at this problem and approached it from a top-

down approach opting for a more controllable and repeatable process [19].  The process we finalized on 

utilizes top-down lithography so pattern creation is very controllable and repeatable.  The one human 

element in the whole process is near the beginning where polystyrene spheres self-assemble to form a 

highly packed pattern, yet this whole procedure before my PhD was all done by hand.  To remove this 

liability, we looked into the possibility of using a Langmuir Blodgett (LB) trough for a controllable 

polystyrene sphere packing.  A LB trough is an equipment that specializes in packing hydrophobic or 

hydrophilic materials into a dense film on top of a thin pool of water.  It accomplishes this via two 

moving horizontal bars that push the materials (polystyrene nanospheres in our case) towards each 

other and the target wafer substrate retracts vertically as the horizontal bars draw close to each other.  

The speed of the withdrawal of the target substrate and the speed that the horizontal bars draw close to 
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each other are determined by another submerged metallic plate, called a Wilhelmy plate, which 

measures the surface pressure of the water.  This automated process, guarantees repeatable and easily 

reproducible polystyrene sphere packing for high density nanopyramid structures. 

The reason why we went through such lengths in ensuring the reproducibility of our nanopyramids 

is because one of the biggest hurdles for a SERS platform’s integration in real-life applications is the 

variability in SERS substrates.  Most SERS papers deal with showing the high electromagnetic 

enhancement possible but these scenarios only occur when the gold nanoparticles are practically 

touching one another.  As such, there is great variability in ensuring that nanoparticles pack as closely as 

possible and to ensure that the chemicals produce nanoparticles of equal sizes; otherwise different sized 

nanoparticles also produce different SERS hotspot volumes and that’s another level of uncontrollability.  

Thusly, the switch to a top-down method, where our nanopyramids can be predictably located 

throughout the substrate, ensures equal areas of high-density nanofeatures for consistent SERS 

measurement.  This is important as when we introduce our target analyte onto the substrate, we do not 

have a great deal of control in the final location of the cell on our substrate so consistent SERS hotspot 

density throughout the chip removes the chip as the failure point when troubleshooting.  An image of 

the LB trough can be seen in Figure 37.  When the densely packed polystyrene spheres are done by hand, 

a densely packed picture such as Figure 38 is shown, while the pattern when done by the LB machine is 

similar to Figure 39. 



 

90 
 

 

Figure 37 – Image of the Langmuir Blodgett (LB) trough setup at Xi’an Jiaotong University.  The horizontal bars help push the 
film together as the center rod raises to pull the polystyrene nanospheres into a closed packed density film on top of the 
target substrate.  The Wilhelmy plate can be seen in the back behind the white holder attached to a force sensor.  This whole 
process is automated by the computer with parameters set by the user. 

 

Figure 38 – SEM of the close packing of the polystyrene sphere when done by hand.  As can be seen, not every area is 
covered by the polystyrene sphere and hence became an art-form with variation of quality between students.  It can also be 
seen that there are different regions of different grain orientation. 
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Figure 39 – SEM image of closely packed polystyrene spheres done with the LB trough machine.  As can be seen, the LB film 
has the same high density packing as the hand pulled substrate but the density areal coverage is far greater.  Although 
orientational grains do exist (not depicted here), their areal size is far greater.   

 

5.2.   Building a Repeatable SERS Protocol 

5.2.1. Necessity of Graphene 

As previously mentioned in Chapter 2, graphene serves multiple purposes and thusly is an 

essential part of the platform.  While technically, SERS does not require this single atomic carbon layer 

for signal enhancement, graphene serves various other purposes to help eliminate the confounding 

factors during troubleshooting.  Some of these include normalization of the datasets for direct 

comparison, additional chemical enhancement, and substrate calibration and quality check.  An example 

of graphene’s usage can be seen in the breast cancer cell line study in Chapter 3 as depicted in Figure 40.  

It can be seen in that figure that the bio-peak in that breast cancer cell happened to have a large SERS 

enhancement and only through the usage of graphene, can this spectrum be normalized to not render 

the rest of the mapping unusable.   
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Figure 40 – A composition of a Raman mapping of the breast cancer cell line MDA-MB-231.  The bottom insert shows the OM 
image through the Raman microscope and the rainbow coloring that one observes when a cell is dried onto the SERS chip.  
Based on this, an outline of the cell can be seen as shown in white depicted in the top-right insert.  The black crosshair 
labeled “1” shows a Raman point in this Raman mapping where the selected Raman peak at 1145 cm-1 is greatly enhanced if 
not normalized, will overpower the signal of the rest of the cell.  The top-left insert shows the graphene enhancement and 
one can clearly see that this particular area happened to have a large hotspot enhancement.  This shows that graphene is 
necessary for unbiased normalization unrelated to the cell proteome change. 

5.2.1. Signal to Noise Ratio 

Another necessary step for a consistent SERS protocol is establishing a high quality SERS chip 

through the usage of graphene.  The previous section explained graphene’s usage in normalization of 

the dataset, but graphene is also needed to establish a quality control of the SERS substrate.  In the 

beginning of the cell line studies, there was inconsistency in getting good signal to noise ratio (SNR) 

Raman spectra and it was unknown at the time if the cell was the issue, the pre-processing of the cell 

sample, the SERS substrate, or user error.  To eliminate the SERS substrate as a variable, calibrating each 
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SERS substrate with large coarse SERS mapping throughout the chip and measuring the G and 2D peak 

for SERS enhancement calibration was done.  It was found that for good differentiable SERS signal, the 

SNR of the G-peak needs to be at least 3.483 and the 2D-peak needs to be at least 6.030.  Only with 

these SNR thresholds, will the SERS chip be used for cell proteome measurement. 

5.3.  PBS Salt and Protein Crystallization 

One unexpected lesson learned is the presence of crystallization when the target analyte solution is 

allowed to dry on the SERS substrate.  This is because the solution is also comprised of PBS salt and 

proteins from a patient’s biofluid and upon evaporation of the solution’s liquid, the salt ions crystallize 

with the proteins to form beautiful dendritic structures.  However, this is not a new phenomena and is 

well documented in literature [53].  In fact, part of the literature search also confirmed an observation 

of ours that the liquid droplet gets pinned in its circular shape before completely drying, this is known in 

literature as the coffee ring stain [54][55].  What happens is that the particles in the solution, in this case 

salt ions and proteins, get pushed to the edge of the droplet and form a supersaturated concentration 

which pins the shape of the droplet or what the literature colloquially coins as a coffee ring stain.  It is at 

this point, complex phenomena of evaporation, diffusion, and capillary force continuously push particles 

to the edge causing a buildup of material and making a salt/protein droplet wall.  Continuous buildup of 

this material will cause another supersaturation and a dendritic growth forms driven by a temperature 

gradient and by the curvature of the dendrites.   

 While the previous observations have been reported before, what our group observed that is 

new is that cells migrate in the opposite direction of the salt/proteins.  In effect, cells will migrate to the 

center of the droplet and then dendrites nucleate at the edges locating the cells in place.  This probably 

won’t be useful to other applications except our own because for SERS measurement, location of the 

cells is vital for SERS signal acquisition.  An example of this experiment can be seen in Figure 41 where a 
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3 µL droplet of CSF is allowed to dry and the various panels are snapshots of a timelapse of this droplet 

drying on a flat gold substrate.  The cells that migrate towards the center are white blood cells of a 

suspected inflammatory of the central nervous system patient, usually diagnosed for meningitis.   

 

Figure 41 – A video time-lapse of the cell droplet drying on a flat gold film substrate with the whole droplet drying within 30 
mins.  Each panel is taken for each significant event going from top left to right, middle left to right, and bottom left to right.  
The first row shows the hemispherical distortion of the droplet to the last panel with the outer droplet edge becoming 
defined (and already being pinned).  The middle row shows the nucleation and growth process and all the migration of the 
cells towards the center.  The bottom row shows the growth of large salt crystals and the eventual dendritic growth of the 
salt/protein mixture. 

5.3.1. Forced Directional Liquid Removal 

While it is a nice discovery of the cellular migration and the effect of drying to form salt/protein 

dendritic growth, it is still unknown if the dendritic growth will crystallize underneath or over the cells.  

Knowledge of that is essential because if they crystallize underneath the cells, the SERS hotspot will 

become affected while if they crystallize above the cells, the change in refractive index will reduce the 

intensity of the laser and just reduces the signal.  This is currently being done within our group, but to 

test workarounds, I tried to see if it was possible to just remove the salt directly.  The thinking being that 
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after the cells have migrated towards the center, start sucking out the fluid and attempt to remove as 

much of the salt/protein as possible to for nucleation away from the center. 

The following figure is the resultant liquid removal as seen in Figure 42.  The experimental 

parameters are very similar to the previous one, with 3 µL of CSF being dried onto a flat gold film 

substrate but a filter paper cut into a triangle wedge is introduced to suck as much of the liquid away as 

possible.  The idea is to remove as much of the salt/protein concentration to not introduce large crystal 

growth and widespread dendritic growth.  Based on previous experiments, it was determined that there 

was a small window to introduce this filter paper after the 8 minute mark, when the cells have 

dramatically stopped moving, and before the 16 minute mark, when the salt/protein crystals start 

nucleating and growing.  As such, the filter paper was introduced at the 11.5 minute mark as seen in the 

second row panel of Figure 42.  One interesting observation to note is in the bottom panel where no 

longer present are the large salt crystallizations but very small faceted crystals nucleating and growing 

throughout the droplet.  It can also be observed, that large dendrites no longer formed but an 

interweaving network of crystallization forming between these large crystals.  This forced nucleation 

and growth is a typical controlled phenomena of material science and we observe that being done here 

for a biological application.   
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Figure 42 – Video timelapse snapshots of a 3 µL CSF droplet drying on a flat gold film when a filter paper is introduced at the 
edge.  The top row is very similar to the previous drying of the CSF droplet as seen in Figure 41, where the ring patterning are 
due to the droplet shape.  The second row is when a filter paper is introduced and used to suck as much of the liquid away.  
The first snapshot happens at the 11.5 minute mark and immediately afterwards, salt/protein crystallization started to occur.  
The last panel of the second row is another attempt to suck the liquid but most of it has already been sucked or evaporated 
as the last row shows, no additional imprint is left on the droplet.   

 

 

 

  



 

97 
 

6. Summary and Exciting New Frontiers of SERS Clinical Application 

This dissertation covered various aspects of SERS and looks at its potential into clinical application.  

The guiding theme of my PhD is two-fold: 1) what are the SERS limits for cell-level bio-sensing 

application, and 2) what is necessary to translate the SERS platform for clinics.  Chapter 1 provides the 

clinical landscape and the unmet medical needs of our time.  It also highlights the potential of the SERS 

platform as a disease diagnostics.  Chapter 2 provides the background knowledge into this 

interdisciplinary field: the biology, the physics, and the data science.  Chapters 3, 4, 5 are the backbone 

of this dissertation and are the three main takeaways listed in the following section.  Chapter 7 explores 

the current and future research of the group and the new possibilities that SERS can also provide for the 

medical community. 

6.1.  Three Main Takeaways 

Below are the three main takeaways I have found to help answer the question of “what is needed to 

translate SERS from academic research to clinical application?”  The details of each are covered in 

chapters 3, 4, 5, respectively.   

6.1.1. Research Laboratory Environment 

One of the first steps on this journey is testing the SERS platform on controlled research 

laboratory environment.  The overarching theme for Chapter 3 is this notion of a “systematic approach 

on the SERS fingerprint limit”.  The first study involving lung cancer cell lines showed the SERS platform 

differentiation for different cell size and shape.  The second study involving skin cancer cell lines showed 

a SERS differentiation when the cell size and shape are similar.  The last cancer cell line study, with 

breast cancer, showed SERS differentiation taken from the same disease, cell morphology, cell type, but 

originating from different patient origin.  Following the success of cancer differentiation, the cell 

structures of bacteria and fungus were also explored to see if the cell membrane proteome could still be 
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used for SERS differentiation with the added complication of a cell wall.  In all these cases, SERS 

differentiation was possible with high sensitivity and specificity.  Fi  

6.1.2. Clinical Setting 

Following the success of the controlled environment, the next step was to see how the SERS 

platform can handle small clinical studies.  The main theme for Chapter 4 is this idea of “how theory 

actually differs in practice”.  Following the successful preliminary data of meningitis cultured cells, the 

first implementation of the SERS platform to clinics was done.  Collaboration was done with Xijing 

hospital in China to get patient samples and check for meningitis using SERS.  However, right away, it 

became apparently that actual diagnosis of meningitis is not a strong enough need as doctors tend to 

diagnose at the onset of inflammation.  The chance of actually getting a patient with a bacterial 

infection was far too rare so the scope of the problem changed to see if the SERS platform can help with 

the diagnosis of central nervous system inflammation.  As part of a side project to the SERS platform, 

the ML part of it was converted for image-recognition and was used for white blood cell identification 

using the hospital’s biobank of stained cells.  The culmination of all lessons learned was applied to the 

antibiotic resistance strain detection of tuberculosis patients in Pakistan.  Since multi-drug resistance is 

rampant in rural Pakistan, an alternative diagnostic modality is desperately needed.  The SERS platform 

was done on 16 patients compared with 6 healthy patients to show that the cell membrane proteome is 

enough for this antibiotic resistance strain differentiation. 

6.1.3. Challenges Faced 

Finally, with the success of both the research laboratory and clinics, Chapter 5 goes into challenges 

that I faced to obtain the success of those situations.  The guiding principle for Chapter 5 is this 

philosophy of “what lessons were learned to bridge this gap from the research laboratory to the clinics”.  

One of the first technical challenges to overcome was for the reproducible SERS substrate 



 

99 
 

manufacturing for consistent SERS hotspot density per chip.  The second major lesson is the necessity of 

graphene in reducing the effect of inconsistent SERS hotspot as this single atomic layer provided a built-

in intensity calibrator for fingerprint comparison.  Next, the simple drying process of the analyte solution 

induced unique PBS/protein crystallization that formed dendritic patterns throughout the SERS chip.  

Finally, the evolution of the SERS data analysis suite from the initial simple dimension reduction to the 

more complex machine learning algorithms provided the much needed push in analyzing the vast 

amount of SERS data and its complexities.  
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7. Exciting Future of SERS in Healthcare 

While my PhD journey comes to an end, there are still fascinating new topics that came to light from the 

conclusions of my research.  Here are some of the examples presented below. 

7.1. Investigating Exosomes and Early Cancer Detection 

For cancer disease diagnostics, early stage diagnosis is the “holy grail” for cancer patient survival.  

There are many different approaches to this problem, e.g. circulating tumor cells (CTCs), circulating 

tumor free-DNA (cDNA), antibody or antigen biomarker, each with varying results.  One new biomarker 

gaining research traction is through the usage of exosomes.  Exosomes are extracellular vesicles of 30-

140 nm that contain molecular cargo, i.e. nucleic acids and proteins, with very efficient delivery from the 

original cell to a target cell.  In addition, studies have already shown that cancerous cells release more 

exosomes than healthy cells so exosomes make a good candidate for a potential new biomarker as well 

as the convient patient sample extraction, i.e. blood, saliva, cerebral spinal fluid [56].  In regards to 

colorectal cancer, several studies have already shown the presence of colorectcal cancer specific 

proteins through exosomal secretion, such as cadherin-17 and EpCAM [57][58].  While typically 

exosomal studies are done through proteomic techniques, SERS can also be used to analyze exosomes.  

One advantage of using SERS is the ability to analyze exosome contents individually as opposed to the 

typical mass requirement of tens of thousands of cells usually seen in mass spectrometry.  Using PCA, 

exosomes from different parent sources were differentiated with clear sensitivity and specificity [59][60].   

7.2.  Establishing Proteomic Credibility Comparable to Mass Spectrometry 

While the main portion of this dissertation highlights the amazing potential of SERS as an 

emerging technology, one main question that still remains is why is SERS not considered a “true” 

proteomic technique?  The answer to that question can be split into two parts: 1) the (typically small) 

patient cohort size leading to insufficient (for clinical implementation) validation in reproducibility and 
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rigor and 2) lack of correlation between SERS spectra signature to specific protein expression pathways.  

The former is rooted in biostatistics and requires clinical trials with large scale funding, and the latter 

represents pending (or missing) research that could potentially be associated with fundamental 

biological challenges yet to be met.  

For the first reason, reproducibility of the above-mentioned SERS studies for clinical applications 

is a big question mark in the field.  Usually a statistically relevant clinical studies involves around 40 

patients per measurable group depending on the disease type. To date, we have not come across a 

substantial amount of SERS clinical studies with this sort of rigor [61] & [62].   An example of this can be 

seen in the previously mentioned study where only 12 healthy patients were measured compared to 12 

patients with colorectal cancer.  Of those 12 cancer patients, 7 were male and 5 were female with 3, 7, 

and 2 patients split between cancer stage II, stage III, and stage IV, respectively [63].  Such patient 

cohort size is far too small to make a distinguishable clinical case, but it is enough to present the 

technology as a feasible possible future.  As mentioned before, translation of a technology from 

laboratory to clinics does require consorted efforts often organized by federal agencies such as the US 

National Institutes of Health. 

In the second explanation, all SERS studies we have come across tackle just diagnosis of the 

clinical disease without relating to the possible mechanism.  Although SERS is touted as a proteomics 

technique, it technically is not since there is still difficulty correlating the observed SERS peaks with 

protein expression pathways.  A good proteomic technique for comparison is with mass spectrometry 

where individual proteins are broken down to peptides and the subsequent amino acid sequence can be 

analyzed to form a conclusion with the corresponding gene and protein expression pathway.  The 

working principle of SERS, on the other hand, dictates that the spectral peak heights are directly 

correlated to the abundance of one or more types of amino acids. With individual proteins being 
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composed of numerous amino acids, it remains an unanswered question as to whether the information 

about the abundance of amino acids could allow for unique connections to the abundance of proteins. 

This is in our opinion a fundamental challenge confronting SERS. It should be stressed here that even if 

such a direct correlation with proteome be impossible, it does not diminish the potential of SERS being 

used as a “molecular fingerprint”, in other words clinically worthy biomarkers for disease diagnosis. 

However, the path to its acceptance into clinical practice will be expected to be much more treacherous 

because it’s lacking of a clear proteomic or genomic foundation.  

7.2.1. Controversy in -omics “fingerprint” diagnoses 

Without a strong academic foundation for solidifying SERS as a proteomic technique, it will 

indeed face challenges integrating itself as a viable clinical technique.  This is because, doctors would like 

have some sort of mechanistic pathway that is given from established proteomic techniques like mass 

spectroscopy.  But even mass spectroscopy was laden in controversy as seen in this commentary article 

written by Dr. David Ransohoff, published in the Journal of the National Cancer Institute [64].   

The argument is brought forward that –omics field techniques, e.g. proteomics, genomics, make 

claim to accurate diagnosis of cancer when in fact there is an issue in reproducibility and validation.   

Specifically, Dr. Ransohoff mentioned the root of the problem is in regards to poor experimental setup 

in the 2002 ovarian cancer study published in Lancet[65], where bias and chance were not fully removed 

from the study due to a lack of a double-blind.  However, it is this author’s opinion that while that part is 

indeed true, the heart of the issue is not the rigor of the published study, but Dr. Ransohoff and many 

similar scientists/clinicians in believing that a biomarker or “fingerprint” study does not constitute as 

enough evidence for diagnosis and prognosis.  This line of thinking comes from the article, “when 

investigators trained in molecular biology or biochemistry start to conduct research in diagnosis and 

prognosis, they are undertaking, perhaps unwittingly, observational epidemiology research that involves 
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serious threats from chance and bias.” [64]  In particular, this statement is hinting to the field of 

proteomics and the fingerprinting nature of mass spectroscopy, where the claim of diagnosis is 

dependent on peak ratios without a clear biological mechanism.   

While that approach is indeed valid, it is in this author’s opinion that the situation can be viewed 

from another angle.  An analogous example to this can be taken from forensic science where 

fingerprinting is routinely recognized by society as virtually full-proof.  Yet, the science behind this is 

inherently empirical; there is not a governing theory that fundamentally claims a person’s fingerprint is 

unique.  However, even with this hand-wavy argument, criminal court cases use fingerprints as sufficient 

evidence.  Another example of this similar logic can be applied to pathology in the field of WBC typing; 

here, WBC types are separated based purely on morphology instead of a scientifically rigor metric, such 

as genetically different.  How can such instances work in the clinical field?  This is because, empirically, 

diagnosis are successful and many of these diagnoses can be made without knowing the exact 

mechanistic origin.  So bringing the whole picture back to Dr. Ransohoff’s arguments: yes, it does seem 

that the initial 2002 study could have benefited from a double-blind to make it more rigorous and yes, 

the 2003 PNAS article [66] analyzing the 2002 study’s  data [65] with machine learning also could of used 

more rigor with separation of its test dataset.  However, to claim that proteomics or genomics without a 

clear mechanistic protein expression pathway basis makes a discovery meaningless, is a far stretch.  

 As mentioned in the rebuttal by the 2002 authors published in 2005 by the Journal of National 

Cancer Institute [67], their study was to show feasibility of this new technique and further studies are 

needed to see the reproducibility of mass spectroscopy of serum proteins in other clinics.  It could also 

be possible that the proteins they detected are far too small in concentration in the serum[64], however, 

such practicality issues are problems for startups and companies, not in novel academic research. 
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7.3.  New Frontiers Summary 

It can be seen that SERS still has a long path ahead before it can be fully integrated into clinics, 

however its potentials are quite exciting.  While the focus of my dissertation largely focused on 

application of SERS to cells of any kind, this new chapter has shown that SERS is not limited to this.  With 

the first section showing the applications of SERS to Exosomes shows great promise as Exosomes can be 

easily isolated directly from patient blood.  This is particularly exciting for SERS application because this 

provides an inherent isolation of the biomarker from the background noise.  The second section goes 

into the problems of SERS not being fully recognized as a proteomic tool.  Generally, mass spectrometry 

is considered the gold standard tool and SERS can be a complimentary tool in proteomics with its own 

advantages and disadvantages.  To solidify SERS as a proteomic tool, it is exciting to see SERS come up 

with its own online database of which select proteins can be quantified much similar in fashion to mass 

spectrometry.  This will help eliminate the controversies and skepticism currently seen in SERS and its 

consideration as a viable tool for proteomics and in clinical applications.  With these obstacles 

eliminated, it will only be short matter of time before SERS because a widely used tool in medicine and 

in healthcare. 
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