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Spherical Encoding for Osteoarthritis Biomarker Discovery 

Alejandro Guillermo Morales Martinez 

Abstract 

Knee osteoarthritis is a degenerative musculoskeletal disorder marked by gradual cartilage 

breakdown, and involving all tissues of the joint. It is one of the leading worldwide causes of 

chronic disability in older populations, with the prevalence expected to increase. There is 

currently no available treatment to reverse the degenerative damage characteristic in 

osteoarthritis, with the only option available for end stages of the disease being a partial or total 

knee replacement. Furthermore, the clinical standard for osteoarthritis diagnosis is a radiographic 

score which reflects advanced pathological stages, often with irreversible damage. The lack of 

therapies has generated a need for osteoarthritis imaging biomarkers capable of detecting and 

monitoring the progression of the disease. This dissertation aims to bridge this gap by defining a 

novel spherical encoding representation for known quantitative imaging biomarkers for 

osteoarthritis. In this work, we leverage the superior cartilage sensitivity of MRI, a large 

retrospective labeled imaging dataset, and the superior feature-learning ability of convolutional 

neural networks to define novel OA imaging biomarkers based on spherical maps. Large-scale 

quantitative analysis using convolutional neural networks uncovered new associations between 

bone shape, cartilage thickness, and cartilage T2 relaxation time values and OA symptoms. 
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Chapter 1: Osteoarthritis 

1.1 Impact and pathophysiology of OA 

Knee osteoarthritis (OA) is a complex degenerative joint disease that is characterized by the 

progressive degeneration of articular cartilage, as well as changes in tissues within the joint such 

as the synovium, subchondral bone, and ligaments. OA is the most common joint disease, with 

US estimates of the disease prevalence approaching 14% of the population and expected to keep 

increasing as the US population becomes more obese and sedentary1, both risk factors for OA. 

This prevalence places a large burden in the US economy, with the total arthritis-attributable US 

medical care expenditures and earnings losses amounting to 1% of the 2013 US gross domestic 

product2. At an individual level, OA can manifest through symptoms like pain and loss of joint 

function, both of which can lead to chronic disability and reduced quality of life depending on 

their severity3. Additionally, there is no current treatment available to revert the progression of 

OA, with partial or total arthroplasty being the only treatment available for end-stage OA. 

Current treatment of OA mainly consists of palliative measures aimed to reduce the clinical 

symptoms of OA, such as pain and loss of joint function, as well as disease progression 

management through modifiable risk factors like body weight and exercise. 

 

Given this substantial impact in society, the OA disease etiology has been the focus of significant 

research efforts in order to discover ways to curb and monitor the disease progression. The 

development of OA has been associated with risk factors such as age, obesity, sex, and physical 

activity, some of which are modifiable and offer ways to manage the OA progression. In recent 

years, OA has been generally understood to be an inflammatory and biomechanical whole-organ 



2 
 

disease influenced by factors including bone shape, synovitis, diabetes, and age-related 

inflammation, among others4. The whole-organ nature of OA obfuscates the order and causality 

of tissue changes within the knee, creating a challenge for studying the timeline of OA 

development. Despite the involvement of all joint tissues in the onset and progression of OA, 

particular emphasis has been placed in structural and biochemical changes within the articular 

hyaline cartilage. Articular cartilage is avascular and aneural, resulting in a limited healing 

ability which makes it particularly vulnerable to degenerative breakdown in OA. Biochemically, 

the structure of articular cartilage consists of a dense extracellular matrix (ECM) composed of 

water, collagen, and proteoglycans, with a sparse distribution of chondrocytes. These 

chondrocytes, together with the ECM, help retain water within the cartilage and contribute to its 

biomechanical function as a load-distribution and low-friction surface for the knee joint5. During 

early-stage OA there is a disorganization of the ECM structure which leads to excess water 

infiltrating the cartilage, while late-stage OA includes the disintegration and dehydration of the 

cartilage which results in appreciable tissue loss. Disruptions to this cartilage structure occur 

naturally through aging, which coupled with the reduced healing potential of chondrocytes, make 

OA a highly prevalent disease in older adults above the age of 656. 

 

While the full OA pathophysiology is not yet understood, there are coincident pathologies that 

worsen the disease progression, including subchondral bone sclerosis and cartilage degeneration. 

The subchondral bone sits beneath the articular cartilage and provides it with mechanical and 

nutrient support. It consists of two layers, the subchondral bone plate (SBP), a calcified plate 

directly underneath the cartilage, and subchondral bone trabecula (SBT), a cancellous bone 

structure which undergoes active remodeling. Early-stage OA changes in the subchondral bone 
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involve a thinning of the SBP with decreased bone density in the SBT. Late-stage OA is 

characterized by subchondral bone sclerosis, a thickening of the subchondral bone in response to 

abnormal loads and results in weakened bone7. Furthermore, continuous subchondral bone 

remodeling occurs both as a regular part of normal joint function and throughout the OA disease 

process. Considering the close relationship between the subchondral bone and the articular 

cartilage, there has been a focus on the crosstalk interactions between both tissues during the OA 

onset and progression. Studies have shown the existence of direct molecular signaling between 

the cartilage and bone, with growth factors that mediate osteogenesis having a protective effect 

on chondrocytes8. The temporal interactions between the articular cartilage and subchondral 

bone play an important, yet unclear, role in the onset and development of OA. 

 

1.2 OA imaging  

OA is mainly diagnosed in a clinical setting with the Kellgren-Lawrence (KL) radiographic 

scale, which is composed of five grades ranging from 0 to 4. The main OA features measured 

using KL grades are tibiofemoral joint space narrowing, osteophytes, subchondral bone sclerosis, 

and bone deformities9. The grading is performed on a posterior-anterior weight-bearing 2D 

radiograph in order to standardize load-dependent differences in joint spacing between patients. 

The KL grades determine OA severity based on the previous features and represent no OA 

(KL=0), minimal/doubtful OA (KL=1), mild OA (KL=2), moderate OA (KL=3), and severe OA 

(KL=4). While X-rays are a cheap and fast imaging modality to screen for OA, it has two major 

drawbacks in the form of patient toxicity and poor soft tissue contrast. Ionizing radiation from X-

rays is hazardous to patients due to its carcinogenic ability to damage the genetic material in 

human cells. Additionally, the image contrast in X-rays depends on the level of attenuation of 
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each tissue, with denser tissues, such as bone, possessing a strong image signal compared to 

other less dense tissues, such as cartilage. The lack of soft tissue sensitivity of X-ray imaging for 

cartilage, menisci, and synovium restricts its ability to study and monitor early OA symptoms10. 

In KL scoring, this limitation is lessened by the fact that tibiofemoral joint space narrowing acts 

as an indirect measure of articular cartilage thickness loss. Nevertheless, radiographic OA 

changes, like the loss of cartilage resulting in joint space narrowing, and the presence of 

osteophytes, are endemic of later stages of the OA disease progression, thus limiting X-rays as 

an imaging tool for early OA diagnosis. Furthermore, there is a reported discordance between 

radiographic OA features and clinical symptoms such as knee pain11. 

 

Magnetic resonance imaging (MRI) is a powerful and versatile imaging modality which enables 

the visualization of anatomical and biochemical features. Unlike X-rays, MRI is safe for patients 

and relies on the differences in spin frequencies between the protons that make up the molecules 

in the human body. The MRI image formation starts by first aligning all the protons in the body 

of the patient along a main magnetic field, applying three perpendicular linear magnetic 

gradients along each imaging axis, and then perturbing the proton alignment with a set of 

magnetic pulses, known as a pulse sequence. The linear gradients encode spatial information into 

the protons in order to locate them within the body during the image construction. The image 

signal is then measured as the phase and frequency information encoded in the electrical current 

induced by the magnetic fluctuations from the perturbed protons. This image acquisition allows 

the tuning of the image contrast to a specific tissue of interest through the design of the pulse 

sequences. In addition to imaging structural features, MRI has the ability to extract 

compositional information about the tissues of interest through careful selection of the imaging 
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parameters. Due to its ability to image all tissues of the joint, MRI is uniquely well-suited for the 

study of the whole-organ OA disease process. Furthermore, the inflammatory nature of OA 

requires the imaging of synovium, bone marrow edemas, and joint effusions, which would be 

missed by X-ray imaging. 

 

The usefulness of MRI as an investigative tool for OA has been recognized through the creation 

of large knee MRI datasets that track imaging changes on healthy and OA patients. The largest 

of these imaging studies is the Osteoarthritis Initiative (OAI) dataset, a multi-center longitudinal 

multi-modality imaging studies in 4,796 patients12. The MR imaging was performed on 3T MRI 

systems with two coronal and three sagittal pulse sequences. The dataset consists of a total of 12 

time points ranging from an initial baseline visit to a final 108 month visit with yearly visits in 

between and a half-year visit for the third and fifth visits. Out of these 12 time points, MRI scans 

were performed at seven time points, resulting in an imaging span of eight years. Demographic 

data such as age, body mass index (BMI), and sex was also recorded during each visit. The two 

sagittal pulse sequences used in the following work are the 3D double echo steady state (3D-

DESS) and 2D multi-slice multi-echo (2D-MSME) spin-echo. The 3D-DESS sequence uses 

water excitation to suppress the bright signal of the fatty tissues within the knee and improve the 

contrast of the cartilage, menisci, bone, and ligaments. Due to its high spatial resolution, both 

slice and in-plane, as well as high cartilage contrast, it is used for morphological quantitative 

analysis for cartilage and bone. The 2D-MSME spin echo sequence on the other hand, possesses 

comparatively lower spatial resolution but enables compositional imaging of the cartilage 

through relaxometry analysis. These two sequences together leverage the ability of MRI to 

investigate both anatomic and physiologic changes associated with OA.   
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1.3 OA imaging biomarkers 

This dissertation will focus on three OA imaging biomarkers acquired from MRI: bone shape, 

cartilage thickness and cartilage T2 relaxation time values. 

 

1.3.1 Bone shape 

The mechanically-driven nature of OA, coupled with the role of continuous bone remodeling 

throughout OA development, makes bone shape a promising OA imaging biomarker. Changes in 

bone shape or geometry alter the load distribution in the joint and may either lead to or 

exacerbate OA, with well-known changes including osteophytic lipping of the joint periphery, 

increased tibial plateau size, and subchondral bone attrition. Furthermore, the high rate of 

changes in the bone compared to cartilage makes it an ideal target for therapies that use bone 

shape as a measure of drug efficacy13. Studies have indeed shown that the shape of the femur, 

tibia, and patella bones is associated with OA onset and development14–17. Neogi et al14 found 

that the shape of the femur, tibia, and patella bones predicts the incidence of future OA on knees 

without any radiographic OA features, suggesting that the intrinsic bone shape in certain patients 

predisposes them for future OA. This same study showed that bone shapes associated with OA 

include a widening of the condyles in the femur and tibia, as well as an osteophytic ridge growth 

around the cartilage plate for all three bones. Additionally, studies have established associations 

between bone shape and OA-related injuries like Anterior Cruciate Ligament (ACL) tears, 

highlighting the importance of bone shape for healthy joint function and kinematics18,19. In these 

studies, bone shape is described using statistical shape modelling, a technique which finds the 

principal modes of variations that describe bone shape in a population. These principal modes 
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are often projected into a linear discriminant vector that is related to the presence or absence of 

OA in order to assess the association of certain bone shapes to OA. The problem with such 

approaches is the lack of supervision of principal component analysis (PCA), which describe 

shape independently of OA and could miss subtle OA-related bone shape differences. The study 

detailed in the third chapter of this dissertation addresses these problems by using data-driven, 

supervised techniques which exploit the bone shape information at the segmentation and 

classification level. 

 

1.3.2 Cartilage thickness 

Cartilage thickness loss is a defining characteristic of OA and has long been used as an OA 

imaging biomarker. The structural deterioration of the articular cartilage manifests as the joint 

space narrowing observed in radiographic OA and eventually leads to painful crepitus, a 

condition where articular cartilage degeneration exposes bone-on-bone friction within the joint. 

The rate of cartilage degeneration in OA also outpaces the limited regenerative rate of articular 

cartilage, especially in the case of traumatic injuries, such as ligamentous tears, where large 

portions of the cartilage are damaged. Studies have shown that different rates of cartilage 

thickness loss are associated with radiographic OA and, to a lesser degree, pain20–22. Generally, 

cartilage thickness measurements are averaged across anatomical joint regions, defined based on 

clinical assumptions, in order to simplify the quantitative analysis. Additionally, the location of 

the cartilage thickness loss matters, with the medial tibiofemoral compartment consistently 

linked to knee OA, due to the high prevalence of medial OA. The regions commonly used are the 

medial and lateral compartments, as well as the anterior and posterior aspects for the femoral, 

tibial, and patellar cartilage. For the medial and lateral femoral compartments, the weight-
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bearing region, where the load is distributed across the femorotibial joint, is distinguished due to 

its role in joint space narrowing23. While there has been significant work evaluating the impact of 

cartilage thickness loss to clinical patient outcomes, only a weak association between cartilage 

thickness loss and pain has been found24–27. This weak association was further evidenced in a 

recent clinical trial for sprifermin, which found no significant difference in pain for patients with 

radiographic OA, even after a substantial preservation of 0.05 mm of femorotibial cartilage over 

a two-year period28. The study in the fifth chapter of this dissertation improves the statistical 

association between cartilage thickness and pain through a data-driven approach for cartilage 

thickness subregion definition. 

 

1.3.3 Cartilage T2 relaxation time values 

Structural cartilage thickness changes are useful for understanding the OA pathogenesis, but they 

reflect late-stage manifestations of OA, which are irreversible due to the lack of therapies. The 

complex organization of the articular cartilage biochemical structure must be maintained for the 

healthy functioning of the joint. Under normal joint loading, cartilage reversibly deforms to 

dissipate the weight thanks to the orientation of the collagen fibers coupled with the 

proteoglycans in the articular cartilage ECM. Disruptions to this microenvironment affect the 

biomechanical function of articular cartilage as a lubricating and load-distributing tissue in the 

joint, and are thought to precede morphological cartilage changes5. Compositional MRI 

techniques such as T2 parametric mapping enable the assessment of the cartilage matrix through 

the quantitative measurement of water content and collagen fiber organization29. The T2 value of 

specific tissues depends on the mobility of its protons, with fluid-filled tissues such as cartilage 

possessing higher T2 values compared to rigid tissues such as bone. Within healthy articular 
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cartilage, the ECM bounds the water molecules, thus limiting their mobility and reducing the 

cartilage T2 value. During early OA development, damage to the collagen-proteoglycan network 

generates an imbalance in the osmotic pressure within the ECM and consequently increases the 

mobility of water within the cartilage. This is reflected in a comparative increase in T2 values for 

damaged cartilage over healthy cartilage, observed using parametric fitting of T2-weighted spin 

echo sequences. Studies have exploited this physiological effect to establish T2 relaxation time 

values as an early-stage OA imaging biomarker which predates any morphological OA changes 

within the joint30–33. Furthermore, elevated cartilage T2 values between patients without 

radiographic OA have been linked with knee pain, although more work may be needed to 

establish a strong association34. Given the importance of early detection and intervention in OA, 

cartilage T2 values are a promising biomarker for future therapies. The work in the fourth and 

fifth chapters of this dissertation builds on these studies to explore the contribution of cartilage 

T2 relaxation time values on radiographic and symptomatic OA. 
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Chapter 2: Deep learning applications in OA imaging research 

In recent years, deep learning methodologies have revolutionized both the scale and direction of 

OA imaging research. The advent of convolutional neural network (CNN) and supervised deep 

learning methods has enabled the large-scale processing and data-driven feature learning of 

medical imaging data. The three main areas covered in this dissertation where machine learning 

has impacted the study of OA are: automatic extraction of OA imaging biomarkers, clinical OA 

diagnosis and incidence prediction, and OA biomarker discovery. 

 

2.1 Automatic OA imaging biomarker extraction 

Traditionally, there are two approaches for extracting the three OA imaging biomarkers 

discussed in Chapter 1.3 from MRI data. The first and most straightforward approach consists of 

manual segmentation of the tissue of interest by trained users. In practice, a musculoskeletal 

radiologist trains an inexperienced user for this task, which could take several hours depending 

on their experience. Additionally, the actual segmentation requires just as much time based on 

the size and shape of the tissue of interest, as well as the resolution of the MRI scan. As an 

example, manually segmenting the femur, tibia, and patella bones for a 3D-DESS MRI volume 

with 160 slices requires upwards of one hour, even for an experienced user using specialized 

software. The second of these traditional approaches consists of using statistical shape modelling 

(SSM) methods such as active shape models and active appearance models. These methods are 

semiautomatic since they require a priori knowledge about the shape of the segmented organ 

through the definition of matched landmarks across the MRI volumes. The first step in these 

methods involves the creation of a training set of data with the matched landmarks around the 
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tissue of interest. PCA of these landmark points generates a point distribution model that 

describes the mean shape of the target organ. New imaging data can then be segmented by 

iteratively deforming the points of the mean statistical shape to match the new data based on a 

least squares minimization35. While these methods vastly increase the segmentation throughput 

over manual approaches, they suffer from the a priori definition of the landmarks, due to the 

complexity of choosing these regions, and the use of linear methods such as PCA to describe the 

shape, which would miss subtler nonlinear shapes. 

 

The introduction of CNN methods has dramatically improved the accuracy of computer vision 

tasks such as object detection, image classification, and image segmentation36–38. These methods 

mimic the natural process through which human neurons learn and process information at 

different levels of abstraction by using the receptive fields of multiple convolutional filters. The 

successive application of each convolutional filter to the data generates distinct feature maps that 

encompass increasing levels of semantic information. This procedure exploits the hierarchical 

organization of image data, where low-level features, such as edges, can be combined to form 

high-level features, such as shapes and objects. Before they can be used, CNN models must first 

be trained on a dataset using an iterative process that updates the parameters of the convolution 

filters to optimize a specific outcome task. Unseen new data can then be quickly and 

automatically segmented or classified with a trained CNN. One big advantage of CNN models 

over classical methods involves the fully data-driven feature selection instead of a priori 

definitions of the feature importance. The feature learning relies on the inherent variability of the 

training data, with larger training datasets approximating the population distribution. Given the 

reliance of CNN approaches on the availability of sizeable training data, their use has been 



12 
 

bolstered by the emergence of large labeled datasets in recent years. Concurrent technological 

advances in computational resources such as Graphical Processing Units (GPU) have also made 

the training of large CNN models feasible, yielding breakthroughs in fields ranging from natural 

language processing39 to drug discovery40. Furthermore, the performance and robustness of 

individual CNNs can be significantly enhanced through average ensembles of the probabilistic 

outputs from individual models41. 

 

In the context of musculoskeletal imaging, advances from CNN approaches are evidenced by the 

recent body of work on state-of-the-art bone, cartilage, and menisci segmentation from the OAI 

data42–46. The following three chapters in this dissertation leverage ensembled 3D V-Net47 CNN 

architectures for the segmentation of bone and cartilage from the 3D-DESS data as a 

preprocessing step to extract the bone and cartilage biomarkers. The high-quality automatic 

segmentation of these tissues across the entire OAI is further post-processed to quantify the OA 

imaging biomarkers from the segmented masks. In this dissertation work, a novel spherical 

encoding method transforms the segmented bone and cartilage into colocalized 2D articular 

surface maps that can be used with common CNN architectures. This spherical transformation 

method has the advantage of reducing the dimensionality of the segmentation maps while 

preserving the spatial correspondence between the subchondral bone and the articular cartilage. 

Chapter 4 of this dissertation explores the relationship between the individual OA imaging 

biomarkers and incident radiographic OA through the use of a spherical encoding biomarker 

fusion framework. 
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2.2 Clinical OA diagnosis and incidence prediction 

Another prominent application of deep learning in OA imaging research is the creation of 

predictive models for OA diagnosis and future incidence. Early imaging detection of OA would 

improve patient outcomes, such as pain and total knee replacement (TKR), through the 

aggressive management of modifiable risk factors in the disease progression. It would also 

improve the design of clinical trials for new therapeutics by identifying patients at risk of 

developing OA and screening them out of healthy control cohorts. Additionally, deterministic 

predictions from automatic predictive models would address the challenge of inter-reader 

variability for human readers grading OA48,49. 

 

Prior to the introduction of CNNs, common methods for OA classification consisted of logistic 

regression, forest-based classifiers, and supervised clustering classifiers. These methods require 

an initial phase for feature extraction and engineering from the image data, with commonly 

defined features including edges, image intensity, textures, and shape descriptors50–52. After the 

feature selection process was completed, the resulting features would then be used to build the 

classifiers for prediction of existing and future OA symptoms. The main shortcoming of these 

methods is the reliance on handcrafted features, which may be suboptimal to model OA presence 

and development. The iterative and open-ended nature of feature engineering also introduces 

individual bias in the predictive models through the selection of user-specific OA-related 

features from the image information. CNNs overcome both of these limitation by learning the 

features directly from the data, leveraging population-wide patterns which may not be obvious to 

craft even for domain experts. Recent imaging studies have demonstrated the superiority of deep 



14 
 

learning methods for prediction of radiographic OA53 and TKR54,55, achieving state-of-the-art 

area-under-the-curve (AUC) performances over 0.87. 

 

The OAI dataset used in this dissertation is well-suited for CNN approaches, with 50,000 3D-

DESS structural and 26,000 2D-MSME compositional scans, each with corresponding clinical 

OA and demographic variables. The work in this dissertation leverages the large scale of the OAI 

dataset to train accurate predictive models based on different clinical endpoints for OA. For the 

third and fourth chapters, KL grades are chosen as the clinical OA endpoint, while for the fifth 

chapter, patient-reported symptoms of pain are chosen as the clinical OA endpoint.  

 

2.3 Model interpretation and OA biomarker discovery 

Despite the superior performance of CNN models over classical methods, they suffer from a 

costly trade-off between performance and interpretability. The components of linear regression 

and rule-based expert systems can be teased apart by design to produce highly interpretable 

predictions. In contrast, CNN models contain millions of parameters and successively apply 

nonlinear transformations to the data as it moves through the convolutional layers. Once a CNN 

model is fully trained, understanding the relative importance of each of the parameters for a 

decision of interest becomes a considerable challenge. This presents a significant roadblock for 

the adoption of such methods into the clinical workflow, where legal and ethical guidelines 

demand a rationale for a particular diagnosis. Consequently, shedding light on the decision-

making process of CNN models would improve their reliability and translation into healthcare 

practice. Beyond their use in healthcare settings, the lack of understanding restricts our ability to 
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learn new associations between the input and output data from the trained models. There is great 

promise in the use of explainable CNN approaches as a tool for biomarker discovery, given their 

superhuman performance in disease classification and prediction tasks. In the study of OA, 

cartilage T2 and cartilage thickness imaging biomarkers have been summarized through 

compartment averaging, based on two or more anatomical regions, before their inclusion in 

predictive models. Averaging across these regions, discussed in Chapter 1.3.2, presupposes an 

association between relevant clinical outcomes such as pain and these anatomical compartments. 

The discordance reported between OA imaging biomarkers and clinical OA symptoms56, such as 

pain, suggests this compartment averaging might be too simplistic for the complex OA disease 

process. Interpretable CNN models offer a personalized, data-driven alternative to compartment 

averaging by averaging patient-specific regions most strongly associated with pain. This 

approach is the focus of Chapter 5. 

 

The emerging field of explainable deep learning has yielded methods to interpret the predictions 

of trained CNNs. Different explanatory techniques such as linear proxy models, decision trees, 

and saliency mapping attempt to understand the CNN model performance by approximating 

them to linear models, decomposing them into decision trees, or systematically perturbing the 

inputs to discover the effect on the outputs57,58. Unlike other approaches, saliency mapping 

directly uses the network gradients to generate visualizations of local decision-making 

importance for a specific input image. This property of saliency mapping allows the 

interpretability of fully trained CNN models directly, without the need to design a specific 

architecture or time-consuming perturbation of input images, in the case of occlusion mapping. 

For large datasets, this efficiency permits the generation of average importance maps which 
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create a measure of feature importance for the model. Among the saliency mapping strategies, 

Gradient-weighted Class Activation Mapping (Grad-CAM) has the added benefit being class-

discriminative by using the gradient information flowing into the last convolutional layer of the 

CNN to understand each neuron for a decision of interest59. This class-specific saliency map can 

be overlaid as a heat map of location importance on the input image. Grad-CAM also balances 

input image regions of high network activation, where neurons fire strongest, and input image 

regions of high network sensitivity, where changes would most affect the decision. In Chapter 5, 

a CNN model is trained to classify chronic pain based on the spherical encoding of cartilage 

thickness. The trained model is then interpreted using Grad-CAM to obtain an average weighting 

map for cartilage thickness which is most associated with chronic pain. 
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Chapter 3: Learning osteoarthritis imaging biomarkers from bone surface 

spherical encoding 

3.1 Abstract 

The purpose of the study was to learn bone shape features from spherical bone map of knee MRI 

images using established CNN and use these features to diagnose and predict OA. A bone 

segmentation model was trained on 25 manually annotated 3D MRI volumes to segment the 

Femur, Tibia, and Patella from 47,078 3D MRI volumes. Each bone segmentation was converted 

to a 3D point cloud and transformed into spherical coordinates. Different fusion strategies were 

performed to merge spherical maps obtained by each bone. A total of 41,822 merged spherical 

maps with corresponding KL grades for radiographic OA were used to train a CNN classifier 

model to diagnose OA using bone shape learned features. Several OA Diagnosis models were 

tested and the weights for each trained model were transferred to the OA Incidence models. The 

OA incidence task consisted of predicting OA from a healthy scan within a range of eight 

timepoints, from 1-year to 8-years. The validation performance was compared and the test set 

performance was reported. The OA Diagnosis model had an AUC of 0.905 on the test set with a 

sensitivity and specificity of 0.815 and 0.839. The OA Incidence models had an AUC ranging 

from 0.841 to 0.646 on the test set for the range from 1-year to 8-years. Bone shape was 

successfully used as a predictive imaging biomarker for OA. This approach is novel in the field 

of deep learning applications for musculoskeletal imaging and can be expanded to other OA 

biomarkers. 
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3.2 Introduction 

Osteoarthritis is a degenerative joint disease which affects over 30 million U.S. adults, with the 

global prevalence of OA approaching 5%1,60. Risk factors commonly associated with OA include 

obesity, aging, and sex61. The onset of knee OA is manifested by several changes such as cartilage 

loss and changes in the meniscus. In addition to degeneration of soft tissues, it has been suggested 

that changes also occur in the subchondral and trabecular bone. The subchondral bone in particular 

interacts with the articular cartilage and softens the impact during normal and abnormal 

mechanical loading of the knee joint62–64. Both early-stage and late-stage changes to the 

subchondral bone are important components of the pathogenesis of OA. 

 

Several investigators have previously proposed bone shape as an OA imaging biomarker, based 

on anthropometric measures, cross-sectional findings, or shape modeling of knees14,17,65,66. Studies 

based on 2D radiographs have reported sex-based bone shape differences in subjects with lateral 

and medial OA67. The classical approach to represent bone shape has been through SSM, which is 

a widely used tool to summarize shapes in a comprehensive feature vector. SSM has the ability to 

not only characterize complex shapes using PCA to reduce the data dimensionality, but also 

analyze shape differences without a priori assumptions, instead of identifying the geometrical 

features empirically. Furthermore, the 3-dimensional nature of MRI lends itself to SSM 

approaches and shows great potential in identifying knee OA risk factors and in studying disease 

pathogenesis; demonstrated in the large body of recent work14,16,17,68,69. This technique has also 

been used to evaluate the contribution of knee shape to ACL tears18, in order to assess the 

association between bone shape and the progression of cartilage degeneration44 as well as altered 

knee kinematics19 after ACL reconstruction. 
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While previous studies show strong evidence of the critical role of the bone shape in the OA 

development and the ability of MRI and 3D shape modeling to quantify OA features, inferential 

statistics do not guarantee actual prediction abilities. Additionally, the use of unsupervised linear 

pattern decompositions as PCA for feature extraction do not guarantee the definition of a feature 

space that actually captures subtle differences able to characterize OA. The use of supervised 

feature learning and deep CNN architectures in medical image processing diagnostic tasks show 

promising results in fully exploiting the image information70–72. These techniques have 

dramatically improved outcomes of challenging problems in a variety of fields such as object 

detection, classification73,74, drug discovery and genomics40. However, the number of validated 

applications in MRI and specifically in musculoskeletal imaging research remain limited42,43,75.  

 

This study aims to fill this gap by developing a knee bone shape feature extraction framework to 

explore the ability of established CNNs to extract and use knee bone shape features in diagnosing 

and predicting future incidence of radiographic OA based on Kellgren-Lawrence grade9.  

 

3.3 Methods 

3.3.1 Methods overview 

The overall study overview is summarized in Fig. 3.1. A bone segmentation model was trained 

and validated with a dataset of 40 manually segmented MRI volumes to segment the Femur, 

Tibia, and Patella from 47,078 3D MRI volumes (Fig. 3.1A). Each of the segmented bone masks 

was converted to a 3D point cloud and rigidly registered to a reference point cloud to account for 
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rotational variability at scan time (Fig. 3.1B). The registered point clouds were then transformed 

into spherical coordinates and different fusion strategies were performed to merge spherical 

maps obtained by each bone (Fig. 3.1C). A total of 41,822 merged spherical maps with 

corresponding KL grades were used to train a classifier model to diagnose radiographic OA 

exclusively using bone shape learned features across all time points. For the OA diagnosis task, 

several models were tested and their validation performance was compared (Fig. 3.1D). The 

weights for each of these trained models were transferred to the OA Incidence models. The OA 

incidence task consisted of predicting future OA from the last healthy scan of a patient within a 

range of eight time points, from 1 year up to 8 years, and was tested on the same models as the 

OA diagnosis task (Fig. 3.1E). 
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Fig. 3.1 Overview of the study. (A), A V-Net segmentation model was trained and validated with 
a dataset of 40 3D DESS MRI volumes with the Femur, Tibia, and Patella segmented. The 
trained model was then used to run inference on 47,078 3D DESS MRI volumes from the OAI 
dataset. (B), The resulting bone segmentations were rigidly registered using an iterative closest 
point (ICP) algorithm to account for rotational variability at scan time. (C), The registered point 
clouds were transformed to spherical coordinates and merged using different fusion strategies. 
(D), A total of 41,822 spherical bone maps corresponding to patient scans were used to train an 
OA diagnosis model to classify OA based on bone shape across all time points. Each of the two 
inputs represents a class in the binary classifier (healthy KL<2 vs. OA KL>1). (E), An OA 
incidence model, defined as predicting future OA from the last healthy scan of patient within a 
range of eight time points, from 1 year up to 8 years, was trained using the weights from the OA 
diagnosis. The first input represents the baseline scans (T0) from patients that never developed 
OA on either knee across the following 1 to 8 years (T1-8). The second input represents OA 
incidence cases, as the last healthy scans (Tlast) from patients that later developed OA on either 
knee across the following 1 to 8 years (T1-8). The binary OA Incidence model is therefore 
represented as: baseline scans from always-healthy patients vs. last healthy scans from future OA 
patients in 1 to 8 years. 

 

3.3.2 Patient imaging dataset 

The imaging data for this study was acquired from the OAI, a multi-center longitudinal multi-

modality imaging study in 4,796 patients12. This dataset consisted of a total of 12 time points 

ranging from an initial baseline visit to a final 108 month visit with yearly visits in between and a 

half-year visit for the third and fifth visits. Demographic data such as age, BMI and sex was 

recorded during each visit. Out of the 12 time points covered in the OAI, spanning 10 years, only 

7 time points had MRI scans performed, which limited the span of the study to 8 years. A total of 

41,822 sagittal 3D-DESS volumes from the OAI acquired (3.0T Siemens Trio) were used for this 

study (FOV = 14 cm; matrix = 384 x 307 x 160; TR/TE = 16.2/4.7 ms; bandwidth = 62.5 kHz; 

resolution = 0.365 x 0.456 x 0.7 mm). Selected patients had radiographs for both knees to 

evaluate their KL OA grade. The KL grades represent no OA (KL=0), minimal/doubtful OA 

(KL=1), mild OA (KL=2), moderate OA (KL=3), and severe OA (KL=4). For the purposes of 

this study, KL grades of 0 and 1 were determined to be healthy while KL grades of 2, 3, and 4 

are considered to be OA. 
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Out of a total of 47,078 3D DESS volumes, 41,822 had corresponding KL grades and were 

included in this study. Out of this total, there were 4,506 unique patients, 117 of which only had 

scans for one of the knees and all the remaining had bilateral knee scan available in the dataset. 

The KL grade distribution for these 41,822 patients consisted of 16,624 (KL=0), 7,807 (KL=1), 

10,240 (KL=2), 5,528 (KL=3) and 1623 (KL=4). The 3D DESS volumes were interpolated by 

the Siemens reconstruction software (Siemens Healthineers, Erlangen, Germany) from the 

original 384 x 304 x 160 acquisition resolution to 384 x 384 x 160 for sagittal in-plane isotropic 

resolution. Each of the 41,822 DESS image volumes used was cropped from 384 x 384 x 160 to 

364 x 364 x 140 to remove extra background in the volumes. Each volume was then normalized 

from 0 to 1 by dividing the volume by its highest intensity. 

 

3.3.3 Bone segmentation 

The first step of the study was to accurately segment the bones from the 3D DESS volumes in 

the OAI dataset. A modified 3D V-Net76 architecture was used for the Femur, Tibia and Patella 

bone segmentation (Fig. 3.1A). Lateral-medial flipping as well as in-plane rotation data 

augmentation was performed online to prevent overfitting, when training on a data split of 25 

training, 5 validation and 10 testing volumes, for which the manual segmentation was available. 

 

Subsequently, segmented Femur, Tibia, and Patella bones were post-processed to conform to the 

necessary format for the spherical transformation, such as maintaining the biggest connected 

component for each bone segmentation followed by morphological closing. The choices of 



24 
 

segmentation post-processing steps were strictly used as a way to sanitize or standardize the data 

and not to influence the performance of OA classification models. Given the size of the OAI, an 

additional validation of the bone segmentation accuracy was performed on 60 baseline scans 

sampled randomly from the OAI. The 60 additional test volumes were representative of the OAI 

demographic distribution and 30 of the baseline scans were from patients who never developed 

OA across the entire OAI on both knees. From the remaining scans, 15 were OA Incidence cases 

and 15 were OA Diagnosis cases. The osteophyte coverage of the bone segmentation network 

was also assessed. Further details on the architecture selected for the segmentation, adopted 

training strategies, automatic segmentation post-processing, the additional validation and 

osteophyte analysis are reported in Appendix A.1 Bone segmentation and post-processing. 

 

3.3.4 Spherical transformation 

Each post-processed segmented bone was converted to a 3D point cloud and converted to 2D 

spherical maps centered around the articular surface (Fig. 3.2). The transformation from 

Cartesian coordinates into spherical coordinates was performed by uniformly sampling 224 x 

224 points in the point cloud and describing them based on the angle along the x-y plane from 

the positive x-axis (θ), the elevation angle from the x-y plane (φ) and the distance from the center 

of the point cloud to the sampled point in the surface (ρ) (Fig. 3.2). The angle θ was sampled 

from -π to +π while the angle φ was sampled from -π/2 to +π/2. Morphological closing was 

applied to the resulting spherical image to ensure there were no holes. The sampling density of 

224 x 224 points, which was required to conform to the ImageNet image size, amounted to 

50,000 points. This was an oversampling of the articular surface for each bone, which comprised 
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30% to 40% of the total points in each point cloud, with the Femur, Tibia, and Patella full point 

clouds containing on average 20,000, 70,000 and 90,000 points respectively. 

 

Each of the point clouds was also augmented twice by rotating along the distal-proximal axis in a 

range of -5 to +5 degrees before the spherical transformation. 

 

 

Fig. 3.2 Spherical transformation of the 3D bone point cloud. A femur point cloud is shown with 
the Cartesian and spherical coordinates. Each point in the surface of the 3D point cloud was 
transformed into a 2D point in a spherical map where the location was encoded with the two 
angles (θ, φ) and the distance from the centroid of the point cloud was encoded as the image 
intensity. 

 

3.3.5 Spherical data formatting 

The spherical images for each of the bones were normalized from 0 to 1 by dividing the intensity 

by the highest intensity for each of the bones. The rescaled spherical images for each patient 

were merged into an three channel image in the following four combinations: each of the three 

individual bone spherical maps was replicated three times and converted into a single knee bone 
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spherical image and the fourth variant was a merged combination of the three bones with the 

femur spherical image as the first channel, the tibia spherical image as the second channel and 

the patella spherical image as the third channel. This early fusion model was selected to learn 

complex features that arise from interactions of bone shape between the different bones in the 

knee joint. These combinations also allowed the ImageNet pretraining with 3-channel natural 

images.  While the natural images in the ImageNet dataset are spatially correlated, the fourth 

fusion variant consisted of an artificial construct that contained imperfect spatial relationships 

between each different bone. The images were then further normalized to have a mean and 

standard deviation, respectively, of 0.485 and 0.229 for the red channel, 0.456 and 0.224 for the 

green channel and 0.406 and 0.225 for the blue channel to match the normalization values used 

for the pre-trained ImageNet77 weights. This step also removed the bone size information from 

the spherical bone images, thus avoiding the potentially confounding relationship between bone 

size and patient sex. The spherical transformation process was validated on the test set used to 

evaluate the segmentation model by converting the ground truth segmentations into spherical 

coordinates and then transforming it back to Cartesian coordinates and calculating the distance 

differences between the closest points in the original. This validation ensured that the bone 

surface features were accurately represented in the spherical images. This method was iterated 

identically for the Tibia, Femur and Patella bones. 

 

3.3.6 OA classification model dataset 

The 41,822 spherical images were used for a model to diagnose OA and eight OA Incidence 

models. For the OA Diagnosis model, the dataset was divided into 29,012 training images, 6,365 

validation images and 6,445 test images. The healthy controls were patient scans that had no 
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radiographic OA (KL<2) while the positive cases were patient scans with radiographic OA 

(KL>1). Both knee scans for each patient were randomly assigned to a single split while 

controlling for the demographic factors (age, BMI, sex). To test the independence of 

demographic factors for the positive cases across splits, two different statistical tests were 

performed. The independence of sex was tested with a Pearson’s chi-squared test implemented in 

scikit-learn78 using Python (Python Software Foundation, https://www.python.org/). The 

independence of age and BMI was tested with a one-way Multivariable Analysis of Variance 

(MANOVA) using a MATLAB implementation. For the OA Incidence models, the healthy 

controls were baseline patient scans from patients who never developed radiographic OA for 

both knees across all time points while the positive cases were the last healthy patient scan 

(KL<2) from patients who later developed radiographic OA. This study looked at eight incidence 

periods, ranging from one year to eight years for radiographic OA incidence. The training, 

validation, and test splits were randomized for every OA Incidence period (1-year to 8-year) to 

balance the classes across splits as well as ensure that the demographic factors were independent 

across splits. Table 3.1 summarizes the training, validation and test set splits for all models, 

along with the P-values of the statistical tests showing independence of demographic factors. 

 

 

 

 

 

 

 

 

https://www.python.org/
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Table 3.1 Training splits information for the bone segmentation, OA Diagnosis, and OA 
Incidence models. The training, validation, and test set splits were randomly picked into 62.5%, 
12.5%, 25% ratios respectively for the bone segmentation and 70%, 15%, 15% ratios 
respectively for the OA models. The classes were increasingly imbalanced as the OA Incidence 
period increased due to the lower number of cases in the dataset. Demographic factors were 
controlled by testing for statistical independence across the splits using a Pearson’s chi-squared 
test (χ2) for the categorical sex variable and a one-way Multivariate Analysis of Variance for the 
joint effect of age and BMI. P-values are reported with significance defined as P<0.05. 

 

 

3.3.7 OA classification network implementation 

Two binary classification models were trained to extract bone shape features from the spherical 

bone representations and use them to diagnose and predict OA. For the cross sectional OA 

Model Training 
(Cases) 

Validation 
(Cases) 

Test 
(Cases) 

Cases 
Ratio 

χ2 Test 
Correlation 

(Sex) (P-values) 

MANOVA one-way 
Correlation   

(Age|BMI) (P-values) 

Segmentation 25           
(12) 

5               
(3) 

10           
(5) 0.500 0.573 0.327 

Diagnosis 29012 
(12027) 

6365   
(2753) 

6445 
(2611) 0.416 0.130 0.105 

1-year 2444     
(246) 

537         
(53) 

524       
(50) 0.101 0.159 0.298 

2-year 2495     
(297) 

548         
(64) 

537       
(63) 0.119 0.206 0.814 

3-year 2389     
(191) 

527         
(43) 

517       
(43) 0.0799 0.516 0.560 

4-year 2397     
(199) 

527         
(43) 

517       
(43) 0.0830 0.220 0.852 

5-year 2356     
(156) 

514         
(32) 

506       
(32) 0.0662 0.860 0.290 

6-year 2373     
(175) 

519         
(35) 

510       
(36) 0.0737 0.591 0.472 

7-year 2269       
(71) 

500         
(16) 

489       
(15) 0.0313 0.559 0.435 

8-year 2275       
(77) 

502         
(18) 

492       
(18) 0.0338 0.998 0.592 
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diagnosis task (Fig. 3.1D), a Resnet38 architecture with 50 layers (Resnet50) pre-trained with 

ImageNet weights was implemented in PyTorch79. The selection of the Resnet architecture was 

informed through a CNN architecture grid search that included DenseNet80, AlexNet36, 

SqueezeNet81 and Resnet. The DenseNet and Resnet architectures outperformed the other 

architectures and the decision to select the Resnet over the DenseNet was based on the smaller 

number of training parameters for the Resnet, which allowed a greater batch size. The ImageNet 

pre-training design choice was validated through a grid search, which included a version of the 

Resnet50 initialized with a Kaiming normal distribution82. The ImageNet pre-trained models 

achieved faster convergence than the models trained from scratch and consequently allowed for a 

more comprehensive parameter space search (shown in Fig. 3.1D-E as Model Selection) 

Different layer depths of the Resnet (18-layer, 34-layer, 50-layer, 101-layer, 152-layer) were also 

investigated with the 50-layer deep model providing the best compromise between accuracy and 

training speed, important for hyper-parameter optimization. The network architecture uses 

shortcut residual connections that improve the training performance for deeper models over 

similar shallower models. The basic structure of the Resnet50 follows the pattern of three 

convolutional layers with a 1 x 1, 3 x 3, and a 1 x 1 convolutional filter size respectively. Each of 

these layers is paired with batch normalization and a ReLU activation function. A softmax 

function was used to activate the last fully connected layer for the positive class.  

The OA Diagnosis model was trained first with the following variants: femur, tibia, patella, early 

fusion, late fusion, logits averaging and majority voting. Fig. 3.3 shows an overview of the 

different models used. The femur, tibia, and patella models consisted of three individual 

Resnet50 trained on each single knee bone spherical image (Fig. 3.3A-C). The early fusion 

model consisted of a Resnet50 trained on the combined spherical images of the femur, tibia, and 
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patella into a single merged spherical image (Fig. 3.3D). The late fusion model was the 

concatenation of the last 3 layers of the individual Resnet50 trained fused into a fully connected 

layer and trained end to end (Fig. 3.3E). There were two network ensemble methods evaluated: 

majority voting, where the majority, or median, prediction from all three individual bone 

network for each patient was used (Fig. 3.3F), and logits averaging, where the average of the 

softmax values outputted by each of the three individual bone networks was used for the 

prediction (Fig. 3.3G). 

 

All OA Diagnosis model variants were initialized with ImageNet weights and fine-tuned using 

Adam optimizer with a learning rate of 1e-4 and trained end to end using a weighted binary cross 

entropy loss, based on the class imbalance, with a batch size of 100 in a GeForce GTX Titan 

1080 Ti GPU. The OA Incidence models were initialized on the best performing checkpoint 

from the OA Diagnosis model based on the assumption that there is an overlap between the 

features for OA Diagnosis and OA Incidence. They were trained using the same parameters as 

the OA Diagnosis model with the exception of a lower learning rate of 1e-6 for Adam optimizer 

and a regularization weight decay value of 0.9 (to finetune while preventing overfitting on the 

training set) and trained for 100 epochs with a batch size of 32. 

 

Network ensemble methods such as logits averaging, and majority voting were used to combine 

the outputs of the independent bone models. A late fusion model was created by concatenating 

the output of the last hidden layer of three individual Resnet50 architectures and performing a 
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global average pooling with a fully connected layer into a one-class softmax (sigmoid) activation 

function using Keras and a TensorFlow backend. 

 

 

Fig. 3.3 Overview of the model fusion strategies. (A-C), The single bone fusion strategies, with 
the Femur, Tibia, and Patella shown in order, consisted of replicating the individual spherical 
bone maps three times and merging them into 3-channel images which were then used as inputs 
into a Resnet50 classification CNN. (D), The early fusion model merged each of the single bone 
spherical maps into a 3-channel image, which was then used as input into a Resnet50 
classification CNN. (E), The late fusion model concatenated the last layer before the fully 
connected layer of the individual single bone models and added a fully connected layer that 
outputs a single softmax prediction for the OA diagnosis and incidence. (F), The first of the 
ensemble methods consisted of majority voting, where the majority predictions from the 
individual single bone models, (shown as red, green and blue circles corresponding to the Femur, 
Tibia, and Patella respectively) was used to determine the final OA diagnosis and prediction. 
(G), The logits averaging model consisted of averaging the softmax values from the individual 
single bone models and using the averaged softmax as the OA diagnosis and incidence. 
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3.3.8 OA classification robustness analysis 

The robustness of the OA Diagnosis and first two OA Incidence models to bone atlas choice as 

well as bone segmentation and spherical transformation errors was evaluated.  

 

The first robustness analysis of the OA classification models consisted of evaluating the impact 

of bone atlas choice on the performance of the OA Diagnosis and the 2-year and 8-year OA 

Incidence models. Four patients with different KL grades and demographic information were 

randomly picked as the bone atlas (for the femur, tibia and patella). The entire framework was 

rerun on each bone atlas and the OA Diagnosis and the 2-year and 8-year models were retrained 

using the same splits and hyperparameters as the original framework. The test set accuracy for 

each model was recorded for each bone atlas. 

 

The second robustness analysis of the OA classification models consisted of evaluating the 

relationship between the bone segmentation accuracy and the performance of the OA Diagnosis 

and first two OA Incidence models. A randomly selected set of 30 correct predictions from the 

test set of the three models was corrupted and the effect of each individual bone corruption on 

the performance each model was evaluated.  

 

The complete description of the first two analyses can be found in Appendix A.2 OA 

Classification Robustness Analysis.   
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The third robustness analysis of the OA classification models consisted of evaluating the 

relationship between the spherical transformation error and the performance of the OA Diagnosis 

and first two OA Incidence models. For this analysis, 50 correct predictions (25 true positives 

and 25 true negatives across all models) and 50 false predictions (25 false positives and 25 false 

negatives for OA Diagnosis, 38 false positives and 12 false negatives for the 1-year OA and 30 

false positives and 20 false negatives for the 2-year OA) were selected from the trained OA 

Diagnosis model and the 1-year and 2-year OA Incidence models. The 1-year and 2-year OA 

Incidence models were evaluated due to the lack of cases in later year incidences. The 

distribution of spherical transformation errors measured as MPTS distance errors for the correct 

and the false predictions was calculated across bones for each model to evaluate the relationship 

between spherical transformation error and OA classification performance. 

 

3.4 Results 

3.4.1 Bone segmentation 

The mean post-processed bone segmentation Dice scores for the test set of 10 patients were 

97.15% (95% confidence interval = 96.56-97.74%) for the femur, 97.28% (95% confidence 

interval = 96.64-97.92%) for the tibia, and 95.99% (95% confidence interval = 95.26-96.72%) 

for the patella. MPTS distance errors were calculated between the manual and automated 

segmentations for the bone segmentation test set. The MPTS distance errors were 0.45 mm (95% 

confidence interval = 0.23-0.68 mm) for the Femur, 0.57 mm (95% confidence interval = 0.39-

0.74 mm) for the Tibia and 0.51 mm (95% confidence interval = 0.07-0.94 mm) for the Patella, 

approximately the size of one voxel. Fig. 3.4 shows representative slices of the 3D bone 

segmentation results from three different patients along with their respective MR images with the 
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mean MPTS distance errors over the entire volume. The two types of model error, false 

positives, where the segmentation misclassified non-bone regions as bone and false negatives, 

where the model missed the existing bone, are highlighted as cyan and magenta respectively. The 

complete results of the additional validation are shown in Supp. Table A.1. Additionally, the 

results of the osteophyte analysis are shown in Supp. Fig. A.2 and Supp. Fig. A.3. 
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Fig. 3.4 Examples of bone segmentation errors for three scans from the bone segmentation test 
set with their respective total bone MPTS distance errors. The pixels in agreement between the 
trained segmentation model inference and the ground truths are labeled as green, representing the 
true positive cases. The pixels incorrectly classified as bone by the trained segmentation model 
are labeled as cyan, representing the false positive cases. The pixels missed by the trained 
segmentation model are labeled as magenta, representing the false negative cases. (A, B), Bone 
segmentations and corresponding DESS slices respectively for the three patients show minor 
errors along the bone surface for all three bones. (C, D), Bone segmentations and corresponding 
DESS slices shown respectively for the same three patients show more severe errors along the 
tibiofemoral shafts and the femoral intercondylar notch. These errors are likely caused by poor 
signal as the shaft appears sagittally and partial voluming effects in the intercondylar notch 
femoral region. The framework cropped the bone shaft and sparsely spherically sampled the 
intercondylar notch region, thus reducing the effect of these errors on the overall results. 
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3.4.2 Spherical transformation 

The morphologically closed spherical transformation MPTS distance errors for the test set of 10 

patients were 0.505 mm (95% confidence interval = 0.534-0.558 mm) for the Femur, 0.272 mm 

(95% confidence interval = 0.286-0.300 mm) for the Tibia, and 0.129 mm (95% confidence 

interval = 0.136-0.144 mm) for the Patella. The MPTS distance differences for the 10 patients in 

the segmentation test set were calculated by transforming the bone point clouds to the spherical 

coordinates and back to the bone point clouds and calculating the distance differences between 

the sampled points. The process was accurate at preserving the bone shape at most regions of the 

bones, except in the intercondylar notch, arguably where the surface curvature changed rapidly. 

 

3.4.3 OA classification models 

The validation Receiver Operating Characteristic (ROC) curve results for the binary OA 

classifier models are summarized in Table 3.2 and a visual representation is reported in Fig. 3.5 

for the OA Diagnosis and the 1-year and 2-year OA Incidence models. The rest of the OA 

Incidence models ranging from 3-year to 8-year can be found in the Supp. Fig. A.1. For the OA 

Diagnosis task, the validation AUC for the models ranged from 0.806 to 0.904. The ensemble 

fusion strategies exhibited the best validation performance for the OA diagnosis task, with the 

logits averaging model slightly outperforming the majority voting model with a validation AUC 

of 0.904 and 0.903 respectively. The late and early fusion strategies had the next highest 

validation performance on average, with a validation AUC of 0.895 and 0.891 respectively. Out 

of the single bone fusion strategies, the femur model had the best OA diagnostic performance 
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with a validation AUC of 0.893 closely followed by the tibia model with a validation AUC of 

0.887. The patella model had the lowest validation AUC of 0.806. For the OA incidence task, the 

validation AUC generally decreased with incidence time, however, the validation AUC was 

above 0.72 for the best fusion strategy across all incidence times, even for the lowest performing 

5-year incidence model.  

 

The test set performance of the models was in line with the validation set performance with the 

exception of the 7-year OA Incidence model, which significantly outperformed in the test set. 

The models were generally more sensitive to the positive cases with the exception of the 2-year 

and 8-year model. There was no clear trend in overall performance across each OA Incidence 

model, with the best performing OA Incidence being the 7-year model.  The test set 

performance, measured in AUC, sensitivity and specificity, is summarized in Table 3.3. The OA 

Diagnosis and the 2-year and 8-year OA Incidence models test set performance for four different 

bone atlases was also consistent with the original results and is shown in Supp. Table A.2. 

 

Table 3.2 Summary of the AUC validation performances from the different model fusion 
strategies for the OA Diagnosis and OA Incidence tasks. 

Model 
AUC (Validation Set) 

Diagnosis 1-year 2-year 3-year 4-year 5-year 6-year 7-year 8-year 

Patella 0.806 0.714 0.739 0.624 0.589 0.674 0.640 0.720 0.661 

Tibia 0.887 0.756 0.758 0.739 0.694 0.602 0.664 0.639 0.669 

Femur 0.893 0.821 0.801 0.738 0.771 0.697 0.729 0.687 0.658 

Early 

Fusion 
0.891 0.788 0.751 0.699 0.682 0.683 0.717 0.553 0.654 
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Table 3.3 Test set performance for the logits averaging ensemble model for the OA Diagnosis and 
OA Incidence tasks. 

 

 

 

Fig. 3.5 Overview of the validation ROC curve comparisons for the different model fusion 
strategies. The OA Diagnosis model and the first two OA Incidence models are shown, with the 
remaining OA Incidence models are shown in the Supp. Fig. A.1. (A), OA Diagnosis model. (B), 
1-year OA Incidence model. (C), 2-year OA Incidence model. 

 

 

Late 

Fusion 
0.895 0.778 0.791 0.731 0.760 0.676 0.679 0.698 0.680 

Majority 

Voting 
0.903 0.846 0.814 0.766 0.748 0.714 0.746 0.688 0.741 

Logits 

Averaging 
0.904 0.835 0.832 0.776 0.778 0.724 0.740 0.728 0.735 

Metric 
Logits Averaging (Test Set) 

Diagnosis 1-year 2-year 3-year 4-year 5-year 6-year 7-year 8-year 

AUC 0.905 0.818 0.815 0.733 0.764 0.751 0.781 0.841 0.646 

Sensitivity 0.815 0.760 0.683 0.721 0.721 0.719 0.694 0.800 0.555 

Specificity 0.839 0.751 0.759 0.679 0.696 0.633 0.639 0.656 0.582 
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3.4.4 OA classification robustness analysis  

The OA classification model robustness to bone segmentation accuracy measured in the range of 

the 95% confidence interval for the test set bone segmentation MPTS distance errors was 

calculated for the OA Diagnosis model and the 1-year and 2-year OA Incidence models. The OA 

Diagnosis model MPTS distance errors were 0.582 to 1 for the specificity, 1 to 1 for the 

sensitivity, and 0.999 to 1 for the AUC across all bones. The 1-year OA Incidence model MPTS 

distance errors were 0.491 to 0.942 for the specificity, 0.941 to 1 for the sensitivity, and 0.949 to 

1 for the AUC across all bones. The 2-year OA Incidence model MPTS distance errors were 0.4 

to 0.942 for the specificity, 0.933 to 1 for the sensitivity, and 0.911 to 0.996 for the AUC across 

all bones.  The total MPTS distance errors for the analysis for each bone are shown in Supp. Fig. 

A.4, Supp. Fig. A.5, and Supp. Fig. A.6. 

 

The complete results of both analyses can be found in the Appendix A.2 OA classification 

robustness analysis. 

 

The OA classification robustness to spherical transformation error, measured in MPTS distance 

errors, overview is shown in Fig. 3.6. The OA Diagnosis model robustness to spherical 

transformation error is shown in Fig. 3.6A. The 1-year OA Incidence model robustness to 

spherical transformation error is shown in Fig. 3.6B. The 2-year OA Incidence model robustness 

to spherical transformation error is shown in Fig. 3.6C. There was no significant increase in 

spherical transformation MSTP distance error in the false predictions, both positive and negative, 

compared to the correct predictions. 
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Fig. 3.6 Robustness of the OA classification models to the spherical transformation error measured as 
mean point-to-surface (MPTS) distance errors from the original point clouds. The average MPTS error, 
and corresponding 25% quartiles interval, is shown between 50 randomly picked correct predictions from 
the test set (shown in blue) and 50 randomly picked false predictions from the test set (shown in orange), 
for both positive and negative cases. There was no significant increase in spherical transformation MPTS 
distance error in the false predictions, both positive and negative, compared to the correct predictions. 
(A), OA Diagnosis model. (B), 1-year OA Incidence model. (C), 2-year OA Incidence model. 

 

3.5 Discussion 

In this study, we established a model to diagnose and predict knee OA onset within a period 

ranging from one year to eight years based on extracted bone shape features. The model 

generates the spherical maps of the Femur, Tibia, and Patella and combines them with a logits 

averaging network ensemble method to diagnose and predict radiographic knee OA. This model 

is state-of-the-art for radiographic knee OA diagnosis and OA incidence prediction using solely 

bone shape.  

 

Classical methods used to represent bone shape based on SSM use PCA to reduce the 

dimensionality of the bone shape for analysis. This allows each component of the features vector 



41 
 

(mode) to describe a different aspect of the bone shape independent of the other components. 

The effect of each mode on the average surface can be modeled individually, synthesizing new 

instances. There are two shortcomings with this approach, the linearity constraint of PCA and the 

lack of supervision for the feature extraction process. Since PCA is a linear decomposition, the 

nonlinear relationships within the data are lost and the features described by the different modes 

may prove too simple to completely capture the bone shape. Furthermore, the unsupervised 

nature of PCA also means that the features extracted may not necessarily be specific to OA, 

since the bone shape features may depend on other factors such as demographics. Deep learning 

approaches address both of these issues by learning representations of data with multiple levels 

of abstraction, utilizing the fact that many natural image patterns are compositional hierarchies, 

meaning higher-level features can be decomposed into lower-level feature representations83. The 

hierarchical fashion of deep learning models suggests an improvement upon the established 

concept of simple data representation using PCA in favor of data-driven representation of 

relevant information directly from the raw data83. Some studies have combined supervised 

learning techniques such as linear discriminant analysis (LDA) with PCA to link bone shape to 

OA14. LDA best separates two groups (OA and no OA) with a hyperplane in multi-dimensional 

space, which further reduces the bone shape to a single scalar value representing the distance 

within the LDA vector for each bone shape. While LDA goes in the direction of adding some 

supervision to the feature extraction process, the usage of a single vector may be an over 

simplification of a complex 3D shape, and thus resulting in a robust but potentially less sensitive 

approach.  
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The purpose of our study was not to achieve the highest predictive performance in the OA 

Diagnosis and OA Incidence task, but rather to evaluate the effect of bone shape in the presence 

and onset of radiographic OA, while accounting for other confounding OA risk factors such as 

age, sex and BMI. Although the multifactorial nature of OA is well understood, and thus 

including several of these features together may lead to a more accurate prediction, the study of 

the single factors individually is also of great interest. This can help identify specific 

contributions of each factor to better understand the etiology of OA and help define unique OA 

phenotypes.  

 

While this study brings new insights on the role of deep learning for new imaging OA 

biomarkers definition, some limitations need to be acknowledged. One of the limitations of the 

study is the use of radiographic OA based on KL grading as the metric for OA. Radiographic OA 

measures changes such as tibiofemoral, or joint space, narrowing and osteophyte formation, 

which occur at more advanced OA stages. This could potentially mean that the last healthy scans 

considered for the OA Incidence models could already be exhibiting other more subtle OA 

symptoms, such as loss of cartilage thickness. Another limitation of the study is the small 

number of OA Incidence cases prevented any further stratification of the OA Incidence models 

by KL grade increase to better understand the distribution of these OA Incidence subpopulations. 

The temporal efficacy for the OA Incidence models is also affected by the reshuffling of the 

splits across incidence periods. A future study could focus on a smaller section of the incident 

population and follow it across time points. Additionally, since the KL grading is performed on a 

coronal knee radiograph, only tibiofemoral OA is considered in the diagnosis and the impact of 

patellofemoral OA is not included in the grading, which could explain the lower performance for 



43 
 

the patella models. Another limitation of this method is the reduced model interpretability when 

compared to a PCA approach, which could model the modes and understand the relationship 

between specific bone shapes and OA. The current model would not be able to evaluate the 

correlation between specific bone shape differences such as tibia slope and the OA diagnosis and 

OA incidence prediction, but rather assess the general relationship between bone shape and OA. 

For future studies, using visualization tools, such as Grad-CAM59, could characterize different 

bone shape phenotypes for the OA diagnosis and OA incidence tasks. Establishing such a way to 

phenotype patient bone shape populations could have wide implications in clinical studies for 

potential treatment of OA as a patient screening tool. 
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Chapter 4: Spherical Encoding for Multimodal Quantitative MRI OA 

Biomarker Fusion and Feature Learning 

4.1 Abstract 

The purpose of the study was to learn features from spherical encoding of multimodal 

quantitative MRI images using CNNs and use them to diagnose knee OA. Two segmentation 

model ensembles for bone and cartilage were trained to segment the femur, tibia, and patella 

bones and cartilage. The trained models were used to segment 21,118 3D-DESS MRI volumes. 

Bone shape and cartilage thickness maps were obtained from the segmentations. T2 values were 

fitted after registering 3D-DESS cartilage masks to matching 2D-MSME spin-echo MRI 

volumes from a complimentary dataset. Each 3D biomarker map within the cartilage mask was 

projected onto the articular bone surface and transformed into spherical coordinates. Six different 

strategies were investigated to merge biomarker spherical maps per bone. The merged spherical 

maps with corresponding KL grades for radiographic knee OA were used to train a CNN 

classifier model to diagnose OA. Pairwise McNemar’s tests were used to compare the different 

merging strategies. The single biomarker OA diagnosis models had mean and standard deviation 

of 86.4±0.1 for test AUC, 70.9±0.2 for sensitivity, 86.0±0.1 for specificity. When considering 

the biomarkers together, the respective OA diagnosis performance was 87.9±0.1, 73.2±0.2 and 

86.1±0.1. Significant performance improvements (p-value=1e-4) were observed when 

biomarkers were considered simultaneously compared to individually. The performance of each 

single biomarker and biomarker fusion models generally improved from patella to tibia, and up 

to femur. The combination of individual OA biomarkers improved the OA diagnosis accuracy 

over single biomarkers. 
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4.2 Introduction 

Multimodal MRI (MMRI) leverages the ability of MRI to investigate both anatomic and 

physiologic changes associated with pathologies84. Compositional MRI techniques, such as 

quantitative relaxometry, can discover early signs of a disease that precede subsequent physical 

manifestations observed with structural imaging techniques30. The use of MMRI  information 

can generate robust models of disease onset and progression, with significant applications 

including: cancer, neuro, and musculoskeletal imaging85–91. 

 

While MMRI models offer a comprehensive look into a particular pathology, they suffer from 

challenges such as the spatial colocalization of biomarkers across modalities, due to resolution 

differences, and increased data dimensionality92. While the usage of data from multiple 

modalities has the potential of improving disease characterization and trajectory prediction, it 

comes at the cost of reduced model interpretability, since each added modality further obfuscates 

the relationship between imaging biomarkers and the disease of interest. Common ways to 

overcome these limitations include reducing the dimensionality of the data by aggregating 

biomarker values before analysis, such as averaging quantitative mapping values within a 

clinically relevant anatomic region93,94. This strategy exploits a priori clinical information about 

the disease to simplify the fusion of modalities and increases model interpretability, at the 

expense of data granularity, statistical power, and consequently, model performance. 

 

Morphological features such as shape have been linked to tumor growth95 and cartilage 

degeneration32. A common dimensionality reduction strategy for these types of features involves 
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handcrafting geometrical features96. However, a priori definitions of feature importance are 

often arbitrarily defined and can overlook relevant information. 

 

The advent of supervised feature learning and deep CNN architectures in medical image 

diagnostic tasks show promising results in fully exploiting the image information by learning the 

most relevant data representation for the specific task considered70–72. These techniques have 

dramatically improved outcomes of challenging problems in a variety of fields such as object 

detection73, classification74, drug discovery97, and genomics40. 

 

However, the use of deep learning methods often involves a tradeoff between model 

interpretability and prediction power. Additionally, the risk of model overfitting in applications 

of MMRI, when the data is considered in its raw form and the number of training examples is 

relatively low, is often too high and thus hampers the usage of deep learning models. The loss of 

interpretability can be dampened by occlusion studies that aim to understand the deep learning 

model performance. Similarly, the risk of model overfitting can be addressed with several 

regularization techniques at different steps of the data processing pipeline, such as image 

augmentation and normalization, dropout, and loss penalties, among others. Still, the choice of 

strategy for MMRI studies between deep learning and more classical feature handcrafting, with 

all the drawbacks discussed above, is not obvious. 

 

This study aims to address the challenges of model interpretability and overfitting by proposing a 

spherical encoding method that directly colocalizes a priori multimodal imaging biomarkers, 
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reducing the dimensionality of the data, while allowing for the application of data-driven feature 

extraction to learn, in a supervised fashion, the best representation of the multimodal data, along 

with interactions between different biomarkers. 

 

An application to knee OA will explore the ability of deep learning CNNs to learn features from 

these spherical maps for diagnosing radiographic OA based on KL grade9. We hypothesize that 

the biomarker fusion predictive performance will improve upon the single biomarker predictive 

performance. 

 

4.3 Methods 

4.3.1 Patient imaging dataset 

The imaging data for this study was acquired from the OAI, a multi-center longitudinal 

multimodality imaging study in 4,796 patients12. This dataset consisted of a total of 12 time 

points ranging from an initial baseline visit to a final 108 month visit with yearly visits in 

between and a half-year visit for the third and fifth visits. Demographic data such as age, BMI, 

and sex, was recorded during each visit. Out of the 4,796 unique patients, 4,416 had valid T2, 

bone, and cartilage biomarker data and were thus included in this study. The T2 compositional 

biomarker data was required, in addition to the bone and cartilage morphological biomarker data, 

in order to investigate both aspects of the OA disease process. The KL grade distribution for the 

21,118 3D-DESS volumes consisted of 8,103 (KL=0), 3,972 (KL=1), 5,335 (KL=2), 2,897 

(KL=3) and 811 (KL=4). Selected patients had radiographs for right knees to evaluate their KL 

OA grade. The KL grades represent no OA (KL=0), minimal/doubtful OA (KL=1), mild OA 
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(KL=2), moderate OA (KL=3), and severe OA (KL=4). For the purposes of this study, KL 

grades of 0 and 1 were determined to be healthy while KL grades of 2, 3, and 4 are considered to 

be OA.  Out of the 12 time points covered in the OAI, spanning 10 years, only 7 time points had 

MRI scans performed, which limited the span of the study to 8 years. Furthermore, not all 

patients had the same number of timepoints available, with some patients having a single 

timepoint and some having all 7 timepoints. 

 

A total of 21,118 3D-DESS volumes (FOV = 14 cm; matrix = 384 x 307 x 160; TR/TE = 

16.2/4.7 ms; bandwidth = 185 Hz/pixel; resolution = 0.456 x 0.3646 x 0.7 mm) and 

corresponding 2D-MSME spin-echo T2 volumes (FOV = 12 cm; matrix = 384 x 269 x 21; 

TR/TE = 2700/10,20,30,40,50,60,70 ms; bandwidth = 250 Hz/pixel; resolution = 0.313 x 0.446 x 

3 mm, slice gap = 048 mm, chemical shift = 1.8 pixels) acquired from the OAI (3.0T Siemens 

Trio) were used for this study. 

 

4.3.2 Methods overview 

The overall study overview is summarized in Fig. 4.1. A bone and a cartilage segmentation 

model ensemble were trained on 72 and 148 manually segmented 3D-DESS volumes to segment 

the femur, tibia, and patella bones and corresponding cartilage. The trained models were used to 

segment 21,118 3D-DESS volumes (Fig. 4.1A). Bone shape feature and cartilage thickness maps 

were obtained from the segmented masks. T2 values were calculated by registering 3D-DESS 

cartilage masks to the matching 2D-MSME MRI volumes and performing parametric T2 fitting 

on the cartilage. Each biomarker was projected onto the articular bone surface (Fig. 4.1B) and 
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transformed into spherical coordinates. Six different strategies were performed to merge 

spherical maps for each bone (Fig. 4.1C). A total of 21,118 merged spherical maps with 

corresponding KL grades were used to train classifier models to diagnose radiographic OA. A 

different model was trained and tested for each biomarker model, for a total of 18 models (Fig. 

4.1D). 
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Fig. 4.1 Overview of the study. (A) A bone and a cartilage segmentation model ensemble were 
trained on 72 and 148 manually segmented 3D-DESS volumes to segment the femur, tibia, and 
patella bones and corresponding cartilage. The trained models were used to segment 21,118 3D-
DESS volumes. (B) Bone shape feature and cartilage thickness maps were obtained from the 
segmented masks. T2 values were calculated by registering 3D-DESS cartilage masks to the 
matching 2D-MSME MRI volumes and performing parametric T2 fitting on the cartilage. Each 
biomarker was then projected onto the articular bone surface, where each point contained 
information from each biomarker. (C) The articular bone surface projections were transformed 
into spherical coordinates. Six different strategies were performed to merge spherical maps per 
bone. (D) A total of 21,118 merged spherical maps with corresponding KL grades were used to 
train classifier models to diagnose radiographic OA using the biomarker learned features. A 
different model was trained and tested for each biomarker strategy per bone, for a total of 18 OA 
diagnosis models. Each of the two inputs into the OA diagnosis models represents a class in the 
binary classifier (healthy KL<2 vs. OA KL>1). 

 

4.3.3 Image pre-processing 

The 3D-DESS volumes were interpolated by the Siemens reconstruction software (Siemens 

Healthineers, Erlangen, Germany) from the original 384 x 304 x 160 acquisition resolution to 

384 x 384 x 160 for sagittal in-plane isotropic resolution. Similarly, the 2D-MSME volumes 

were interpolated from 384 x 269 x 21 acquisition resolution to 384 x 384 x 21 for sagittal in-

plane isotropic resolution. Each of the 21,118 3D-DESS volumes used was cropped from 384 x 

384 x 160 to 364 x 364 x 140 to remove extra background in the volumes. Each volume was then 

normalized in the [0-1] range by dividing each volume by its 99th percentile highest intensity to 

remove bright artifacts. 

 

4.3.4 Bone and cartilage segmentation 

The first step of the study was to accurately segment the bone and cartilage from the 3D-DESS 

volumes in the OAI dataset. An ensemble of five 3D V-Net76 architectures, each trained with 

different distance-weighted loss functions98, was used for the femur, tibia and patella bone 
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segmentation (Fig. 4.1A). A full description of the bone segmentation models can be found in 

Appendix B.1 Bone segmentation. 

 

For the cartilage segmentation, an ensemble of three 2D V-Nets and three 3D V-Nets were 

trained to segment femoral, tibial, and patellar cartilage and menisci (Fig. 4.1A). A full 

description of the cartilage segmentation models can be found in Appendix B.2 Cartilage 

segmentation.  This model was also extensively validated in a previous study20. 

 

4.3.5 Morphometry 

The cartilage thickness was calculated for each of the three cartilage masks per sagittal slice 

using a Euclidean distance transform along the morphological skeleton of each mask. The 

morphological skeleton was defined as the middle points along the length of each cartilage mask. 

The distance transform provided the distance from each skeleton point to the edge of the 

cartilage, which was doubled to obtain the cartilage thickness. For full details of this automatic 

cartilage thickness method, we refer to a previous study20. The bone shape was intrinsically 

described by the distance from the bone surface of each bone mask to its volumetric centroid.  

This method was presented and validated in the previous chapter. 

 

4.3.6 Relaxometry 

In order to colocalize the three imaging biomarkers considered for this study (bone shape, 

cartilage thickness and cartilage T2 relaxation times), the 2D-MSME volumes were rigidly 
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registered to the 3D-DESS volumes using the Patient Coordinate System (PCS) in the DICOM 

metadata of both MRI scans. The sagittal in-plane and coronal slice resolution of the 2D-MSME 

volumes were first matched to the 3D-DESS volumes using bicubic interpolation. The 

registration was performed using the first echo volume, and the resulting transformation was 

applied to all echoes. Once the resolutions were matched, the 2D-MSME sagittal slices were 

spatially shifted to match the 3D-DESS sagittal slices to create MSME-DESS registered 

volumes. The automatically segmented cartilage mask from the 3D-DESS cartilage segmentation 

model was then used to isolate the cartilage from the newly registered 2D-MSME. The cartilage 

T2 relaxation time values were then computed on the masked 2D-MSME echoes using a three-

parameter, Levenberge-Marquardt mono-exponential: (S(TE) α exp(-TSL/T2) + C). 

 

4.3.7 Bone surface projection 

The tibia and femur bone masks were cropped along the shaft in order to be invariant to the 

different shaft lengths. The bone and cartilage masks were converted from voxel masks to 3D 

point clouds, using a marching cubes algorithm implemented in MATLAB, and each 3D 

biomarker map within the cartilage point cloud was then projected onto the articular bone surface 

(Fig. 4.2). This step mapped each point in the articular surface to a value from each of the three 

biomarkers: bone shape, cartilage thickness and cartilage T2 relaxation time values. The bone 

shape was defined as the distance from the centroid of the bone point cloud to the bone surface 

(Fig. 4.2A). The calculated cartilage thickness of the overlying cartilage was projected to each 

perpendicular point in the articular bone surface (Fig. 4.2B). The superficial, deep, and total 

average T2 values for the corresponding section of the cartilage used during the thickness 

projection were projected to each perpendicular point in the articular bone surface. The 
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superficial and deep subdivisions of the cartilage used for the T2 averaging were defined as the 

respective top and bottom halves of the cartilage, with Fig. 4.2C showing the total average T2 

value projection. The projection from the cartilage to the bone surface was calculated using the 

intersection between the normal vector for each point in the bone surface and the cartilage maps. 

This normal vector spanning from each point in the bone surface formed a cylinder with a radius 

of 0.729 mm, empirically set to double the in-plane pixel resolution, that averaged the cartilage 

thickness and cartilage T2 values along the cartilage cross-section it covered. This sampling 

radius addressed the imbalance between the number of bone surface points and cartilage points, 

and ensured that the bone surface projection was dense. 

 

 

Fig. 4.2 Articular bone surface biomarker projection. The bone and cartilage masks were 
converted from voxel masks to 3D point clouds and each 3D biomarker map within the cartilage 
point cloud was then projected onto the articular bone surface. This step mapped each point in 
the articular surface to a value from each of the three biomarkers: bone shape, cartilage thickness 
and T2 relaxation time values. (A) The bone shape was defined as the distance from the centroid 
of the bone point cloud to the bone surface. (B) The calculated cartilage thickness of the 
overlying cartilage was projected to each perpendicular point in the articular bone surface. (C) 
The total average T2 values for the corresponding section of the cartilage used during the 
thickness projection were projected to each perpendicular point in the articular bone surface. The 
superficial and deep T2 value projections, not shown here, were calculated using subdivisions of 
the cartilage used for the T2 averaging, defined as the respective top and bottom halves of the 
cartilage. 
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4.3.8 Spherical transformation 

The three biomarkers projected to the articular bone surface were converted to 2D spherical 

maps (Fig. 4.3). The transformation from Cartesian coordinates into spherical coordinates was 

performed by uniformly sampling 224 x 224 points in the point cloud, to conform to the 

ImageNet77 image size for pretraining, and describing them based on the angle along the x-y 

plane from the positive x-axis (θ), the elevation angle from the x-y plane (φ) and the distance 

from the center of the point cloud to the sampled point in the surface (ρ) (Fig. 4.3A). The angle θ 

was sampled from -π to +π for all bones while the angle φ was sampled from -π/2 to +π/8 for the 

femur and tibia and from -π/2 to +π/8 for the patella. Bicubic interpolation was performed 

between the sampled points to create densely sampled spherical maps. The sampling was 

designed to be centered around the articular surface to ensure the cartilage would be centered for 

each bone (Fig. 4.3B-D). The sampling density of 224 x 224 points was an oversampling of the 

articular surface for each bone, which comprised 30% to 40% of the total points in each bone 

point cloud, with the femur, tibia, and patella full bone point clouds containing on average 

20,000, 70,000 and 90,000 points respectively. 
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Fig. 4.3 Biomarker 2D spherical maps. The three biomarkers projected to the articular bone surface 
were converted to 2D spherical maps. (A) The transformation from Cartesian coordinates into 
spherical coordinates was performed by uniformly sampling 224 x 224 points in the point cloud 
and describing them based on the angle along the x-y plane from the positive x-axis (θ), the 
elevation angle from the x-y plane (φ) and the distance from the center of the point cloud to the 
sampled point in the surface (ρ). The angle θ was sampled from -π to +π for all bones while the 
angle φ was sampled from -π/2 to +π/8 for the femur and tibia and from -π/2 to +π/8 for the patella. 
The sampling was designed to be centered around the articular surface to ensure the cartilage 
would be centered for each bone. (B) Bone shape 2D spherical map. (C) Cartilage thickness 2D 
spherical map. (D) Cartilage average T2 value 2D spherical map. 
 

4.3.9 Spherical data formatting 

The spherical images were group normalized by the minimum and maximum biomarker value 

from each bone for all the patients. The normalized spherical images for each patient were 

merged into three-channel 8-bit images, with the six strategies shown for the femur in Fig. 4.4. 

The choice of three-channel images leveraged pre-trained CNN models on the ImageNet dataset 

and was motivated by a previous study99.  

 

The first three strategies consisted of the single biomarkers: cartilage thickness, bone shape, and 

cartilage T2. The cartilage thickness strategy consisted of the cartilage thickness spherical maps 
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replicated three times into a spherical image (Fig. 4.4A). The bone shape strategy consisted of 

the bone shape spherical maps replicated three times into a spherical image (Fig. 4.4B). The 

cartilage T2 strategy consisted of the deep, superficial, and average T2 spherical maps as the first, 

second, and third channels respectively, (Fig. 4.4C). The last three strategies consisted of the 

biomarker fusions: morphological cartilage and bone fusion, morphological and compositional 

cartilage fusion and all biomarkers fusion.  The morphological cartilage and bone fusion 

consisted of the cartilage thickness and bone shape spherical maps as the first and second 

channels respectively, with the last channel empty (Fig. 4.4D). The morphological and 

compositional cartilage fusion consisted of the deep and superficial T2 spherical maps as the first 

and second channels respectively with the third channel consisting of the cartilage thickness 

spherical map (Fig. 4.4E). The all biomarkers fusion consisted of the cartilage thickness, bone 

shape, and average T2 spherical map as the first, second and third channels respectively (Fig. 

4.4F).  

 

The spherical maps were directly colocalized for each bone, with each point describing the same 

geometric location in the articular surface. This colocalization allowed the model to learn local 

features that arise from interactions between the different biomarkers across the same bone. Each 

channel was normalized separately. To illustrate for the morphological and compositional 

cartilage fusion (Fig. 4.4E), a pixel in the spherical image with elevated T2 values for both the 

deep and superficial cartilage layers as well as cartilage thinning could have a 3-channel value of 

(204, 204, 26), which would be a dark yellow. Another pixel in the same spherical image with 

elevated T2 values for the superficial cartilage layer with average cartilage thickness and T2 
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values for the superficial cartilage layer could have a 3-channel value of (128, 204, 128), which 

would be a dark green. 

 

The images were then further normalized to have a mean and standard deviation, respectively, of 

0.485 and 0.229 for the red channel, 0.456 and 0.224 for the green channel and 0.406 and 0.225 

for the blue channel to match the normalization values used for the pre-trained ImageNet 

weights. 
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Fig. 4.4 Overview of the biomarker model strategies, shown for the femur. The normalized 
spherical images for each patient were merged into a three-channel 8-bit image. (A-C) The first 
three strategies consisted of the single biomarkers: cartilage thickness, bone shape, and cartilage 
T2. (A) The cartilage thickness strategy consisted of the cartilage thickness spherical maps 
replicated three times into a spherical image. (B) The bone shape strategy consisted of the bone 
shape spherical maps replicated three times into a spherical image. (C) The cartilage T2 strategy 
consisted of the deep, superficial, and average T2 spherical maps as the first, second, and third 
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channels respectively. (D-F) The last three fusion strategies consisted of the biomarker fusions: 
morphological cartilage and bone fusion, morphological and compositional cartilage fusion and 
all biomarkers fusion. (D) The morphological cartilage and bone fusion consisted of the cartilage 
thickness and bone shape spherical maps as the first and second channels respectively, with the 
last channel empty. (E) The morphological and compositional cartilage fusion consisted of the 
deep and superficial T2 spherical maps as the first and second channels respectively with the 
third channel consisting of the cartilage thickness spherical map. (F) The all biomarkers fusion 
consisted of the cartilage thickness, bone shape, and average T2 spherical map as the first, second 
and third channels respectively. 

 

4.3.10 OA classification model dataset 

The 21,118 spherical images were used to train a model to diagnose OA. The dataset was divided 

into 12,634 training images, 2,558 validation images and 5,926 test images, with no patient 

overlap across splits. The healthy controls were patient scans that had no radiographic OA 

(KL<2) while the positive cases were patient scans with radiographic OA (KL>1). Right knee 

scans for each patient were randomly assigned to a single split while controlling for the 

demographic factors (age, BMI, sex). To test the independence of demographic factors for the 

OA cases across splits, two different statistical tests were performed. The independence of sex 

was tested with a Pearson’s χ2 test implemented in scikit-learn78 using Python (Python Software 

Foundation, https://www.python.org/). The independence of age and BMI was tested with a one-

way MANOVA using a MATLAB implementation. Table 4.1 summarizes the training, 

validation and test set splits for the bone segmentation and OA diagnosis models, along with the 

p-values of the statistical tests showing independence of demographic factors. 

 

 

 

https://www.python.org/
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Table 4.1. Training, validation, and test splits information for the bone segmentation and OA 
diagnosis models. The training, validation, and test set splits were randomly picked into 55%, 
15%, 30% ratios respectively for the bone segmentation, and 58%, 12%, 28% ratios respectively 
for the OA diagnosis model. Demographic factors were controlled by testing for statistical 
independence across the splits using a Pearson’s χ2 test for the categorical sex variable and a 
one-way MANOVA for the joint effect of age and BMI. Bold p-values are significant (p-value < 
0.05). 

Task Model Training 
(Cases) 

Validation 
(Cases) 

Test 
(Cases) 

Cases 
Ratio 

χ2 Test 
Correlation  

(Sex) (p-values) 

MANOVA one-way 
Correlation 

(Age|BMI) (p-values) 

Segmentation Bone 57       
(29) 

15             
(8) 

30     
(16) 0.52 0.75 0.41 

Classification OA 
Diagnosis 

12,634 
(5,402) 

2,558 
(1,111) 

5,926 
(2,530) 0.43 0.12 0.19 

 

4.3.11 OA classification network implementation 

A total of 18 binary classification models, one for each biomarker strategy per bone, were trained 

to extract biomarker features from the spherical biomarker representations and use them to 

diagnose OA (Fig. 4.1D). A Resnet38 architecture with 50 layers (Resnet50) pre-trained with 

ImageNet weights was implemented in PyTorch79. The choice of architecture and 

hyperparameters was informed by our previous study on the relationship between bone shape 

and radiographic OA99. The Resnet50 network architecture uses shortcut residual connections 

that improve the training performance for deeper models over similar shallower models. The 

basic structure of the Resnet50 follows the pattern of three convolutional layers with a 1 x 1, 3 x 

3, and a 1 x 1 convolutional filter size respectively. Each of these layers is paired with batch 

normalization and a rectified linear unit activation function. Additionally, a dropout rate of 0.15 

was used to improve generalizability of the model during training, randomly turning off 

activations at a rate of 15%.  
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All OA diagnosis model variants were initialized with ImageNet weights and fine-tuned using 

Adam optimizer with a learning rate of 1e-5 with a regularization weight decay value of 0.9, in 

order to finetune while preventing overfitting on the training set. The training was performed for 

100 epochs with an early stopping 15-epoch patience for validation loss non-improvement over 

the best validation loss reached. The models were also trained end to end using a weighted 

binary cross entropy loss, based on the class imbalance, with a batch size of 300 in a Tesla V100 

32GB GPU. 

 

The OA diagnosis models were trained using the different biomarker strategies outlined in Fig. 

4.4. The OA diagnosis models for each biomarker strategy were ensembled across the bones by 

averaging the softmax values outputted by each network. Therefore, each of the six biomarker 

models had a total of five predictive values: for the patella, for the tibia, for the femur, for the 

averaged predictive values of the tibia and femur, and for the average predictive values of all 

three bones. For the averaged ensembles, each anatomical region contributes equally to the final 

prediction. 

 

4.4 Results 

4.4.1 Bone and cartilage segmentation 

The mean segmentation dice scores and their corresponding 95% confidence intervals (CI95) for 

the bone and cartilage respective test sets of 30 and 28 patients are shown in Table 4.2. The 

MPTS distance errors were also calculated between the manual and automated segmentations for 

both test sets, shown in Table 4.2. 
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Table 4.2. Summary of the bone and cartilage segmentation test set performances, shown both as 
Dice scores and MPTS distance errors, with their corresponding 95% confidence intervals. 

Segmentation 
Model (n = test #) Class Dice Scores 

(Mean ± CI95) 
MPTS (mm) 

(Mean ± CI95) 

Bone                      
(n = 30) 

Femur 98.0% ± 0.32% 0.406 ± 0.051 

Tibia 98.0% ± 0.26% 0.390 ± 0.047 

Patella 96.4% ± 0.70% 0.370 ± 0.055 

Cartilage                
(n = 28) 

Femoral 90.0% ± 0.74% 0.247 ± 0.021 

Tibial 88.6% ± 1.3% 0.223 ± 0.036 

Patellar 85.7% ± 2.5% 0.555 ± 0.194 

 

The bone segmentation mean test dice scores with corresponding CI95 were 98.0% ± 0.32%, 

98.0% ± 0.26%, and 96.4% ± 0.70% for the femur, tibia, and patella respectively. These were a 

0.8%, 0.7%, and 0.4% improvement over the respective mean test dice scores in our previous  

study99. The bone segmentation mean test MSTP distance errors with corresponding CI95 were 

0.406 ± 0.051 mm, 0.390 ± 0.047 mm, and 0.370 ± 0.055 mm for the femur, tibia, and patella 

respectively. These were a 0.044 mm, 0.18 mm, and 0.14 mm improvement over the respective 

mean MPTS distance errors in our previous study99.  

 

The cartilage segmentation mean test dice scores with corresponding CI95 were 90.0% ± 0.74%, 

88.6% ± 1.3%, and 85.7% ± 2.5% for the femoral, tibial, and patellar cartilage respectively. The 

cartilage segmentation mean test MPTS distance errors with corresponding CI95 were 0.247 ± 

0.021 mm, 0.223 ± 0.036 mm, and 0.555 ± 0.194 mm for the femoral, tibial, and patellar 

cartilage respectively. 
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The cartilage segmentation results were further validated in a previous study20 beyond the 28 

patients in the test set by calculating the cartilage thickness of 4,129 patients with corresponding 

manual cartilage thickness measurements for the femur and tibia. Fig. 4.5 shows representative 

slices of the 3D bone and cartilage segmentation results from three different patients along with 

their respective MR images with the mean MPTS distance errors over the entire volume. The 

pixels in agreement between the trained segmentation model inference and the ground truths are 

labeled as green, representing the true positive cases. The two types of model error, false 

positives, where the segmentation misclassified non-bone or non-cartilage regions and false 

negatives, where the model missed the existing bone or cartilage, are highlighted as cyan and 

magenta respectively. 
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Fig. 4.5. Examples of bone and cartilage segmentation errors for three patients from the 
respective bone and cartilage segmentation test sets. Representative slices of the 3D bone and 
cartilage segmentation are shown along with their respective 3D-DESS images with the mean 
MPTS distance errors over the entire volume. The pixels in agreement between the trained 
segmentation model inference and the ground truths are labeled as green, representing the true 
positive cases. The two types of model error, false positives, where the segmentation 
misclassified non-bone or non-cartilage regions and false negatives, where the model missed the 
existing bone or cartilage, are highlighted as cyan and magenta respectively. (A, B) Bone 
segmentations and corresponding 3D-DESS slices for the three patients show minor errors along 
the articular bone surface for all three bones. The errors present can be observed along the 
femoral and tibial shaft, as well as the distal facet of the patella. (C, D) Cartilage segmentations 
and corresponding 3D-DESS slices shown for three different patients shows diffuse 
segmentation errors along the cartilage. Both of these errors are likely caused by signal 
heterogeneity and partial voluming effects. Only the articular bone surface was sampled during 
the spherical transformation, reducing the effect of certain bone segmentation errors along the 
shaft and intercondylar notch on the overall results. 
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4.4.2 Spherical transformation validation 

The spherical transformation method was validated over the dataset for both the average 

cartilage thickness and the average cartilage T2 time values for each bone. Fig. 4.6 shows Bland-

Altman plots comparing the original average values of cartilage thickness and cartilage T2 values 

to the spherically transformed average values for each bone. The differences between the average 

biomarker values were calculated using the original average values as a reference, by subtracting 

the original average values from the average spherical values for each biomarker. Most 

differences for the average cartilage thickness ranged from -0.051 to 0.216 mm for the femoral 

cartilage, from 0.039 to 0.410 mm for the tibial cartilage, and from -0.14 to 0.35 mm for the 

patellar cartilage. These average cartilage thickness deviations between the original and 

spherically transformed average data are within the in-plane pixel resolution for the 3D-DESS 

volumes. Most differences for the average cartilage T2 values ranged from -5.37 to 4.67 ms for 

the femoral cartilage, from -2.79 to 3.95 ms for the tibial cartilage, and from -6.27 to 3.27 ms for 

the patellar cartilage. Overall, the spherical transformation was accurate at preserving the 

biomarkers at most regions of the articular surface of each bone. 
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Fig. 4.6 Bland-Altman plots comparing the original average values of cartilage thickness and 
cartilage T2 to the spherically transformed average values for each bone. The differences between 
the average biomarker values were calculated using the original average values as a reference, by 
subtracting the original average values from the average spherical values for each biomarker. The 
solid black line represents the zero difference. The solid gray line represents the mean difference 
and the dashed gray lines represent two standard deviations above or below the mean. (A) 
Differences between average spherical cartilage thickness and average original cartilage thickness 
for the femur. (B) Differences between average spherical cartilage thickness and average original 
cartilage thickness for the tibia. (C) Differences between average spherical cartilage thickness and 
average original cartilage thickness for the patella. (D) Differences between average cartilage T2 
values and average original cartilage T2 values for the femur. (E) Differences between average 
cartilage T2 values and average original cartilage T2 values for the tibia. (F) Differences between 
average cartilage T2 values and average original cartilage T2 values for the patella. 
 

4.4.3 OA diagnosis models 

The test ROC curve results, defined as the sensitivity, the specificity, and AUC for the binary 

OA diagnosis models, along with their respective CI95, are summarized in Table 4.3. The ROC 

metrics are given for each single biomarker and biomarker fusion OA diagnosis models for each 

bone, as well as the softmax averaging ensembled results across the tibia and femur (TF), and all 

three bones (PTF). The single biomarker OA diagnosis models had an average test AUC with 
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standard deviation of 86.4 ± 0.09, with a sensitivity and specificity of 70.9 ± 0.2 and 86.0 ± 0.1 

respectively. The biomarker fusion OA diagnosis models had a test AUC with standard deviation 

of 87.9 ± 0.1, with a sensitivity and specificity of 73.2 ± 0.2 and 86.1 ± 0.1 respectively. On 

average, the sensitivity, specificity and AUC improved from the single biomarker models to the 

biomarker fusion models. 

 

Table 4.3 Bootstrapped (n=100) test set OA diagnosis ROC performance for all six biomarker 
models per bone, as well as two different ensembles across the bones. Sensitivity, specificity, and 
AUC values are shown respectively, along with their corresponding 95% confidence intervals. The 
best performances per bone and ensembling strategy are bolded. PTF = Patella + Tibia + Femur 
ensemble. TF = Tibia + Femur ensemble 

Biomarker 
Type 

Biomarker 
Model 

Test Set ROC (Sensitivity/Specificity/AUC) (Mean ± CI95) 
Patella Tibia Femur PTF TF 

Single 

Cartilage T2 
67.5 ± 0.18 
73.9 ± 0.16 
77.6 ± 0.12 

70.0 ± 0.20 
85.3 ± 0.12 
86.0 ± 0.10 

75.5 ± 0.16 
81.5 ± 0.14 
86.0 ± 0.10 

77.2 ± 0.15 
87.5 ± 0.12 
89.9 ± 0.08 

75.6 ± 0.17 
86.5 ± 0.12 
89.2 ± 0.08 

Cartilage 
Thickness 

68.1 ± 0.17 
72.7 ± 0.16 
77.0 ± 0.12 

68.5 ± 0.20 
86.7 ± 0.12 
85.5 ± 0.10 

69.4 ± 0.19 
90.9 ± 0.09 
89.0 ± 0.08 

73.7 ± 0.17 
90.8 ± 0.10 
90.6 ± 0.08 

72.3 ± 0.19 
91.2 ± 0.09 
90.3 ± 0.07 

Bone Shape 
62.2 ± 0.20 
81.2 ± 0.13 
78.3 ± 0.11 

67.0 ± 0.19 
91.6 ± 0.09 
87.9 ± 0.09 

73.1 ± 0.16 
86.3 ± 0.10 
88.5 ± 0.08 

71.2 ± 0.17 
91.9 ± 0.10 
89.9 ± 0.08 

72.4 ± 0.16 
91.5 ± 0.10 
90.4 ± 0.08 

Fusion 

Morphological 
Cartilage 

and Bone Fusion 

55.3 ± 0.19 
88.0 ± 0.11 
80.8 ± 0.10 

71.7 ± 0.17 
89.6 ± 0.09 
89.6 ± 0.08 

72.5 ± 0.17 
90.0 ± 0.10 
90.1 ± 0.07 

72.9 ± 0.17 
93.1 ± 0.09 
91.7 ± 0.07 

74.3 ± 0.16 
92.6 ± 0.09 
91.8 ± 0.07 

Morphological 
and 

Compositional 
Cartilage Fusion 

67.0 ± 0.18 
76.7 ± 0.14 
78.5 ± 0.12 

78.0 ± 0.16 
76.8 ± 0.14 
86.1 ± 0.09 

75.0 ± 0.17 
83.6 ± 0.12 
87.7 ± 0.08 

78.6 ± 0.17 
85.4 ± 0.11 
89.5 ± 0.09 

78.6 ± 0.16 
83.2 ± 0.13 
89.5 ± 0.08 

All Biomarkers 
Fusion 

64.3 ± 0.17 
83.0 ± 0.13 
81.0 ± 0.11 

76.4 ± 0.16 
86.0 ± 0.12 
89.8 ± 0.07 

76.3 ± 0.13 
85.5 ± 0.12 
89.2 ± 0.09 

78.2 ± 0.16 
89.6 ± 0.10 
91.7 ± 0.07 

78.8 ± 0.16 
87.7 ± 0.12 
91.7 ± 0.07 

 

The results of the biomarker fusion OA diagnosis models were compared to the results of the 

single biomarker OA diagnosis models using pairwise McNemar’s tests. The McNemar’s test 

calculates the probability that the performance of two binary classifiers is different, based on the 

proportion of misclassification errors, both false positives and false negatives. The pairwise 
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McNemar’s tests were performed for every combination of single biomarker and biomarker 

fusion models, as well as their ensembled performance, as shown in Table 4.4. For the 

morphological cartilage and bone fusion, consisting of the bone shape and cartilage thickness 

biomarkers, all the biomarker fusion OA diagnosis models per bone, as well as the ensembled 

models across bones, were different from the single biomarker OA diagnosis models, with the 

exception of the cartilage T2 and bone shape models on the tibia. For the morphological and 

compositional cartilage fusion, consisting of the superficial and deep cartilage T2 and the 

cartilage thickness biomarkers, there was a difference for the cartilage T2 models on the tibia, 

femur, and TF models. There was also a difference for the cartilage thickness model on the TF 

model. Finally, there was a difference observed for the bone shape model on the tibia model. For 

the all biomarkers fusion, consisting of the cartilage T2, cartilage thickness and bone shape 

biomarkers, the biomarker fusion OA diagnosis models per bone, as well as the ensembled 

models, were all different from the single biomarker OA diagnosis models, with the exception of 

the cartilage T2 and bone shape models on the tibia, the cartilage thickness and bone shape 

models on the femur, and the bone shape model on the TF model. 

 

Table 4.4 McNemar’s test p-values between the single biomarker and the biomarker fusion 
strategies based on the test set ROC performance. Bold p-values are significant (p-values < 
0.05). T2 = Cartilage T2 biomarker model. Thk = Cartilage Thickness biomarker model. Bone = 
Bone Shape biomarker model. PTF = Patella + Tibia + Femur ensemble. TF = Tibia + Femur 
ensemble 

Biomarker Fusion 
Model 

Patella (p-values) Tibia (p-values) Femur (p-values) PTF (p-values) TF (p-values) 
T2 Thk Bone T2 Thk Bone T2 Thk Bone T2 Thk Bone T2 Thk Bone 

Morphological 
Cartilage 

and Bone Fusion 
1e-4 4e-3 1e-4 0.06 1e-4 0.98 1e-4 1e-4 1e-3 1e-4 1e-4 1e-4 1e-4 1e-4 7e-3 

Morphological and 
Compositional 

Cartilage Fusion 
0.23 0.12 0.44 0.04 0.40 1e-4 1e-3 0.94 0.87 0.21 0.61 0.78 4e-3 0.02 0.90 

All Biomarkers 
Fusion  

1e-4 4e-3 1e-4 0.08 1e-4 0.98 0.03 0.36 0.23 1e-4 1e-4 1e-4 0.01 0.05 1.0 
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4.5 Discussion 

In this study, we established a biomarker fusion spherical encoding method and applied it to 

diagnosing knee OA. The model generates spherical maps of OA imaging biomarkers for the 

femur, tibia, and patella to diagnose radiographic knee OA. This model is novel for radiographic 

knee OA diagnosis using solely a combination of three clinically relevant biomarkers, bone 

shape, and cartilage thickness and cartilage T2 relaxation time values.  

 

Classical approaches used to analyze MMRI data generally either reduce the multimodal data 

dimensionality by aggregating a priori imaging biomarkers100, or register the original 

multimodal data to a reference atlas prior to voxel-based statistical analysis101. The first approach 

improves the model interpretability while reducing the data granularity, which limits its potential 

findings due to the loss of more subtle, local biomarker interactions. The latter approach suffers 

from the challenge inherent in registering different modalities, such as nonrigid geometric 

deformation and data interpolation. Furthermore, both approaches typically rely on linear 

regression methods for the data analysis, which miss the more complex nonlinear relationships 

within the data. 

 

Deep learning approaches address both these issues by learning nonlinear representations of raw 

data with multiple levels of abstraction, utilizing the fact that many natural image patterns are 

compositional hierarchies, meaning higher-level features can be decomposed into lower-level 

feature representations83. However, deep learning-based, fully data-driven approaches to MMRI 

can suffer from model overfitting, due to the large number of parameters needed to describe each 
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modality, as well as the common lack of labeled training data in MMRI studies. Our proposed 

framework, combines the benefits of classical feature handcrafting and deep learning 

approaches, while avoiding their respective shortcomings of loss of data granularity and reduced 

interpretability. By exploiting a priori clinical information to define the imaging biomarkers, the 

multimodal data dimensionality can be drastically reduced compared to a fully data-driven 

approach while still retaining enough data for the analysis. Furthermore, the ability of the 

proposed framework to directly colocalize MMRI biomarkers within a single image 

representation can leverage the power of CNNs to extract local semantic features arising from 

interactions between each biomarker. 

 

It is worth nothing that the purpose of the framework was not to achieve the highest predictive 

performance diagnosing OA, but rather to evaluate the individual and combined effect of the 

biomarkers in the presence of radiographic OA. Given the multifactorial nature of OA, the study 

of biomarker crosstalk at different stages of the disease, such as the longitudinal relationship 

between cartilage thickness and subchondral bone shape, is of great clinical interest. The 

proposed framework can help identify individual as well as combined contributions of each 

biomarker to better understand the etiology of OA and help define unique OA phenotypes. 

 

While this spherical encoding method is highlighted in musculoskeletal imaging with knee OA, 

it can be extended to other clinical challenges in cancer, cardio and neuroimaging. The spherical 

transformation is based on the assumption that structures of interest are spheroidal, which is the 

case for the femur, tibia, and patella in the knee. There are also numerous spheroidal structures in 
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the human body such as the brain, liver, heart, and even tumors, for which this technique can be 

applied. In the particular case of neuroimaging, morphological biomarkers like the cortical 

thickness and subcortical volume of the brain have been linked to neurodegenerative disorders 

such as Alzheimer’s disease102,103. The method proposed by this study could be adapted to such 

an application, provided there is a cortical brain segmentation, and combined with other 

functional imaging biomarkers in the brain cortex from modalities like fMRI. Such an 

application could yield interesting studies looking at the spatiotemporal relationship between 

these morphological and functional imaging biomarkers throughout the disease onset and 

development. 

 

Although this study brings new insights on the role of deep learning for MMRI biomarker fusion, 

some limitations need to acknowledged. One of the limitations of the study is the use of 

radiographic OA based on KL grading as the clinical definition for OA. Radiographic OA 

measures changes such as tibiofemoral, or joint space, narrowing and osteophyte formation, 

which occur at more advanced OA stages. This affects the efficacy of using compositional 

biomarkers such as cartilage T2 relaxation times which measure early changes that precede the 

onset of radiographic OA. Additionally, since the KL grading is performed on a frontal knee 

radiograph, only tibiofemoral OA is considered in the diagnosis and the impact of patellofemoral 

OA is not included in the grading, which is reflected in the comparatively lower performance for 

the patella OA diagnosis models. Finally, the computational time required to process the large-

scale multimodal data into the spherical maps is another limiting factor, with the full processing 

of the dataset lasting a week. For future directions, the use of visualization tools, such as Grad-

CAM59, could characterize different biomarker phenotypes for OA diagnosis. An occlusion study 
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using Grad-CAMs to understand which anatomical regions in each bone contribute the most to a 

future OA diagnosis could shed light on the complex etiology of OA. 
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Chapter 5: Uncovering Associations Between Data-Driven Learned qMRI 

Biomarkers and Chronic Pain 

5.1 Abstract 

Knee pain is the most common and debilitating symptom of knee OA. While there is a perceived 

association between OA imaging biomarkers and pain, there are weak or conflicting findings for 

this relationship. This study uses Deep Learning (DL) models to elucidate associations between 

bone shape, cartilage thickness and T2 relaxation times extracted from MRI and chronic knee 

pain. Grad-CAM applied on the trained chronic pain DL models are used to evaluate the 

locations of features associated with presence and absence of pain. For the cartilage thickness 

biomarker, the presence of features sensitive for pain presence were generally located in the 

medial side, while the features specific for pain absence were generally located in the anterior 

lateral side. This suggests that the association of cartilage thickness and pain varies, requiring a 

more personalized averaging strategy. We propose a novel DL-guided definition for cartilage 

thickness spatial averaging based on Grad-CAM weights. We showed a significant improvement 

modeling chronic knee pain with the inclusion of the novel biomarker definition: likelihood ratio 

test p-values of 7.01x10-33 and 1.93x10-14 for DL-guided cartilage thickness averaging for the 

femur and tibia, respectively, compared to the cartilage thickness compartment averaging. 

 

5.2 Introduction 

Knee pain is the most prominent and debilitating symptom of knee OA, a degenerative joint 

disease which affects over 13% of U.S. adults1. Notably, knee pain affects up to 7.3% of the total 

US population over 25 years of age, and the costs of medical care and loss of productivity are 
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rising104. The development of OA involves all joint tissues and is characterized by changes in the 

cartilage and bone. Given the lack of noninvasive treatment options to reverse the progression of 

structural joint degeneration, the medical care of OA has shifted to symptomatic pain 

management in a clinical setting105,106. While there is a widely perceived association of structural 

joint change with pain, previous studies linking OA imaging biomarkers to the presence of knee 

pain have not yet verified a strong correlation11,56,107,108. 

 

The sources of OA-related knee pain are not yet fully understood, with tissues such as bone and 

cartilage implicated through direct and indirect mechanisms. In particular, the aneural nature of 

cartilage obfuscates its involvement in the pain process, with surrounding tissue interactions 

being proposed as the source of pain109. Structurally, OA pathogenesis is marked by progressive 

degradation of the cartilage extracellular matrix, with early-stage changes including cartilage 

hydration, proteoglycan loss, and disruption of collagen. This process can be observed using 

quantitative Magnetic Resonance Imaging (qMRI) through imaging biomarkers such as T2 

relaxation time101. Late-stage OA is characterized by cartilage dehydration and structural 

breakdown, which results in measurable cartilage thickness loss on high resolution 3D MRI21. 

Alongside these cartilage changes, remodeling also occurs in the trabecular and subchondral 

bone, which can be observed with MRI-derived bone shape measurements14. Some early bony 

changes such as bone marrow lesions (BML) can predate cartilage degeneration, while presence 

of large osteophytes can act as a measure of advanced OA severity110.  

 



76 
 

These imaging biomarkers (cartilage T2, cartilage thickness and bone shape) have been 

classically extracted through compartment averaging, with femur, tibia, and patella divided into 

two or more functional regions94,111. This is an intuitive approach, given the prevalence of medial 

OA observed in patient populations, and there is particular emphasis placed in the medial 

compartment when conducting quantitative analysis of these biomarkers. While predictive 

models built with these imaging biomarker definitions tend to be interpretable, they suffer from 

decreased data granularity and statistical power. Furthermore, the discordance between OA-

related imaging biomarkers and knee pain suggests that this methodology could be too reductive 

for a complex and multifactorial disease such as OA. 

 

The advent of supervised feature learning and deep CNN architectures in medical image 

diagnostic tasks shows promising results in fully exploiting the image information by learning 

the most relevant data representation for the specific task considered70–72. However, the use of 

deep learning (DL) methods involve a tradeoff between model interpretability and performance, 

with classical rule-based expert systems112 and regression models being highly interpretable but 

not as accurate. In the last few years, a renewed focus on DL model interpretability has produced 

explanatory techniques such as linear proxy models, decision trees, and saliency mapping57,58. 

These approaches attempt to understand the DL model performance by approximating CNNs to 

linear models, decomposing CNNs into decision trees, or systematically perturbing the inputs to 

discover the effect on the outputs. Saliency mapping in particular, has the benefit of being 

scalable by directly probing the gradients in a neural network to generate visualizations of local 

decision-making importance for a specific input image. Among these, Grad-CAM has the added 

benefit being class-discriminative by using the gradient information flowing into the last 
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convolutional layer of the CNN to understand each neuron for a decision of interest59. The 

resulting class-specific saliency map can be visualized as a heat map of location importance 

overlaid on the input image. Grad-CAM strikes a balance between emphasizing input image 

regions of high network activation, where neurons fire strongest, and input image regions of high 

network sensitivity, where changes would most affect the decision. 

 

This study aims to uncover latent relationships between chronic knee pain and three MRI-based 

OA imaging biomarkers; cartilage T2, cartilage thickness and bone shape by explaining CNN 

decisions using Grad-CAM. As a secondary aim, we propose a novel DL-guided and 

personalized definition of cartilage thickness compartment averaging based on Grad-CAM 

activations. We hypothesize these DL-guided imaging biomarkers will better explain chronic 

knee pain over classically extracted image biomarkers through a priori defined compartment 

averaging. 

 

5.3 Methods 

5.3.1 Aim and study overview 

This study uses three known OA quantitative MR imaging biomarkers: bone shape, cartilage 

thickness and T2 relaxation times, to train OA-related chronic knee pain classification models. It 

then leverages the trained models to determine the spatial averaging weights for each biomarker 

that are most correlated to chronic knee pain classification. In the next paragraph we present an 

overall study overview, with all the steps explained in detail in the subsequent sections. 
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First, the biomarkers are extracted from the knee MRI dataset by using two automatic 

segmentation models for the femur, tibia, and patella bones and corresponding cartilage. The 

cartilage thickness and T2 relaxation times are then calculated from the cartilage segmentations 

while the bone shape is calculated from the bone segmentations. The three biomarkers are 

projected into the surface of the femur, tibia, and patella bones and transformed into spherical 

coordinates to obtain 2D images. Six different strategies were performed to merge biomarker 

spherical maps for each bone. Each of the six strategies for each bone was used to train 

individual chronic knee pain classification models, which were pretrained to classify 

radiographic OA, for a total of 18 models. Grad-CAM interpretation spherical maps of the entire 

hold out test set for all chronic knee pain models were inverted to the original bone surfaces and 

harmonized to a single atlas. Local group analysis of the two true predictive groups, true 

positives and true negatives, were compared to assess the local spatial difference in pain features 

for each group using a statistical parametric mapping technique. Two cartilage thickness 

averages were obtained using classically identified clinical compartments and using the Grad-

CAM for each patient as a local weighting factor of the averaging (DL-guided). Logistic 

regression models were then used to compare the associations of DL-guided OA quantitative 

imaging biomarkers and a priori clinical compartments average biomarkers to chronic knee pain. 

 

5.3.2 Imaging dataset 

The details of the patient imaging dataset can be found on section 3.3.2. 
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5.3.3 Clinical outcome definition 

Chronic pain labels were defined using clinical data from the OAI available for a subset of the 

patients. The chronic pain label was defined as patient timepoints which reported a knee pain, 

aching, or stiffness more than half of the days of a month for more than six months of the past 12 

months. The no chronic pain label was defined as patient timepoints which did not report any 

knee pain, aching, or stiffness in the past 12 months. To control for nonspecific sources of pain 

outside of the knee, we excluded patients showing the presence of wide-spread pain syndrome, 

defined as reported pain concurrently in above-waist joints (shoulder, elbow, wrist, hand), 

below-waist joints (hip, knee, ankle, and foot), and axial joints (back and neck) for more than 

half of the days in the previous 30 days107. This localized definition of chronic pain focuses on 

pain symptoms lasting for months compared to shorter term clinical pain definitions such as the 

Western Ontario and McMaster Universities Osteoarthritis Index113 (WOMAC) scores and the 

Knee injury and Osteoarthritis Outcome Score114 (KOOS), which focus on the previous seven 

days. OA and its detectable imaging features may be more likely in patients who consistently 

reported pain within a yearlong period107,115. 

 

5.3.4 Patient inclusion 

The three main criteria for inclusion of a knee image volume from a specific patient timepoint in 

this cross-sectional study were the existence of a KL grade, a chronic pain label, and matching 

3D-DESS and 2D-MSME image volumes. Starting with a total of 47,078 3D-DESS image 

volumes, 261 image volumes were excluded due to poor inference quality from the bone and 

cartilage segmentation models (defined as a segmentation volume outside of three standard 
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deviations from the mean training segmentation), 22,464 image volumes from left patient knees 

were excluded due to absence of 2D-MSME for left knee image volumes, 3,235 image volumes 

were excluded due to missing KL grades for the visit, and 13,681 image volumes were excluded 

following exclusion criteria of the chronic pain definition described above. This selection 

resulted in 7,437 cross-sectional timepoints from 3,067 unique patients. The patient selection 

flowchart is summarized in Fig. 5.1. 

 

Fig. 5.1 The inclusion criteria for a knee image volume from a specific patient timepoint in this 
cross-sectional study. The three main criteria were the existence of a KL grade, a chronic pain 
label, and matching 3D-DESS and 2D-MSME image volumes, which resulted in 7,437 cross-
sectional timepoints from 3,067 unique patients. 
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5.3.5 Bone and cartilage segmentation 

The details of the bone and cartilage segmentation can be found on section 4.3.4. 

 

5.3.6 Morphometry 

The details of the morphometry can be found on section 4.3.5. 

 

5.3.7 Relaxometry 

The details of the relaxometry can be found on section 4.3.6. 

 

5.3.8 Bone surface projection 

The details of the bone surface projection can be found on section 4.3.7. 

 

5.3.9 Spherical transformation 

The details of the spherical transformation can be found on section 4.3.8. 

 

5.3.10 Chronic pain model training 

A total of 18 binary classification models, one for each biomarker strategy per bone, were trained 

to extract biomarker features from the spherical biomarker representations and use them to 
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predict chronic knee pain (Supp. Fig. C.1). Each chronic pain model was trained using 7,437 

spherical images divided into 4,029 training images, 1,257 validation images and 2,151 test 

images, with no patient overlap across splits. To test the independence of demographic factors 

(sex, age, BMI) for the chronic pain cases across splits, two different statistical tests were 

performed. The independence of sex was tested with a Pearson’s χ2 test while the independence 

of age and BMI was tested with a one-way MANOVA. Table 5.1 summarizes the training, 

validation and test set splits for the segmentation and classification models, along with the p-

values of the statistical tests showing independence of demographic factors. 

 

The chronic pain prediction models were pretrained on an OA classification task. There were 

21,118 cross-sectional timepoints from 4,416 unique patients. The KL grade distribution 

consisted of 8,103 (KL=0), 3,972 (KL=1), 5,335 (KL=2), 2,897 (KL=3) and 811 (KL=4). The 

KL grades represent no OA (KL=0), minimal/doubtful OA (KL=1), mild OA (KL=2), moderate 

OA (KL=3), and severe OA (KL=4). For the purposes of this study, KL grades of 0 and 1 were 

determined to be healthy while KL grades of 2, 3, and 4 are considered to be OA. 

 

This study evaluated three types of Resnet38 architectures with 18, 34, and 50 layers (Resnet18, 

Resnet34, Resnet50) with a binary class output. The Resnet18 and Resnet34 architecture consists 

of stacked building blocks of two convolutional layers with a 3x3 convolutional filter size, while 

the Resnet50 architecture follows the pattern of three convolutional layers with a 1x1, 3x3, and a 

1x1 convolutional filter size respectively. For all architectures, each convolutional layer is paired 

with batch normalization and a rectified linear unit activation function. 
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Model training optimization for all 18 models was performed using the training and validation 

splits with two different learning rates (1x10-4 and 1x10-5), three types of Resnet (Resnet18, 

Resnet34, Resnet50), three initialization strategies (Random82, ImageNet, OA), and four variants 

of layer freezing during training (first layer, first two layers, all layers, no layers), for a total of 

612 combinations. The model optimization was performed with Adam optimizer for 100 epochs 

with an early stopping 15-epoch patience for validation loss non-improvement over the best 

validation loss reached. The models were trained end to end using a class-weighted binary cross 

entropy loss, based on the class imbalance, with a batch size of 300. The test set was held out for 

each model during training optimization and the test performance was evaluated just once for the 

optimal 18 models. 

 

Table 5.1 Training, validation, and test splits information for the segmentation and classification 
models. Demographic factors were controlled by testing for statistical independence across the 
splits using a Pearson’s χ2 test for the categorical sex variable and a one-way MANOVA for the 
joint effect of age and BMI. Bold p-values are significant (p-value < 0.05). 

 

 

Task Model Training 
(cases) 

Validation 
(cases) 

Test 
(cases) 

Cases 
ratio 

χ2 test 
correlation  

(sex) (p-values) 

MANOVA one-
way correlation  

(age|BMI)         
(p-values) 

Segmentation 
Bone 57       

(29) 
15            
(8) 

30    
(16) 0.520 0.745 0.413 

Cartilage 118   
(114) 

28          
(28) 

28    
(28) 0.977 0.156 1x10-4 

Classification 
OA 12,634 

(5,402) 
2,558 

(1,111) 
5,926 

(2,530) 0.428 0.121 0.190 

Chronic 
Pain 

4,029 
(1,324) 

1,257   
(411) 

2,151 
(713) 0.329 0.179 0.0848 
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5.3.11 Grad-CAM model interpretation for imaging biomarker discovery 

The overreaching goal of this study is to uncover associations between quantitative MR imaging 

biomarkers and chronic knee pain. We used the Grad-CAM model interpretation technique to 

obtain a class discriminative localization map for each prediction. We first compute the gradient 

of the class of interest (before the softmax function) with respect to feature maps of the last 

convolutional layer in the Resnet. These gradients flowing back are global average-pooled to 

obtain the neuron importance weights for the target class. A heat map of location importance is 

then up sampled to match the image size and overlaid on the input image. 

 

We leveraged the invertible property of our spherical transformation method to generate articular 

surface importance heat maps for model interpretation for each bone and for each single 

biomarker. This process was performed on every patient in the hold out test set (n = 2,151) and is 

illustrated for the femur on Fig. 5.2. 

 

The vertices of a reference bone surface, selected to match the average demographic distribution 

of the test set, were mapped on all the bone surfaces in the test set using a fully automatic 

landmark-matching algorithm. The strategy used in this study was based on the one proposed by 

Lombaert, H. et al116. The maximum and minimum local curvatures were used for coupling 

homologous points on two surfaces. Both these features were locally defined on the surfaces and 

used to identify the landmark matching solved using Coherent Point Drift117. After the landmark 

matching procedure, with the heat maps in the same reference space, localized group analysis 

was performed to compare the true positive (TPPain) and true negative (TNNoPain) model 
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predictions for each single biomarker. Local Statistical Parametric Mapping (SPM) was 

performed on these two groups to assess differences in location of important features significant 

for presence of pain (TPPain) or specific for absence of pain (TNNoPain). Point-by-point SPM was 

performed using ANOVA group comparison considering age, sex and BMI as confounding 

factors. 

 

An ad-hoc analysis was then performed to compare the ability to explain chronic knee pain 

between cartilage thickness imaging biomarkers averaged using clinical compartments and a 

novel DL-guided definition based on weight averaging of the cartilage thickness with the scaled 

values of Grad-CAM as weights. Two logistic regression models were built to predict chronic 

knee pain, both with age, BMI, sex, and clinical compartment cartilage thickness averages, and 

one with DL-guided cartilage thickness averages. The performance of the nested models was 

compared using a likelihood ratio χ2 test to determine the significance of the improvement of 

adding the DL-guided cartilage thickness averages. The linearity of the regression models and 

simplification of the analysis was used to compare the associations with pain of the classical and 

DL-guided biomarkers, instead of identifying nonlinear associations between the biomarkers and 

pain. 
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Fig. 5.2 We used the Grad-CAM model interpretation technique to obtain a class discriminative 
localization map for each prediction. We first computed the gradient of the class of interest 
(before the softmax function) with respect to feature maps of the last convolutional layer in the 
Resnet. These gradients flowing back are global average-pooled to obtain the neuron importance 
weights for the target class. A heat map of location importance is then up sampled to match the 
image size and overlaid on the input image. We then leveraged the invertible property of our 
spherical transformation method to generated articular surface importance heat maps for model 
interpretation for each bone and for each single biomarker. This process was performed on every 
patient in the hold out test set (n = 2,151) and is illustrated for the femur. 

 

5.4 Results 

5.4.1 Chronic pain model performance 

The results of the model optimization were evaluated using the validation sensitivity, specificity, 

and AUC as well as the coefficient of variation of the validation AUC, as a measure of training 

smoothness. Supp. Fig. C.2 summarizes the optimization results for the best performing models 

for each initialization strategy. The OA pretrained Resnet50 models consistently outperformed 

the randomly initialized models and exhibited smoother validation AUC than the ImageNet 

pretrained models. The model optimization informed the global selection of a Resnet50 

pretrained to predict OA and fine-tuned to predict chronic pain for all 18 models, with the 

individual selection of the optimal learning rate and layer freezing for each model.  



87 
 

 

The test ROC curve results, defined as the sensitivity, the specificity, and AUC for the binary 

pretraining OA diagnosis task models, along with their respective 95% CI, are summarized in 

Table 4.3. The ROC metrics are given for each single biomarker and biomarker fusion 

pretraining OA diagnosis task models for each bone, as well as the ensembled averaged 

performance across all bones. The test sensitivity, specificity, and AUC respectively, ranged 

from 67.5 ± 0.2, 73.9 ± 0.2, and 77.6 ± 0.1 to 72.5 ± 0.2, 90.0 ± 0.1, and 90.1 ± 0.1. The bone 

shape model was the best performing single biomarker model for all bones. The femur 

biomarkers were the best performing models, followed by the tibia and the patella biomarker 

models. 

 

For the chronic knee pain models, based on the results of the model optimization, the best model 

combination consisted of Resnet50 with OA pretraining, which were used for the test results. 

The test sensitivity, specificity, and AUC respectively, ranged from 57.9 ± 0.3, 70.6 ± 0.3, and 

68.0 ± 0.2 to 53.0 ± 0.4, 83.8 ± 0.2, and 74.1 ± 0.2. The test performance followed a similar trend 

to the OA pretraining task, with the bone shape models outperforming the other single biomarker 

models for all bones.  The performance across each bone also followed the decreasing trend of 

femur to tibia to patella. The cartilage T2 models had a more balanced performance and higher 

sensitivity compared to the bone shape and cartilage thickness models, which tended to be more 

specific to chronic pain. Most models tended to be more specific than sensitive to chronic pain, 

and biomarker fusion models showed increased performance compared to the single biomarker 

models. The full test ROC results, defined as the sensitivity, the specificity, and AUC for the 

binary chronic pain models, along with their respective 95% CI, are summarized in Table 5.2. 
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The ROC metrics are given for each single biomarker and biomarker fusion chronic pain models 

for each bone, as well as the ensembled averaged performance across all bones. 

 

Table 5.2 Bootstrapped (n=100) test set chronic pain ROC performance for all six biomarker 
models per bone, as well as an average ensemble across all bones. Sensitivity, specificity, and 
AUC values are shown respectively, along with their corresponding 95% confidence intervals. 
The best performances per bone and ensemble are bolded. PTF = Patella + Tibia + Femur 
ensemble. 

Biomarker 
type 

Biomarker 
model 

Test set ROC (sensitivity/specificity/AUC) (mean ± 95% CI) 

Patella Tibia Femur PTF 

Single 

Cartilage T2 
60.0 ± 0.354   
69.5 ± 0.246   
69.7 ± 0.238 

51.4 ± 0.380    
78.4 ± 0.219   
71.1 ± 0.241 

64.8 ± 0.345   
66.9 ± 0.246   
72.4 ± 0.250 

62.6 ± 0.317   
74.1 ± 0.206   
74.7 ± 0.216 

Cartilage 
thickness 

57.9 ± 0.324   
70.6 ± 0.256   
68.0 ± 0.232 

51.7 ± 0.366   
80.4 ± 0.208   
71.9 ± 0.246 

57.1 ± 0.398   
77.4 ± 0.206   
72.9 ± 0.236 

56.3 ± 0.360   
79.1 ± 0.185   
73.8 ± 0.241 

Bone shape 
54.4 ± 0.361   
77.3 ± 0.214   
69.3 ± 0.248 

52.2 ± 0.369   
82.3 ± 0.198   
73.1 ± 0.225 

57.7 ± 0.389   
78.3 ± 0.221   
73.5 ± 0.240 

56.9 ± 0.339   
81.7 ± 0.195   
74.3 ± 0.206 

Fusion 

Morphological 
bone and 

cartilage fusion 

63.3 ± 0.365   
69.7 ± 0.229   
71.8 ± 0.235 

53.0 ± 0.389   
83.8 ± 0.170   
74.1 ± 0.223 

51.4 ± 0.333   
81.1 ± 0.205   
72.9 ± 0.218 

55.4 ± 0.335   
82.5 ± 0.192   
75.4 ± 0.228 

Morphological 
and 

compositional 
cartilage fusion 

59.9 ± 0.381   
65.2 ± 0.265   
68.9 ± 0.265 

48.4 ± 0.367   
81.2 ± 0.202   
70.8 ± 0.237 

52.3 ± 0.355   
83.0 ± 0.191   
74.0 ± 0.220 

55.8 ± 0.330   
79.5 ± 0.207   
74.7 ± 0.194 

All biomarkers 
fusion 

52.1 ± 0.423   
77.2 ± 0.206   
69.8 ± 0.234 

50.8 ± 0.356   
83.5 ± 0.186   
74.1 ± 0.202 

53.6 ± 0.387   
80.8 ± 0.208   
72.9 ± 0.258 

51.6 ± 0.345   
83.7 ± 0.193   
74.4 ± 0.223 

 

5.4.2 Grad-CAM model interpretation for imaging biomarker discovery 

From the whole test set of 2,151 patients, a total of 137 TPPain cases and 379 TNNoPain cases were 

selected, which consisted of the intersection of the correctly classified cases for all 18 models. 

This intersection, despite the reduction in number of samples, was selected over choosing 
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different sets for each model in an attempt to perform an analysis that could provide a direct 

comparison between the different biomarkers. For the TPPain group, the average and standard 

deviation for the age and BMI was 63.7 ± 8.5 and 31.2 ± 4.9 respectively, with 61 male and 76 

female patients. For the TNNoPain group the average and standard deviation for the age and BMI 

was 60.7 ± 9.7 and 25.5 ± 4.0 respectively, with 164 male and 215 female patients. Additionally, 

the race distribution of the TPPain group consisted of 30 Black or African American patients, 103 

white patients and 4 patients with unreported race, while for the TNNoPain group, the race 

distribution consisted of 15 African American patients, 362 white patients and 1 patient with 

unreported race.  

 

Fig. 5.3 shows the results of the Grad-CAM statistical parametric mapping group analysis for 

each single biomarker for all three bones. After landmark matching, average Grad-CAM surfaces 

were generated for each biomarker for the two groups. The first two columns of each subfigure 

show the TPPain and TNNoPain group average maps. In the third column, the results of the local 

SPM analysis are shown as a p-value surface. Fig. 5.3A shows the results of the femur bone. For 

the bone shape feature, similar patterns of elevations were observed in TPPain and TNNoPain. In 

both groups, the majority of the Grad-CAM elevation was co-localized in the anterior medial 

femoral area. High values of these maps are indicative of common patterns in the whole group, 

since Grad-CAM elevations distributed in different locations for each patient would be averaged 

out over the group. Similar patterns in two groups, as it is observed for the femur bone shape 

feature, are indicative of similar location of features being exploited by the model for the 

assessment of both pain presence and absence. 
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In cartilage thickness and T2 imaging biomarkers, the locations of features that were sensitive for 

the presence of chronic pain are distinct from the locations of features that were specific for 

absence of chronic pain. Features sensitive for pain presence are located in the medial femoral 

condyle, while features that are specific for pain absence are located in the anterior femoral area, 

particularly in the trochlea. 

 

Similar relationships were observed for the tibia (Fig. 5.3B), where the location of important 

bone shape features was similar in the two groups. For cartilage thickness, the medial plateau 

was almost exclusively observed as significant for the TPPain group while both the medial and 

lateral plateaus showed importance for the TNNoPain group. The T2 biomarker in the tibia showed 

weak elevations in the group Grad-CAM, which demonstrates scattered peaks on the individual 

maps of patients. 

 

Results on the patella bone and cartilage are shown in Fig. 5.3C. Bone shape biomarker features 

sensitive to the pain were located in the lateral facet, while features specific for absence of pain 

were located in the most inferior aspect of the patella bone. A similar pattern was observed for 

cartilage thickness, with the pattern seemingly inverted for cartilage T2.  

 

Table 5.3 shows the results of the chronic pain logistic regression using demographic factors, 

such as age, sex, and BMI, and the standard cartilage compartment averages compared with the 

same model with the addition of the DL-guided thickness averages. For the femur and tibia, the 
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DL-guided biomarker is a significantly better predictor of the chronic pain outcome, with 

likelihood ratio test p-values of 7.01x10-33 and 1.93x10-14, respectively. 

 

Table 5.3 Logistic regression results for the cartilage thickness biomarker for all bones. The 
demographic factors, such as age, BMI, and sex, are included to the logistic regression models as 
well as the different cartilage thickness averaging methods. The results are shown for the two 
definitions for OA imaging biomarkers, clinical compartment average and DL-guided weighted 
average for the femur, tibia, and patella. LF = Lateral Femur, MF = Medial Femur, MT = Medial 
Tibia, LT = Lateral Tibia, M = Medial, L= Lateral. 

Biomarker Bone Method Variable Estimate Standard 
error P-value Likelihood 

ratio p-value 

Cartilage 
thickness  

(n = 2,151) 

Femur 

Classical: 
clinical 

compartment 
average 

Intercept -3.59 0.621 7.56x10-9 

7.01x10-33 

Age -0.011 5.1x10-3 3.06x10-2 

BMI 0.077 1.01x10-2 1.84x10-14 

Sex -0.193 0.114 9.05x10-2 

LF Thickness -0.582 0.264 2.77x10-2 

MF Thickness 1.289 0.246 1.77x10-7 

Proposed: 
DL-guided 
weighted 
average 

Intercept -2.52 0.645 9.16x10-5 

Age -1.97x10-2 5.36x10-3 2.33x10-4 

BMI 5.14x10-2 1.06x10-2 1.13x10-6 

Sex -8.78x10-2 0.118 0.455 

LF Thickness 2.25 0.364 6.55x10-10 

MF Thickness 2.29 0.268 1.57x10-17 

DL-Thickness -3.66 0.32 2.02x10-30 

Tibia 

Classical: 
clinical 

compartment 
average 

Intercept 0.496 0.638 0.437 

1.93x10-14 

Age -1.81x10-2 5.17x10-3 4.5x10-4 

BMI 0.078 0.01 7.27x10-15 

Sex -0.356 0.106 8.0x10-4 

LT Thickness -0.445 0.182 1.47x10-2 

MT Thickness -0.537 0.15 3.42x10-4 

Proposed: 
DL-guided 

Intercept 0.81 0.65 0.213 

Age -2.11x10-2 5.27x10-3 6.06x10-5 
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Biomarker Bone Method Variable Estimate Standard 
error P-value Likelihood 

ratio p-value 

weighted 
average 

BMI 7.03x10-2 1.02x10-2 4.86x10-12 

Sex -0.387 0.107 3.12x10-4 

LT Thickness 0.289 0.208 0.165 

MT Thickness 0.108 0.173 0.533 

DL-Thickness -1.37 0.184 9.6x10-14 

Patella 

Classical: 
clinical 

compartment 
average 

Intercept 1.21 0.644 6.05x10-2 

0.851 

Age -2.38x10-2 5.33x10-3 8.09x10-6 

BMI 6.64x10-2 1.03x10-2 1.06x10-10 

Sex -0.389 0.105 2.28x10-4 

L Thickness -0.398 0.118 7.12x10-4 

M Thickness -0.424 0.12 3.97x10-4 

Proposed: 
DL-guided 
weighted 
average 

Intercept 1.215 0.645 5.95x10-2 

Age -2.38x10-2 5.33x10-3 7.96x10-6 

BMI 6.63x10-2 1.03x10-2 1.20x10-10 

Sex -0.39 0.106 2.24x10-4 

L Thickness -0.376 0.166 2.39x10-2 

M Thickness -0.401 0.173 2.06x10-2 

DL-Thickness -4.57x10-2 0.243 0.851 
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Fig. 5.3 The vertices of a reference bone surface, selected to match the average demographic 
distribution of the test set, were mapped on all the bone surfaces in the test set using a fully 
automatic landmark-matching algorithm. The maximum and minimum local curvatures were 
used for coupling homologous points on two surfaces. Both these features were locally defined 
on the surfaces and used to identify the landmark matching. After the landmark matching 
procedure, with the heat maps in the same reference space, localized group analysis was 
performed to compare the true positive (TPpain) and true negative (TNNopain) model predictions for 
each single biomarker. Local Statistical Parametric Mapping (SPM) was performed on these two 
groups to assess differences in location of important features significant for presence of pain 
(TPpain) or specific for absence of pain (TNNopain). Point-by-point SPM was performed using 
ANOVA group comparison considering age, sex and BMI as confounding factors. 

 

5.5 Discussion 

In this study, we propose a DL-guided definition for OA quantitative imaging biomarkers which 

is more strongly associated to chronic knee pain than the clinical compartment average 

definition. We report likelihood ratio test significant p-values of 7.01x10-33 and 1.93x10-14 for 

DL-guided cartilage thickness averaging for the femur and tibia, respectively, compared to the 

cartilage thickness compartment averaging, for predicting chronic pain. The difference is 

reported even with the inclusion of demographic factors such as age, BMI, and sex to the 

regression models, which have been linked to pain118. This method for quantitative imaging 

biomarker discovery is specific to each patient, instead of being predefined based on clinical 

assumptions, which suggests there are personalized changes not reflected by known OA-related 

regions. 

 

The average Grad-CAM saliency maps for the TPPain and TNNoPain groups revealed an interesting 

heterogeneity in the localization of the features sensitive to pain and specific to no pain. This 

observation of distinct locations for pain specific and non-pain specific features for the cartilage 

thickness biomarker was surprising and previously unreported, to the best of our knowledge. The 
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activation regions for the cartilage thickness across all bones showed pain specific features 

generally located in the medial side, while the non-pain specific features were generally located 

in the lateral side. This finding generated the hypothesis that the weak association between 

cartilage thickness and clinically relevant outcomes, such as pain, could be partly attributed to 

patient-specific heterogenous importance in the locations of cartilage thickness variation. 

Furthermore, this process might explain why the use of averages across the entire compartment 

would produce a weak association or even a discordance between the imaging biomarkers and 

pain. This selectivity between pain and non-pain specific features could be indicative of local 

regulatory behavior for knee pain, where areas that produce the pain could be mediated by areas 

associated with a lack of pain. 

 

A recent study by Bacon, K. et al25 found a weak association between medial femorotibial 

cartilage thickness loss and knee pain, reporting a significant 0.32 ± 0.11 mean change in 

WOMAC pain scores resulting from a 0.1 mm cartilage thickness loss over a 24 month period. 

This correlation, while statistically significant, did not surpass the minimally clinical importance 

difference for WOMAC pain scores119. Similarly, a reduction in central medial femorotibial 

compartment cartilage thickness was reported to be weakly associated with pain progression with 

an odds ratio of 1.3 ± 0.224. Our work has two key differences with these studies, the definition 

of chronic knee pain, instead of pain defined by the WOMAC scale, and the use of DL-guided 

cartilage thickness averaging, instead of compartment averaging. Our use of chronic knee pain as 

a clinical outcome has the advantage of focusing on persistent pain experienced over the course 

of a year, which is likelier to capture meaningful changes in cartilage thickness compared to the 

week-long recall period for WOMAC pain scores. The DL-guided approach serves as a 
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personalized approach for region of interest definition, which allows for the extraction of an 

imaging biomarker more associated to pain. 

 

The bone shape biomarker has generally been described in previous works using statistical shape 

modelling to compare different shape variations between case groups16,120. Unlike cartilage 

thickness and cartilage T2 biomarkers, there is no obvious way to apply the Grad-CAM saliencies 

to the bone shape maps, since averaging bone shape values may not be appropriate. For cartilage 

T2, we did not find a difference in the association between classical compartment averaging and 

the DL-guided weight averaging to chronic pain. While cartilage T2 times have been shown to be 

associated with pain34, we did not find an improvement in the inclusion of the DL-guided weight 

averaging to the classical compartment averaging in the regression models. This suggests that the 

nature of the behavior for cartilage thickness and cartilage T2 may be different, with the latter 

exhibiting a weaker pain feature heterogeneity. Compartment averaging for T2 relaxation times 

may be sufficient in explaining chronic pain. 

 

Although this study brings new insights on the role of deep learning for quantitative imaging 

biomarker discovery, several limitations need to be acknowledged. One of the limitations of the 

study is the focus on structural changes, which omits the impact of inflammatory changes that 

have been consistently linked to pain. Bone marrow lesions and synovitis, in particular, have 

been reported to play a role in the pain process and are not directly reflected by our 

biomarkers121. Additionally, the pain performance improvement of the biomarker fusion models 

over the single biomarker models suggests that there are some added pain-related interactions 
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between biomarkers. These were not further inspected due to the reduced interpretability of 

combining the biomarkers at the input level. The use of the intersection of all 18 models limited 

the findings to the set of imaging features that are most persistently associated with chronic pain. 

This could result in the loss of more nuanced patient-specific relationships to pain. The OAI is 

also a limited dataset and findings based on it may not be generalizable to the general population. 

It is also worth noting that the purpose of the study was not to achieve the highest predictive 

performance for chronic pain, but rather to understand local associations between the biomarkers 

and chronic pain. 

 

The findings of this work could improve the imaging biomarker definition for clinical trials, with 

patient-specific imaging biomarkers that are more strongly correlated to clinical outcomes such 

as pain. A recent clinical trial for the disease-modifying osteoarthritis drug sprifermin showed a 

protective effect for femorotibial average cartilage thickness loss of 0.1 mm over a period of 2 

years28. The same trial found no significant effect for this substantial cartilage preservation on 

the WOMAC pain scores, which highlights the importance of stronger predictors for pain. Our 

proposed DL-guided cartilage thickness averaging could be used to evaluate the effect of such 

cartilage-preserving treatments on pain, tailoring the imaging biomarker to the clinical outcome. 
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Appendix A: Supplementary Material to Chapter 3 

A.1 Bone segmentation and post-processing 

A.1.1 Bone segmentation network implementation 

The first step of the study was to accurately segment the bones from the 3D DESS volumes in 

the OAI dataset. A CNN architecture was trained and used to segment the bone from the entire 

OAI dataset (Fig. 3.1A). 

 

A modified 3D V-Net76 architecture was adapted from an existing TensorFlow (Google, 

Mountain View, CA) implementation (https://github.com/MiguelMonteiro/VNet-Tensorflow) for 

the Femur, Tibia and Patella bone segmentation. The architecture consisted of an encoder-

decoder network with the encoder network compressing the most relevant features for the 

segmentation task while the decoder network decompresses these features to reconstruct the 

labeled segmented volume. The decoder network has five levels, with each level doubling the 

number of convolutional filters and using short shortcut connections between each layer input 

and output in the form of element-wise addition. The network also uses long shortcut 

connections between each mirroring level by concatenating the layer output of each encoder 

layer to the layer input of its corresponding mirrored decoder layer. These connections have been 

shown to improve the uniform update of weights for deeper CNNs and improve gradient 

stability122. The activation function used after each convolution was a parametric leaky rectified 

linear unit (pReLU), trained on the last dimension of the input, and the last fully connected layer 

was activated with a softmax function for all the classes (femur, tibia, patella, background). A 

soft Dice loss function was used for the training. 

https://github.com/MiguelMonteiro/VNet-Tensorflow
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A.1.2 Bone segmentation network training 

The number of feature channels outputted at the very first encoding convolution, which 

determines the overall number of learned features in the V-Net, was empirically set to 8 and a 

batch size of one sample per feed-forward was used, which was the memory limit of the GPU. 

The network was trained using Adam optimizer123 with a learning rate of 1e-4 using TensorFlow 

in a GeForce GTX Titan 1080 Ti GPU (NVIDIA, Santa Clara, CA). All the weights for the 3D 

convolutional layers were randomly initialized with a Xavier uniform distribution124. The 

training was performed for a total of 215 epochs and stopped early at 185 epochs after a 30-

epoch patience for validation Dice non-improvement over the best validation Dice was reached. 

Data augmentation was performed online with an independent 50% chance of flipping the input 

volume along the lateral-medial dimension and an independent 50% chance to randomly rotate 

the sagittal plane in a range of -5 to +5 degrees in 1-degree increments. The labels were truncated 

to the integer part after the 2D sagittal affine rotation to ensure there were no artificial partial 

volume effects introduced by the augmentation. 

 

The bone segmentation dataset consisted of 40 3D DESS volumes that were carefully annotated 

by a trained user. These 40 patients were selected from the greater OAI patient population as 20 

matched pairs of patients that exhibited a 2-year OA incidence from a healthy baseline initial 

scan matched with healthy controls that did not exhibit 2-year OA incidence from a healthy 

baseline time point. The selected scans included in the segmentation dataset were the healthy 

baselines for both the healthy controls and the 2-year OA incidence cases. The age, BMI, and sex 
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were balanced for the OA incidence cases and the healthy controls with a mean age of 58.4±6.2 

and 58.4±6.2 respectively. The BMI for the cases and healthy controls were 26.2±3.0 and 

26.4±2.9 respectively. The sex split for the cases and healthy controls were 12 males and 8 

females for both. The segmented patient MRI volumes for both the OA incidence and the healthy 

controls were from a healthy baseline time point. The network training was performed with 25 

patients with 5 patients used for training validation. The model was evaluated using a test set 

with 10 unseen patient volumes. Table 3.1 summarizes the distribution of OA incidence cases 

and healthy controls for the bone segmentation dataset as well as the statistical independence 

tests for confounding demographic factors across splits. 

 

A.1.3 Bone segmentation post-processing 

The trained V-Net segmentation model was then used to segment the Femur, Tibia, and Patella 

from a total of 47,078 3D DESS volumes. The inference was performed in 8 batches of 6,000 

volumes and each batch lasted 3 hours. The inferred knee bone segmentations were further 

processed in MATLAB (MathWorks, Natick, MA) to conform to the necessary format for the 

spherical transformation. Biggest connected component analysis was performed on each bone 

segmentation to select the largest component and remove spurious artifacts followed by 

morphological closing performed over the entire volume. As a quality control measure, any 

resulting post-processed mask with a bone volume outside of three standard deviations of the 

training annotations was excluded from the study. There were 420 volumes excluded by this 

quality control measure. Each mask was converted to a smoothed point cloud, with the femur 

segmentation mask cropped along the femoral shaft before point cloud conversion in order to be 

invariant to the different femoral shaft lengths when sampling. The bone point clouds were 
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centered at the origin of the new coordinate system, with each point representing the actual 

distance in millimeters from this centroid to the surface of the bone. Each point cloud from a 

right knee was flipped along the lateral-medial dimension (to match the right knee scan 

orientation) and rigidly registered using an ICP algorithm117 to a reference point cloud, randomly 

selected from a patient in the segmentation dataset, for each bone type to account for rotational 

variability at scan time (Fig. 3.1B). The orientation of the reference point cloud ensured that the 

articular surfaces for each bone were facing the same direction and no positional information was 

included in our shape model. The computation time for this post-processing step was a total of 

18 hours split across 8 batches of 6,000 volumes. 

 

A.1.4 Bone segmentation validation 

The bone segmentation model was further validated with an additional test set of 60 manually 

segmented baseline scans randomly selected to represent the demographic distribution of the 

OAI population. Out of the 60 volumes, 30 were healthy controls from baseline scans of patients 

that never developed OA in both knees across all time points, 15 were from baseline scans of OA 

incidence cases with KL2> and 15 were baseline scans from OA diagnosis cases with KL1<, all 

selected randomly from the OAI baseline scan population. Out of the OA incidence cases, there 

were six 1-year cases, one 2-year case, one 3-year case, one 4-year, one 6-year case and four 8-

year cases. Out of the OA diagnosis cases, there were nine KL2 cases, four KL3 cases and two 

KL4 cases. The scans were manually segmented by six authors of the study after 5 hours training 

with an experienced annotator. The manual segmentation of each case took 1 hour. Each user 

segmented an equal distribution of OA, control and incidence cases and were blinded to the 

labels. After segmenting the volumes, the performance of the automatic bone segmentation 
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model was evaluated on the three cohorts in terms of both Dice and MPTS distance errors. Each 

cohort was then tested for statistical significance to determine whether there was a bias 

introduced by the bone segmentation model for specific cohorts. There was no significant 

difference found across each cohort for each bone and for both metrics evaluated. The complete 

results of this validation are summarized in the Supp. Table A.1.  

 

A.1.5 Osteophyte analysis 

An analysis of the osteophyte coverage of the bone segmentation network was performed by a 

musculoskeletal radiologist on 20 randomly picked patients from the OAI baseline with 

osteophytes based on MOAKS grading. There was a total of 97 osteophytes (22 patellar, 33 

tibial, and 42 femoral) across the 20 selected patients of representatively distributed MOAKS 

grades of 1 (small osteophytes), 2 (medium osteophytes) and 3 (large osteophytes). The 

radiologist identification was based on a 3D evaluation of the osteophyte volume coverage by the 

bone segmentation model on the sagittal DESS. There were four osteophyte identification 

categories ranging from not identified (<50%) to fully identified (>90%), with varying levels of 

identification (50-70% and 70-90%), as shown in Supp. Fig. A.2. The results of the osteophyte 

analysis are summarized in Supp. Fig. A.3. The bone segmentation network generally 

demonstrated correct identification of osteophytes, with at least partial coverage (>50%) of 

osteophytes on 80% (n = 78) of the total osteophytes observed in the analysis (n = 97). The 

patellar osteophytes were the least captured subtype of the total osteophytes, with only 60% (n = 

13) of the total patellar osteophytes (n = 22) at least partially identified (>50%), which could 

potentially explain the lower performance of the Patella Diagnosis model. 
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A.1.6 3D patch-based approach comparison 

A 3D patch-based approach for the bone segmentation was evaluated for the bone segmentation 

dataset. Four sets of experiments using patches of two different sizes, 48×48×40 and 96×96×40, 

were performed. For each patch size, a binary segmentation and a multiclass semantic 

segmentation model were trained. The network was a 2-level V-Net architecture with 16 

channels after the first convolution. The output for the binary network was activated by a 

sigmoid function and the multiclass model by a softmax function. The batch size was set to 8 for 

both cases to maximize computational availability. Adam optimizer was also used with an initial 

learning rate of 5e-5. The training was performed for 100 epochs and early stopping was set to a 

15-epoch patience for validation Dice non-improvement over the best validation Dice. No data 

augmentation was performed with a 95% keep probability dropout set as the regularization 

measure. At inference time, patches of each volume were re-arranged to form the volume and 

compute the volumetric dice over the whole volume. The best performing model was the binary 

segmentation model with a patch size of 96x96x40, with a validation and test Dice of 88.3% and 

89.3% respectively. 

 

Generally, the performance of the models increased with patch size, which then leads to a 

reduced batch size as the patch size approaches the dimensions of the full volume. The binary 

patch-based models outperformed the multiclass patch-based models, which introduced the 

added non-trivial challenge of separating the binary classification into the different bones during 

the post-processing steps. This challenge, paired with the lower performance when compared to 



122 
 

a full 3D approach reinforces our selection of a fully 3D volumetric approach, even at the 

expense of a limited batch size of volume. The possibility of having batches with different 

distribution as inputs, was reduced by normalizing our inputs in order to increase the similarity 

among different batches. 

 

A.1.7 Bone segmentation discussion 

On a further important note, the extraction of bone shape highly relies on a precise segmentation 

of the structures of interest. Previous studies have relied on advanced methods that segmented 

3D structures using a patch-based approach125 or a slice-based approach43. Patch-based 

approached have the drawback of limiting the spatial context, which could in turn affect the 

segmentation capability of a network, as shown in previous studies and our empirical findings, 

where context appeared to be crucial in order to achieve a high quality segmentation126. A slice-

based approach has the benefit of being less memory demanding than a full volume 3D approach 

while still preserving more spatial context than a patch-based approach. Ultimately, the use of a 

small batch size for this study was encouraged by the results achieved by our empirical findings 

and previous studies126,127 for full volume 3D segmentation approaches. The modified V-Net 

architecture of choice was an optimized version of the V-Net originally proposed customized to 

our specific application. A future direction of this study could investigate the underlying effect of 

different segmentation approaches on the performance of the OA classification tasks. It is also 

worth noting that while the segmentation dataset was limited to 40 3D volumes, the OA bone 

shape feature extraction portion of the proposed framework leverages 41,822 samples, thus better 

exploiting the scale of a large dataset such as the OAI. 
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One of the limitations acknowledged for the bone segmentation network was the comparatively 

poor osteophyte coverage for the patellar osteophytes with respect to the femoral and tibial 

osteophytes. While this could have potentially impacted the performance of our patella diagnosis 

model, it is worth noting that the radiographic KL grades used for the labels of the OA Diagnosis 

models are based on coronal radiographs that focus on tibiofemoral osteophytes and omit patellar 

osteophytes9. Furthermore, the presence of tibiofemoral osteophytes is strongly correlated with 

KL grades ranging from 2 to 4, which would impact the performance of the femoral and tibial 

OA Diagnosis models. For the OA Incidence models, only KL grades of 0 or 1 were selected and 

therefore osteophytes are not expected to similarly impact the performance of these models. 

  

Instead of training with a bigger dataset, a more careful evaluation of the bone segmentation 

model was prioritized to avoid erroneous observations on the ability of the downstream 

classifiers to diagnose and predict future incidence of OA. Evenly distributed bone segmentation 

errors between OA and control classes as the ones observed in this ad-hoc experiment might 

decrease the classification performance by obscuring some relevant features and cause 

suboptimal performance. However, high sensitivity and specificity of the OA classification 

models show that the bone segmentation, even if imperfect, is able to capture sufficient bone 

shape features in order to diagnose and predict future incidence of OA. Better bone segmentation 

models in future studies might report improvements over this first experience with deep learning-

based bone shape OA imaging biomarker extraction. 
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A.2 OA classification robustness analysis 

A.2.1 Choice of bone atlas 

The robustness of the OA Diagnosis and the 1-year and 2-year OA Incidence classification 

models to the choice of bone atlas was evaluated. Four patients with different KL grades and 

demographic information were randomly picked as the bone atlas (for the femur, tibia and 

patella). The entire framework was rerun on each bone atlas and the OA Diagnosis model and 

the 2-year and 8-year OA Incidence models were retrained using the same splits and 

hyperparameters as the original framework. The total computational time to rerun the entire 

framework was 55 hours, with 18 hours for the atlas registration and spherical transformation, 25 

hours to retrain the femur, tibia, and patella OA Diagnosis models (needed for the logits 

averaging model ensemble) as well as 12 hours to retrain the femur, tibia, and patella 2-year and 

8-year OA Incidence models (needed for the logits averaging model ensemble). Due to the large 

size of the dataset, each framework run generated a terabyte of storage, which paired with the 

computational time limited this analysis to only four atlases with varied KL grades and 

demographic distribution. The test set accuracy for each model was recorded for each bone atlas. 

The test ROC values for each atlas framework run were consistent with the original atlas test 

ROC values. The complete results of this analysis are shown in Supp. Table A.2. 

 

A.2.2 Bone segmentation errors 

Another additional validation ad hoc analysis of our framework evaluated the OA classification 

robustness to segmentation errors. The relationship between the accuracy of the segmentation 

model and the performance of the OA Diagnosis and first two OA Incidence models was 
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assessed. A total of 30 cases with a correct prediction, 15 true positives and 15 true negatives, for 

the test set of the OA Diagnosis model and the 1-year and 2-year OA Incidence models was 

randomly selected. The bone point clouds were corrupted by moving the coordinates of the 

points from 0mm to 3.2mm in 0.16mm increments by adding increasing amounts of Gaussian 

noise. The overall corruption amount was computed using MPTS distance errors. The altered 

point clouds were converted into spherical coordinates and inferred on the trained single-bone 

OA Diagnosis model and the trained single-bone 1-year and 2-year OA Incidence models. The 

effect of each individual bone corruption on the logits averaging ensemble performance was 

evaluated. Sensitivity, specificity and AUC of the 15 true positives and 15 true negatives were 

calculated as a function of MPTS distance. An overview of the results for each bone is shown in 

Supp. Fig. A.4 for the Femur, Supp. Fig. A.5 for the Tibia and Supp. Fig. A.6 for the Patella. 

The average MPTS distance error for the segmentation test set along with the corresponding 95% 

confidence interval is shown as green and red vertical dotted lines respectively. The analysis 

showed that the OA Diagnosis and 1-year and 2-year OA Incidence models were sensitive to 

perturbations on each bone at different levels. The Tibia appeared to have the largest impact on 

the overall classification accuracy across all models, followed by the Femur. The Patella seemed 

to have the least impact in the overall classification accuracy, which is supported by the fact that 

radiographic KL grades evaluate tibiofemoral OA and largely ignore patellofemoral OA. The 

specificity of the models was the most sensitive ROC metric to the perturbation, suggesting that 

the models tend to over-predict anomalies as positive cases for both OA Diagnosis and OA 

Incidence. Furthermore, this analysis highlights the value of using a network ensemble method 

such as logits averaging instead of a single-bone model due to the added robustness to these 

segmentation errors. 
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Supp. Table A.1 Overview of the additional validation of the bone segmentation model. Each of 
the three cohorts was tested for statistical significance to determine whether there was a bias 
introduced by the bone segmentation model for specific cohorts. There was no significant 
difference found across each cohort for each bone and for both metrics evaluated. 

 

Supp. Table A.2 Overview of the OA classification robustness to the choice of bone atlas. The 
entire framework was rerun, with three of the OA Diagnosis and the 2-year and 8-year OA 
Incidence models retrained on the same splits, on four different bone atlases. The test ROC 
values for each atlas framework run were consistent with the original atlas test ROC values. 

 

Results Original Atlas Atlas #1 Atlas #2 Atlas #3 Atlas #4 
KL Grade 0 3 2 3 4 

Age 67 64 72 67 58 
BMI (kg/m2) 25.5 23.0 25.6 38.7 26.1 

Sex Female Female Male Male Female 

OA Diagnosis Test 

(Sensitivity/Specificity/AUC) 

0.815 

0.839 

0.905 

0.792 

0.859 

0.900 

0.796 

0.852 

0.901 

0.805 

0.844 

0.901 

0.805 

0.849 

0.906 
OA 2-year Incidence Test 

(Sensitivity/Specificity/AUC) 
0.683 

0.759 

0.635 

0.840 

0.619 

0.804 

0.698 

0.734 

0.714 

0.778 

Results 

(Mean ± SD) 

Bilateral No OA 

(N = 30) 

OA Incidence 

(N = 15) 

OA  

(N = 15) 

Total 

(N =60) 

OAI Baseline 

(N = 9592) 

OA Cohort 

Distribution 

All KL<2 for all 

time points 

KL<2 at 

baseline with 

future incidence 

All KL>1 at 

baseline 
- - 

Age 58.5 ± 9.37 57.27 ± 8.57 60.4 ± 8.98 58.7 ± 9.15 61.16 ± 9.19 

BMI (kg/m2) 26.85 ± 4.89 30.35 ± 5.63 28.73 ± 6.19 28.2 ± 5.62 28.62 ± 4.84 

Sex (Male/Female) 13/17 5/10 6/9 24/36 1992/2804 

Femur MPTS (mm) 0.487 ± 0.117 0.545 ± 0.173 0.536 ± 0.159 0.514 ± 0.142 - 

Femur Dice 96.7 ± 0.69 96.2 ± 1.15 96.1 ± 1.40 96.5 ± 1.07 - 

Tibia MPTS (mm) 0.607 ± 0.235 0.603 ± 0.152 0.587 ± 0.132 0.601 ± 0.190 - 

Tibia Dice 95.9 ± 1.04 95.9 ± 0.698 95.8 ± 0.894 95.9 ± 0.933 - 

Patella MPTS (mm) 0.405 ± 0.0714 0.411 ± 0.0978 0.506 ± 0.286 0.431 ± 0.158 - 

Patella Dice 94.6 ± 1.01 93.9 ± 1.38 93.8 ± 2.46 94.2 ± 1.63 - 
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Results Original Atlas Atlas #1 Atlas #2 Atlas #3 Atlas #4 
0.815 0.838 0.814 0.804 0.830 

OA 8-year Incidence Test 

(Sensitivity/Specificity/AUC) 

0.555 

0.582 

0.646 

0.611 

0.694 

0.696 

0.667 

0.614 

0.647 

0.667 

0.635 

0.692 

0.611 

0.597 

0.647 

 

 

 

 

Supp. Fig. A.1 Overview of the validation ROC curve comparisons for the different model 
fusion strategies. (A-F), 3-year to 8-year OA Incidence models, shown in order. 
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Supp. Fig. A.2 A representative slice from three patients out of the 20 randomly picked patients 
from the osteophyte analysis. The radiologist identification was based on a 3D evaluation of the 
osteophyte volume coverage by the bone segmentation model on the sagittal DESS. All four 
osteophyte identification categories are shown, ranging from not identified (<50%) to fully 
identified (>90%), with varying levels of identification (50-70% and 70-90%).  
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Supp. Fig. A.3 The results of the osteophyte analysis of the bone segmentation network. The 
analysis was performed by a musculoskeletal radiologist on 20 randomly selected patients from 
the OAI baseline with osteophytes based on MOAKS grading. There was a total of 97 
osteophytes (22 patellar, 33 tibial, and 42 femoral). The osteophyte analysis generally 
demonstrated correct identification of osteophytes by the bone segmentation network, with at 
least partial coverage (>50%) of osteophytes on 80% (n = 78) of the total osteophytes observed 
in the analysis (n = 97). The patellar osteophytes were the least captured subtype of the total 
osteophytes, which could potentially explain the lower performance of the Patella Diagnosis 
model. 
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Supp. Fig. A.4 Robustness of the OA classification models to the Femur segmentation error 
measured as mean point-to-surface distance errors on the automatic segmentations. The 
segmentation error was simulated by adding increasingly more Gaussian noise to the Femur 
point cloud coordinates before the spherical transformation. The average MPTS distance error 
and corresponding 95% confidence interval between the automatic Femur segmentations in the 
segmentation test set and the manual segmentations is included. (A), OA Diagnosis model. (B), 
1-year OA Incidence model. (C), 2-year OA Incidence model. 

 

 

Supp. Fig. A.5 Robustness of the OA classification models to the Tibia segmentation error 
measured as mean point-to-surface distance errors on the automatic segmentations. The 
segmentation error was simulated by adding increasingly more Gaussian noise to the Tibia point 
cloud coordinates before the spherical transformation. The average MPTS distance error and 
corresponding 95% confidence interval between the automatic Tibia segmentations in the 
segmentation test set and the manual segmentations is included. (A), OA Diagnosis model. (B), 
1-year OA Incidence model. (C), 2-year OA Incidence model. 
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Supp. Fig. A.6 Robustness of the OA classification models to the Patella segmentation error 
measured as mean point-to-surface distance errors on the automatic segmentations. The 
segmentation error was simulated by adding increasingly more Gaussian noise to the Patella 
point cloud before the spherical transformation. The average MPTS distance error and 
corresponding 95% confidence interval between the automatic Patella segmentations in the 
segmentation test set and the manual segmentations is included. (A), OA Diagnosis model. (B), 
1-year OA Incidence model. (C), 2-year OA Incidence model. 
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Appendix B: Supplementary Material to Chapter 4 

B.1 Bone segmentation 

B.1.1 Bone segmentation network implementation 

The first step of the study was to accurately segment the bones from the 3D-DESS volumes in 

the OAI dataset. An ensemble of five 3D V-Net76 architectures were trained and tested on 72 and 

30 3D-DESS volumes, respectively, and used to segment the bone from the entire OAI dataset 

(Fig. 3.1A). 

 

A modified V-Net architecture was adapted from an existing TensorFlow 1.0 (Google, Mountain 

View, CA) implementation (https://github.com/MiguelMonteiro/VNet-Tensorflow) for the 

femur, tibia and patella bone segmentation. The 3D V-Net The architecture consisted of an 

encoder-decoder network with the encoder network compressing the most relevant features for 

the segmentation task while the decoder network decompresses these features to reconstruct the 

labeled segmented volume. The decoder network has five levels, with each level doubling the 

number of convolutional filters and using short shortcut connections between each layer input 

and output in the form of element-wise addition. The network also uses long shortcut 

connections between each mirroring level by concatenating the layer output of each encoder 

layer to the layer input of its corresponding mirrored decoder layer. These connections have been 

shown to improve the uniform update of weights for deeper CNNs and improve gradient 

stability122. The activation function used after each convolution was a ReLU, trained on the last 

dimension of the input, and the last fully connected layer was activated with a softmax function 

for all the classes (femur, tibia, patella, background). Additionally, a dropout rate of 0.05 was 

https://github.com/MiguelMonteiro/VNet-Tensorflow
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used to improve generalizability of the model during training, randomly turning off activations at 

a rate of 5%. 

 

Each of the five V-Net models was trained with a with different distance-weighted loss 

functions98. The distance weighting was an added penalty to ensure that the segmentation 

accuracy was prioritized along the surface of the bone and cartilage. This ensured that the 

articular bone surface was as accurate as possible prior to the biomarker projection. Additionally, 

given the class imbalance between the different bones, with the femur being much larger than the 

patella, class weights were added to four of the losses to ensure that the learning process was 

balanced. The distance-weighted loss functions were: class-weighted dice loss, class-weighted 

cross-entropy loss, mixed weighted cross-entropy and class-weighted dice loss (with the 

weighting factor for the cross-entropy loss equal to 0.1), class-weighted penalized confident 

output cross-entropy loss128, and regular dice loss. 

 

B.1.2 Bone segmentation network training 

A batch size of one sample per feed-forward was used, which was the memory limit of the GPU. 

The network was trained using Adam optimizer123 with a learning rate of 5e-4 using TensorFlow 

1.10 in a Titan 1080 Ti 12GB GPU (NVIDIA, Santa Clara, CA). All the weights for the 3D 

convolutional layers were randomly initialized with a Xavier uniform distribution124. The 

training was performed for a total of 500 epochs and stopped early after a 30-epoch patience for 

validation loss non-improvement over the best validation loss reached. MRI volumes were 

cropped from Data augmentation was performed online with an independent 50% chance of 
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flipping the input volume along the lateral-medial dimension and an independent 50% chance to 

randomly rotate the sagittal plane in a range of -5 to +5 degrees in 1-degree increments. The 

labels were truncated to the integer part after the 2D sagittal affine rotation to ensure there were 

no artificial partial volume effects introduced by the augmentation. 

 

The bone segmentation training consisted of 102 3D-DESS volumes that were carefully 

annotated by trained users. The age and BMI for the training split with the respective standard 

deviation was 57.2 ± 7.4 and 27.5 ± 5.2 respectively. The age and BMI for the validation split 

with the respective standard deviation was 60.9 ± 10.6 and 28.9 ± 4.2 respectively. The age and 

BMI for the test split with the respective standard deviation was 59.4 ± 7.6 and 27.2 ± 4.7 

respectively. The sex split for training, validation and test splits was 31 males/26 females, 7 

males/8 females, and 11 males/19 females respectively. The network training was performed 

with 57 patients with 15 patients used for training validation. The model was evaluated using a 

test set with 30 unseen patient volumes. Table 3.1 summarizes the distribution of OA cases and 

healthy controls for the bone segmentation dataset as well as the statistical independence tests for 

confounding demographic factors across splits. 

 

B.1.3 Bone segmentation inference and ensembling 

The trained V-Net bone ensemble segmentation model was then used to segment the femur, tibia, 

and patella from a total of 47,078 3D-DESS volumes in the OAI. The inference was performed 

in 8 batches of 6,000 volumes and each batch lasted 3 hours. The inferred bone segmentation 
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masks for all five models were then subsequently ensembled by averaging the softmax values for 

each bone across all models. 

 

B.2 Cartilage segmentation 

B.2.1 Cartilage segmentation network implementation 

A cartilage and menisci segmentation model ensemble was trained on 148 3D-DESS volumes 

and tested on 28 3D-DESS volumes20. The trained ensemble consisted of three 2D V-Net and 

three 3D V-Net architectures and was used to segment the cartilage and menisci in the OAI 

dataset (Fig. 3.1A).  

 

The same 3D V-Net architecture as the bone segmentation V-Net was implemented in 

Tensorflow 1.10. The 2D V-Net architectures were derived from the 3D V-Net, where the 

convolution kernels are modified to accommodate 2D data. The 2D V-Nets were 2 levels deep 

with 4 convolutions at each level, and 4 convolutions at the bottom level, all activated with 

ReLU functions. At the output layers, a sigmoid activation produced the tissue segmentations. A 

dropout rate of 0.05 was used to improve generalizability of the model during training, randomly 

turning off activations at a rate of 5%. 

 

B.2.2 Cartilage segmentation network training 

The network was trained using Adam optimizer with a learning rate of 1e-4 using TensorFlow in 

a Titan 1080 Ti 12GB GPU or V100 32GB GPU. All the weights for the convolutional layers 
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were randomly initialized with a Xavier uniform distribution. The training was performed with 

an early stopping patience criterion of 30 epochs, when validation loss non-improvement over 

the best validation loss was reached. Training volumes were augmented offline using a random 

combination of geometric and intensity-based transforms, chosen to simulate 3D variations in 

patient positioning, bone shape, cartilage thickness, and MR imaging artifacts. Pooled 

training/validation data totaled 2812 3D-DESS volumes: 148 original volumes plus 2664 

augmented volumes. Volumes were also flipped to medial-first orientation, center-cropped to 

344x344x140 and normalized to their 85th intensity percentile. 2D models were trained using 

slices of the original dataset, while 3D models were trained using the augmented dataset to 

prevent overfitting. 

 

The cartilage and menisci segmentation dataset consisted of 176 3D-DESS volumes that were 

provided by IMorphics. The age and BMI for the training-validation split with the respective 

standard deviation was 59.9 ± 1.6 and 30.9 ± 0.7 respectively. The age and BMI for the test split 

with the respective standard deviation was 71.4 ± 2.9 and 30.8 ± 1.6 respectively. The sex split 

for training-validation and test splits was 72 males/76 females and 18 males/10 females 

respectively. Each of the six segmentation models was trained on an independent data split of 50 

training and 98 validation volumes, with the same 28 testing volumes, for which the manual 

segmentation was available. 

 

 

 



137 
 

B.2.3 Cartilage segmentation inference and ensembling 

The trained V-Net cartilage and menisci ensemble segmentation model was then used to segment 

the femoral, tibial, and patellar cartilage, as well as the menisci, from a total of 47,078 3D-DESS 

volumes in the OAI. The inference was performed in 8 batches of 6,000 volumes and each batch 

lasted 3 hours. Softmax prediction values from the 3D and 2D models from each of the 

independent splits were ensembled to produce the final probability maps. Since the OAI only 

collected matching T2 MSME, needed for the compositional T2 spherical maps, MRI scans for 

the right knee of each patient, a subset of 21,118 out of the 47,078 segmented volumes were 

selected for this study. 
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Appendix C: Supplementary Material to Chapter 5 

C.1 OA diagnosis network implementation 

A total of 18 binary classification models, one for each biomarker strategy per bone, were trained 

to extract biomarker features from the spherical biomarker representations and use them to 

diagnose OA (Supp. Fig. C.1). A Resnet38 architecture with 50 layers (Resnet50) pre-trained 

with ImageNet weights was implemented in PyTorch79. The choice of architecture and 

hyperparameters was informed by our previous study on the relationship between bone shape 

and radiographic OA99. The Resnet50 network architecture uses shortcut residual connections 

that improve the training performance for deeper models over similar shallower models. The 

basic structure of the Resnet50 follows the pattern of three convolutional layers with a 1 x 1, 3 x 

3, and a 1 x 1 convolutional filter size respectively. Each of these layers is paired with batch 

normalization and a ReLU activation function. 

 

All OA diagnosis model variants were initialized with ImageNet weights and fine-tuned using 

Adam optimizer with a learning rate of 1e-5 with a regularization weight decay value of 0.9, in 

order to finetune while preventing overfitting on the training set. The training was performed for 

100 epochs with an early stopping 15-epoch patience for validation loss non-improvement over 

the best validation loss reached. The models were also trained end-to-end using a weighted 

binary cross entropy loss, based on the class imbalance, with a batch size of 300 in a Tesla V100 

32GB GPU. 
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The OA diagnosis models were trained using the different biomarker strategies outlined in Fig. 

3. The OA diagnosis models for each biomarker strategy were ensembled across the bones by 

averaging the softmax values outputted by each network. Therefore, each of the six biomarker 

models had a total of five predictive values: for the patella, for the tibia, for the femur, for the 

averaged predictive values of the tibia and femur, and for the average predictive values of all 

three bones. For the averaged ensembles, each anatomical region contributes equally to the final 

prediction. 
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Supp. Fig. C.1 (a) A bone and a cartilage segmentation model ensemble were trained on 72 and 
148 manually segmented 3D-DESS volumes to segment the femur, tibia, and patella bones and 
corresponding cartilage. The trained models were used to segment 21,118 3D-DESS volumes. 
(b) Bone shape feature and cartilage thickness maps were obtained from the segmented masks. 
T2 values were calculated by registering 3D-DESS cartilage masks to the matching MSME MRI 
volumes and performing parametric T2 fitting on the cartilage. Each biomarker was then 
projected onto the articular bone surface, where each point contained information from each 
biomarker. (c) The articular bone surface projections were transformed into spherical 
coordinates. Six different strategies were performed to merge spherical maps per bone. (d) A 
total of 21,118 merged spherical maps with corresponding KL grades were used to train 
classifier models to diagnose radiographic OA using the biomarker learned features. A different 
model was trained and tested for each biomarker strategy per bone, for a total of 18 OA 
diagnosis models. Each of the two inputs into the OA diagnosis models represents a class in the 
binary classifier (healthy KL<2 vs. OA KL>1). (e) A total of 7,437 merged spherical maps with 
corresponding chronic pain labels were used to train classifier models pretrained on its 
corresponding OA diagnosis model to predict chronic pain. A different model trained and tested 
for each biomarker strategy per bone, for a total of 18 OA diagnosis models. Each of the two 
inputs into the chronic pain models represents a class in the binary classifier (chronic pain vs. no 
chronic pain).  
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Supp. Fig. C.2 Model training optimization results shown for all 18 models using the training 
and validation splits with two different learning rates (1x10-4 and 1x10-5), three types of Resnet 
(Resnet18, Resnet34, Resnet50), three initialization strategies (Random, ImageNet, OA), and 
four variants of layer freezing during training (first layer, first two layers, all layers, no layers), 
for a total of 612 combinations. The best performing models for each initialization strategy are 
shown with the validation AUC for each biomarker and bone. 
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