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ABSTRACT OF THE DISSERTATION 

 
 
 
 

Engineering Escherichia coli for Overproduction of Medium-chain Fatty Acids 
and One-step In Vivo Conversion to Biodiesel 

 
 

by 
 
  

Saken Sherkhanov 

Doctor of Philosophy in Biochemistry and Molecular Biology 

University of California, Los Angeles, 2016 

Professor James U. Bowie, Chair 

 

Over the past century, fossil fuels have been an abundant and cheap source for 

petroleum-derived chemicals and fuels. The production and burning of these carbon-

derived fuels have led to adverse global environmental changes such as increase in air 

pollution, climate change and fluctuations in sea level. To replace dwindling petroleum 

resources and to curb emissions of CO2, it is critical to develop alternative and 

renewable resources for energy and fuels.  Genetically engineered microorganisms that 

can directly produce medium and long chain hydrocarbons have been one of the most 

promising potential routes to renewable biofuel synthesis. 

Microbial fatty acids are an attractive source of precursors for a variety of 

renewable biofuels such as alkanes, alcohols, and biofuels. Enormous progress has 

been in engineering microbes to divert endogenous fatty acid synthesis and 
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overproduce free fatty acids.  However, there is an inherent problem of product toxicity 

that greatly reduces cell viability, increases cell lysis and product titers and there are 

previous reports suggesting membrane damage as the main mechanism of free fatty 

acid toxicity. In this work, we metabolically engineered Escherichia coli (E. coli) bacteria 

to overproduce medium chain free fatty acids and identified membrane stress as the 

leading factor in product toxicity. We found that membrane lipid composition can be 

altered by the direct incorporation of endogenously produced medium-chain fatty acids 

into lipids via the Aas pathway.  The deletion of the aas gene and sequestering 

exported fatty acids reduces medium-chain fatty acid toxicity, partially restores normal 

lipid composition, and dramatically improves medium-chain fatty acid yields.   

In the second part of this thesis, we genetically engineered E. coli to produce 

fatty acid methyl esters (FAMEs) by direct in vivo methylation of free fatty acid in the 

strains discussed above. Insect Drosophila melanogaster Juvenile Hormone Acid O-

Methyltransferase (DmJHAMT) was identified as a candidate to methylate a variety of 

endogenous medium chain fatty acids in E. coli. By introducing DmJHAMT in E. coli 

engineered to produce medium chain fatty, we obtain medium chain FAMEs at titers of 

0.56 g/L, more than two orders of magnitude higher than titers previously achieved. This 

one-step conversion process was optimized by expression of rat Mat1A gene that 

increased the S-adenosyl-L-methionine cofactor pool and providing a physical sink to 

extract FAMEs from culture.  

The work presented here shows the viable method of producing microbial 

biodiesel by metabolical engineering of E. coli.  Primary physiological stress associated 

with production of free fatty acid precursors was identified and higher titers of fatty acid 
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production were reported. These free fatty acids were then converted to biodiesel in one 

step by expressing insect enzyme in E. coli. Although further work is needed for viable 

bacterial production of biodiesel, the simplicity of the pathway allows easier optimization 

and possibility to transport this pathway into photosynthetic microorganisms in the 

future.  
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CHAPTER 1: 

Introduction to Fatty Acids for Next Generation Biofuel Production 
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1.1. Introduction to Biofuels 

With the invention of the internal combustion engine and the development of 

plastics, petroleum derived from the fossil fuels became one of the most indispensable 

chemicals for the humankind. For more than 100 years, fossil fuels have made up 

around 80% of total U.S energy consumption and this trend is likely to continue into the 

future (1). The burning of these carbon-derived fuels for energy and transportation has 

led to increase in air pollutants and atmospheric CO2 concentrations. There is an 

overwhelming agreement among leading scientists that the increased concentration of 

carbon dioxide in the atmosphere is the cause of anthropogenic global warming and 

changes in climate patterns with observable effects on the environment such as 

sustained heat waves, droughts and rising sea levels (2). In addition, increasingly high 

demand for fossil fuels will deplete the existing natural stocks that will have wider 

implications in pharmaceutical and chemical industries. There are other economic and 

political concerns associated with U.S. fossil fuel consumption such as high energy 

prices, increasing dependence on petroleum imports and environmental contamination 

due to extraction and processing of fossil fuels. To address these issues, the 

development of alternative and renewable resources for energy and fuels is essential 

for human society. Primary energy sources such as nuclear energy, solar, wind, 

geothermal and hydropower have already been utilized to produce electricity as a 

secondary energy source, but thus far have not matched the capacity required by 

modern living standards.  Alternatively, biomass-derived chemicals are recognized as a 

major alternative to supplement declining fossil fuel resources for transportation and 

chemical industry.  
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In a typical petroleum distillation process, the crude oil is fractionated according 

to the carbon chain length for their appropriate uses in the engines. The alcohols 

containing short-chain hydrocarbons (C2-C10) can be used as substitutes in gasoline 

engines or as fuel additives. Longer chain hydrocarbons (C10-C23) are the major 

components of diesel and jet fuel needed by the heavy transportation sector. Ethanol 

and biodiesel are two of the most commonly used biofuels produced to date. All biofuel 

production requires feedstock sugars and extensive treatment and processing as 

outlined in Figure 1-1 (3).  Ethanol has been one of the most successful biochemicals 

produced on a large, industrial scale. Fuel ethanol is produced by direct fermentation of 

simple sugars or more complex polysaccharides like lignin and cellulose that can be 

converted into monomeric sugar molecules. Under anaerobic conditions, the yeast 

Saccharomyces cerevisiae utilizes the well-characterized Embden-Meyerhof glycolytic 

pathways and alcoholic fermentation of sugars as the sole source of ATP for cellular 

metabolism and growth. In this manner, hexose sugars are converted into ethanol in 

yeast at >90% of the theoretical yield (4). More studies have been done to utilize other 

organisms to produce ethanol. Gram-negative Zymomonas mobilis metabolizes 

hexoses using the distinct Entner-Doudoroff pathway producing less ATP and biomass 

and metabolic carbon flux is channeled to higher fermentation products (5). As a result, 

its ethanol productivity is 2.5 fold higher than that of Saccharomyces species and Z. 

mobilis has been engineered to convert various simple sugars to ethanol (6). 

Additionally, thermophilic bacteria Thermoanaerobacterium saccharolyticum 

and Clostridium thermocellum have been metabolically engineered to produce ethanol 

as the only detectable organic product at higher temperatures (7, 8).  
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Currently, bioethanol is present in 95% of U.S. gasoline to oxygenate the fuel 

and reduce air pollution (9). While some flexible fuel vehicles can utilize a gasoline with 

high ethanol blend, there are significant drawbacks of ethanol usage as a fuel. Due to 

its high water solubility, ethanol requires a significant input of energy to be processed 

and distilled and currently, most of the first generation ethanol production enterprises 

require governmental subsidies. In addition, ethanol’s hygroscopic nature makes it 

incompatible with the existing energy infrastructure due to its rusting potential and 

inability to be delivered by pipeline. Compared to current petroleum-based fuels, ethanol 

has very low energy content and has far lower mileage per volume of fuel.  

Biodiesel is another important renewable biofuel derived from biological sources 

such as vegetable oil, animal fat and fatty acids produced by yeast, algae or bacteria 

(10). Due to high energy density and lower water solubility, biodiesel is the most 

appropriate biofuel for the growing transportation needs. Biodiesel has been already 

used in existing infrastructure and is widely available in pure form (100% biodiesel 

known as B100) and in blends with petroleum diesel. Accounting for the biomass-

derived carbon, biodiesel reduces net CO2 emissions by 78.45% compared to 

petroleum diesel. Using pure biodiesel as a transportation fuel will substantially reduce 

tailpipe emissions of total particulate matter by 32%, CO by 46% and completely 

eliminate SOx emissions (11). Biodiesel is essentially non-toxic, biodegradable and 

suitable for sensitive environments. Typically, biodiesel consists of monoalkyl esters of 

fatty acids, mainly fatty acid methyl esters (FAME) produced by the chemical 

transesterification of plant- and animal-derived triacylglycerides with methanol under 

alkaline conditions (Figure 1-2). The main characteristics for biodiesel fuels are their 
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heat of combustion and their cetane number, a measure of ignition quality that is 

standardized to be 47 in U.S. and 51 in E.U (12). As we can see from Table 1-2, most of 

the C12-C23 fatty acid derived esters meet or exceed these standards and have been 

used as a benchmark for producing biodiesel (12). Alkali-catalyzed transesterification 

process requires more than 3 moles of methanol at higher temperatures (~55-60 oC) in 

an anhydrous environment to drive the reaction into FAME production. The majority of 

the acyl groups in biodiesel are long-chain hydrocarbons (C10-C23) that are suitable for 

current diesel engines (13). There have been many studies towards engineering higher 

lipid biosynthesis in plants and fungi and the summary of some of these studies is 

presented in Table 1-1.  

While biodiesel has attracted increasing attention as an alternative to fossil fuels, 

there are significant drawbacks that will limit the production of biodiesel in the 

foreseeable future. Direct transesterification method requires pure triacylglycerides as 

trace amounts of water and free fatty acids lead to saponification and soap formation, 

lowering the quality of biodiesel. While acid-based catalysis has been developed to 

convert free fatty acids to biodiesel in a step-wise manner, it required large amount of 

toxic catalyst and water. Furthermore, the pretreatment of feedstock, esterification and 

post-methylation processing of FAMEs need large input of energy and none of the 

methods listed so far are cost effective (3). Most importantly, these first generation 

biofuels require biomass feedstock and considerable agricultural input that may 

compete with food supply. In 2005, the U.S. produced 1.48 million liters of ethanol and 

256 million liters of biodiesel from corn and soybean, respectively (14). While significant 

combined, these biofuels accounted for only 1.81% fuel usage in the United States and 
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reaching beyond these rates is highly unlikely due to contribution of these crops to food 

supplies.  

Based on these fundamental limitations mentioned above, better biofuel 

alternatives may be directly produced in microorganisms using the tools of genetic 

engineering and synthetic biology. . Recent progress in metabolic engineering has 

already allowed scientists to develop microbial hosts that directly produce a wide range 

of advanced biofuels with similar properties to fossil fuels. In one of the earlier works in 

biofuel production, Escherichia coli (E. coli) was designed to produce 45 g L-1 ethanol 

with almost 90% theoretical maximum yield (15). While native fermentative process in 

E. coli is suboptimal due to other competing by-products, the new strain had genome-

integrated pdc  (pyruvate decarboxylase) and adhB (alcohol dehydrogenase) genes 

from Zymomonas mobilis that were shown to produce high level of ethanol in E. coli 

while native pflB and frd genes responsible for competing formate and succinate 

biosynthesis were removed (15). In a seminal work, James Liao research group 

engineered E. coli to non-fermentatively produce branched-chain alcohols such as 

isobutanol and 1-butanol. Introduction of 2 non-native genes, 2-keto-acid decarboxylase 

from Lactococcus lactis with alcohol dehydrogenase 2 from S. cerevisiae, diverted 

endogenous amino acid biosynthesis to alcohol synthesis in E. coli (16). This strategy 

allowed in vivo production of longer chain and branched alcohol that have higher energy 

content and lower hygroscopicity compared to traditional ethanol. Further growth of 

these strains in bioreactor with in situ product removal yielded 50 g/L of isobutanol that 

is beyond the toxicity limit of this substance on E. coli. (17). In a different approach, a 

heterologous isoprenoid pathway was engineered in E. coli to produce isoprenoid-
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based C5 alcohols such as 3-methyl-3-buten-1-ol, 3-methyl-2-buten-1-ol and 3-methyl-

1-butanol (18, 19).  Other organisms such as Corynebacterium glutamicum, Clostridium 

cellulolyticum, Ralstonia eutropha and Synechococcuse elongates have been utilized to 

produce longer chain alcohols such as isobutanol and 2,3-butanediol from carbon 

dioxide and various carbon sources including cellulose (18–21). Figure 1-3 summarizes 

the range of alcohols produced in genetically-engineered E. coli.  

While alcohols are suitable as gasoline substitutes and fuel additives, longer 

chain hydrocarbons with higher energy density are required for heavy transportation 

and many metabolic engineering strategies have been recently focused on studying 

pathways that produce longer chain carbon molecules. The aliphatic moieties of fatty 

acids contain high energy density and are readily available, renewable building blocks 

for biofuel production. Fatty acid biosynthesis is present throughout the Bacteria and 

Eukarya domains of life and is essential for the production of phospholipids, 

liposaccharides, secondary messengers in cells and organisms and the energy storage 

molecules. As outlined in Table 1-1, much has been done to divert and produce free 

fatty acids in genetically modified organisms. For example, yeast Yarrowia lipolytica has 

been designed to accumulate 61.7% lipid content after overexpression of two enzymes, 

diacylglycerol acyltransferase and acetyl-CoA carboxylase, that are involved in 

endogeneous fatty acid biosynthesis (20).  Unfortunately, the polar carboxylic acid part 

of fatty acids makes them incompatible with any model fuels and the last conversion 

step to biofuel has been challenging and mostly done in vitro by chemical esterification 

or reduction of extracted oils. While yeast can produce very high titers of lipids and 

ethanol, the latest in vivo biodiesel production studies in yeast reported the highest 
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yields of only 34 mg of  fatty acid ethyl ester produced per liter of culture (21). There are 

clearly many unknown factors and bottlenecks that need to be addressed in plant and 

fungi-related biofuel research before any industrial scale applications are developed. 

While plants, fungi and algae provide ideal platform for the generation of fatty 

acids from various carbon sources or sunlight and CO2, the main roadblock for 

designing metabolic pathways in these organisms has been the limited understanding of 

innate biochemistry and genetics and the lack of genetic manipulation tools. Due to 

these reasons, Gram-negative E. coli was chosen as the model organism for my 

graduate studies. E. coli has well-studied fatty acid biosynthetic pathway that is 

amenable to genetic manipulations and has a potential to produce fatty acids with 

different chain lengths and properties. We sought to study the limiting factors such as 

product toxicity and subsequent growth slowdown due to free fatty acid synthesis and 

engineer a strain that has both better fitness and higher production rate of fatty acids 

(Chapter 2). In addition, we developed efficient one step in vivo conversion pathway of 

free fatty acids to biodiesel utilizing endogenous pathways with little or no energy leak in 

the process (Chapter 3).  

The remainder of this chapter will review E. coli fatty acid metabolism and 

regulation, role of fatty acids in membrane biosynthesis and how it changes with fatty 

acid production, current challenges the field faces and examples of fatty acid derived 

biofuels in E. coli produced to date. 
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1.2. Fatty Acid Metabolism and Regulation in E. coli 
 
1.2.1 Fatty Acid Biosynthesis 
 
E. coli fatty acid synthesis (FAS) is one of the prototypical bacterial Type II 

pathways found in bacteria. Unlike Type I FAS that utilizes one or two large polypeptide 

complex to synthesize fatty acids in mammals and other eukaryotes, FAS II is a 

completely dissociated system where each component is a unique protein catalyzing a 

single step in a pathway (reviewed in 22–25). Due to being multi-enzyme system, FAS II 

can modify growing acyl groups at various steps and generate a wide range of fatty 

acids with different chain length, saturation, branching and chain length modification 

(22). This diversity is attributed to the fact that all fatty acid intermediates are carried by 

acyl-carrier protein (ACP) that can be easily diverted into other biosynthetic pathways 

including phospholipid biosynthesis, acylation of membrane proteins, production of 

endotoxin lipid A, fatty-acid derived vitamins lipoic acid, biotin and synthesis of quorum 

sensing molecules (reviewed in 24).  

Enzymes in the FAS II act on acyl thioesters that are either coupled to ACP or 

coenzyme A (CoA). These two cofactors are essential for E. coli fatty acid biosynthesis 

as they are involved in initiation, providing precursors for condensation reactions, 

carrying the acyl group from one enzyme to another and eventually, transfer to the 

membrane phospholipids . In E. coli, ACP is a small acidic protein (~9 kDa) that is one 

of the most abundant proteins in the organism (about 0.25% of all soluble proteins) (26). 

Majority of ACP is maintained in active holo-form that has phosphopantetheine group 

from CoA attached to Ser-36 of ACP (27, 28). The resulting terminal sulfhydryl of the 

prosthetic group is used to bind all acyl intermediated of FAS (26, 29). 
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The general overview of E. coli fatty acid metabolism is outlined in Figure 1-4 and 

the genes, enzymes and their functions are detailed in Table 1-3. The precursors for 

FAS are derived from acetyl-CoA pool. The first committed step in fatty biosynthesis 

starts with the conversion of acetyl-CoA to form malonyl-CoA by acetyl-CoA 

carboxylase complex (AccABCD) (30). Malonyl group is then transferred to ACP by 

malonyl-CoA-ACP transacylase (FabD) (31). The resulting malonyl-ACP serves as 

donor of two carbon units for fatty acid elongation reactions. The first step is the 

condensation of malonyl-ACP with either growing acyl-ACP primer or acetyl-CoA to 

form β-ketoacyl-ACP. β-ketoacyl-ACP synthase III (FabH) catalyzes the initial acyl 

formation by condensing acetyl-CoA with malonyl-ACP to form acetoacetyl-ACP, 

whereas FabB/FabF β-ketoacyl-ACP synthases are part of elongation module and 

catalyze growing acyl-ACP condensation with malonyl-ACP (32–34). β-ketoacyl-ACP is 

reduced in a NADPH-dependent manner to β-hydroxyacyl-ACP  by β-ketoacyl-ACP 

reductase (FabG) followed by removal of water molecule to form trans-2-enoyl-ACP by 

either one of two β-hydroxyacyl-ACP  dehydrases (FabA or FabZ) (35–37). Finally, acyl-

ACP is formed by NADH-dependent reduction of enoyl-ACP by enoyl-ACP reductase 

(FabI) and the product is cycled back to 2-carbon unit elongation or diverted to 

phospholipid synthesis (38).  

The most important of membrane properties is the ratio of unsaturated to 

saturated fatty acids in the phospholipids. The key reaction in producing unsaturated 

fatty acids lies with FabA and FabB (24, 39). FabA, in addition to dehydrating β-

hydroxyacyl-ACP , has a unique property of isomerizing the trans-2-decenoyl-ACP 
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product to cis-3-decenoyl-ACP (40). FabB uses this cis-3-decenoyl-ACP to further 

elongate the acyl chain (22, 41). The cis double bond is retained in the subsequent 

elongation cycles and each cycle pushes this cis bond by two carbon units per cycle 

from the thioester bond with ACP (reviewed in 22, 24).  

1.2.2. Fatty Acid Degradation  

E. coli can use exogenously supplied fatty acids as a carbon and energy source 

through β-oxidative cleavage to acetyl-CoA (Figure 1-4). Long-chain fatty acids are 

transported through outer membrane protein FadL and inner-membrane-associated 

acyl-CoA synthase (FadD) esterifies free fatty acids to CoA (42, 43). β-oxidation occurs 

via repeated cycles of reactions that start with dehydrogenation of acyl-CoA by acyl-

CoA dehydrogenase (FadE) (44). Next, two multifunctional homologues FadB and FadJ 

reduce enoyl-CoA and then dehydrate β-hydroxyl-CoA (45). The resulting β-ketoacyl-

CoA is a substrate for β-ketoacyl thiolases FadA and FadI that results in the shortening 

of original acyl-CoA by two carbon atoms and production of acetyl-CoA (46).  The 

redundancy of enzymes in some reaction steps in β-oxidation (FadB/FadJ and 

FadA/FadI) and FA biosynthesis (FabB/FabF and FabA/FabZ) is due to different 

substrate specificities of these enzymes in relation to acyl chain length and saturation 

(reviewed in 23).  

 1.2.3 Regulation of Fatty Acid Metabolism 

Fatty acid metabolism is largely regulated and coordinated with phospholipid 

production, the growth and the environmental changes. Rapid responses such as 

temperature change involve changes in the phospholipid composition that largely do not 

cause changes in gene expression (phospholipid synthesis will be discussed later 
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section 1.3) (47). E. coli normally shuts down fatty acid and phospholipid synthesis in 

stationary phase and it was observed that inhibition of phospholipid synthesis resulted 

in a rapid decrease in the rate of fatty acid synthesis and in the accumulation of acyl-

ACPs (48). This concomitant inhibition was fully relieved  with the overexpression of  E. 

coli thioesterase I (TesA) or other plant thioesterases that cleave acyl-ACPs to generate 

free fatty acids (48, 49). The accumulated acyl-ACPs are involved in an allosteric 

regulatory feedback of fatty acid synthesis in a stationary phase and it was 

subsequently shown that long-chain acyl-ACP products inhibit enzymes FabH, FabI and 

acetyl-CoA carboxylase complex (AccABCD) (Figure 1-5) (50–52).  

Two transcriptional factors, FabR and FadR, have been identified in regulation of 

fatty acid metabolism. FabR represses expression of the two genes, fabA and fabB, 

required for unsaturated fatty acid synthesis (53, 54). On the other hand, FadR serves 

as an activator of these two genes and it upregulates unsaturated fatty acid 

biosynthesis in E. coli (55, 56). In addition, FadR coordinates the fatty acid degradation 

by being a global repressor of β-oxidation genes and outer membrane transporter FadL 

(reviewed in 57, 58). Binding of FadR is specifically inhibited by long chain fatty acyl-

CoA compounds that most likely accumulate with basal expression of fadD and 

presence of free fatty acids in the environment (58). The overview of fatty acid 

metabolism regulation is summarized in Figure 1-5. 

 

1.3. Fatty Acids and Membrane Phospholipid Synthesis 

Palmitate (C16:0), palmitoleate (C16:1) and cis-vaccenate (C18:1) make up the 

majority of fatty acids found in E. coli membranes (59). Fatty acids biosynthesis 
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normally ends when the acyl chain is 16 or 18 carbons in length. These long-chain acyl-

ACPs are substrates to the acyltransferases that transfer acyl chain into the membrane 

phospholipids (Figure 1-6). The peripheral membrane protein PlsX cleaves acyl-ACP 

and transfers acyl group to inorganic phosphate to form reactive acylphosphate (60). 

This intermediate is then used by integral membrane protein PlsY to acylate glycerol-3-

phosphate (G3P) to form 1-acyl-glycerol-3-phosphate or lysophosphatidic acid (LPA) 

(60). Alternatively, LPA may be generated from either long-chain acyl-ACP or acyl-CoA 

through PlsB, inner membrane acyltransferase (61). Integral membrane acyltransferase 

PlcC then adds a second acyl chain to the 2-position of LPA to generate phosphatidic 

acid (PA) (61). PA is the central intermediate in the formation of three major 

phospholipid species: phosphatidylethanolamine (PE) that comprises the bulk of the 

phospholipids (75%), with phosphatidylglycerol (PG) and cardiolipin (CL) forming the 

remainder (15-20% and 5-10%, respectively) (Figure 1-6) (62). As the only post-

synthetic modification mechanism, E. coli has cyclopropane fatty acid synthase (Cfa) 

that forms cyclopropane ring across the cis double in unsaturated fatty acids of existing 

membrane phospholipids (63). This modification affects the membrane fluidity and 

occurs during the transition from the late log phase to the stationary phase of the cell 

growth or as a response to an acid stress or temperature change (63, 64). 

 An unusual and novel free fatty acid incorporation into existing membrane 

phospholipids has been discovered and characterized in late 80s and early 90s (65–67). 

Post-translational acylation of lipoproteins uses the acyl group at the 1-position of 

phosphatidylethanolamine (PE) (68). The resulting 2-acylglycerolphosphoethanolamine 

(2-acyl-GPE) is membrane disruptive and either destroyed by phospholipases or 
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recycled by Aas, an inner membrane-associated bifunctional enzyme (66, 67). In fadD 

mutants lacking free fatty acid degradation pathway, Aas, with acyl-ACP synthase and 

2-acyl-GPE acyltransferase activities, provides only pathway to incorporate free fatty 

acids into phospholipids (Figure 1-6) (65). This incorporation is not coupled to fatty acid 

biosynthesis or degradation and utilizes free fatty acid available to recycle 2-acyl-GPE 

into plasma membrane (67). While this enzyme is not essential, it affects the cell fitness 

and growth in E. coli in the presence of more toxic fatty acids in the environment. In my 

graduate study, I showed that Aas can incorporate medium chain free fatty acids 

directly into plasma membrane and thus, decrease membrane fluidity and exacerbate 

the toxicity of these fatty acids (Chapter 2).  

 

1.4. Free Fatty Acid Production in E. coli. 

Due to its high rate of fatty acid biosynthesis and ability to grow on a variety of 

carbon sources and naturally secrete compounds, E. coli has been the focus of recent 

studies to produce free fatty acids (FFAs) and fatty acid derived biofuels. The first 

reports of FFA production were reported when periplasmic thioesterase TesA and plant 

thioesterases expressed cytosolically deregulated fatty acid synthesis (49, 69). Most of 

these thioesterases cleave acyl-ACPs at different stages of FA elongation and lead to 

accumulation of FFAs in the culture (reviewed in 25). The diversity of plant 

thioesterases and their expression in E. coli allowed the production of wide range of 

fatty acids with different chain length and properties. While many strategies were 

employed to increase fatty acid yields, the combination of three strategies proved to be 

most effective: upregulation of carbon flux through FA synthesis, either by 
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overexpression of Acc complex or transcription factor FadR, expression of acyl-ACP 

thioesterases to cleave acyl-ACP and relieve feedback inhibition and elimination of β-

oxidative degradation of fatty acids (refer to Figures 1-4 and 1-5 for FA metabolism) 

(70–73). Table 1-4 presents some of these genetic modifications and their efficiencies in 

E. coli (74). The amount of work and articles published on FFA production in E. coli is 

very extensive and several excellent reviews on this research field were recently 

published (25, 74, 75).  

While the highest yields of free fatty acids were achieved with the production of 

less toxic straight long-chain (C16:0-C18:0) fatty acids, their downstream products have 

higher melting points and are unsuitable in cold temperature applications (Table 1-2) 

(76, 77). Because of that, production of short and medium-chain fatty acids attracted 

considerable interest. Pfleger research group studied extensively the production of C12 

and C14 fatty acids and achieved titers of 0.8g/L of these FAs (25, 73, 78). While the 

expression of heterologous thioeterase enzymes and regulation of FA genes can be 

optimized, the inherent problem with carboxylic acid production is their toxicity (79, 80). 

Medium chain fatty acids cause membrane damage leading to less fluidity, membrane 

lysis, interruption of the electron transport chain and possibly affecting nutrient uptake 

(25, 74, 79, 80). Several approaches such as developing tolerance through evolutionary 

approach or improving fatty acid export systems have been suggested to improve the 

cell viability and the results so far have been mixed (79, 81).  

In this study, we addressed these toxicity challenges and developed E. coli 

strains that have increased tolerance to and highest yields of medium chain FAs 

reported (82). Our knock-out genetic screens identified membrane biosynthetic gene 
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aas as a key factor in causing medium-chain FA toxicity in FFA-producing strains. We 

showed that aas directly incorporated endogenously produced FAs into membrane 

phospholipids and dramatically decreased cell viability. Deleting this gene partially 

restored membrane composition, improved cell fitness and subsequently, increased the 

product yields (Chapter 2).  

 

1.5 Production of Fatty-Acid Derived Biofuels 

Endogenously produced free fatty acids as well as intermediates of fatty acid 

biosynthesis such as acyl-ACPs and β-ketoacyl-ACP have been converted into biofuels 

and bio-based products in vivo (Figure 1-7) (reviewed in 75, 83, 84). Methyl ketones 

were produced in E. coli by overexpressing plant methylketone synthases with yields of 

450 mg/L (85). Introduction of plant thioesterase and acyl-CoA reductase from other 

bacteria in E. coli produced fatty aldehydes and fatty alcohols up to 60 mg/L (86). Two 

cyanobacterial genes expressing acyl-ACP reductase and fatty aldehyde decarbonylase 

in E. coli enabled the production of alkanes and alkenes (87). Other fatty acid derived 

products synthesized from E. coli  include α-olefins and long chain alkenes (88, 89). 

There are two major reports on the direct production of biodiesel in E. coli (18, 

90). Keasling lab developed an E. coli strain capable of producing fatty acid ethyl esters 

(FAEE) in vivo from sugars (Figure 1-8). Endogenous acyl-CoA pool was enriched by 

overexpression of both acyl-CoA synthase (fadD) and a native E. coli thioesterase 

(tesA) in the cytosol and deletion of acyl-CoA dehydrogenase (fadE) to remove 

endogenous β-oxidation (see Figure 1-4 for FA metabolism). The engineered strain also 

produced ethanol non-fermentatively by heterologous expression of pyruvate 
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decarboxylase (pdc) and alcohol dehydrogenase (adhB) from Zymomonas mobilis. The 

final esterification of acyl-CoA and ethanol to form FAEE was catalyzed by 

heterologously expressed acyltransferase (wax ester synthase/acyl-CoA:diacylglycerol 

acyltransferase) encoded by atfA from Acinetobacter baylyi (86).The highest yield 

reported in that study was 0.67 g/L of FAEE and subsequent optimization of this strain 

via a dynamic sensor-regulator system increased titers to 1.5 g/L (86, 91). 

The other pathway of in vivo production of biodiesel in engineered E. coli was 

constructed by intorducing a fatty acid O-methyltransferase (FAMT) 

from Mycobacterium marinum and catalyzing the reaction with endogenous S-

adenosylmethionine (SAM) as a methyl donor. The impacts of this study on biofuel field 

are limited, as the titers were extremely low (total yields of 16 mg/L) and almost all 

FAME containing β-hydroxy fatty acids that do not have favorable fuel properties. 

In Chapter 3, we report a novel one-step conversion of free fatty acids to 

biodiesel via heterologously expressed insect methyltransferase in E. coli (Figure 1-7).  

While no enzyme that carboxymethylate long chain fatty acids have been identified so 

far, we proposed that insect enzyme, Drosophila melanogaster Juvenile Hormone III 

acid methyl transferase (DmJHAMT) could be used to convert free fatty acids to 

biodiesel in E. coli (92, 93). DmJHAMT is an insect enzyme that normally methylates 

mevalonate pathway-derived hormones and when we heterologously expressed this 

enzyme in fatty acid producing E. coli, we observed the biodiesel production. SAM 

cofactor, required for the methylation of fatty acids, was enriched in E. coli by 

expressing rat liver SAM synthase. Overall, our titers were 540 mg/L of FAME, the 

highest yield of FAME produced in E. coli and most of the products (C12 and C14 
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FAME) have better attributes such as lower melting point and comparable cetane 

number compared to previously published FAME or longer chain FAEE production. This 

simple system opens a possibility of porting this pathway into the photosynthetic 

microorganisms for direct production of biodiesel from CO2 and sunlight in the future. 
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Figure 1-1. Main industrial biomass conversion processes (3). Syn-oil, synthetically 

produced oil.  
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Figure 1-2. Current industrial methods in biodiesel production. 
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Figure 1-3. The range of alcohols being produced in genetically engineered E. coli. The 

dashed arrows represent multi-enzyme reactions and solid arrows represent single-

enzyme catalysis. Black arrows denote native E. coli pathways whereas red arrows are 

heterologous pathways introduced into E. coli. Adapted from (13, 18, 75, 94, 95) 
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Figure 1-4. Fatty acid (FA) biosynthetic and degradation pathways in E. coli. Enzymes 

in blue represent FA initiation pathway, enzymes in green catalyze FA elongation 

module and enzymes in red are part of β-oxidation/FA degradation pathway. The list of 

enzymes and their functions are given in Table 1-3. 
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Figure 1-5. Regulation of fatty acid metabolism in E. coli. Accumulation of long-chain 

acyl ACP leads to feedback inhibition of FA biosynthetic enzymes AccABCD, FabH and 

FabI. Transcriptional factor FabR represses the expression of FabA and FabB. Major 

transcriptional factor FadR activates FabA and FabB and represses all fatty acid 

degradation enzymes. FadR is antagonized by long-chain acyl-CoA. For detailed 

description of enzymes’ activities, see Figure 1-4 and Table 1-3.   
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Figure 1-6. Phospholipid biosynthesis in E. coli. Membrane phospholipids are formed 

via two sequential pathways: glycerol-3-phosphate (G3P) acylation (phospatidic acid 

production) and modification of polar head group (polar head synthesis). Aas uses 

alternative route to acylate membrane 2-acyl-GPE directly using free fatty acids. The list 

of enzymes and their functions are given in Table 1-3. 
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Figure 1-7. Overview of fatty-acid derived fuels and bio-products derived from E. coli 

fatty acid biosynthesis 
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Figure 1-8. Biodiesel metabolic engineering pathways in E. coli. Fatty acid ethyl esters 

(FAEE) are produced by enriching acyl-CoA and ethanol production. Fatty acid methyl 

ester (FAME) production in our lab is performed in one-step conversion utilizing insect 

enzyme DmJHAMT.  
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Genetic Modification  Host 
Organism 

 Remarks Ref. 

PLANTS      
Carthamus tinctorius G3P acyltransferase 
(GPAT) expression 

 Arabidopsis 
thaliana  

 10–21 % increase in 
seed oil content (96) 

Expression of Thunbergia alata Δ6 ACP 
desaturase 

 Arabidopsis 
thaliana  

 <10 % of total fatty acid 
became palmitoleic acid (97) 

Expression of Umbellularia californica lauryl-
ACP thioesterase 

 Arabidopsis 
thaliana  

 24 % of total fatty acid 
converted to laurate (98) 

Expression of a cytosolic variant of 
endogenous acetyl-CoA carboxylase 
(ACCase) 

 Brassica 
napus  

 5 % increase in seed oil 
content (99) 

Expression of ketoacyl ACP synthase III 
(KASIII) from Spinacia oleracea  

 Brassica 
napus  

 Increased palmitic acid 
proportion, decreased 
total fatty acids 5–10 % 

(100) 

Saccharomyces cerevisiae G3p 
dehydrogenase (gpd1)expression 

 Brassica 
napus  

 40 % increase in seed 
oil content (101) 

Saccharomyces cerevisiae sn-2 
acyltransferase (SLC1-1) expression 

 Brassica 
napus  

 53–121 % increase in 
erucic acid content (102) 

Arabidopsis thaliana diacylglycerol 
acyltransferase (DGAT1) expression 

 Brassica 
napus  

 Increase in oil content 
and seed weight (103) 

Expression of Umbellularia californica lauryl-
ACP thioesterase 

 Brassica 
napus  

 58 % of total fatty acid 
converted to laurate (104) 

Expression of Cuphea hookeriana FatB1 
thioesterase 

 
Brassica 
napus  

 Fatty acid content 
changed to 11 % 
caprylate and 27 % 
caprate 

(105) 

Co-expression of Cuphea hookeriana FatB1 
thioesterase and ketoacyl ACP synthase 
(KAS) 

 
Brassica 
napus  

 30–40 % increase in 
short-chain fatty acid 
content over FatB1 
expression only 

(106) 

Co-expression of Cuphea hookeriana FatB1 
thioesterase and lyso-phosphatidic acid 
acyltransferase (LPAAT) from Cocos 
nucifera  

 
Brassica 
napus  

 67 % of total fatty acid 
content converted to 
laurate 

(107) 

Arabidopsis Acc1 (cytosolic ACC) 
expression 

 Brassica 
napus  

 1–2× plastid ACC + 6 % 
fatty acid content (108) 

Down regulation of FAD2 desaturase and 
FatB hydrolase 

 
Glycine max  

 85 % increase in oleic 
acid levels 

Revie-
wed in 
(109) 

Expression of Coriandrum sativum 
Δ4palmitoyl acyl carrier protein desaturase 
(ACP desaturase) 

 Nicotiana 
tabacum  

 <10 % of total fatty acid 
became palmitoleic acid (110) 

 

Continued next page 
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Genetic Modification  Host 
Organism 

 Remarks Ref. 
Arabidopsis thaliana acyl-
CoA:diacylglycerol acyltransferase 2 
(DGAT2) 

 Nicotiana 
benthamiana 

 20 fold increase in 
triacylglyceride (TAG)  
content in leaf 

(111) 

Arabidopsis Acc1 (cytosolic ACC) 
expression 

 Solanum 
tuberosum  

 Fivefold increase in 
TAG content (112) 

Rat ACL expression  Tobacco  16 % increase in lipid 
content (113) 

FUNGI      
Malic enzyme isoforms expression from 
Mortierella alpina and Mucor circinelloides  

 Mucor 
circinelloides  

 2.5-Fold increase in 
lipid accumulation (114) 

Deletion of the glycerol-3-phosphate 
dehydrogenase gene (GUT2) 

 Y. lipolytica   Threefold increase in 
lipid accumulation (115) 

Overexpression of the G3P dehydrogenase 
GPD1, deletions of the acyl-CoA oxidase 
(POX) genes 

 
Y. lipolytica  

 Accumulation of more 
than 80 % of its mass 
as lipids 

(116) 

Expression of Arabidopsis DGAT  Yeast  Threefold increase in 
TAG accumulation (117) 

Overexpression of DGA1 and ACC1  Y. lipolytica   ~11.5 fold improvement 
in TAG conversion yield (118) 

 
Table 1-1. Examples of genetic modifications used for enhanced lipid synthesis in 

plants and fungi (adapted from original tables published in (119) and (120) with 

corrected and updated references)  
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Ester Cetane 
number 

Melting point 
(°C) 

Heat of 
combustion 
(kJ/mol) 

Methyl octanoate (8:0) 39.75 −37.3 5523.76 
Methyl decanoate (10:0) 51.63 −13.1 6832.24 
Methyl laurate (12:0) 66.70 4.6 8138.42 
Methyl myristoleate (14:1) — −52.2 9238.27 
Methyl palmitate (16:0) 85.9 30 10 669.20 
Methyl palmitoleate (16:1) 56.59 −33.9 10 547.86 
Methyl stearate (18:0) 101 39 11 962.06 
Methyl oleate (18:1) 56.55 −19.5 11 887.13 
Methyl linoleate (18:2) 38.2 −35 11 690.10 
Methyl linolenate (18:3) 22.7 −52 11 506.00 
Ethyl octanoate 42.19 −44.5 6129.56 
Ethyl decanoate 54.55 −19.8 7447.52 

 

Table 1-2. Properties of common fatty esters used as a biodiesel related to ignition 

quality, combustion and melting point (12, 121).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

http://www.chemspider.com/Chemical-Structure.10540.html
http://www.chemspider.com/Chemical-Structure.7800.html
http://www.chemspider.com/Chemical-Structure.7759.html
http://www.chemspider.com/Chemical-Structure.7847.html
http://www.chemspider.com/Chemical-Structure.4509536.html
http://www.chemspider.com/Chemical-Structure.7889.html
http://www.chemspider.com/Chemical-Structure.558899.html
http://www.chemspider.com/Chemical-Structure.7909.html
http://www.chemspider.com/Chemical-Structure.4516661.html
http://www.chemspider.com/Chemical-Structure.4447491.html
http://www.chemspider.com/Chemical-Structure.4477947.html
http://www.chemspider.com/Chemical-Structure.7511.html
http://www.chemspider.com/Chemical-Structure.7757.html


30 
 

 
Gene Protein Function(s) Notes 
Acyl Carrier Protein Synthesis 
acpP Acyl carrier protein (ACP) Growing acyl chain is coupled to 

ACP 
acpS Acyl carrier protein synthase  
Fatty Acid Biosynthesis 
accA Acetyl-CoA carboxyltransferase subunit Acc complex (AccABCD) is 

downregulated by long chain 
acyl-ACP 

accB Biotin carboxy carrier protein 
accC Biotin carboxylase 
accD Acetyl-CoA carboxyltransferase subunit 
fabA β-hydroxydecanoyl-ACP dehydratase Involved in unsaturated fatty acid 

biosynthesis 
fabB β-ketoacyl-ACP synthase I Involved in unsaturated fatty acid 

biosynthesis 
fabD Malonyl-CoA-ACP transacylase  
fabF β-ketoacyl-ACP synthase II  
fabG β-ketoacyl-ACP reductase  
fabH β-ketoacyl-ACP synthase III  
fabI Enoyl-ACP reductase I Downregulated by long chain 

acyl-ACP 
fabK Enoyl-ACP reductase II  
fabZ β-hydroxyacyl-ACP  dehydrases  
Fatty Acid Degradation 
fadA β-ketoacyl-CoA thiolases  
fadB Enoyl-CoA hydratase I/β -hydroxyacyl-

CoA dehydrogenase I and epimerase/cis- 
β-trans-2-enoyl-CoA isomerase  

 

fadD Acyl-CoA synthase - Couples free FAs to CoA 
- First step in fatty acid 

degradation pathway  
fadE Acyl-CoA dehydrogenase  
fadF Enoyl-CoA hydratase II/ β -hydroxyacyl-

CoA dehydrogenase II 
 

fadL Long-chain fatty acid transporter Transports C16 and longer chain 
fatty acids 

Transcriptional Regulation 
fabR Transcriptional regulator     Represses fabA/fabB 
fadR Transcriptional regulator - Upregulates fabA/fabB 

-  downregulates fatty acid 
degradation pathway 

- repressed by long chain acyl-
CoA 

 
Continued next page 
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Gene Protein Function(s) Notes 
Phospholipid Biosynthesis 
aas Acyl-ACP synthase/2-acyl-GPE 

acyltransferase 
- Directly incorporates free fatty 

acids into membrane 
phospholipids 

cfa Cyclopropane fatty acid synthase - Modifies acyl chains in existing 
membrane phospholipids 

plsB Glycerol-3-phosphate acyltransferase I  
plcC 1-acyl-n-glycerol-3-phosphate 

acyltransferase 
 

plsX Phosphate acyltransferase  
plsY Glycerol-3-phosphate O-acyltransferase II  
Other   
tesA Acyl-CoA/acyl-ACP thioesterase I - Periplasmic enzyme 

- Uncouples fatty acids from acyl-
ACP/acyl-CoA when expressed 
in the cytosol 

 

Table 1-3. Genes of Lipid Metabolism in E. coli 
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Variable Background Improvement of the total 
FFA yield (x-fold) Ref. 

tesA’/BTE/ AcTesA’ 
overexpression Wild-type 12-fold to 35-fold (1) (73, 86, 

122) 

ΔfadD Wild-type 3-fold to 10-fold (1) (72, 73, 
123) 

ΔfadE Wild-type 5-fold (1) (124) 

tesA’/BTE ΔfadD 1.5-fold to 11.5-fold (2) (72, 73, 
86) 

tesA’  ΔfadE  4-fold (2)  (124)  
ΔfadD  tesA’  2-fold (2)  (86)  
ΔfadE  tesA’  3-fold (2)  (86)  

accABCD  ΔfadD or ΔfadD +  tesA’ 
or BTE 1.1-fold to 1.33-fold (2)  (72, 73)  

fabF  tesA’ + ΔfadE  15-fold diminished or 3-fold 
enhanced (2)  

(124, 
125)  

fabZ  tesA’ + ΔfadD or ΔfadE  3-fold enhanced or no change 
(2)  

(124, 
126)  

fabG; fabZ; fabI  tesA’ + ΔfadE  1.5-fold (2)  (124)  
fabA  tesA’ + ΔfadE  1.1-fold (2)  (125) 
fabB  tesA’ + ΔfadE  2.3-fold (2)  (125)  
fabBA  tesA’ + ΔfadE  1.7-fold (2)  (125)  
fadR tesA’ + ΔfadE 7.4-fold (2) (125) 

Table 1-4. Genetic modifications in E. coli in free fatty acid production. The original 

table is published by Janßen and Steinbüchel in reference (74). 

(1) Wild-type = 0.02 g/L (72). (2) Compared with the reference strain of the same study. 

For calculation of the yield improvement, the final fatty acid concentration of the 

background strain was compared with the same strain plus deletion or overexpression 

of the respective gene. Thioesterases from different organisms have been tested, but 

were always expressed as a cytosolic enzyme. tesA’, E. coli Acyl-CoA/acyl-ACP 

thioesterase I; BTE, Umbellularia californica acyl–ACP thioesterase; AcTesA’, 

Acinetobacter baylyi acyl–ACP thioesterase. 
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2.1 Abstract 

Microbial fatty acids are an attractive source of precursors for a variety of 

renewable commodity chemicals such as alkanes, alcohols, and biofuels.  Rerouting 

lipid biosynthesis into free fatty acid production can be toxic, however, due to alterations 

of membrane lipid composition.  Here we find that membrane lipid composition can be 

altered by the direct incorporation of medium-chain fatty acids into lipids via the Aas 

pathway in cells expressing the medium-chain thioesterase from Umbellularia 

californica (BTE).  We find that deletion of the aas gene and sequestering exported fatty 

acids reduces medium-chain fatty acid toxicity, partially restores normal lipid 

composition, and improves medium-chain fatty acid yields.   
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2.2 Introduction 

Microbially derived fatty acids are attractive precursors for a variety of carbon-

neutral fossil fuel replacements.  Moreover, microbially derived fatty acids do not directly 

compete with food production, unlike oils and fats from plant and animal sources (1, 2). 

As a result, engineering microbial fatty acid biosynthesis has been extensively 

investigated with many successful efforts to overproduce free fatty acids (FFA) in 

bacteria and yeast (3–9). Moreover, several groups have developed strategies to 

convert the overproduced fatty acids into biofuels, such as methyl or ethyl esters and 

medium to long-chain alcohols and alkanes(5, 6, 10–15).  Despite these efforts, yields 

of FFAs must be improved for economic viability. 

Escherichia coli (E. coli) is an attractive host organism for production of FFAs as 

it can grow on a variety of carbon sources, has fast replication rates, and can be  

genetically manipulated.  Moreover, the extensive knowledge of E. coli fatty acid 

biosynthesis facilitates pathway engineering allowing tailoring of the chemical 

composition of the fatty acids produced (1).  The E. coli fatty acid metabolic pathways 

relevant to this work are summarized in Figure 2-1. Fatty acid biosynthesis starts with 

acetyl-CoA and proceeds through multiple rounds of elongation and reduction to yield a 

long-chain fatty acyl group attached toacyl carrier protein (ACP) (3).  Elongation usually 

ends with the production of long-chain (16-18 carbon) acyl-ACPs that are used for lipid 

production (16).  Generally, fatty acyl intermediates do not exist as free fatty acids in 

bacteria and are virtually all are esterified to ACP. To prevent build-up of fatty acids, 

fatty acid biosynthesis is tightly regulated by acyl-ACP feedback inhibition of FA 

biosynthetic enzymes as well as by the transcription factors FabR and FadR (16).  FFAs 
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in cells are either degraded by β-oxidation pathway into acetyl-CoA or incorporated into 

membrane phospholipids (17). 

It has been shown that the introduction of acyl-ACP thioesterases in β-oxidation 

deficient (ΔfadD) cells liberates free fatty acids from ACP and redirects lipid 

biosynthesis into free fatty acid production (18).  Moreover, elimination of acyl-ACP 

feedback inhibition allows unregulated fatty acid (FA) production, increasing fatty acid 

yields (19, 20).  As different thioesterases have distinct fatty acid chain specificities, the 

length and diversity of fatty acids produced can be tailored by varying the thioesterase.  

Thioesterases from Acinetobacter baylyi and Umbellularia californica have been used to 

make short to medium (C6-C14) chain fatty acids, while E. coli, Cinnamomum 

camphorum, Ricinus communis and Jatropha curcus thioesterases have been used for 

synthesis of  longer chain fatty acids (C14-C18) (4, 5, 20–22).  Although distinct 

thioesterases have been used to produce a variety of fatty acids in E. coli, there is a 

need to address the cellular toxicity of endogenously-produced free fatty acids, 

particularly short and medium chain fatty acids, and consequent reductions in cell 

viability, membrane stability, and fatty acid yields (23).  

The cytosolic acyl-ACP thioesterase from U. californica (BTE) has been used 

extensively in E. coli ΔfadD strains for  the overproduction of medium-chain FFAs (4, 

18).  It has been shown that BTE has a preference for saturated fatty acids, yielding a 

pool of FFAs with a relatively high degree of saturation (4, 18).  However, one 

consequence of BTE expression in E. coli  is the depletion of saturated chains in the 

lipid biosynthesis pathway, leading to a toxic replacement by unsaturated lipids in the 

membrane (24).  Toxicity can be reduced by including a second thioesterase that 
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prefers unsaturated chains, although an increase in fatty acid titers was not observed 

(24).  Efforts to overexpress efflux transporters have shown moderate success (25, 26), 

but these approaches do not directly addresses the potential toxic effects of 

incorporation of free fatty acids into membrane phospholipids (24) 

Here we explore an alternative mechanism for increasing medium chain FFAs by 

focusing on the alteration of bilayer composition and resulting toxicity caused by the 

production of medium-chain FFAs. It has been shown previously that exogenous free 

fatty acids can be directly incorporated into membrane phospholipids via the acitivity of  

2-acyl-glycerophosphoethanolamine (2-acyl-GPE) acyltransferase/acyl-ACP synthetase 

(Aas)(27, 28).  Here, we demonstrate that medium-chain FFAs produced as a result of 

thioesterase activity can be directly introduced into membrane lipids via Aas activityas 

shown in Fig 2-1 (27, 28).  We find that deletion of the aas gene reduces the levels of 

medium-chain fatty acids incorporated into the membrane, lowers medium-chain fatty 

acid toxicity and increases FFA yields.  
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2.3 Results and Discussion 

2.3.1 Δaas alleviates medium-chain FFA toxicity 

To test whether deletion of the aas gene could reduce the toxicity of medium-

chain FFAs, we tested the effects on growth when exogenous FFAs were added to the 

growth medium.   E. coli strains SS0 (ΔfadD) and SS19 (Δaas ΔfadD) were grown to log 

phase and then plated on LB agar plates containing 1 mg/ml of different medium-chain 

fatty acids. Cell viability was assessed by counting colony forming units (CFU) after one 

day of incubation. As shown in Fig. 2-2A, the SS0 (ΔfadD) strain showed more than 

50% reduction of CFU counts in the presence of exogenous medium-chain fatty acids. 

Saturated medium-chain fatty acids were significantly less toxic to the SS19 (Δaas 

ΔfadD) strain, with 70-72% of cells forming colonies in the presence of exogenously 

added C12:0 and C14:0 medium-chain fatty acids (Fig. 2-2A).  The deletion of the aas 

gene had no notable effect on the toxicity of the unsaturated C14:1 FFA, however, 

indicating the toxicity of this FFA occurs by an independent mechanism.  

We next tested whether deletion of aas could protect cells lacking a competent 

fatty acid degradation pathway (ΔfadD) from the toxicity of medium-chain FFAs 

produced endogenously.  Cells expressing BTE thioesterase from a plasmid were 

grown and cell viability was assessed by measuring the CFUs over time. As shown in 

Fig. 2-2B, strain SS22 (∆aas ∆fadD BTE) grew faster and reached a higher level of 

saturation than strain SS20 (∆fadD BTE) alone.  Moreover, after several days of growth, 

strain SS22 (∆aas ∆fadD BTE) remained viable, whereas strain SS20 (∆fadD BTE) 
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began to die off.   Thus, deletion of aas in a ∆fadD E. coli strain led to better cell fitness 

and higher cell counts in the presence of both exogeneously added and endogenously 

produced medium-chain FFAs. 

2.3.2 Δaas reduces incorporation of FFAs into membrane phospholipids 

We hypothesized that the aas deletion reduces toxicity by eliminating 

incorporation of medium-chain FFAs into membrane lipids.  To test this hypothesis, we 

analyzed the membrane lipid composition of each BTE-expressing strain.  Fig. 2-3A 

shows the membrane lipid composition in SS20 (∆fadD BTE) and SS22 (∆aas ∆fadD 

BTE) strains after 2 days of growth.  We saw a decrease in saturated FA content, 

especially of palmitic (C16:0) acid and an increase in unsaturated fatty acids, including 

C12:1, C14:1 and C18:1 FAs in membranes of strains expressing BTE, as previously 

reported (24).  We also found, however, that the ratio of medium-chain fatty acids (C12 

and C14) to C16 fatty acids increased dramatically in SS20 (∆fadD BTE) membranes 

(Fig. 2-3B).  The altered composition is consistent with previous reports that BTE- 

expressing cell lines have higher membrane stress  (24, 34). Deletion of aas in strain 

SS22 (∆aas ∆fadD BTE) partially restored normal membrane phospholipid composition 

by decreasing the amounts of medium-chain fatty acids relative to C16 fatty acids in the 

phospholipid membrane (Fig. 2-3B).  

2.3.3 aas deletion increases fatty acid production  

We speculated that the reduction in toxicity due to medium-chain FFA production 

might allow for increased production of FFA in E. coli.  Growth of SS20 (∆fadD BTE) in 

rich media yielded 0.60±0.05 grams of FFA per liter of culture, primarily consisting of 
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lauric (C12:0), cis-5-dodecanoic (C12:1), and cis-7-tetradecanoic (C14:1) acids (Fig. 2-

4).  Indeed, in strain SS22 (∆aas ∆fadD BTE), FFA production increased about 20% to 

0.69±0.12 gr L-1.  

2.3.4 Expression of FadR in ∆aas background boosts production of medium-

chain FFA  

FadR is a positive transcriptional regulator controlling genes of fatty acid 

synthesis and overexpression of FadR is known to increase FFA production in the 

presence of thioesterases, albeit those specific for long chain (≥16C) acyl-ACPs (35).   

When we attempted to express both BTE and FadR in a ΔfadD strain, growth 

essentially stopped after induction.  However, deletion of the aas gene in strain SS23 

(ΔfadD Δaas BTE/FadR), restored normal growth rates, reduced medium-chain FFA 

incorporation into membrane phospholipids and increased FFA production to 0.90±0.14 

gr L-1 (Fig. 2-2B, Fig. 2-3 and Fig.2- 4). These results suggest that the aas deletion was 

able to alleviate the increased toxicity caused by enhanced production of medium-chain 

FFAs induced by FadR expression. 

2.3.5 Extraction of FFAs from culture medium further increases production 

The addition of a dodecane layer on top of the culture medium has been shown 

to increase the yield of fatty acid derivatives such as biodiesel (5).  We wondered 

whether it might also be possible to trap fatty acids in a dodecane layer, thereby 

removing FFAs from the culture as well as mitigating their toxic effects.  Preliminary 

tests indicated that a majority of fatty acids produced are trapped in the dodecane layer 

providing a physical sink for FFA accumulation. As shown in Fig. 2-4A, the dodecane 
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layer significantly enhances FFA production in all strains tested.  Ultimately we could 

raise the total medium-chain FFA production to 1.36±0.04 gr L-1.   

A more detailed analysis of the free fatty acids in the dodecane layer from each 

strain is shown in Figure 2-4B.  As expected, a majority of the free fatty acids present in 

each strain are C12 saturated fatty acids since BTE is specific for C12 acyl-ACP (4, 18).  

Notably, the introduction of FadR into a BTE–expressing double mutant (Δaas ΔfadD) 

significantly increases the production of C14:1 fatty acids.  Because FadR is a 

transcriptional activator of FabAB expression, it is expected that C14:1 free fatty acid 

production would increase. The FadR-induced increase in unsaturated C14:1 fatty acid 

content in the SS23 (Δaas ΔfadD BTE/FadR) strain did not increase the incorporation of 

C14 fatty acids in the membrane, however (Fig. 2-3A).  Thus, the aas deletion helps to 

protect membranes from changes caused by the incorporation of FFAs.  

2.4 Conclusion 

Overall, we achieved a 126% increase in medium-chain FFA yields (1.36±0.04 gr 

L-1 versus 0.60±0.05 gr L-1) by knocking out the aas gene, co-expressing FadR and BTE 

in a ΔfadD background, and introducing a physical sink for FFAs at the stationary phase 

compared to BTE-expressing ΔfadD control strain.  The final yield of FFAs is higher 

than any reported yield for medium-chain FFAs to our knowledge.  The challenges 

facing fatty acid derived biofuel production are still considerable, but our results add 

another tool for improving metabolic efficiency of free fatty acid producing E. coli strains.  
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2.5 Materials and Methods 

2.5.1 Materials 

T4 DNA ligase and restriction endonucleases were obtained from New England 

Biolabs. DNA Polymerase Mastermix was from Denville Scientific.  QIAprep Miniprep 

kits and QIAquick gel extraction kits were purchased from Qiagen. The λDE3 

Lysogenization Kit was from EMD Chemicals. All reagents were from Sigma Aldrich 

except for LB agar and Terrific Broth which were obtained from Fisher Scientific. 

Oligonucleotide primers were synthesized by Valuegene. Gene sequencing and gene 

synthesis were performed by Genewiz.  

2.5.2 Vector construction 

The 897-bp portion of U. californica BTE (BTE) gene lacking the thylakoid 

targeting sequence was prepared synthetically by Genewiz and the BTE gene was 

amplified with primers XhoI-pBAD/p15A-BTE  and NsiI-pBAD/p15A-BTE. The PCR 

product was purified, digested with XhoI and NsiI and ligated into XhoI and PstI 

digested plasmid pBAD/HisA/p15A (29) to produce BTE-pBAD/p15A. The BTE-

pBAD/p15A plasmid was digested with XhoI and SfuI and the gel-purified BTE gene 

was sub-cloned into XhoI/SfuI-digested pBAD/HisA plasmid (Invitrogen) to yield BTE-

pBAD/HisA.  The FadR expression construct (FadR-AG1) was obtained from the ASKA 

(-) collection (30).  
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2.5.3. E. coli strains 

 E. coli strains JW 1794-1 (Δfad::kan)  and JW2804-1  (Δaas::kan)  were used 

as the starting point for strain construction (31). A λDE3 prophage was integrated into 

these two cell lines to yield strain SS0 (Δfad)  and SS18 (Δaas) strains. Removal of the 

Kan cassette from SS18 and subsequent knock-out of the fadD gene was performed 

according to the protocol from Datsenko and Wanner (32). The PCR products employed 

to knock-out the fadD gene were generated by using primers FadD-P1-pKD4-Primer1 

and FadD-P2 pKD4-Primer1 using pKD4 plasmid as template. The gel-purified PCR 

product was further extended using FadD-P1-pKD4-Primer2 and FadD-P2-pKD4-

Primer2 and the final PCR product was used to knock-out fadD as described previously, 

yielding the double knock-out strain SS19 (Δaas ΔfadD) (32). The BTE-pBAD/HisA 

plasmid was transformed into SS0 and SS19 to yield SS20 (ΔfadD BTE) and SS22 

(Δaas ΔfadD BTE). SS21 (ΔfadD BTE/FadR) and SS23 (Δaas ΔfadD BTE/FadR) 

strains were made by transforming FadR-AG1 plasmid into SS20 and SS22 strains 

respectively.  

2.5.4. Cell growth 

Terrific broth with 1.5 % glycerol (TB) was used for cell growth, supplemented 

with ampicillin (50 µg ml-1), chloramphenicol (34 µg ml-1) or kanamycin (50 µg ml-1) as 

appropriate.  Single colonies of each strain were inoculated into 5 mL of TB and 

cultured overnight at 37 °C. The seed cultures were then used to inoculate 30 mL TB 

medium with appropriate antibiotics in 150 mL culture tube and cultivated at 25°C in a 

rotary shaker (210 rpm).  BTE and FadR expression was induced at OD600 of 0.1 with 

50 µM Isopropyl-β-D-thio-galactoside and/or 0.002 % L-arabinose. For samples with 
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dodecane overlay, 6 ml of dodecane were added after 24 hours of growth.  Cultures 

were grown for 2 days prior to FA analysis as described below.  

2.5.5. Cell viability measurements 

SS0 and SS19 cell lines were grown from overnight culture to an OD600 of 0.4, serially 

diluted in TB medium and plated on LB agar plates containing 1 mg/ml of various FAs. 

For time-course measurements of cell viability, samples from various time points were 

collected, serially diluted and plated on LB agar plates containing appropriate 

antibiotics. Individual colonies were counted after overnight incubation at 37°C. Every 

measurement was done either in duplicate or triplicate.  

2.5.6. Membrane lipid composition 

Membrane-lipid acyl composition was analyzed as previously described (33) with 

a few modifications. 10 mL of cell cultures were collected after 48 hours of growth and 

were initially incubated at room temperature for 10 minutes in 4 ml of 10 mM Tris-HCl 

pH 7.5 and 5 mL of 100 mg/ml BSA solution to remove any FFAs in the solution.  Cells 

were lysed by sonication and collected by centrifugation at 3800 x g for 5 min. 

Membrane bound acyl groups were methylated to produce fatty acid methyl esters 

(FAMEs), extracted and analyzed as described below (33). The optical density of the 

cultures was assessed at 600 nm (Abs600) on a SpectraMax M5 plate reader and the 

membrane lipid composition was normalized to optical density measurements. For lipid 

ratio calculations, C12 and C14-derived fatty acids were added and divided by C16-

derived fatty acids present in membrane phospholipids.  
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2.5.7. Metabolite extraction and identification 

FFAs and FAMEs were extracted by addition of 6 mL of a 2:1 

chloroform/methanol mixture to 5 ml of culture or 1 mL of dodecane layer spiked with 

0.15 mg/L methyl heptadecanoate as an internal control.  Quantification of FFAs was 

conducted by GC-FID in HP 5890 Series II gas chromatograph equipped with HP-

Innowax Column (0.32mm x 30 m x 0.25µm, Agilent).  All samples were analyzed using 

the following parameters: inject: 1 μl; inlet at 250°C with split ratio 1:1; carrier gas: 

helium; flow: 5 ml/min; oven temperature: initial temperature of 160°C, hold 3 min; 255°C 

at 5°C/min;  hold 3 min; inlet temp: 270°C, detector temp: 330°C. The amount of FFA 

was determined by comparison to a standard curve of various FAs and methyl 

heptadecanoate concentrations. The identity of metabolites was confirmed by GC/MS 

using an Agilent 6890-5975 equipped with HP-Innowax Column (0.32mm x 30 m x 

0.25µm, Agilent). 
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Figure 2-1. Pathways employed for medium-chain free fatty acid (FFA) overproduction 

in E. coli.  Expression of U. californica acyl-ACP thioesterase BTE in β-oxidation- and 

phospholipid synthesis-deficient (ΔfadD Δaas) E. coli strain leads to increased 

accumulation of medium-chain FFAs in cells and culture. FA, fatty acid; ACP, acyl-

carrying protein; GPE, glycerophosphoethanolamine; FadD, acyl-CoA synthetase; Aas, 

2-Acyl-GPE acyltransferase/acyl-ACP synthase; BTE, U. californica acyl-ACP 

thioesterase.  
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Figure 2-2.  aas gene deletion decreases medium-chain FFA toxicity. (A) Log phase 

SS0 (ΔfadD) and SS19 (Δaas ΔfadD) strains were  plated on LB plates containing 

1mg/mL of medium chain FAs and the CFU counts were measured after 1 day of 

growth. (B) Viable cell counts of BTE-expressing E. coli strains cultured over a 2-day 

period. The OD600 of strains after 2 days of growth were as follows: SS0 11.4±0.6, 

SS19 11.6±0.4, SS20 12.1±0.3, SS22 13.1±0.4, SS23 11.7±0.4 
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Figure 2-3. aas gene deletion prevents incorporation of medium-chain FAs into 

membrane phospholipids. (A) Normalized membrane lipid composition of E. coli strains. 

(B) Ratio of membrane-bound medium-chain fatty acids to C16-derived fatty acids, the 

major components of E. coli membrane lipids, in strains used in this study. 

 



60 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 2-4. Medium-chain free fatty acid production by recombinant E. coli strains.  (A) 

Total FAs yields of engineered strains after 2 days of incubation with and without 

dodecane overlay. Total FA recovered: SS20, 0.60±0.05 gr L-1 culture alone, 0.99±0.01 

gr L-1 with dodecane overlay; SS22, 0.69±0.12 gr L-1 culture alone, 1.19±0.04 gr L-1 with 

dodecane overlay; SS23, 0.90±0.14 gr L-1 culture alone, 1.36±0.04 gr L-1 with dodecane 

overlay. (B) The distribution of medium-chain FAs in the dodecane layer.   
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Table 2-1. Bacterial strains, plasmids and primers used in Chapter 2. 

 

 

Strains Genotype Ref. 

BW 25113 F-, λ,- Δ(araD-araB)567, Δ(rhaD-rhaB)568, hsdR514, ΔlacZ4787(::rrnB-
3), rph-1 

(31) 

JW 2804-1 BW25113 Δaas761::Kan (31) 

JW 1794-1 BW25113 ΔfadD730::Kan (31) 

SS0 JW 1794-1 λ(DE3)  This study 

SS19 JW 1794-1 λ(DE3) Δaas761 This study 

SS20 SS0  BTE-pBAD/HisA/p15A This study 

SS22 SS19 BTE-pBAD/HisA/p15A This study 

SS23 SS22 fadR-pCA24N This study 

Plasmids Description Ref 

pBAD/HisA araBAD promoter, pBR322 origin, AmpR Invitrogen 

pBAD/HisA/p15A araBAD promoter, p15A origin, CmR (29) 

BTE-pBAD/p15A BTE cloned into pBAD/HisA/p15A This study 

BTE-pBAD/HisA BTE cloned into pBAD/HisA This study 

fadR-AG1 fadR cloned into pCA24N (-gfp) from ASKA (-) collection (30) 

Primers Sequence 

Xho1-pBAD/p15A-
BTE 5’Forward 5’- GGGTTTTCTCGAGGAGTGGAAGCCGAAGCCGAA-3’  

NsiI-pBAD/p15A-
BTE 3’ Stop 5’- GGGTTTTATGCATTTACACCCTCGGTTCTGCGGGTA-3’ 

FadD-P1-pKD4-
Primer1 

5’- GACGACGAACACGCATTTTAGAGGTGAAGAAGTGTAGGCTGGAGCTGCTTC-
3’ 

FadD-P2 pKD4-
Primer1 

5’-GATTAACCGGCGTCTGACGACTGACTTAACGCATGGGAATTAGCCATGGTCC-
3’ 

FadD-P1-pKD4-
Primer2 5’-TATCATTTGGGGTTGCGATGACGACGAACACGCATTTTAG-3’ 

FadD-P2-pKD4-
Primer2 5’-GCGTCAAAAAAA ACGCCGGATTAACCGGCGTCTGACGACTG-3’ 
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3.1 Abstract 

Most biodiesel currently in use consists of fatty acid methyl esters (FAMEs) 

produced by transesterification of plant oils with methanol.  To reduce competition with 

food supplies, it would be desirable to directly produce biodiesel in microorganisms.  

Medium chain FAMEs also have potential alternative uses as fragrances and 

biodegradable pesticides.  To date, the most effective pathway for the production of 

biodiesel in bacteria yields fatty acid ethyl esters (FAEEs) at up to ~1.5 g/L.  A much 

simpler route to biodiesel produces FAMEs by direct S-adenosyl-L-methionine (SAM) 

dependent methylation of free fatty acids, but FAME production by this route has been 

limited to only ~16 mg/L.  We hypothesized that the low production of FAMEs was due 

to the lack of a suitable, broad spectrum methyltransferase (MT).  We searched for 

possible candidate MTs and found a potential enzyme, Drosophila melanogaster 

Juvenile Hormone Acid O-Methyltransferase (DmJHAMT) that is capable of methylating 

a variety of medium chain fatty acids in addition to its endogenous substrate.  By 

introducing DmJHAMT in E. coli engineered to produce medium chain fatty acids and 

overproduce SAM, we obtain medium chain FAMEs at titers of 0.56 g/L, a 35-fold 

increase over titers previously achieved.  Although considerable improvements will be 

needed for viable bacterial production of FAMEs and FAEEs for biofuels, it may be 

easier to optimize and transport the FAME production pathway to other microorganisms 

because it involves fewer enzymes. 
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3.2 Introduction 

Increasing energy consumption and the detrimental environmental impact of 

fossil fuels has led to increased interest in developing sustainable and renewable 

sources of energy.  The utilization of engineered microorganisms to produce chemicals 

from renewable biomass is a promising alternative to petroleum-derived fuels and 

chemicals.  Fatty acid derived compounds are particularly promising because fatty acid 

derivatives are highly reduced, aliphatic compounds with high energy density that are 

not miscible with water (1).  Notably, their similarity to diesel fuels makes them 

compatible with existing infrastructure. As a result, many strategies have been 

developed to overproduce microbial fatty acids and then further convert the fatty acids 

into biofuels such as alkanes, fatty alcohols, and fatty acid methyl or ethyl esters (2–8).   

Microbial production of fatty acid methyl or ethyl esters (FAME, FAEE 

respectively) is of particular interest because FAME and FAEE are the main component 

of biodiesel currently in use. Typically, biodiesel is made by transesterification of 

triacylglyceride oils extracted from renewable biomass with short chain alcohols (e.g 

methanol or ethanol) using an alkaline catalyst (9).  However, the use of feedstock oils 

needed for biodiesel production is a major obstacle for the broader use of biodiesel due 

to lack of arable land and competition with the food supply. Therefore, a possible 

alternative to plant and animal oil-based biodiesel is the direct biosynthetic production of 

biodiesel in metabolically engineered microorganisms (reviewed in 10).   

 

Steinbuchel and co-workers were the first to develop a pathway for the 

production of FAEE biodiesel in E. coli, and their approach was further developed by the 
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Keasling group for increased yields of FAEE and fatty alcohols (2, 4, 7).  To produce 

FAEEs, two orthogonal pathways were introduced that simultaneously generated 

ethanol and fatty acyl-CoA. In the last step, ethanol and fatty acyl-CoA  were then 

condensed to the FAEE using a wax ester synthase (Fig. 3-1) (2, 7).  After optimization, 

titers as high as 1.5 g of long chain FAEEs per liter of culture were obtained.   

 

As a more straightforward approach to produce biodiesel in microorganisms, The 

Lykidis group attempted to produce FAMEs in E. coli through direct methylation of fatty 

acids by the action of an S-adenosyl-L-methionine (SAM) dependent bacterial 

methyltransferase from M. marinum (3).  The Lykidis pathway has the advantage of 

being much simpler than the FAEE production pathway by using endogenous 

compounds (SAM and fatty acids) produced in E. coli.  Nevertheless, the FAME titers 

obtained were nearly two orders of magnitude lower than the FAEE titers (16 mg/L).  

The low level of FAME production is likely due to the high specificity of the 

methyltransferase employed, which prefers rare fatty acids containing a 3-hydroxy 

group (3).   

We hypothesized that if we could find a broad range fatty acid methyl 

transferase, perhaps we could improve upon the Lykidis approach for FAME production.  

Here we show that Drosophila melanogaster Juvenile Hormone Acid O-

Methyltransferase (DmJHAMT) has broad specificity for medium chain free fatty acids 

and can be used to produce FAMEs in E. coli.  By introducing DmJHAMT to engineered 

E. coli strains tolerant to high levels of endogenously produced medium chain fatty 

acids, we observed in vivo FAME production (11). Enriching the endogenous SAM pool 
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further increased FAME production with final titers showing a 35-fold increase from 

titers previously reported (3).  

 

3.3 Results and Discussion 

3.3.1 DmJHAMT is robustly expressed and broadly active on medium chain fatty 

acids. 

Several SAM-dependent juvenile hormone acid methyltransferases have been 

previously found to methylate insect sesquiterpenoid hormones that play central roles in 

the development and growth of these organisms (12–14).  D. melanogaster Juvenile 

hormone acid O-methyltransferases (DmJHAMT) appeared to be a promising enzyme 

for FAME production because it showed some activity with unbranched saturated 

medium and long-chain fatty acids such as lauric and palmitic acids, and could be 

expressed in E. coli (13).  

We expressed the DmJHAMT protein recombinantly in E. coli to investigate its 

substrate specificity.  DmJHAMT expression was robust in E. coli (up to 200 mg of 

protein per liter of culture) with no apparent effect on cell growth.  As shown in Fig. 3-

2A, DmJHAMT is active on fatty acids ranging in size from C12 to C16.  We saw no 

activity with shorter chain, C8:0 and C10:0, fatty acids, however.  DmJHAMT is most 

active on medium chain fatty acids, showing the highest activity with lauric acid (C12:0) 

among the substrates tested.  The kinetic parameters with lauric acid were Km =59  µM 

and kcat = 0.15 min-1 (Fig. 3-2B).  Although the low kcat indicates that the enzyme is not 

very efficient with these non-natural substrates, the high expression and broad 
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specificity of DmJHAMT suggested that it might be effective at producing FAMEs, 

particularly medium chain FAMEs, in E. coli. 

 

3.3.2 DmJHAMT produces FAME biodiesel in E. coli. 

E. coli has been utilized as a host for over-production of free fatty acids (FFAs) of 

various lengths and properties (2, 5, 15–19).  Introduction of  bacterial and plant acyl-

ACP thioesterases in a  ΔfadD mutant E. coli strain defective in fatty acid degradation 

allows overproduction of free fatty acids by liberating fatty acids attached to acyl-

carrying proteins (ACPs), while simultaneously removing acyl-ACP mediated regulation 

of the fatty acid biosynthesis pathway, effectively redirecting lipid biosynthesis into free 

fatty acid production (20).  Since DmJHAMT is most active with medium chain FFAs, we 

opted to utilize the acyl-ACP thioesterase from Umbellularia californica (BTE), which 

has a preference for medium chain fatty acids and leads to accumulation of lauric acid  

when expressed  in an E. coli ∆fadD strain (5, 21).  

We first prepared strain SS3B (∆fadD DmJHAMT/BTE) bearing a ∆fadD mutation 

and expressing DmJHAMT and BTE from plasmids (Table 3-1). In strain SS3B we 

observed relatively high production of medium-chain fatty acid methyl esters (Fig 3-3). 

The initial titer of FAMEs was 240 ± 15 mg/L of culture, already a dramatic improvement 

over prior results (3).  Since medium-chain FAMEs are somewhat volatile, we added 

dodecane as an organic overlay at the stationary phase to trap the FAMEs, which 

further increased the titer of FAMEs to 312 mg/L of culture (2). The majority of FAMEs 
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contained 12-carbon acyl chains (73 %), mostly unsaturated C12 methyl laurate (Fig. 3-

3).  

While a high level of FAMEs were produced, we were surprised to find that strain SS3B 

(∆fadD DmJHAMT/BTE) still produced a considerable amount of free fatty acids (FFA) 

that were not methylated (860 ± 20 mg/L of culture).  Indeed a majority of the FFAs 

generated in strain SS3B were not converted into FAMEs.  We therefore sought to 

increase the conversion of the excess FFAs to FAMEs. 

3.3.3 Increasing SAM levels 

We hypothesized that SAM levels may be a limiting factor in the conversion of 

FFAs to FAMEs.  To test the possibility that low SAM levels during stationary phase 

contributed to low FAME production, we lysed strain SS3B after two days of growth and 

supplemented the lysate with exogenous SAM.  We observed increases in all FAME 

species indicating that the DmJHAMT remained active but the SAM levels may be 

limiting (Fig. 3-4A).  

To increase SAM production, we introduced the methionine synthase protein 

from rat liver, Mat1A, into E. coli strain SS3B (22, 23).  Mat1A was shown to 

dramatically increase the intracellular SAM pool in  E. coli cells (23). Mat1A expression 

from a plasmid in strain SS4B (∆fadD DmJHAMT/BTE/Mat1A) increased SAM levels 

8.5-fold (from 73.3 to 636.8 nmoles per gram of cells) compared to the control strain 

SS3B (∆fadD DmJHAMT/BTE) after two days of growth.  Nevertheless, we found that 

Mat1A overexpression actually decreased both FFA and FAME titers.  Mat1A 

overexpression may have unexpected deleterious effect on FAME production such as 
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toxicity, competition for expression with other proteins, high metabolic ATP demand for 

SAM production, or the complication of harboring three different plasmids, among other 

possibilities (24).   

 

To simplify the system and reduce the expression of Mat1A, we incorporated a 

single copy of the Mat1A gene into the E. coli genome under the control of a T7 

promoter.  When Mat1A was incorporated into the genome, we observed ~3-fold 

increase of SAM levels in strain SS33 (∆fadD::Mat1A BTE/DmJHMAT) compared to 

SS3B (∆fadD BTE/DmJHMAT) after two days of growth (192 ± 3 nmoles SAM per gram 

of cells compared to 71 ± 19 nmoles per gram of cells in control the strain, Fig. 3-4B).  

More importantly, we saw a 19% increase in FAME production, from 312 mg/L to 370 

mg/L in cells carrying Mat1A in the genome.  In addition, this strain had a higher ratio of 

SAM to S-adenosylhomocysteine (SAH), a by-product SAM-dependent methylation and 

a potent inhibitor of methyltransferases (Fig. 3-4C). While the levels of SAH were similar 

in these strains, the levels of SAM showed considerable increases in Mat1A-carrying 

strains after 48 hours of growth. (25).  Overall, Mat1A expression improved the 

production of FAMEs.  

 

3.3.4 Δaas further increases the FAMEs yields in E. coli 

Short and medium chain FFAs are toxic to E. coli cells, most likely due to 

membrane stress (26–29).  It is possible that the production of excess FFAs in our 

strains is deleterious to FAME production. We recently reported  that the deletion of the 
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aas gene can alleviate medium chain FFA toxicity (11).  The Aas protein acts in a FFA 

salvage pathway that can incorporate exogenous medium chain FFAs directly into the 

lipid bilayer with deleterious consequences.  We therefore attempted to reduce the 

toxicity of the medium chain fatty acids by deleting the aas gene in strain SS3B to 

produce strain SS34 (Δaas ΔfadD::Mat1A BTE/DmJHMAT).  Indeed strain SS34 

showed an almost 50% increase in the FAME production (559 mg/L of culture) 

compared to the same strain with a wild type aas gene SS33 (ΔfadD::Mat1A 

BTE/DmJHMAT).  Overall, strain SS34 (Δaas ΔfadD::Mat1A BTE/DmJHMAT) overlaid 

with a dodecane layer showed 137% increase from the starting strain SS3B (ΔfadD 

BTE/DmJHMAT) (Fig. 3-5A).   

 

3.3.5 Spectrum of FAMEs produced 

The best FAME producing stain, SS34, generated a broad spectrum of medium 

chain FAMEs.  While the saturated aliphatic FAME methyl laurate (C12:0) was the most 

abundant, we also observed 3-hydroxy C12 (C12-OH), cyclopropanedodecanoic (cyclo-

C13) acid, unsaturated straight chain (C12:1, C12:2 and C14:1) and saturated C14 

(C14:0) fatty acid methyl esters (Fig. 3-5B). While saturated (C12:0, C14:0), 

unsaturated (C12:1, C14:1) and hydroxylated C12 fatty acids have been previously 

observed in BTE-expressing E. coli strains, the cyclopropanedodecanoic (cyclo-C13) 

and unsaturated C12:2 fatty acids are unusual products of bacterial fatty acid 

biosynthesis (5, 11, 21). Bacterial phospholipid acyl chains are regularly modified as a 

response to temperature and increasing organic solvent concentrations and these fatty 
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acids may be a by-product of phospholipase turn-over activity on membrane-disruptive 

2-acyl glycerophosphoethanolamine (2-acyl-GPE), especially in  Δaas  ΔfadD strains 

that lack both 2-acyl-GPE acyltransferase and fatty acid degradation pathways (30–32). 

The broad specificity of DmJHAMT and availability of SAM in the SS34 strain allows the 

conversion of these fatty acids to their methyl ester derivatives. 

 

3.4 Conclusion 

We have engineered a strain of E. coli that produces FAMEs at levels 

comparable to the best FAEE production strain and at levels that are more than an 

order of magnitude greater than FAME titers previously attained (2, 3).  Essential 

developments were the identification of a FFA methyltransferase that has broad 

specificity for fatty acids and could be overproduced in E. coli and deletion of the aas 

gene to reduce incorporation of toxic medium chain-length FFAs into the bilayer.  The 

fact that more than half of the FFAs generated (1.45 g of FFAs vs 559  g FAME) are not 

methylated in the highest producing strain (SS34) suggests that there is still 

considerable room for improvement.  We do not know why FFAs are not fully converted 

to FAMEs, but presumably some portion of the FFAs is sequestered from DmJHMAT 

(e.g in the membrane) because there is still sufficient SAM (211 nmoles per g of cells) 

and active enzyme present after several days, yet FFAs remain.  It is also possible that 

the FFAs that escape from the cell are not reabsorbed efficiently due to the ∆fadD 

mutation, the normal route for uptake of long-chain free fatty acids.  Poor re-uptake may 

be particularly problematic for medium chain FFAs even with fadD intact (33), so 
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perhaps better results will be obtained with strains that can produce longer chain (C16 

and C18) FFAs on which DmJHAMT is active.    Screening of other methyltransferases 

or the engineering or methyltranferases for broader specificity should allow for still 

further improvements and diversification of the FAME products.  While heat of 

combustion and cetane number, a measure of diesel ignition quality, are similar in these 

molecules, increasing the proportion of unsaturated acyl groups in this biofuel mix adds 

beneficial properties such as lower cloud point and lower freezing temperature (34, 35). 

Current studies are underway to increase branched and unsaturated fatty acid yields in 

E. coli that could potentially be used in our one-step biodiesel production method (36–

38). 

 

3.5 Materials and Methods 

3.5.1 Materials 

T4 DNA ligase and restriction endonucleases were obtained from New England 

Biolabs.  DNA Polymerase Mastermix was from Denville Scientific.  Ni-NTA Superflow, 

QIAprep Miniprep kits and QIAquick gel extraction kits were purchased from Qiagen. 

The λDE3 Lysogenization Kit was from EMD Chemicals.  All reagents were from Sigma 

Aldrich except for LB agar and Terrific Broth which were obtained from Fisher Scientific. 

Oligonucleotide primers were synthesized by Valuegene and IDT.  Gene sequencing 

and gene synthesis were performed by Genewiz.  Assembly master mix (AMM) used for 

cloning was prepared as outlined in (39).  All DNA and protein concentrations were 

measured with Thermo Fisher Scientific Nanodrop 1000 Spectrophotometer. 
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Colorimetric enzyme-coupled assays were performed in 96-well plates and measured 

with Molecular Devices SpectraMax M5 microplate reader.   

3.5.2 Plasmid construction 

 An 897-bp portion of U. californica BTE (BTE) gene lacking the thylakoid 

targeting sequence was prepared synthetically by Genewiz and the synthetic BTE gene 

was amplified by polymerase chain reaction (PCR) using primers XhoI-pBAD/p15A-BTE 

and NciI-pBAD/p15A-BTE (See Table I for primer sequences). The PCR product was 

digested with XhoI and NciI and ligated into XhoI/PstI 

digested plasmid pBAD/HisA/p15A (40) to produce BTE-pBAD/p15A.  A plasmid 

containing the mature DmJHAMT gene was obtained from the Drosophila Genomics 

Resource Center at Indiana University.  The DmJHAMT gene was amplified (primers 

DmJHAMT NdeI Forward and DmJHAMT XhoI End) and cloned into pET-28a(+) 

(Novagen). The resulting plasmid was then digested with NcoI and XhoI to excise the 

DmJHAMT gene and cloned into pET-15b (Novagen) to swap the his-tag to the C-

terminus.  The 5'-methylthioadenosine/S-adenosylhomocysteinenucleosidase (MTAN) 

gene from E. coli was amplified (primers 5’ E. coli SAH NdeI, 3’ E. coli SAH SacI) and 

cloned into NdeI/SacI digested pET-28a(+).  The S-ribosylhomocysteinase (LuxS) gene 

from Bacillus subtilis was amplified (primers 5’ B. sub LuxS NheI and 3’ B. sub LuxS 

EagI) and cloned into NheI/EagI digested pET-28a(+).  The resulting plasmid was used 

to clone the LuxS gene into pET-22b(+) with NdeI/Bpu1102I digestion and ligation.  Rat 

liver S-adenosyl-L-methionine synthetase (Mat1A) was amplified with 5’ KpnI Mat1A 

Forward and 3’ XhoI Mat1A End primers from rat liver cDNA and cloned into pCDF-1b 

plasmid using XhoI and KpnI restriction sties  
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 To knock-in genes into the E. coli genome, we generated a plasmid, called 

pCDF-Cat, that contains a chloramphenicol resistance gene (cat) flanked by the FLP 

recognition target (FRT) sites (41).  To do that, the cat gene cassette containing FRT 

sites was amplified from the pKD3 plasmid using pKD3-Cat-pCDF-Forw and pKD3-Cat-

pCDF-Rev primers and the pCDF-1B plasmid was amplified using pCDF 385-Rev and 

pCDF 425-Forw primers.  The resulting PCR fragments were ligated together using the 

AMM kit so that the cat gene was inserted  into the 385-425-base pair region of the 

pCDF-1B plasmid (39). The Mat1A gene was then cloned into pCDF-Cat the same way 

as Mat1A was inserted in pCDF-1B vector and the resulting Mat1A-pCDF-Cat plasmid 

was used as template to amplify the Mat1A-FRT-cat-FRT fragment that was inserted 

into the E. coli genome (see below).  The primers used for the cloning are listed in Table 

2.  All cloned genes were verified by sequencing.  

 

3.5.3 E. coli strains construction 

 E. coli strains K-12 MG1655, JW 1794-1 (Δfad::kan)  and JW2804-

1  (Δaas::kan)  were used as the starting point for strain construction (42).  The SS19 

strain carrying a double Δfad Δaas deletion was generated as previously described (11).  

A Mat1A knock-in PCR fragment was generated by using the primers FadD KO – 

pCDF1 P1-1 and FadD KO – CAT P2-1 for amplification on the Mat1A-pCDF-Cat 

plasmid and further extended in a second round of PCR using the primers FadD-P1-

pKD4-Primer2 and FadD-P2-pKD4-Primer2. This PCR fragment was employed to insert 

Mat1A into the fadD gene region of the K-12 MG1655 and JW2804-1 strains.  
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Subsequent cat gene removal was performed according to protocol from Datsenko and 

Wanner (41). A λDE3 prophage was integrated and BTE-pBAD/p15A and DmJHAMT-

pET15b plasmids were transformed into each strain. The list of strains and their 

genotypes are in Table 3-2. 

 

3.5.4 Protein Expression and Purification 

 DmJHAMT was expressed from DmJHAMT-pET-28a(+) plasmid in a 

BL21(DE3) strain and purified using Ni-NTA affinity chromatography. 2 mL of an 

overnight starter culture was transferred to 2 L of LB media containing 50 μg/ml 

kanamycin and incubated at 37°C.  When the OD600 of the culture reached 0.6, 

isopropyl β-D-thiogalactoside (IPTG) was added to a final concentration of 0.5 mM and 

incubated at 18°C with shaking for 24 h. The bacterial cells were harvested by 

centrifugation, resuspended in 100 mL of 50 mM Tris-HCl pH 7.5, 0.3 M KCl, 5% 

glycerol and 1 mg/ml lysozyme, incubated at 4°C for 30 min with gentle shaking and 

stored at –80°C. The frozen bacterial pellet was thawed, lysed by sonication and 

centrifuged (15,000 rpm, Sorvall SS34 Rotor 40 min, 4°C).   The lysate supernatant was 

incubated with 10 mL of Ni-NTA superflow resin at 4°C for 30 minutes. The beads were 

washed 4 times with 10 mL of 50 mM Tris-HCl pH 7.5, 0.3 M KCl, 5% glycerol, 5 mM 

imidazole and the protein was eluted with 50 mM Tris-HCl pH 7.5, 0.3 M KCl, 5% 

glycerol, 250 mM imidazole. MTAN and LuxS were purified as described previously (43, 

44). All proteins were dialyzed into 50 mM Tris-HCl pH 8.0, 20% glycerol, 0.2 M KCl 

solution and stored at –80°C.   
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3.5.5 Enzyme Assays 

DmJHAMT activity was measured using an enzyme-coupled colorimetric assay 

for SAM-dependent methyltransferases (45). Enzyme assay solutions contained 20 µM 

LuxS, 10 µM MTAN, 500 µM SAM and various concentrations of fatty acid substrates in 

degassed 50 mM potassium phosphate [pH 8.0] at a final volume of 500 µL.  3 µM 

DmJHAMT was used for the kcat/Km calculations of lauric acid (Fig. 3-2B) and 10 µM 

DmJHAMT  was employed for reaction rate calculation with other fatty acids (Fig. 3-2A). 

Fatty acids were added from stock solutions prepared at 1 mg/mL in 100% ethanol.  

C16 palmitic acid was insoluble at  concentrations >50 µM so comparison of the 

reaction rates for different fatty acid substrates was performed at 40 µM fatty acid.  5 - 

200 µM range of lauric acid was used to obtain kcat/Km values for this specific substrate 

(46).  All components of the assay except DmJHAMT were combined and mixed and 

the reaction was initiated by addition of 10 µM DmJHAMT at 30°C.  60 μL of the 

reaction mixture was taken out at various time points and quenched by adding 180 μL of 

260  μM DTNB, 0.5 mM EDTA, 6 M GuHCl (room temperature) and the absorbance at 

412 nm read after a 20 min incubation. A standard curve for SAH consumption by 

MTAN/LuxS was developed and used to quantify FAME production in the enzyme-

coupled assays.  All experiments were done in duplicate or triplicate and standard 

deviation from the mean value was used for error bars.  

 

3.5.6 SAM/SAH Assay 

The SAM/SAH measurement protocol from cultures was modified from (47). E. 

coli cells were pelleted by centrifugation (6000 rpm, Eppendorf F45-30-11 rotor, 5 min, 
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4°C) and the wet cell weight was measured for each sample. The cells were 

resuspended and lysed by vortexing in 5% trifluoroacetic acid at 4°C for 2 min (4 ml/g of 

wet cell weight).  The cell lysate was clarified by centrifugation (13000 rpm, Eppendorf 

F45-30-11 rotor, 5 min, 4°C)  and 120 μl of supernatant was analyzed by high 

performance liquid chromatography (HPLC) as described in (47). The concentrations 

were calculated using SAM and SAH standards of known concentrations.  All 

measurements were performed in triplicate. 

3.5.7 Cell growth 

Most of the strains did not reach saturation point in minimal media supplemented 

with either glycerol or glucose and terrific broth (TB) with 1.5 % glycerol was used for 

cell growth and subsequent analysis. The media was supplemented with ampicillin (50 

µg ml-1), chloramphenicol (34 µg ml-1) or kanamycin (50 µg ml-1) as appropriate.  5 mL 

of TB-glycerol were inoculated from a single colony and cultured overnight at 37 °C. The 

seed cultures were then used to inoculate 30 mL TB-glycerol medium with appropriate 

antibiotics in 150 mL culture tubes and cultivated at 25°C in a rotary shaker (210 rpm).  

BTE and DmJHAMT expression was induced at an OD600 of 0.1 with 50 µM Isopropyl-β-

D-thio-galactoside and/or 0.002 % L-arabinose. For samples with a dodecane overlay, 6 

ml of dodecane were added after 24 hours of growth.  Cultures were grown for an 

additional 1 day prior to FA/FAME analysis as described below.  

3.5.8 Metabolite extraction and identification 

FFAs and FAMEs were extracted by addition of 6 mL of a 2:1 

chloroform/methanol mixture (spiked with 0.15 mg/L of either methyl tridecanoate or 
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methyl heptadecanoate as an internal control ) to 5 ml of culture. For consistency in 

data analysis, 1 mL of dodecane layer was similarly treated with 6 mL of a 2:1 

chloroform/methanol mixture before gas chromatography (GC) analysis.  Quantification 

of FAs/FAMEs was conducted by GC-FID using an HP 5890 Series II gas 

chromatograph equipped with an HP-Innowax Column (0.32mm x 30 m x 0.25µm, 

Agilent).  All samples were analyzed using the following parameters: inject: 1 μl; inlet 

temperature 250°C with split ratio 1:1; carrier gas: helium; flow: 5 ml/min; oven 

temperature: initial temperature of 160°C, hold 3 min; gradient to 255°C at 5°C/min;  hold 

3 min; inlet temp: 270°C, detector temp: 330°C. The amount of FAs/FAMEs was 

determined by comparison to a standard curve of various FAs and FAMEs and methyl 

tridecanoate or methyl heptadecanoate concentrations. To identify all FA/FAME 

products, GC/mass spectrometry analysis was additionally performed using an Agilent 

6890-5975 equipped with HP-Innowax Column (0.32mm x 30 m x 0.25µm, Agilent). The 

identity of metabolites was confirmed by comparing with known standards (C12:0, 

C12:1, C14:0 and C14:1 FAs and FAMEs) and to the NIST Mass Spectral Database 

(cyclo-13, hydroxylated-C12 and C12:2 FAMEs). 
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Figure 3-1. Two-step FAME pathway.  The FAEE microdiesel pathway previously 

implemented in E. coli is outlined in the left panel in gray (3, 7).  In the FAEE pathway, 

ethanol is produced by the introduction of pyruvate decarboxylase (pdc) and alcohol 

dehydrogenase (adhB) from Zymomonas mobilus. Acyl-Coenzyme A (CoA) thioesters 

are simultaneously produced by diverting fatty acid biosynthesis with the expression of 

various thioesterases (TES) and a yeast acyl-CoA ligase (ACL).  Wax ester synthase 
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(atfA) condenses the ethanol and acyl-CoA to make FAEE.  In this study (dashed box, 

black/green), biodiesel is produced by the introduction of DmJHAMT into a fatty acid 

producing strain.   The medium-chain free fatty acid (FFA) pool is enriched in by 

expressing U.californica acyl-ACP thioesterase (BTE) in a β-oxidation-and phospholipid 

synthesis-deficient E. coli strain (ΔfadD Δaas).  Medium-chain FFAs are then 

methylated in S-adenosyl-L-methionine (SAM)-dependent manner to fatty acid methyl 

esters (FAMEs) by DmJHAMT. Internal SAM levels are upregulated by introducing S-

adenosylmethionine synthetase gene Mat1A from rat liver into E. coli genome.  FA, fatty 

acid; ACP, acyl-carrier protein; GPE, glycerophosphoethanolamine; SAM, S-adenosyl-

L-methionine; SAH, S-adenosylhomocysteine;  FadD, acyl-CoA synthetase; Aas,2-Acyl-

GPE acyltransferase/acyl-ACPsynthase; BTE, U.californica acyl-ACP thioesterase; 

Mat1A, rat S-adenosylmethionine synthetase; DmJHAMT, D. melanogaster Juvenile 

hormone acid O-methyltransferase. 
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Figure 3-2. DmJHAMT methylates a broad spectrum of fatty acids.  (A) DmJHAMT 

methylates straight and branched medium-chain fatty acids in vitro.  The reaction rates 

observed using 40 µM of each fatty acid are shown.   (B) Kinetic analysis of 

recombinant DmJHAMT activity with lauric acid. 

Fig. 3-2A 

Fig. 3-2B 
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Figure 3-3. Production of FAMEs in E. coli. GC-MS analysis of FAMEs produced in 

strain SS3B (ΔfadD BTE/DmJHAMT; blue), compared to the identical strain, SS20 

(ΔfadD BTE; red) that does not produce DmJHAMT. Most of the FAMEs produced in 

SS3B contain 12-carbon acyl groups with majority being methyl laurate. C12:0, methyl 

laurate; C12:1, cis-5-dodecenoic acid methyl ester; cyclo C12, cyclopropanedodecanoic 

acid methyl ester; C12:2, 3,6-dodecadienoic acid methyl ester; C14:1, methyl 

myristoleate. 

 

 

 

 

Fig. 3-3 
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Continued next page 

Fig. 3-4A 

Fig. 3-4B 
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Figure 3-4. SAM is a limiting factor for in vivo production of FAMEs. (A) FAME-

producing strain, SS3B (ΔfadD BTE/DmJHAMT; red), was lysed and exogenous 500 

µM SAM was added to the lysate and incubated for 40 min at 25 oC (green).  An internal 

standard (methyl heptadecanoate) was added to cell culture prior to lysis. (B) SAM 

levels in strains producing FAMEs.  (C) SAM/SAH ratios in the FAME-producing cell 

line. While the SAM/SAH ratios are normally higher in the exponential phase of cell 

growth, this ratio persists in the cells that have Mat1A gene incorporated into their 

genome.  

 

 

Fig. 3-4C 
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Figure 3-5.  Δaas and Mat1A increase FAME production in medium chain FA-

producing E. coli cells. (A) Total FAME and FFA yields in engineered E. coli strains 

overlayed with organic layer.  (B) The distribution of different FAMEs produced in SS34 

(Δaas ΔfadD::Mat1A BTE/DmJHMAT) strain.   

Fig. 3-5A 

Fig. 3-5B 
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Table 3-1. E. coli strains used in Chapter 3.  

 

 

 

 

 

 

 

 

 

 

Strain Description/Genotype Source 
K-12 MG1655 F-, λ,- Δ(araD-araB)567, Δ(rhaD-rhaB)568, hsdR514, 

ΔlacZ4787(::rrnB-3), rph-1, 
CGSC, New Haven, 
CT 

JW 1794-1 K-12 MG1655 ΔfadD730::kan CGSC, New Haven, 
CT 

JW2804-1 K-12 MG1655 Δaas-761::kan CGSC, New Haven, 
CT 

SS00 JW 1794-1 λ(DE3) (11) 
SS3B SS00 pDmJHAMT-pET15b, pUcBTE-pBAD/p15A 

(ΔfadD BTE/DmJHAMT) 
This study 

SS4B SS3B pMat1A-pCDF1B (ΔfadD BTE/DmJHAMT/Mat1A) This study 
SS19 JW2804-1  ΔfadD730::kan (Δaas ΔfadD) λ(DE3) (11) 
SS30 SS19 pDmJHAMT-pET15b, pUcBTE-pBAD/p15A (Δaas 

ΔfadD BTE/DmJHAMT) 
This study 

SS33 SS3B ΔfadD::Mat1A (ΔfadD::Mat1A BTE/DmJHMAT) This study 
SS34 SS30 ΔfadD730::Mat1A (Δaas ΔfadD::Mat1A 

BTE/DmJHMAT)  
This study 
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Name of Primer                Sequence 
XhoI-pBAD/p15A-BTE 5’-GGGTTTTCTCGAGGAGTGGAAGCCGAAGCCGAA-3’ 

NciI-pBAD/p15A-BTE 5’ GGGTTTTATGCATTTACACCCTCGGTTCTGCGGGTA-3’ 

DmJHAMT NdeI Forward 5’-GGGAATTCCATATGAATCAGGCCTCTCTATATCAGCAC-3’ 

DmJHAMT XhoI End 5’-GGCCGCTCGAGTTAATTTATTCCCTTAACCAAGTTTTG-3’ 

5’ E. coli SAH NdeI 5’-GCATGGGAATTCCATATGAAAATCGGCATCATTGGTGCAATGG 
AAGAAGAAGTTAC-3’ 

3’ E. coli SAH SacI 5’-CAAGCTTGTCGACCGAGCTCTCATTAGCCATGTGCAAGTTTCTG 
CACCAGTGACTC-3’ 

5’ B. sub LuxS NheI 
 

5’-CAAGCTTGATGGCTGCTAGCCCTTCAGTAGAAAGTTTTGAGCTT 
GATCATAATGCG-3’ 

3’ B. sub LuxS EagI 5’- GTGCGGCCGCGCCAAATACTTTTAGCAATTCTTCTTTATCCTGTG AAAAGCC-3’ 

5’ KpnI Mat1A forward 5’-GCCGGTACCATGAATGGACCTGTGGATGG-3’ 

3’ XhoI Mat1A end 5’-GCACTCGAGGCTTTACTAAAACACAAGCTTCTTGGG-3’ 

pKD3-Cat-pCDF-Forw 5’-GGCATTTGAG AAGCACACGG TCACAGTGTAGGCTGGAGCTGCTTC-3’ 

pKD3-Cat-pCDF-Rev 5’- CAGGGTCGTTAAATAGCCGCTTATG ATGGGAATTAGCCATGGTCC-3’ 

pCDF 385-Rev 5’-TGTGACCGTGTGCTTCTCAAATGCC-3’ 

pCDF 425-Forw 5’- CATAA GCGGCTATTTAACGACCCTG-3’ 

FadD KO – pCDF1 P1-1 5’- GACGACGAACACGCATTTTAGAGGTGAAGAAGGTTTTGCGCCATTCGA 
TGG-3’ 

FadD KO – CAT P2-1 5’- GATTAACCGGCGTCTGACGACTGACTTAACGCCAGGGTCGTTAA ATAGCCGC -3’ 

FadD-P1-pKD4-Primer2 5’- TATCATTTGGGGTTGCGATGACGACGAACACGCATTTTAG-3’ 

FadD-P2-pKD4-Primer2 5’-GCGTCAAAAAAA ACGCCGGATTAACCGGCGTCTGACGACTG-3’ 

 

Table 3-2. Oligonucleotide Primers used in Chapter 3. The restriction sites are 
underlined.  
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