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Abstract

AU : Pleaseconfirmthatallheadinglevelsarerepresentedcorrectly:Racial and ethnic identities, largely understood as social rather than biologic constructs,

may impact risk for acquiring infectious diseases, including fungal infections. Risk factors

may include genetic and immunologic differences such as aberrations in host immune

response, host polymorphisms, and epigenomic factors stemming from environmental

exposures and underlying social determinants of health. In addition, certain racial and ethnic

groups may be predisposed to diseases that increase risk for fungal infections, as well as

disparities in healthcare access and health insurance. In this review, we analyzed racial and

ethnic identities as risk factors for acquiring fungal infections, as well as race and ethnicity

as they relate to risk for severe disease from fungal infections. Risk factors for invasive mold

infections such as aspergillosis largely appear related to environmental differences and

underlying social determinants of health, although immunologic aberrations and genetic

polymorphisms may contribute in some circumstances. Although black and African Ameri-

can individuals appear to be at high risk for superficial and invasive Candida infections and

cryptococcosis, the reasons for this are unclear and may be related to underling social deter-

minants of health, disparities in access to healthcare, and other socioeconomic disparities.

Risk factors for all the endemic fungi are likely largely related to underlying social determi-

nants of health, socioeconomic, and health disparities, although immunologic mechanisms

likely play a role as well, particularly in disseminated coccidioidomycosis.
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Introduction

Differences in biological sex are known factors that increase the risk of acquiring a number of

infectious diseases, including invasive fungal infections, which largely have a male predilec-

tion. In one recent review of this topic, all invasive fungal infections except candidiasis were

shown to be overrepresented in biological males, ranging from invasive aspergillosis (IA) (51%

males overall, although most studies in the literature report a larger male predominance) to

cryptococcosis (74% males) [1]. Factors that explain the male predominance of invasive fungal

infections may include differences in steroid hormone homeostasis, sex-specific immune

response, behavioral factors such as occupational exposure, medical comorbidities such as

human immunodeficiency virus (HIV), and gender disparities in health care, among others

[1].

Much less is known about the relationship between race and ethnicity and risk of acquiring

invasive fungal infections. Admittedly, this is a complicated, yet essential, question to address.

Categorizing individuals into racial groups, as has historically been reported in prior publica-

tions, is complicated as race is now understood to largely be a social rather than a biologic con-

struct [2–5]. While historically racial categories have existed as a means to categorize common

hereditary traits, such as skin color, there is more genetic variability within racial groups than

between them. In a seminal paper published in 1972, Richard Lewontin showed that 85.4% of

genetic diversity within humans occurs within populations in a racial group, 8.3% of variation

between populations within racial groups, and only 6.3% of genetic variation between racial

groups [6]. In addition, grouping individuals into broad racial and ethnic categories is equally

fraught. For example, an individual born in Cuba with West African ancestry may identify

their ethnicity as Hispanic or Latino, but feel their lived experience is very different from other

Cuban nationals who identify as white. Thus, drawing conclusions between race and ethnicity

(social constructs) and human genetics (a biologic construct) is complex and multi-faceted,

prompting professional organizations such as the American Medical Association to provide

guidance on the use of race, ethnicity, and genomics in medical and scientific literature [5,7].

With these limitations in mind, here we review the literature on racial and ethnic differ-

ences and risk of invasive fungal infection caused by molds, yeast, and selected endemic myco-

ses in the United States (US). The review was performed within the context that race and

ethnicity categorizations are incredibly complicated entities and that multiple non-biologic

factors may influence risk of invasive fungal infections, both between and within racial and

ethnic groups.

Results

Human genomic ancestry and predisposition to fungal infections

Fungi are opportunistic pathogens and range from ubiquitous organisms (e.g., Aspergillus
spp.) with frequent inhalational exposure, to commensals (e.g., Candida spp.) requiring a

breach in the normal protective barriers of the skin or gastrointestinal system, to the endemic

fungi (e.g., Histoplasma and Coccidioides spp.) present within specific geographic regions. The

host immune response must simultaneously kill invading fungal organisms, while minimizing

the surrounding inflammatory reaction and maintaining immune homeostasis [8].

The constitutive mechanisms of immunity are displayed at locations with frequent interac-

tion with fungal pathogens including the mucosa of the respiratory epithelium and the gastro-

intestinal tract [9]. Host defensins, collectins, and the complement system provide nonspecific

defense and recognition of fungi. These pathways are highly conserved; however, medication-

induced complement defects have been associated with IA [10]. Host-cell expression of pattern
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recognition receptors, including Toll-like receptors (TLRs) and C-type lectin receptors (CLRs)

sense pathogen-associated molecular patterns (PAMPs) are present in fungi [9]. Numerous

single-nucleotide polymorphisms (SNPs) within human TLRs (TLR1 [11], TLR4 [12–15],

TLR6 [11], among others) and CLRs (Dectin-1—in particular the Y238X SNP [16–18];

DC-SIGN, mannose receptor and mannose-binding lectin [19–22]) have been identified as

risk factors for fungal disease. DC-SIGN and pentraxin 3 have been identified as key macro-

phage receptors assisting in the recognition and phagocytosis of fungal species with deleterious

polymorphisms identified [23–25].

Following fungal recognition and phagocytosis, intracellular killing occurs by the genera-

tion of NADPH-dependent reactive oxidant species (ROS). Defects within this pathway (e.g.,

chronic granulomatous disease) exhibit heightened susceptibility to both bacterial and some

fungal pathogens. Additional signaling pathways initiating antifungal immunity have also

been identified, but not yet fully characterized, including the calcium-calcineurin-NFAT

pathway.

Neutrophils are well known for their role in providing protection against invading fungal

pathogens and their recruitment is dependent upon chemokine release [26], and polymor-

phisms resulting in CXCL10 expression changes have been found associated with aspergillosis

[27]. Subsequent SYK-CARD9 signaling induces the inflammasome and results in the activa-

tion of proinflammatory cytokines. Defects in the CARD9 pathway have been found predis-

posing to chronic mucocutaneous candidiasis [28] and disseminated aspergillosis [29], while

polymorphisms in a number of cytokines have also been found to predispose to fungal disease:

aspergillosis (IL-1 [30], IL-10 [31,32], IL-15 [32], and IL-23); candidiasis (IL-4) [33,34]; para-

coccidioidomycosis (IL-4) [35]; and blastomycosis (IL-6) [36]. Polymorphisms within the

tumor necrosis factor-α (TNF-α) gene [32] and its receptors [37,38] have also been associated

with susceptibility to aspergillosis. Polymorphisms within the interferon-γ (INF-γ) gene [39]

and its receptor have also been associated with fungal disease risk, and auto-antibodies to IFN-

γ have similarly seen an increased rate of fungal infections and may be more frequent in some

patient groups [40].

Host neutrophils also release antimicrobial peptides (e.g., defensins) and proteases, and

attempt to sequester iron availability in response to fungal invasion [8,41]. Plasminogen also

appears to be a key regulator in susceptibility to aspergillosis [42]. Polymorphisms, including

changes in copy number, may confer changes in susceptibility and are the source of ongoing

investigation.

Extensive investigation of T cells over the last 3 decades has further enhanced our under-

standing in their role in providing protective immunity [43]. Chronic noninvasive forms of

aspergillosis such as asthmatic exacerbations, allergic bronchopulmonary aspergillosis, and

chronic pulmonary aspergillosis are also defined by aberrant T-cell responses. A dominant

Th2 response is observed in allergic type diseases, while a proinflammatory phenotype has

been described in those with chronic forms of pulmonary aspergillosis and improvements in

our understanding of this complex and highly coordinated immune response may lead to the

recognition of immunogenetic factors responsible.

An association of the immunogenetic factors responsible for protection or susceptibility to

invasive fungal diseases with genomic ancestry has been demonstrated for only a few diseases

and seems to be most clear with disseminated coccidioidomycosis. The aforementioned SNPs

in IL-6 associated with blastomycosis susceptibility appear to be overrepresented in the

Hmong population conveying increased risk [36]. The Y238X Dectin-1 polymorphism associ-

ated with increased fungal risk is overrepresented in some populations [16] and may be

responsible for the increased risk for fungal diseases observed in certain demographic groups.

Human leukocyte antigens (HLA) class II antigens (HLA-A9 and HLA-B9 antigens) and ABO
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blood type B have been associated with more severe coccidioidomycosis infection, although it

is unclear if there is a causal association or if this association is merely due to an increased pro-

portion of these phenotypes in Filipino and black or African American individuals [44,45]. In

addition, in another study the HLA class II-DRB1�1301 allele was a marker for disseminated

coccidioidomycosis, independent of race or ethnicity [46].

Recent work analyzing the association between environmental exposure, psychosocial

stressors, and nutrition has found these important influences in the patient genome and epi-

genome over multiple generations [47]. These social determinants of health may lead to alter-

ations in patient DNA methylation, chromatin remodeling, histone modification, and

regulatory RNA changes and subsequently alter the patient immune response [48]. The epige-

netic changes may alter cell type-specific and temporal gene expression ultimately resulting

alterations of individual patient risk for fungal infections [49]. There have been few studies

evaluating the epigenetic changes that may be at play in susceptibility to fungal disease; how-

ever, this remains a promising potential area of inquiry and is a key area of investigation that

may help explain differing risk for invasive fungal disease between patient groups

Social determinates of health and fungal infections. In the US, certain racial and ethnic

groups may endure a greater burden of fungal disease due to underlying comorbidities includ-

ing HIV, diabetes, and hematologic malignancies. For example, African Americans and Lati-

nos accounted for nearly 71% of all new HIV diagnoses in 2019, but only represent 30% of the

overall US population [50]. Significant racial and ethnic disparities in the incidence and sur-

vival of hematologic malignancies have also been documented [51,52]. Furthermore, racial

and ethnic differences in diabetes and corresponding complications have been thoroughly dis-

cussed in the literature and are clear risk factors for IFIs [53–55].

Race and ethnicity are socially constructed terms without a biological basis in the scientific

literature [5,56]. Rather, racial inequities observed in fungal disease rates are likely driven by

the circumstances in which individuals are born, live, work, and age [57]. Intersectionality is a

framework that helps us understand how socialized categories like race and ethnicity interact

with other social factors such as gender, socioeconomic status, occupation, and employment,

combine, overlap, and interact to create health inequalities in the US [58,59]. For example,

Coronavirus Disease 2019 (COVID-19) mortality data initially pointed to biologic sex differ-

ences as men died at higher rates than women, but these differences were moderated by race,

ethnicity, geographic location within the US, and time [60]. As further data emerged, it

pointed to a complex intersection of social factors, similar to other coronavirus pandemics,

that included race, ethnicity, occupation, socioeconomic status, and the social determinants of

health [61–65]. Pulmonary aspergillosis, an invasive fungal disease, is well known to cause a

superinfection in critically ill patients with COVID-19 infection, particularly those with under-

lying comorbidities such as hypertension, COPD, and HIV [66–69]. These comorbidities, as

previously noted, are also associated with health care access and utilization, poverty, race, and

ethnicity, similar to other social determinants of health that interacted to shape COVID-19

health disparities in the US.

Notably, communities of color are disproportionately affected by poorer social, economic,

and environmental conditions that can contribute to elevated vulnerabilities from fungal infec-

tions. Healthcare accessibility has previously been discussed by our team as a plausible expla-

nation of gender disparities in invasive fungal infections [1]. Regarding racial and ethnic

disparities, US census data demonstrates that African Americans, Latinos, American Indians,

and Alaska Natives have higher rates of being uninsured relative to white individuals [70].

Uninsured adults are more likely than those with insurance to postpone healthcare or forgo it

altogether, leading to greater inequities in the delivery of healthcare. Moreover, despite the

implementation of US policies to reduce healthcare disparities, recent research covering a
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20-year timespan demonstrated that African Americans and Latinos continue to experience

more barriers to healthcare services compared with white individuals [71].

Differences in race/ethnicity in investigated pathogens

Molds. Aspergillosis. Aspergillus spp. can cause a spectrum of disease in humans, from

non-invasive diseases such as allergic bronchopulmonary aspergillosis that are associated with

exacerbation of different underlying lung diseases, to life-threatening infections such as inva-

sive pulmonary aspergillosis, including in those with COVID-19 infection [8,67,68,72]. Cli-

mate factors play a role in the airborne spread of the spores that can vary based on regions and

seasons [73] and more importantly, can result in selection pressure for antifungal resistant

ones, especially in regions that have exposure to azoles pesticides [74]. Therefore, to under-

stand any association between Aspergillus spp.-related disease and race as a risk factor, one

should understand the underlying risk factors of those diseases and their racial propensities.

IA has a high risk of morbidity and mortality, and can present as an invasive disease of the

lung and the sinuses, and in rare cases present as a disseminated disease, often related to

immunodeficiencies, most of which are acquired [8]. Indeed, the risk of developing IA is high-

est among patients with hematological malignancies, recipients of hematopoietic stem cells

(HSCT) and solid organ transplants (SOT) recipients. Racial minorities suffer from hurdles

accessing healthcare, including accessing solid and hematopoietic transplants [75,76]; there-

fore, there may be a hypothetical increase in the incidence of IA among the white population

who receive these procedures more often. For example, a retrospective study of a transplant

registry found that black patients were less likely to receive heart transplant than white patients

(aHR 0.87, 95% CI 0.84 to 0.90) and had a higher risk of post-transplant death (aHR 1.14, 95%

CI 1.04 to 1.24) [75]. Similarly, black or African Americans experience a longer time on the

renal transplant waiting list [77] and are less likely to complete a kidney transplant compared

to white Americans [78,79]. However, most studies evaluated the epidemiology of IA in immu-

nosuppressed patients showed either a minor increase in the incidence of IA among the black

or African American population (44.6 in black or African American versus 42.9 in white popu-

lations per 1 million persons) [80] or no association with propensity score matching [81],

which signals the lack of evidence of race association and IA in high risk immunosuppressed

patients.

Taking underlying anatomical pathologies as risk for aspergillosis, there may be an associa-

tion of such diseases with certain hereditary and pathological diseases, one of those diseases is

cystic fibrosis (CF), which is highly linked to the white population [82]. This can be seen in the

finding that white CF patients have higher risk for persistent Aspergillus spp. colonization (OR

1.74, 95% CI 1.23 to 2.48, p = 0.002) than black or African American CF patients [83]. Such

findings could be related to worse CF disease in white CF patients than in black or African

American CF patients. In contrast, allergic fungal sinusitis, which can be caused by Aspergillus
spp., has a higher incidence in the southern regions of the US, especially among black or Afri-

can American compared to white populations living in these regions [84], which signals envi-

ronmental and possibly socioeconomic factors related to the development of this disease.

Climatic factors were suggested to influence IA incidence rates among HSCT patients. This

hypothesis was tested in a study of IA from large transplant centers in Seattle, Washington and

Houston, Texas, which showed increased incidence rates of IA during summer months among

HSCT in Seattle than in non-summer months. These findings were likely due to the higher

burden of Aspergillus spp. spores in the air during the drier warm season following the rainy

seasons, but such finding was not visible in the Houston center’s cohort [73]. While findings

that certain regions in the US, especially the western states, have a higher incidences of IA [80],
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there was no statistical difference in the incidence of IA in different parts of the US after imple-

menting propensity matching [81]. However, those studies did not evaluate seasonal differ-

ences. The association of seasonal effect and IA incidence should be further studied, especially

as climate change may accentuate such regional and seasonal differences related to IA inci-

dences and could place certain racial groups at a higher risk for IA versus others.

Lastly, azole-resistant Aspergillus spp. is an emerging pathogen that is linked to the use of

agricultural azoles (tebuconazole and propiconazole) has been reported in different parts of

the world. The incidence of such azole-resistant Aspergillus spp. in the US remains low, but it

was reported from crop debris in the southeast regions of the US, with isolates carrying TR46/

Y121F/T289A mutations that are significantly linked to azole resistance [74]. Such environ-

mental presence of azole-resistant Aspergillus spp. in places where low socioeconomic popula-

tions live, including racial minorities, places those individuals at risk of acquiring invasive

disease that is difficult to treat.

Mucormycosis and other rare molds. While mucormycosis occurs worldwide [85], the vast

majority of cases are reported from India and neighboring regions, where there is limited

racial disparity [86,87]. In India, a steep increase of mucormycosis cases was observed during

the COVID-19 pandemic [88,89], driven by specific immunological mechanisms that predis-

pose COVID-19 patients to mucormycosis [87], as well as overuse of systemic corticosteroids

and an increase in the population with undiagnosed or uncontrolled diabetes [88]. Outbreaks

of mucormycosis outside of India are often associated with natural disasters [90] such as hurri-

canes [91,92], tsunamis [91], or floodings [93], primarily affecting socially disadvantaged pop-

ulations living in affected areas. For example, after 1 tornado in Missouri, US in 2011, 13/13

cases of necrotizing cutaneous mucormycosis occurred in white individuals [92]. Other out-

breaks of mucormycosis have been associated with contaminated hospital products such as

linen or a wooden spatula [94,95]. Race was not a factor reported in the vast majority of these

outbreak descriptions. Among transplant recipients in the US who developed mucormycosis,

white race was predominant (90.5%) [96], while other large epidemiological studies from the

US failed to report on racial distribution [97].

Prevalence of other rare mold infections such as fusariosis, lomentosporiosis, scdeosporio-

sis, and phaeohyphomycosis vary between geographical regions. For example, lomentosporio-

sis occurs primarily in Australia, Southwestern Europe, and Southwestern US [98].

Unfortunately, the majority of the larger studies, whether reporting cases from around the

world [99–102] or from specific geographical regions [103–105], fails to report race and eth-

nicity of its participants. Larger outbreaks in the US were often associated with contaminated

hospital products, such as an Exserohilum rostratum outbreak in patients receiving contami-

nated methylprednisolone injections [106]. Among 65 cases of invasive fusariosis in the US

and Canada, 78.5% were white, 9.2% Asian, 6.2% black, and 4.6% Hispanic ethnicity [107].

Among 99 cases of phaeohyphomycosis (62 from the US, 7 from Australia, and 7 from Peru),

68% identified as white, 14% Hispanic/Latino, 8% Asian, and 7% black; the proportion of

phaeohyphomycosis cases who were white further increased in the subgroup of disseminated

disease (77%), while Hispanic/Latino cases represented 28% of those with local-superficial dis-

ease [108]. Among transplant recipients in the US, the vast majority developing fusariosis

(94.4%) or scedosporiosis (91.3%) were white [96].

Yeast. Candida infections. Candida species can cause invasive infections in humans,

including bloodstream infection or deep-seated infection, or a non-invasive disease mainly

involving mucocutaneous infections [109]. Several Candida species are identified as a cause of

infections in humans and animals, with the most commonly identified organisms including C.

albicans, C. glabrata, C. krusei, C. tropicalis, C. parapsilosis, and C. kefyr. The epidemiology of

different infections varies from hospital-related infections—in the cases of invasive disease—to
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non-invasive infections that can affect non-hospitalized patients, such as with mucocutaneous

candidiasis [109,110].

Several risk factors are related to invasive candidiasis, such as immunosuppression and sur-

gical procedures [109]. In a study of candidemia in 4 US states from 2012 to 2016, black or

African American individuals had higher rates of invasive candidiasis compared to those who

didn’t identify as black or African American (rate 2.3 (95% CI: 2.1 to 2.6) [111]. While such

findings can be confounded by regional racial distribution, this risk was adjusted to the geo-

graphical location, which included sites from Georgia and Maryland that had a black or Afri-

can American population of around 40%, and sites from Oregon and Tennessee, with a black

or African American population less than 10% [111]. A similar finding from another study

evaluating the burden of candidemia in the US, included data from 9 US states. It found that

although overall rates of candidemia across these sites were 7.0 cases per 100,000 persons, the

highest rates were in black or African American individuals (12.3 cases per 100,000 persons),

with about a quarter of all cases in black or African American individuals [112]. Other similar

findings were reported in an observational study that found that racial minority groups had a

higher risk for Candida endophthalmitis than white patients (OR 1.65, 95% CI 1.07 to 2.55)

[113]. Possible factors for the high incidence rate of candidemia in black or African American

individuals include factors related to socioeconomic status, underlying medical conditions,

and healthcare access [111]. Besides rates of invasive candidiasis associated with certain racial

minorities, selection of certain Candida spp. may be associated with race groups, as reported

among transplant patients with invasive candidiasis, black or African American individuals

were noted to have a higher incidence compared to white individuals of C. glabrata; however,

further studies are needed to confirm such observation and evaluate the mechanism of such

risk [114].

In cases of non-invasive candidiasis, black or African American women were more likely

(11.5%) to have colonization from Candida spp. compared to Hispanic (9.8%) or white

women (8.5%) [115]. Black or African American women also had a 7-fold higher risk of having

vulvovaginal candidiasis (VVC) than other racial groups among university students [116], in 1

study. A similar finding of a higher incidence of self-reported physician diagnosed VVC

among black or African American women than among white women in a telephone survey

study [117]. Inversely, white individuals with HIV had higher rates of oral candidiasis com-

pared to black or African American men [118].

Overall, such race and candidiasis relationships are presented in an epidemiological man-

ner that does not explain the pathology behind such association, and the likelihood of con-

founding factors related to healthcare access and socioeconomic status is very high.

Cryptococcosis. Cryptococcus neoformans and Cryptococcus gattii are 2 species complexes

that are the etiological agents of nearly all human and animal cryptococcosis [119]. Separation

of strains using molecular markers into various serotypes, varieties, and groups reveal that C.

gattii is an etiological agent of cryptococcosis in immunocompromised individuals status post

organ transplantation, rheumatic immune diseases, diabetes mellitus, and malignancies as well

as in healthy individuals [120]. C. gattii affects HIV-uninfected persons in tropical and sub-

tropical regions while C. neoformans primarily affects persons with HIV infection worldwide

[121]. The epidemiology of cryptococcosis changed significantly with the rise and fall of the

AIDS pandemic and emergence of various pathogenic Cryptococcus spp. since the 1980s.

Human hosts are infected following the inhalation of spores that subsequently invade pul-

monary alveoli, causing pulmonary diseases, or that disseminate through the bloodstream,

often leading to fatal meningitis [122–124]. Cryptococcal meningitis (CM) associated with

HIV infection is one of the leading opportunistic infections [125], and mortality from crypto-

coccosis ranges from 8% to 50% [126]. There has been an increasing interest in C. gattii
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infections over the past 2 decades due to the emergence of C. gattii in the Pacific Northwest

region of the US. In July 2010, 60 human cases were reported to the Centers for Disease Con-

trol and Prevention (CDC) from 4 states (California, Idaho, Oregon, and Washington) in the

Pacific Northwest [127].

In an analysis of deaths from cryptococcosis among individuals living with HIV infection

in the US from 1999 to 2016, with respect to race, there were 199 deaths from cryptococcosis

among women with HIV infection, 38 deaths among non-Hispanic white individuals, and 161

among black or African American individuals. Non-Hispanic white individuals had signifi-

cantly lower mortality rates than black or African American individuals, with a mortality rate

in black or African American men of 0.19 (95% CI 0.17 to 0.21) and 0.06 in black or African

American women (95% CI 0.05 to 0.06). The mortality rate in white men and women was

<0.001 [128]. In a single center, retrospective study of individuals with cryptococcosis admit-

ted from October 2005 to October 2017 [129], of 114 patients admitted to the University of

Kentucky HealthCare Medical Center, males made up 74.6% (85/114) of patients and 91.2%

(104/114) were white. Cryptococcosis in Hispanic persons and black or African American per-

sons was more common in the HIV-infected group compared to the transplant and non-HIV/

non-transplant (NHNT) groups (p< 0.0001). Among HIV-infected persons in a US survey,

the incidence of cryptococcosis in 1993 was significantly higher among black or African Amer-

ican persons (31/1,000) than among white persons (23/1,000; relative risk [RR] = 1.3, 95% CI,

1.1 to 1.6) [130]. In another study [131] investigating the prevalence of undiagnosed crypto-

coccal infection among HIV-infected person in the US from 1986 to 2012, stored sera from

1,872 participants in the Multicenter AIDS Cohort Study and the Women’s Interagency HIV

Study were screened. Of those specimens, the overall presence of cryptococcal antigen (CrAg)

positivity was 2.9%, with no significant differences observed in the proportion of CrAg-posi-

tive specimens by race and ethnicity, except in persons of “other” ethnicity (i.e., not white

(2.5%), black (2.5%), or Hispanic (1.7%)) had a prevalence of 6.4% (CI = 3.9% to 10.3%).

Endemic mycoses in the United States. Coccidioidomycosis. Coccidioides spp. (C. imitis
and C. posadasii) is a dimorphic fungus endemic to the southwestern US. It grows in the envi-

ronment in the mycelial form, and the yeast form infects the animal host after inhalation and

leads to coccidioidomycosis [132,133]. Most people who get infected do not develop symp-

toms, and only a small minority, about 1%, may develop disseminated disease [134]. However,

it is thought that around 25% of all community-acquired pneumonia in endemic regions is

secondary to coccidioidomycosis [135].

Several epidemiological studies reported higher incidence rates of coccidioidomycosis

among racial and ethnic minorities in the US endemic regions [136–138]. This was shown in a

recent CDC study using data of reportable endemic mycoses from 26 states that found that

American Indian/Alaska Native (AI/AN) cases and Hispanic cases had higher incidence rates

of coccidioidomycosis (17.4 and 11.2 per 100,000, respectively) compared to non-Hispanic

white cases (4.1 per 100,000). However, data on race and ethnicity were available in less than

half (39%) of the reported cases [138]. In addition, geography and regional exposure to dust

might have influenced coccidioidomycosis rates in different racial and ethnic groups. Such a

hypothesis was explored in coccidioidomycosis surveillance in California (1973 to 2011) that

showed the increase in the incidence of coccidioidomycosis followed different environmental

exposures, including occupational exposures such as construction and agriculture, regardless

of the population’s racial and ethnic groups [139]. Such geographically related trends can vary

based on regional analysis, as the Hispanic population had a much higher incidence than

white populations in areas such as San Joaquin Valley [140], which may be associated with the

type of occupation and outdoor recreational activities among different racial and ethnic

groups.
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Moreover, high levels of particulate matter with diameters less than 10 micrometers (PM10)

in certain parts of Arizona have been associated with an increased risk of coccidioidomycosis,

and such regional high PM10 exposure is more likely to affect black or African American and

Hispanic populations [141]. Another factor to account for is the knowledge gaps among His-

panic farm workers about coccidioidomycosis [142] that can make recognizing the disease and

providing early treatment challenging. Moreover, while black or African American inmates in

California had higher rates of symptomatic coccidioidomycosis than white inmates [143,144],

a study using skin tests to screen for coccidioidomycosis showed no association between

coccidioidomycosis and race [142]. However, in the latter study the number of inmates who

agreed to the skin test was smaller among minority racial and ethnic groups compared to

white inmates. Thus, the association between racial and ethnic groups and the acquisition of

coccidioidomycosis are likely related to socioeconomic and health disparities factors, which

are likely to influence the incidence rates in these populations.

These factors should be taken into account as we learn that climate change will likely influ-

ence the spread of coccidioidomycosis endemicity to different geographic regions. Such envi-

ronmental spread may, in turn, expose certain racial or ethnic groups more than others to this

infection [133,145]. Moreover, environmental injustices, in which poor communities and

communities of color are disproportionately exposed to environmental harms yet environ-

mental protections are limited [146], could further contribute to higher rates of coccidioido-

mycosis among racial and ethnic groups.

Older age, diabetes mellitus, and immunosuppression are some of the risk factors for devel-

oping severe and disseminated coccidioidomycosis [147]. It was observed that certain racial

and ethnic groups were more likely to develop severe and disseminated coccidioidomycosis,

such as Asians (especially Filipinos), and black or African Americans were reported to be at

increased risk for coccidioidomycosis complications [148–150]. AI/AN was reported to have

an increased risk of coccidioidomycosis complications, but among this population, case fatality

rates were shown to have trended down between 1959 and 1980, with unchanged coccidioido-

mycosis incidence rate over the same period, which may be explained by the change in the

social, economic, environmental and the availability of new therapies for coccidioidomycosis

during that time period [151].

Black or African American and Filipino individuals were reported to be at a higher risk

compared with white individuals of hospitalization from pulmonary coccidioidomycosis

[152], with several reports alluding that black or African American individuals have the highest

associated mortality, dissemination, and hospitalizations, with odds of disseminated disease as

high as 5 to 10 times the rates seen among the white individuals [137,152–155] and this

increased risk persisted after controlling for income [156]. Among the immunocompromised

patients, the risk of symptomatic coccidioidomycosis rates shown to be higher among black or

African American individuals with HIV infection compared to white individuals [157], but

this relationship was not seen in the renal transplant recipients with coccidioidomycosis [158].

This could be secondary to different populations’ underlying immunocompromising condi-

tions and other factors related to socioeconomic status and health disparity of those 2 popula-

tions that likely confounded the relationship. Also, black or African American individuals with

coccidioidomycosis were found to have lower rates compared to white individuals of erythema

nodosum, which is an immunological response to the infection that is thought to be protective

against coccidioidomycosis [159,160], which may hint at the higher rates of disseminated and

severe disease in this population.

In conclusion, it is not well established if genetic predispositions are the main driver of

increased risk of coccidioidomycosis and certain racial and ethnic groups, although there is a

clear increased risk of severe coccidioidomycosis infection in certain racial or ethnic groups,

PLOS PATHOGENS

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1011025 January 5, 2023 9 / 22

https://doi.org/10.1371/journal.ppat.1011025


such as Filipinos and black or African Americans. Factors such as socioeconomic status, high

inoculum exposure, and healthcare access with delay in the diagnosis may contribute to this

increase in disease severity, along with predisposing genetic factors, as previously noted.

Histoplasmosis. Histoplasma capsulatum is a dimorphic fungus with at least 4 cryptic spe-

cies. Histoplasma capsulatum sensu stricto is endemic to Panama and the northern portion of

South America [161] while Histoplasma suramericanum is distributed widely across South

America. Histoplasma mississippiense is distributed in the Mississippi River Valley and Histo-
plasma ohiense in the Ohio River Valley, both in the US [162]. Locally acquired infections out-

side these areas in the US have been reported, showing that the geographic range of

histoplasmosis in the US is wider than is often appreciated [163].

Following the inhalation of spores of the soil-dwelling dimorphic Histoplasma spp., only a

minority of individuals develop symptomatic disease [164]. In 2019, the CDC received 1,124

case reports of histoplasmosis from 12 states where it is a reportable disease. The overall inci-

dence of histoplasmosis in these states was 1.8 cases per 100,000 population, including Illinois

(292 cases (26%), rate: 2.3 cases per 100,000 persons), Michigan (225 cases (20%), rate 2.3 cases

per 100,000 persons), and Minnesota (214 cases (19%), rate 3.8 cases per 100,000 persons).

These 3 states accounted for a combined 65% of these cases [138].

Occupational exposures are frequently implicated in histoplasmosis outbreaks. Early in the

HIV pandemic, reports of Histoplasma spp. outbreaks [164–166] demonstrated an increased

risk of death associated with advanced AIDS (CD4 counts <75 mm3), immunocompromised

states (such as solid organ transplantation), chronic renal disease, and prolonged use of corti-

costeroids or tumor necrosis factor (TNF) antagonists [164,166,167].

From 2011 to 2014, a total of 3,409 histoplasmosis cases were reported from 12 states where

histoplasmosis is reportable. Of the 1,729 patients in 8 states that contributed race data, 1,079

(62%) were white, 446 (26%) were of unknown race, and 166 (10%) were black. Of the 1,620

patients in these 8 states for whom ethnicity data were available, 1,072 (66%) were non-His-

panic or Latino, 503 (31%) were of unknown ethnicity, and 45 (3%) were Hispanic or Latino.

Mortality data was available for 1,142 patients, of which 76 (7%) died [168]. In the 2019 survey,

of 1,124 cases, there was data on race and ethnicity in 859 (76%) of cases. Of these cases, 656

(76%) of cases occurred in white persons, with incidence highest in white persons (1.3 per

100,000 population), AI/AN (1.2), and Hispanic persons (1.2). Of those which hospital data

was available for (460 cases), 249 (54%) persons were hospitalized, and 20 (5%) persons died.

In this survey, histoplasmosis incidence was similar across racial and ethnic categories (range:

0.9 to 1.3) [138].

Although anyone can acquire histoplasmosis in areas where Histoplasma spp. is present in

the environment, persons living with advanced HIV are at a particularly high risk for develop-

ing histoplasmosis. Clinical signs and symptoms of this disease are often nonspecific, making

it difficult to establish a diagnosis unless the index of suspicion is high. Complications of dis-

seminated histoplasmosis, including adrenal insufficiency, endovascular infection, meningitis,

and hemophagocytic lymph histiocytosis, are uncommon but challenging to manage [169].

Blastomycosis. Blastomycosis is an uncommon but underdiagnosed and potentially life-

threatening infection caused by the dimorphic fungi Blastomyces dermatitidis, which includes

at least 1 cryptic subspecies, B. gilchristii [170]. These organisms live in warm, moist soil with

plentiful organic matter. It is endemic throughout much of the midwestern US [171,172], par-

ticularly along the Great Lakes and the Mississippi, Ohio, and Saint Lawrence River valleys

[173,174]. The region of geographic risk for blastomycosis is incompletely understood for mul-

tiple reasons, including the difficulty pinpointing the time of exposure in some patients who

have a long clinical latency period, the absence of a skin test or other well-known marker of

prior exposure, and lack of instances in which Blastomyces spp. have been recovered from the
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environment. A survey of 240 case reports of blastomycosis from 5 states (Arkansas, Louisiana,

Michigan, Minnesota, and Wisconsin) in 2019 showed that the overall blastomycosis inci-

dence in these states was 0.8 cases per 100,000 population, with Minnesota (rate 1.4) and Wis-

consin (rate 1.7) accounting for 179 (75%) of the total cases [138]. Endemicity is most

pronounced in the hyperendemic regions of north central Wisconsin where the disease inci-

dence can exceed 100 cases per 100,000 inhabitants [175]. The geographic range appears to be

shifting, with new regions at risk including New York state [172].

Blastomycosis mainly affects immunocompetent persons, although immunocompromised

persons are more likely to develop more severe forms of the disease [176]. In a survey report-

ing 4,441 blastomycosis cases in 5 US states from 1987 to 2018, 2,778 (64%) occurred in white

persons, 740 (17%) in persons of unknown race, 406 (9%) in black or African American per-

sons, and 193 (5%) in Asian, Native Hawaiian, or other Pacific Islander persons. The majority

of persons, 2,828 (71%), did not identify as Hispanic or Latino and ethnicity was unknown for

1,015 (26%) persons [173]. A study in central and northern Wisconsin found that while 90%

of blastomycosis cases in non-Hispanic white persons were caused by B. dermatitidis, B. gil-
christii frequently caused infection in Hispanic white, AI/AN, and Asian persons.

Furthermore, while non-Hispanic white persons were frequently older and had more

underlying medical conditions compared to Hispanic white and Asian persons, the odds of

hospitalization were 2 to 3 times higher for Hispanic white, AI/AN, and Asian persons [177].

In another study of persons admitted to the University of Mississippi Medical Center and

treated for blastomycosis from 1980 to 2000, there was a clear predominance of black or Afri-

can American men admitted to the hospital, followed by black or African American women.

Among the 123 hospitalized persons, 100 (81%) were black or African American, 21 (17%)

white, and 2 (2%) Native American. White females were least likely to be hospitalized with

blastomycosis in this study [178]. The increased risk for hospitalization among racial and eth-

nic minorities may signify blastomycosis-related health disparities [178–180]. Differences in

genetic composition have been postulated to underlie ethnic disparities in incidence rates of

this endemic blastomycosis [36], including one study showing case clustering among persons

of Hmong ethnicity [171].

Conclusion

Although now largely understood as a more social than biologic construct, racial and ethnic

identity may impact risk for acquiring infectious diseases, including fungal infections. Risk fac-

tors for fungal infections may include genetic and immunologic risk factors such as aberra-

tions in host immune response, host polymorphisms, and epigenomic factors that may stem

from underlying social determinants of health. In addition, social determinants of health and

underlying socioeconomic factors may increase risk for fungal infections as certain racial and

ethnic groups may be predisposed to diseases that increase risk for fungal infections, as well as

disparities in healthcare access and health insurance (Fig 1). In this review, we analyzed race

and ethnicity as risk factors for acquiring fungal infections as well as race and ethnicity as they

relate to risk for severe disease from fungal infections.

Risk factors for aspergillosis and other invasive mold infections largely appear related to

environmental differences and underlying social determinants of health, although immuno-

logic aberrations and genetic polymorphisms may play a role in some circumstances, such as

defects in the CARD9 pathway and polymorphisms such as with IL-1, Il-10, IL-15, IL-23,

TNF-α, and INF-γ. Conversely, although black or African American individuals appear to be

at a higher risk compared to white individuals for superficial and invasive Candida infections

as well as cryptococcosis, the reasons for this are unclear from an immunologic/genetic
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standpoint, and may therefore be rather related to underling social determinants of health,

access to healthcare, and other socioeconomic disparities.

Native American/American Indian and Hispanic/Latino populations are at a higher risk

compared to white populations of coccidioidomycosis infection, although it is likely that this is

at least partially related to occupational and environmental exposure, as individuals in these

populations are more likely to engage in outdoor occupation that puts them at risk for coccidi-

oidomycosis and also reside in areas where coccidioidomycosis is endemic. Certain popula-

tions, such as Filipinos and black or African American populations, are at increased risk

compared to white populations for severe or disseminated coccidioidomycosis. The exact rea-

son for this risk is unclear, but several immunologic mechanisms may contribute to the occur-

rence of more severe disease, such as the presence of HLA-A9 and HLA-B9 antigens, ABO

blood type B, HLA class II-DRB1�1301 allele.

Data on race and ethnicity for histoplasmosis and blastomycosis are further complicated

based on their geographic distribution and the fact that neither of these diseases is nationally

reportable. As with the other fungi, risk factors for severe disease may be related to underlying

social determinants of health, socioeconomic, and health disparities. Underlying immunologic

mechanisms may contribute as well, such as polymorphisms in IL-6 that have been observed

to be overrepresented in the Hmong population and been postulated risk factor for blastomy-

cosis infection in this population [36].

Fig 1. Factors that may explain differences in racial and ethnic distribution in fungal diseases. The figure was created with BioRender.com.

https://doi.org/10.1371/journal.ppat.1011025.g001
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Attributing disease risk to genetic factors across racial and ethnic groups is fraught consid-

ering the large genetic variability within these populations, although as previously mentioned,

there may be specific genetic and immunologic factors that predispose individuals within pop-

ulations to infection or severe disease. For most fungal diseases, other factors that may affect

certain racial or ethnic groups more than others, such as environmental exposures and differ-

ences in underlying social determinants of health may explain differences observed in epide-

miology and disease severity. Further investigation is necessary to elucidate epigenetic changes

due to psychosocial stressors, environmental exposures, or other underlying social determi-

nants of health as a risk factor for fungal infections.
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