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Future wireless communication systems are expected to have much higher mobility and data rate.

To achieve these goals, millimeter-wave (mmWave) communication has been considered as a key

technology for the future wireless communication systems, because of the high data rates provided

by the large bandwidth at the mmWave carrier frequency. However, obstacles such as the severe

path-loss and the hardware complexity hinder the practical application of the mmWave commu-

nication. Incorporating beamforming into the mmWave communication systems is an effective

way to combat the severe path-loss. In this dissertation, we explore the beamforming technique in

mmWave communication systems. Four scenarios are investigated: multi-user networks, amplify-

and-forward (AF) relay networks, mmWave non-orthogonal multiple access (NOMA) networks,

and reconfigurable intelligent surface (RIS)-assisted mmWave unmanned aerial vehicles (UAV)

networks.

For the multi-user networks, we design an analog-only beamforming scheme for downlink multi-

user mmWave systems to optimize the beamforming gain and the inter-user interference at the same

time. Traditional analog beamforming schemes, such as the beam selection method, use the array

response vector corresponding to the strongest path of the channel to generate a beam pointing to

the user. In multi-user systems, such schemes will lead to large inter-user interference, especially

when the users are closely located. In this dissertation, we formulate a multi-objective problem
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to strike a balance between the beamforming gain and the inter-user interference. Furthermore,

to alleviate the effects of the channel estimation and feedback quantization errors, we design a

robust beamforming scheme to provide robustness against imperfect channel information. We first

develop a channel error model for the scattering clustered channel model, which can serve as a

general channel error model for the mmWave channels. Then, we formulate a multi-objective

problem using the stochastic approach to suppress the interference and enhance the beamforming

gain at the same time.

For the AF relay networks, we consider the amplify-and-forward relay networks in mmWave

systems and propose a hybrid precoder/combiner design approach. The phase-only RF precod-

ing/combining matrices are first designed to support multi-stream transmission, where we com-

pensate the phase for the eigenmodes of the channel. Then, the baseband precoders/combiners are

performed to achieve the maximum mutual information. In addition, we also propose a robust joint

transceiver design for imperfect channel state information.

For the mmWave-NOMA networks, we first take the limited channel coherence time into account

for NOMA in mmWave hybrid beamforming systems. Due to the limited coherence time, the

beamwidth of the hybrid beamformer affects the beam-training time, which in turn directly im-

pacts the data transmission rate. To investigate this trade-off, we utilize a combined beam-training

algorithm. Then, we formulate a sum-rate expression which considers the channel coherence time

and beam-training time as well as users’ power and other system parameters. Further, a joint power

and beamwidth optimization problem is solved by iterating between the power allocation and the

beamwidth optimization.

Further, We propose a new two-step beamwidth design and power allocation algorithm, in mmWave-

NOMA systems, which takes the channel coherence time and users’ locations into account. A joint

beamwidth and power allocation optimization algorithm is proposed to maximize the sum-rate.

For the RIS-assisted mmWave UAV networks, we jointly optimize the deployment, user schedul-
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ing, beamforming vector and RIS phases to maximize the sum-rate, with the constraints of the

minimum rate, the UAV movement, the analog beamforming and the RIS phases.
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Chapter 1

Introduction

1.1 Background

Communications over millimeter wave (mmWave) have received significant attention recently be-

cause of the high data rates provided by the large bandwidth at the mmWave carrier frequencies.

Also, using large antenna arrays in mmWave communication systems is possible because the small

wavelength allows integrating many antennas in a small area. Despite its advantages, the mmWave

carrier frequencies suffer from relatively severe propagation losses. Meanwhile, the sparsity of the

mmWave scattering environment usually results in rank-deficient channels [99].

To overcome the large path losses, large antenna arrays can be placed at both transmitters and re-

ceivers to guarantee sufficient received signal power [93, 60, 40, 117]. The large antenna arrays

lead to a large number of radio frequency (RF) chains, which greatly increase the implementation

cost and complexity. To reduce the number of RF chains, two approaches have been proposed : hy-

brid precoding [33], which connects analog phase shifters with a reduced number of RF chains, and

analog beamforming [80, 53, 88], where a single RF chain is tied to the entire antenna array and

the beamforming processing is performed with the RF analog components. The main advantage of
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the hybrid precoding is that it can trade off between the low-complexity limited-performance ana-

log phase shifters and the high-complexity good-performance digital precoding [47]. The analog

beamforming, on the other hand, has the lowest hardware complexity with relative worse perfor-

mance.

To further improve the throughput and coverage of the mmWave systems, techniques, such as

multi-user [8, 89, 96, 78, 73, 94], relay [74, 138, 108, 118], non-orthogonal multiple access

(NOMA) [27, 25, 147, 125, 3, 56, 139, 123, 9], reconfigurable intelligent surface (RIS) [17, 42, 35],

and unmanned aerial vehicles (UAVs) [132, 131], are usually incorporated into the mmWave sys-

tems.

To implement beamforming in the aforementioned scenarios, the trading off between the perfor-

mance and hardware complexity is the key issue. For example, for the multi-user system, how to

cancel the interference among users while maximizing the beamforming gain for each user with

limited number of RF chains is the crucial point to improve the system performance. In the re-

lay networks, low-complexity hybrid precoding algorithm need to be proposed to achieve a good

system performance. For the NOMA system, trade-off need to be made between the training com-

plexity and alignment accuracy. In the UAV networks, where deployment and beamforming are

jointly optimized, low-energy cost algorithms are usually adopted.

1.2 Contributions

In this dissertation, we explore the beamforming technique in mmWave communication systems.

Four scenarios are investigated: multi-user networks, amplify-and-forward (AF) relay networks,

mmWave NOMA networks, and RIS-UAV networks. For the multi-user networks, we design

an analog-only beamforming scheme for downlink multi-user mmWave systems to optimize the

beamforming gain and the inter-user interference at the same time. Traditional analog beamform-
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ing schemes, such as the beam selection method, use the array response vector corresponding to

the strongest path of the channel to generate a beam pointing to the user. In multi-user systems,

such schemes will lead to large inter-user interference, especially when the users are closely lo-

cated. In this paper, we formulate a multi-objective problem to strike a balance between the beam-

forming gain and the inter-user interference. To solve the problem, we first use the weighted-sum

method to transform the multi-objective problem into a single-objective problem. Then, we use the

semi-definite programming technique to make the analog beamforming with constant-magnitude

constraints tractable. Furthermore, to alleviate the effects of the channel estimation and feedback

quantization errors, we design a robust beamforming scheme to provide robustness against im-

perfect channel information. We first develop a channel error model for the scattering clustered

channel model, which can serve as a general channel error model for the mmWave channels. Then,

we formulate a multi-objective problem using the stochastic approach to suppress the interference

and enhance the beamforming gain at the same time. The simulation results show that our proposed

non-robust multi-user analog beamformer outperforms the traditional analog beamforming method

when the SNR is high and our proposed robust beamformer can provide up to 109 % improvement

in the sum-rate compared with the beam selection method.

For the AF relay networks, we consider the amplify-and-forward relay networks in mmWave

systems and propose a hybrid precoder/combiner design approach. The phase-only RF precod-

ing/combining matrices are first designed to support multi-stream transmission, where we com-

pensate the phase for the eigenmodes of the channel. Then, the baseband precoders/combiners

are performed to achieve the maximum mutual information. Based on the data processing in-

equality for the mutual information, we first jointly design the baseband source and relay nodes

to maximize the mutual information before the destination baseband receiver. The proposed low-

complexity iterative algorithm for the source and relay nodes is based on the equivalence between

the mutual information maximization and the weighted minimum mean square error (MMSE). Af-

ter we obtain the optimal precoder and combiner for the source and relay nodes, we implement the

MMSE-SIC filter at the baseband receiver to keep the mutual information unchanged, thus obtain-
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ing the optimal mutual information for the whole relay system. Simulation results show that our

algorithm achieves better performance with lower complexity compared with other algorithms in

the literature. In addition, we also propose a robust joint transceiver design for imperfect channel

state information.

For the mmWave-NOMA networks, we first take the limited channel coherence time into account

for NOMA in mmWave hybrid beamforming systems. Due to the limited coherence time, the

beamwidth of the hybrid beamformer affects the beam-training time, which in turn directly im-

pacts the data transmission rate. To investigate this trade-off, we utilize a combined beam-training

algorithm. Then, we formulate a sum-rate expression which considers the channel coherence time

and beam-training time as well as users’ power and other system parameters. Further, a joint power

and beamwidth optimization problem is solved by iterating between the power allocation and the

beamwidth optimization. When allocating the power, we use the log-exponential reformulation

and the sequential parametric convex approximation (SPCA) methods to solve the non-convex

problem. Since beamwidth optimization involves too many variables, we propose an algorithm

which iterates between clusters of users. Numerical results show that the optimized mmWave hy-

brid beamforming-NOMA system can achieve much higher sum-rates compared to NOMA with

analog beamforming and traditional multiple access techniques.

Further, We propose a new two-step beamwidth design and power allocation algorithm, in mmWave-

NOMA systems, which takes the channel coherence time and users’ locations into account. A joint

beamwidth and power allocation optimization algorithm is proposed to maximize the sum-rate.

The log-exponential reformulation and the sequential parametric convex approximation method are

used for the non-convex power allocation. Then, the optimal beamwidths are obtained by iterating

between the two alignment stages. Further, because of the far users, the mmWave-NOMA systems

are prone to beam misalignment. To this end, we impose extra constraints on the beamwidths to

satisfy the misalignment probability requirements. An off-line search is used to find the appropri-

ate ranges for the beamwidths. Then, the problem with misalignment analysis can be solved by
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a similar joint optimization algorithm structure. Simulation results reveal that the proposed algo-

rithm remarkably outperforms the traditional one-step approach in terms of the sum-rate. Also,

compared to the one without beam misalignment, the sum-rate of the proposed algorithm with

beam misalignment can lead to at most 10% decrease in sum-rate, which demonstrates that our

algorithm can strike a good balance between misalignment and sum-rate.

For the RIS-assisted mmWave UAV networks, we jointly optimize the deployment, user schedul-

ing, beamforming vector and RIS phases to maximize the sum-rate, with the constraints of the

minimum rate, the UAV movement, the analog beamforming and the RIS phases. To solve this

complex problem, we use an iterative method, in which when we optimize one variable, we fix the

other three variables. When optimizing the deployment, we find the optimal position for the UAV

by a sphere search. Then, we formulate an integer linear programming to find the best scheduling.

We also design the analog beamforming vector by compensating the phases of the channel which

combines the direct path and the RIS paths. When optimizing the RIS phases, we formulate a

semi-definite programming to find the best phases. The proposed joint optimization outperforms

the system without RIS assistance and the system without deployment optimization.

1.3 Dissertation Organization

This dissertation is organized as follows. In Chapter 2, a multi-user analog beamforming algo-

rithm is proposed. Chapter 3 proposes a hybrid precoding algotithm for mmWave relay networks.

In Chapter 4, a joint design of beamwidth and power allocation algorithm for hybrid beamforming

in mmWave NOMA systems is proposed. Chapter 5 further proposes a two-step mmWave-NOMA

beam alignment algorithm with misalignment probability constraints. In Chapter 6, joint opti-

mization of deployment, scheduling, beamforming, and RIS phases adjustment in the RIS-assisted

mmWave UAV network is investigated.
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Notation: Cm×n is the set of all m× n complex matrices with Cm , Cm×1 and C , C1. Im

is the m×m identity matrix, and 0m×n is the m× n all-zero matrix. CN(µµµ,K) is a circularly-

symmetric complex Gaussian random vector with mean vector µµµ and covariance matrix K. Ma-

trices AT and AH are the transpose and the Hermite transpose of matrix A, respectively. Matrix

A = [ααα1,ααα2, ...,αααL] represents the concatenation of the L vectors ααα i, and B = [A1,A2, ...,AK]

represents the concatenation of the K matrices Ai.
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Chapter 2

Multi-User Analog Beamforming in

mmWave MIMO Systems Based on Path

Angle Information

2.1 Introduction

Millimeter wave (mmWave) communication has been considered as a key technology for future

wireless communication systems because of the high data rates provided by the large bandwidths at

mmWave carrier frequencies. However, mmWave carrier frequencies suffer from relatively severe

propagation losses, which reduce service coverage and impair communication performance [99].

Thus, large antenna arrays are usually proposed to be implemented at both transmitters and re-

ceivers to provide sufficient beamforming gain to mitigate the severe propagation attenuation

[115, 86]. The large antenna arrays, however, lead to high system complexity for employing con-

ventional full digital beamforming, where each antenna element is connected to a separate radio-

frequency (RF) chain[60, 40, 117]. Therefore, analog beamforming [80, 53, 88], where a single RF
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chain is tied to the entire antenna array and the beamforming processing is performed with the RF

analog components, has been reignited in mmWave systems. To strike a balance between the sys-

tem complexity and the beamforming precision, a hybrid architecture [33] that uses analog phase

shifters in conjunction with a reduced number of RF chains is proposed for single-user mmWave

multi-input multi-output (MIMO) systems.

To further improve the system throughput, multi-user systems, where a base station (BS) simulta-

neously serves a number of mobile stations, are often adopted. To cancel the interference among

mobile stations, precoding is usually applied at the BS. For conventional multi-user systems, pre-

coding is commonly done at the baseband, where each antenna element has a radio frequency

(RF) chain[128, 106, 114, 102, 126, 39, 113, 60]. This kind of precoding is called fully digital

beamforming. In [128, 106, 126], iterative beamforming algorithms that maximize the signal-to-

interference-noise ratio (SINR) for all users were proposed. Unfortunately, these exists no closed-

form solution for such iterative algorithms. Besides, the optimization problem is NP-complete,

which means that they cannot be solved in reasonable time [39]. In [60] and [113], zero-forcing

schemes for multi-user beamforming were proposed, which decoupled the multi-user beamforming

problem and perfectly cancel the interference. In [114, 102, 39], the signal-to-leakage-and-noise

ratio (SLNR) was chosen as the criterion of the optimization problem, which also leads to a de-

coupled optimization problem and provides an analytical closed-form solution. Also, in [39], a

semidefinite-programming-based algorithm was proposed, which aims to minimize the total trans-

mitted power with QoS requirements. However, similar to the single-user MIMO systems, all

mentioned fully digital beamforming schemes are not practical for large antenna arrays in mmWave

systems due to the high complexity and the large power consumption.

To address the difficulty of the limited number of RF chains in multi-user systems, two approaches

have been proposed. One is the hybrid multi-user beamforming, in which the beamformer is con-

structed by the concatenation of a low-dimensional baseband (digital) beamformer and an RF (ana-

log) beamformer [8, 89, 96]. The RF beamformer provides a high-dimensional phase-only control
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and is usually used to enhance the array gain. The baseband beamformer, on the other hand, is

usually used to cancel the interference. This method can achieve a performance close to a conven-

tional digital beamformer [8, 89]. However, a two-stage feedback for both the RF beamforming

and the baseband beamforming is needed. Such a two-stage feedback requires a tremendous over-

head for large antenna arrays. This may become a limitation for mmWave MIMO systems and

should be avoided if possible. The other approach is the analog multi-user beamforming, where

the beamforming processing is only performed with RF analog components. Currently, many RF

beamformers use discrete Fourier transform (DFT) vectors as the RF beamformer [78, 73, 94].

Since the DFT vectors have a form similar to that of the array response vectors of the arrays, such

an RF beamformer will have the largest array gain [89, 78]. Additionally, in [124, 116, 57], an

analog beam selection method for mmWave multi-user systems was proposed, where both the BS

and the users are equipped with an analog beamforming codebook. The codebook consists of

beamforming vectors which are the array response vectors with uniform spacing. The BS chooses

the best beamforming vector, which maximizes the beamforming gain, from the codebook. This

method performs well for line-of-sight (LOS) channels, because the selected beamformer is the

match filters for the LOS channels. However, considering a non-LOS (NLOS) channel model, the

performance of the beam selection method will be degraded due to the interference among differ-

ent paths and different users. Besides, the beam selection method needs a training stage to find

the best beam, whose overhead scales linearly with the number of users. All of the previous work

either uses DFT vectors as the analog beamformers or uses the array response vectors as the analog

beamformers. To the best of our knowledge, there is no structure design for the analog beams in

the literature.

In this chapter, we aim to design an analog beamforming method in downlink multi-user systems

which not only enhances the beamforming gain but also cancels the inter-user interference. In our

method, the analog beams are not DFT structured vectors, but the objectives to be optimized. In

the first part of the chapter, we propose an analog beamforming method based on perfect channel

state information (CSI). A multi-objective problem (MOP) is first established to maximize the
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beamforming gain and minimize the inter-user interference at the same time. We transform the

MOP into a single-objective problem (SOP) by using the weighted-sum method. The semi-definite

programming (SDP) technique is then introduced to deal with the constant-magnitude constraints

for the analog beamforming. To further reduce the feedback overhead, we only use the angle of

departures/angle of arrivals (AoD/AoA) of the channel instead of the full channel information.

Channel information is also critical for mmWave MIMO systems. Imperfect CSI will lead to severe

performance degradation. Some papers, such as [29], [31] and [30], analyzed the performance of

the imperfect CSI and proposed communication schemes for imperfect CSI in traditional MIMO

systems, i.e., fully digital MIMO systems. However, to the best of our knowledge, there is no

robust communication design for mmWave MIMO systems in the literature.

The second part of the chapter considers imperfect CSI caused by channel estimation and quanti-

zation in mmWave systems. We propose a robust design for the analog beamforming, which not

only suppresses the interference and enhances the beamforming gain, but also provides robustness

against imperfect CSI. We assume there exists angle errors in the AoD/AoA of the channel and

simplify the error model into an additive error model by using Taylor expansion. Based on the

statistical properties of the errors, a probabilistic objective similar to [28, 18, 21] is formulated.

We maximize the average beamforming gain while keeping the probability of small leakage power

as large as possible (i.e., we formulate a MOP to maximize the average array gain and the prob-

ability of small leakage power at the same time). The probabilistic objective is transformed into

a deterministic one by applying Markov’s inequality, and then we use the same technique as the

proposed non-robust beamforming to deal with the MOP for robust beamforming.

The contributions of this chapter can be summarized as follows:

• We propose an analog beamforming scheme based on the path angle information in mmWave

systems. The scheme strikes a balance between beamforming gain and inter-user interfer-

ence only using partial channel information. Our proposed scheme outperforms the conven-
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tional beam selection method due to the interference suppression.

• We consider the effects of the channel estimation and feedback quantization errors and de-

velop a channel error model for the scattering clustered channel model, which can serve as a

general channel error model for mmWave channels.

• We propose a robust analog beamforming scheme for mmWave systems to alleviate the

effects of the channel estimation and feedback quantization errors. The proposed robust

analog beamforming scheme brings about 109% improvement in sum-rate compared to the

conventional beam selection method.

The remaining sections are organized as follows. In Section 2.2 , we describe the system model and

the mmWave channel model. Section 2.3 formulates the proposed analog beamforming method

based on perfect CSI. Section 2.4 presents the proposed robust analog beamforming design for

imperfect CSI. Numerical examples are presented and discussed in Section 2.5. We provide con-

cluding remarks in Section 2.6.

2.2 System model and problem formulation

2.2.1 System model and zero-forcing schemes

We consider a multi-user system including a BS with Nt antennas serving K single-antenna users as

Fig. 2.1 depicts. The number of RF chains NRF is set to be K to enable the multi-user transmission.

In the case that the number of RF chains, NRF , is less than the number of users, one can select

NRF out of K users and serve them using our algorithm. One such a user selection method is

the proportional-fair (PF) method presented in [81]. Only analog beamforming is used for each

user. The BS generates the analog beamforming vector for User i based on the estimated multi-

path angles of the channels. We denote si as the transmitted symbol intended for User i with
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Figure 2.1: System model

E[‖si‖2] = 1 and wwwi ∈ CNt×1 as the beamforming vector for si. The channel between User i and

the BS is denoted by hhhH
i ∈ C1×Nt . The received signal at User i can be expressed as

yi = hhhH
i wwwisi +

K

∑
k=1,k 6=i

hhhH
i wwwksk +ni, (2.1)

where ni is the additive Gaussian noise with zero mean and σ2 variance. The second term in (2.1)

is called the co-channel interference (CCI) caused by other users.

Intuitively, the optimal multi-user system is the one that maximizes the signal-to-interference-plus-

noise ratio (SINR) of every user. The SINR of User i is given by

SINRi =
|hhhH

i wwwi|2

σ2 +∑
K
k=1,k 6=i |hhh

H
i wwwk|2

. (2.2)

However, using SINR as the optimization criterion generally results in a challenging optimization

problem to deal with K coupled variables {wwwi}K
i=1 [128, 106, 126].

One way to avoid solving the coupled problem is to focus on canceling the CCI by using zero-

forcing (ZF) schemes [68]. As [60] and [113] did, the ZF schemes choose beamforming vectors
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wwwi by enforcing the conditions

hhhH
k wwwi = 0, ∀i, k = 1, ...,K,k 6= i. (2.3)

This solution results in good performance since it completely cancels the CCI at every receiver.

However, ZF does not optimize the beamforming gain, and thus is not optimal for SINR. Moreover,

for analog beamforming, the elements of vector wwwi have constant magnitudes, i.e., |wn
i |= constant

where wn
i denotes the nth element in vector wwwi. We call these constraints, the constant-magnitude

constraints. For a system with constant-magnitude constraints, the ZF conditions in (2.3) may not

be feasible. To remedy these issues, we relax the ZF conditions in (2.3) and take the beamforming

gain into account when choosing wwwi. The details will be explained in subsequent sections. In the

next section, we will introduce the mmWave channel model which is very different from the tradi-

tional Rayleigh fading channel model. Based on the mmWave channel model, we will formulate

our analog multi-user beamforming problem for mmWave systems.

2.2.2 Channel model

MmWave channels are expected to have limited scattering characteristic [98], which means the as-

sumptions of a rich scattering environment become invalid. This is called sparsity in the literature

and leads to the unreliability of traditional channel models, such as the Rayleigh fading channel

model. To characterize the limited scattering feature, we adopt the clustered mmWave channel

model in [33] and[32] with Li scatters for the channel of User i. Each scatter is assumed to con-

tribute a single propagation path between the BS and the user. For our single-antenna user system,

the channel is modeled as a vector described by

hhhH
i =

√
Nt

Li

Li

∑
l=1

(ai
l)
∗
ααα t(θ

i
l )

H , (2.4)
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where ααα t(θ
i
l ) is the antenna array response vectors of the BS for path l with departure angle θ i

l .

Parameter (ai
l)
∗ is the complex path gain of path l modeled by a complex Gaussian distribution

such as C N (0,1). While the algorithms and results in the chapter can be applied to arbitrary

antenna arrays, we use uniform linear arrays (ULAs) in the simulations for simplicity. The array

response vectors take the following form

ααα t(θ
i
l ) =

1√
Nt

[1,e j 2π

λ
d sin(θ i

l ), ...,e j(Nt−1) 2π

λ
d sin(θ i

l )], (2.5)

where λ is the signal wavelength, and d is the distance between antenna elements. The departure

angle θ i
l is assumed to have a uniform distribution over [0,2π].

To simplify the expression of the channels, we denote

Ai = [ααα t(θ
i
1),ααα t(θ

i
2), ...,ααα t(θ

i
L)], (2.6)

h̃hhi = [ai
1,a

i
2, ...,a

i
L]

T . (2.7)

Matrix Ai ∈ CNt×Li contains all the array response vectors from the BS to User i and vector h̃hhi ∈

CLi×1 contains the complex gain of all the paths from the BS to User i. The channel hhhH
i can be

expressed as the product of Hermitian h̃hhi and Hermitian Ai

hhhH
i = h̃hh

H
i AH

i . (2.8)

We call Ai the AoD matrix of User i. In fact, to estimate the mmWave channels is to estimate the

AoDs and the complex gains. In this chapter, to further reduce the feedback overhead, we assume

the BS only knows the AoD of the channels (i.e., the BS only knows Ai).
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2.2.3 Problem formulation

As we mentioned in the previous section, ZF schemes may not be effective for multi-user analog

beamforming since the constant-magnitude constraints on wwwi may cause the ZF conditions in (2.3)

infeasible. To deal with this problem, we relax the equality condition in (2.3) and try to minimize

the leakage interference. To be specific, we denote the leakage interference matrix as

Ĩi = [A1, ...,Ai−1,Ai+1, ...,AK]
H , (2.9)

where Ĩi ∈ C∑
K
k=1,k 6=i Lk×Nt is a matrix that contains the AoD matrices from the BS to all the users

except User i. Originally, Ĩi should contain the channel vectors from the BS to all the users except

User i. Since we assume we only know the AoDs of the channels, we use AoD matrices to represent

the channels.

The traditional ZF schemes are basically forcing the wwwi to lie in the null space of Ĩi so as to avoid the

interference from User i to other users. The null space of Ĩi can be obtained through singular-value

decomposition (SVD). We define the SVD of Ĩi as

Ĩi = ŨiΣ̃i[Ṽ
(1)
i Ṽ(0)

i ]H , (2.10)

where Ṽ(1)
i holds the first ∑

K
k=1,k 6=i Lk right singular vectors and Ṽ(0)

i holds the last Nt−∑
K
k=1,k 6=i Lk

right singular vectors. We assume that we implement a large antenna array at the BS, which means

Nt is very large. Note that the mmWave channels have limited scattering characteristic, which

means Lk is usually small. Normally, Nt � Lk. Therefore, we assume Nt > ∑
K
k=1,k 6=i Lk to ensure

that the null space of Ĩi (i.e., Ṽ(0)
i ) exists.

For the multi-user analog beamforming, where ZF conditions may be infeasible, we want to mini-

mize the leakage interference of wwwi. That is actually minimizing the projection from wwwi to Ĩi, which

means wwwi should have the largest projection on the null space of Ĩi. In other words, we are trying
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to find the wwwi that has the largest projection on the null space of Ĩi. The projected vector from wwwi

to the null space of Ĩi is

wwwp
i = Ṽ(0)

i (Ṽ(0)
i )Hwwwi, (2.11)

where Ṽ(0)
i (Ṽ(0)

i )H is the projector matrix onto the the null space of Ĩi. For simplicity, we maximize

the square of the norm of wwwp
i which is

‖wwwp
i ‖

2 = wwwH
i Ṽ(0)

i (Ṽ(0)
i )HṼ(0)

i (Ṽ(0)
i )Hwwwi = wwwH

i Ṽ(0)
i (Ṽ(0)

i )Hwwwi. (2.12)

To obtain an optimal SINR, only to minimize the leakage interference is not enough, since it

ignores the beamforming gain. The beamforming gain refers to the improvement of the receive

power which results from beamforming and we define the beamforming gain for wwwi under our

partial channel information assumption as

BG = wwwH
i AiAH

i wwwi. (2.13)

Taking both the beamforming gain and the leakage interference into account, we formulate a multi-

objective optimization problem (MOP) as follows:

wwwopt
i = argmax{wwwH

i Ṽ(0)
i (Ṽ(0)

i )Hwwwi,wwwH
i AiAH

i wwwi}

s.t. wwwi ∈W ,

(2.14)

where W is the set of all constant-magnitude vectors with each element having a magnitude of 1√
Nt

.

Problem (2.14) is a multi-objective problem with non-convex constraints, which is intractable. In

the next section, we will solve this problem by the weighted sum method and the SDP technique.
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2.3 Multi-user analog beamforming

To solve Problem (2.14), we are actually facing two challenges: 1) how to deal with the multi-

objective problem; and 2) how to handle the non-convex constraints. For the MOP, we will use

the simplest yet effective method ( i.e., the weighted sum method ), to transform it into an SOP.

Then, through some algebraic transformation, we will transform the non-convex problem into an

SDP and solve it using convex optimization.

2.3.1 Transforming the MOP into an SOP

The solution to an MOP may not exist because a single point that optimizes all objectives simulta-

neously usually does not exist. The idea of Pareto optimality is usually used to describe solutions

for MOPs. A solution point is Pareto optimal if it is not possible to move from that point and

improve at least one objective function without detriment to any other objective function. Alterna-

tively, a point is weakly Pareto optimal if it is not possible to move from that point and improve

all objective functions simultaneously. To solve an MOP, we need to ensure the necessary and/or

sufficient condition for Pareto optimality. In other words, to solve an MOP is to find the Pareto

optimal points. There are many ways to find the Pareto optimal points. Two general methods are

visualization and scalarization. A scalarization method specifies a goal function f : RM → R that

for any conceivable operating point, it produces a scalar describing how preferable that point is

(large value means high preference). To be specific, it means to solve the optimization problem:

max
xxx

f (g1(xxx), ...,gM(xxx))

s.t. xxx ∈X

(2.15)

where gi(xxx) is the ith objective function in the original MOP and X is the feasible region. For the

weighted-sum method, function f is a weighted summation of the objective functions. As stated
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in [85], the weighted sum method can provide a sufficient condition for Pareto optimality if all the

weights are positive and the summation of the weights is equal to one. In other words, the solution

to the SOP formulated by the weighted summation is Pareto optimal for the MOP.

Applying the weighted sum method to our problem results in

wwwopt
i = argmax{λ1wwwH

i Ṽ(0)
i (Ṽ(0)

i )Hwwwi +λ2wwwH
i AiAH

i wwwi}

s.t. wwwi ∈W
(2.16)

where λ1 +λ2 = 1 and λi > 0, i ∈ {1,2}. Parameter λi represents the importance of the ith com-

ponent in the objective function. Different values for λis will result in different solutions to the

problem. If we want to obtain a smaller leakage interference, we will set a larger λ1 for the first

objective function. If we want to obtain a larger beamforming gain, we will set a larger λ2 for

the second objective function. We will evaluate the performance under different values of λis in

Section V.

2.3.2 SDP formulation

Although we have transformed Problem (2.14) into Problem (2.16), it is still hard to solve because

of the non-convex constraints. To make the problem tractable, we transform the problem into an

SDP through some algebraic transformation. For the objective function, we have

λ1wwwH
i Ṽ(0)

i (Ṽ(0)
i )Hwwwi +λ2wwwH

i AiAH
i wwwi

= Tr(wwwH
i (λ1Ṽ(0)

i (Ṽ(0)
i )H +λ2AiAH

i )wwwi)

= Tr((λ1Ṽ(0)
i (Ṽ(0)

i )H +λ2AiAH
i )wwwiwwwH

i ).

(2.17)

We denote wwwiwwwH
i as W. Matrix W is a symmetric semi-definite matrix with rank one.
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The constant-magnitude constraints of Problem (2.16) are transformed into

Wii =
1
Nt

, ∀i = 1, ...,Nt , (2.18)

where Wii represents the ith diagonal element in W.

Then, Problem (2.17) is transformed into an SDP as follows:

SDP(Wopt) = argmax{Tr((λ1Ṽ(0)
i (Ṽ(0)

i )H +λ2AiAH
i )W)}

s.t. Wii =
1
Nt

, ∀i = 1, ...,Nt ;

W� 0;

Rank(W) = 1.

(2.19)

The rank-one constraint is still hard to deal with. In order to efficiently solve the optimization

problem, we introduce semidefinite programming relaxation (SDR) by dropping the rank-one con-

straint in (2.19) to solve the optimization problem as (2.20) shows.

SDR(Wopt) = argmax{Tr((λ1Ṽ(0)
i (Ṽ(0)

i )H +λ2AiAH
i )W)}

s.t. Wii =
1
Nt

, ∀i = 1, ...,Nt ;

W� 0.

(2.20)

Problem (2.20) is the relaxed version of Problem (2.19). Its solution will be an upper bound for

the solution of the optimization problem in Problem (2.19).

2.3.3 Approximation

Problem (2.20) is a standard SDP. Its optimal solution SDR(Wopt) can be found by standard tools

of mathematical programming such as CVX [41]. Note that Problem (2.20) is the relaxed version
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of Problem (2.19), which means we cannot guarantee SDR(Wopt) is rank-one. In fact, according

to our simulation results, SDR(Wopt) is not necessarily rank-one. When the rank of SDR(Wopt) is

larger than one, we cannot recover wwwopt
i from SDR(Wopt) straightforwardly. In [122], a random-

ization technique is used to make an approximation. Its basic idea is to generate a set of candidate

vectors {zzzm}M
m=1 based on SDR(Wopt) and choose the best candidate as the approximation of the

wwwopt
i , where M is the size of the set of the candidate vectors.

To be specific, we first generate a set of complex Gaussian vectors X = {xxxm ∈ CNt×1}M
m=1. For

each xxxm ∈X , we generate the vector randomly using the distribution N (000,SDR(Wopt)), where

000 ∈ CNt×1 is the mean vector and SDR(Wopt) is the covariance matrix of the Gaussian random

vector. In this way, we will have E[xxxmxxxH
m ] = SDR(Wopt). However, xxxm may not have constant

magnitudes for every element, thus it may not be a feasible solution for Problems (2.19) and

(2.20). To deal with this issue, for each xxxm, we form zzzmmm ∈ CNt×1 such that

zzzn
m =

xn
m√

Nt |xn
m|
, ∀n = 1, ...,Nt , (2.21)

where zzzn
m is the nth element of vector zzzm and xn

m is the nth element of vector xxxm. In this way,

all the generated zzzms satisfy the constant-magnitude constraints, and hence are feasible points for

Problems (2.19) and (2.20). Therefore, we have

Tr((λ1Ṽ(0)
i (Ṽ(0)

i )H +λ2AiAH
i )zzzmzzzH

m)≤ SDP(Wopt)≤ SDR(Wopt). (2.22)

Since for all zzzms, Inequality (2.22) will hold, this means

Tr((λ1Ṽ(0)
i (Ṽ(0)

i )H +λ2AiAH
i )E[zzzmzzzH

m ])≤ SDP(Wopt)≤ SDR(Wopt). (2.23)

Based on Inequality (2.23), we can choose the zzzm from the candidate set Z = {zzzm}M
m=1 that maxi-

mizes zzzH
m(λ1Ṽ(0)

i (Ṽ(0)
i )H +λ2AiAH

i )zzzm as the approximation for wwwopt
i .
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Up to now, we have proposed a multi-user analog beamforming method based on the precisely

estimated AoD. However, due to the limited feedback and imperfect estimation, we can not obtain

the accurate AoD for every path, which makes the proposed beamforming scheme unstable. To

deal with the uncertainty in the estimation of AoD, we further propose a robust beamforming

scheme in the next section.

2.4 Robust Beamforming

To design the robust beamforming scheme, we first need to model the estimation errors. For

traditional Rayleigh fading channel models, the estimation errors is simply modeled as a matrix

consisting of i.i.d. complex Gaussian distributed entries, which is directly added to the presumed

channel. However, in the clustered mmWave channel model, the errors cannot be simply modeled

as the additive estimation errors, since the estimated angle errors appear in the index of the ex-

ponential function in the array response vectors. Therefore, we need to simplify the error model

before designing a robust beamforming scheme.

2.4.1 Error model

In this section, we will develop an error model for the ULAs with an array response vector in (2.5).

We assume that for the angle θ i
l of the path l there exists an angle estimation/quantization error

∆θ i
l with mean 0 and variance σ i

l . A Gaussian distribution N (0,σ i
l ) is a reasonable assumption,

although we only use the first and second order statistics and do not need the distribution. Then,

the array response vector with error ∆θ i
l can be expressed as

ααα(θ i
l +∆θ

i
l ) =

1√
Nt

[1,e j 2π

λ
d sin(θ i

l+∆θ i
l ), ...,e j(Nt−1) 2π

λ
d sin(θ i

l+∆θ i
l )]T . (2.24)
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To extract the error out of the exponential function in (2.24), we expand the exponential function

using the first-order Taylor expansion. To simplify the expression, we denote 2π

λ
d as κ and the

equation (2.24) is expanded as

e jnκ sin(θ i
l+∆θ i

l ) ≈ e jnκ sin(θ i
l )+ jnκ cos(θ i

l )∆θ
i
l e jnκ sin(θ i

l ),

∀n = 0, ...,Nt−1.
(2.25)

We denoting ei,n
l as jnκ cos(θ i

l )∆θ i
l e jnκ(sin(θ i

l ), which represents the error for the nth element in the

response vector of the lth path of User i. Error ei,n
l can be written as:

ei,n
l = jnκ cos(θ i

l )∆θ
i
l cos(nκ(sin(θ i

l ))−nκ cos(θ i
l )∆θ

i
l sin(nκ(sin(θ i

l )),∀n= 0, ...,Nt−1. (2.26)

Defining the error vector eeei
l ,

1√
Nt
[ei,0

l ,ei,1
l , ...,ei,Nt−1

l ]T as the error for the lth path of User i, we

now simplify the errors in the AoD into an additive random error as

α̃αα(θ i
l ) = ααα(θ i

l +∆θ
i
l )≈ ααα(θ i

l )+ eeei
l, (2.27)

where we denote α̃αα(θ i
l ) as the imperfect array response vector of the lth path of User i. Based on

the mean and the variance of ∆θ i
l , we can calculate the statistical characteristic of eeei

l . First, we

calculate the statistical characteristic of each element ei,n
l in the vector eeei

l . Then, we calculate the

cross-covariance between different elements (i.e., ei,n
l and ei,m

l where m 6= n) so as to calculate the

covariance matrix of ei
l . The mean and variance of each element ei,n

l are calculated by the following

Eqs. (2.28) and (2.29).

E[ei,n
l ] = E[∆θ

i
l ]( jnκ cos(θ i

l )cos(nκ(sin(θ i
l ))−

nκ cos(θ i
l )sin(nκ(sin(θ i

l )))) = 0,∀n = 0, ...,Nt−1.
(2.28)
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D[ei,n
l ] = E[(ei,n

l )∗ei,n
l ] = E[(nκ cos(θ i

l )∆θ
i
l )

2

(cos2(nκ(sin(θ i
l ))+ sin2(nκ(sin(θ i

l )))]

= (nκ cos(θ i
l ))

2E[(∆θ
i
l )

2] = (nκ cos(θ i
l )σ

i
l )

2,

∀n = 0, ...,Nt−1.

(2.29)

The cross-covariance between ei,n
l and ei,m

l is calculated as

E[(ei,n
l )∗ei,m

l ] = nmκ
2 cos2(θ i

l )(σ
i
l )

2,∀m,n and m 6= n (2.30)

Based on Equations (2.29) and (2.30), we can calculate the covariance matrix of eeei
l as

Ci
l =



0 0 . . . 0

0 (κ cos(θ i
l )σ

i
l )

2 . . . (Nt−1)κ2 cos2(θ i
l )(σ

i
l )

2

...
... . . . ...

0 (Nt−1)κ2 cos2(θ i
l )(σ

i
l )

2 . . . (Nt−1)2κ2 cos2(θ i
l )(σ

i
l )

2


. (2.31)

Note that the first row and the first column of Ci
l are all zeros. This is because the first element of

the array response vector (2.24) is always 1, which is independent of an error. In other words, the

first element of the array response vector (2.24) is deterministic and this leads to the zeros in the

first row and the first column of Ci
l .

Since we have simplified the AoD error of each path for each user into an additive error, we can

further model the errors for the whole AoD matrix as an additive error. Denoting the presumed

AoD matrix of User i as Ap
i , the AoD matrix of User i with errors can be modeled as

Ai = Ap
i +Ei, (2.32)
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where Ei = [eeei
1,eee

i
2, ...,eee

i
L]∈CNt×L is a matrix that contains all the error vectors for User i. Based on

the assumption that the paths are independent [33][32], we can assume that the errors of different

paths and users are independent, which means

E[eeei
l(eee

i
q)

H ] = 0Nt×Nt , ∀l 6= q. (2.33)

In (2.33), 0Nt×Nt represents the zero square matrix with dimension of Nt . Therefore, the covariance

matrix of Ei is

Ci =
Li

∑
l=1

Ci
l. (2.34)

The imperfect leakage interference matrix of User i could also be modeled in the same way as

the imperfect AoD matrix. We denote the presumed leakage interference matrix of User i as

Ĩp
i = [Ap

1 , ...,A
p
i−1,A

p
i+1, ...,A

p
K]

T . The imperfect leakage interference matrix of User i with errors

can be modeled as

Ĩi = Ĩp
i + Ẽi, (2.35)

where Ẽi = [E1, ...,Ei−1,Ei+1, ...,EK]
T ∈C∑

K
k 6=i Lk×Nt is a matrix that contains all the error matrices

for all the users except User i. We assume the errors of different users are independent, which

means

E[EiEH
j ] = 0Nt×Nt , ∀i 6= j. (2.36)

Therefore, the covariance matrix of Ẽi is

C̃i =
K

∑
k 6=i

Ck. (2.37)
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Now, we have simplified both the errors in the AoD matrix and the leakage interference matrix

into the additive error. Based on this error model, we will propose a robust beamforming scheme

to confront the uncertainty in the channel information.

2.4.2 Robust beamforming

The leakage interference matrix is random due to the uncertainty of errors. This means we cannot

find a valid null space of Ĩi. Therefore, the beamforming method proposed in the previous sections

cannot be applied here. To deal with this problem, we use a probabilistic approach to restrict the

leakage interference (i.e., we maximize the outage probability). The outage probability can be

expressed as

Poutage = Pr{wwwH
i ĨH

i Ĩiwwwi ≤ γi}, (2.38)

where γi denotes a pre-specified leakage power level. Besides the leakage power, we also want to

maximize the average beamforming gain of User i, which is defined as

BGavg = E[wwwH
i AiAH

i wwwi]. (2.39)

We want to maximize the outage probability and the average beamforming gain at the same time.

Therefore, a multi-objective optimization problem is constructed as

wwwopt
i = argmax {E[wwwH

i AiAH
i wwwi],Pr{wwwH

i ĨH
i Ĩiwwwi ≤ γi}}

s.t. wwwi ∈W ,

(2.40)

where W is the set of all constant-magnitude vectors with each element having a magnitude of

1√
Nt

. Problem (2.40) is an MOP with a constant-magnitude constraint and a probabilistic objective

function. We first use Markov’s inequality to transform the probabilistic objective into the expecta-
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tion objective. Then, similar to the beamforming scheme we proposed in the previous part, we use

the weighted-sum method and the SDP to deal with the multi-objective and constant-magnitude

constraint, respectively.

Based on Markov’s inequality, we have the following inequality as a foundation for our simplifi-

cation of the probabilistic objective.

Pr{Z ≤ γ}= 1−Pr{Z ≥ γ} ≥ 1− E[Z]
γ

. (2.41)

Then the probabilistic objective can be simplified as

Pr{wwwH
i ĨH

i Ĩiwwwi ≤ γi}= Pr{wwwH
i (Ĩ

p
i + Ẽi)

H(Ĩp
i + Ẽi)wwwi ≤ γi} (2.42a)

≥ 1−
E[wwwH

i (Ĩ
p
i + Ẽi)

H(Ĩp
i + Ẽi)wwwi]

γi
(2.42b)

= 1−
E[Tr((Ĩp

i + Ẽi)
H(Ĩp

i + Ẽi)wwwiwwwH
i )]

γi
(2.42c)

= 1− 1
γi

E[Tr((Ĩp
i )

H Ĩp
i wwwiwwwH

i + ẼH
i Ĩp

i wwwiwwwH
i + (2.42d)

(Ĩp
i )

HẼi)wwwiwwwH
i + ẼH

i ẼiwwwiwwwH
i )] (2.42e)

= 1− 1
γi

Tr(E[(Ĩp
i )

H Ĩp
i wwwiwwwH

i ]+E[ẼH
i Ĩp

i ]wwwiwwwH
i + (2.42f)

E[(Ĩp
i )

HẼi)]wwwiwwwH
i +E[ẼH

i Ẽi]wwwiwwwH
i ) (2.42g)

= 1−
Tr(((Ĩp

i )
H Ĩp

i + C̃i)wwwiwwwH
i )

γi
(2.42h)

= 1−
Tr(((Ĩp

i )
H Ĩp

i + C̃i)W)

γi
. (2.42i)

In (2.42f), we exchange the operation order of the expectation and the Tr. Matrix W = wwwiwwwH
i is

a symmetric semi-definite matrix with rank one. Equations in (2.42) transform the probabilistic

objective function into a deterministic and convex function of W.

The average beamforming gain for User i is an expectation over the instant beamforming gain,
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which is not easy to deal with. To make the problem tractable, we perform some algebraic trans-

formation and convert it into a deterministic and convex function of W as below.

E[wwwH
i AiAH

i wwwi]

= E[wwwH
i (A

p
i +Ei)(Ap

i +Ei)
Hwwwi]

= E[Tr((Ap
i +Ei)(Ap

i +Ei)
HwwwiwwwH

i ]

= Tr(E[(Ap
i +Ei)(Ap

i +Ei)
HwwwiwwwH

i ])

= Tr(E[Ap
i (A

p
i )

HwwwiwwwH
i ]+

E[Ei(Ap
i )

H +Ap
i EH

i ]wwwiwwwH
i +E[EiEH

i ]wwwiwwwH
i )

= Tr((Ap
i (A

p
i )

H +Ci)wwwiwwwH
i )

= Tr((Ap
i (A

p
i )

H +Ci)W).

(2.43)

The introduction of matrix W will transform the non-convex constraints on wwwi into

Wii =
1
Nt

, ∀i = 1, ...,Nt , (2.44)

where Wii represents the ith diagonal element in W. This constraints are convex constraints and

are easy to deal with.

Based on the above three simplifications, using the weighted-sum method, we can reformulate

Problem (2.40) into

SDProbust(Wopt) = argmax{λ1 Tr((Ap
i (A

p
i )

H +Ci)W)+

λ2

(
1−

Tr(((Ĩp
i )

H Ĩp
i + C̃i)W)

γi

)
}

s.t. Wii =
1
Nt

, ∀i = 1, ...,Nt ;

W� 0;

Rank(W) = 1,

(2.45)
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where λ1 +λ2 = 1. Parameter λi represents the importance of the ith component in the cost func-

tion.

To deal with the rank-one constraint, we introduce the SDR by dropping the rank constraint in

(2.45). Therefore, an upper bound of Problem (2.45) can be achieved.

SDRrobust(Wopt) = argmax{λ1 Tr((Ap
i (A

p
i )

H +Ci)W)+

λ2

(
1−

Tr(((Ĩp
i )

H Ĩp
i + C̃i)W)

γi

)
}

s.t. Wii =
1
Nt

, ∀i = 1, ...,Nt ;

W� 0.

(2.46)

The optimal solution SDRrobust(Wopt) can be found by standard tools of mathematical program-

ming [41]. Using the same approximation method as in the non-robust case, we can obtain the

analog beamforming vector wwwopt
i .

2.5 Simulation Results

In this section, we evaluate the performance of the non-robust beamforming method in Section 2.3

and the robust beamforming method in Section 2.4. Note that our objective in this chapter is not

to optimize the sum-rate due to the intractability of doing so. In fact, we strike a balance between

maximizing the beamforming gain and minimizing the inter-user interference. Since the λi repre-

sents the importance of each term in the objective function of the MOP, we expect to find the best

balance by evaluating different assignments of values of λis. Therefore, we pick the combination

of λ1 and λ2 that achieve the highest sum-rate. We also compare our multi-user analog beamform-

ing with the beam selection method and other traditional fully-digital beamforming methods. For

the robust beamforming method, we compare our robust analog beamforming with the non-robust

ones to evaluate the improvement brought by our method.
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2.5.1 Non-robust analog beamforming

In the simulation, we consider a multi-user MIMO system consisting of one BS equipped with a

large antenna array and K single-antenna users. The channels are realized using Eq. (2.4). Due to

the limited scattering characteristic of the mmWave channels, the number of paths should be small.

Here, we assume each channel has L = 6 paths. The large antenna array at the BS is assumed to

have Nt = 64 antennas, which is the same number of antennas in [1]. To leave enough dimension

for the null space of the leakage interference, we assume the total number of users K = 6. This will

leave Nt−KL = 28 dimensions for the null space. The θ i
l of each path is assumed to be uniformly

distributed in [0,2π]. The results are averaged over 20,000 channel realizations. The variance of

AWGN noise per user is assumed to be the same for all users, i.e. σ2
1 = ... = σ2

K = σ2. And the

large-scale fading path loss factor of all users are uniformly distributed in [0.5,1.5] dB. We have

used these parameters in all figures unless we specifically mention otherwise.

Figs. 2.2 and 2.3 illustrate the sum-rate and the beamforming gain and interference of our analog

beamforming under different λ1 and λ2 values, respectively. We, in general, evaluate 21 combina-

tions of λ1 and λ2. To be specific, the λ2 ranges from 0 to 1 with step-size 0.05 and λ1 = 1−λ2. In

Fig. 2.2, as λ2 increases from 0 to 1, the sum-rate first increases and then decreases, which exhibits

the tradeoff between the beamforming gain and the leakage interference. In Fig. 2.3, when λ2 = 0,

the leakage interference is minimized but the beamforming gain is quite low. When λ1 = 1, the

beamforming gain is maximized but the leakage interference is very high. Fig. 2.2 shows that there

is a tradeoff between leakage interference and beamforming gain and as a result the MOP provides

better performance than only optimizing beamforming gain or interference. Note that there is no

need to set different weights for different users because we deal with a decoupled problem, i.e., the

best λ2 for each user should be the same. For example, when we fix the parameters for other users

and change the weight the for User 1, the trend in the plot should be similar to Fig. 2.2. Therefore,

we will set λ1 = 0.9 and λ2 = 0.1, which achieves the best sum-rate, for all users in the follow-up

simulations.
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Figure 2.2: Sum-rate evaluation for different combinations of sum weights

To further illustrate the relationship between the two objectives in Problem (2.14), we plot Fig. 2.4

to show the tradeoff between beamforming gain and the norm of the projection of wwwi onto the null

space. As the beamforming gain increases, the norm of the projection decreases. As such, the use

of multiple-objective optimization is justified.

In Fig. 2.5, the proposed analog non-robust beamforming method is compared with the analog

beam selection method in [124], the digital ZF beamforming [113, 60] and the digital SLNR beam-

forming [114, 102, 39]. The analog beam selection method usually needs a hierarchical search to

find the best beam, which results in a high training overhead. In our simulation, for simplicity, we

directly use the array response vector of the strongest path of each user, which is the best beam

for each user, as the solution for the analog beam selection. This is equivalent to a codebook with

infinite vectors. As such, the performance of the beam selection that we report is better than what

presented in [124, 116, 57]. Fig. 2.5 shows the empirical cumulative distribution function (CDF)

of SINR when the SNR = 25dB for different methods. For a fixed SINR value a, the correspond-

ing CDF value p implies that Pr(SINR ≤ a) = p. At SINR = 0dB, the corresponding CDFs of

the digital SLNR beamformer, the digital ZF beamformer, our proposed analog ZF beamformer,

and the beam selection method are around 0%, 2%, 2%, and 10%, respectively. At SINR = 15dB,

the CDF numbers are around 0%, 10%, 30%, and 75%, respectively. Generally speaking, the fully
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Figure 2.3: Beamforming Gain and Interference for different combinations of sum weights
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Figure 2.5: CDF of SINR when SNR=25dB

digital beamformers have CDF values that are lower than those of the analog beamformers at every

SINR while requiring a higher cost of RF chains. Note that, the fully digital beamforming meth-

ods such as the zero-forcing method and the SLNR-based method are only used as the benchmark.

The analog beamforming cannot outperform the fully digital beamforming. Besides, we only use

the channel phase information, which will lead to performance degradation. The main method we

are comparing with is the beam selection method, which is the main analog beamforming method

adopted in mmWave systems and our proposed method has a much lower CDF value at most SINRs

compared to the beam selection method. This is because we suppress the interference in our model

while the beam selection method only maximizes the beamforming gain.

To have an overall observation of the performance of the three methods, we plot the average sum-

rate per user with SNR ranging from -15 dB to 30 dB in Fig. 2.6. The fully digital SLNR-based

beamforming method has the best performance at every SNR. When the SNR is low, the beam

selection method performs better compared to both the digital ZF beamformer and the proposed

analog beamformer. For example, when SNR is 0 dB, the sum-rate of the beam selection is around
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10, while the sum-rates of our proposed analog beamformer and the digital ZF beamformer are

around 6 and 5, respectively. Although our proposed analog beamformer cannot beat the beam

selection method at low SNR, it performs better than the digital ZF beamformer. The reason why

our proposed analog beamformer cannot beat the beam selection method when SNR is low is

because we only use partial channel information (AoD matrix), not the entire channel in (2.4), to

maximize the beamforming gain. When the SNR is low, the power of interference can be ignored

because the noise power is large, therefore, the method with the largest beamforming gain will have

the largest SINR thus the best sum-rate. Note that, in our simulations, we directly use the array

response vector of the strongest path as the beam selected for User i, which is the best performance

for the beam selection, without considering any beam alignment loss. Therefore, as mentioned

before, the beam selection method in our simulations would perform better than what presented in

[124, 116, 57]. However, when the SNR is large, for example 25 dB, the performance of the beam

selection is the worst among the four methods due to the severe interference. When the SNR is 25

dB, our proposed analog beamformer can achieve a sum-rate of about 35 while the sum-rate of the

beam selection only reaches 21.

Although the beam selection method has a better performance in the low SNR region, it needs a

multi-stage training process to obtain the precise beam, which will result in a waste of transmis-

sion resources. Our method, on the other hand, only needs one-stage feedback of the AoD, thus

saving transmission resources. Moreover, to increase the precision of the beam direction for the

beam selection method, one should increase the training overhead. However, we have proposed a

robust beamforming method to confront the estimation/quantization error in the AoD. Our robust

beamforming method can further reduce the feedback overhead since we do not need to know a

completely precise AoD as confirmed by the simulations in the next section.
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Figure 2.6: Sum-rate comparison

2.5.2 Robust analog beamforming

For the robust case, we evaluate the sum-rate performance with different levels of uncertainty, i.e.

the error variance σ2
error = {0.005,0}. The leakage power level is set to be γi = 0.1,∀i = 1, ...,K.

We compare the performance of the proposed robust analog beamfomer, the non-robust digital

ZF beamformer, the beam selection method, and the non-robust digital SLNR-based beamformer.

In the previous section, we assumed an infinite codebook for the beam selection method, which

avoids the quantization error. In this section, for the beam selection method, we assume there

exists an error in the beam alignment angle and this error has the same statistical characteristic as

the error in AoDs.

When the error variance σ2
error = 0, we will have the same results as in the non-robust case. In

fact, the ideas behind these two beamformers are the same. For the robust beamformer, when the

error variance is 0, we actually minimize Tr((Ĩp
i )

H Ĩp
i W), i.e., the leakage power of User i. This is

the same as maximizing the projection of wwwi onto the null space of Ĩp
i , which is what we do for the
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Figure 2.7: CDF of SINR when SNR=25dB. The variance of error is 0.005

non-robust beamformer.

Fig. 2.7 shows the SINR CDF of the three beamforming approaches when σ2
error = 0.005. We set

the SNR = 25dB. The proposed analog beamformer has a large improvement in performance com-

pared with the beam selection method and the non-robust ZF beamformer. For example, when

SINR = 0dB, the CDF values of the proposed robust analog beamformer, the beam selection

method, the non-robust digital ZF beamformer and the non-robust SLNR-based beamformer are

around 15%, 52%, 58% and 61%, respectively. When CDF is at 50%, the proposed robust analog

beamformer can provide 11 dB ,12 dB and 13 dB improvement in SINR compared with the beam

selection method, the non-robust ZF beamformer and the non-robust SLNR-based beamformer,

respectively.

Fig. 2.8 plots the averaged sum-rate per user of the three beamforming methods when the SNR

ranges from -15dB to 30dB with σ2
error = 0.005. The proposed robust analog beamformer outper-

forms both the beam selection method and the non-robust ZF beamformer at every SNR. When

SNR is 25dB, the proposed beamformer provides an improvement of 109%, 188% and 254% of

the averaged sum-rate with respect to that of the beam selection method, the non-robust ZF beam-

former and the non-robust SLNR-based beamformer, respectively.

35



-15 -10 -5 0 5 10 15 20 25 30

SNR(dB)

0

5

10

15

20

25

S
u

m
 r

a
te

(b
it

s
/H

z
/s

)

Proposed robust analog beamformer

ZF beamformer

Beam selection method

SLNR beamformer

Figure 2.8: Averaged sum-rate per user. The variance of error is 0.005

Both Figs. 2.7 and 2.8 show that a slight estimation error will lead to severe system performance

degradation. However, and our robust beamforming scheme can provide large improvement for

imperfect CSI scenarios.

2.6 Conclusion

In this chapter, we proposed an analog beamforming scheme which strikes a balance between

the beamforming gain and the inter-user interference. We formulated an MOP that maximizes the

beamforming gain and minimizes the interference at the same time. The weighted-sum method was

used to transform the MOP into an SOP and the SDP was adopted to make the constant-magnitude

constraints for the analog beamforming tractable. Furthermore, to alleviate the effects of the chan-

nel estimation and feedback quantization errors, we designed a robust beamforming scheme to

overcome the channel uncertainty. A probabilistic constraint was used and an MOP similar with

the non-robust beamforming scheme was formulated. For the non-robust case, simulation results
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showed that the proposed beamformer provides a better balance between the beamforming gain

and the inter-user interference compared with other analog beamformers in the high SNR region.

For the robust case, the simulation results demonstrated the highest robustness of our beamforming

scheme against channel errors.
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Chapter 3

MmWave Amplify-and-Forward MIMO

Relay Networks with Hybrid

Precoding/Combining Design

3.1 Introduction

Communications over millimeter wave (mmWave) have received significant attention recently be-

cause of the high data rates provided by the large bandwidth at the mmWave carrier frequencies.

Also, using large antenna arrays in mmWave communication systems is possible because the small

wavelength allows integrating many antennas in a small area. Despite its advantages, the mmWave

carrier frequencies suffer from relatively severe propagation losses. Meanwhile, the sparsity of the

mmWave scattering environment usually results in rank-deficient channels [99].

To overcome the large path losses, large antenna arrays can be placed at both transmitters and

receivers to guarantee sufficient received signal power [93]. The large antenna arrays lead to

a large number of radio frequency (RF) chains, which greatly increase the implementation cost
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and complexity. To reduce the number of RF chains, hybrid analog/digital precoding has been

proposed, which connects analog phase shifters with a reduced number of RF chains. The main

advantage of the hybrid precoding is that it can trade off between the low-complexity limited-

performance analog phase shifters and the high-complexity good-performance digital precoding

[47].

Despite the help of large antenna arrays, the severe propagation losses still limit mmWave com-

munications to take place within short ranges. Fortunately, the coverage can be greatly extended

with the help of relay nodes [72]. Therefore, investigating the performance of hybrid precod-

ing/combining in the relay scenario is important. For the conventional relay scenario, network

beamforming in amplify-and-forward (AF) relay networks was studied in [66, 67].

For a mmWave relay scenario, large antenna arrays are usually implemented to mitigate the severe

path loss. In addition, a hybrid precoding method is adopted. There are two typical hybrid pre-

coding structures: (i) fully-connected structure (where each RF chain is connected to all antennas)

[33], and (ii) sub-connected structure (where each RF chain is connected to a subset of antennas)

[38]. For fully-connected mmWave networks with AF relay nodes, the authors in [74] designed

hybrid precoding matrices using the orthogonal matching pursuit (OMP) algorithm. However,

the performance of the OMP algorithm used in [74] depends on the orthogonality of the pre-

determined candidates for the analog precoders. In [138], a joint source and relay precoding design

for mmWave AF relay network is proposed based on semidefinite programming (SDP). However,

the proposed method in [138] is only suitable for one data stream scenario. In [108], to reduce the

complexity, the RF and the baseband (BB) are separately designed and a minimum mean squared

error (MMSE)-based design for the BB filters is proposed. Although the algorithm in [108] shows

its advantage over the OMP algorithm in terms of sum spectral efficiency, it did not optimize the

sum rate of the system. In fact, [108] can be seen as a special case of our proposed methods since

we minimize the weighted mean squared error. In [118], an efficient algorithm is proposed via

employing the so-called Alternating Direction Method of Multipliers (ADMM), which greatly re-
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duces the distance between the hybrid precoder/combiner and the full-digital precoder/combiner.

However, the ADMM algorithm has a high complexity and is sub-optimal in terms of the data

rate for the system. For sub-connected structures, [137] proposes a MMSE-based relay hybrid

precoding design. To make the problem tractable, [137] reformulates the original problem as three

subproblems and proposes an iterative successive approximation (ISA) algorithm. The algorithm

in [137] can also be extended to the fully-connected structure. Compared with the OMP algorithm,

the ISA algorithm in [137] greatly improves the performance, however, the complexity of the ISA

algorithm is high and it only optimizes the relay node.

In this chapter, we study the hybrid precoding for fully-connected mmWave AF relay networks

in the domain of massive multiple-input and multiple-output (MIMO) systems. To reduce the

complexity, we separate the RF and the BB. For the RF, we first design the phase-only RF pre-

coding/combining matrices for multi-stream transmissions. We decompose the channel into paral-

lel sub-channels through singular value decomposition (SVD) and compensate the phase of each

sub-channel, i.e., each eigenmode of the channel. When the RF precoding and combining are

performed, the digital baseband precoders/combiners are performed on the equivalent baseband

channel to achieve the maximal mutual information. The problem of finding the optimal baseband

precoders/combiners for the optimal mutual information is non-convex and intractable to solve by

low-complexity methods. Based on the data processing inequality for the mutual information [43],

we first jointly design the baseband source and relay nodes to maximize the mutual information

before the destination baseband receiver. We propose a low-complexity iterative algorithm to de-

sign the precoder and combiner for the source and relay nodes, which is based on the equivalence

between the mutual information maximization and the weighted MMSE [20]. After we obtain the

optimal precoder and combiner for the source and relay nodes, we implement the MMSE succes-

sive interference cancellation (MMSE-SIC) filter [117] at the baseband receiver to keep the mutual

information unchanged, thus obtaining the optimal mutual information for the whole relay system.

Simulation results show that our algorithm outperforms the OMP in [74]. Moreover, our algorithm

achieves better performance with lower complexity compared to the ISA algorithm in [137].
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We also propose a robust hybrid precoding/combining approach considering the inevitable imper-

fect channel state information (CSI) in the second part of the chapter. Robust design for traditional

relay systems has been well studied in papers, such as [134, 135, 101]. In [70, 82], the topic of

imperfect channel state information in amplify-and-forward relay networks has been studied under

amplify-and-forward relay networks with limited feedback. However, there is not much work on

the effects of imperfect channel state information in mmWave relay networks. In [83], a robust

OMP-based algorithm is proposed to maximize the receiving signal-to-noise ratio (SNR) at the

destination node. Similar with the non-robust case, the performance of the OMP-based algorithm

depends on the orthogonality of the predetermined candidates for the analog precoders. In this

chapter, we adopt the well-known Kronecker model [143, 134] for the CSI mismatch. We first

estimate the phase for RF precoding/combining to minimize the average estimation error. Then,

we modify our proposed weighted MMSE approach for the perfect CSI to achieve a more robust

performance for the baseband processing. Simulation results demonstrate the robustness of the

proposed algorithm against CSI mismatch.

The contributions of this chapter can be summarized as follows:

• We propose a hybrid precoding/combining approach for perfect CSI in mmWave relay sys-

tems. The phase-only RF precoding/combining matrices are first designed to achieve large

array gains and support multi-stream transmissions. Then, we design the baseband process-

ing system to achieve maximal mutual information by transforming the highly complicated

non-convex mutual information maximization problem into an easily tractable weighted

MMSE problem. An iterative algorithm which decouples the joint design into four sub-

problems is developed.

• A robust design for the imperfect CSI is further proposed by modifying the non-robust

precoding/combining design. To the best of our knowledge, except [83], this is the first

mmWave relay system design that is robust to channel estimation error. Numerical results

are provided to show the robustness of the proposed algorithm against CSI mismatch.
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Compared with our conference version [65] which designs the hybrid filters for perfect CSI, we an-

alyze the impact of imperfect CSI in this chapter, and further propose a robust design to strengthen

the robustness of our proposed algorithm. The remaining sections are organized as follows. In

Section 3.2 , we describe the system model and the mmWave channel model. Section 3.3 formu-

lates the proposed hybrid precoding/combing approach for the perfect CSI. Section 3.4 presents

the proposed robust hybrid design for the imperfect CSI. Numerical examples are presented and

discussed in Section 3.5. We provide concluding remarks in Section 3.6.

3.2 System Model

In this section, we present the signal and channel model for a single user mmWave MIMO relay

system with large antenna arrays and limited RF chains.
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Figure 3.1: System model

3.2.1 System model

Consider a single-user mmWave MIMO relay system using hybrid precoding as illustrated in Fig.

1. The system consists of a source node with Nt transmission antennas, a relay node with Nr

antennas for both transmitting and receiving signals, and a destination node with Nd antennas.

Assuming Ns data streams are transmitted, the BS is equipped with NRF RF chains such that Ns ≤

NRF ≤Nt. Using the NRF transmit chains, an NRF×Ns baseband precoder FBB
t is applied. The RF

precoder is an Nt×NRF matrix FRF
t . Half duplex relaying is adopted. During the first time slot, the
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BS transmits the Ns data streams to the relay through a MIMO channel H1 ∈ CNr×Nt . The relay

receives the signal with an RF combiner WRF
r ∈ CNRF×Nr and a baseband filter GBB

r ∈ CNRF×NRF .

During the second time slot, the relay transmits the data using one RF percoder FRF
r ∈ CNr×NRF

through a MIMO channel H2 ∈CNd×Nr and the destination receives the data with one RF combiner

WRF
d ∈ CNRF×Nd and one baseband combiner WBB

d ∈ CNs×NRF .

We assume the transmited signal is sss = [s1,s2, ...,sNs]T with E[ssssssH ] = INs ∈ CNs×Ns . During the

first time slot, the received signal after the baseband filter at the relay can be expressed as

yyyr = GBB
r WRF

r H1FRF
t FBB

t sss+GBB
r WRF

r nnn1, (3.1)

where nnn1 ∈CNr×1 is a zero-mean complex Gaussian noise vector at the relay node with covariance

matrix E[nnn1nnnH
1 ] = σ2

1 INr ∈ CNr×Nr . The power constraint at the source node is

∥∥FRF
t FBB

t
∥∥2

F ≤ Et. (3.2)

During the second time slot, the received signal after the combiners at the destination can be

expressed as

yyyd = WBB
d WRF

d H2FRF
r GBB

r WRF
r H1FRF

t FBB
t sss

+WBB
d WRF

d H2FRF
r GBB

r WRF
r nnn1 +WBB

d WRF
d nnn2,

(3.3)

where nnn2 ∈ CNd×1 is a zero-mean complex Gaussian noise vector at the destination node with

covariance matrix E[nnn2nnnH
2 ] = σ2

2 INd ∈ CNd×Nd .

To simplify the expression, we define Ft = FRF
t FBB

t ∈ CNt×Ns as the hybrid precoding matrix at

the transmitter, Gr = WRF
r GBB

r FBB
r ∈ CNr×Nr as the hybrid filter at the relay node, and Wd =

WBB
d WRF

d ∈CNs×Nd as the hybrid combiner at the destination node. Eq. (3.3) can be expressed as

yyyd = WdH2GrH1Ftsss+WdH2Grnnn1 +Wdnnn2. (3.4)
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The relay’s power constraint is

E[‖GrH1Ftsss+Grnnn1‖2
F ]≤ Er. (3.5)

Based on this hybrid precoding/combining system model, we can derive the achieved data rate for

the system as

R =
1
2

log2 det(INs +WdH2GrH1FtR-1
n FH

t HH
1 GH

r HH
2 WH

d ), (3.6)

where Rn = σ2
1 WdH2GrGH

r HH
2 WH

d +σ2
2 WdWH

d is the covariance matrix of the colored Gaussian

noise at the output of the baseband combiner.

Generally, we want to jointly optimize the RF and baseband precoders/combiners to achieve the

optimal data rate. However, finding the global optima for this problem (maxmizing R while im-

posing constant-amplitude on the RF analog precoder/combiners) is non-convex and intractable.

Separated RF and baseband processing designs, as [89] did, are investigated to obtain satisfying

performance. Therefore, we will separate the RF and baseband domain designs in this chapter.

3.2.2 Channel model

MmWave channels are expected to have limited scattering characteristic [98, 111, 136], which

means the assumption of a rich scattering environment becomes invalid. This is called sparsity in

the literature and leads to the unreliability of traditional channel models, such as the Rayleigh fad-

ing channel model. To characterize the limited scattering feature, we adopt the clustered mmWave

channel model in [99, 111, 136, 105] with L scatters. Each scatter is assumed to contribute Ncl
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propagation paths to the channel matrix H. Then, the channel is given by

H =

√
NtNr

LNcl

L

∑
l=1

Ncl

∑
n=1

αl,naaar(ϕ
r
l,n,θ

r
l,n)aaa

H
t (ϕ

t
l,n,θ

t
l,n), (3.7)

where αl,n is the complex gain of the nth path in the lth scatter with the distribution CN(0,1),

ϕ r
l,n(θ

r
l,n) and ϕ t

l,n(θ
t
l,n) are the random azimuth and elevation angles of arrival and departure.

aaar(ϕ
r
l,n,θ

r
l,n) and aaat(ϕ

t
l,n,θ

t
l,n) are the receiving and transmitting antenna array response vectors,

respectively. While the algorithms and results in the chapter can be applied to arbitrary antenna

arrays, we use uniform linear arrays (ULAs) in the simulations for simplicity. The array response

vectors take the following form [13]:

aaaULA(ϕ) =
1√
N
[1,e jkdsin(ϕ), ...,e j(N−1)kdsin(ϕ)]T , (3.8)

where k = 2π

λ
. Parameter λ represents the wavelength of the carrier and d is the spacing between

antenna elements. The angle ϕ is assumed to have a uniform distribution over [0,2π].

Since the channel in mmWave systems has limited scattering, we can further simplify the channel

by assuming each scatter only contributes one path to the channel matrix. Then, the channel can

be further expressed as

H =

√
NtNr

L

L

∑
l=1

αlaaar(ϕ
r
l ,θ

r
l )aaa

H
t (ϕ

t
l ,θ

t
l ). (3.9)

The matrix formulation can be expressed as

H =

√
NtNr

L
Ardiag(ααα)AH

t , (3.10)

where Ar = [aaar(ϕ
r
1,θ

r
1), ...,aaar(ϕ

r
L,θ

r
L)] and At = [aaat(ϕ

t
1,θ

t
1), ...,aaat(ϕ

t
L,θ

t
L)] are matrices containing

the receiving and transmitting array response vectors, and ααα = [α1, ...,αL]
T .
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3.3 Hybrid Precoder/Combiner Design

As discussed in Section 3.2, we use a hybrid design to reduce the number of RF chains. We first

design the RF precoder/combiner. Then, based on the designed RF precoder/combiner, we design

a low-complexity iterative algorithm for the baseband precoder/combiner to maximize the mutual

information.

3.3.1 RF precoder/combiner design

Our goal for RF precoder/combiner is to make the channels decomposed into NRF parallel sub-

channels to support the multi-stream transmission. The main challenge is the constant-magnitude

constraints on RF precoders and combiners. Without the constant-magnitude constraints, the opti-

mal precoder/combiner should be the right/left singular matrix of the channel, which transmits the

signals along the eigenmodes of the channel. Considering the constant-magnitude constraints, we

cannot directly use the singular matrix to rotate the signals, but we can use the projection on each

eigenmode as a criterion to choose RF precoder and combiner. For the ith eigenmode, the best

precoder should be the one that has the largest projection on that eigenmode, i.e., the one that casts

the most energy along that eigenmode direction.

Using H1 as an example, we first perform the singular value decomposition (SVD) for the channel

matrix.

H1 = U1Σ1VH
1 =

L

∑
i=1

σiuuuivvvH
i , (3.11)

where uuui and vvvi are the ith vectors in matrices U1 and V1, respectively, which correspond to σi.

The singular values σis are assumed to be in a descending order. L is the rank of the channel and

is equal to the number of propagation paths for the mmWave scenario. Note that for mmWave

systems, the channels usually have limited scattering characteristics, which means the number
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of propagation paths is far less than min(Nt,Nr). In such cases, the channel rank is equal to the

number of propagation paths L. Eq. (3.11) indicates that channel H1 has L eigenmodes. We denote

the ith eigenmode by uuuivvvH
i , and its gain by σi.

For our RF precoding/combining, we want to maximize the projection of the ith data stream onto

the ith eigenmode, i.e.,
∣∣wwwH

i uuuivvvH
i fff i
∣∣, where fff i and wwwi are the ith vector of precoder FRF

t and com-

biner WRF
r , respectively. To approach the maximal projection, we have the following proposition.

Proposition 1. The optimal phase-only vectors fff i and wwwi, which maximize the projection for the

ith data stream onto the ith eigenmode of the channel, will satisfy the following conditions:

phase( fff i[m]) = phase(vvvi[m]) ∀m = 1,2, ...,Nt, (3.12)

phase(wwwi[n]) = phase(uuui[n]) ∀n = 1,2, ...,Nr, (3.13)

where ···[k] represents the kth element of a vector.

Proof. First, we express the vectors in polar coordinates. Due to the magnitude-constant con-

straints, vectors fff i and wwwi are expressed as fff i =
1√
Nt
[e jθ i

1 ,e jθ i
2 , ...,e jθ i

Nt ]T and wwwi =
1√
Nr
[e jϕ i

1 ,e jϕ i
2, ...,e jϕ i

Nr ]T .

Since there are no constant-magnitude constraints for vvvi and uuui, each element in the vector has

its own magnitude. The polar forms of vvvi and uuui are vvvi = [ri
1e jα i

1,ri
2e jα i

2, ...,ri
Nt

e jα i
Nt ]T and uuui =

[ρ i
1e jβ i

1,ρ i
2e jβ i

2, ...,ρ i
Nr

e jβ i
Nr ]T , respectively. Then, the projection can be calculated as

∣∣wwwH
i uuuivvvH

i fff i
∣∣= ∣∣∣∣∣ 1√

Nr

Nr

∑
n=1

ρ
i
ne j(ϕ i

n−β i
n)

∣∣∣∣∣
∣∣∣∣∣ 1√

Nt

Nt

∑
m=1

ri
me j(α i

m−θ i
m)

∣∣∣∣∣ . (3.14)

47



According to the Cauchy-Schwartz inequality, we have

∣∣∣∣∣ 1√
Nt

Nt

∑
m=1

ri
me j(α i

m−θ i
m)

∣∣∣∣∣
2

≤ 1
Nt

Nt

∑
m=1

∣∣ri
m
∣∣2 Nt

∑
m=1

∣∣∣e j(α i
m−θ i

m)
∣∣∣2 = 1

Nt

Nt

∑
m=1

∣∣ri
m
∣∣2 . (3.15)

Equality can be achieved in (3.15) if and only if θ i
m =α i

m ∀m= 1,2, ...,Nt. This means the maximal∣∣vvvH
i fff i
∣∣ is achieved when θ i

m = α i
m ∀m = 1,2, ...,Nt. Similarly, the maximal

∣∣wwwH
i uuui
∣∣ is achieved

when ϕ i
n = β i

n ∀n = 1,2, ...,Nr. Therefore, we have the conclusion that the optimal phase-only

vectors fff i and wwwi, which maximize |wwwH
i uuuivvvH

i fff i|, will satisfy the conditions in (3.12) and (3.13).

Our RF precoders and combiners are actually compensating the phase of each sub-channel. Note

that when the number of antennas is large enough, the response vectors aaar(ϕ
r
l ,θ

r
l )s and aaat(ϕ

t
l ,θ

t
l )s

become orthogonal to each other. At and Ar become the left and right singular matrices of the

channel and they directly become our RF precoder and combiner. In this case, we can perfectly

decompose the channel into independent parallel sub-channels. The equivalent channel after RF

processing is diagonal, which makes it easier for baseband processing.

3.3.2 Baseband system

In this section, we focus on designing the baseband precoding/combining matrices. First, we define

the equivalent baseband channels for H1 and H2 as

H̃1 = WRF
r H1FRF

t , (3.16)

H̃2 = WRF
d H2FRF

r . (3.17)
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Based on the equivalent channels, we simplify our system model as shown in Fig. 3.2.

Relay 

Baseband

Filter

Baseband

Precoder

Baseband

Combiner

Source node Relay node Destination node

Figure 3.2: Baseband System model

Using the equivalent channels (3.16) and (3.17), we rewrite the received signals at the destination

node as

ỹyyd = H̃2GBB
r H̃1FBB

t sss+ H̃2GBB
r ñnn1 + ñnn2, (3.18)

yyyd = WBB
d H̃2GBB

r H̃1FBB
t sss+WBB

d H̃2GBB
r ñnn1 +WBB

d ñnn2, (3.19)

where ñnn1 = WRF
r nnn1 and ñnn2 = WRF

d nnn2.

Our ultimate goal for the baseband design is to maximize the mutual information I(sss,yyyd). How-

ever, directly optimizing I(sss,yyyd) is intractable. According to the data processing inequality [43],

I(sss,yyyd)≤ I(sss, ỹyyd). We first design FBB
t and GBB

r to maximize the mutual information I(sss, ỹyyd). After

we get the maximum I(sss, ỹyyd), we implement the MMSE-SIC for WBB
d , which according to [117] is

information lossless. In this way, we make I(sss,yyyd) = I(sss, ỹyyd). Since I(sss, ỹyyd) is maximized, I(sss,yyyd)

is also maximized because of the data processing inequality and the independence of I(sss; ỹyyd) from

WBB
d .
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3.3.3 FBB
t and GBB

r design

In this section, we jointly design FBB
t and GBB

r to maximize I(sss, ỹyyd). According to [20], there exists

a relationship between I(sss, ỹyyd) and the MSE matrix EMMSE, i.e.,

I(sss, ỹyyd) = log2 det(E−1
MMSE), (3.20)

where the MSE matrix EMMSE is defined as the mean square error covariance matrix given the

MMSE receiver. The detailed proof can be found in [20]. We give a brief derivation procedure

below.

The MMSE receiver is defined as

WMMSE
d = argminE[‖WBB

d ỹyyd− sss‖2] = (H̃2GBB
r H̃1FBB

t )H

(H̃2GBB
r H̃1FBB

t (H̃2GBB
r H̃1FBB

t )H +Rñ)
−1,

(3.21)

where Rñ = σ2
1 H̃2GBB

r WRF
r (H̃2GBB

r WRF
r )H +σ2

2 WRF
r (WRF

r )H .

The MMSE matrix EMMSE can be calculated by

EMMSE = E[(WMMSE
d ỹyyd− sss)(WMMSE

d ỹyyd− sss)H ]

= (INs−WMMSE
d H̃2GBB

r H̃1FBB
t )

(INs−WMMSE
d H̃2GBB

r H̃1FBB
t )H +WMMSE

d Rñ(WMMSE
d )H .

(3.22)

Substituting (3.21) into (3.22), we can express EMMSE as

EMMSE = (INs +(H̃2GBB
r H̃1FBB

t )HR−1
ñ H̃2GBB

r H̃1FBB
t )−1. (3.23)

From (3.23), we can obtain (3.20).

Based on (3.20), we can establish the equivalence between the I(sss, ỹyyd) maximization problem and
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a WMMSE problem as [20] did.

The I(sss, ỹyyd) maximization problem is formulated as

min
FBB

t ,GBB
r

−I(sss, ỹyyd)

s.t.
∥∥FRF

t FBB
t
∥∥2

F ≤ Et,

E[
∥∥FRF

r GBB
r H̃1FBB

t sss+FRF
r GBB

r WRF
r nnn1

∥∥2
F ]≤ Er.

(3.24)

The WMMSE problem is formulated as

min
FBB

t ,GBB
r ,V

Tr(VEMMSE)

s.t.
∥∥FRF

t FBB
t
∥∥2

F ≤ Et,

E[
∥∥FRF

r GBB
r H̃1FBB

t sss+FRF
r GBB

r WRF
r nnn1

∥∥2
F ]≤ Er,

(3.25)

where V is a constant weight matrix.

We will show that Problems (3.24) and (3.25) have the same optimum solution, i.e., the points that

satisfy the KKT conditions for (3.24) and (3.25) are the same. Same as [20], we set the partial

derivatives of the Lagrange functions of (3.24) and (3.25) to zero. Note that the power constraints

of (3.24) and (3.25) are the same. To prove the equivalence, we only need to calculate the partial

derivatives of−I(sss, ỹyyd) and Tr(VEMMSE) w.r.t FBB
t and GBB

r . Note that ∂ logdet(X)=Tr(X−1∂X).

Taking FBB
t as an example, for I(sss, ỹyyd), we have

∂ − I(sss, ỹyyd)

∂FBB
t

=−∂ log2 det(EMMSE)

∂FBB
t

=−
Tr(E−1

MMSE∂EMMSE)

(log2)∂FBB
t

, (3.26)
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Note that ∂X−1 =−X−1(∂X)X−1 and ∂ (AX) = ∂ (X)A+∂ (A)X. For Tr(VEMMSE), we have

∂ Tr(VEMMSE)

∂FBB
t

=−
Tr(∂ (V(E−1

MMSE)
−1))

∂FBB
t

=−
Tr(EMMSE∂ (E−1

MMSE)EMMSEV+∂ (V)EMMSE)

∂FBB
t

=−
Tr(EMMSE∂ (E−1

MMSE)EMMSEV)

∂FBB
t

.

(3.27)

If we set the constant weight matrix V =
E−1

MMSE
log2 , then we have

∂ − I(sss, ỹyyd)

∂FBB
t

=
∂ Tr(VEMMSE)

∂FBB
t

. (3.28)

Similarly, we can derive

∂ − I(sss, ỹyyd)

∂GBB
r

=
∂ Tr(VEMMSE)

∂GBB
r

. (3.29)

From Eqs. (3.28) and (3.29), we can conclude that the KKT-conditions of (3.24) and (3.25) can be

satisfied simultaneously, which suggests that it is possible to solve the mutual information max-

imization problem through the use of WMMSE by choosing an appropriate weight, i.e., V. To

maximize I(sss, ỹyyd), we propose an iterative algorithm based on the WMMSE problem (3.25). Note

that in the proposed algorithm, we also iteratively search for the appropriate weight matrix. When

the algorithm converges, we will obtain the desired weight matrix as well as the optimal filters that

maximize I(sss, ỹyyd). The detailed algorithm is described as follows:

1. Calculate the MMSE receiver WMMSE
d in Eq. (3.21) and the MSE matrix EMMSE in Eq.

(3.22).

2. Update V by setting V =
E−1

MMSE
log2 .
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3. Fixing V and FBB
t , then we find GBB

r that minimizes Tr(VEMMSE)=Tr(V((INs−WMMSE
d H̃2GBB

r H̃1FBB
t )(INs−

WMMSE
d H̃2GBB

r H̃1FBB
t )H +WMMSE

d Rñ(WMMSE
d )H)) under the power constraints, i.e.,

ĜBB
r = argmin Tr(V((INs−WMMSE

d H̃2GBB
r H̃1FBB

t )

(INs−WMMSE
d H̃2GBB

r H̃1FBB
t )H +WMMSE

d Rñ(WMMSE
d )H))

s.t. E[
∥∥FRF

r GBB
r H̃1FBB

t sss+FRF
r GBB

r WRF
r nnn1

∥∥2
F ]≤ Er.

(3.30)

Problem (3.30) is a convex optimization for GBB
r and we can solve it using the KKT condi-

tion. Denoting the Lagrange function of Problem (3.30) as Lr(GBB
r ,λ r) = Tr(VEMMSE)+

λ r(
∥∥FRF

r GBB
r H̃1FBB

t sss+FRF
r GBB

r WRF
r nnn1

∥∥2
F −Er), the KKT conditions are

∂Lr(GBB
r ,λ r)

∂GBB
r

= 0, (3.31)

E[
∥∥FRF

r GBB
r H̃1FBB

t sss+GBB
r WRF

r nnn1
∥∥2

F ]−Er ≤ 0, (3.32)

λ
r(E[

∥∥FRF
r GBB

r H̃1FBB
t sss+GBB

r WRF
r nnn1

∥∥2
F ]−Er) = 0, (3.33)

λ
r ≥ 0. (3.34)
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Solving (3.31), we have

ĜBB
r = ((WMMSE

d H̃2)
HVWMMSE

d H̃2 +λ
r(FRF

r )HFRF
r )−1

(H̃2)
H(WMMSE

d )HV(FBB
t )H(H̃1)

H

(H̃1FBB
t (H̃1FBB

t )H +σ
2
1 WRF

r (WRF
r )H)−1.

(3.35)

Based on (3.32) and (3.33), we can obtain the Lagrange multiplier λ r as follows. First, we

calculate ĜBB
r by setting λ r = 0. If the power constraint is satisfied, then we set λ r = 0. If the

power constraint is not satisfied, then, we initialize λ r with a pre-defined value and substitute

it into (3.32) and start a bisection search for λ r until the power constraint is satisfied.

4. Fixing V and GBB
r , then we find the FBB

t to minimize Tr(VEMMSE)=Tr(V((INs−WMMSE
d H̃2GBB

r H̃1FBB
t )(INs−

WMMSE
d H̃2GBB

r H̃1FBB
t )H +WMMSE

d Rñ(WMMSE
d )H)) under the power constraints, i.e.,

F̂BB
t = argmin Tr(V((INs−WMMSE

d H̃2GBB
r H̃1FBB

t )(INs

−WMMSE
d H̃2GBB

r H̃1FBB
t )H +WMMSE

d Rñ(WMMSE
d )H))

s.t.
∥∥FRF

t FBB
t
∥∥2

F ≤ Et,

E[
∥∥FRF

r GBB
r H̃1FBB

t s+FRF
r GBB

r WRF
r nnn1

∥∥2
F ]≤ Er.

(3.36)

Problem (3.36) is a convex optimization for FBB
t and, similar with Problem (3.30), we can

solve Problem (3.36) using the KKT conditions. Denoting the Lagrange function of Problem

(3.36) as Lt(FBB
t ,λ t

1,λ
t
2), the KKT conditions are

∂Lt(FBB
t ,λ t

1,λ
t
2)

∂FBB
t

= 0, (3.37)

∥∥FRF
t FBB

t
∥∥2

F −Et ≤ 0, (3.38)
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E[
∥∥FRF

r GBB
r H̃1FBB

t s+FRF
r GBB

r WRF
r nnn1

∥∥2
F ]−Er ≤ 0, (3.39)

λ
t
1(
∥∥FRF

t FBB
t
∥∥2

F −Et) = 0, (3.40)

λ
t
2(E[

∥∥FRF
r GBB

r H̃1FBB
t s+FRF

r GBB
r WRF

r nnn1
∥∥2

F ]−Er) = 0, (3.41)

λ
t
1,λ

t
2 ≥ 0. (3.42)

The optimal solution for FBB
t can be expressed as

F̂BB
t = ((WMMSE

d H̃2GBB
r H̃1)

HVWMMSE
d H̃2GBB

r H̃1

+λ
t
1(F

RF
t )HFRF

t +λ
t
2(F

RF
r GBB

r H̃1)
HFRF

r GBB
r H̃1)

−1

(VWMMSE
d H̃2GBB

r H̃1)
H ,

(3.43)

where λ t
1 and λ t

2 are the non-negative Lagrange multipliers corresponding to the power con-

straints. Similar with Problem (3.30), to obtain λ t
1 and λ t

2, we consider four cases: i) if the

power constraints are satisfied when λ t
1 = 0 and λ t

2 = 0, we will set λ t
1 and λ t

2 equal to 0;

ii) if case (i) is not satisfied, we then set λ t
1 = 0 and start a bisection search for λ t

2 until the

KKT condition (3.41) and the power constraint (3.38) are satisfied; iii) if (3.41) and (3.38)

cannot be satisfied simultaneously through the bisection search for λ t
2, we then set λ t

2 = 0

and start a bisection search for λ t
1 until (3.39) and (3.40) are satisfied; iv) if we cannot find
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the appropriate λ t
1 to satisfy (3.39) and (3.40) at the same time, we can obtain λ t

1 and λ t
2

through a two-layer bisection search. The search algorithm is described in Algorithm 1.

Algorithm 1: Two-layer bisection search for λ t
1 and λ t

2

1: initialize λ t
1,min = λ t

2,min = 0, λ t
1,max,λ t

2,max;
2: while λ t

1,max−λ t
1,min > ε1 do

3: setting λ t
1 =

λ t
1,min+λ t

1,max
2 ;

4: while λ t
2,max−λ t

2,min > ε2 do

5: setting λ t
2 =

λ t
2,min+λ t

2,max
2 ;

6: calculate FBB
t according to (3.43);

7: if E[
∥∥FRF

r GBB
r H̃1FBB

t s+FRF
r GBB

r WRF
r nnn1

∥∥2
F ]≤ Er then

8: λ t
2,max = λ t

2;
9: end if

10: if E[
∥∥FRF

r GBB
r H̃1FBB

t s+FRF
r GBB

r WRF
r nnn1

∥∥2
F ]≥ Er then

11: λ t
2,min = λ t

2;
12: end if
13: end while
14: calculate FBB

t according to (3.43);
15: if

∥∥FRF
t FBB

t
∥∥2

F ≤ Et then
16: λ t

1,max = λ t
1;

17: end if
18: if

∥∥FRF
t FBB

t
∥∥2

F ≥ Et then
19: λ t

1,min = λ t
1;

20: end if
21: end while

The entire design procedures for FBB
t and GBB

r are summarized in Algorithm 2.

3.3.4 Convergence analysis

Since the constant weight matrix V changes at each iteration, it does not generate a monotonic

decreasing sequence, which means we cannot directly prove the convergence of the proposed algo-

rithm. Fortunately, according to [20], the iteration procedure to maximize the mutual information

through minimizing WMMSE is the same optimization procedure for an equivalent optimization
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Algorithm 2: Design for FBB
t and GBB

r

1: Initialize FBB(0)
t and GBB(0)

r ;
2: Set k = 1;
3: while |I(sss, ỹyyd)

(k)− I(sss, ỹyyd)
(k−1)|> ε do

4: Calculate the MMSE receiver WMMSE(k)
d according to (3.21) and the MSE matrix E(k)

MMSE in
Eq. (3.22);

5: Update V by setting V =
(E(k)

MMSE)
−1

log2 ;

6: Calculate FBB(k)
t as Step III illustrates;

7: Calculate GBB(k)
r as Step IV illustrates;

8: k = k+1;
9: end while

problem as below

min
FBB

t ,GBB
r ,

V,WBB
d

Tr(VEMMSE)− logdet(V)

s.t.
∥∥FRF

t FBB
t
∥∥2

F ≤ Et,

E[
∥∥FRF

r GBB
r H̃1FBB

t sss+FRF
r GBB

r WRF
r nnn1

∥∥2
F ]≤ Er.

(3.44)

The proof of the equivalence is similar to the proof in [20] and we omit the detailed prove for

brevity. The main idea is that the alternating minimization of the objective in (3.44) corresponds

to Steps 1-4 in our proposed algorithm. For example, when FBB
t ,GBB

r and V are fixed, opti-

mizing (3.44) w.r.t. WBB
d becomes minimizing MMSE, which gives the same result as Step 1.

When FBB
t ,GBB

r and WBB
d are fixed, the optimal solution for V which minimizes the objective

Tr(VEMMSE)− logdet(V) in (3.44) is the same as Step 2.

Based on this equivalence, we can prove the convergence of the proposed algorithm by proving the

monotonic convergence of Problem (3.44). According to [20], the objective in Problem (3.44) has

a lower bound, which is the negative of the maximum mutual information. Due to the alternating

minimization process, the objective in Problem (3.44) decreases monotonically. Since a sequence

of monotonically decreasing numbers with a lower bound converges, Problem (3.44) converges
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and so does our proposed algorithm.

3.3.5 Complexity analysis

Since we provide closed-form solutions for each iteration, the main complexity lies in the search

for the appropriate Lagrange multipliers. Let us define the search accuracy as ε . This is a relative

measure for the search interval. For example, if the length of our search interval is l, then the

threshold for the search termination is set to be εl. Based on the accuracy ε , the number of

iterations in the bisection search in Step 3 is bounded by O(log2
1
ε
). In Step 4, we use a two-layer

bisection search, whose number of iteration is bounded by O(log2
2

1
ε
). So, for each outer iteration,

the total number of inner iterations is O(log2
1
ε
) +O(log2

2
1
ε
). Compared with the algorithm in

[137], for which the number of inner iterations is O(2(2NRFNr)
2.5 log 1

ε
) for each outer iteration,

the complexity of our algorithm is much lower especially for large antenna arrays.

3.3.6 WBB
d design

Since I(sss,yyyd) ≤ I(sss, ỹyyd) [43], after we find the maximum I(sss, ỹyyd), the optimal I(sss,yyyd) will be ob-

tained if the destination node baseband processing does not cause any information loss. According

to [117], MMSE-SIC is information lossless. Therefore, we use MMSE-SIC for our destination

baseband design. To simplify the expression, let us define

ỹyyd = H̃2GBB
r H̃1FBB

t sss+ H̃2GBB
r ñnn1 + ñnn2 = Gsss+ v̄vv, (3.45)

where G = [ggg1, ...,gggNs
] ∈ CNRF×Ns , v̄vv is the colored noise with covariance matrix Rñ.

To implement the MMSE-SIC for the kth stream, we subtract the effect of the first k− 1 streams
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from the output and obtain

ỹyyd’ = ỹyyd−
k−1

∑
i=1

gggisi + v̄vv = gggksk +
Ns

∑
j=k+1

ggg js j + v̄vv. (3.46)

Define WBB
d = [www1, ...,wwwNs]

H , the baseband filter for the kth stream is derived as the MMSE filter:

wwwH
k = gggH

k (
Ns

∑
j=k+1

ggg jggg
H
j +Rñ)

−1. (3.47)

3.4 Robust Design

So far, we have designed the mmWave relay precoders/combiners under the perfect channel in-

formation. However, it is hard to avoid estimation/quantization errors while obtaining the channel

information. To study the effects of imperfect channel estimation, we adopt the model provided in

[143, 101, 134]. In this model, the relationship between the channel values and the corresponding

estimated channel values are:

H1 = H̄1 +Φ
1
2
1 ∆1Θ

1
2
1 , (3.48)

H2 = H̄2 +Φ
1
2
2 ∆2Θ

1
2
2 , (3.49)

where H1 and H2 are the actual channel matrices, i.e., the channels that we cannot precisely es-

timate, and H̄1 and H̄2 are the estimated channels. The transmitting covariance matrix of the

channel estimation error at the source node and the relay node are denoted by Θ1 ∈ CNt×Nt and

Θ2 ∈ CNr×Nr , respectively. The receiving covariance matrix of the channel estimation error at the

relay node and the destination node are denoted by Φ1 ∈ CNr×Nr and Φ2 ∈ CNd×Nd , respectively.
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∆1 and ∆2 are Gaussian random matrices with independent and identically distributed (i.i.d.) zero

mean and unit variance entries and are the unknown parts of the CSI mismatch. we adopt the

exponential model[134, 101] for the channel estimation error covariance matrices Φ1, Θ1, Φ2 and

Θ2. To be specific, the entries of the matrices are given as Φ1(i, j) = σ2
e,1β

|i− j|
1 , Θ1(i, j) = α

|i− j|
1 ,

Φ2(i, j) = σ2
e,2β

|i− j|
2 and Θ2(i, j) = α

|i− j|
2 , where α1, β1, α2 and β2 are the correlation coefficients

and σ2
e,1 and σ2

e,2 denote the estimation error covariance. For simplicity, we assume α1 = α2 = α ,

β1 = β2 = β and σ2
e,1 = σ2

e,2 = σ2
e .

As shown in Section 3.5, the imperfect channel information will result in severe performance

degradation. For example, the achievable data rate of [74, 137] can be decreased to half of what it

is for the perfect CSI.

To further increase the robustness of our proposed algorithm, in this section, we will propose a

robust precoding/combining design for the mmWave relay system based on our proposed WMMSE

algorithm.

3.4.1 RF design

Recall that our RF precoding/combining is actually phase compensation for each eigenmode. The

eigenmodes are obtained through SVD. When considering the imperfect CSI, the phase of each

eigenmode cannot be precisely acquired. Let us take the actual channel H1 and the estimated H̄1

as an example. The left singular matrices of H1 and H̄1 are denoted by U1 and Ū1. We denote the

phase of each entry in U1 and Ū1 by θi, j and θ̄i, j, respectively. The phase difference in each entry

can be calculated as ∆θi, j = θi, j− θ̄i, j. Let us assume that ∆θi, j has a distribution p(∆θ). We want

to make an estimation on ∆θi, j to minimize the mean square estimation error E[(∆θ̂i, j−∆θi, j)
2].

The estimation ∆θ̂i, j = E[∆θi, j] can be calculated based on the distribution p(∆θ). Note that we

can only obtain the estimated channel. Once we calculate ∆θ̂i, j, we can calibrate the phase of each

entry in Ū1 as θ̂i, j = θ̄i, j +∆θ̂i, j. Using the same approach, we can calibrate the phase of singular

60



matrices of H̄1 and H̄2. Then, based on (3.12) and (3.13), we can calculate the RF precoders and

combiners F̄RF
t , W̄RF

r , F̄RF
r and W̄RF

d based on the calibrated singular matrices of H̄1 and H̄2.

As we analyzed above, to calculate the RF precoders and combiners, we must know the distribution

of ∆θi, j to make the estimation ∆θ̂i, j = E[∆θi, j]. However, the theoretical analysis for the phase

distribution is intractable. To obtain the phase distribution, we simulate 100 channel realizations

based on the imperfect channel models in (3.48), where we set Nr = 32, Nt = 48 and L = 20. We

adopt the correlation model from [143, 101, 134] where the entries of the correlation matrices are

selected as Φ1(i, j) = σ2
e,1β

|i− j|
1 , Θ1(i, j) = α

|i− j|
1 . In the simulation, we set α1 = 0, β1 = 0 and

σ2
e,1 = 0.1.

We collect the phase difference in each matrix entry from 60 simulations. In Fig. 3.3, we plot the

simulated probability density function (PDF) of the ∆θ in solid line. We use a generalized normal

distribution [87] to approximate the distribution. The PDF of a generalized normal distribution is

expressed as f (x) = β

2αΓ( 1
β
)
e−(|x−µ|/α)β

. We can see the approaching effect of different value of

the shaping parameter β in Fig. 3.3. We use Kullback-Leibler distance as a performance measure

for the approximation, which is calculated by DKL(YYY ||XXX) = ∑
N
i=1 log(Yi

Xi
)Yi where YYY and XXX are the

probability distributions. The lower the Kullback-Leibler distance, the closer the two distributions

are. Note that the absolute value of KL-distance varies when the number of total points (i.e., N)

changes. In our simulation, the best approximation comes with the one with β = 2, since it has the

lowest Kullback-Leibler distance. When β = 2, the generalized normal distribution in Fig. 3.3 is

a Gaussian distribution with 0 mean, which means we can estimate ∆θ̂i, j = 0.
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Figure 3.3: Approximation of the Simulated PDF

3.4.2 Baseband design

Based on the RF precoders and combiners F̄RF
t , W̄RF

r , F̄RF
r and W̄RF

d designed in the last subsection,

the equivalent baseband channels after the RF processing are

H̃1 = W̄RF
r H1F̄RF

t = W̄RF
r H̄1F̄RF

t +W̄RF
r Φ

1
2
1 ∆1Θ

1
2
1 F̄RF

t

= ˜̄H1 + Φ̃
1
2
1 ∆1Θ̃

1
2
1 ,

(3.50)

H̃2 = W̄RF
d H2F̄RF

r = W̄RF
d H̄2F̄RF

r +W̄RF
d Φ

1
2
2 ∆2Θ

1
2
2 F̄RF

r

= ˜̄H2 + Φ̃
1
2
2 ∆2Θ̃

1
2
2 ,

(3.51)

where we denote the true equivalent baseband channels by H̃1 and H̃2. The estimated equivalent

baseband channels are denoted by ˜̄H1 and ˜̄H2, which are the channels we obtain at the source

node. We define Φ̃1 := W̄RF
r Φ1(W̄RF

r )H , Φ̃2 := W̄RF
d Φ2(W̄RF

d )H , Θ̃1 := (F̄RF
t )HΘ1F̄RF

t and Θ̃2 :=
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(F̄RF
r )HΘ2F̄RF

r .

For (3.50) and (3.51) , we have the following properties [46] (Using H̃1 as an example)

E∆1 [H̃1CH̃H
1 ] =

˜̄H1C ˜̄H
H
1 +Tr(CΘ̃1)Φ̃1, (3.52)

E∆1 [H̃
H
1 CH̃1] =

˜̄H
H
1 C ˜̄H1 +Tr(Φ̃1C)Θ̃1. (3.53)

To design a robust baseband system, we need to redesign the algorithm in Section 3.3.3 based on

the imperfect channel models (3.50) and (3.51). The main idea is similar, i.e., that we first opti-

mize the baseband filters F̄BB
t and ḠBB

r to maximize the average E∆1,∆2 [I(sss, ỹyyd)] , and then we use

MMSE-SIC for W̄BB
d . Note that we denote the baseband precoder/combiner based on the estimated

equivalent baseband channels ˜̄H1 and ˜̄H2 by F̄BB
t , ḠBB

r and W̄BB
d . The main challenge here is if

there still exists an equivalent relationship between the average mutual information maximization

and the WMMSE minimization.

According to (3.23), the average EMMSE E∆1,∆2 [EMMSE] can be expressed as

E∆1,∆2[EMMSE]

= E∆1,∆2[(INs +(H̃2ḠBB
r H̃1F̄BB

t )HR−1
ñ H̃2ḠBB

r H̃1F̄BB
t )−1]

(3.54)

Then, there exists an equivalent relationship the an upper bound for the average mutual information

of E∆1,∆2[I(sss, ỹyyd)] and the average EMMSE E∆1,∆2[EMMSE]:

EUB
∆1,∆2

[I(sss, ỹyyd)] =

log2 det(E∆1,∆2 [INs +(H̃2ḠBB
r H̃1F̄BB

t )HR−1
ñ H̃2ḠBB

r H̃1F̄BB
t ]) =

log2(E∆1,∆2[EMMSE]
−1)

(3.55)
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Equation (3.55) implies that we can maximize the upper bound of the average mutual information

through the WMMSE minimization as discussed in Section 3.3.3.

The expression of E∆1,∆2[EMMSE] in (3.55) includes a matrix inverse operator, which complicates

the following calculation for F̄BB
t and ḠBB

r . To derive a simpler expression for E∆1,∆2[EMMSE], we

first calculate the average MSE matrix E∆1,∆2[EMSE]. The MSE matrix is given by

E∆1,∆2[EMSE] = W̄BB
d (A+R ˜̄n)(W̄

BB
d )H− (W̄BB

d )H ˜̄H2ḠBB
r

˜̄H1F̄BB
t

− ( ˜̄H2ḠBB
r

˜̄H1F̄BB
t )HW̄BB

d + INs ,

(3.56)

where

A := ˜̄H2ḠBB
r A1(

˜̄H2ḠBB
r )H +Tr(ḠBB

r A1(ḠBB
r )H

Θ̃
H
2 )Φ̃2,

A1 := ˜̄H1F̄BB
t ( ˜̄H1F̄BB

t )H +Tr(F̄BB
t (F̄BB

t )H
Θ̃

H
1 )Φ̃1.

Based on (3.56), we can derive the W̄MMSE
d , which minimizes E∆1,∆2[EMSE], as

W̄MMSE
d = ( ˜̄H2ḠBB

r
˜̄H1F̄BB

t )H(A+R ˜̄n)
−1. (3.57)

Substituting (3.57) into (3.56), we have

E∆1,∆2[EMMSE] = W̄MMSE
d (A+R ˜̄n)(W̄

MMSE
d )H

− (W̄MMSE
d )H ˜̄H2ḠBB

r
˜̄H1F̄BB

t − ( ˜̄H2ḠBB
r

˜̄H1F̄BB
t )HW̄BB

d + INs

= INs− ( ˜̄H2ḠBB
r

˜̄H1F̄BB
t )H(A+R ˜̄n)

−1 ˜̄H2ḠBB
r

˜̄H1F̄BB
t .

(3.58)

Based on (3.58), we can amend our results based on the imperfect channel model, using the same
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procedure as Section 3.3.3. For ḠBB
r , the amended expression is

ḠBB
r = (K1 +λ

r(F̄RF
r )H F̄RF

r )−1( ˜̄H2)
H(W̄MMSE

d )HV̄(F̄BB
t )H

(K2 +σ
2
1 W̄RF

r (W̄RF
r )H)−1,

(3.59)

where

V̄ =
E∆1,∆2[EMMSE]

−1

log2
,

K1 := (W̄MMSE
d

˜̄H2)
HV̄W̄MMSE

d
˜̄H2 +Tr(Φ̃2(W̄MMSE

d )HV̄W̄MMSE
d )Θ̃2,

K2 := ˜̄H1F̄BB
t ( ˜̄H1F̄BB

t )H +Tr(F̄BB
t (F̄BB

t )H
Θ̃1)Φ̃1.

For F̄BB
t , the amended expression is

F̄BB
t = (T1 +λ

t
1(F̄

RF
t )H F̄RF

t +λ
t
2T2)

−1(V̄W̄MMSE
d

˜̄H2ḠBB
r

˜̄H1)
H , (3.60)

where

T1 := ˜̄H
H
1 (Ḡ

BB
r )HBḠBB

r
˜̄H1 +Tr(Φ̃1(ḠBB

r )HBḠBB
r )Θ̃1,

T2 := (FRF
r GBB

r H̃1)
HFRF

r GBB
r H̃1 +Tr(Φ̃1(FRF

r GBB
r )HFRF

r GBB
r )Θ̃1,

B := ˜̄H
H
2 (W̄

MMSE
d )HVW̄MMSE

d
˜̄H2 +Tr(Φ̃2(W̄MMSE

d )HVW̄MMSE
d )Θ̃2.

Based on the above modifications, our robust baseband design for ḠBB
r and F̄BB

t is as follows:

1. Calculate the MMSE receiver W̄MMSE
d in Eq. (3.57) and the MMSE matrix E∆1,∆2[EMMSE]

in Eq. (3.58).

2. Update V̄ by setting V̄ =
E∆1,∆2 [EMMSE]

−1

log2 .
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3. Fix V̄ and F̄BB
t , then we find ḠBB

r that minimizes Tr(V̄E∆1,∆2 [EMMSE]) under the power

constraints. The solution is given by Eq.(3.59).

4. Fix V̄ and ḠBB
r , then we find F̄BB

t that minimizes Tr(V̄E∆1,∆2 [EMMSE]) under the power

constraints. The solution is given by Eq.(3.60).

After we obtain ḠBB
r and F̄BB

t , we will use MMSE-SIC to design W̄BB
d , which is the same as what

we did in Section 3.3.3.

3.5 Simulation Results

3.5.1 Non-robust case

In this section, we consider a relay MIMO system consisting of one source node equipped with a

Nt = 64 antenna array, a relay node with an Nr = 32 antenna array and a destination node with a

Nd = 48 antenna array unless other number of antennas are specifically mentioned. The number

of antennas is chosen from [137] for the purpose of the comparison. For simplicity, we use the

channel model in Eq. (3.9) for channel realization. Due to the limited scattering characteristic

of the mmWave channels, the number of paths should be less than the number of relay antennas.

Here, we assume each channel has L = 20 paths. The ϕl of each path is assumed to be uniformly

distributed in [0,2π]. The results are averaged over 2000 channel realizations. The SNR of the

source-to-relay link and the relay-to-destination are assumed to be the same. In the simulation, we

calculate the variances of AWGN noises σ1 and σ2 according to the source power and the relay

power to maintain the same SNR.

In Fig. 3.4, we equally set the power of source node and the relay node, all to be Ns. We compare

our algorithm with the ADMM in [118], the ISA in [137] and the OMP in [74] in terms of the

achievable data rate. We use three scenarios: i) the number of data streams is Ns = 4 and the
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Figure 3.4: Achievable rate comparison with 64×32×48 when Es = Er = Ns
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number of RF chains is NRF = 6; ii) the number of data streams is Ns = 2 and the number of RF

chains is NRF = 4; iii) the number of data streams is Ns = 2 and the number of RF chains is NRF = 6.

The full-digital method is used as a benchmark, where we use the singular matrices of H1 and H2

as the precoding/combing matrices. When Ns = 4, our algorithm outperforms ADMM by 2%, ISA

by 4% and OMP by 9% at SNR = 12 dB. When Ns = 2 and NRF = 4, our algorithm outperforms

ADMM by 32%, ISA by 6% and OMP by 9% at SNR = 12 dB. When Ns = 2 and NRF = 6, our

algorithm outperforms ADMM by 34%, ISA by 6 % and OMP by 5% at SNR = 12 dB.

In Fig. 3.5, we set Es = 2Er = 2Ns. Our proposed algorithm outperforms the other three methods

in three scenarios. When Ns = 4, our algorithm can provide 4%, 7% and 11% gains over ADMM,

ISA and OMP, respectively, at SNR = 12 dB. When Ns = 2 and NRF = 4, our algorithm can

provide a gain of 34% over ADMM, 5% over ISA and 8% over OMP at SNR = 12 dB. When

Ns = 2 and NRF = 6, our algorithm can provide a gain of 44% over ADMM, 5% over ISA and 4%

over OMP at SNR = 12 dB.
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Fig. 3.6 compares the achievable rate of different algorithms for different number of relay antennas

when Ns = 4, NRF = 6 and SNR = 5 dB. The full-digital method is used as a benchmark. As

expected, when the number of antennas at the relay node increases, the performance of all different

algorithms improves because of the additional antenna gain. Our proposed method has the best

achievable rate performance among the four methods except for Nr = 48. When Nr = 48, ISA has

the highest achievable rate among the four methods. However, as the number of antennas at the

relay node increases, the complexity of the ISA increases greatly, which will lead to a high power

consumption.

Fig. 3.7 compares the achievable rate for different number of antennas at the destination node

when Ns = 4, NRF = 6 and SNR = 5 dB. Similar to Fig. 3.6, when the number of antennas at

the destination node increases, the performance of all different algorithms improves because of the

additional antenna gain. Our proposed method has the best achievable rate performance among the

four methods.
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Fig. 3.8 compares the achievable rate among the four methods for different number of RF chains

when Ns = 4 and SNR = 5 dB. Since our proposed method is designed to maximize the mutual

information between the destination node and the source node after RF precoding/combining, the

gap between our method and the full-digital method is more-or-less fixed, which is caused by the

analog processing. However, ISA and OMP are approximation algorithms jointly iterating be-

tween the RF and the baseband. Therefore, as the number of RF chains increases, the performance

improves. When the number of RF chains is larger than 8, ISA and OMP will outperform our pro-

posed algorithm. However, larger number of RF chains leads to higher complexity and more power

consumption. Also, the performance of the approximation algorithms depends on the limited scat-

tering characteristic of the channel. The more sparse the channel is, the better performance the

approximation algorithms achieve. In Fig. 3.8, we use the highly limited scattering channel model

in (3.9), where each scatter only contributes to one path, thus the approximation algorithms have

good performance. If we use the general channel model in (3.7), the performance of approximation

algorithms degrades greatly as shown in Fig. 3.9. In Fig. 3.9, we set the number of propagation

paths Ncl in each scatter to be 2 and the number of scatters L to be 20. In this case, the performance

of ISA and OMP falls far behind our proposed algorithm.

Fig. 3.10 shows the convergence performance of different algorithms with respect to the number of

iterations. In our algorithm, we update the WMMSE matrix, the digital relay matrix and the digital

precoding matrix sequentially in each iteration. In ISA, the digital relay filter, the analog relay

receiver and the analog relay precoder are updated sequentially in each iteration. In ADMM, the

source node, the relay node and the destination node are optimized alternatively in each iteration. In

Fig. 3.10, our algorithm has the fastest convergence rate while ADMM has the slowest convergence

rate. Moreover, our algorithm has much lower complexity in each iteration compared with ISA.

ISA needs to solve three optimization sub-problems, and in each sub-problem it needs to solve an

optimization problem through an iterative method. In our algorithm, we have closed-form solutions

for each step. In addition, since we preform the baseband processing after the RF processing, the

matrix dimensions are greatly reduced compared to ISA.
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Fig. 3.11 compares the baseband processing algorithms. Note that we apply the MMSE algorithm

only on the baseband, i.e., on the H̃1 and H̃2. Our proposed WMMSE algorithm outperforms the

MMSE algorithm in terms of the achievable data rate since we optimized the mutual information

I(s,yd). In fact, if we set our weight matrix to be the identity matrix, our algorithm degenerates to

the MMSE algorithm. Therefore, the MMSE algorithm can be considered as a special case of our

proposed WMMSE algorithm and our algorithm strictly performs better than MMSE.

3.5.2 Robust case

As we described in Section 3.4, we adopt the channel estimation error model from [143, 101,

134] where the entries of the correlation matrices are selected as Φ1(i, j) = σ2
e,1β

|i− j|
1 , Θ1(i, j) =

α
|i− j|
1 , Φ2(i, j) = σ2

e,2β
|i− j|
2 and Θ2(i, j) = α

|i− j|
2 . Parameters α1, β1, α2 and β2 are the correlation

coefficients and σ2
e,1 and σ2

e,2 denote the estimation error covariance. For simplicity, we assume

α1 = α2 = α , β1 = β2 = β and σ2
e,1 = σ2

e,2 = σ2
e . The antenna settings are the same as the non-

robust part and the number of scatters is set to be 20. The actual channels H1 and H2 are generated

based on sparse channel model (3.9) and the estimated channels are generated by H̄1 = H1−

Φ
1
2
1 ∆1Θ

1
2
1 and H̄2 = H2−Φ

1
2
2 ∆2Θ

1
2
2 .

Fig. 3.12 shows the effects of the channel estimation error. We provide the performance of our

algorithm and those of [74, 137]. For this simulation, we have chosen σ2 = 0.1, α = 0.6 and β =

0.4. As shown in Fig. 3.12, the imperfect channel information will result in severe performance

degradation. The achievable data rate of [74, 137] can be decreased to half of what it is for the

perfect CSI.

The achievable data rate performances of the proposed robust scheme with various antenna covari-

ance values are depicted in Figs. 3.13 and 3.14. When SNR is low, the estimation error can be

neglected compared to the noise, therefore the non-robust algorithm achieves good performance

which can be even better than that of the robust algorithm. When SNR goes up, the performance of
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the non-robust algorithm starts to degrade. In Fig. 3.14, the performance becomes worse than that

of the low SNR region for large σ2
e . Meanwhile, the proposed robust design offers significant gain

considering various σ2
e , which demonstrates the effectiveness of the modified robust transceiver

optimization.

In Fig. 3.15, we compare our robust algorithm with the OMP algorithm in [83]. We set α = 0 and

β = 0 for simplicity. The proposed robust design provides a large gain over the algorithm in [83]

in all three σ2
e settings, showing the advantage of our algorithm.
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3.6 Conclusion

In this chapter, we considered mmWave AF relay networks in the domain of massive MIMO. We

designed the hybrid precoding/combining matrices for the source node, the relay node, and the

destination node. We first performed the RF processing to decompose the channel into parallel

sub-channels by compensating the phase of each eigenmode of the channel. Given the RF pro-

cessing matrices, we designed the baseband matrices to maximize the mutual information. The

baseband processing is divided into two parts. We first jointly designed the source node and the

relay node by making use of the equivalence between maximizing the mutual information and the

74



0 2 4 6 8 10 12

SNR (dB)

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

A
c
h

ie
v
a
b

le
 d

a
ta

 r
a
te

 (
b

it
s
/H

z
/s

)

Non-robust WMMSE

Our robust method

e

2
=0.1

e

2
=0.5

e

2
=0.9

Figure 3.13: Achievable rate comparison when α = 0, β = 0

0 2 4 6 8 10 12

SNR (dB)

1

2

3

4

5

6

7

A
c
h

ie
v
a
b

le
 d

a
ta

 r
a
te

 (
b

it
s
/H

z
/s

)

Non-robust WMMSE

Our robust method
e

2
 = 0.1

e

2
 = 0.5

e

2
 = 0.9

Figure 3.14: Achievable rate comparison when α = 0.5, β = 0.5

75



0 2 4 6 8 10 12

SNR (dB)

0

1

2

3

4

5

6

A
c
h

ie
v
a
b

le
 d

a
ta

 r
a
te

 (
b

it
s
/H

z
/s

)

Our robust method, 
e
2 = 0.1

Robust OMP in [23], 
e
2 = 0.1

Our robust method, 
e
2 = 0.5

Robust OMP in [23], 
e
2 = 0.5

Our robust method, 
e
2 = 0.9

Robust OMP in [23], 
e
2 = 0.9

Figure 3.15: Achievable rate comparison with the OMP algorithm in [83] when α = 0, β = 0

WMMSE. Given the optimal baseband source and relay filters, we implemented MMSE-SIC for

baseband destination node to obtain the maximal mutual information. In addition, a robust hybrid

precoding/combining design was proposed for the imperfect CSI. Simulation results show that our

algorithm achieves better performance with lower complexity compared with other algorithms in

the literature.
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Chapter 4

Joint Beamwidth and Power Optimization

in MmWave Hybrid Beamforming-NOMA

Systems

4.1 Introduction

Current wireless communication networks operating under 6 GHz are restrained by limited spec-

tral resources. Subsequently, it is necessary to use the millimeter-Wave (mmWave) band ranging

from 30 to 300 GHz to increase the available spectrum [99]. Short wavelength and a large path loss

are key characteristics of mmWave communication systems. Due to the short wavelength, a large

number of antennas can be packed in a small area in mmWave devices. This feature combined with

beamforming can be used to tackle severe path loss. Since a fully-digital beamforming may not

be practical, various architectures have been proposed for mmWave outdoor communications, i.e.,

analog beamforming with multiple RF chains [62], hybrid beamforming [12, 112, 64], beamspace

multiple-input multiple-output (MIMO) [15], and reconfigurable antenna-based MIMO [11, 51].
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The fully-digital architecture needs one radio frequency (RF) chain per antenna. Hence, power

consumption by large number of RF chains and hardware complexity are the main obstacles in

implementing the fully-digital architecture. Although multi-user analog beamforming reduces

the hardware complexity of the system and uses only the angle of arrival (AoA) information for

beam alignment, it may not completely direct the total energy of a beam toward a desired re-

ceiver [62]. Accordingly, alternative methods such as beamspace MIMO [15] and reconfigurable

antenna-based MIMO [11, 51] architectures reduce the number of required RF chains by dedi-

cating one RF chain to each channel path instead of each antenna. However, these architectures

are not able to change their beamwidth, which seems to be necessary and desired in the mmWave

networks [125]. This is because in lens-based architectures, the lens operates like a passive phase-

shifter network. Hence, it may not be possible to adjust the beamwidth. In contrast, not only does

the hybrid beamforming architecture reduce the number of required RF chains, but also, thanks

to the use of phase-shifters, it can adjust the transmission beamwidth. Hence, in this chapter, we

adopt the hybrid beamforming architecture which is a feasible solution to meet the demands in

mmWave networks.

Non-orthogonal multiple access (NOMA) aims to improve the spectral efficiency and simultane-

ously serve more than one user at the same frequency/time/code in single-carrier and multi-carrier

systems [121, 36]. Especially, NOMA transmits the users’ signal at the same time slot and fre-

quency band by using superposition coding (SC) and decodes the desired signal by exploiting

successive interference cancellation (SIC) at the receiver [103]. In this chapter, we leverage power-

domain NOMA in which each user has a different level of power.

Recently, NOMA has been incorporated into the mmWave communication, termed mmWave-

NOMA, to enhance spectral efficiency and connectivity of the network. Here, we review the

work on mmWave-NOMA networks in the downlink transmission with a single transmitter [27,

25, 123, 48, 133, 147, 125, 3, 9]. In [27], a random beamforming method is studied for mmWave

directional transmission. In [25], two NOMA users with different directions are assigned the same
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beamforming codeword using phase-shifters with finite resolution. NOMA is combined with lens-

based beamspace MIMO in [123], and a power allocation algorithm is proposed. Energy-efficiency

of mmWave-NOMA networks is evaluated in [48]. A joint power allocation optimization to design

beamforming vectors for mmWave-NOMA networks is presented in [133]. The coverage and rate

of mmWave-NOMA networks for analog beamforming in the presence of misalignment between

the transmit and receive beams is analyzed in [147]. The impact of beamwidth on user pairing in

mmWave-NOMA is studied in [125]. Also, [3] evaluates the effect of beam misalignment on the

sum-rate performance of mmWave-NOMA networks with hybrid beamforming. Further, NOMA

is utilized in lens-based mmWave reconfigurable antennas to increase the number of served users

and improve the sum-rate in [9]. What is common among the above works is the assumption that

there is sufficient time to train the beams.

In practical scenarios, neglecting the effect of beam-training duration may cast doubt on the per-

formance of the mmWave-NOMA networks. Especially, since the channel coherence time in

mmWave bands is limited [97], the beam-training duration should be adequately small. Thus,

on one hand, a small beam-training duration results in a wide beamwidth, i.e., low beamforming

gain, and noisy channel estimation. On the other hand, a long beam-training time provides ro-

bust beamforming and accurate channel estimation but imposes a delay in data transmission. This

may not be desirable in delay-sensitive systems as it leaves less time for data transmission and

leads to low sum-rates. There is a rich literature on fast beam-training algorithms [57, 7, 109, 92,

145, 90, 34, 95, 50, 59]. This issue is very crucial in mmWave-NOMA networks in which more

users are trained at each frequency/time resource. Beamwidth control and sum-rate trade-off in the

mmWave analog beamforming-NOMA network for two users are evaluated in [49]. The impact

of beam-training duration on the sum-rate of the system is determined and then an optimization

problem that maximizes the sum-rate subject to the training duration and allocated power for each

user is investigated. However, due to the inter-cluster interference, an extension of this architec-

ture to the mmWave hybrid beamforming-NOMA network is quite challenging. In this chapter,

motivated by [49], we study the beamwidth control and sum-rate trade-off for the mmWave hybrid
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beamforming-NOMA network. There are two major differences between [49] and our work. First,

we consider a hybrid beamforming system which produces side lobes and as a result inter-cluster

interference. Second, we do not allow receivers to have a beamwidth wider than that of their in-

tended transmit beam. Otherwise, the receiver cannot catch the entire transmission energy. Neither

the first case nor the second case is considered in [49]. The contributions of this chapter are listed

below:

1. We consider the well-studied mmWave hybrid beamforming combined with NOMA for lim-

ited coherence time scenarios. The system can control the beamwidth, using the phase-

shifters deployed in the hybrid beamformer, and allocate power to NOMA users. To this

end, a tone-based beam-training algorithm [145] compatible to our mmWave-NOMA sys-

tem is utilized. The algorithm combines the exhaustive search [57] and tone-based beam-

training [145] algorithms.

2. Unlike the existing multi-beam mmWave-NOMA systems, we take the channel coherence

time into account. The limited coherence time leads to a trade-off between the beamwidth

resolution and the data transmission rate. We also formulate a new sum-rate expression for

optimization.

3. A joint power and beamwidth optimization algorithm is proposed which iterates between the

power allocation and beamwidth optimization.

4. The numerical results verify the effectiveness of the joint optimization algorithm. Also,

three significant results are revealed. First, at low signal-to-noise ratios (SNRs), both power

allocation and beamwidth control play a major role in the sum-rate while at high SNRs,

beamwidth is the only important parameter. Second, for very short channel coherence times

and high SNRs the optimization is not required and predefined fixed values can be used

instead. Third, a bottleneck for achieving high sum-rates is a small number of antennas,

which results in a low resolution beamwidth, especially at large coherence time and low
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SNRs.

The rest of the chapter is organized as follows. In Section 4.2, the system model is described. Sec-

tion 4.3 formulates the optimization problem. In Section 4.4, the allocated power and beamwidth

are determined through the proposed optimization algorithm and its convergence analysis is pro-

vided. Numerical results are presented in Section 4.5. Section 4.6 concludes this chapter.

4.2 System Model

We assume a narrow band mmWave downlink system composed of a single cell with a base station

(BS) and MUE user devices. The BS is equipped with NRF RF chains and NBS antennas whereas

each user has one RF chain and NUE antennas. Each RF chain is connected to the antennas through

phase-shifters. The architecture of the BS and a typical user is shown in Fig. 4.1. Due to the hybrid

beamforming structure at the BS, the number of antennas is larger than the number of RF chains,

NBS > NRF, and due to the analog beamforming at the users, we have NUE > 1. Further, the BS

transmits Ns streams simultaneously by steering NB beams toward the users. To implement hybrid

beamforming, the condition NB ≤ NRF should be satisfied. In this chapter, however, we assume

NB = NRF to reduce the complexity and cost of the system. Indeed, if we consider sending one

stream via one beam, it results in Ns = NRF. On the other hand, to establish better connectivity by

increasing the number of simultaneously served users in a dense area and further improve spectral

efficiency, we use NOMA in the proposed mmWave hybrid beamforming network. Hence, each

beam can serve more than one user. That is, the transmitter simultaneously sends NRF streams

toward MUE > NRF users which are grouped into NRF clusters, i.e., MUE = ∑
NRF
n=1 Kn, where Kn

denotes the number of users in the nth cluster. Note that NOMA requires the number of users in

each cluster to be more than one, which should be satisfied by Kn > 1. Hereafter, the mth user

equipment in the nth cluster is represented by UEn,m.
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Figure 4.1: Schematic of (a) the BS with hybrid beamforming structure and (b) a user equipment
with analog beamforming structure.

4.2.1 Channel Model

We use the widely adopted extended Saleh-Valenzuela model as a multi-path channel (MPC) model

in our mmWave hybrid beamforming-NOMA system [12, 105]. In this model, each LoS and

NLoS path is defined by a channel gain and an array steering vector at the transmitter and an array

response vector at the receiver. Hence, the channel matrix between the BS and UEn,m in downlink

is given by

Hn,m =
1√

Ln,m +1

(
βn,m,0Gn,m,0 +

Ln,m

∑
l=1

βn,m,lGn,m,l

)
, (4.1)

where βn,m,0 and βn,m,l denote the channel gain of LoS and NLoS channels, respectively. Gn,m,0 ∈

CNUE×NBS is the LoS channel matrix and Gn,m,l is the lth NLoS channel matrix. In particular,

Gn,m,l , 0≤ l ≤ Ln,m, is given by

Gn,m,l = aUE(θ
az
n,m,l,θ

el
n,m,l)a

†
BS(φ

az
n,m,l,φ

el
n,m,l), (4.2)

where θ az
n,m,l (θ el

n,m,l) and φ az
n,m,l (φ el

n,m,l) are normalized azimuth (elevation) AoA and angle of de-

parture (AoD), respectively. Also, aBS ∈ CNBS×1 and aUE ∈ CNUE×1 are the antenna array steering

vector and array response vector of the BS and UEn,m, respectively. In mmWave outdoor commu-
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nications, to further reduce the interference, sectorized BSs can be employed. Mostly, each sector

in the azimuth domain is much wider than that of the elevation domain [62, 112]. Reasonably,

we assume that the BS separates the clusters in the azimuth domain and considers fixed elevation

angles. Further, we assume that the sector-level beamwidth for the BS is defined by ωBS and for

each user is defined by ωUE. Hence, the BS implements only azimuth beamforming and neglects

elevation beamforming. In this case, the antenna configuration is a uniform linear array (ULA) and

the superscript “el” is dropped. For a ULA, the steering vector is defined as

aBS(φn,m,l) =
[
1,e− jπφn,m,l , . . . ,e− jπ(NBS−1)φn,m,l

]T
, (4.3)

where φn,m,l ∈ [−1,1] is related to the AoD ϕ ∈ [−π

2 ,
π

2 ] as φn,m,l =
2Dsin(ϕ)

λ
. Note that D denotes

the antenna spacing and λ denotes the wavelength of the propagation. The antenna array response

vector for aUE(θn,m,l) can be written in a similar fashion. AoD/AoA variations over the coherence

time are trivial and can be ignored [140]. Let T and Tb denote the coherence time and the time

duration over which AoD/AoA remain unchanged, respectively. In [140], it is shown that the

coherence time duration is far less than Tb, i.e., T � Tb, which ensures that AoD/AoA do not

change over the coherence time. In this chapter, the channel gain captures path loss and shadow

fading effects. The assumption on AoD/AoA and the channel gain state that the channel model

in (4.1) represents a long term channel which is widely adopted in the literature [109, 59, 140].

Ignoring AoD/AoA variations and instantaneous channel fluctuations are valid assumptions since

the power allocation and the beamwidth control are done over the coherence time. This follows

from the fact that the long term channel model can be effectively used in long term resource

allocation [140].

It is demonstrated that in dense urban environments, with high probability, the mmWave channels

contain only one or two paths, with the dominant one that carries most of the signal energy [5].

Therefore, with a single path assumption, the MPC model described in (4.1) is converted to a single
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path channel model given by

Hn,m = βn,maUE(θn,m)a†
BS(φn,m). (4.4)

Hence, the BS communicates to the users through a single path channel. It is worth mentioning that

the users are ordered based on their channel gain, i.e., βn,1 ≥, . . . ,≥ βn,M where βn,m is captured

through channel quality indicator (CQI) [79]. Although it is assumed that the channel is single

path, in some rare cases there might be more than one dominant path. To mitigate the multipath

issue, rake receivers or orthogonal frequency-division multiplexing (OFDM) can be used. It should

also be mentioned that due to the availability of large bandwidth, in mmWave systems, wide band

transmission is preferred. For this case, the considered narrow band system should be combined

with OFDM. In general, the extension of our narrow band system to the wide band is straightfor-

ward and studied in the literature. For instance, the OFDM-based NOMA has been considered

in [103] and other similar work.

4.2.2 Beam-Training

Each transmission frame in mmWave directional communications depends on the channel coher-

ence time and consists of two parts: (i) beam-training and (ii) data transmission as depicted in

Fig. 4.2. At the first step, the channel parameters AoDs, AoAs, and effective channel are estimated

by channel estimation algorithms. In this chapter, we assume that the channel parameters are per-

fectly estimated [109, 49]. In particular, the estimation of AoDs and AoAs is performed using beam

alignment algorithms and takes much more time compared to the effective channel estimation. The

beam alignment algorithms should be fast, accurate, and energy-efficient. At the second step, dur-

ing the remaining time, the data is transmitted. Recently, a few codebook-based beam-training

algorithms have been proposed for mmWave hybrid beamforming systems [57, 7, 92, 145, 79].

Even the current fastest algorithms take a considerable portion of the coherence time that leaves a
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Figure 4.2: Schematic of the transmission frame in the mmWave-NOMA system.

short time for data transmission and can diminish the achievable rate of a user [24]. On the other

hand, a smaller beam-training duration means wider beamwidth, which supplies lower beamform-

ing gain. Consequently, in the mmWave systems, there exists a trade-off between the training

duration and data transmission duration. This trade-off becomes more notable in the mmWave-

NOMA networks in which more channels should be estimated. Motivated by this, finding an

optimal beam-training duration and user power allocation for data transmission to increase the

sum-rate of the mmWave-NOMA system will be the subject of this chapter.

As mentioned before, the main part of a beam-training algorithm consists of beam alignment fol-

lowed by an effective channel estimation. In general, there are two different search algorithms for

beam alignment, exhaustive search [57] and hierarchical search [7]. The former algorithm exam-

ines all beam pairs in the codebook for BS and UE and determines the best pair that maximizes the

beamforming gain. The training time for this algorithm is proportional to the size of the beam’s

search space which is given by

τ =

⌈
ωBS

η

⌉⌈
ωUE

µ

⌉
Tp, (4.5)

where η and µ denote the beamwidths of the BS and the UE, respectively. Further, Tp is the time

for pilot transmission. On the other hand, the hierarchical search algorithm is designed based on

multi-level codebook designs and uses bisection beam search. At the first level, the algorithm

chooses a wider beam with a low resolution which has a small beam search space. The algo-
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rithm refines the search iteratively using the next-level codebook within the subspace defined in

the wider-level. At each level, the algorithm performs an exhaustive search to find the best pair.

Compared to the exhaustive search, the hierarchical algorithm takes less training time with the

same beam resolution and length of the pilot sequence at the cost of the higher probability of

misalignment [79].

The exhaustive and hierarchical algorithms are designed only for single-user and multi-user sce-

narios. In particular, multi-user beam alignment algorithms assume that each user has a distinct

AoD and might not be efficient for NOMA systems in which users are allowed to have the same

AoD. Particularly, the hierarchical algorithm has a higher probability of beam misalignment at

the low SNR regime [79]. This can be a major barrier in realizing the hierarchical algorithm in

mmWave-NOMA networks, where the users with low SNR are paired with the users with high

SNR. It seems that the exhaustive algorithm is a proper candidate for the beam alignment in the

mmWave-NOMA system since it works better at the low SNR regime [79]. In the exhaustive

search algorithm, all beams are aligned with the same resolution. That is, the beamwidth of the

beams at the BS is equal. In some scenarios, this may impose a limitation on designing an optimal

mmWave-NOMA system. To overcome this issue, we adopt a multi-user tone-based beam-training

algorithm proposed in [145]. The algorithm consists of three steps summarized as follows. At the

first step, each user transmits a pilot using one omni-directional antenna with a unique frequency

tone in the uplink. Given a predefined resolution ωBS
η

for each user, the BS searches for the best

AoD that maximizes the beamforming gain. It is worth mentioning that the BS can estimate the

AoDs with different predefined resolutions. At the second step, using the estimated AoDs, the

BS simultaneously transmits a pilot for each user over a unique frequency tone in the downlink.

Each user estimates the AoA with a predefined resolution ωUE
µ

. Finally, each user transmits an or-

thogonal pilot sequence to the BS, and the BS estimates the channel. We note that using a unique

tone for each user requires more hardware complexity compared to the search algorithm. There

are two main differences between the tone-based algorithm and the exhaustive search algorithm.

First, due to using unique frequency tones, the beam alignment for each user is done indepen-
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dently. Hence, the BS can select different beamwidth values for different users and each user can

also have a distinct beamwidth value. Second, the beam-training time is shorter than those of

the exhaustive search algorithm. That is, the total training time for the tone-based algorithm is

τ = max{(dωBS
ηn
e+dωUE

µn,m
e)Tp}, where ηn and µn,m denote the beamwidth of the nth beam of the BS

and the UEn,m, respectively. It is clear when ηn and µn,m are the same as those of the exhaustive

search algorithm, the training time for the tone-based algorithm is smaller than (4.5).

Although the algorithm in [145] is applicable to the mmWave-NOMA structure and can remarkably

reduce the training time, similar to the hierarchical algorithm, it may result in a higher probability

of misalignment. This is due to the use of omni-directional antennas at the first step which does

not provide enough beamforming gain, especially for low-SNR users. To tackle this challenge,

we modify the algorithm at the cost of sacrificing the speed of beam-training. We assume that

each user steers directional beams with the predefined beamwidth µ . Then, we combine the first

and second steps and perform an exhaustive beam search to find the best beam pair that achieves

the highest beamforming gain. Note that the BS communicates with each user via a unique fre-

quency tone. Further, the third step remains unchanged. Therefore, the training time becomes

τ = max{dωBS
ηn
edωUE

µn,m
eTp}. When beamwidth for the BS and users are the same as those of (4.5),

the beam-training time for the modified tone-based algorithm is similar to that of the exhaustive

search algorithm. In summary, we adopt the tone-based beam alignment algorithm in [145] and

instead of hierarchical search we use exhaustive search.

4.2.3 Data Transmission

In mmWave-NOMA systems, during the data transmission, the transmit symbols are superposition

coded at the BS. Then, at the user side, unintended symbols are removed via SIC. More details

on these two processes are provided as follows. Let s ∈ CNRF×1 denote the information signal

vector such that its nth element sn satisfies E [sns∗n] =
1

NRF
for n = 1,2, . . . ,NRF. At the baseband of
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the BS, the superposition coded signal of the nth stream is given by sn = ∑
Kn
m=1

√
Pn,mzn,m where

Pn,m and zn,m are the allocated power and transmit symbol for the mth user in the nth cluster,

respectively. Then, the hybrid beamforming is done in digital and analog precoding stages. The

BS applies the digital precoder FBB ∈ CNRF×NRF using RF chains, and then applies the analog

precoder FRF ∈CNBS×NRF using phase-shifters. Thus, the transmit signal vector after superposition

coding and beamforming, x ∈ CNBS×1, is expressed as

xT = FRFFBBsT . (4.6)

Each element of all beamforming vectors has a constant magnitude of 1√
NBS

. Further, the total

power of the hybrid beamforming is constrained to
∥∥FRFFBB

∥∥2
F = NRF. On the other hand, the

received signal by UEn,m, rn,m ∈ CNUE×1, is given by

rn,m = Hn,mFRFFBBs+nn,m, (4.7)

where nn,m ∈ CNUE×1 is the additive white Gaussian noise vector with zero-mean and σ2 variance

for each element, i.e., C N (0,σ2). Then, the received vector at UEn,m followed by the analog

combiner wn,m ∈ CNUE×1 is obtained as

yn,m =
√

Pn,mw†
n,mHn,mFRFfn

BBzn,m︸ ︷︷ ︸
desired signal

+
Kn

∑
k 6=m

√
Pn,kw†

n,mHn,mFRFfn
BBzn,k︸ ︷︷ ︸

intra-cluster interference

+
NRF

∑
q6=n

Kq

∑
`=1

√
Pq,`w†

n,mHn,mFRFf`BBzq,`︸ ︷︷ ︸
inter-cluster interference

+w†
n,mnn,m︸ ︷︷ ︸
noise

. (4.8)
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Each user decodes the intended signal by using SIC. As such, after applying SIC, the received

signal at UEn,1 is given by

yn,1 =
√

Pn,1w†
n,1Hn,1FRFfn

BBzn,1

+
NRF

∑
q6=n

Kq

∑
`=1

√
Pq,`w†

n,1Hn,1FRFf`BBzq,`+w†
n,1nn,1, (4.9)

and the received signal at UEn,m, for m > 1, is given by

yn,m =
√

Pn,mw†
n,mHn,mFRFfn

BBzn,m

+
m−1

∑
k=1

√
Pn,kw†

n,mHn,mFRFfn
BBzn,k︸ ︷︷ ︸

residual intra-cluster interference

+
NRF

∑
q6=n

Kq

∑
`=1

√
Pq,`w†

n,mHn,mFRFf`BBzq,`+w†
n,mnn,m. (4.10)

One can observe that the desired signal of the first user in (4.9) is contaminated by the inter-

cluster interference and noise, whereas the desired signal of the other users represented by (4.10)

is contaminated by the residual intra-cluster and inter-cluster interference and noise.

4.2.4 Clustering

In this section, we describe a simple, yet effective clustering method for two NOMA users per

cluster which is the case in our system model. The reason for choosing two users per cluster will

be explained in the next sections. Before proceeding, we define cluster-head and far UE terms. In

a cluster, we call the closer UE to the BS the cluster-head and the other UE the far UE. A clustering

algorithm for two NOMA users per cluster, mainly designed based on the following two key points,

has been proposed in [6, Algorithm 1]: (i) A key point to maximize the sum-rate in NOMA is to

ensure that the high channel gain users are selected as the cluster-heads. (ii) The channel gain

difference between the cluster-head and the far UE should be sufficiently high.
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Before applying the clustering method in [6], we select 2NRF users and divide them into two

groups. The first group consists of the NRF users with the highest channel gains denoted by UEn,1

for n = 1,2, · · · ,NRF. The second group includes the remaining NRF users denoted by UEn,2 for

n = 1,2, · · · ,NRF. Further, the users of the first group are called the cluster-heads and the users of

the second group are called the far users. The following conditions result in good performance.

Condition 1: The cluster-heads are located in distinctive directions.

Condition 2: The far users UEn,2 have the lowest channel gains among all the users and are paired

with UE1,1, UE2,1, · · · , UENRF,1, respectively.

Then, we use the clustering algorithm proposed in [6] in our mmWave-NOMA network. To make

sure that Conditions 1 and 2 hold, we replace the users that violate them. Since the probability of

existing high channel gain users in mmWave cells is almost one, new cluster-heads that will not

violate Condition 1 are always available. Since the sum-rate is mainly determined by the channel

gain of the cluster-heads, replacing the users that violate Condition 2 will not affect the sum-rate

dramatically. Therefore, to ease the calculations, for the rest of the chapter, it is assumed that UEn,1

and UEn,2 are clustered together.

4.2.5 Hybrid Beamforming Gain and SINR

After the clustering is performed, an efficient beamforming is used to reduce/eliminate the inter-

cluster interference. We use the zero-forcing beamforming (ZFBF) method which is widely adopted

in the literature [3, 123, 6, 22, 107]. This method is low-complex and highly efficient. In fact, it

is shown that when the channels of the users inside a cluster are highly correlated, ZFBF can sig-

nificantly suppress the inter-cluster interference. In ideal cases, i.e., a perfect correlation, ZFBF is

able to completely eliminate the inter-cluster interference. First, we describe an ideal beamforming

gain which is the same as that of an ideal ZFBF. Then, to take the practical issues into account, we

describe a non-ideal beamforming gain which reflects the impact of the imperfect channel corre-
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lation in ZFBF. We note that when the channels between the users are not highly correlated, the

singular value decomposition (SVD) method is used to design the beamforming matrix [123].

Let us define fn = FRFfn
BB as the hybrid beamforming vector of the nth beam at the BS. An ideal

hybrid beamformer leads to |a†
BS(φn,m)fn| =

√
Gid

BS(φ
′
n,m,ηn) in which Gid

BS is the beamforming

gain of the ideal beamformer at the BS and φ ′n,m and ηn denote the angle off the boresight direction

at the BS and the beamwidth of the nth beam, respectively. It is worth mentioning that in this

chapter the parameter Gid
BS is irrespective of how the hybrid beamforming is designed. Essentially,

the value of Gid
BS depends on the beamformer fn, where ||fn|| = 1, and the size of the transmit

antenna array. Also, note that an ideal beamforming vector is obtained when there is no channel

estimation error and perfect beam alignment is done while considering an infinite resolution for

the phase-shifters. Further, the beamwidth depends on the design of the analog beamformer and

the digital beamformer. In particular, the beamforming gain is defined as

Gid
BS(φ

′
n,m,ηn) =


2π

ηn
, if |φ ′n,m| ≤

ηn
2 ,

0, otherwise.
(4.11)

Further, the beamforming gain of the ideal analog beamformer at UEn,m is assumed to be |w†
n,maUE(θn,m)|=√

Gid
UE(θ

′
n,m,µn,m) in which Gid

UE is the gain of the ideal analog beamformer and θ ′n,m and µn,m re-

spectively denote the angle off the boresight direction at UEn,m and the beamwidth of UEn,m.

Similar to Gid
BS, the ideal beamforming gain is defined as

Gid
UE(θ

′
n,m,µn,m) =


2π

µn,m
, if |θ ′n,m| ≤

µn,m
2 ,

0, otherwise.
(4.12)

Note that ideal beamforming at the BS and users results in the complete cancellation of the inter-

cluster interference represented in (4.8).

In practice, achieving the ideal beamforming gain may not be possible because of the application
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BS
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main lobe

side lobe

UE1,1

UE1,2

UE2,1

UE2,2

Figure 4.3: (a) A non-ideal beam is modeled with a constant main lobe gain and side lobe gain, (b)
The impact of the side lobe gain of each beam on the UEs located in the other cluster.

of suboptimal solutions for the analog beamformer, finite resolution of the phase-shifters, channel

estimation error, and beam misalignment. These problems reduce the gain in the main lobe and

introduce a side lobe for each beam. Hence, the beamforming model should take these issues into

account [7, 147]. A more practical model for the beamforming gain of the nth beam is given by

GBS(φ
′
n,m,ηn) =


2π−(2π−ηn)ξ

ηn
, if |φ ′n,m| ≤

ηn
2 ,

ξ , otherwise,
(4.13)

where 0 ≤ ξ < 1 with ξ � 1 for narrow beams, which is widely adopted in the literature [92,

95, 127]. Note that there is another common model for the beamforming gain with side lobe level

varying with the beamwidth [147]. In this chapter, to make the analysis tractable, we use the model

described above that satisfies the total power of 1, i.e.,
∫ 2π

0 GBS(φ
′
n,m,ηn)dφ ′n,m = ηn

2π

2π−(2π−ηn)ξ
ηn

+

2π−ηn
2π

ξ = 1. Similarly, the model for the beamforming gain of UEn,m is given by

GUE(θ
′
n,m,µn,m) =


2π−(2π−µn,m)ξ

µn,m
, if |θ ′n,m| ≤

µn,m
2 ,

ξ , otherwise.
(4.14)

In the above equations, the main lobe’s gain is distributed uniformly in the entire beamwidth and

the side lobe’s gain is assumed to be constant [145, 90] as demonstrated in Fig. 4.3.(a). However,
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γn,m =
Pn,mβ 2

n,mGBS(φ
′
n,m,ηn)GUE(θ

′
n,m,µn,m)

m−1

∑
k=1

Pn,kβ
2
n,mGBS(φ

′
n,m,ηn)GUE(θ

′
n,m,µn,m)+

NRF

∑
q6=n

Kq

∑
`=1

Pq,`β
2
n,mGUE(φ

′
n,m,µn,m)ξ +σ

2

. (4.16)

in reality, the main lobe’s gain changes over the beamwidth and the side lobe’s gain depends on

the size of the beamwidth. For example, for a narrower beam, the side lobe’s gain is higher [13].

Further, the side lobe results in interference that impacts the UEs located in other clusters as shown

in Fig. 4.3.(b). In our formulation, this interference is modeled by the inter-cluster interference

term in (4.8).

Hence, using (4.9), (4.13), and (4.14), the signal-to-interference-plus-noise ratio (SINR) of UEn,1

in the nth beam is expressed as

γn,1 =
Pn,1β 2

n,1GBS(φ
′
n,1,ηn)GUE(θ

′
n,1,µn,1)

NRF

∑
q 6=n

Kq

∑
`=1

Pq,`β
2
n,1GUE(θ

′
n,1,µn,1)ξ +σ

2

, (4.15)

and, using (4.10), (4.13), and (4.14), the SINR of UEn,m, m > 1, is given by (4.16) on the top of

next page.

Due to the single cell assumption, we can conclude that the users do not receive any interference

from the side lobe and only receive signal from the main lobe. Further, it is assumed that codebooks

for a specific level (beam resolution) are designed efficiently such that the steered beams by the

BS do not overlap [57]. Hence, each user receives the desired signal and intra-cluster interference

sent through the main lobe of the desired beam and the inter-cluster interference sent through the

side lobe of the other beams as visualized in Fig. 4.3.(b). Further, in the modified beam-training

algorithm described in Section 4.2.2 and adopted in this section, the beams directed by the BS can

have different beamwidth values, i.e., the beams have different resolutions. In this case, during the

data transmission, beam overlap may occur, which can impose severe inter-cluster interference.
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To avoid this, we assume that there is a proper angle gap between the two neighboring beams.

In mmWave hybrid beamforming, a limited number of RF chains is used, i.e., the number of

beams is limited [3]. Therefore, the direction of each beam is selected to satisfy the required angle

gap between the beams. Further, each cluster’s users are served via a common beam directed by

the BS. Therefore, the training time for UEn,m is given by τn,m = dωBS
ηn
edωUE

µn,m
eTp as explained in

Section 4.2.2. Accordingly, the achievable rate for UEn,m can be calculated as

Rn,m =
(

1− τ

T

)
log2(1+ γn,m), (4.17)

where T denotes the channel coherence time as indicated in Fig. 4.2. It is worth mentioning that

the chosen frame duration is smaller than the channel coherence time.

4.3 Problem Formulation

Here, NOMA is performed for two UEs per cluster which is compatible with the multi-user super-

position transmission schemes recently adopted by 3GPP [23, 2]. Further, the BS is assumed to

generate only two beams. Extension to more than two clusters will be addressed in future work.
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To optimize the sum-rate performance, ηn, µn,m, and Pn,m should be optimized according to

maximize
ηηη ,µµµ,P

2

∑
n=1

2

∑
m=1

Rn,m (4.18a)

subject to ηmin ≤ηn ≤ ωBS, (4.18b)

µmin ≤µn,m ≤min{ωUE,ηn}, (4.18c)

τ ≤ T, (4.18d)

τ ≥ ωBS

ηn

ωUE

µn,m
Tp, (4.18e)

Rn,m ≥ Rmin, (4.18f)

2

∑
n=1

2

∑
m=1

Pn,m≤ Ptot, (4.18g)

Pn,m> 0, (4.18h)

where ηηη = [η1,η2], µµµ = [µ1,1,µ1,2,µ2,1,µ2,2], P = [P1,1,P1,2,P2,1,P2,2], and Ptot denotes the total

power of the BS. The smallest beamwidth resolutions for the BS and UE are denoted by ηmin and

µmin, respectively. Here, we assume ηmin = µmin. The beamwidth resolution relates to the number

of antennas. Usually, the number of antennas at a BS is larger than those of UEs. Thus, the BS can

generate narrower beams. However, we assume that the minimum beamwidths of the BS and UEs

are identical. For the sake of simplicity, we relax τ ≥ dωBS
ηn
edωUE

µn,m
eTp to τ ≥ ωBS

ηn

ωUE
µn,m

Tp in (4.18e).

After we obtain the optimal ηηη and µµµ , we can recalculate τ = max{dωBS
ηn
edωUE

µn,m
eTp}.

4.4 Joint beamwidth control and power allocation

Problem (4.18) is an intractable non-convex optimization problem and needs to be decomposed.

We propose an algorithm which iterates between the power allocation and the beamwidth optimiza-

tion. When allocating the power, we fix the beamwidths and when optimizing the beamwidths, we

keep the powers fixed. We assume that the BS and the users are aligned after the training pro-
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cess, which means |φ ′n,m| ≤
ηn
2 and |θ ′n,m| ≤

µn
2 . We also assume the users within the same cluster

have the same beamwidth, i.e., µn,1 = µn,2 = µn. However, the users in different clusters do not

necessarily have the same beamwidth.

4.4.1 Power allocation

When the beamwidth and the training time are fixed, the beamforming gains are also fixed. Then,

problem (4.18) is simplified to:

maximize
P

2

∑
n=1

2

∑
m=1

Rn,m (4.19a)

subject to (4.18 f )−(4.18h). (4.19b)

Although Problem (4.19) has been greatly simplified compared to Problem (4.18), its objective is

still complicated and non-convex. To transform Problem (4.19) into a tractable form, we use the

log-exponential reformation idea in [77]. Introducing slack variables SSS = [xn,m,dn,m],n = 1,2,m =

1,2, we can transform the objective in Problem (4.19) into a linear form by ∑
2
n=1 ∑

2
m=1 log2

2xn,m

2dn,m .

For the sake of brevity, we denote GBS(ηn)GUE(µn) by Gn and GUE(µn) by Gn
UE and make the

following definitions:

SIn,1 , Pn,1β
2
n,1Gn +

2

∑
`=1,q6=n

Pq,`β
2
n,1Gn

UEξ +σ
2, (4.20)

SIn,2 ,
2

∑
`=1

Pn,`β
2
n,2Gn +

2

∑
`=1,q6=n

Pq,`β
2
n,2Gn

UEξ +σ
2, (4.21)
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In,1 ,
2

∑
`=1,q 6=n

Pq,`β
2
n,1Gn

UEξ +σ
2, (4.22)

In,2 , Pn,1β
2
n,2Gn +

2

∑
`=1,q6=n

Pq,`β
2
n,2Gn

UEξ +σ
2. (4.23)

Then, Problem (4.19) can be rewritten as

maximize
SSS,P

(1− τ

T
)

2

∑
n=1

2

∑
m=1

(xn,m−dn,m) (4.24a)

subject to 2xn,1≤ SIn,1, (4.24b)

2xn,2≤ SIn,2, (4.24c)

2dn,1≥ In,1, (4.24d)

2dn,2≥ In,2, (4.24e)

(1− τ

T
)(xn,m−dn,m)≥ Rmin, (4.24f)

(4.18g)− (4.18h). (4.24g)

In Problem (4.24), the optimum is achieved when the constraints (4.24b)-(4.24e) satisfy with equal-

ity. Let us use (4.24b) as an example to show that the equality should be satisfied at the optimum.

Assuming the opposite, we can increase xn,1 while keeping other variables fixed. This results in

increasing the cost function and contradicts the optimality assumption. Since constraints (4.24b)-

(4.24e) achieve equality at the optimum, the non-convex objective of Problem (4.19) is equivalently

decomposed into (4.24a) and constraints (4.24b)-(4.24e).

Unfortunately, constraints (4.24d) and (4.24e) are still non-convex. To relax the non-convex con-

straint to convex constraints, we use a sequential parametric convex approximation method (SPCA)
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[14]. In this method, the non-convex feasible set is sequentially approximated by an inner convex

approximation. Using (4.24d) as an example, at Iteration k, since function 2dn,1 is a convex func-

tion, i.e., 2y−2x ≥ 2x log2(y− x), we have a lower bound of 2dn,1 as:

2d∗n,1[k−1] log2(dn,1−d∗n,1[k−1])+2d∗n,1[k−1] ≤ 2dn,1, (4.25)

where d∗n,1[k− 1] is the optimal solution at Iteration k− 1. Based on (4.25), we can relax (4.24d)

into a convex constraint as

2d∗n,1[k−1] log2(dn,1−d∗n,1[k−1])+2d∗n,1[k−1] ≥
2

∑
`=1,q6=n

Pq,`β
2
n,1Gn

UEξ +σ
2. (4.26)

Using the same method for (4.24e), we have

2d∗n,2[k−1] log2(dn,2−d∗n,2[k−1])+2d∗n,2[k−1] ≥

Pn,1β
2
n,2Gn +

2

∑
`=1,q6=n

Pq,`β
2
n,2Gn

UEξ +σ
2. (4.27)

At each iteration, we can relax Problem (4.24) into the following convex problem:

maximize
SSS,P

(1− τ

T
)

2

∑
n=1

2

∑
m=1

(xn,m−dn,m) (4.28a)

subject to (4.24b), (4.28b)

(4.24c), (4.28c)

(4.26)− (4.27), (4.28d)

(4.18g)− (4.18h). (4.28e)

This is a convex problem, which can be efficiently solved by off-the-shelf solutions, such as CVX

[41].
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By relaxing Problem (4.24) to Problem (4.28) in each iteration, we can propose an iterative al-

gorithm to provide an approximation solution for Problem (4.24). Detailed steps are presented in

Alg. 3. According to [14], Alg. 3 converges.

Algorithm 3: Power allocation

1: Set the sum-rate Rsum[−1]← 0, the maximal iteration number kmax ← 1000 and the conver-
gence threshold ε ← 10−3;

2: repeat
3: Choose a feasible start point P∗[0];
4: x∗n,m[0]← log2(P

∗
n,m[0]β

2
n,mGn), d∗n,1[0]← log2(∑

2
`=1,q 6=n P∗q,`[0]β

2
n,1Gn

UEξ +σ2);
5: d∗n,2[0]← log2(P

∗
n,1[0]β

2
n,2Gn +∑

2
`=1,q6=n P∗q,`[0]β

2
n,2Gn

UEξ +σ2);
6: until (4.24f) is satisfied
7: k← 0;
8: while Rsum[k]−Rsum[k−1]≥ εRsum[k−1] and k ≤ kmax do
9: k← k+1;

10: Solve (4.28) to obtain SSS∗[k] and P∗[k];
11: end while
12: Return P∗[k].

4.4.2 Beamwidth optimization

When the powers are fixed, the problem to optimize the beamwidth can be rewritten as

maximize
ηηη ,µµµ

2

∑
n=1

2

∑
m=1

Rn,m (4.29a)

subject to (4.18b)−(4.18 f ). (4.29b)

Problem (4.29) is a very complicated problem with non-convex objective and constraints. To

simplify the problem, we first perform the following variable substitutions:

µn =
A
fn
, (4.30)
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ηn =
A
hn

, (4.31)

where fn , GUE(µn)− ξ , hn , GBS(ηn)− ξ and A = 2π − 2πξ is a constant. By assuming

GBS(ηn)GUE(µn)≈ (2π−2πξ )2

ηnµn
+ξ 2, we have ηnµn =

A2

hn fn
and GBS(ηn)GUE(µn)= hn fn+ξ 2. Then,

the SINR for UEn,1 and UEn,2 can be rewritten as

γn,1 =
Pn,1β 2

n,1(hn fn +ξ 2)

∑
2
`=1,q6=n Pq,`β

2
n,1( fn +ξ )ξ +σ2

, (4.32)

γn,2 =
Pn,2β 2

n,2(hn fn +ξ 2)

Pn,1β 2
n,2(hn fn +ξ 2)+∑

2
`=1,q 6=n Pq,`β

2
n,2( fn +ξ )ξ +σ2

. (4.33)

Instead of finding the optimal beamwidth, we find the optimal fn and hn. We can rewrite Problem

(4.29) as

maximize
hhh, fff

2

∑
n=1

2

∑
m=1

Rn,m (4.34a)

subject to
A

ωBS
≤ hn ≤

A
ηmin

, (4.34b)

A
ωUE

≤ fn ≤
A

µmin
, (4.34c)

hn ≤ fn, (4.34d)

Rn,m ≥ Rmin, (4.34e)

τ ≤ T, (4.34f)

τ = max{ωBSωUEhn fn

A2 Tp}, (4.34g)

where hhh = [h1,h2] and fff = [ f1, f2]. Problem (4.34) is still intractable with a non-convex objective.
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To further decompose the problem, we will iterate between the two clusters, i.e., we first fix Cluster

2 to optimize the beamwidths in Cluster 1 and then fix Cluster 1 to optimize the beamwidths in

Cluster 2.

4.4.3 Optimal beamwidth search for each cluster

Let us assume the beamwidths of Cluster 2 are fixed and take the optimization of the beamwidths

in Cluster 1 as an example. The optimization for Cluster 2 is similar. In this case, the SINRs of

UE2,1 and UE2,2 are fixed. We denote them by γfix
2,1 and γfix

2,2. We also denote the corresponding

variables f2 and h2 as f fix
2 and hfix

2 . Then, the beamwidth optimization problem for Cluster 1 is as

follows:

maximize
h1, f1

2

∑
m=1

R1,m +(1− τ

T
)

2

∑
m=1

log2(1+ γ
fix
2,m) (4.35a)

subject to
A

ωBS
≤ h1 ≤

A
ηmin

, (4.35b)

A
ωUE

≤ f1 ≤
A

µmin
, (4.35c)

h1 ≤ f1, (4.35d)

R1,m ≥ Rmin, (4.35e)

(1− τ

T
) log2(1+ γ

fix
2,m)≥ Rmin, (4.35f)

τ ≤ T, (4.35g)

τ ≥
ωBSωUEh1 f1Tp

A2 , (4.35h)

τ ≥
ωBSωUEhfix

2 f fix
2 Tp

A2 . (4.35i)

To simplify Problem (4.35), we discuss how to pick the optimal value for τ and remove it from the

objective function. There are two cases for the optimal τ:
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• Case 1: h1 f1 < hfix
2 f fix

2 . In this case, the τ should be set to τ∗ =
ωBSωUEhfix

2 f fix
2

A2 Tp. Then, the

objective function should be (1− τ∗

T )∑
2
n=1 ∑

2
m=1 log2(1+ γn,m).

• Case 2: h1 f1 ≥ hfix
2 f fix

2 . In this case, the τ should be set according to the value of h1 f1, which

is τ = ωBSωUEh1 f1
A2 . Then, the objective function should be (1− ωBSωUEh1 f1Tp

A2T )∑
2
n=1 ∑

2
m=1

log2(1+ γn,m).

Since the solution for the two cases are different and the objective function may change, the search

for the optimal beamwidths is complicated and needs to be simplified. First, we introduce a vari-

able gn = hn fn. Then, the SINR UEn,1 and UEn,2 can be rewritten as

γn,1 =
Pn,1β 2

n,1(gn +ξ 2)

∑
2
`=1,q6=n Pq,`β

2
n,1( fn +ξ )ξ +σ2

, (4.36)

γn,2 =
Pn,2β 2

n,2(gn +ξ 2)

Pn,1β 2
n,2(gn +ξ 2)+∑

2
`=1,q6=n Pq,`β

2
n,2( fn +ξ )ξ +σ2

. (4.37)

Since we fix the parameters for Cluster 2, log2(1+ γ2,1)+ log2(1+ γ2,2) is a constant, which we

denote by C. Then, we define a function F(g1, f1), log2(1+ γ1,1)+ log2(1+ γ1,2)+C which has

the following property:

Proposition 2. For F(g1, f1) with its domain defined by ( f1,g1) ∈ [lb f ,ub f ]× [lbg,min{ f 2
1 ,ubg}],

0< lbg≤ lb2
f and 0< ubg≤ ub2

f , the maximum point lies on the boundary g1 = f 2
1 , f1 ∈ [lb f ,

√
ubg].

Proof. See Appendix A.1.

Proposition 2 implies that if we want to find the maximum point of F(g1, f1), we only need to

search on the boundary g1 = f 2
1 , f1 ∈ [lb f ,ub f ]. This simplifies F(g1, f1) to F( f 2

1 , f1). We further
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define Fb( f1) , F( f 2
1 , f1). Then, to find the maximum point of F(g1, f1), we can perform a line

search for Fb( f1) on f1 ∈ [lb f ,ub f ].

Next, we define the function G(g1, f1) , (1− ωBSωUEg1
A2 Tp)F(g1, f1). Function G(g1, f1) has the

following property:

Proposition 3. For G(g1, f1) with its domain defined by ( f1,g1)∈ [
√

lbg,ub f ]×[lbg,min{ f 2
1 ,ubg}],

ub f , lbg,ubg > 0, ubg < ub2
f , the maximum point lies on the boundary g1 = f 2

1 , f1 ∈ [
√

lbg,
√

ubg].

Proof. See Appendix A.2.

Proposition 3 implies that if we want to find the maximum point of G(g1, f1), we only need to

search on the boundary g1 = f 2
1 , f1 ∈ [lb f ,ub f ]. This simplifies G(g1, f1) into G( f 2

1 , f1). We define

Gb( f1), G( f 2
1 , f1). Then, to find the maximum point of G(g1, f1), we can perform the line search

for Gb( f1) on f1 ∈ [lb f ,ub f ].

To find the maximum point for Problem (4.35), we plot its feasible region with boundaries colored

in green and blue in Figs. 4.4 and 4.5. According to Propositions 2 and 3, the maximum point lies

on the blue boundary and we only need to search on the blue boundary. However, the objective

function varies along the blue boundary. To conduct an effective search, we need to divide the blue

boundary into two different subsets. Moreover, different initial conditions lead to different division

strategies. There are two cases:

• Case 1: g(0)1 < gfix
2 , where g(0)1 is the initial point. In this case, along the blue boundary, when

we increase g1 from g(0)1 to gfix
2 , the objective function is (1− τ∗

T )Fb( f1). If we continue to

increase g1, the objective function changes to Gb( f1). Then, the blue boundary is divided

as shown in Fig. 4.4. On Subset a, we perform a line search over (1− τ∗

T )Fb( f1) to find a

maximum point ( f (F)
1 ,( f (F)

1 )2). On Subset b, we perform a line search over Gb( f1) to find

the maximum point ( f (G)
1 ,( f (G)

1 )2). Then, we compare the values of (1− τ∗

T )Fb( f (F)
1 ) and

Gb( f (G)
1 ), to pick the larger one as the optimal solution ( f ∗1 ,g

∗
1).
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Subset a

Subset b

Figure 4.4: The search region division for
Case 1.

Subset a 

Subset b 

Figure 4.5: The search region division for
Case 2.

• Case 2: g(0)1 ≥ gfix
2 , where g(0)1 is the initial point. In this case, when we decrease g1 to

be less than gfix
2 , the objective function changes from Gb( f1) to (1− τ∗

T )Fb( f1). Then, the

blue boundary is divided as shown in Fig. 4.5. On Subset a, we perform a line search over

(1− τ∗

T )Fb( f1) to find a maximum point ( f (F)
1 ,( f (F)

1 )2). On Subset b, we perform a line

search over Gb( f1) to find the maximum point ( f (G)
1 ,( f (G)

1 )2). Then, we compare the values

of (1− τ∗

T )Fb( f (F)
1 ) and Gb( f (G)

1 ), to pick the larger one as the optimal solution ( f ∗1 ,g
∗
1).

While performing the line search, we also need to consider the minimum rate constraint. The

details of line search for (1− τ∗

T )Fb( f1) and Gb( f1) are described in Alg. 4 and Alg. 5, respectively.

Algorithm 4: Line search over (1− τ∗

T )Fb( f1)

1: Input τ∗, the search interval [ fmin, fmax] and the step size ∆;
2: Initialize Rmax← 0 and f (F)

1 ← fmin;
3: for f1 = fmin : ∆ : fmax do
4: if (1− τ∗

T )Fb( f1)>Rmax and (1− τ∗

T ) log2(1+γ1,1)≥Rmin and (1− τ∗

T ) log2(1+γ1,2)≥Rmin
then

5: Rmax← (1− τ∗

T )Fb( f1);

6: f (F)
1 ← f1;

7: end if
8: end for
9: Return Rmax, f (F)

1 .
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Algorithm 5: Line search over Gb( f1)

1: Input the search interval [ fmin, fmax] and the step size ∆;
2: Initialize Rmax← 0 and f (G)

1 ← fmin;
3: for f1 = fmin : ∆ : fmax do
4: τ ← ωBSωUE f 2

1
A2 Tp

5: if Gb( f1)> Rmax and (1− τ

T ) log2(1+γ1,m)≥ Rmin and (1− τ

T ) log2(1+γfix
2,m)≥ Rmin then

6: Rmax← Gb( f1);
7: f (G)

1 ← f1;
8: end if
9: end for

10: Return Rmax, f (G)
1 .

4.4.4 Joint beamwidth optimization

For a fixed power allocation, our final beamwidth search algorithm, iterating between the beamwidth

search for the two clusters, is presented in Alg. 6.

Algorithm 6 Joint Beamwidth Optimization

1: Set the sum-rate Rsum[−1]← 0, the maximal iteration number kmax ← 1000 and the conver-

gence threshold ε ← 10−3;

2: Input: Rsum[0], µ2,η2,µ(0)
1 ,η1(0), ωBS, ωUE, µmin and ηmin;

3: Calculate f (0)1 ,g(0)1 , f (0)2 and g(0)2 according to (4.30), (4.31) and gn = fnhn;

4: Calculate lb f , ub f , lbg and ubg based on ωBS, ωUE, µmin and ηmin;

5: k← 0;

6: while Rsum[k]−Rsum[k−1]≥ εRsum[k−1] and k ≤ kmax do

7: k← k+1;

8: if g(k−1)
1 < g(k−1)

2 then

9: τ∗← ωBSωUEg(k−1)
2 Tp

A2 ;

10: Do line search for (1− τ∗

T )Fb( f1) on interval f1 ∈ [

√
g(k−1)

1 ,

√
g(k−1)

2 ] using Alg. 4 to get

the maximum point ( f (F)
1 ,( f (F)

1 )2);
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11: Do line search for Gb( f1) on interval f1 ∈ [

√
g(k−1)

2 ,
√

ubg] using Alg. 5 to get the maxi-

mum point ( f (G)
1 ,( f (G)

1 )2);

12: if Fb( f (F)
1 ) == 0 and Gb( f (G)

1 ) == 0 then

13: ( f (k)1 ,g(k)1 )← ( f (k−1)
1 ,g(k−1)

1 );

14: end if

15: Compare the value of (1− τ∗

T )Fb( f (F)
1 ) and Gb( f (G)

1 ), and pick the larger one as the opti-

mal solution ( f (k)1 ,g(k)1 );

16: else if g(k−1)
1 ≥ g(k−1)

2 then

17: Do line search for Gb( f1) on interval f1 ∈ [

√
g(k−1)

2 ,
√

ubg] using Alg. 5 to get the maxi-

mum point ( f (G)
1 ,( f (G)

1 )2);

18: τ∗← ωBSωUEg(k−1)
2 Tp

A2 ;

19: Do line search for (1− τ∗

T )Fb( f1) on interval f1 ∈ [lb f ,

√
g(k−1)

2 ] using Alg. 4 to get the

maximum point ( f (F)
1 ,( f (F)

1 )2);

20: if Fb( f (F)
1 ) == 0 and Gb( f (G)

1 ) == 0 then

21: ( f (k)1 ,g(k)1 )← ( f (k−1)
1 ,g(k−1)

1 );

22: end if

23: Compare the value of (1− τ∗

T )Fb( f (F)
1 ) and Gb( f (G)

1 ), and pick the larger one as the opti-

mal solution ( f (k)1 ,g(k)1 );

24: end if

25: if g(k−1)
2 < g(k)1 then

26: τ∗← ωBSωUEg(k)1 Tp
A2 ;

27: Do line search for (1− τ∗

T )Fb( f2) on interval f2 ∈ [

√
g(k−1)

2 ,

√
g(k)1 ] using Alg. 4 to get

the maximum point ( f (F)
2 ,( f (F)

2 )2);

28: Do line search for Gb( f2) on interval f2 ∈ [
√

g(k)1 ,
√

ubg] using Alg. 5 to get the maximum

point ( f (G)
2 ,( f (G)

2 )2);

29: if Fb( f (F)
2 ) == 0 and Gb( f (G)

2 ) == 0 then

30: ( f (k)2 ,g(k)2 )← ( f (k−1)
2 ,g(k−1)

2 );
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31: end if

32: Compare the value of (1− τ∗

T )Fb( f (F)
2 ) and Gb( f (G)

2 ), and pick the larger one as the opti-

mal solution ( f (k)2 ,g(k)2 );

33: else if g(k−1)
2 ≥ g(k)1 then

34: Do line search for Gb( f2) on interval f2 ∈ [
√

g(k)1 ,
√

ubg] using Alg. 5 to get the maximum

point ( f (G)
2 ,( f (G)

2 )2);

35: τ∗← ωBSωUEg(k)1 Tp
A2 ;

36: Do line search for (1− τ∗

T )Fb( f2) on interval f1 ∈ [lb f ,

√
g(k)1 ] using Alg. 4 to get the

maximum point ( f (F)
2 ,( f (F)

2 )2);

37: if Fb( f (F)
2 ) == 0 and Gb( f (G)

2 ) == 0 then

38: ( f (k)2 ,g(k)2 )← ( f (k−1)
2 ,g(k−1)

2 );

39: end if

40: Compare the value of (1− τ∗

T )Fb( f (F)
2 ) and Gb( f (G)

2 ), and pick the larger one as the opti-

mal solution ( f (k)2 ,g(k)2 );

41: end if

42: Calculate Rsum[k];

43: end while

44: Calculate µn and ηn based on fn, hn, where hn = gn/ fn;

45: Return µ∗n and η∗n .

4.4.5 The joint algorithm

Based on Alg. 3 and Alg. 6, we can propose a joint optimization algorithm, which iterates between

the power allocation and the beamwidth optimization. The details of the algorithm are described

in Alg. 7.
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Algorithm 7: Joint Power and Beamwidth Optimization

1: Set the sum-rate Rsum[−1]← 0, the maximal iteration number nmax ← 1000 and the conver-
gence threshold ε ← 10−3;

2: Choose a feasible start point P∗[0], µµµ∗[0], ηηη∗[0] and φφφ
∗[0];

3: n← 0;
4: while Rsum[n]−Rsum[n−1]≥ εRsum[n−1] and n≤ nmax do
5: n← n+1;
6: Search the optimal beamwidth using Alg. 6 with P∗[n] to obtain µµµ∗[n], ηηη∗[n] and φφφ

∗[n] ;
7: Solve Problem (4.19) using Alg. 3 with µµµ∗[n−1], ηηη∗[n−1], φφφ

∗[n−1] to obtain P∗[n] ;
8: end while
9: Return P∗[n], µµµ∗[n], ηηη∗[n].

4.4.6 Convergence and complexity analysis

To prove the convergence of Alg. 7, we first need to prove the convergence of Alg. 3 and Alg.

6. The convergence of Alg. 3 has been proved in [14]. In Alg. 6, to maximize the sum-rate, we

optimize the beamwidth for one cluster while keeping the other cluster fixed. Such a step cannot

decrease the sum-rate and generates a non-decreasing sequence of sum-rate values. Therefore, the

convergence of Alg. 6 is guaranteed because the algorithm generates a sequence of non-decreasing

sum-rates with an upper bound (the maximum sum-rate).

In Alg. 7, when allocating the power, we increase the sum-rate while keeping the beams in the

feasible region. When optimizing the beamwidth, we search the feasible region for the beams

to find the maximum sum-rate while guaranteeing the minimum rate constraint and keeping the

powers in the feasible region. By doing so, we generate a monotonically increasing sequence with

an upper bound (the maximum sum-rate), which proves the convergence.

Here, we provide the complexity analysis of the proposed algorithm. In our algorithm, we iter-

atively optimize the power allocation and beamwidth. In the power allocation algorithm, we use

SPCA to gradually convexify the original non-convex problem. In each iteration, the complex-

ity mainly lies in solving Problem (4.28). We use an off-the-shelf solution, i.e., CVX to solve

Problem (4.28), which uses the interior-point method. The computational complexity of CVX is
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O((3MUE)
3.5), where MUE is the total number of users and 3MUE is the number of variables in

Problem (4.28). In the beamwidth optimization, we iteratively optimize the beamwidth for each

sector. In each iteration, the main complexity lies in the line-search algorithm, with the complexity

O(
ub f−lb f

∆
), ub f and lb f are the upper bound and lower bound of variable f in Problem (4.35),

respectively, and ∆ is the stepsize of the line-search algorithm.

4.5 Simulation Results

In this section, we present the simulation results of the joint power and beamwidth optimization

algorithm. Four UEs are considered which are divided in two clusters each with two UEs. It is

assumed that the UEs inside each cluster have different distances from the BS. Four multiple access

techniques are investigated. The first technique is OMA in which UEs are served in different

time slots. The second technique is a combination of OMA and NOMA called NOMA-OMA.

In NOMA-OMA, UEs that belong to the same cluster are supported by a fixed-power NOMA

and each cluster is supported by OMA at each time slot. The third technique is Fixed-NOMA in

which all UEs are served by a fixed-power NOMA at one time slot. Finally, the fourth technique

is the jointly optimized power and beamwidth NOMA system presented in Section 4.4, called

Optimized-NOMA. For all techniques, first, the beams are trained and then the data transmission

is done.

To evaluate the performance of the Optimized-NOMA, the parameters are set as follows. The

minimum rate for all UEs is assumed to be Rmin = 0.1 bits/s/Hz. Further, for the Fixed-NOMA,

we allocate 1
5 of the total power to the cluster-head and 4

5 of the total power to the far UE as

done in [26]. Also, the power is equally divided between the two clusters. The SNR used in the

simulations indicates the transmit SNR, i.e., SNR=Ptot
σ2 , σ2 = 1. In the first cluster, the channel gains

of the near and far UEs from the BS are β 2
1,1 =−17dB and β 2

1,2 =−26.5dB. In the second cluster,

the channel gains of the near and far UEs are β 2
2,1 =−19dB and β 2

2,2 =−25dB. Also, the side lobe
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Figure 4.6: Performance of the sum-rate versus SNR for a large channel coherence time, i.e.,
T = 5×103Tp.

level is constant and is given as ξ = 0.1. For the Optimized-NOMA, we use ωBS = ωUE = 120◦

and ηmin = µmin = 5◦ unless it is mentioned otherwise. Further, the convergence threshold is set

to ε = 10−3.

Fig. 4.6 demonstrates the performance of the sum-rate versus SNR. It is assumed that T = 5×

103Tp which indicates a large channel coherence time and η = µ1 = µ2 = 10◦. For all SNRs,

by increasing SNR the sum-rate increases. The Optimized-NOMA achieves the highest sum-rate.

Especially, at low SNRs, the performance gap is larger. For instance, at SNR = 0dB the gap

between the Optimized-NOMA and Fixed-NOMA is more than 5 bits/s/Hz which reveals our joint

optimization algorithm designs the powers and beamwidths very efficiently. As SNR increases, the

gap decreases which is due to the fact that in the Fixed-NOMA the BS and UEs steer strong beams

even if the powers and beamwidths are not optimized. The Fixed-NOMA technique preforms

better than the NOMA-OMA and OMA techniques. The reason is that the Fixed-NOMA serves
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Figure 4.7: Performance of the sum-rate versus SNR for a short channel coherence time T =
1×103Tp.
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all the users at the same time and takes the advantages of the spectrum sharing among UEs.

In Fig. 4.7, we repeat the same simulation as in Fig. 4.6 for a relatively short channel coherence

time, i.e., T = 1× 103Tp. Similarly, by increasing SNR, the sum-rate increases for all the tech-

niques. However, compared to Fig. 4.6, at low SNRs, the rate gap between the Optimized-NOMA

and Fixed-NOMA is small. Moreover, at high SNR regions, these two techniques achieve identical

sum-rates. This is because when the channel coherence time is short, the optimization algorithm

does not allocate a large portion of T to the beam-training, e.g., τ is small. Thus, the optimized

beamwidths are not narrow enough to provide higher gain. Also, at high SNRs, the optimized

powers have trivial effects on the sum-rate compared to the predefined fixed values which is an

interesting observation. This observation indicates that for a short channel coherence time like

T = 1× 103Tp and high SNR, the optimization is not required and fixed-NOMA can be used in-

stead. For a smaller coherence time, the optimized-NOMA shows better performance only at low

SNRs. Nevertheless, severe path loss and shadowing in mmWave bands makes the low SNR regime

very crucial. Especially, NOMA is supposed to consider near and far users, where the far users

likely receive signal through NLoS low SNR channels [5]. We emphasize that at high SNRs, by

increasing the coherence time, the rate gap between the optimized-NOMA and the fixed-NOMA

becomes larger (See Fig. 4.6).

Fig. 4.8 shows the sum-rate performance versus the normalized channel coherence time, i.e., T/Tp

for the moderate SNR= 20dB. In this simulation, two sets of beamwidths are considered for

the first three techniques: (i) η = µ = 5◦ (narrow beamwidth) and (ii) η = µ = 10◦ (relatively

wide beamwidth). The Optimized-NOMA outperforms the other techniques for both sets of the

beamwidths. For the Fixed-NOMA with η = µ = 10◦ and short normalized channel coherence

times, the performance is very close to that of the Optimized-NOMA. This is expected as we

explained before. However, for η = µ = 5◦ and short normalized channel coherence times, the

sum-rate of the Fixed-NOMA is much smaller than that of the Optimized-NOMA. This is because

at small T/Tp, the Fixed-NOMA assigns more time to the beam-training and leaves less time for
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the data transmission. As the normalized time goes up, more time is available for data transmis-

sion, and the narrow beam provides a higher sum-rate. This statement also is supported by Fig. 4.8

where at large channel coherence times, the Optimized-NOMA selects the minimum beamwidth.

Hence, the Optimized-NOMA and the Fixed-NOMA with η = µ = 5◦ achieve identical sum-rates

at large normalized channel coherence times. Using Optimized-NOMA, a wide beamwidth is pre-

ferred for short T/Tp while a narrow beamwidth is preferred for large T/Tp.

In Fig. 4.9, we simulate the performance of the sum-rate versus the minimum beamwidth of BS

and UEs. The simulation is done for SNRs 10dB, 20dB, and 30dB and T = 5×103Tp. In practice,

the number of antennas at the BS and UEs is limited and even for large T/Tp, a narrow beamwidth

may not be generated. At high SNRs, e.g. 30dB, increasing the minimum beamwidth does not

affect the sum-rate severely. As such, compared to ηmin = µmin = 3◦, at 10◦, the sum-rate is

reduced only by 0.5 bits/s/Hz. At SNR= 20dB, the sum-rate drops about 0.8 bits/s/Hz which is

larger than the drop at SNR= 30dB. The minimum beamwidth has a major effect at SNR= 10dB.

When SNR is low, narrow beams can still provide high gains to compensate for the low SNR. As

the minimum beamwidth increases and the SNR is low, the optimization algorithm cannot select

narrow beams. As a result, the sum-rate dramatically decreases. In this case, simulation results

indicate that decreasing the beamwidth from 3◦ to 10◦ decreases the sum-rate by about 2 bits/s/Hz.

4.6 Conclusions

In this chapter, NOMA is incorporated into mmWave hybrid beamforming systems. We also con-

sider the beam-training time because of the limited channel coherence time in mmWave directional

communications. By combining the exhaustive search and tone-based beam-training algorithms,

a new beam-training algorithm is employed. The formulated sum-rate expression consists of the

channel coherence time and beam-training time. To maximize the sum-rate, a joint power alloca-

tion and beamwidth control optimization problem is solved by an algorithm which iterates between

114



the power allocation and the beamwidth optimization. The non-convex power allocation is solved

by the log-reformulation and SPCA. The beamwidth optimization is solved by iterating between

the two clusters. A boundary-search algorithm is proposed to reduce the search complexity for the

beamwidth in each cluster. The numerical results demonstrate that an efficient power allocation and

beam-training time can lead to higher sum-rates compared to the conventional mmWave-NOMA

without optimized parameters, NOMA-OMA, and OMA. The only exception is that for a short

channel coherence time and high SNR, the optimized-NOMA and the fixed-NOMA have identical

sum-rate performance. Also, at low SNRs, the size of the antenna array is a major obstacle in

achieving higher sum-rates.
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Chapter 5

A Two-Step mmWave-NOMA Beam

Alignment Algorithm with Misalignment

Probability Constraints

5.1 Introduction

Because available spectral in under 6 GHz range is limited, the use of millimeter-Wave (mmWave)

bands is a promising solution for the next generation of wireless communications called 5G [99].

The transmission in mmWave bands suffers from severe path loss which constrains the commu-

nication range to short distances. On the other hand, because of the short wavelength, a huge

number of antennas can be utilized to provide a large beamforming gain. Fully-digital beamform-

ing can achieve near maximum beamforming gain, but requires one radio frequency (RF) chain

per antenna. This makes a fully-digital beamforming system expensive, power-hungry, and not

practical. To resolve the issue, two practical beamforming systems are analog beamforming and

hybrid beamforming. In analog beamforming systems, one RF chain is deployed and beamform-
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ing is done via phase-shifters [63]. In contrast, the hybrid beamforming systems are equipped with

several RF chains and the beamforming is done in digital and analog stages [12, 112, 64]. Alter-

natively, dedicating RF chains to channel paths instead of antennas, for example using beamspace

MIMO [16] or reconfigurable antenna-based MIMO [11, 51] architectures, reduces the number of

required RF chains as well.

Non-orthogonal multiple access (NOMA) as another promising solution for 5G aims at enhancing

the spectral efficiency through serving more than one user at the same frequency/time/code [121,

148, 37]. In particular, signals in power-domain NOMA are transmitted using superposition coding

(SC) and decoded by exploiting successive interference cancellation (SIC) at the receiver. Incorpo-

ration of power domain-NOMA in the mmWave systems, i.e., mmWave-NOMA, is vastly studied

in the literature [27, 25, 147, 125, 3, 56, 139, 123, 9]. Ref. [27] proposes a random beamforming

method for the mmWave-NOMA directional transmission. Ref. [25] evaluates sum-rate for a two-

user NOMA with different directions but the same beamforming codeword using finite-resolution

phase-shifters. In [147], the effect of beam misalignment on the coverage and rate of the ana-

log beamforming systems is evaluated. Ref. [125] uses beamwidth control to properly pair the

mmWave-NOMA users to maximize the sum-rate. The impact of beam alignment on the sum-rate

and users’ order in hybrid beamforming systems is analyzed in [3]. Further, the physical security

issue of the mmWave-NOMA is investigated in [56]. Ref. [139] implements the mmWave-NOMA

with one-bit quantized angle information. To serve more than one user per beam, the combina-

tion of NOMA with lens-based beamspace MIMO is performed in [123]. Finally, [9] incorporates

NOMA in mmWave reconfigurable antennas to increase the number of served users and improve

the sum-rate.

In all aforementioned works, it is assumed that the channel coherence time is sufficiently large

to align the beams with high resolution and the beam alignment overhead is ignored. To fully

exploit the potential of the large beamforming gain in mmWave systems, transmitter and receiver

beams must be aligned. Such an alignment significantly increases the signal-to-noise ratio (SNR)
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and consequently leads to higher throughput. However, finding the best direction increases the

alignment overhead. Hence, there is a tradeoff between alignment and throughput. A narrower

beamwidth leads to higher transmission rate due to the higher directivity gain (i.e., higher SNR)

but imposes considerable alignment overhead since many directions should be examined. A larger

beamwidth requires less alignment overhead although it reduces the transmission rate. In the

mmWave-NOMA, the alignment becomes more critical, where one transmit beam and at least two

receive beams, with a large channel gain difference, need alignment. A narrower beamwidth is

in favor of the low channel gain receivers since they need sufficiently high SNR to achieve a re-

quired rate. In contrast, high channel gain receivers might be interested in a wider beamwidth as

less time is allocated to alignment. These issues result in a new alignment-throughput tradeoff

in the mmWave-NOMA. To address this tradeoff, we propose a joint formulation of a two-step

beamwidth design and power allocation in the mmWave-NOMA, and study the impact of the net-

work parameters on the throughput.

5.1.1 Related Work

Since channel estimation is a challenging task in mmWave directional communications due to

the large-scale antenna array, beam alignment is adopted as a promising solution [75]. Recall

that in the directional communications, there exists an alignment-throughout trade-off. In the

literature, several works have investigated this trade-off. In [109], a joint beamwidth selection and

scheduling algorithm was designed for multiple concurrent transmissions. Ref. [130] investigated

a joint energy harvest-ratio and beamwidth selection algorithm in the mmWave communications

in which a frame is divided into three segments, energy harvesting, beam searching, and data

transmission. Then, [34] studied a fair beamwidth selection, user association, and power allocation

algorithm in the mmWave bands in order to maximize the minimum user throughput. Further, [69]

proposed a hierarchical beam search method for mmWave multi-user communications. In these

works, each beam is dedicated to serve only one user and users located in the same direction are
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served by time division multiple access or space division multiple access. Hence, the works [109,

69, 130, 34] may not be properly utilized in the mmWave-NOMA communications. To resolve

this issue, [49] and [10] have recently developed a joint beamwidth selection and power allocation

algorithm to maximize the sum-rate for NOMA users for the analog and hybrid mmWave-NOMA,

respectively. Our work in [10] considers the simultaneous beamwidth design of the far and near

users while taking the limited channel coherence time for the mmWave-NOMA into account. For

NOMA to be more effective, the channel gain difference between the users must be large, i.e., the

near and far users have high and low channel gains, respectively. In our one-step algorithm in [10]

and other similar beam alignment algorithms, not leveraging this important property leads to a

slow beam alignment. We use the channel gain difference in the this chapter by utilizing a two-step

algorithm. In the first step, we align a fairly wide beam to the near user. Then, in the second step,

a narrower beam is aligned to the near and far users. Such a two-step beam alignment algorithm

takes advantage of the NOMA user locations and is much faster than the one-step algorithm. We

also include additional constraints on the beamwidths to satisfy given misalignment probability

requirements.

5.1.2 Contributions

The main contributions of this chapter are as follows:

• We propose a new two-step beamwidth selection algorithm compatible with mmWave-NOMA

systems.

• We formulate an optimization problem that brings together beamwidth selection and power

allocation. We solve the optimization problem by a joint optimization algorithm that iterates

between the power allocation and the beamwidth.

• We further formulate another optimization problem that includes additional constraints on
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the beamwidths to satisfy given misalignment probability requirements and solve it.

The reminder of the chapter is organized as follows. In Section 5.2, the system model is explained.

In Section 5.3, the proposed two-step beam alignment is described. Section 5.4 formulates the

optimization problem. In Section 5.5, the allocated power and beamwidth are determined through

the proposed optimization algorithm and its convergence analysis is provided. Section 5.6 ad-

dresses the beam misalignment probability. In this section, the power coefficients and beamwidths

are optimized to include the beam misalignment. Numerical results are presented in Section 5.7.

Section 5.8 concludes this chapter.

5.2 System Model

We consider a mmWave downlink system which consists of a single cell and a BS located at the

center. Also, we consider M user equipments (UEs) distributed uniformly in the cell. The system

model is depicted in Fig. 5.1.(a). The BS with NBS antennas and each UE with NUE antennas

are equipped with mmWave analog beamforming systems. The beamforming system is shown

in Fig. 5.1.(b). A similar system is assumed for every UE. In order to apply the power-domain

NOMA to the described system, two UEs located at the same direction but different distances

from the BS should be detected and paired. Throughout this chapter, the user closer to the BS is

called the near user (UEn) and the further user is called the far user (UEf). To determine UEn and

UEf, we assume the BS knows the long term channel for each user, which includes the path-loss

and large-scale fading effects. The long term channel can be estimated through channel quality

indicator (CQI) [79] or reference signals receive power (RSRP) [4], which can be obtained before

beam alignment. We divide the users according to the quality of the channels. To this end, the cell

is divided into inner cell and outer cell in which the UEn and the UEf are located, respectively.

Without loss of generality, let us assume there are Mn UEs in the inner cell and Mf UEs in the outer

cell such that M = Mn +Mf.
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Figure 5.1: (a) A single cell with the BS at the middle. The users are located either in the inner
cell or the outer cell. (b) The mmWave analog beamforming system designed for the BS.

5.2.1 Channel Model

The channel matrix between the BS and a typical UE in downlink is assumed to follow the widely

adopted the Saleh-Valenzuela model [104] which is an aggregation of L scatterers. The expression

of the channel matrix is given by

H =
1√
L

L

∑
l=1

hlaUE(θl)a†
BS(φl), (5.1)

where hl denotes the gain of the l-th path. Further, the variables φl ∈ [0,2π] and θl ∈ [0,2π] are the

azimuth angle of departure (AoD) and azimuth angle of arrival (AoA) of the l-th path, respectively.

Also, the vectors aBS ∈ CNBS×1 and aUE ∈ CNUE×1 are antenna array response vectors at the BS

and UE, respectively. The antenna array vector of the l-th path at the BS is given by

aBS(φl) =
[
1,e j 2π

λ
d0sin(φl), . . . ,e j(NBS−1) 2π

λ
d0sin(φl)

]T
, (5.2)

where d0 denotes the antenna spacing and λ denotes the wavelength of the propagation. The

antenna array response vector for aUE(θl) can be written in a similar fashion.

It is worth mentioning that the channel model in (5.1) indicates a 2-dimensional beamforming

system. Hence, in this chapter, we focus on designing beamwidths in azimuth. In the future work,
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we will consider performing 3-dimensional beamforming that allows us to control the beamwidth

in azimuth and elevation. We should also note that, in this chapter, a long term resource allocation

is assumed [109, 59, 140, 119, 120, 10]. To this end, the channel is defined as a long term channel

model where the following assumptions are taken into account: (i) the variables AoD and AoA

remain unchanged during the channel coherence time and (ii) the channel gain hl contains the

path loss and large-scale fading effects and does not change over the coherence time. The former

assumption is due to the fact that the coherence time is much less than the time duration over which

AoD and AoA do not change [140]. The later implies that the instantaneous channel fluctuations

are ignored during the coherence time which is a valid assumption due to the long term power

allocation and the beamwidth control [140, 109, 10, 5].

5.2.2 Signal Model and Beamforming Gain

Assume that the BS wants to transmit the symbols sn and sf to UEn and UEf, respectively, using

NOMA. We let s∈C denote the information signal vector such that E [ss∗] = 1. Recall that NOMA

superimposes the signals such that the transmit NOMA signal becomes x =
√

Pnsn +
√

Pfsf where

Pn and Pf are the allocated powers to UEn and UEf, respectively. This stage is followed by the

beamforming stage where the analog precoder f ∈ CNBS×1 is performed. Each element of the

precoder has a constant magnitude of 1√
NBS

and the total power of the analog beamforming is

limited to ||f||2 = 1. After applying the analog combiner wi ∈ CNUE×1 i ∈ {n, f}, the received

signal by UEi is expressed as

yi = wi†Hifx+ni

=
√

Pnwi†Hifsn +
√

Pfwi†Hifsf +ni, (5.3)

where ni ∈ CNUE×1 is the additive, white Gaussian noise vector with zero-mean and σ2 variance

for each element, i.e., C N (0,σ2). Suppose the users are ordered based on their effective channel
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ηmain-lobe

side-lobe

Figure 5.2: A realistic beamforming model (dashed line) with variable main-lobe and side-lobe
gain and an estimated beamforming model (solid line) with a constant main-lobe and side-lobe
gain. η , φ , φ ′ denote the beamwidth, AoD of the BS, and the angle off the boresight direction,
respectively.

gain such that |wn†Hnf|2 ≥ |wf†Hff|2 which leads to Pn ≤ Pf. Due to the different power levels,

UEn applies SIC and the remain is UEn’s signal contaminated only by the noise. Further, UEf

treats the UEn’s signal as the inter-user interference. Hence, the intended signal is contaminated

by the interference plus noise.

Note that in our analog beamforming system, we transmit one stream using beam steering with an

analog beamformer. If the channel is single-path, i.e., L = 1, the beam should be directed in that

single path through beam alignment. If the channel is multi-path, i.e., L > 1, since all paths can

be found by beam alignment, the path with best quality can be selected and the beam is directed

in the direction of the best path during the data transmission. Therefore, only one path is used for

the transmission. In other words, applying the beam alignment procedure reduces the multi-path

MIMO channel to a single-path SISO channel and the gain of the SISO channel is given by |w†Hf|2

[5]. In fact, this procedure can be explained by the channel model below:

H =

√
NBSNUE

L
ABSVAUE, (5.4)

where ABS = [aBS(φ̄1), ...,aBS(φ̄NBS)] and AUE = [aUE(θ̄1), ...,aUE(θ̄NUE)] are two DFT matrices.

123



{φ̄m = 2π(m−1)
NBS

−π}NBS
m=1 and {θ̄n = 2π(n−1)

NUE
−π}NUE

n=1 divide the entire angular space [−π,π] into

NUE and NBS directions, respectively. Matix V is a sparse matrix with only L nonzero entries whose

positions are directly determined by the AoAs and AoDs. Based on (5.4), the beamalignment

procedure can be expressed as

(wopt, fopt) = arg max
w∈AUE,f∈ABS

|w†Hf|2. (5.5)

The solution to (5.5) can be found as wopt = aUE(θ̄i) and fopt = aBS(φ̄ j), where i and j are ,

respectively, the row index and column index of the item with largest magnitude in V. This solution

shows that beam alignment finds the strongest path in H. Since beam alignment practically reduces

the multi-path channel to a single-path channel, in our system, the beamforming gain can be defined

as the product of the beamforming gain of the BS and the beamforming gain of the UE, i.e.,

GBSGUE such that GBS = |a†
BSf|2 and GUE = |w†aUE|2, where aBS and aUE are the AoD and AoA

steering vectors of the stongest path [7]. The beamforming gain at the BS is modeled by

GBS(φ
′,η) =


2π−(2π−η)α

η
, if |φ ′| ≤ η

2 ,

α, otherwise,
(5.6)

where η and φ ′ denote the beamwidths of the BS and the off-boresight angle in the BS, respec-

tively. Parameter α is non-zero and α� 1 for narrow beams. In Fig. 5.2, the dashed line represents

a realistic beamforming model and the solid line represents the modeled beamforming considered

in this chapter. It is observed that in this model, the gain of the main-lobe is distributed uniformly

in the entire beamwidth and the side-lobe gain is assumed to be constant. We use this model to

keep the complexity of the presentation low, as iit is done in many other papers [109, 95, 127].

However, we should note that there is a better but more complicated model [45] that assumes the

deviation from the boresight angle decreases the beamforming gain. In our system, due to the pres-

ence of far users, it makes sense to select narrow beamwidths. In such a case, the beamforming
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gain degradation is negligible. Similarly, the model for the beamforming gain of UEi is given by

GUE(θ
i′,µ i) =


2π−(2π−µ i)α

µ i , if |θ i′| ≤ µ i

2 ,

α, otherwise,
(5.7)

where µ i and θ i′ denote the beamwidths of the UEi and the off-boresight angle in the UEi, respec-

tively. Considering the signal after applying SIC, (5.6), and (5.7), the SNR of UEn is expressed as

γn =
Pnhn2

GBS(φ
′,η)GUE(θ

n′,µn)

σ2 , (5.8)

and the signal-to-interference-plus-noise ratio (SINR) of UEf is obtained as

γf =
Pfhf2

GBS(φ
′,η)GUE(θ

f′,µ f)

Pnhf2GBS(φ ′,η)GUE(θ f′,µ f)+σ2
. (5.9)

5.3 Two-Step Beamwidth Design

5.3.1 The Existing Beamwidth Design

Most of the current methods determine the beamwidth in one step [109, 69, 34, 49]. That is, for

mmWave single-user, multi-user, and NOMA scenarios, all the directions are examined in one

step. In particular, for two UEs with comparable distances from the BS, the beam search algorithm

should select a much narrower beamwidth to find the best beam for UEf at the cost of considerable

large beam alignment time. To better elaborate, we have the following example. We assume

the beam resolutions of the BS, UEn, and UEf to be respectively β BS = dωBS
η
e, β n = dωn

µn e, and

β f = dωf
µ f e, and the required minimum SNR is satisfied. Recall that ωBS, ωn, and ωf denote the

sector-level beamwidths of the BS, the near user, and the far user, respectively. In this chapter, it
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Figure 5.3: (a) The proposed two-step beam alignment algorithm. The steps are demonstrated only
for the BS. At Step one, the BS has the beam resolution β BS

1 and the beamwidth η1. It is assumed
that UEn is located in the direction cover by Beam k. At the second step, Beam k is divided
into β BS

2 beams with the beamwidth η2. UEn and UEf are found to be located in the direction of
Beam km. To ease the representation, only main-lobes are illustrated and side-lobes are eliminated.
(b) The beam alignment and data transmission frame. The channel coherence time is T seconds.
The whole alignment time takes τ seconds. The first and second steps take τ1 and τ2 seconds,
respectively.

is assumed that the sector-level alignment is performed ideally and we only focus on beam-level

alignment [109]. We note that if the minimum SNR is satisfied for UEf, it will also be satisfied

for UEn. Using the one-step beam search, the alignment time is τconv = max{β BSβ nTp,β
BSβ fTp}

where Tp denotes the pilot transmission time. Intuitively speaking, due to the higher path loss,

β f becomes much larger than β n. Therefore, as the distance between the BS and UEf increases,

the alignment time increases too. In brief, the one-step beam alignment may not be the most

efficient algorithm for the mmWave-NOMA systems. On the other hand, the hierarchical algorithm

presented in [69] may not be suitable for the mmWave-NOMA systems since the large beamwidth

in the first step probably cannot provide sufficient SNR to find the right direction between the BS

and UEf.

5.3.2 The Proposed Beamwidth Design

The proposed algorithm consists of two steps as shown in Fig. 5.3. At the first step, the BS

randomly selects one of UEns. By solving Problem (4.18) defined in Section 5.4, the BS designs
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the parameters β BS
1 = dωBS

η1
e, β n

1 = dωn
µn

1
e, β BS

2 = dη1
η2
e, β n

2 = dµn
1

µn
2
e, and β f

2 = d
µn

1
µ f

2
e. The parameters

η1 and µn
1 denote the beamwidth of the BS and the selected UEn at the first step of the alignment.

The parameters η2, µn
2 , and µ f

2 are respectively defined as the beamwidth of the BS, the selected

UEn, and UEfs at the second step. At the first step, the beam alignment results in obtaining the

AoD1 and the AoA of the selected UEn, i.e., AoAn
1. Let us assume that after the first step, the

UEn’s location is found to be in Beam k as shown in Fig. 5.3(a).

To begin the second step, the BS determines those UEfs which are located in Beam k. Suppose

there are M′f (1 ≤M′f ≤Mf) UEfs located in Beam k. This information suggests that the M′f UEfs

should look for the best direction within the range of Beam k. Therefore, the search time for

determining the best direction can be remarkably reduced. In Fig. 5.3(a), km is supposed to be the

best direction. To carry out the beam alignment at the second step, the BS forwards β n
2 to UEn

and β n
1 , β f

2, and AoD1 to the selected UEfs. Then, the beam alignment leads to finding the AoD2,

the AoA of the selected UEn, i.e., AoAn
2, and the AoA of UEfs, i.e., AoAf

2s. In summary, we first

determine the AoA of the UEn. Then, using the obtained AoA, we determine the AoA of the M′f

UEfs. The proposed two-step algorithm is described in Alg. 8.

At the first step, the alignment time is τ1 = β BS
1 β n

1 Tp. The beam alignment time for the second

step is τ2 = max{β BS
2 β n

2 Tp,β
BS
2 β f

2Tp}. Therefore, the total beam alignment time is τ = τ1 + τ2 =

(β BS
1 β n

1 +max{β BS
2 β n

2 ,β
BS
2 β f

2})Tp as depicted in Fig. 5.3(b). It is clear that a large τ leaves a

short time for data transmission. However, it can be shown that β BS
1 β n

1 +max{β BS
2 β n

2 ,β
BS
2 β f

2} <

max{β BSβ n,β BSβ f}which provides τ < τconv. It is worth mentioning that the paired UEf takes the

advantages of the mmWave-NOMA system. Especially, the UEf is aligned by using the direction

information of the UEn which significantly reduces the beam alignment time.

As the AoAn
2 and AoAf

2s are found, the BS looks for the best UEf that can be paired with the UEn.

Specifically, the UEf positioned in Beam km is paired with the UEn. To this end, the BS requests

the UEfs to feed their AoAf
2 back. If only one of the M′f AoAf

2s is the same as the AoAn
2, the two

UEs are paired. If more than one of the M′f AoAf
2s are the same as the AoAn

2, the UEn is paired
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Algorithm 8: Two-Step Beam Alignment

1: Input: Long term channel informations, the probability ε , the minimum rate Rmin
2: Output: AoD2, AoAn

2, and AoAf
2s

3: Step 1: AoD1, and AoAn
1 determination

4: Using CQIs, the BS divides UEs into UEns and UEfs.
5: The BS selects a UE randomly from the UEns set.
6: Solving Problem (4.18), the parameters β BS

1 , β n
1 , β BS

2 , β n
2 , and β f

2 are designed.
7: Using β BS

1 and β n
1 , the beam alignment procedure provides the AoD1 and AoAn

1.
8: Step 2: AoD2, AoAn

2, and AoAf
2s determination

9: Using β BS
1 and AoD1, the BS determines the M′f UEfs.

10: The BS forwards β n
2 to UEn and β n

1 , β f
2, and AoD1 to the M′f UEfs.

11: The beam alignment procedure leads to determination of AoD2, AoAn
2, and AoAf

2s.

with the furthest UEf. The reason for the furthest UE selection is that NOMA achieves a better

performance compared with the traditional multiple access techniques as the distance between the

paired UEs increases [6].

5.4 Optimization Formulation

Here, we formulate an optimization problem with the goal of maximizing the sum-rate subject

to the beamwidths and the allocated powers. To do this, we introduce the following variables.

The rates of the UEn and UEf are denoted by Rn = (1− τ

T )log(1+ γn) and Rf = (1− τ

T )log(1+

γf), respectively, where τ is the total alignment time and T denotes the frame duration shown in
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Fig. 5.3(b). Then, the optimization problem is formulated as

maximize
η1,µ

n
1 ,η2,µ

n
2 ,µ

f
2,Pn,Pf

Rn +Rf (5.10a)

subject to ηmin ≤ η2≤ η1 ≤ ω, (5.10b)

µmin ≤ µ
n
2≤ µ

n
1 ≤ ω, (5.10c)

µmin ≤ µ
f
2≤ µ

n
1 , (5.10d)

Rn,Rf≥ Rmin, (5.10e)

Pn +Pf≤ Ptot, (5.10f)

where ηmin and µmin denote the highest resolution of the arrays at the BS and the UEs, respectively.

Ptot represents the total power.

In Problem (5.10), seven parameters should be optimized. To reduce the number of design pa-

rameters, we assume: (i) η1 = µn
1 , (ii) η2 = µn

2 = µ f
2, and (iii) ηmin = µmin. Thus, the problem is

simplified to

maximize
η1,η2,Pn,Pf

Rn +Rf (5.11a)

subject to ηmin ≤ η2≤ η1 ≤ 2π, (5.11b)

Rn,Rf≥ Rmin, (5.11c)

Pn +Pf≤ Ptot. (5.11d)

Now, the number of the parameters is reduced to four resulting in a more straightforward optimiza-

tion problem.
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5.5 Joint Beamwidth and Power Optimization Algorithm

Problem (5.11) is still an intractable non-convex optimization problem with complex constraints.

Thus, we propose an algorithm which iterates between the power allocation and the beamwidth

optimization.

5.5.1 Power Allocation

When we fix the beamwidth, the alignment time and beamforming gain are accordingly fixed. We

denote the beamforming gain as G.

To further simplify the problem, we introduce slack variables x1,x2,d2, to transform objective in

Problem (5.11) into log2 2x1 + log2
2x2

2d2
= x1 + x2−d2. Then, Problem (5.11) can be simplified to

maximize
Pn,Pf

x1 + x2−d2 (5.12a)

subject to 2x1≤ PnGhn2
+σ2

σ2 , (5.12b)

2x2≤ PnGhf2
+PfGhf2

+σ
2, (5.12c)

2d2≥ PnGhf2
+σ

2, (5.12d)

(1− τ

T
)x1≥ Rmin, (5.12e)

(1− τ

T
)(x2−d2)≥ Rmin, (5.12f)

Pn +Pf≤ Ptot. (5.12g)

In (5.12), the optimum is achieved when the constraints (5.12b)-(5.12d) satisfy with equality. How-

ever, (5.12d) is still non-convex. To relax it, we use an SPCA [14]. In this method, the non-convex

feasible set is sequentially approximated by an inner convex approximation. For example, at Iter-
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ation k, we have a lower bound for 2d2 as:

2d∗2 [k−1] log2(d2−d∗2 [k−1])+2d∗2 [k−1] ≤ 2d2, (5.13)

where d∗2 [k− 1] is the optimal solution at Iteration k− 1. Based on (5.13), we can relax (5.12d)

into a convex constraint as:

2d∗2 [k−1] log2(d2−d∗2 [k−1])+2d∗2 [k−1] ≥ PnGhf2
+σ

2. (5.14)

Then, at each iteration, we can relax (5.12) to

maximize
Pn,Pf

x1 + x2−d2 (5.15a)

subject to (5.12b)− (5.12c), (5.12e)− (5.12g), (5.15b)

(5.14). (5.15c)

Problem (5.15) is a convex problem, which can be efficiently solved by off-the-shelf solutions,

such as CVX [41]. Then, we can use an iterative algorithm to provide an approximation solution

for Problem (5.12). Detailed steps are presented in Alg. 9. According to [14], Alg. 9 converges.

5.5.2 Beamwidth Optimization

To optimize the beamwidths, we make the following approximations:

G1 =
(2π− (2π−η1)α)2

η2
1

≈ (2π−2πα)2

η2
1

, (5.16)

G2 =
(2π− (2π−η2)α)2

η2
2

≈ (2π−2πα)2

η2
2

, (5.17)
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Algorithm 9: Power Allocation for Two-Step Alignment

1: Set the sum-rate Rsum[−1]← 0, the maximal iteration number kmax ← 1000 and the conver-
gence threshold ε ← 10−3;

2: repeat
3: Choose a feasible start point P∗[0];

4: x∗1[0]← log2(
PnGhn2

σ2 ) and x∗2[0]← log2(PnGhf2
+PfGhf2

+σ2)

5: d∗2 [0]← log2(PnGhf2
+σ2);

6: until (5.12e) and (5.12f) are satisfied
7: k← 0;
8: while Rsum[k]−Rsum[k−1]≥ εRsum[k−1] and k ≤ kmax do
9: k← k+1;

10: Solve (5.15) to obtain x∗1[k], x∗2[k], d∗2 [k], P∗n [k] and P∗f [k];
11: end while
12: Return P∗n and P∗f .

where G1 and G2 are the beamforming gains of the alignment stages 1 and 2, respectively. Denoting

(2π − 2πα) as A, then, we have η2
1 = A2/G1 and η2

2 = A2/G2. As discussed in Section 5.3, the

alignment time of our algorithm can be expressed as

τ =
(2π)2

η2
1

+
η2

1
η2

2
=

(2π)2G1

A2 +
G2

G1
. (5.18)

Instead of finding the optimal beamwidth, we try to find the optimal G1 and G2 by solving:

maximize
G1,G2

(1− τ

T
)(Rn +Rf) (5.19a)

subject to
A2

4π2≤ G1≤ G2, (5.19b)

G2≤
A2

η2
min

, (5.19c)

Rn,Rf≥ Rmin, (5.19d)

where Rn = log2(1+
PnG2hn2

σ2 ) and Rf = log2(1+
Pf G2hf2

PnG2hf2+σ2
). Note that Rn and Rf are functions of

G2 but not G1.

Problem (5.19) is an intractable problem. However, we can observe that, when G2 is fixed, the
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Algorithm 10: Beamwidth Optimization for Two-Step Alignment

1: Set the sum-rate Rsum[−1]← 0, the maximal iteration number kmax ← 1000 and the conver-
gence threshold ε ← 10−3;

2: Choose a feasible start point Gopt
1 [0] and Gopt

2 [0];
3: while Rsum[k]−Rsum[k−1]≥ εRsum[k−1] and k ≤ kmax do
4: k← k+1;
5: Calculate Gopt

1 [k] based on Gopt
2 [k−1];

6: Do a one-dimensional search for Gopt
2 [k] based on Gopt

1 [k];
7: Calculate Rsum[k];
8: end while
9: Return Gopt

1 and Gopt
2 .

optimal G1 is the one that maximizes 1− τ/T , which is the same as minimizing τ = (2π)2G1
A2 + G2

G1
.

For τ = (2π)2G1
A2 + G2

G1
, the minimum point is G∗1 =

√
G2A
2π

. When G1 < G∗1, τ is a decreasing function

of G1 and when G1 > G∗1, τ is an increasing function in terms of G1. Considering the constraints

for G1, we can pick the optimal G1 as: (i) if A2

4π2 < G∗1, then Gopt
1 = min{G∗1,G2}; (ii) if A2

4π2 > G∗1,

then Gopt
1 = A2

4π2 .

Then, if we fix G1 to optimize G2, we can perform a one-dimensional search to find the optimal

Gopt
2 for the following problem:

maximize
G2

(1− τ

T
)(Rn +Rf) (5.20a)

subject to G1≤ G2≤
A2

η2
min

, (5.20b)

Rn,Rf≥ Rmin. (5.20c)

Since we can find the optimal G1 when G2 is fixed and vice versa, we can use an iterative algorithm

to find the optimal G1 and G2. The algorithm is described in Alg. 10.
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Algorithm 11: Joint Optimization for Two-Step Alignment

1: Set the sum-rate Rsum[−1]← 0, the maximal iteration number kmax ← 1000 and the conver-
gence threshold ε ← 10−3;

2: Choose a feasible start point Gopt
1 [0], Gopt

2 [0], Popt
n [0] and Popt

f [0];
3: while Rsum[k]−Rsum[k−1]≥ εRsum[k−1] and k ≤ kmax do
4: k← k+1;
5: Solve Problem (5.12) using the SPCA method;
6: Solve Problem (5.19) by iterating between G1 and G2;
7: Calculate Rsum[k];
8: end while
9: Calculate η

opt
1 and η

opt
2 based on Gopt

1 and Gopt
2

10: Return η
opt
1 , η

opt
2 , Popt

n and Popt
f .

5.5.3 Joint Optimization

We propose a joint optimization algorithm, which iterates between the power allocation and the

beamwidth optimization. The details of the algorithm are described in Alg. 11.

5.5.4 Convergence Analysis

The convergence of Alg. 9 has been proved in [14].

In Alg. 10, to maximize the sum-rate, we optimize the beamwidth for one stage while fixing the

beamwidth of the other stage. Such a step cannot decrease the sum-rate and generates a non-

decreasing sequence of sum-rate values. Therefore, the convergence of Alg. 10 is guaranteed

because the algorithm generates a sequence of non-decreasing sum-rates with an upper bound (the

maximum sum-rate).

In Alg. 11, when allocating the power, we increase the sum-rate while keeping the beams in the

feasible region. When optimizing the beamwidth, we search the feasible region for the beams

to find the maximum sum-rate while guaranteeing the minimum rate constraint and keeping the

powers in the feasible region. By doing so, we generate a monotonically increasing sequence with
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an upper bound (the maximum sum-rate), which proves the convergence.

5.5.5 Complexity Analysis

In this section, we analyze the complexity of the optimization algorithm. Since the optimization is

performed before the beam alignment, its results can be used for the beam alignment as long as the

users are static or slightly moving. Therefore, the optimization time can be neglected compared

with the beam alignment time.

For the power allocation, we use an off-the-shelf solution, i.e., CVX to solve Problem (5.15), which

uses the interior-point method. The computational complexity of CVX is O(N3.5), where N is the

number of variables to be optimized in the interior-point method. In our algorithm, N = 5.

For the beamwidth optimization, we iteratively optimize the beamwidth for two alignment stages.

When we optimize G1, the complexity is O(1), since we provide a closed-form solution for G1.

When we optimize G2, the main complexity lies in the one-dimensional search algorithm, with the

complexity O(
Gmax

2 −Gmin
2

δ
), where δ is the step size of the one-dimensional search algorithm.

5.6 Beamwidth Optimization with Beam Misalignment

In practice, the directional communication in outdoor mmWave systems is susceptible to beam

misalignment during the alignment period due to longer distance and outdoor propagation [127,

147, 3]. Even if beam alignment is performed without error, the other environmental factors such

as precipitation and wind cause movement and vibration at the BS which leads to frequent beam

misalignment [58]. In this section, we only focus on beam misalignment imposed by the mmWave

propagation characteristics and longer distance. In particular, in the mmWave-NOMA systems, far

users are mostly located in longer distances from the BS and prone to beam misalignment. This
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is our main motivation to evaluate the impact of beam misalignment on the system described in

Section 5.2.

5.6.1 Beam Misalignment Probability

The probability of beam misalignment of the UEi is defined as

Pi
mis = P

(
∪β

ki=1(∪
β

kBS 6=ki=1{|y
i
1,1|2 < |yi

kBS,ki|2})
)

≤
β

∑
ki=1

β

∑
kBS 6=ki=1

P
(
|yi

1,1|2 < |yi
kBS,ki|2

)
, (5.21)

where we denote ykBS,ki as the received signal at UEi for the beam pair {kBS,ki}. We assume that

the pair {1,1} is the correct pair, while other pairs are all misaligned pairs. The main-lob gain

for the beam pair {1,1} is denoted by Gi
1,1 =

(2π−(2π−ηi)α)2

η2
i

and the misaligned beam pair gain is

denoted by E i
kBS,ki =

2π−(2π−ηi)α
ηi

α , where ηi is the beamwidth of UEi and we assume ηBS = ηi.

Note that we neglect the misaligned pairs whose E i
kBS,ki = α2, since α2� Gi

1,1.

We notice that yi
1,1 has a complex normal distribution with mean

√
PtotGi

1,1hi and variance of 1,

i.e., C N (
√

PtotGi
1,1hi,1), and yi

kBS,ki ∼ C N (
√

PtotE i
kBS,kihi,1). Using [110], for two Gaussian

random variables yi
1,1 and yi

kBS,ki we have

P
(
|yi

1,1|2 < |yi
kBS,ki|2

)
= Q1(a,b)−

1
2

exp
(
−a2 +b2

2

)
I0(ab), (5.22)

where a =
√

PtotE i
kBS,kihi and b =

√
PtotGi

1,1hi. Further, Q1(a,b) denotes the first-order Marcum

Q-function and I0(ab) denotes the 0th order of the modified Bessel function of the first kind.
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5.6.2 Optimization Reformulation

Here, we reformulate the optimization problem to take into account the beam misalignment. The

problem is expressed as

maximize
η1,µ

n
1 ,η2,µ

n
2 ,µ

f
2,Pn,Pf

Rn +Rf (5.23a)

subject to (5.10b)− (5.10f), (5.23b)

Pn
mis,P

f
mis≤ ε, (5.23c)

where ε is the predefined beam misalignment probability. Further, Pn
mis and Pf

mis denote the beam

misalignment probabilities of UEn at the first step and UEf at the second step, respectively.

In Problem (5.23), seven parameters should be optimized. As we did before, to reduce the number

of design parameters, we assume: (i) η1 = µn
1 , (ii) η2 = µn

2 = µ f
2, and (iii) ηmin = µmin. Thus, the

problem is simplified to

maximize
η1,η2,Pn,Pf

Rn +Rf (5.24a)

subject to (5.11b)− (5.11d), (5.24b)

Pn
mis,P

f
mis≤ ε. (5.24c)

Further, since Gi
1,1 and E i

kBS,ki are functions of the beamwidth ηi, the misalignment probability is

also a function of the beamwidth. In fact, given Ptot and hi, the appropriate range for ηi to satisfy

the misalignment probability constraints can be found using an off-line search. For (5.24c), we

denote the range for η1 and η2 from the off-line search as [η l
1,η

u
1 ] and [η l

2,η
u
2 ], respectively. Then,
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we can simplify Problem (5.24) into

maximize
η1,η2,Pn,Pf

Rn +Rf (5.25a)

subject to (5.11b)− (5.11d), (5.25b)

η1∈ [η l
1,η

u
1 ], (5.25c)

η2∈ [η l
2,η

u
2 ]. (5.25d)

We can use the same approach as the one we use for Problem (5.11), i.e., we iterate between the

power allocation and the beamwidth optimization. When allocating the power, we can still use Alg.

9. However, when optimizing the beamwidth, we need to consider Constraints (5.25c) and (5.25d).

Same as Section 5.5, we optimize G1 and G2 instead of the beamwidths. Then, Constraints (5.25c)

and (5.25d) are transformed into A2

ηu2
1

≤ G1 ≤ A2

η l2
1

and A2

ηu2
2

≤ G2 ≤ A2

η l2
2

. The optimization problem

is expressed as follows:

maximize
G1,G2

(1− τ

T
)(Rn +Rf) (5.26a)

subject to max{ A2

4π2 ,
A2

ηu2

1

}≤ G1≤min{G2,
A2

η l2
1

}, (5.26b)

max{G1,
A2

ηu2

2

}≤ G2≤min{ A2

η2
min

,
A2

η l2
1

}, (5.26c)

Rn,Rf≥ Rmin. (5.26d)

Same as Alg. 10, we iterate between G1 and G2 to solve Problem (5.26). When G2 is fixed,

we can pick the optimal G1 as: (i) if max{ A2

4π2 ,
A2

ηu2
1

} < G∗1, then Gopt
1 = min{G∗1,G2,

A2

η l2
1

}; (ii)

if max{ A2

4π2 ,
A2

ηu2
1

} > G∗1, then Gopt
1 = max{ A2

4π2 ,
A2

ηu2
1

}. When G1 is fixed, we can perform a one-

dimension search for G2 to find the optimal Gopt
2 .

The algorithm to solve Problem (5.24) has the same complexity as Alg. 11 since we only add lower

bounds and upper bounds for η1 and η2. Also, the proof of convergence is the same as that of Alg.
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11.

5.7 Simulation Results

In this section, we present simulation results for the proposed two-step algorithm in comparison

with the one-step beam alignment algorithm [49]. In the simulations, the minimum rate is as-

sumed to be Rmin = 0.5 bits/s/Hz. The SNR is defined as SNR=Ptot
σ2 with σ2 = 1. The side-lobe

level is equal to α = 0.1. Further, we define ωBS = ωn = ωf = 120◦ [109]. Unless otherwise

specified, we assume that the near user experiences −15 dB channel gain, the far user has a chan-

nel gain of −25 dB, the predefined misalignment probability factor is given by ε = 10−4, the

channel coherence time is given by T/Tp = 3× 103, the minimum beamwidth at the transceiver

is ηmin = µmin = 3◦, and Ptot is normalized to 1. We incorporate the beam alignment procedure

into our two-step beamwidth design and adopt the beamforming gain models (5.6) and (5.7) in our

simulations. The advantage of the joint optimization has been shown in [10]. In this chapter, we

have conducted all the simulations for three different scenarios: (i) the proposed two-step beam

alignment algorithm without misalignment, (ii) the proposed two-step algorithm with misalign-

ment, and (iii) the one-step beam alignment algorithm without misalignment. In these algorithms,

the unknown parameters are the BS’s beamwidth and the users’ beamwidth and power coefficients.

In the two-step alignment without misalignment, the optimized parameters are attained by solv-

ing Problem (4.18). In the two-step algorithm with misalignment, the parameters are optimized by

solving Problem (5.23). Finally, the unknown parameters of the one-step algorithm are obtained by

solving the optimization problem (9) in [49]. Reasonably, we presume that the one-step algorithm

without misalignment outperforms that of with misalignment in terms of the sum-rate. Hence, the

sum-rate evaluation of the one-step algorithm with misalignment is ignored.

Fig. 5.4 demonstrates the sum-rate performance versus SNR. By increasing the SNR, the sum-

rate of all algorithms goes up. However, it is revealed that the proposed algorithm outperforms
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Figure 5.4: Performance of the sum-rate versus SNR with hn = −15 dB, hf = −25 dB, T/Tp =
3×103, and ηmin = µmin = 3◦.

the one-step algorithm by about 2.5 bits/s/Hz for low SNRs and about 3 bits/s/Hz for high SNRs.

It is because, in our algorithm, the beam search is done for the UEn first and then the UEf. In

contrast, the one-step algorithm selects the beamwidth for UEn and UEf, simultaneously [49].

Further, the two-step algorithm with misalignment achieves almost the same sum-rate as that of

without misalignment except at SNRs between 0 dB to 2 dB. At very low SNR regions, say 0 dB,

the algorithm experiences higher probability of misalignment at the second step due to the low

channel gain of UEn. To compensate for the low channel gain, the algorithm generates a narrow

beamwidth which increases the beamforming gain, although this requires spending more time on

the beam alignment phase compared to the without beam misalignment. Thus, the achievable

sum-rate decreases.

In Fig. 5.5, we conduct the simulation for the sum-rate versus the normalized channel coherence

time, i.e., T/Tp. We assume that SNR is 0 dB. As the normalized channel coherence time increases,

the sum-rate of all three algorithms increases as well. The main reason is that according to the time
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Figure 5.5: Performance of the sum-rate versus T/Tp for hn =−15 dB, hf =−25 dB, SNR= 0 dB,
and ηmin = µmin = 3◦.

frame in Fig. 5.3, when the channel coherence time is large, the algorithms have sufficient time to

select a narrow beam and transmit their data for a longer period. Our two-step algorithm achieves

a much higher sum-rate compared to the one-step algorithm although the sum-rate improvement

depends on the coherence time. Especially, for a short channel coherence time, our algorithm

is able to align the beam in a shorter time and transmit data for the remaining time which is far

longer than that of the one-step algorithm. For very large normalized channel coherence times,

the sum-rate of the one-step algorithm approaches to that of the two-step algorithm. Actually,

by increasing the channel coherence time, the beam alignment time has less impact on the sum-

rate. Therefore, it is expected that as the channel coherence time becomes larger and larger, the

sum-rate of the one-step algorithm approaches to the sum-rate of our algorithm. The two-step

algorithm without misalignment also outperforms the with misalignment algorithm. In particular,

for a short normalized coherence channel time, the algorithm should ensure that all the constraints

in Problem (5.23) are satisfied. In other words, the beam alignment during the two steps should
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Figure 5.6: Performance of the sum-rate versus ηmin for hn = −15 dB, hf = −25 dB, T/Tp =
3×103, and SNR= 3 dB.

result in a probability of misalignment less or equal to 10−4. Thus, the beamwidths are selected

sufficiently narrower than the without misalignment algorithm. This leads to assigning less time

for the data transmission and achieving lower sum-rate. As the coherence time increases, the

difference between the beam alignment times is negligible and the sum-rates are nearly the same.

Figure 5.6 demonstrates the sum-rate performance versus the minimum beamwidth. We notice

that ηmin = µmin. Also, we define SNR= 3 dB to ensure that the two-step algorithm with misalign-

ment, for the given minimum beamwidth range, satisfies Constraint (5.23c). For all the minimum

beamwidths, our algorithm is able to achieve higher sum-rate. We observe that when the mini-

mum beamwidth increases from 1 to 5, the sum-rate of the proposed two-step algorithm gradually

decreases, while the sum-rate of the one-step algorithm approximately remains constant. This is

because the one-step algorithm is not able to take advantages of the narrow minimum beamwidth.

That is, the one-step algorithm should allocate much more time for beam alignment with a narrow

beamwidth which is not an efficient solution in terms of the sum-rate. In contrast, our proposed
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Figure 5.7: Performance of the sum-rate versus hn for hf =−25 dB, T/Tp = 3×103, SNR= 3 dB,
and ηmin = 3◦.

algorithm selects a fairly wide beamwidth at the first step of the beam alignment phase. Then,

the algorithm chooses a narrower beamwidth in a short time within the range of the selected wide

beamwidth. The narrow beamwidth remarkably increases the beamforming gain which leads to a

higher sum-rate. When the minimum beamwidth increases, the algorithm has to choose a wider

beamwidth which decreases the beamforming gain and consequently decreases the sum-rate. Fur-

ther, since the proposed algorithm is able to choose a narrow beamwidth for ηmin ∈ [1,3], the

proposed algorithm with misalignment achieves exactly the same sum-rate as that of the without

beamwidth algorithm. Due to the narrow beamwidth, the beamforming gain is sufficiently large

and the beam misalignment probability is less than ε = 10−4. For ηmin ∈ (3,5], the sum-rate of

the two-step algorithm with beam misalignment slightly degrades. The reason is that in order to

keep the beam misalignment equal or less than ε = 10−4, the proposed algorithm with beam mis-

alignment allocates more time to the alignment phase to provide the necessary beamforming gain

by selecting proper beamwidths.
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In Fig. 5.7, we show the performance of the sum-rate versus the channel gain of UEn, i.e., hn. As

hn increases and hf is fixed, the sum-rate also increases for all algorithms. By making hn larger,

the sum-rate gap between our two-step algorithm and the one-step algorithm expands. When hn is

small, i.e., UEn is located at the edge of the inner cell, the two-step algorithm spends more time

on beam alignment at the first step. When UEn approaches the BS, hn becomes larger and the

algorithm assigns less time for the beam alignment at the first step. Since UEf is fixed, the time

difference between the beam alignment at the second step when UEn is close and far from the

BS is negligible. Therefore, depending on the channel gain of UEn, the sum-rate gap between the

proposed algorithm and the one-step algorithm is variable. Further, for a low channel gain, the sum-

rate of the two-step with beam misalignment becomes lower than that of the without misalignment

algorithm. To satisfy Constraint (5.23c), at the first step, the two-step with beam misalignment

algorithm chooses narrower beamwidth compared to that of the without misalignment to provide

the required beamforming gain. The same phenomenon may or may not occur for the second step

of the beam alignment phase. Therefore, overall, the two-step with beam misalignment constraint

assigns more time on beam alignment at low hn. As the channel gain increases, Constraint (5.23c)

can easily be met. In such a case, the same-rates are equal. It is worth mentioning that a similar

simulation can be done for a variable hf and constant hn. Although, it is shown that the equivalent

channel gain of two NOMA users with comparable channel gains is almost similar to the channel

gain of the near user [6]. Thus, the sum-rate is highly affected by the channel gain of UEn.

Figure 5.8 evaluates the sum-rate performance versus the parameter ε . We perform simulation

for ηmin = 3◦ and 4◦ and SNR= 3 dB. For ηmin = 3◦, our solution for the optimization problem

in (5.23) provides the optimized parameters while the misalignment probability can be as low

as 10−8. Note that the two-step algorithm without misalignment constraint may not satisfy the

misalignment probability constraints on the x-axis. As it is mentioned before, for a small ε , the

algorithm aims to choose a sufficiently narrow beamwidth which provides high beamforming gain.

This causes the sum-rate degradation. As ε becomes smaller, the sum-rate gap becomes bigger.

For ηmin = 4◦, our solution for the optimization problem in (5.23) exists for values up to ε = 10−7.
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Figure 5.8: Performance of the sum-rate versus ε for hn =−15 dB, hf =−25 dB, T/Tp = 3×103,
SNR= 3 dB, ηmin = 3◦ and 4◦.

For smaller values, the unknown parameters cannot be determined. Therefore, as the minimum

beamwidth increases, achieving lower misalignment probability becomes impractical.

5.8 Conclusion

In this chapter, we proposed a new two-step beam alignment algorithm for the analog beamform-

ing mmWave-NOMA systems with constrained channel coherence time. The algorithm takes the

advantages of NOMA, as such, first the beamwidth is selected for the near user and then for the far

user. We defined an optimization problem to maximize the sum-rate. We then jointly optimized

the beamwidths and the allocated powers while keeping the minimum required rate equal or higher

than a predefined threshold. To evaluate the effect of beam misalignment due to the mmWave prop-

agation characteristics and longer distance, we formulated another optimization problem, where we

imposed extra constraints on the beamwidths to satisfy the misalignment probability requirements.
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An off-line search was adopted to find the appropriate ranges for the beamwidths. Then, with the

new ranges of the beamwidths, we used the similar joint optimization algorithm structure as we

proposed for the problem without misalignment probability requirements to find the optimal power

allocation and beamwidths. Our numerical results showed that the proposed algorithm with and

without beam misalignment achieves higher sum-rate compared to the one-step beam alignment al-

gorithm. Further, due to aligning beams in two steps, the proposed algorithm can take advantages

of narrow beams. This leads to a higher beamforming gain and better sum-rate. Further, in the

case of lower SNR, channel coherence time, and the lower channel of the near user, the proposed

algorithm with beam misalignment marginally reduces the sum-rate.
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Chapter 6

Reconfigurable Intelligent Surface Assisted

mmWave UAV Wireless Cellular Networks

6.1 Introduction

Unmanned aerial vehicles (UAVs) have received increasing attention in the past decade because of

their flexible, mobility, and fast deployment [132, 142]. There are several typical applications of

UAV-assisted wireless networks including wireless sensor networks (WSNs) [45, 71, 44], caching

aided wireless networks, cloud radio access networks (CRANs) [19], etc. Among these scenarios,

UAV-assisted wireless cellular network is a promising technology to enable significantly enhanced

UAV-ground communications [141]. In UAV-assisted wireless cellular networks, a UAV can serve

as a flying base-station (BS), an aerial radio access point, and an aerial relay to expand wireless

coverage and provide data transmission towards physical objects.

Millimeter wave (mmWave) communications are considered in the UAV wireless cellular networks

to further enhance the available bandwidth and increase the data rate [132, 131]. The deployment

and placement optimization of UAV operating in the mmWave band has been studied in the lit-
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erature. In [146], a spatial interference channel model is established for UAV groups, and the

expression of signal to interference plus noise ratio (SINR), which depends on codebook design

and direction of arrival (DOA), is obtained. In [131], a joint optimization of the UAV-BS deploy-

ment and beamforming to maximize the achievable sum-rate in a multi-user mmWave-UAV system

is proposed.

Although UAVs bring a lot of flexibility in deploying the networks, their high mobility and instabil-

ity severely impair the quality of communication. One method to improve the reliability and quality

of the UAV networks is to change the wireless scattering environment. Reconfigurable antennas

have been proposed to change the transmission states and improve the performance [17, 42, 35].

Reconfigurable antennas for mmWave systems have been designed and provide similar benefits

[52, 11]. Similar to reconfigurable antennas, reconfigurable intelligent surfaces (RIS) can intelli-

gently configure the wireless environment to improve the transmission quality between the trans-

mitter and receiver [129, 55]. However, different from reconfigurable antennas, which use active

units to change the transmission state, RIS use passive units which only incur phase shift to the

incident signal without power consumption. Moreover, RIS can help improve the channel quality

when the line-of-sight (LoS) path is affected by physical obstacles or under harsh environments

such as rains. In UAV networks, RIS can be implemented on building walls and remotely con-

figured by central controllers to coherently direct the reflected radio waves towards specific users

[84]. In [54], the UAV-BS link is assisted by the RIS. In [76], trajectory and beamforming are

jointly designed for the scenario where one UAV serves one user.

In this chapter, we consider a RIS-assisted mmWave UAV wireless cellular network, where one

UAV is serving several users with the help of multiple RIS. We propose a joint optimization prob-

lem, which considers the deployment, user scheduling, beamforming vector, and RIS phases to

maximize the sum-rate. We consider the constraints of the minimum rate, the movement of the

UAV, the analog beamforming, and the RIS phases. To solve this complex problem, we use an

iterative method. In our method, we optimize one variable while fixing the other three variables.
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When optimizing the deployment, we find the optimal position for the UAV by a sphere search.

Then, we formulate an integer linear programming to find the best scheduling. We also design the

analog beamforming vector by compensating the phases of the channel which combines the direct

path and the RIS paths. When optimizing the RIS phases, we formulate a semi-definite program-

ming to find the best phases. The proposed joint optimization outperforms the system without RIS

assistance and the system without deployment optimization.

Our contributions are summarized as follows:

• We propose a new scenario where a UAV serves users with the help of multiple RIS.

• We further propose a joint optimization of the UAV deployment, the scheduling, the RIS

phases and the beamforming to maximize the system throughput.

The reminder of the chapter is organized as follows. In Section 6.2, the system model is explained.

In Section 6.3 the optimization problem is formulated. In Section 6.4, the joint algorithm is pro-

posed. Numerical results are presented in Section 6.5. Section 6.6 concludes this chapter.

6.2 System model

We consider a single UAV, multi-RIS and multi-user scenario. The UAV functions as a flying BS

to serve the ground users. The RIS are deployed on the ground and are controlled remotely by a

central controller to help improve the communication quality between the UAV and ground users.

The UAV is equipped with Nt antennas and each user is equipped with a single antenna. The total

number of users is K. Each RIS is equipped with NRIS reflecting elements and the total number of

RIS is R.

In our system, we assume a quasi-static mobility model. That is, within a timeblock, the UAV
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is static and then it can move one step. Each timeblock contains M′ timeslots. We collect users’

locations every M′ timeslots.

At each timeblock, we fine tune the position of the UAV to fit in the locations of the users. In

each timeblock, we aim to serve all the K users in M timeslots (M < M′). Note that the redundant

M′−M timelots are used for the data collection and UAV movement. To guarantee that all users

can be served, we assume K ≤M.

The goal of our system is to maximize the system throughput in each timeblock. To do this, we

need to jointly optimize the position of the UAV, design the scheduling, optimize the UAV beams,

and adjust the RIS phases. The system model is shown in Fig. 6.1, where we illustrate a 2-RIS

and 5-user system. In Timeslot 3 of the timeblock, the UAV serves User 2 with the help of RIS 1

and RIS 2. In different timeblock, the UAV will fine tune its location to optimize the performance

within its users.

User 5

User 4

User 3

User 2
User 1

x

yZ

UAV 1
3rd timeslot activated

x32=1

K = 5


M = 5


M’ = 10


Timeblock

Data transmission slots

RIS 1
RIS 2

UAV Beam

RIS BeamRIS Beam

Figure 6.1: System model
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6.3 Problem formulation

6.3.1 Channel model

UAV channel
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Figure 6.2: channel model with three clusters, where the dashed blue lines are the paths formed by
reflecting scatters.

In our scenario, we assume the UAV is carrying a uniform planar array (UPA) with one RF chain

which operates on mmWave band. A multi-path channel (MPC) model is adopted. As Fig. 6.2

illustrates, we denote hk as the channel vector, then it can be expressed as

hH
k =

√
Nt

Lk

Lk

∑
l=1

ak,lα(θk,l,ϕk,l)
H , (6.1)

where ak,l is the channel gain of the lth path from User k to the UAV, θk,l and ϕk,l are the elevation

steering angle and azimuth angle, respectively, of the lth path from User k to the UAV, and Lk is

the total number of paths for User k to the UAV. Each path is formed through a scatter. Parameter

α(θk,l) is the steering vector function for the UPA. For an ME×NA (Nt = MENA) UPA, the steering
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vector is defined as

α(θk,l,ϕk,l) = 1√
Nt
[1, ...,e jπ sin(θk,l) fm,n(ϕk,l),

...,e jπ sin(θk,l) fME ,NA(ϕk,l)]T ,
(6.2)

where fn,m(ϕk,l), (m−1)cos(ϕk,l)+(n−1)sin(ϕk,l), 0≤ m≤ME −1 and 0≤ n≤ NA−1. The

steering angles θk,l and ϕk,l depend on the location of the UAV and the location of the scatter which

forms the path l. We denote (x,y,h) as the location of the UAV and (xl
k,y

l
k) as the location of the

scatter of the lth path for User k. Then, θk,l and ϕk,l can be calculated as

 θk,l = arctan(

√
(xl

k−x)2+(yl
k−y)2

h )

ϕk,l = arctan( yl
k−y

xl
k−x

)
(6.3)

Model (6.1) describes the Non-LoS scenario between User k and the UAV. In most cases, an LoS

path exists as well. When there is an LoS path, the channel becomes

hH
k =
√

Ntakα(θk,ϕk)
H , (6.4)

where ak is the channel gain of the LoS path from User k to the UAV, θk and ϕk are the elevation

steering angle and azimuth angle of the LoS path from User k to the UAV, respectively.

The LoS path between the UAV and the serving user can be blocked if the propagation environment

contains physical obstacles. The probability of existing an LoS component can be described as a

function of the angle ξk as follows

PLOS(ξk) =
1

1+aexp(−b(ξk−a))
, (6.5)

where a and b are the positive modeling parameters depending on the propagation environment,

e.g., rural, urban, or dense urban. ξk is calculated by ξk = arctan(h/Dk) with the horizontal distance

152



from the UAV to User k denoted as Dk =
√

(x− xk)2 +(y− yk)2. The probability of existing an

LoS component increases as the elevation angle increases, and it approaches 1 when h is large

enough.

RIS channel

We denote the channel between RIS r and the UAV as Gr. The channel between RIS r and User k

is denoted by hr,H
k . We use the widely adopted MPC model to model Gr and hr,H

k . For hr,H
k , it can

be expressed as

hr,H
k =

√
NRIS

Lr
k

Lr
k

∑
l=1

ar
k,lα(θ r

k,l,ϕ
r
k,l)

H , (6.6)

where ar
k,l is the channel gain of the lth path from RIS r to User k. α(θ r

k,l,ϕ
r
k,l) is the steering vector

using the same model as (6.2).

For Gr, it can be expressed as

Gr =

√
NtNRIS

Lr

Lr

∑
l=1

ar,lα
r(θ r

r,l,ϕ
r
r,l)α

t(θ t
r,l,ϕ

t
r,l)

H , (6.7)

where ar,l is the channel gain of the lth path from the UAV to RIS r. α t(θ t
r,l,ϕ

t
r,l) and αr(θ r

r,l,ϕ
r
r,l)

are the transmitting steering vector and receiving steering vector, respectively.

The overall channel between User k and the UAV via RIS r can be expressed as

hH
k,r = hr,H

k ΘrGr, (6.8)

where Θr = diag(e jθr,1, ...,e jθr,NRIS ) is the phase-shift matrix of the rth RIS. θr,m ∈ [0,2π] denotes

the phase shift associated with the mth passive element of the rth RIS.
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6.3.2 Scheduling

In each timeblock, we have 2 rules for scheduling: (i) in one timeslot, the UAV can only serve at

most one user; and (ii) across all timeslots, all K users should be scheduled at least once.

To describe the process of scheduling, we denote the binary variable xm
k ∈{0,1} to indicate whether

User k is scheduled by the UAV in Timeslot m, i.e.,

xm
k =

 1, if User k is scheduled in Timeslot m

0,otherwise
(6.9)

For Rule (i), we have

0≤
K

∑
k=1

xm
k ≤ 1 (6.10)

For Rule (ii), we have

M

∑
m=1

xm
k ≥ 1 (6.11)

6.3.3 UAV Beamforming and RIS Reflecting

We denote wk as the beamforming vector from the UAV to User k with the constant-modulus

constraint |[wk]m| = 1√
Nt
,m = 1, ...,Nt . Then, at Timeslot m, the received signal from the UAV to

User k is

ym
k = xm

k

√
P(hH

k +
R

∑
r=1

hr,H
k ΘrGr)wksk +nk. (6.12)

154



The achievable data rate from User k to the UAV at Timeslots m can be expressed as

Rm
k = log2(1+

xm
k P|(hH

k +∑
R
r=1 hr,H

k ΘrGr)wk|2

σ2 ), (6.13)

where σ2 is the power of Gaussian white noise at User k, and P is the total transmission power at

the UAV.

6.3.4 Joint optimization

In each timeblock, we want to maximize the thoughput of the system. The optimal way is to find

the best position of the UAV in the entire space. However, this is impractical since the UAV cannot

rapidly move from one position to another position far away within a short time. To this end, we

assume that the UAV can only move one small step in each timeblock or stay static. This means

|p−ppre| = d or 0, where p , (x,y,h) is the position of the UAV and ppre is the position of the

UAV in the previous timeblock. The parameter d is decided by the UAV’s energy constraint. Then,

the optimization problem is described as follows:
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maximize
{p},{xm

k },
{wk},{Θr}

M

∑
m=1

K

∑
k=1

Rm
k (6.14a)

subject to (6.10)−(6.11) , (6.14b)

|p−ppre|= d or 0 , (6.14c)

M

∑
m=1

Rm
k ≥ γk , (6.14d)

|[wk]m|=
1√
Nt

,m = 1, ...,Nt , (6.14e)

Θr = diag(e jθr,1, ...,e jθr,NRIS ). (6.14f)

Constraint (6.14d) is the constraint for the minimum data rate for each user. Constraint (6.14e) is

for analog beamforming. Constraint (6.14f) is for the RIS phases.

6.4 Solution

To solve Problem (6.14), we will iterate among the deployment, scheduling, beamforming, and

RIS phases. When we optimize one variable, we fix the other three variables.

6.4.1 Deployment

When optimizing the deployment, we fix the scheduling, the beamforming vector, and the RIS

phases. We denote the index of the scheduled user at Timeslot m by im, then the sub-problem for
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deployment can be expressed as

maximize
p

M

∑
m=1

Rim (6.15a)

subject to |p−ppre|= d or 0, (6.15b)

Rim ≥ γm , (6.15c)

where Rim = log2(1+
P|h̃H

im wim |2

σ2 ), h̃H
im =hH

im +∑
R
r=1 hr,H

im ΘrGr, and γm is calculated by γim/(∑
M
n=1 xn

im).

The position of the moved UAV can be expressed as

p = ppre +d[sinθmv cosϕmv,sinθmv sinϕmv,cosθmv]
T , (6.16)

where θmv and ϕmv are the movement elevation angle and azimuth from p to ppre, respectively. To

find the best position for the UAV, we perform a sphere search for p based on ppre, i.e., we find the

optimal moving direction from ppre to p. The detailed algorithm is described in Alg. 12.

Algorithm 12: Best deployment

1: Input:
2: Searching step size ∆, ppre and the sum-rate of the previous timeblock Rpre

sum;
3: popt← ppre, Rmax

sum ← Rpre
sum;

4: for θmv = 0 : ∆ : 2π do
5: for ϕmv = 0 : ∆ : 2π do
6: Update p and Rsum;
7: if Rsum ≥ Rmax

sum and Constraint (6.15c) is satisfied then
8: popt← p, Rmax

sum ← Rsum;
9: end if

10: end for
11: end for
12: Return the optimal popt.
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6.4.2 Scheduling

When the deployment, beamforming, and RIS phases are fixed, the throughput maximization with

respect to the scheduling is formulated as

maximizex

K

∑
k=1

[Rk

M

∑
m=1

xm
k ] (6.17a)

subject to (6.10)−(6.11), (6.17b)

M

∑
m=1

xm
k Rk ≥ γk , (6.17c)

where x = {xn
k [m]} is the set of scheduling indicators and Rk = log2(1+

P|h̃H
k wk|2
σ2 ). Problem (6.17)

is an integer linear programming (ILP) since all variables are binary and all constraints are linear.

Optimizers such as the Gurobi [91] can be employed to obtain the optimal solution to Problem

(6.17).

6.4.3 Beamforming vector optimization

Given the scheduling order, the optimal deployment and the RIS phases, we can simplify the

beamforming vector design problem into

maximize
{wk}

M

∑
m=1

Rim (6.18a)

subject to Rim ≥ γm , (6.18b)

|[wk]m|=
1√
Nt

,m = 1, ...,Nt . (6.18c)

To further simplify the problem, we decouple Problem (6.18) by timeslots. At Timeslot m, we need
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to design the beamforming vector for the scheduled user according to

maximizewim
Rim (6.19a)

subject to Rinm ≥ γim , (6.19b)

|[wim ]t |=
1√
Nt

, t = 1, ...,Nt . (6.19c)

Since we are maximizing the rate Rim in (6.19), we can drop the lower-bound constraint (6.19b)

to simplify the problem. Note that maximizing Rim is equivalent to maximizing the power of

the receiving signal, since there is no interference. Then, we can re-formulate the optimization

problem as

maximizewim
|h̃H

imwim |2 (6.20a)

subject to |[wim ]t |=
1√
Nt

, t = 1, ...,Nt ,n = 1, ...,N. (6.20b)

According to the Cauchy-Schwartz inequality, the optimal wopt
im is the one which compensates the

phases of the channel, i.e.,

wopt
im =

1√
Nt

e j arg(h̃im) (6.21)

6.4.4 RIS phase design

When designing the RIS phases, similar to the beamforming vector designing, we decompose the

problem by timeslots. At Timeslot m, we reformulate the optimization problem as

maximize
{Θr}

R

∑
r

Tr(GH
r Θ

H
r hr

imhr,H
im ΘrGrWim) (6.22a)

subject to Θr = diag(e jθr,1 , ...,e jθr,NRIS ), (6.22b)
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where we ignore the term wH
imhimwim , since it is a constant term for fixed wim . To simplify the

optimization problem, we define HRIS,H
inm

= [h1,H
inm

, ...,hR,H
inm

] ∈ C 1×RNRIS , = diag(Θ1, ...,ΘR) ∈

C RNRIS×RNRIS and GRIS = [GH
1 , ...,G

H
R ]

H ∈ C RNRIS×Nt . Then, the objective in (6.22) can be re-

formulated as Tr( HHRISHRIS,H
inm

GRISWimGH
RIS). Further, by defining vΘ as the vector collecting

the diagonal elements of , according to [144], we can transform the objective into vH
Θ

EvΘ, where

E = (HRISHRIS,H
inm

)� (GRISWimGH
RIS). Operator � represents the Hadamard product.

We can transform the RIS phase design problem into a semi-definite program (SDP) as follows:

maximize
VΘ

Tr(EVΘ) (6.23a)

subject to [VΘ]t,t = 1, t = 1, ...,RNRIS, (6.23b)

VΘ � 0 , (6.23c)

rank(VΘ) = 1 , (6.23d)

where VΘ , vΘvH
Θ

. To deal with the rank-one constraint in (6.23), we introduce the semi-definite

programming relaxation (SDR) technique by dropping the rank-one constraint to solve the opti-

mization problem below

maximize
VΘ

Tr(EVΘ) (6.24a)

subject to [VΘ]t,t = 1, t = 1, ...,RNRIS, (6.24b)

VΘ � 0 (6.24c)

Problem (6.24) provides an upper bound for Problem (6.23) and its optimal solution can be found

by standard tools of mathematical programming such as CVX [41]. Note that Problem (6.24) is

the relaxed version of Problem (6.23), which means we cannot guarantee Vopt
Θ

is rank-one. When

the rank of Vopt
Θ

is larger than one, we cannot recover vopt
Θ

from Vopt
Θ

straightforwardly. In such

cases, we use the same technique as [61], in which we generate a set of candidates which obey the
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distribution of C N (0,Vopt
Θ

). Then, we normalize the vector elements of each candidate. At last,

we pick the normalized candidate vopt
Θ

which maximizes Tr(Evopt
Θ

voptH
Θ

).

6.4.5 Joint optimization

The details of the joint optimization algorithm are described in Alg. 13. Obviously, Alg. 13 con-

verges, since we generate a monotonically increasing sequence with an upper bound (the maximum

sum-rate).

Algorithm 13: Joint Optimization for RIS-assisted mmWave UAV networks

1: Set the sum-rate Rsum[−1]← 0, the maximal iteration number kmax ← 1000 and the conver-
gence threshold ε ← 10−3;

2: Choose feasible start points popt[0], xopt[0], {wopt
k [0]}, and opt[0];

3: while Rsum[k]−Rsum[k−1]≥ εRsum[k−1] and k ≤ kmax do
4: k← k+1;
5: Use Alg. 12 to find the optimal deployment;
6: Solve (6.17) to obtain the optimal scheduling;
7: Obtain the optimal beamforming vector by (6.21);
8: Solve (6.23) to get the optimal RIS phases;
9: Calculate Rsum[k];

10: end while
11: Return popt, xopt, {wopt

k }, and opt.

6.5 Simulation results

In this section, we provide some simulation results for our proposed joint optimization algorithm.

We consider a scenario where a UAV serves 4 users in 10 timeslots with the assistance of 2 RIS.

The UAV serves the users using a mmWave carrier. We choose 28 GHz as the carrier’s frequency,

since 28 GHz is a typical frequency band in urban areas [100]. The parameters in Eq. (6.5) are set

as a = 11.95 and b = 0.14. The channel gain coefficient an
k is generated according to a complex
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Gaussian distribution an
k ∼ C N (0,10−0.1κ), where κ = e+ 10 f log10(s)+η . Parameter s is the

distance between the UAV and the user. We calculate s according to the UAV’s position in the

previous timeblock. Parameters f and e are constants and η ∼N (0,ση). When the channel is an

LoS channel, f = 2, e = 61.4 and ση = 5.8. When the channel is a Non-LoS channel, f = 2.92,

e = 72 and ση = 8.7.

In our simulations, the positions of the RIS are (10,10,0) and (40,40,0). The UAV and the RIS

are all equipped with a 64 (16× 4) antenna array. We set the amplitude of the moving step for

the UAV to be 5 meters. The initial position p[0] = (25,25,50). At each timblock, we randomly

generate the positions of the users. The total number of timeblocks is 1000. We use the averaged

sum-rate and minimum rate per timeblock as the measurements of our system.

In Figs. 6.3 and 6.4, we compare the sum-rate and the minimum rate among the system which

uses our proposed joint optimization method, the system that optimizes the deployment without

the assistance of RIS, the system which optimizes the beamforming vector and RIS phases but not

the deployment, and the system without the best deployment and the optimal beamforming vector

and RIS phases. The power of the Gaussian white noise is set to be −100 dBm and the minimum

rate constraint is 1 bit/Hz. The results show that our joint optimization method brings great gains

over the other three systems in both the sum-rate and the minimum rate.

6.6 Conclusion

In this chapter, we jointly optimized the deployment, user scheduling, beamforming vector, and

RIS phases in a RIS assisted UAV wireless network. To solve the problem, we iterated among the

4 variables. While optimizing one variable, we fixed the other 3 variables. For the deployment, we

found the optimal position by a sphere search. Then, we formulated an integer linear programming

to find the best scheduling. We also designed the analog beamforming vector by compensating the
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Figure 6.3: Sum-rate comparison

phases of the channel. When optimizing the RIS phases, we formulated a semi-definite program-

ming to find the best phases. The proposed joint optimization outperforms the system without RIS

assistance, and the system without deployment optimization.
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Chapter 7

Conclusions and future work

In this chapter, we conclude each chapter and we talk about the future work directions.

7.1 Conclusions and summaries

Table 7.1 summarize the main contents of this dissertation. In general, the dissertation can be di-

vided into two categories: the beamforming algorithms design and the combination of mmWave

beamforming and other technologies. For the beamforming algorithm design, we first designed an

analog beamforming algorithm for multi-user system to suppress the interference and maximize

the beamforming gain at the same time. Further, to support multi-stream transmission and ex-

tend the coverage range, we proposed a hybrid precoding algorithm for mmWave relay networks.

Moreover, to achieve higher capacity and larger coverage, we combined mmWave with other tech-

nologies, such as NOMA and UAV networks. For mmWave-NOMA scenarios, we proposed a joint

power and beamwidth algorithm to improve the system throughput. We also propsed a two-step

beam alignment algorithm to reduce the training time. For UAV networks, we jointly optimize the

deployment, the scheduling, the beamforming, and the RIS phases to greatly improve the system
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throughput.

In particular, in chapter 2, we proposed an analog beamforming scheme which strikes a balance

between the beamforming gain and the inter-user interference. We formulated an MOP that max-

imizes the beamforming gain and minimizes the interference at the same time. The weighted-

sum method was used to transform the MOP into an SOP and the SDP was adopted to make the

constant-magnitude constraints for the analog beamforming tractable. Furthermore, to alleviate

the effects of the channel estimation and feedback quantization errors, we designed a robust beam-

forming scheme to overcome the channel uncertainty. A probabilistic constraint was used and an

MOP similar with the non-robust beamforming scheme was formulated. For the non-robust case,

simulation results showed that the proposed beamformer provides a better balance between the

beamforming gain and the inter-user interference compared with other analog beamformers in the

high SNR region. For the robust case, the simulation results demonstrated the highest robustness

of our beamforming scheme against channel errors.

In chapter 3, we considered mmWave AF relay networks in the domain of massive MIMO. We

designed the hybrid precoding/combining matrices for the source node, the relay node, and the

destination node. We first performed the RF processing to decompose the channel into parallel

sub-channels by compensating the phase of each eigenmode of the channel. Given the RF pro-

cessing matrices, we designed the baseband matrices to maximize the mutual information. The

baseband processing is divided into two parts. We first jointly designed the source node and the

relay node by making use of the equivalence between maximizing the mutual information and the

WMMSE. Given the optimal baseband source and relay filters, we implemented MMSE-SIC for

baseband destination node to obtain the maximal mutual information. In addition, a robust hybrid

precoding/combining design was proposed for the imperfect CSI. Simulation results show that our

algorithm achieves better performance with lower complexity compared with other algorithms in

the literature.

In chapter 4, NOMA is incorporated into mmWave hybrid beamforming systems. We also con-
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sider the beam-training time because of the limited channel coherence time in mmWave directional

communications. By combining the exhaustive search and tone-based beam-training algorithms,

a new beam-training algorithm is employed. The formulated sum-rate expression consists of the

channel coherence time and beam-training time. To maximize the sum-rate, a joint power alloca-

tion and beamwidth control optimization problem is solved by an algorithm which iterates between

the power allocation and the beamwidth optimization. The non-convex power allocation is solved

by the log-reformulation and SPCA. The beamwidth optimization is solved by iterating between

the two clusters. A boundary-search algorithm is proposed to reduce the search complexity for the

beamwidth in each cluster. The numerical results demonstrate that an efficient power allocation and

beam-training time can lead to higher sum-rates compared to the conventional mmWave-NOMA

without optimized parameters, NOMA-OMA, and OMA. The only exception is that for a short

channel coherence time and high SNR, the optimized-NOMA and the fixed-NOMA have identical

sum-rate performance. Also, at low SNRs, the size of the antenna array is a major obstacle in

achieving higher sum-rates.

In chapter 5, we proposed a new two-step beam alignment algorithm for the analog beamforming

mmWave-NOMA systems with constrained channel coherence time. The algorithm takes the ad-

vantages of NOMA, as such, first the beamwidth is selected for the near user and then for the far

user. We defined an optimization problem to maximize the sum-rate. We then jointly optimized

the beamwidths and the allocated powers while keeping the minimum required rate equal or higher

than a predefined threshold. To evaluate the effect of beam misalignment due to the mmWave prop-

agation characteristics and longer distance, we formulated another optimization problem, where we

imposed extra constraints on the beamwidths to satisfy the misalignment probability requirements.

An off-line search was adopted to find the appropriate ranges for the beamwidths. Then, with the

new ranges of the beamwidths, we used the similar joint optimization algorithm structure as we

proposed for the problem without misalignment probability requirements to find the optimal power

allocation and beamwidths. Our numerical results showed that the proposed algorithm with and

without beam misalignment achieves higher sum-rate compared to the one-step beam alignment al-
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Table 7.1: Summary of the dissertation

Beamforming design Combination of the mmWave technology
and other technologies

Analog beamforming for multi-user scenario mmWave-NOMA
Hybrid precoding for relay networks mmWave-UAV

gorithm. Further, due to aligning beams in two steps, the proposed algorithm can take advantages

of narrow beams. This leads to a higher beamforming gain and better sum-rate. Further, in the

case of lower SNR, channel coherence time, and the lower channel of the near user, the proposed

algorithm with beam misalignment marginally reduces the sum-rate.

In chapter 6, we jointly optimized the deployment, user scheduling, beamforming vector, and RIS

phases in a RIS assisted UAV wireless network. To solve the problem, we iterated among the 4

variables. While optimizing one variable, we fixed the other 3 variables. For the deployment, we

found the optimal position by a sphere search. Then, we formulated an integer linear programming

to find the best scheduling. We also designed the analog beamforming vector by compensating the

phases of the channel. When optimizing the RIS phases, we formulated a semi-definite program-

ming to find the best phases. The proposed joint optimization outperforms the system without RIS

assistance, and the system without deployment optimization.

7.2 Future work

MmWave communications have been considered as the key technology for the future wireless

systems. This dissertation has explored how to implement beamforming in mmWave system to

improve the system performance while reducing the implementation complexity. There are still

some topic needs to be explored in the future.

• Limited feedback: how to quantize the mmWave channels is critical to improve the system

performance. Although we have proposed some robust algorithm to combat the estimation
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and quantization errors, the specific limited feedback scheme has not been explored. Future

work can be focused on the design of effective limited feedback scheme for the mmWave

communications.

• New scenarios: combining mmWave with other technologies is the mainstream trend for

the wireless communication systems. Although we have already explored some scenarios

such as mmWave-NOMA and UAV networks, a lot more scenarios remained unexplored,

such as wireless cache, cloud radio access network, and so on. For the future work, we can

implement the mmWave communications in more scenarios.
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Appendix A

Supplementary Proofs for Chapter 4

A.1 Proof of Proposition 2

Proof. Since F(g1, f1) is a continuous function defined on a bounded closed set, it has a maximum

point according to the extreme value theorem. Also, according to the critical point theorem, the

maximum point should either be a stationary point or a boundary point. It is easy to observe

that F(g1, f1) is a monotonic increasing function of g1 and a monotonic decreasing function of

f1. This means ∂F
∂g1

> 0 and ∂F
∂ f1

< 0, i.e., there is no stationary point for F(g1, f1) on the defined

domain. Then, the maximum point should lie on the five boundaries: (i) f1 = lb f , g1 ∈ [lbg, lb2
f ],

(ii) g1 = lbg, f1 ∈ [lb f ,ub f ], (iii) f1 = ub f , g1 ∈ [lbg,ubg], (iv) g1 = ubg, f1 ∈ [
√

ubg,ub f ], and

(v) g1 = f 2
1 , f1 ∈ [lb f ,

√
ubg].

For the boundary (i), since F(g1, f1) is a monotonic increasing function of g1, the maximum point

can only lie on the point (lb f , lb2
f ) which belongs to the boundary (v) as well. For the boundary

(ii), since F(g1, f1) is a monotonic increasing function of g1, we can pick g1 > lbg to increase the

value of F(g1, f1). This implies that the maximum point cannot lie on the boundary (ii). Similarly,

the maximum point cannot lie on the boundary (iii) either. For the boundary (iv), since F(g1, f1) is
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a monotonic decreasing function of f1, the maximum point can only lie on the point (
√

ubg,ubg)

which belongs to boundary (v) as well. Note that the possible maximum points on the boundaries

(i) and (iv) also belong to the boundary (v). Therefore, the maximum point must lie on the boundary

(v) and the proof is complete.

A.2 Proof of Proposition 3

Proof. Since G(g1, f1) is a continuous function defined on a bounded closed set, it has a maximum

point according to the extreme value theorem. Also, according to the critical point theorem, the

maximum point should either be a stationary point or a boundary point. It is easy to observe that

G(g1, f1) is a monotonic decreasing function of f1. ∂G
∂ f1

< 0, i.e., there is no stationary point for

G(g1, f1) on the defined domain. Then, the maximum point should lie on the four boundaries: (i)

g1 = lbg, f1 ∈ [
√

lbg,ub f ], (ii) f1 = ub f , g1 ∈ [lbg,ubg], (iii) g1 = ubg, f1 ∈ [
√

ubg,ub f ], and (iv)

g1 = lb2
f , f1 ∈ [

√
lbg,

√
ubg].

For the boundary (i), since G(g1, f1) is a monotonic decreasing function of f1, the maximum point

can only lie on the point (
√

lbg, lbg) which belongs to the boundary (iv) as well. For the boundary

(ii), since G(g1, f1) is a monotonic decreasing function of f1, we can pick f1 < ub f to increase

the value of G(g1, f1), which implies that the maximum point cannot lie on this boundary. For the

boundary (iii), since G(g1, f1) is a monotonic decreasing function of f1, the maximum point must

lie on the point (
√

ubg,ubg), which also belongs to the boundary (iv). Since the possible maximum

points on the boundaries (i) and (iii) also belong to the boundary (iv), the maximum point must lie

on the boundary (iv) and the proof is complete.
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