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ABSTRACT OF THE THESIS

Learning Counterfactual Reasoning

By Answering Counterfactual Questions From Videos

by

Qingyuan Hu

Master of Science in Computer Science

University of California, Los Angeles, 2023

Professor Nanyun Peng, Chair

Multimodal counterfactual reasoning is a vital yet challenging ability for AI systems. It in-

volves predicting the outcomes of hypothetical circumstances based on vision and language

inputs, which enables AI models to learn from failures and explore hypothetical scenarios.

Despite its importance, there are only a few datasets targeting the counterfactual reasoning

abilities of multimodal models. Among them, they only cover reasoning over synthetic en-

vironments or specific types of events (e.g. traffic collisions), making them hard to reliably

benchmark the model generalization ability in diverse real-world scenarios and reasoning

dimensions. To overcome these limitations, we develop a video question answering dataset,

ACQUIRED: it consists of 3.9K annotated videos, encompassing a wide range of event types

and incorporating both first and third-person viewpoints, which ensures a focus on real-

world diversity. In addition, each video is annotated with questions that span three distinct

dimensions of reasoning, including physical, social, and temporal, which can comprehen-

sively evaluate the model counterfactual abilities along multiple aspects. We benchmark

our dataset against several state-of-the-art language-only and multimodal models and ex-

ii



perimental results demonstrate a significant performance gap (>13%) between models and

humans. The findings suggest that multimodal counterfactual reasoning remains an open

challenge and ACQUIRED is a comprehensive and reliable benchmark for inspiring future

research in this direction.
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CHAPTER 1

Introduction

1.1 Motivation

Multimodal counterfactual reasoning refers to the ability to imagine and reason about what

might have happened if certain conditions were different from what actually occurred based

on vision and language inputs. It involves mentally simulating alternative scenarios and

evaluating their potential outcomes. This cognitive process plays a crucial role in human

intelligence, as it allows us to understand causality, make predictions, and learn from past ex-

periences. For AI models, developing the capacity for counterfactual reasoning is a significant

area of research and a challenging task. By enabling AI models to engage in counterfactual

reasoning, we can enhance their understanding of causal relationships and their ability to

assess the impact of interventions or changes in conditions.

However, despite the significance of counterfactual reasoning, it remains a relatively un-

explored area of research with only limited studies focusing on this aspect. To assess the

overall reasoning capabilities of models, several visual question answering datasets have been

proposed on both images [AAL15, JHV17] and videos [YGL20, XHL21]. These datasets re-

quire reasoning skills such as commonsense reasoning, extracting human/object-to-object

relations, and inferring physical properties.

One specific dataset in the realm of counterfactual reasoning is CLEVRER [YGL20],

which generates synthetic videos and associated questions in a controlled environment, fea-

turing simulated object motion and rendered video frames. This dataset allows for evaluating
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models using descriptive, explanatory, predictive, and counterfactual questions, covering a

wide range of reasoning scenarios. However, the data generation process in CLEVRER is

overly synthetic, limiting its usefulness in assessing models’ counterfactual reasoning abil-

ities in realistic contexts. To address this limitation, TrafficQA [XHL21] focuses on real-

world traffic event cognition and reasoning in videos, specifically targeting scenarios like

traffic accidents. It leverages crowdsourcing to gather diverse types of questions, including

fundamental comprehension, counterfactual inference, and event forecasting. Nevertheless,

because TrafficQA concentrates solely on traffic events, it fails to encompass other real-life

events, resulting in a substantial domain gap between TrafficQA and general video datasets

such as Kinetics [KCS17, SCN20] and YouTube [AKL16, ZLL22].

1.2 Contributions

In this work, we construct a benchmark that can evaluate the counterfactual reasoning abil-

ities of visual models on various kinds of real-world events. To this end, we introduce AC-

QUIRED 1 that covers multiple dimensions of counterfactual reasoning and includes videos

of both egocentric and exocentric views. Specifically, based on videos in both Oops [ECV20]

and Ego4D [GWB22], we crowd-source 11K questions over 3.9K videos targeting physical,

temporal, and social counterfactual reasoning. Both the Oops and Ego4D datasets consist

of human activities and interactions in numerous settings, making them ideal sources for

curating video question answering datasets. In addition, many videos contain unintentional

human actions (e.g., the person accidentally falling down the ladder in Figure 1.1), which

naturally enables people to come up with diverse what-if questions.

Inspired by [SWH21], we adopt a similar methodology for gathering counterfactual ques-

tions. Each question consists of a pair of answers, with one being the correct response and

the other serving as a distractor. Importantly, the distractor answer represents a minimal

1Abbreviation of: Answering Counterfactual Questions In Real-Life Videos
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If he tested the weight of the dolly before pushing it, it 
wouldn‘t have dragged him down the ladder.

If he tested the weight of the dolly before pushing it, he 
would have pushed it harder down the ladder.

Temporal

I could get my hands stained with the red sauce. 

What if I wasn't wearing gloves?

I could accidentally cut myself with the cutter.

Physical

3rd-Person

1st-Person

What if the man tested the weight of the 
dolly before pushing it?

Figure 1.1: The ACQUIRED dataset is a video question answering (QA) dataset that specifically fo-

cuses on counterfactual reasoning on diverse real-world events. Our dataset concerns three types of common-

sense reasoning dimensions: physical, social, and temporal, and encompasses videos from both third-person

(upper) and first-person (lower) viewpoints. Each question is curated with a correct and a distractor answer.

Each answer is by itself individually judgeable, and hence our dataset can be approached in either binary

True/False or multiple-choice setting.

contrastive counterpart to the correct answer. As we can see from examples in Figure 1.1,

the design of using complementary pairs requires the model to understand the subtle dif-

ferences between different options, which ensures that the model exhibits an intuitive grasp

of counterfactual reasoning. In addition, having one distractor for each question allows for

testing models in either True/False or multiple-choice setting.

We extensively evaluate numerous strong language models such as GPT-4, as well as

state-of-the-art video-language models such as VALOR on our ACQUIRED dataset. The

experimental results suggest that models struggle to effectively utilize the video contexts

3



and perform counterfactual reasoning, with multimodal models achieving only comparable

and sometimes inferior performance than language-only models. Moreover, the significant

gap between the human and model (>13%) performance highlights the challenging nature

of our task and room for improvements in visual counterfactual reasoning.

1.3 Thesis Statement

This work provides the first sizable video question answering dataset that focuses on typed

reasoning and specifically counterfactual reasoning in a diverse set of events, where the

reasoning can span across physical, social, and temporal aspects, and the videos include

both third-person and ego-centric viewpoints.
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CHAPTER 2

Background

This chapter offers an overview of three lines of relevant research to this work: visual question

answering, visual understanding models, and counterfactual reasoning.

2.1 Visual Question Answering Datasets

In 2.1, we list several representative visual QA datasets as well as their key features. The

Visual Question Answering (VQA) dataset [AAL15] is one of the pioneering works in this

direction and has been a standard benchmark for evaluating the reasoning ability of image-

language models [GKS17]. Follow-up datasets such as CLEVR [JHV17] and GQA [HM19]

automatically construct compositional questions over real or synthetic images and perform

the evaluation in a systematic way. To further evaluate the commonsense reasoning ability

of models, VCR [ZBF19] crowd-sources commonsense question-answer pairs associated with

rationales over static images extracted from movies. Video question answering is more chal-

lenging than image question answering and is gaining increasing attention from the research

community, leading to several video QA datasets being constructed [LYB20, TZS16, XZX17,

JSY17, MHJ17, LYB18]. Among them, CLEVRER [YGL20] improves upon CLEVR and

uses programmatically generated videos capturing collisions of synthetic objects to evalu-

ate the model reasoning abilities along multiple dimensions. Social-IQ [ZCL19] and Traf-

ficQA [XHL21] employ videos depicting real-world events, wherein Social-IQ primarily em-

phasizes human social interactions, while TrafficQA focuses on traffic events and accidents.
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Dataset Visual Source Question Source

Reasoning Domain

Counterfactual
Physical Temporal Social

Image QA datasets

VQA [AAL15] Diverse Real-world Event Human ✓ ✗ ✗ ✗

CLEVR [JHV17] Synthetic Object Automatic ✓ ✗ ✗ ✗

GQA [HM19] Diverse Real-world Event Automatic ✓ ✗ ✗ ✗

VCR [ZBF19] Movie Human ✓ ✗ ✓ ✗

Video QA datasets

CLEVRER [YGL20] Synthetic Object Collision Automatic ✓ ✓ ✗ ✓

VLEP [LYB20] TV & YouTube Human ✓ ✗ ✗ ✗

MovieQA [TZS16] Movie Human ✓ ✓ ✓ ✗

MSRVTT-QA [XZX17] Diverse Real-world Event Automatic ✓ ✗ ✗ ✗

TGIF-QA [JSY17] Tumblr GIF Automatic & Human ✓ ✓ ✗ ✗

MarioQA [MHJ17] Gameplay Video Automatic ✓ ✓ ✗ ✗

TVQA [LYB18] TV Human ✓ ✓ ✗ ✗

Social-IQ [ZCL19] YouTube Human ✗ ✗ ✓ ✗

TrafficQA [XHL21] Traffic Event Human ✓ ✓ ✗ ✓

ACQUIRED Diverse Real-world Event Human ✓ ✓ ✓ ✓

Table 2.1: Comparisons of different visual question answering datasets. ACQUIRED is the first to

feature all the dimensions.

As can be seen in Table 2.1, among all the visual QA datasets, there are only a few that

attempt to evaluate the counterfactual reasoning abilities of models. In addition, the existing

benchmarks are often limited in terms of the video sources and the question types, making

it difficult to evaluate the model performance in a diverse real-world setting. ACQUIRED

is the first dataset that can comprehensively evaluate the model counterfactual reasoning

abilities spanning three distinct dimensions (i.e., physical, social, and temporal) and cover

videos that include a wide range of event types and from different viewpoints.

6



2.2 Visual Understanding Models

The creation of visual QA benchmarks allows for the development of visual understanding

models. Many of the previous works have tried to solve these tasks using compositional

approaches and scene graphs [SRB17, HAR17, HM18, PSD18, YWG18, SZL19, GLW20,

DCD21]. For example, [HAR17] propose to train a modular network in an end-to-end man-

ner to achieve both effectiveness and interpretability; [HM18] utilize scene graphs and per-

form differentiable neural operations on the graphs to perform visual reasoning. Inspired

by the success in pretraining on Internet-scale data [DCL19], pretraining models on large

vision and vision-language tasks and then finetuning them on specific downstream tasks has

become a standard in tackling visual understanding tasks [SMV19, LCC20, ZY20, LLZ21,

ZLH21, FLG21, ZLL22]. Existing works in this direction generally train models on large

vision-language datasets with objectives such as masked language modeling and video-text

matching. Despite the great progress in this direction, it is unclear if these models can per-

form counterfactual reasoning. To address this, we benchmark ACQUIRED against state-

of-the-art models and systematically study their performance.

2.3 Causal and Counterfactual Reasoning

Humans can infer how an event would have unfolded differently without experiencing this

alternative reality and it has been a long-standing research topic in cognitive psychol-

ogy [VWB15]. To empower such an important ability to artificial intelligence, researchers

have tried to build learning models that can infer causal relations and perform reasoning

in various fields [QBH19, YGL20, BNM20, ATP20, YWS21, WFH21]. Our constructed

benchmark provides a valuable resource for developing and evaluating visual models with

counterfactual reasoning abilities.
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CHAPTER 3

The ACQURIED Dataset

3.1 Dataset Design & Collection

3.1.1 Problem Definition

As illustrated in Figure 1.1 and Table 3.1, each data point in ACQUIRED consists of a

video and corresponding annotated question and answer pairs. For each question, we collect

one correct and one distractor answer (which can be a slightly perturbed version of the

correct one), where both of which are individually judge-able by themselves respectively.

And hence, our dataset can be approached as a binary True/False (T/F) prediction task as

well as a multiple-choice (MCQ) (2 choices in this case) question answering task.

3.1.2 Commonsense Dimensions

We adopt the commonsense knowledge categorization proposed in [SWH21] to collect QAs

that focus on the following three dimensions: physical, social, and temporal. The physical

dimension concerns the knowledge of objects involved in the events and their properties

(e.g., shape, size, functionalities, affordances), as well as the motion and location of the

events. The social dimension looks at human social behaviors, particularly attributes such

as personality, emotions, inner interests/intentions, and social activities.1 The temporal

dimension regards the aspects of events/activities in their temporal orderings, duration, and

1As most videos from Ego4D show tasks performed solely by the camera wearer without social interactions,
we do not require the social dimension to be annotated.
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Sub-sampled Key Video Frames Question-Answer Pairs

(Temporal) Q: What if the two persons had

swerved to their left before reaching the shore?

Correct: They would not have had a beach

landing.

Wrong: They would have had a beach landing.

(Social) Q: What if the skier was a stranger to

the two people standing still?

Correct: The skier does not throw the snowball.

Wrong: The skier still throws the snowball.

(Physical) Q: what if the wheel was in a bike?

Correct: He would need to take out the screw

before being able to set the wheel on the table

Wrong: He would set the whole bike along with

the wheel on the table.

(Physical) Q: What if I let the cutting board

lie on the counter?

Correct: The cutting board would be dried

slower.

Wrong: The cutting board would be dried

quicker as it occupies a larger area.

Table 3.1: Sample data points of the ACQUIRED dataset.

frequency/speed of motions. Although some questions can be answered using more than one

commonsense dimension, we ask the annotators to label with the main one used.
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Requirement: Video Relevancy 

Qualification Round(s)

Workers

Adversarial Game

Model Feedback

Per-Batch Iterative
Model Finetuning

Submit & Getting Rewards

Data Quality Validation

(Periodic) Tips & Human Feedback

Trained TextQA Model

Storage

Figure 3.1: Data collection workflow.

3.1.3 Video Resources & Sampling

We utilize the Oops! [ECV20] dataset for third-person view videos and Ego4D [GWB22] for

first-person views, where both of which feature text descriptions of the video contents. Oops!

concerns predicting the failing (oops) moment of an intended action in a video, and hence is

event-rich and a good testbed for reasoning what could the outcomes turned out differently.

Ego4D collects videos of humans performing daily activities in the first-person view, which

adds a desirable task-knowledge layer on top of its event-richness.

As we are annotating subsets of videos from the aforementioned sources, we have the

privilege to encourage a more balanced key events distribution from the videos to be anno-

tated. Specifically, we (1) use NLP tools such as semantic role labeling (SRL) to extract key

verbs (events) for each video description2, and group the videos accordingly, (2) each time

sample an event group with a probability inverse proportional to the current launched key

event distribution, (2) sample a video from the event group in (3), and repeat until reaching

a desired number of videos (to be annotated).

2We use the originally annotated narrations in Ego4D.
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3.1.4 Collection Workflow

We collect our dataset via Amazon Mechanical Turk (MTurk). Each MTurk worker is asked

to carefully watch a given video for creating the QA pairs. As depicted in Fiture 3.1, our

dataset collection process comprises four main steps: (1) We design a qualification ques-

tionnaire focusing on examining one’s understanding of the key concepts in our problem

design, i.e., the concept of counterfactuality, the requirement of video relevancy, common

sense reasoning dimensions, and what types of QA pairs are more desirable. (2) Once the

workers pass the qualification test, they are directed to an interface where a pretrained

(text-only) QA model is deployed in the loop of the QA creation process. Bonus mon-

etary rewards are given if the deployed model fails to predict correctly the creations. (3)

Internal members then conduct a quality validation on the created samples and provide

customized tips and/or feedback to the workers for potential improvements. (4) Lastly, our

deployed model is iteratively finetuned on the validated samples after each batch of anno-

tations, which results in a constantly improved model to incentivize more challenging sample

creations.

3.1.4.1 Details of Human Annotations

We build a user interface to collect QA pair annotations. In addition, we collect human

performance as a benchmarking source.

Our annotation interface (Figure 3.2b) is launched with Mturk tasks (Figure 3.2a). Upon

accepting each Mturk HIT, our workers will be directed to the annotation web app and do

the rest of the task. Workers will be asked to create QA pairs for different domains and

assign their T/F labels. If the QA pair successfully fools the model, a green tick will be

shown.
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3.1.5 Quality Validation

In order to further ensure the sample quality as well as summarize common mistakes to

provide custom human feedback to the annotators, our internal members conduct the second-

phase manual sample validation in conjunction with the deployed model results. We cross-

validate the annotations among our internal members in the ramping-up phase to ensure

quality. We also accumulate detailed guidelines from our manual validation process for

providing effective feedback. After scaling up, we continue to validate the annotations via

uniform subsampling across each annotator. Our validation criteria are well aligned as can

be seen in the high 0.85 Kappa score for commonsense dimension agreements; and 0.91

overlapping ratios for video relevancy.3

3.1.5.1 User Interface

We use an internal validation interface with a question-answering setting to accept or reject a

sample. This tool also allows us to fix wrong domain categorization and T/F labels annotated

by the workers. Specifically, the validation questions include:

• Should we discard this question group from our dataset (repetitive / not fixable at

all)?

• Does this question group need any editing to reduce ambiguity or to further fool the

model?

• Check the T/F of the two sentences.

• Select the domain that you think this question group can be categorized into.

• select one of the type that you think this question group can be categorized into.

• To answer this question, do you need to refer to the video?

3We did not use Kappa score for video relevancy because there is an unbalanced ”agreed” distribution of
”yes” and ”no” (22:1) in our validation results for this criteria, which would result in unfair Kappa score.
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• Does this question group conform to our question format?

3.2 Dataset Statistics

General Statistics. Table 3.3 summarizes the essential statistics of the collected dataset,

where Table3.3a is for videos obtained from the Oops! [ECV20] dataset whereas Table 3.3b

is for videos from Ego4D [GWB22]. The frame-per-second rate (FPS) of videos from either

source is mostly 30.

Key Annotated Events. We plot the distributions of most frequent key verbs (for main

event types) and nouns (for entities involved in events) in Figure 3.3a and Figure 3.3b,

respectively, to have a rough visual inspection of the diversity of the created samples. The key

verbs/nouns are firstly determined by the SRL parses of the question and answer sentences

(separately considered), and followed by lemmatization. Both plots are summaries of the two

video sources, and more plots broken down by video sources and comparisons with existing

works are in the Section 3.3.

Deployed Model. Table 3.2 reports the model fooling rates in our collected data across the

two data sources. We encourage our annotators to develop QA pairs that can successfully

fool our model by setting up monetary rewards and unlimited trials.

Videos From Avg. Fool Rate (%) Avg. Fool Accuracy

Oops! 65.44 34.56

Ego4D 52.94 47.06

Table 3.2: Deployed model fooling rates during collection.
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Type Counts

Total Unique Videos 2,910

Total Unique QA-Pairs 8,712

Type-Token Ratio 0.0288

Physical / Social / Temporal (%) 34 / 33 / 33

Type Mean Std Max Min

Tokens in a Question 11.3 3.3 28 5

Tokens in an Answer 8.3 5.6 46 5

Video Frames (Count) 297.8 217.4 3283 74

Video Duration (sec) 10.7 7.5 111.6 3.2

(a) Videos from Oops!

Type Counts

Total Unique Videos 979

Total Unique QA-Pairs 2,365

Type-Token Ratio 0.0257

Physical / Social / Temporal (%) 77 / 0 / 22

Type Mean Std Max Min

Tokens in a Question 11.4 3.4 20 6

Tokens in an Answer 9.6 5.7 37 5

Video Frames (Count) 398.6 54.9 572 270

Video Duration (sec) 13.3 1.8 19 9

(b) Videos from Ego4D

Table 3.3: General statistics of the two video domains.

3.3 More Details of The Dataset

Our dataset consists of a mixture of QA pairs collected from two data sources: Ego4d and

Oops!. For each dataset split, we create an indexing .json file and summarize each QA

instance with a video id (index), a domain (physical/social/temporal), a type (counterfac-

tual), a question, a correct answer, a distractor, and a key to the correct answer and a video

14



link URL. Our official data release will encompass all the aforementioned essential fields.

3.3.1 Dataset Splits

We split our data into train/val/test based on the ratio 0.45/0.05/0.5, with each unique

video only appearing in one split.

3.3.2 Word Distributions

Figure 3.4a and Figure 3.4b plot the most frequent verbs (mainly for events) and nouns

(mainly for entities) distributions of the Oops! proportion of our dataset, while Figure 3.5a

and Figure 3.5b plot the ones of the Ego4D proportions.

Figure 3.6a and Figure 3.6b are distributions of the CLEVRER dataset. Figure 3.7a

and Figure 3.7b are distributions of the TrafficQA dataset. It can be seen from these charts,

alongside Table 3.4 and Table 3.5 that the event types in both datasets are quite uni-modally

towards their original intended domains (which is reasonable), with all four ratios much lower

than those of our dataset.

Dataset verb-token ratio verb-token ratio

CLEVRER 0.0001 5.14e-6

TrafficQA 0.0053 0.0004

ACQUIRED 0.0687 0.0047

Table 3.4: Verb-token ratio (total # verb-types / total # tokens) of CLEVRER, trafficQA and AC-

QUIRED
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Dataset noun-token ratio noun-token ratio

CLEVRER 0.0002 2.57e-5

TrafficQA 0.0036 0.0006

ACQUIRED 0.1133 0.0089

Table 3.5: Noun-token ratio (total # noun-types / total # tokens) of CLEVRER, TrafficQA and AC-

QUIRED
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(a) Human Annotation Instruction

(b) Sample Annotation Interface

Figure 3.2: MTurk Annotation User Interface: (a) We ask workers to follow the indicated instruction.

All the blue-colored text bars on the top of the page are expandable. Workers can click to expand them for

detailed instructions of the annotation task. (b) We design an user-friendly and interactive annotation tool

where annotators and simply input their annotations and get an instant feedback from our model.
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(b) Nouns

Figure 3.3: Top-40 frequent word-types in the dataset.
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(a) Top-40 frequent verbs in Oops!.
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(b) Top-40 frequent nouns in Oops!.

Figure 3.4: Top-40 frequent word-types in Oops! part of ACQUIRED.
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(a) Top-40 frequent verbs in Ego4d.
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(b) Top-40 frequent nouns in Ego4d.

Figure 3.5: Top-40 frequent word-types in Ego4d part of ACQUIRED.
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Figure 3.6: Top-40 frequent word-types in CLEVERER.
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Figure 3.7: Top-40 frequent word-types in TrafficQA.
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CHAPTER 4

Experiments & Results

We benchmark our dataset with both state-of-the-art language-only and vision-language

models. Specifically, we perform experiments with language-only models: DeBERTa [HLG21],

UnifiedQA [KMK20] and multimodel models: VIOLET [FLG21], VALOR [CHG23], and VL-

Adapter [SCB22] on our dataset. VIOLET is a video-language model that has three com-

ponents, including a video encoder (Swin Transformer-base [LNC22]), a language encoder

(BERT-base [DCL19]), and a cross-modal transformer module that performs cross-modal

fusion. VALOR is a recently proposed multimodal model that can take video, language, as

well as audio as inputs. VL-Adapter uses a pretrained vision encoder (e.g. CLIP [RKH21])

to extract vision features and feed the vision features as well as text tokens to a pretrained

language model (e.g. T5 [RSR20]) so that the model can take both vision and language

information.

Inspired by the superior performance of the recent large language models, i.e., the GPT

model from OpenAI, we also evaluate its zero-shot performance on the textual parts of

our dataset. Specifically, we consider both ChatGPT [Ope23a] and GPT-4 [Ope23b]. In

addition, we further include a version of GPT models that can condition on pre-annotated

descriptions describing the general contents of the videos, to serve as the pseudo visual (and

situated) contexts of the questions.
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4.1 Experimental Setup

Data Splits. For our official (to-be-released) dataset, we follow a 45 − 5 − 50 ratio and

randomly split the train-development-test datasets. The train split is mainly to adapt models

to our QA task settings as well as the counterfactual reasoning style. We ensure that there

are no overlaps between videos of different sets and the Oops! and Ego4D videos are equally

distributed in each of the splits.

Evaluation Metrics. Models are evaluated by a simple accuracy metric, for both T/F

and MCQ settings. We also further ablate the model performance along the commonsense

dimensions and/or viewpoints, for a more detailed performance breakdown and analysis. We

also include the pairwise accuracy in the T/F setting following [SWH21], where the model

is considered correct if both individual judgments are correct in each pair.

4.2 Experimental Results

Table 4.2 reports benchmark performance. The best-performing multimodal model (VL-

Adapter) performs slightly better than its text-only counterparts, UnifiedQA-large (i.e., the

language encoder of our VL-Adapter). While this shows that visual contexts and multi-

modality are effective, the performance gap is not substantial; therefore, there is room for

improvement, and more effective methods of multimodal inputs are yet to be explored. While

text-only UnifiedQA-3B achieves overall better performance in both T/F and MCQ settings,

potentially due to its much larger learnable parameter space, its mediocre pairwise accuracy

suggests that the model is still inept at robust counterfactual reasoning in the two facets of

the same question.

In general, models perform better in the MCQ settings than the T/F ones. This is

intuitive because in the MCQ settings, the model is aware that only one of the two given

options is correct and only needs to compare them and select the more reasonable option.
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4.3 Discussion

4.3.1 Multimodal Models Performance

It appears that ChatGPT and GPT-4 fed in with video description perform better than the

vanilla versions which indicates that the visual context is important. However, our results

show that the multimodal models perform slightly worse than UnifiedQA and DeBERTa.

We have a few hypotheses on the performance drop. First, we don’t control the domain of

the dataset for the pretraining. It’s possible that there are nontrivial domain gaps across

pretraining datasets and our dataset. At the end of the day, both UnifiedQA and DeBERTa

are QAmodels, so probably not too surprising to contain more commonsense and can perform

QA better. Second, because of the limited number of frames we can feed to the models, we

uniformly sampled a number of frames from the video clips. These subsampled frames may

suffice the need for simple inference such as activity recognition. But the performance of

reasoning could be affected negatively if the subsampling misses key events which results

in incomplete context. Third, our dataset focuses on counterfactual questions which may

emphasize more on the reasoning capability depending on fine-grained visual understanding

and potentially some imagination. Yet the selected models, such as VALOR, VIOLET, were

trained more on alignment, grounding, and simple factual/forward (i.e., non-counterfactual)

reasoning. Table 4.1 shows an example of how videos and sentences are fed into different

models. In this particular tricky setting, VL-Adaptor performs better than the other three

language-only models, which supports the hypothesis that visual context is a crucial part of

reasoning.
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Model Input Output Correct?

VL-Adaptor

What if the girl had been wearing a helmet?

If the girl had been wearing a helmet, she might have had a concussion.

True Yes

ChatGPT

The answer to the question

”What if the girl had been wearing a helmet? ” is

”If the girl had been wearing a helmet, she might have had a concussion.”

True or False?

False No

desc. Chat GPT

The video is about

”A young girl is riding her sled lying down on her stomach.”

The answer to the question

”What if the girl had been wearing a helmet? ” is

”If the girl had been wearing a helmet, she might have had a concussion.”

True or False?

False No

UnifiedQA-3B

The answer to the question

”What if the girl had been wearing a helmet? ” is

”If the girl had been wearing a helmet, she might have had a concussion.”

True or False?

False No

Table 4.1: Exemplar inputs and outputs in T/F setting: 10 frames of the original video clips are subsampled

and fed into VL-Adaptor.
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4.3.2 ChatGPT and GPT-4

In the case of ChatGPT, its MCQ setting accuracy is lower than that of the T/F setting

compared to others. We suspect that ChatGPT might have a weaker reasoning ability

compared with GPT4. We observe that often ChatGPT refuses to give an answer in the

MCQ settings because of insufficient conditions while it leans towards false when it was asked

the same question in a T/F setting.

Perhaps surprisingly, despite the remarkable capabilities of the GPT series, they do not

perform as impressively, even when provided with descriptions transcribing the major visual

events in the videos. This suggests that the annotators in our curation task indeed closely

examine many visual details in order to create more challenging samples.

4.3.3 Commensense Dimensions

The rightmost parts of Table 4.2 report the performance breakdown along commonsense

reasoning dimensions. We observe a general trend: most of the models perform better in

physical and social dimensions compared to the temporal dimension; the physical dimension

generally exhibits the highest performance. That observation implies that, even after being

finetuned on our dataset, the models still fall short of capturing temporal commonsense as

opposed to the other two kinds of knowledge. This can also be hypothetically attributed to

the fact that the pretraining data for the language models encapsulate more physical and/or

human social knowledge.

4.3.4 Viewpoints

We take the best-performing multimodal model (VL-Adapter) and ablate its performance

along different video viewpoints. We find that, despite being pretrained mostly on third-

person viewpoint videos, the generalization ability of the models towards first-person view-

points is sufficiently good. However, as the videos from Ego4D are not intended to explicitly
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contain failed actions from the camera wearers, it could be more challenging for our anno-

tators to construct diverse and subtle counterfactual questions as compared to the videos

from Oops!. Nevertheless, we argue that the counterfactual reasoning ability of the models

should be equally crucial regardless of video viewpoint, and our dataset can inspire relevant

research serving as a first-of-its-kind counterfactual video QA encapsulating videos from

varying viewpoints.

4.3.5 Human Performance

We randomly sub-sample 500 videos to estimate human performance: these are reported in

the last two rows of Table 4.2. The human performance highlights a significant gap above

all the model results, especially for the MCQ settings. We hope future modeling endeavors

can close the gap in visual counterfactual reasoning.

4.4 More on GPT Baselines

The prompts engineered for both ChatGPT and GPT-4 baselines are shown below:

1 # T/F setting without video description

2 GPT Prompt = The answer to {Question} is {Correct/wrong Answer}, True or

False?

3

4 # T/F setting with video description

5 GPT Prompt = The video is about {Video description}, the answer to {

Question} is {Correct/wrong Answer}, True or False?

6

7 # MCQ setting without video description

8 GPT Prompt = Which of the following is the correct answer to {Question }? (

a) answer 1 (b) answer 2

9

10 # MCQ setting with video description
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11 GPT Prompt = The video is about {Video description }. Which of the

following is the correct answer to {Question }? (a) answer 1 (b) answer

2
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Modality Model QA-Format Viewpoints Overall Accuracy↑ (%)
Dimension Breakdowns

Physical Social Temporal

Text-Only

DeBERTa-V3
T/F — 70.12 70.61 70.32 69.19

MCQ — 70.35 72.10 68.62 69.01

UnifiedQA-base
T/F — 68.93 70.22 69.32 66.33

MCQ — 67.63 68.53 69.01 65.13

UnifiedQA-large
T/F — 69.59 71.00 69.88 67.18

MCQ — 70.38 71.57 71.83 67.38

UnifiedQA-3B

T/F — 70.49 70.58 72.20 68.99

T/F (Pair.) — 54.91 55.31 56.21 53.26

MCQ — 73.40 73.36 75.80 71.60

Vanilla ChatGPT T/F — 52.80 51.36 48.06 54.04

Desc.-ChatGPT
T/F — 55.20 50.82 52.90 52.48

MCQ — 42.40 36.96 43.22 47.83

Vanilla GPT-4 T/F — 53.80 53.89 53.16 54.32

Desc.-GPT-4
T/F — 56.20 55.00 58.23 55.56

MCQ — 60.80 61.41 55.48 65.22

Multimodal

VIOLET

T/F All 66.15 70.20 64.45 60.24

T/F (Pair.) All 48.25 54.03 44.60 40.63

MCQ All 69.33 70.20 70.23 67.19

VALOR

T/F All 63.83 66.54 62.50 60.02

T/F (Pair.) All 43.00 46.51 42.46 37.26

MCQ All 55.06 58.28 51.76 51.69

VL-Adapter

T/F

All 68.75 71.56 67.94 64.40

3rd 66.32 66.01 67.90 65.07

1st 72.63 75.49 — 62.82

T/F (Pair.)

All 51.19 54.27 49.56 47.74

3rd 47.82 47.60 49.50 46.40

1st 60.40 62.23 - 53.44

MCQ

All 71.53 72.70 70.39 70.25

3rd 69.13 67.63 70.35 69.48

1st 75.34 76.29 — 72.05

Human T/F All 83.60 81.82 100 77.27

Performance MCQ All 92.59 90.91 100 90.91

Table 4.2: Model benchmarking performance on our ACQUIRED dataset.
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CHAPTER 5

Limitations & Future Work

We hereby discuss the potential limitations of our work:

(1) Our work focuses on the three commonsense dimensions: physical, social, and tem-

poral. While they likely span the most common types of the reasoning technique, there could

be more, e.g., numerical commonsense is not specifically dealt with in this work, nor is non

common activities such as fantasies and fictions involved. For future models benchmarked

against our dataset, this should be taken account for, i.e., should the models excel at these

commonsense dimensions for counterfactual reasoning, we cannot guarantee it is a complete

model on all types of reasoning scheme.

(2) The videos used in this work are subsets of readily collected ones from both Oops! [ECV20]

and Ego4D [GWB22] mother sets, and hence the event distribution can be bounded by the

activities they concern. While we argue that the dataset is, to our best knowledge, first of

its kind video QA dataset in terms of diversity and dedication of counterfactual reasoning,

the video resources spanning even more diversified situations can be further extended. We

will release the manuscripts and our collection tools to help spur future relevant research in

such endeavours.

(3) Unlike Oops!, there is not an obvious failed actions occurred in Ego4D, and hence

the annotated questions could be confounded by more imagined situations. We argue that

the required reasoning technique is essentially the same and the models learn on our dataset

should generalize well to situations that actually involve failing actions from egocentric visual

contexts. However, we encourage future research to extend the first-person viewpoint (ego-
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centric) parts to encompass obvious failing actions to collect just-in-time assistive questions

and their corresponding remedial responses.
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CHAPTER 6

Conclusion

In this work, we present a novel counterfactual-reasoning-focused video question answer-

ing dataset, named ACQUIRED. The dataset provides questions about counterfactual hy-

potheses over visual events (videos). We collect a correct and a distractor answer for three

commonsense reasoning dimensions: physical, social, and temporal. We benchmarked vari-

ous state-of-the-art language models (including LLMs like GPT) and video-language models

on the collected dataset, where the results demonstrate algorithm performance well below

human performance (>13% accuracy).

We hope our studies and the collected ACQUIRED dataset can spur relevant future

research, specifically on testing multimodal models’ capabilities in counterfactual reasoning,

devising assistive AI for remedial and/or cause estimation of observed failures, and more

sophisticated visual event understanding and reasoning.
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