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PTSD IN THE MILITARY: PREVALENCE, PATHOPHYSIOLOGY, TREATMENT

Biomarkers for combat-related PTSD: focus on
molecular networks from high-dimensional data

Thomas C. Neylan1,2*, Eric E. Schadt3 and Rachel Yehuda4,5

1Department of Psychiatry, University of California, San Francisco, CA, USA; 2Mental Health Service,
San Francisco Veterans Affairs Medical Center, San Francisco, CA, USA; 3Department of Genetics
and Genomic Sciences, Mount Sinai School of Medicine, New York, NY, USA; 4Department of
Psychiatry, James J. Peters Veterans Affairs Medical Center, Bronx, NY, USA; 5Department of
Psychiatry and Neurobiology, Mount Sinai School of Medicine, New York, NY, USA

Posttraumatic stress disorder (PTSD) and other deployment-related outcomes originate from a complex

interplay between constellations of changes in DNA, environmental traumatic exposures, and other biological

risk factors. These factors affect not only individual genes or bio-molecules but also the entire biological

networks that in turn increase or decrease the risk of illness or affect illness severity. This review focuses on

recent developments in the field of systems biology which use multidimensional data to discover biological

networks affected by combat exposure and post-deployment disease states. By integrating large-scale, high-

dimensional molecular, physiological, clinical, and behavioral data, the molecular networks that directly

respond to perturbations that can lead to PTSD can be identified and causally associated with PTSD,

providing a path to identify key drivers. Reprogrammed neural progenitor cells from fibroblasts from

PTSD patients could be established as an in vitro assay for high throughput screening of approved

drugs to determine which drugs reverse the abnormal expression of the pathogenic biomarkers or neuronal

properties.
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C
urrent understanding of pathophysiology and

treatment of deployment-related medical and psy-

chiatric disorders such as PTSD is hampered by the

complexity of the human system in which these syndromes

are manifested, and by the lack of knowledge regarding

how exposures lead to symptoms that cause deployment-

related psychological injury (Yehuda, Neylan, Flory, &

McFarlane, 2013). Based on available data it is likely that

PTSD and other deployment-related outcomes originate

from a complex interplay between constellations of changes

in DNA, environmental traumatic exposures, and other

biological risk factors. These factors affect not only

individual genes or bio-molecules but also entire biological

networks that in turn increase or decrease the risk of illness

or affect illness severity. This review will focus on recent

developments in the field of systems biology which use

multidimensional data to discover biological networks

affected by combat exposure and post-deployment disease

states.

Focus on molecular networks
Our position is that PTSD symptoms can be conceptua-

lized as emergent properties of complex molecular net-

works, as opposed to core biological processes associated

with a disease driven by a small number of genes. Molecular

networks comprise nodes, representing molecular features

such as metabolite levels, protein levels, and transcript

abundances and edges (Shannon et al., 2003), representing

relationships between these features (Fig. 1 & Glossary).

By examining molecular, cellular, and physiological features
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across populations of individuals under different condi-

tions, objective, data-driven methods can be used to

reconstruct the molecular networks that underlie complex

phenotypes such as PTSD. This data-driven approach is a

radical departure from the more hypothesis-driven ap-

proaches emphasized in previous studies that have focused

on candidate genes or single biological processes and

pathways involved in stress regulation. Although such

studies have originated logically based on knowledge of

stress responses (Yehuda & LeDoux, 2007), and have

yielded important measurable differences between persons

with and without PTSD, they have not explained causality

of symptoms or produced reliable prognostic indicators or

treatment targets. Whereas advances have been made in

understanding PTSD pathophysiology, and some treat-

ments are effective in some patients, it is still not possible to

predict who will develop PTSD following exposure, who

will sustain or recover from symptoms, who will respond to

specific treatments, or what novel therapeutic targets may

lead to more effective treatments or even prevent PTSD

altogether (Yehuda et al., 2013). By integrating large-scale,

high-dimensional molecular, physiological, clinical, and

behavioral data, the molecular networks that directly

respond to perturbations that can lead to PTSD can be

identified and causally associated with PTSD, providing

a path to identify key drivers of networks underlying PTSD

versus passenger genes that are along for the ride. The

approach set forth is one in which discovery is based on

obtaining and validating multidimensional data, including

genomic (genome-wide single-nucleotide polymorphisms

[SNP]), epigenomic (genome-wide DNA methylation and

chromatin modification), transcriptomic (gene expression,

using deep sequencing [RNAseq] and RNA regulators

[miRNA]), proteomic, and metabolomic data which col-

lectively is referred to as panomics; together with careful

behavioral and social phenotype data (Fig. 1).

The panomic assessment permits examination of how

constellations of genetic and environmental perturbations

Fig. 1. Schematic for a network approach to disease understanding and drug discovery. To understand conditions such as PTSD, we

must link the molecular biology of such conditions to the pathophysiology of the condition (Schadt, 2009; Schadt et al., 2009).

Integrating diverse, large-scale data provides a path to construct predictive network models of disease that in turn can inform on novel

therapeutics. Here, panomic, clinical (which includes information on environmental exposures and social factors), imaging, and

literature data are integrated to construct networks that inform on different subtypes of disease, healthy states, and network

components associated with toxicity or other adverse events. Predictive models that define networks for a given disease subtype or

toxicity can be used to construct gene expression assays that can be screened in a high throughput screening context to assess the

effect any given compound has on a specific network in cells relevant to the condition under study. Screening carried out in this way

can lead to the rapid identification of compounds that affect disease networks in favorable ways, while simultaneously identifying

compounds that hit networks associated with toxicity or other adverse events. In this way, compounds can be identified that target

specific subtypes of disease without targeting networks that can lead to toxicity or adverse events.
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affect the molecular states of networks and pathways

that affect risk (assessed prior to exposure), prognosis

(assessed post-trauma), and symptom severity. Genome-

wide association studies (GWAS) are conducted to provide

relevant information regarding individual responses to

deployment; variations in the DNA can induce changes

in molecular states driving different physiological states

or symptoms. Genes may also be uniquely linked to

networks that are perturbed by environmental exposures

that are more proximally associated with increased disease

risk (Califano, Butte, Friend, Ideker, & Schadt, 2012;

Schadt, 2009; Schadt & Bjorkegren, 2012; Schadt, Friend,

& Shaywitz, 2009). However, the identification of those

networks requires an understanding of the molecular

changes that occur once genes are activated by exposures.

To fully predict susceptibility to PTSD, symptom course,

and treatment response, it is necessary to identify mole-

cular phenotypes such as RNA levels and protein states

that mediate the flow of information from DNA to dis-

ease state. These provide a description of the regulatory

processes and mechanisms that are likely to be causally

linked with PTSD risk, onset, and progression. Because

gene transcription is also regulated by epigenetic processes

such as DNA methylation and chromatin marks, as well

as protein and metabolite levels, all of these systems

are important complements to the identification of re-

gulatory networks. Epigenetic mechanisms are particu-

larly important as increasing evidence implicates them

in stress responses (Nestler, 2012), and increasingly, in

PTSD (Yehuda & Bierer, 2009; Yehuda et al., 2013). The

panomics approach is relatively new to the study of PTSD

and deployment-related outcomes, but it is not new to

medical science. Significant success in identification of

biomarkers and treatments in other complex disorders

such as irritable bowel disease (Dudley et al., 2011; Jostins

et al., 2012), obesity (Cotsapas et al., 2009; Davis et al.,

2012; Mehrabian et al., 2005; Yang et al., 2009; Zhao et al.,

2009), diabetes (Dastani et al., 2012; Davis et al., 2012;

Drake, Schadt, Davis, & Lusis, 2005; Kang et al., 2012;

Keller et al., 2008; Prokunina-Olsson, Kaplan, Schadt, &

Collins, 2009; Saxena et al., 2012; Schadt et al., 2003;

Zhong, Beaulaurier, et al., 2010), heart disease (Derry

et al., 2010; Drake, Schadt, & Lusis, 2006; Ganesh et al.,

2013; Keating et al., 2008; Schwartz, Schwartz, Horvath,

Schadt, & Lee, 2012; Vergeer et al., 2010), and Alzheimer’s

disease (Zhang et al., 2013) has been achieved using

this molecular approach. Given that many of these dis-

eases have considerable environmental antecedents*
many of them highly relevant to post-deployment health

outcomes*the application of these methods to the study

of service persons and combat veterans with mental and

physical illness is timely and appropriate.

The panomics approach has contributed to discoveries

regarding illness heterogeneity and novel therapeutic

targets (Holgate, 2013). In psychiatric illness, panomics

methodologies have led to new models of pathophysio-

logy, and of targeted drug effects. For instance, spe-

cific metabolomic signatures associated with depression

(Kaddurah-Daouk et al., 2011), bipolar illness (Lan et al.,

2009), and schizophrenia (He et al., 2012; Kaddurah-

Daouk et al., 2007; Prabakaran et al., 2004) have been

identified and noted to be reversed by effective pharma-

cotherapies. These findings have contributed to new

hypotheses regarding critical illness mediators, and con-

stitute a rationale for investigating the therapeutic poten-

tial of agents known to affect these mediators (Quinones

& Kaddurah-Daouk, 2009). To date, no study of PTSD

has applied a panomics methodology to examine biomar-

kers related to prognosis, or that change over time in

association with clinical state and response to treatment.

An important first step for identifying molecular net-

works related to PTSD will be to conduct and repli-

cate multiple longitudinal clinical studies of civilian and

military personnel exposed to traumatic stressors. Studies

from multiple animal models which capture various features

of PTSD could be conducted using repeated measures

and designs capturing multidimensional data. This inte-

grative approach has the potential to establish causality

and link identified networks to physiologic changes in

PTSD, as has been done in other areas (Leonardson et al.,

2010; Zhu et al., 2010). Although information obtained

from any given system or dimension of data alone may

yield a biomarker relating to some aspect of PTSD,

a comprehensive understanding of this condition can

only be obtained from evaluating entire biological net-

works that underlie PTSD (Califano et al., 2012; Schadt,

2009; Schadt & Bjorkegren, 2012; Schadt et al., 2009).

This requires a multidimensional approach which exam-

ines multiple biological levels (molecular, cellular, brain

circuit, organism, and interpersonal). Once we have a causal,

probabilistic network framework for a disease, simula-

tions on these networks can be carried out to predict key

drivers of networks associated with disease, optimal

points for therapeutic intervention, and biomarkers all

of which can in turn be used to predict various out-

comes including diagnosis (relative to specific molecular

subtypes of disease), illness severity, persistence, recovery,

recurrence, delayed onset, and response to treatment.

Identifying these networks may ultimately aid in decision

making (e.g., personnel placement and disposition, treat-

ment planning) and treatment development (Califano

et al., 2012; Dudley, Schadt, Sirota, Butte, & Ashley,

2010; Schadt, 2009; Schadt & Bjorkegren, 2012; Schadt

et al., 2009).

Use of animal models
In animals, it is possible to manipulate molecules and

pathways to demonstrate their role in behavior, brain

function, and peripheral physiology. A change in behavior

resulting from a manipulation of an identified biomarker
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or network would constitute a strong validation of drivers

of symptoms. Because no single exposure-based animal

model of PTSD can adequately capture the complexity

and individual variation associated with combat-related

deployment, multiple models designed to reflect different

aspects of PTSD (e.g., fear conditioning) are needed

(Daskalakis et al., 2013). Conditional manipulations of

candidate molecules with viral gene transfer and optoge-

netics enable examination of highly specific and nuanced

alterations of biological activity (e.g., as opposed to con-

stitutive genetic knock-outs that are non-physiologically

relevant to PTSD). Viral vectors can be used in a relatively

rapid and high-throughput manner, to over-express genes

of interest or silence them in a site-specific, inducible

fashion, with validated high-titer viruses provided to

each of the sites to examine genetic manipulations across

our several convergent animal models (Sparta et al.,

2013). Similarly, specific brain circuits can be activated

or silenced using optogenetic mechanisms to understand

the neural mechanisms through which the targeted genes

control complex behavior. The effects of these manipula-

tions on animal behavior and neural molecular networks

inform the relevance of blood markers to brain. It also

permits identification of biological networks that must be

targeted for treatment.

Biomarkers and gene networks observed in blood and

multiple brain regions can be compared (initially amyg-

dala, medial prefrontal cortex, and hippocampus, based

on their extensive implication in PTSD in human and

animal models, although several other brain regions can

be collected and banked for future studies). This approach

will allow identification of blood-based bio-markers in

animals that parallel the blood-based bio-markers in

humans (Yant et al., 2013). Through the knowledge of

which blood-based markers best represent brain changes,

we can identify the gene networks measureable in blood

that are most relevant for the prevention and treatment of

PTSD.

Molecular networks and PTSD course and
associated comorbidity
Biological networks associated with short-term responses

to trauma exposure may also predict longer-term post-

deployment symptom trajectory and long term risk

for medical comorbidities. Subjects with PTSD are at

substantially increased risk of cardiovascular disease,

and cardiovascular and metabolic risk factors, includ-

ing hypertension, dyslipidemia, obesity, diabetes (Turner,

Neylan, Schiller, Li, & Cohen, 2013), dementia (Yaffe

et al., 2010), and all-cause mortality. Furthermore, female

veterans show increased sexually transmitted infections

and gynecologic health problems (Cohen et al., 2012),

asthma, emphysema, obesity, and stroke. Latent growth

mixture modeling (Bonanno et al., 2012) has identified

four PTSD symptom trajectories. These are 1) resilient:

little to no PTSD or mental health symptoms at the

current or previous wave; 2) recovered: high PTSD symp-

toms post-deployment that improved over time; 3) delayed:

low initial PTSD symptoms that increased over time;

and 4) persistent: sustained and high levels of PTSD.

At present, little is known about the longitudinal course of

PTSD symptoms in veterans entering into treatment.

Furthermore, clinicians have no way to accurately pre-

dict which patients will recover or remain chronic over

many years. High-dimensional clinical and panomic data

could be used to test if molecular networks associated

with persistent symptom course are also involved in

the pathogenesis of associated medical comorbidities

(e.g., inflammation networks).

Approaches to inferring causality in
high-dimensional data
The relationships among different clinical and molecular

phenotypes and DNA genotypes can be examined to

evaluate the explanatory power one trait has for another.

This is useful for identifying genetic susceptibility loci,

and for identifying molecular signatures associated with

PTSD and related states. Networks of molecular and

higher-order features (Schadt & Bjorkegren, 2012) that

associate with PTSD and related phenotypes can be

causally associated with these phenotypes by leveraging

DNA variations, environmental conditions, and time

series as systematic sources of perturbation (a necessary

ingredient for causal inference) (Schadt et al., 2005; Yang

et al., 2009; Zhu et al., 2007, 2008, 2012).

The basic analysis indicated above can seed the more

advanced integrative methods that seek to resolve higher-

order structures of many variables measured in long-

itudinal cohorts of subjects at high risk for trauma

exposure (e.g., active duty soldiers) and determine causal

relationships among them. For example, once the basic

analyses confirm which gene expression traits are most

strongly modulated by genetic variants, the possible

molecular network structures to consider given the data

can be constrained by forcing the genes affected by the

causal genetic variants observed to serve as more upstream

regulators of the downstream effects that result from this

genetic perturbation (i.e., genes affected by a genetic

variants in cis-regulatory regions that are also associated

with expression traits in trans provide an obvious cause-

effect relationship (Schadt et al., 2003,2005). The con-

struction of the molecular networks can be used to

enhance the basic analyses as well, so that an iterative

approach that involves performing the basic analyses in a

more directed fashion based on the network architecture,

that in turn has those results being used to refine the

structure of the network in an iterative fashion until an

optimum is achieved. Furthermore, as data continues to be

generated and new data are generated (and ideally made

readily available), the analyses can be updated and the
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models refined in a continuous fashion, not unlike the

adaptive learning models that are more and more being

used across a broad range of industries (quantitative

finance, climatology, and high energy physics), including

clinical trials.

To facilitate automated data integration, genomic, gene

expression, methylation, miRNA, metabolomic, and pro-

teomic datasets can be analyzed for links to identified

upstream regulators such as transcription factors. Pro-

cessed data across the levels of biological abstraction

and annotation can be integrated across panomics type,

species, patient populations, animal models, organs (blood,

brain regions), and time point.

To more fully elucidate the complexity of PTSD using

network-based approaches, network level analyses can be

used to construct interaction networks in which the

edges between the nodes reflect association-based relation-

ships or direct physical interactions, and probabilistic

causal networks in which the edges between the nodes

are directed, reflecting statistically inferred or known

causal relationships. As many experimental and computa-

tional studies have uncovered, many functional modules

(sub-networks of coherent molecular activity that resides

within a larger network) are highly conserved across

tissues, populations, and species. Therefore, the resulting

validated module-based biomarkers are more robust

than the putative single gene biomarkers extracted from

individual datasets. In addition to constructing different

modular networks using weighted gene co-expression

network analysis, candidate modules from data generated

in one condition can be identified, and then these mod-

ules can be tested across other conditions to identify

core network modules that are common across a disease

spectrum. There are a number of advantages to this net-

work approach: 1) The resulting modules are more compact

than a disease signature and thus serve to minimize

unrelated downstream signals; 2) The modules are distinct

and more reasonably well-defined with respect to con-

ditions/tissues/species that invoke them; 3) This method

provides multiple robust discriminative biomarkers co-

validated across experimental conditions; and 4) The

modular network can reduce the overall dimensionality

in the molecular space leaving open the possibility of

describing it by relatively small-scale ordinary differential

equation (ODE) models (Chen, Niepel, & Sorger, 2010).

These advantages are particularly useful for longitudinal

human observational data, treatment trials, and various

animal model experiments, given the scales and complexity

of data that can be generated in these settings. Combining

statistical learning and mathematical modeling techniques

practically reduces the complexity of high-throughput

data and yet possesses powerful predictive capacity of

treatment targets. The final steps in the network analyses

involve key driver analysis that can integrate information

from multiple network types to a final set of biomarkers.

One of the most widely used theoretical approaches and

computations platforms for constructing interaction net-

works in which molecular features are grouped based

on their degree of interconnectivity in a population of

interest, is weighted gene co-expression network analysis

developed by Zhang and Horvath (2005). Complementing

the construction of this kind of interaction-based net-

work is the construction of causal probabilistic networks

in which DNA variation information in larger numbers

samples (typically 100 or more) serves as a systematic

source of variation that can be leveraged to infer causal

relationships among molecular and higher-order traits.

Given the random segregation of chromosomes during

meiosis, DNA variations are an ideal perturbation source

from which causal relationships can be inferred, similar

to randomized controlled clinical trial in which rando-

mizing patients to a given treatment arm enables causal

inference (Millstein, Zhang, Zhu, & Schadt, 2009; Schadt

et al., 2005). Zhang, Zhu, Schadt and others have applied

these causal inference approaches to multiple studies to

elucidate the complexity of living systems, especially in

the context of disease (Chen et al., 2008; Emilsson et al.,

2008; Schadt et al., 2003, 2005, 2008; Zhang et al., 2013;

Zhong, Beaulaurier, et al., 2010; Zhong, Yang, Kaplan,

Molony, & Schadt, 2010; Zhu et al., 2008, 2012). One

important outcome allowed by causal network inference

methods is the identification of key drivers that regulate

the status of network modules of PTSD genes and are

hence among the most important targets to consider for

drug development.

Whereas interaction networks can present a global

and holistic view of the interacting elements directly or

indirectly involved in disease progression, probabilistic

causal networks can elucidate causal relationships as

well as potential mechanisms (Zhu et al., 2008, 2012).

Bayesian networks represent one class of probabilistic

causal modeling approaches that are in widespread use

today. Bayesian networks are acyclic, directed graphs (so

reflect causal relationships) in which the nodes represent

molecular, cellular, clinical, or other types of variables

measured in a population of interest, and the edges repre-

sent statistically inferred causal relationships between the

variables (Gonik et al., 2012). Although standard Bayesian

networks cannot represent feedback loops (an important

construct in biology), variations of Bayesian network

reconstruction algorithms such as dynamic Bayesian net-

works can represent such relationships (Zhu et al., 2010).

Bayesian networks provide an elegant mathematical

framework for integrating a diversity of data types. DNA

variation, RNA variation, DNA methylation, miRNA,

histone acetylation, chromatin modification, and clinical

phenotype data all can be incorporated into the Bayesian

network reconstruction process (Zhu et al., 2008, 2012).

In general, Bayesian networks can only be solved to

Markov equivalent structures (Geman & Geman, 1984),
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so that it is often not possible to determine the direction of

a given edge unambiguously. However, the Bayesian net-

work reconstruction algorithm can take advantage of

DNA variation, genomic modifications, and environmen-

tal perturbations as a systematic source of perturbations to

break this symmetry among nodes in the network that

lead to Markov equivalent structures, thereby providing a

way to direct edges in the network in an unambiguous

fashion. State transitions between normal states and

PTSD-associated states of interest derived from the causal

network models can be constructed from longitudinally

collected panomics and clinical data (Fig. 2).

Multidimensional data boost power to
detect genetic loci
Given the role genetic loci can play in resolving causal

relationships among molecular and higher-order pheno-

types, creating the most comprehensive map possible

of the genetic architecture of any phenotype is advanta-

geous on many levels. Integrative analyses can be used to

substantially boost the statistical power for relating

panomics data to PTSD-associated traits as well as to

the DNA variants associated with them (Emilsson et al.,

2008; Greenawalt et al., 2011; Zhang et al., 2013; Zhong,

Beaulaurier, et al., 2010; Zhong, Yang, et al., 2010).

Integrative analyses enhance the power to detect these

associations by layering in additional biological data that

can serve to reduce the overall dimensionality of the

search space (e.g., reducing the number of SNPs that need

to be tested) or by informing on putative interactions

(e.g., epistasis) that may be acting together to affect certain

pathways/networks driving traits of interest (Zhang, Zhu,

Schadt, & Liu, 2010). The utility of integrating gene

expression, expression-associated SNPs (eSNPs), and

disease-associated networks with GWAS has been de-

monstrated to increase the power for detecting asso-

ciations as well as to provide much needed functional

support for identifying the most likely candidate suscept-

ibility genes when a number of genetic loci have been

identified as potential key drivers of disease (Emilsson

et al., 2008; Schadt et al., 2008; Zhang et al., 2013;

Zhong, Beaulaurier, et al., 2010; Zhong, Yang, et al.,

2010).

Molecular networks operating in tissues define cellular

and higher-order states that define pathophysiological

states associated with disease and/or cell state. Therefore,

the small nucleotide variants that associate with mole-

cular phenotypes (e.g., expression SNPs or eSNPs) can be

considered as a functionally validated set of variants that

have been shown to be enriched for associating with

disease traits, given they reflect perturbations in the

molecular networks. Given variants like eSNPs associate

with a biologically relevant phenotype like gene expres-

sion, such variants identified in longitudinal datasets can

be used as a more restricted set to test for associations to

PTSD (Fig. 3).

While eSNPs on their own can be a useful filter to

apply in a genetic analysis, different constellations of

eSNPs affect different networks that drive disease pro-

cesses independently (Schadt, 2009). Organizing eSNPs

into the networks they impact can dramatically improve

power to identify key functional processes associated

Fig. 2. Dynamic state transitions in PTSD modeled using longitudinal panomic data. System-state trajectories between normal

and PTSD-associated states. The x�y axes represent system states as defined by integrative, panomics causal networks associated

with PTSD. The z axis represents potential function values that reflect the probability of being in a particular state given a

network state. The contours between the normal and PTSD states represent network state transformations defined by targeting

a corresponding constellation of genes using a quantitative recipe inferred from the Bayesian networks (i.e., the genes to target

including the direction and level of activation or inhibition of each gene or gene product in the recipe).
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with PTSD. Clinical and panomics data can be integrated

to construct weighted interaction networks and probabil-

istic causal gene networks, providing a framework in

which to identify those sub-networks (coherent sets of

genes that are interconnected in the network) associated

with PTSD. Networks constructed from populations of

150�300 individuals can be sufficient to detect disease-

associated networks with adequate power (Zhu et al.,

2007). Whereas the power to detect associations between

SNPs and traits of interest may be very low when effect

sizes and/or samples sizes are smaller, the power to detect

patterns of enrichment is very high, given that we can

leverage constellations of eSNPs associated with a given

sub-network and then test whether such SNPs are en-

riched for associating with the disease traits of interest

(Jostins et al., 2012). There is a dramatic increase in

power that can be achieved via this type of approach as

indicated for many diseases, including anemia, irritable

bowel syndrome, and Alzheimer’s disease (Jostins et al.,

2012; Zhang et al., 2013). In these studies, after identify-

ing sub-networks associated with disease, the set of eSNPs

identified over all tissues can be restricted to eSNPs that

are associated with genes in the corresponding disease-

associated sub-networks. This can yield enrichments over

what can be expected by chance for eSNPs associated

with disease including identification and validation of

novel disease susceptibility genes (Greenawalt et al., 2011;

Jostins et al., 2012; Zhang et al., 2013).

Promise of human stem technology
Although animals and humans share genes, pathways, and

networks, the biological context and integration of these

genes with other systems may be different in different

species. This can result in failures in drug development for

CNS disorders. For example, many Alzheimer’s disease

drugs can show efficacy in animals but not translate to

novel therapeutics in patients. To maximally exploit data

from animal models toward understanding PTSD in

humans, it is necessary to have an understanding of the

genetic and molecular pathways from relevant human

cells, in this case, neural cells (Fig. 1).

The ability to focus on human nerve cells relies on

recently developed methods in mammals to take cells from

other parts of the body (most frequently skin cells/

fibroblasts) and convert them to pluripotent stem cells

(called iPSC, with the ‘‘i’’ standing for ‘‘induced’’), from

which any cell can be generated, or directly into either

neural progenitor cells (iNPC) or neurons (iN). The

revolutionary nature of these approaches led to a Nobel

Prize in October of 2012, just 6 years after Dr. Shinya

Yamanaka demonstrated that with the addition of just

four factors, mammalian cells can be reprogrammed

into iPSCs (Takahashi & Yamanaka, 2006). Since that

first paper there have been more than 1,000 papers

enhancing or making use of cellular reprogramming

and it has become a commonplace method. One area of

active research is the re-differentiation of iPSC into

neurons and other cells of the brain, because the brain

is uniquely inaccessible for study on molecular and

cellular levels (Marchetto, Brennand, Boyer, & Gage,

2011). Methods for generating specific types of neurons

are evolving at a very rapid rate and published methods

show how to bias the neurons to differentiate toward,

for example, regional identities including forebrain,

midbrain/hindbrain, and spinal cord (Tran, Ladran, &

Brennand, 2013). With iNPC and iN, it is possible to

measure the pattern of mRNA produced from each

human sample using RNA-seq methodology, to carry

out additional large-scale analyses of these cells, and to

use iNPC and iN to test the role of genes in human neural

function and to test lead compounds for drug develop-

ment in these same cells. This approach also permits us to

test both analytical predictions as well as biological

observations from animal models in human neural cells.

The utility of this approach was recently demonstrated

by showing that iNPCs from patients with Alzheimer

disease showed molecular alterations directly related to

Alzheimer disease pathology (Qiang et al., 2011)*this is

truly a human neurological disease in a dish.

Fig. 3. Boosting power for panomics. SNP filtering strategy

for boosting power to detect associations between SNP

genotypes and PTSD traits and identify PTSD gene net-

works supported by human genetic data.
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One of the most encouraging examples of reprogram-

ming in complex neuropsychiatric disorders is a recently

published study by Brennand et al. (2011). In this study,

fibroblasts from patients with schizophrenia were repro-

grammed into iPSC and then differentiated into neurons.

These neurons showed reduced neural connectivity to-

gether with decreased number of neurites, decreased levels

of the synaptic protein PSD95, and reduced glutamate

receptor expression. Gene expression profiles showed

specific alterations in the cyclic AMP and WNT signaling

pathways, and cellular and molecular abnormalities were

reversed following treatment with the antipsychotic

loxapine. These findings demonstrate the potential of

this methodology, using skin samples of patients, to reflect

complex brain functioning, including neural and synaptic

development and function, together with the underlying

biological pathways. These data supplement information

from animal models, which result in incomplete informa-

tion because the illness process in humans involves

hundreds of genes and multiple pathways that differ in

at least subtle ways from genes and pathways in animals.

Analyzing human neural cells from PTSD subjects would

yield information that could then be used to inform

animal models.

Future directions: novel treatment development
There is a unique opportunity to understand molecular

changes in neural cells from individuals with and with-

out PTSD. Reprogrammed neural progenitor cells from

fibroblasts could be established as an in vitro assay for

high throughput screening (e.g., to apply approved drugs

from the FDA drug library to the cultured human neu-

ral cells in vitro) to determine which drugs reverse the

abnormal expression of the pathogenic biomarkers or

neuronal properties (connectivity, dendritic arborization,

synaptic structure measured in vitro) (Fig. 1). That is,

existing FDA-approved drugs could be tested for their

ability to normalize molecular networks dysregulated

in PTSD. This method identified a lead compound for

inflammatory bowel disease (Dudley et al., 2011). Treat-

ment development could be accelerated by understanding

how different medications affect human neural cells with-

out exposing people to medications that may not reverse

PTSD pathology in the brain. Furthermore, if this ap-

proach succeeds, it may be possible to predict response to

medication based on biologically validated subtypes,

and by extension, individual bio-signatures along para-

meters that integrate genotype and changes associated

with trauma exposure. Discovering the links between

molecular biology and physiology will additionally pro-

vide for a rational drug discovery program and will

pave the way for individualized treatment approaches

(Schadt & Bjorkegren, 2012). Personalized medicine

strategies require an understanding of how genetic and

environmental factors perturb molecular networks that

alter biological processes that lead to conditions such as

PTSD (Schadt & Bjorkegren, 2012). An understanding of

the molecular networks underlying PTSD will enable

stratification of patient populations into subtypes and

mapping of subtypes to specific treatments.
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Glossary

cis regulation: regulation of the expression of a gene by

elements that are adjacent to the gene, such as promoter

elements or enhancer regions of a gene

eSNPs: expression-associated single nucleotide

polymorphisms-genetic variants that account for varia-

tion in expression of gene transcripts.

higher-order regulation: refers to hierarchical features

involved in the regulation of biological processes. Can

range across multiple levels such as molecular, cellular,

circuit, organ, individual, social, and ecological strata.

key drivers: nodes in a biological networks that

modulate the state of many other nodes in the network

that in turn causally explain an observed physiologic

phenomenon.

Markov equivalence: A mathematical term used in

Bayesian statistics to describe how two sub-network

structures have similar conditional probabilities with

each other and as a result cannot be statistically

distinguished from one another.

miRNA: microRNA. Small RNA fragments that

regulate gene transcription and post-transcription mod-

ification by binding to messenger RNA.

network: a graphical structure comprised of nodes and

edges in which the nodes reflect different features

(variables) of interest, such as transcript levels, protein

levels, protein state, and metabolite levels, and the edges

reflect relationships between the nodes that are either

associative (edges are undirected) or causal (edges are

directed).

ODE models: Ordinary Differential Equation models-

A mathematical approach for modeling biological net-

works which tests the rate of change of one observable

biological feature as a function of one or more predictor

variables.

perturbation: a force which affects the magnitude of a

biological response. It is often synonymous with an

external stressor; but can also be used to describe genetic

variation which affects biological reactivity.

RNAseq: RNA sequencing. Refers to an advanced

method for sequencing different types of RNA (e.g.,

messenger RNA, microRNA).

trans regulation: regulation of the expression of a gene

by elements that are physically distal to the gene. Usually

involves a transcript or protein that regulates a different

gene.
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