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nonlinear time domain simulation. (f) Oscillation frequency versus load ca-
pacitance perturbation for three different mismatches between gain and loss
δ = 0, 0.001, 0.01: the three different gains provide the same saturated oscil-
lation frequencies.vc (0
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7.1 (a) Schematic of a periodically loaded waveguide represented by its equiva-
lent transmission line (TL). Each unit cell is made of two TL segments with
characteristic impedance Z0 and same electrical lengths θ, loaded with a lossy
shunt element Yr representing a radiator (e.g., an antenna) and a shunt non-
linear gain element Yg. (b) Time-domain voltage signals v4(t) and v5(t) are
evaluated at the two middle unit cells’ active elements, for an array with
N = 8. Radiation is given by YrZ0 = 2.5 and the nonlinear small-signal gain
is gZ0 = 0.5. (c) Frequency spectrum of the voltage v4(t) in dB scale shows
the oscillation at the fundamental frequency fosc = 3 GHz. . . . . . . . . . . 171

7.2 (a) Saturated gain calculated at each unit cell, found by Eq. 7.2, for two
arrays with different nonlinear small-signal gain. Radiation losses are YrZ0 =
2.5 in both cases. For two cases of arbitrary uniform nonlinear small-signal
gain values gZ0 = 1 (orange line) and gZ0 = 0.2 (yellow line), the real and
imaginary part of the saturated gain will end up at Ygsat,nZ0 ≈ 0 in each unit
cell. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

7.3 (a) Schematic of a periodic waveguide represented in terms of an equivalent TL
with characteristic impedance Z0 = 50 Ω, loaded periodically with a lumped
loss Yr and linear gain Yg admittances. We assume YrZ0 = 2.5 and θ = π/2
at 3 GHz. (b) The vanishing of the coalescence parameter shows two EPDs
calculated from Eq. 7.6, for varying small-linear gain g. The two EPs are
at kd = 0 (for gZ0 = 1.6) and kd = π (for gZ0 = 0). Dispersion relation
of the real and imaginary parts of the complex-valued wavenumber k versus
frequency for (c) gZ0 = 1.6 and (d) gZ0 = 0. In the inset, the dispersion
diagram is fit with the quadratic equation (f − fe) = ±η(k − ke)
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by the black dashed line, with η ≈ 7.153 × 104 m2/s. (e) A case without
supporting EPD (gZ0 = 0.8). . . . . . . . . . . . . . . . . . . . . . . . . . . 176
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finite-length array in the complex s = jω plane, with a zoomed-in version
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2.5. They pertain to the two EPDs in Fig. 7.3: (a) gZ0 = 0 and (b) gZ0 = 1.6.
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7.6 (a) Saturated nonlinear gain at the middle of the structure (−Ygsat,n) (blue)
and oscillation frequency (orange) versus the total number of unit cells N .(b)
Radiated power Pr delivered to the periodic elements with conductance Yr.
The total power Pg is delivered by the nonlinear gain elements Ygsat,n. The
efficiency is Pr/Pg. The array has N = 8 unit cells and Z0 = 50 Ω. The
small-signal is gZ0 = 1.6, and the radiation conductances have YrZ0 = 2.5.
(c) Delivered power to the radiating elements Pr, to the loads on the left
and right PL, and delivered by the nonlinear gain elements Pg, versus load
variation ZL. We also show the efficiency Pr/Pg and the oscillation frequency
fosc. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

7.7 (a) The vanishing of the coalescence parameter shows different values for reac-
tance satisfies the EPD condition. The EPs happen in different θ for different
reactive susceptance b. (b) The frequency spectrum of the nonlinear gain volt-
age v4(t), which shows the oscillation frequency shifts when we added a small
reactance to all nonlinear gain through the structure at fosc = 2.91 GHz . . 186

8.1 (a) Periodic array with elements radiating synchronously while oscillating.
Power is radiated by the Yr elements, two per unit cell, representing anten-
nas. (b) Schematic of a unit cell with length D = 2d made of two coupled
transmission line (CTL) segments. The CTLs are characterized by even and
odd mode impedances and effective permittivities Ze, Zo and ϵr,e, ϵr,o, respec-
tively. The CTL is periodically loaded with both a lossy shunt element Yr
representing a radiator (e.g., an antenna) and a shunt nonlinear gain element
Yg at the same position z. The glide symmetry shift length is d. Voltages V1
and V2 are given with respect to the ground, not shown for simplicity. . . . 192

8.2 (a) Time domain signal in the saturation regime for a system with 16 unit
cells in the array showing zero phase shift between voltages of nonlinear gain
elements vg,4 and vg,6 with small signal gain g = 10 mS. (b) The frequency
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oscillation frequency of fosc = 3.91 GHz in the saturation regime. (c) Cal-
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ligible imaginary part. (d) The calculated real and imaginary parts of the
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8.3 (a) Radiated power along the structure when the small-signal gain is nonuni-
form with random values γn shown as an inset. The γ5 = −98% value is asso-
ciated with a faulty nonlinear element. (b) Radiated power along the structure
with a random perturbation on the array’s admittances −5% < δn < 5% for
the small gain g = 10 mS. Radiated power for the perturbed array’s admit-
tances in orange follows the uniform one in blue well. (c) Radiated power for
different small-signal gain values along the structure. (d) Saturated gain of
each nonlinear gain element for different small-signal gain values. The cal-
culated saturated gains are uniform along the structure, with the calculated
value closely approaching the reported saturated gain of g = 0.51 mS in the
middle of the structure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
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the array of finite length in the steady state regime (i.e., after saturation),
obtained from time domain simulations. (b) The vanishing of the coalescence
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Electromagnetic (EM) structures are essential in high-speed communications and radar sys-

tems. Enhancing the performance of these components can significantly impact applications

requiring specific features such as ultra-high sensitivity, wireless power transfer, high-output

power arrays, or precise oscillation frequency in periodic structures with high radiating power.

The operational regime often constrains the performance of EM components. This disser-

tation presents a novel class of EM/Radio Frequency devices that utilize nonlinearity and

dispersion engineering to exploit the operational condition known as the exceptional point

of degeneracy (EPD). Operating in the EPD regime allows for pushing the performance

boundaries of devices, especially within the millimeter and terahertz frequency ranges.

EPD refers to a singularity where two or more spectral components in the EM field distri-

bution converge. This work investigates degeneracy conditions in microwave, optical, and

radio frequency devices, examining the unique physical properties of devices operating under

EPD conditions. The study focuses on various circuit configurations, including gyrator-based

coupled resonators, PT-symmetric coupled resonators, single resonators with time-varying

components, and periodic waveguide-based structures. Emphasis is placed on the high sen-

sitivity of these circuits to variations in resistance, capacitance, and inductance, as well as
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on their stability and instability conditions. Notably, it explores the advantageous use of

instabilities in PT-symmetric circuits by introducing nonlinear gain, resulting in highly sen-

sitive oscillators. Additionally, a proposed coupled-resonator system with EPD demonstrates

extreme sensitivity to perturbations, even in broken PT-symmetry conditions. Another in-

vestigation shows how time modulation in a single resonator can enhance power extraction

through EPD.

Finally, an oscillator array operating at an EPD in a waveguide, with discrete nonlinear

gain and radiating elements is shown to achieve oscillations at the EPD frequency after

saturation, and being resilient to changes in small-signal gain of the active elements.

These findings collectively pave the way for innovative applications, including high-sensitivity

sensors, tunable oscillators, power harvesting systems, and high-power oscillating arrays.
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Chapter 1

Introduction

1.1 Motivation of This Work

In this chapter, we focus on giving an introductory discussion along with a brief literature

review of previous works relevant to the topics of this dissertation. We also introduce the

organization and different chapters of this dissertation.

Electromagnetic (EM) and radio frequency (RF) components are crucial for high-speed com-

munications and radar systems. This dissertation proposes a new class of EM and RF devices

that exploit exceptional points of degeneracy (EPDs) to enhance performance. EPDs have

been applied in various fields, including oscillators, amplifiers, delay lines, small antennas,

pulse generators, high-Q resonators, sensors, and lasers. This work investigates the EPD

condition and provides physics-based solutions for coupled resonators to enhance electronic

reading sensitivity, as well as periodic waveguides with gain and loss to achieve stable oscil-

lations. We also examine degeneracy conditions in time-varying systems to identify potential

advancements in power harvesting and sensing applications.
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EPDs are implemented in systems through different designs, leading to numerous appli-

cations, including ultra-sensitive PT-symmetric LC resonators, [6], stable oscillators [12],

high-gain amplifiers [13, 14], and low-threshold lasers [15]. For instance, sensors operating

at EPDs can achieve ultra-high sensitivity to perturbations. Traditional sensors experience

changes in linewidth or frequency shifts proportional to perturbation strength. However, sen-

sors designed to operate at EPDs exhibit enhanced sensitivity and achieve sharp resonances.

Examples include a coupled cavity arrangement for Parity–time-symmetric coupled cavity

systems [5], optical microcavity [16], and PT-symmetric RF sensor systems [17, 3, 6]. This

dissertation, inspired by previous research on EPD in sensing applications, demonstrates

that the EPD condition can be achieved in coupled resonators, gyrator-based circuits, and

time-periodic resonators, leading to ultra-high sensitivity to the perturbation.

Oscillators play a vital role in microwave, terahertz (THz), and optical applications. Typ-

ically oscillators function as positive feedback systems with a gain device and frequency-

selective reactive components. They generate continuous, single-frequency outputs by meet-

ing Barkhausen’s criteria [18] and require a self-sustaining mechanism to filter noise and

create a stable periodic signal. Many RF oscillators use a single active device for simplicity

and cost-effectiveness, as seen in Van der Pol and voltage-controlled oscillators [19]. Os-

cillators often incorporate an LC resonator with positive feedback and negative resistance,

found in designs like Pierce, Colpitts, and cross-coupled transistor pairs [18, 20, 21]. While

LC-resonator oscillators are the most common, other types—such as distributed [22, 23, 8],

ring [24], and multimode oscillators—present unique advantages and challenges. In RF tech-

nology, there is significant interest in developing oscillators that provide stable oscillation

frequency[25], high-quality factor[26], load independence [12], and high output power[27].

Thus, enhancement in oscillator specs is crucial for superior performance in RF and mi-

crowave sources. Recently, EPD-based oscillators have been a subject of study. Researchers

have proposed EPD-based oscillators utilizing modal degeneracy, which offer relaxed oscilla-

tion thresholds, independence from loading conditions [12], and improved efficiency without
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active output buffer stages [28]. EPDs can be achieved using spatial periodicity in coupled

transmission lines, resulting in a coalescence of independent Bloch eigenmodes. Examples in-

clude oscillators based on exceptional points of degeneracy in periodic double-ladder circuits

[7], periodically-loaded circular waveguiding structures [29], and backward-wave oscillators

with distributed power extraction [30]. These designs highlight the advantages of EPDs in

achieving high-performance oscillators with enhanced efficiency and stability, inspiring our

work on EPD-based oscillators.

1.2 History of Exceptional Points of Degeneracy(EPD)

An Exceptional Point of Degeneracy (EPD) represents a unique condition in a system’s

parameter space where both eigenvalues and eigenvectors coalesce into a single eigenmode

[31, 32, 33, 34, 35, 36, 37]. The term ”exceptional point” (EP), used by Kato in 1966, de-

scribes a phenomenon where degeneracy goes beyond the usual case of coinciding eigenvalues,

involving the coalescing of both eigenvalues and eigenvectors. EPDs specifically denote this

merging of both eigenvalues and eigenvectors, emphasizing the unique, singular behavior of

such a system state. The order of degeneracy reflects the number of eigenmodes that coa-

lesce at the EPD, which leads to distinct responses in system behavior. For instance, the

dispersion relation of electromagnetic eigenmodes in a waveguide with an EPD of order m

exhibits the behavior (ω − ωe) ∝ (k − ke)m near the EPD point (ωe, ke) [38, 39].

EPDs are important in non-Hermitian systems, particularly those exhibiting parity-time

(PT) symmetry [40]. PT-symmetry implies that a system’s Hamiltonian commutes with

the PT operator, where the PT operator combines parity reflection with time reversal [41,

42]. PT-symmetric systems meet the condition (n(x) = n∗(−x)) for their refractive index

[43, 44, 45], creating EPDs at critical transition points that shift the spectrum from real to

complex eigenvalues. When the time reversal operator is applied to physical systems, energy
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transforms from damping to growing and vice versa [46]. In PT-symmetric systems with

balanced gain and loss, such as symmetrically coupled waveguides, these transitions form

EPDs, marking key points where eigenvalues transition between real and complex as system

variables are tuned. This characteristic is instrumental in applications involving coupled

waveguides and resonators, where PT symmetry enables phenomena like low-threshold lasing

[47] and ultra-sensitive sensing [5]. EPDs are also linked to bifurcation theory [48, 49], where

they are identified as points in configuration space where multiple spectral branches converge,

effectively functioning as branch points in the space control variable [50]. Additionally, EPDs

are recognized as important points in multilayer waveguide systems [51, 49].

In electromagnetic systems, EPDs emerge when eigenvectors converge due to parameter

variations in space or time. Figure 1.1 distinguishes between EPDs in spatial (k) versus in

time (ω) domains. The EPD condition allows eigenvectors to merge by altering parameters

like frequency, resulting in the emergence of generalized eigenvectors in both space [1, 12] and

time [4, 3]. Under EPD conditions, the system matrix becomes non-diagonalizable, marking

a departure from traditional degeneracies where the system matrix is diagonalizable [52].

Moreover, EPD could be classified based on whether degeneracy arises in configurations

with or without gain and loss [53].

Outside of PT-symmetric systems, EPDs also appear in periodic structures [38] and in

time-varying systems that may operate independently of gain or loss [4]. For instance,

second-order EPDs in uniform coupled transmission lines (CTLs) with loss and gain have

been analyzed from a bifurcation theory perspective [49]. Also, in periodic guiding struc-

tures, EPDs arise at photonic band edges, where the wave group velocity approaches zero

[38]. Examples include Regular Band Edge (RBE) and higher-order Degenerate Band Edge

(DBE) cases, both of which enhance the efficiency and power of devices like high-performance

microwave, radio frequency and optical systems [39, 13].

This dissertation explores how EPDs can substantially improve the performance of electro-
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Figure 1.1: EPDs can be categorized based on system evolution: in waveguides, where
systems evolve spatially (e.g., coupled waveguides), EPDs are associated with wave numbers
k [1, 2]; in resonators, where systems evolve temporally (e.g., coupled resonators), EPDs
correspond to frequencies ω [3, 4].

magnetic devices through sensitivity to parameter perturbations and leveraging nonlinearity

in the system. By precisely engineering systems to achieve EPDs, this dissertation demon-

strates how EPDs enable ultra-sensitive sensors, efficient oscillators, and numerous appli-

cations with potential impacts in high-speed communications, radar, and other advanced

technology domains.

1.3 Applications of Exceptional Points of Degeneracy

(EPDs)

EPDs demonstrate significant potential across various applications by enhancing system

performance through precise parameter design. Systems that incorporate EPDs—such as

sensors, oscillators, and amplifiers—exhibit remarkable features, including ultra-sensitivity

and high efficiency. This section explores the broad range of EPD applications and highlights

how EPDs improve functionality. We categorize EPD applications into three branches, where
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Figure 1.2: Applications of EPDs in sensing [5, 6], oscillators [7, 8], and amplifiers [9, 10].

degeneracy may occur either in space (k) or in time (ω), each enabling distinct applications

as shown in Fig. 1.2.

1.3.1 Sensors

EPDs enable the development of sensors with ultra-high sensitivity to small perturba-

tions. In optical microcavity systems, for example, traditional sensing methods rely on

shifts in linewidth, frequency, or resonance splitting, scaling proportionally with perturba-

tion strength. By operating at EPDs, however, sensors achieve enhanced sensitivity [5, 16].

In PT-symmetric systems, EPDs arise from carefully balanced gain and loss parameters,

resulting in real eigenfrequencies that yield sharp resonances and improved sensitivity com-

pared to passive systems. This improvement directly benefits the sensor’s ability to detect

slight environmental changes [3, 5, 16].

For instance, [5] demonstrates EPDs in a coupled-cavity photonic laser, where a precisely

engineered gain-loss distribution enables EPD operation. Here, the frequency response fol-

lows a cube-root relationship with refractive index perturbations, indicating high sensitivity

to structural changes. Similarly, [16] presents a sensor based on an optical microcavity with
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nanoscale scatterers, where EPDs improve sensitivity through frequency splitting, making it

far more responsive than traditional sensors. The sensitivity of resonance to perturbations

in electronic circuits is examined in [3, 6], whereas the degeneracy condition was previously

discussed in [17].

1.3.2 Oscillators

Oscillators based on EPDs offer significant advantages, particularly in RF and microwave

applications, due to their ability to exploit modal degeneracy. This unique characteristic

allows lower oscillation thresholds, frequency stability independent of load variations [54, 12],

and elimination of active output buffering [28]. By achieving these benefits, EPD oscillators

may deliver higher efficiency and improved overall performance.

Moreover, spatial periodicity in coupled transmission lines (TLs) enables degeneracy condi-

tions that combine multiple Bloch eigenmodes at the band edge, resulting in high-Q reso-

nances [55]. Designs based on EPDs include the double-ladder circuit DBE oscillator [7],

which demonstrates lower oscillation thresholds and enhanced robustness against output

loading. Another application of DBE-based structures is in cavity designs using periodic

waveguides, where the DBE concept enables strong synchronization of a discrete set of os-

cillators, resulting in a stable, single mode of oscillation [12].

Additionally, the DBE-based oscillator model employs a periodically-loaded circular waveg-

uide within a slow-wave system, where mode coalescence of four degenerate modes signifi-

cantly reduces the beam current required for oscillation [56, 29]. Lastly, EPD conditions are

discussed in the context of spatial periodicity in coupled microstrip lines [2]. Introducing

a nonlinear gain element at the center of the structure induces oscillations, resulting in a

robust oscillator [8] and enabling opportunities for pulse generation design [57].
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1.3.3 Amplifiers

EPD-based amplifiers offer a promising approach to exceed the limitations of conventional

amplification, providing enhanced gain, bandwidth, and efficiency. These amplifiers lever-

age electromagnetic eigenmode degeneracies, particularly in periodic slow-wave structures

(SWS), where third-order degeneracies—known as stationary inflection points (SIPs)—enable

the coalescence of three Floquet-Bloch eigenmodes, resulting in significantly improved per-

formance. When synchronized with an electron beam (e-beam), an amplifier operating at an

SIP achieves advantages such as gain enhancement, increased gain-bandwidth products, and

higher power efficiency [10, 58]. Additionally, a three-way coupled waveguide structure has

been developed to achieve a third-order EPD through glide-time (GT) symmetry [9], which

holds potential for high-power array applications.

1.4 Organization of the Dissertation and Contents

The dissertation is organized into Chapters that involve the theory and applications of dis-

persion engineering in microwave, RF, and electron beam devices. We explore the conditions

for various orders of EPDs to exist in different structures ranging from microwave to RF.

Chapter 2: We propose a scheme for highly sensitive oscillators based on a coupled-resonator

system with an exceptional point of degeneracy. The oscillator with EPD is realized by cou-

pling two resonators with nearly balanced small-signal gain and loss and leveraging nonlinear

saturation effects in the active component. This design results in an oscillation frequency

that is highly sensitive to circuit perturbations. We investigate two configurations: parallel

LC resonators coupled wirelessly by mutual inductance or wired by a capacitor. This chap-

ter demonstrates the conditions for a second-order EPD oscillator and its high sensitivity

to component perturbations, including those breaking PT-symmetry. The scheme improves
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sensitivity to both positive and negative changes in circuit components and has potential

applications in ultrasensitive sensors, tunable oscillators, and modulators.

Chapter 3: We propose a scheme for generating oscillations using an EPD in two coupled

resonators made of transmission lines with balanced gain and loss. An EPD occurs when

eigenmodes coalesce in both eigenvalues and eigenvectors. Unlike a single transmission line,

second-order EPDs are possible in two coupled lines terminated with balanced gain and

loss. We demonstrate conditions for EPDs in three termination configurations and show

eigenfrequency bifurcation at the EPD. We explore the oscillatory regime with nonlinear

gain and highlight the extreme sensitivity of the self-oscillation frequency to perturbations.

This highly sensitive EPD-based oscillator can be used as a sensor to detect small system

variations. The material in the first four sections was initially led by a previous student, Dr.

Hamidreza Kazemi from the same lab.

Chapter 4: We propose a high-sensitivity oscillator scheme based on an EPD using two LC

resonators coupled with a gyrator. The oscillation frequency is highly sensitive to pertur-

bations, such as changes in a capacitor’s value. We analyze the conditions leading to EPD,

including the use of negative inductance and capacitance. Through fabrication, we demon-

strate that the circuit’s instability leads to stable self-oscillations, with high sensitivity to

small perturbations. The sensitivity of a gyrator-based oscillator to perturbations is higher

than the one of a comparable simple LC linear resonator and is comparable to, or better

than, other EPD circuits. This scheme can be used for high-precision sensors in various

applications. Please note that Mr. Kasra Rouhi contributed to the theoretical section of

this chapter.

Chapter 5: This chapter investigates the emergence of EPDs in three circuit configurations:

gyrator-based coupled resonators, PT-symmetric coupled resonators, and a single resonator

with a time-varying component. Each circuit displays high sensitivity to component per-

turbations, which can be used for sensing applications. Gyrator-based circuits exhibit real-
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valued eigenfrequencies under perturbation but require active components and can operate

in oscillatory regimes due to inherent instabilities. PT-symmetric circuits, with balanced

gain and loss, also achieve high sensitivity, though they need precise tuning to maintain

stability. The linear time-varying (LTV) circuit provides a simpler alternative, achieving

EPDs by adjusting modulation frequency alone. Together, these EPD-based circuits show

promise for designing highly sensitive, efficient sensors suitable for detecting minor variations

in various physical, chemical, or biological conditions.

Chapter 6: We investigate how a single resonator with a time-modulated component extracts

power from an external ambient source. The power collected depends significantly on the

precise modulation signal frequency. Focusing on mechanical resonators, we show that time

modulation of the damper can enhance power harvesting by over 10 times compared to

systems without modulation. A narrow band pair of peak and dip in the absorbed power

spectrum occurs due to an EPD. In this narrow frequency range, the delay between the

damper modulation and external vibration significantly affects power collection. This high

frequency-selectivity could be useful for sensing and spectrometer applications. Please note

that this chapter was completed with an equal contribution from Dr. Kasra Rouhi.

Chapter 7: In this chapter, we show that an oscillator array tends to operate at an EPD

in a waveguide with discrete nonlinear gain and radiating elements. The EPD concept

achieves an exceptional synchronization regime, enhancing radiating power efficiency. The

system maintains a steady-state degenerate oscillation mode at 3 GHz, even with nonuniform

small-signal nonlinear gain. Contrarily to the original expectation of zero phase shift of the

signal from a unit cell to the next one, after reaching saturation, the time-domain signal in

consecutive unit cells displays a π phase shift. Therefore, we prove that the system converges

to a distinct EPD. Unlike ordinary oscillating systems, the oscillation frequency remains

independent of the array length. These findings are significant for high-power radiating

arrays with distributed active elements.
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Chapter 8: This chapter presents a novel periodic array of nonlinear gain and radiating

elements that achieves stable oscillation at an EPD. Unlike conventional systems, the array’s

oscillation frequency is independent of its length, and the saturated gain across the array is

uniformly distributed, even when the initial small-signal gain is non-uniform. Experimental

and simulation results confirm that the array stabilizes at an EPD, producing low phase

noise and uniform radiating power. The design is robust to variations in gain, loss, and

element failure, making it highly suitable for high-power radiation applications requiring

a stable low-noise frequency. This work overcomes previous limitations in Chapter 7 by

demonstrating a system with non-zero saturated gain and consistent power distribution.
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Chapter 2

Highly Sensitive Coupled Oscillator

Based on an Exceptional Point of

Degeneracy and Nonlinearity

We propose a scheme to obtain highly-sensitive oscillators in a coupled-resonator system with

an exceptional point of degeneracy (EPD) and a small instability. The oscillator with the

exceptional degeneracy is realized by using two coupled resonators with an almost balanced

small-signal gain and loss, that saturates due to nonlinear effects of the active component,

resulting in an oscillation frequency that is very sensitive to a perturbation of the circuit.

Two cases are investigated, with two parallel LC resonators with balanced small-signal gain

and loss that are either coupled wirelessly by mutual inductance or coupled-wired by a capac-

itor. This chapter demonstrates theoretically and experimentally the conditions to obtain a

second-order EPD oscillator and analyzes the ultrasensitivity of the oscillation frequency to

components’ perturbation, including the case of asymmetric perturbation that breaks PT-

symmetry. We discuss the effects of nonlinearity on the performance of the oscillator and

how the proposed scheme improves the sensing’s sensitivity of perturbations. In contrast to
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previous methods, our proposed degenerate oscillator can sense either positive or negative

changes of a circuit component. The degenerate oscillator circuit may find applications in

various areas such as ultrasensitive sensors, tunable oscillators and modulators.

2.1 Motivation and State of the Art

Oscillators are fundamental components of radio frequency (RF) electronics. Traditionally,

an oscillator is viewed as a positive feedback mechanism utilizing a gain device with a selective

reactive circuit. An oscillator generates a continuous, periodic single-frequency output when

the Barkhausen’s criteria are satisfiedred [18]. The oscillator circuit should have a self-

sustaining mechanism such that noise gets filtered, quickly grows and becomes a periodic

signal. Most RF oscillators are implemented by only one active device for noise and cost

considerations, such as Van der Pol and voltage-controlled oscillators [19]. Oscillators can

be realized by a simple LC resonator with positive feedback using a negative resistance.

Pierce, Colpitts, and tunnel diode oscillators play a role of negative resistance in a circuit,

as well as a cross-coupled transistor pair [18, 20, 21]. All these oscillators are based on a

single-pole operation, i.e., a single pole of the system matrix that describes the circuit [18] is

rendered unstable when the system is brought above the threshold. Oscillators based on an

LC resonator are the most common type of oscillator, other designs may feature distributed

[22, 23, 8], ring [24, 59], coupled [60], or multi-mode [61] oscillators, which come with their

own challenges and advantages.

In this chapter, we discuss the concept of a double-pole oscillator, i.e., an oscillator designed

to utilize an exceptional point of degeneracy (EPD) in two coupled resonators, where the

degenerate (double) pole is rendered unstable. A system reaches an EPD when at least

two eigenmodes coalesce into a single degenerate one, in their eigenfrequencies (eigenvalues)

and polarization states (eigenvectors) [34, 31, 35, 32, 33, 62, 63, 64, 65]. The letter “D” in
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EPD refers to the key concept of “degeneracy” where the relevant eigenmodes, including the

associated eigenvectors are fully degenerate [66]. The degeneracy order refers to the number

of coalescing eigenmodes. The concept of EPD has been implemented traditionally in systems

made of coupled resonators [17, 3, 67, 68, 69, 70, 71], periodic and uniform multimode

waveguides [39, 72, 73, 2, 74], and also in waveguides using Parity-Time (PT) symmetry

[75, 2, 76, 77]. EPDs have been recently demonstrated also in a temporally-periodic single

resonator without a gain element [4, 78, 79, 69], inspired by the finding that EPD exists in

spatially periodic lossless waveguides [1, 13, 38], resorting to a non-diagonalizability property

of the transfer matrix associated to a periodic system.

A very significant feature of a system with EPD is the ultra-sensitivity of its eigenvectors

and eigenvalues to a perturbation of a system’s parameter. This property paves the way

to measure a small change in either physical, chemical, or biological parameter that causes

a perturbation in the system. Typically, a sensor’s sensitivity is related to the amount

of spectral shift of a resonance mechanism in response to a perturbation in environmental

parameters, for example, a glucose concentration or other physical variations like changing

pressure, etc. Sensors with EPD can be wired or wirelessly connected to the measuring part of

the sensor [80, 81, 82]. In principle, higher sensitivity would be enabled with higher orders of

degeneracy, such as the more complicated circuit in [83]. In Refs. [80, 81, 82, 83], sensitivity

was discussed in the case of symmetric gain and loss. In this chapter, we show very high

sensitivity of the oscillation frequency to external perturbations of a double-pole oscillator

operating at a second-order EPD, focusing on the nonlinear aspects of the implementation.

Based on the general PT-symmetry concept [40], PT-symmetry circuits have been conceived

as two coupled resonators [17, 3]. In demonstrating the sensitivity of these circuits’s response

when the circuit is perturbed away from its EPD, PT-symmetry has been maintained in order

to obtain two real-valued frequencies: for example, in Ref. [6], when one side’s capacitance

is perturbed, the authors tuned the other side’s capacitance using a varactor to keep the
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PT-symmetry in the circuit, so they can still, observe two real-valued shifted frequencies

perturbed away from the degenerate EPD frequency. Thus, in previously published schemes

(implementing the demonstration of sensitive measurement of a perturbation) the exact

value of such perturbation should be precisely known to tune the other side of the system in

order to keep the circuit PT-symmetric. This seems to contradict the idea that the circuit

is used as a sensor of an unknown measurable quantity. That scheme could be saved if

combined with an iterative method performing an automatic scan to reconstruct the PT-

symmetry. Anyway, this rebalancing procedure (to keep the system PT-symmetric) is a

further complication for using such a scheme to design a sensor.

A limitation of PT-symmetry schemes is that they can detect only perturbations that lead

to the same-sign change in a system’s component, such as a capacitor’s value. This is

because a PT-symmetric system provides two real-valued frequencies only when the system

is perturbed away from its EPD in one direction (for example for G values smaller than the

Ge related to the EPD, when looking at the eigenfrequencies in Fig. 2.1). If the perturbation

makes the system move in the other direction, the shift of the frequencies is in the imaginary

parts [84, 3, 6, 17], leading to two complex-valued frequencies and hence to instability. One

must also consider that any mismatch between the sensor side (typically the part with

losses) and the reader side (typically the part with gain), even involuntary, leads to an

asymmetric system. Thus, a PT-symmetric system in practice always shows two complex-

valued eigenfrequencies and increases the risks of self-sustained oscillations (unless an EPD

is designed with a large enough damping factor, larger than the eigenfrequency perturbation

due to circuit tolerances). Noise and nonlinearities play a critical role in the robustness of

these kinds of applications and affect the possibility of instability [85]. Some error-correction

techniques are studied in [86] to overcome some of these drawbacks using a nonlinear PT-

symmetry scheme to enhance the robustness of sensing. A closely related highly sensitivity

approach has also been proposed using the concept of white light cavities that has been then

demonstrated to be related to the concept of EPD in PT-symmetric systems [87, 88].

15



In this chapter, we provide a scheme that starts by using a quasi PT-symmetric condition,

working near an EPD, that makes the double-pole system slightly unstable even before

having any perturbation. In other words, we turn the above-mentioned practical problems

that occur in PT-symmetric systems to our advantage when the circuit has to be used in a

highly sensitive sensor. We set the gain value slightly higher than the loss counterpart to

make the system slightly unstable. As a result of instability and nonlinear gain, the signal

grows until the active gain component reaches saturation, and the working operation will be

close to the EPD.

2.2 Oscillator Based on Coupled Resonators with EPD

We first show the behavior of wirelessly coupled LC resonators through the dispersion relation

of the resonance frequency versus perturbation and we discuss the occurrence of EPDs in

such a system. In section 2.3, we use the nonlinear model for the gain to achieve the

oscillator’s characteristics. We show that the oscillation frequency is very close to the EPD

frequency. The EPD-based oscillator has an oscillation frequency that is very sensitive to

perturbation, exhibiting the typical square root-like behavior of EPD systems, where the

change in frequency of the oscillator is proportional to the square root of the perturbation.

In section 2.4, we demonstrate the highly sensitive behavior of the circuit by breaking PT-

symmetry, i.e., by perturbing the capacitance on the lossy side (the sensing capacitance). In

this case, the circuit oscillates at a shifted frequency compared to the EPD one. Notably,

both positive and negative perturbations in the capacitance are shown to lead to opposite

shifted frequencies, i.e., the proposed scheme detects either positive or negative changes in

the capacitance, in contrast to conventional PT-symmetry systems [3, 6, 67] that generate

frequency shifts associated to only one sign of the perturbation. The EPD is demonstrated

also by analyzing the bifurcation of the dispersion diagram at the EPD frequency by using the
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Puiseux fractional power series expansion [89, 33]. In section 2.5, we show the condition to

have an EPD in two resonators coupled by a capacitor and demonstrate the occurrence of the

EPD by using the Puiseux series and experimentally, by using a nonlinear active element.

Also, we discuss how noise contributes to the system by showing the power spectrum of

the system and the phase noise. The theoretical results are in a good agreement with the

experimental results, pointing out that small perturbations in the system can be detected

by easily measurable resonance frequency shifts, even in the presence of thermal noise and

electronic noise. The advantages of using the proposed circuit as an ultra-sensitive sensor

and how the experimental results show that the oscillator is sensitive to both positive and

negative capacitance changes are discussed in Section 2.5. Very sensitive sensors based on

the oscillator scheme discussed here can be a crucial part of various medical, industrial,

automotive and aerospace applications that require sensing physical, chemical or biological

variations.

We investigate the coupled resonators shown in Fig. 2.1(a), where one parallel LC resonator

includes gain (left side, or n = 1) and the other includes loss (right side, or n = 2). In

this ideal circuit, the negative conductance −G1 (gain) has the same magnitude as the loss

G2 to exactly satisfy PT-symmetry. When a system satisfies PT-symmetry, it means that

the system is invariant to the application of the two operators of parity P transformation

(making a spatial reflection (e.g., x → −x)), and time-reversal T transformation (t → −t),

where x is the coordinate and t is the time.

By writing Kirchhoff’s current laws, we obtain the equations


d2Q1

dt2
= − 1

LC1(1−k2)
Q1 +

k
LC2(1−k2)

Q2 +
G1

C1

dQ1

dt

d2Q2

dt2
= + k

LC1(1−k2)
Q1 − 1

LC2(1−k2)
Q2 − G2

C2

dQ2

dt

(2.1)
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Figure 2.1: (a) Coupled resonators terminated with linear −G1 on the gain side (n = 1)
and G2 on the loss side (n = 2), with G1 = G2 = G, and inductances L = 0.1 µH, mutual
coupling k =M/L = 0.2, capacitances of Cn = C0 = 1 nF (n = 1, 2). The natural frequency
of each (uncoupled) LC resonator is ω0 = 1/

√
LC0 = 108 s−1. Normalized eigenfrequencies

of the coupled circuit are calculated by using Eqs. (2.4) and (2.5). (b) Positive real, and (c)
imaginary parts of the resonance angular frequencies normalized by ω0 varying G on both
sides of the EPD value. (d) At the EPD point (G = Ge = 20.52mS, ωe = 1.01 × 108 s−1),
two state eigenvectors coalesce demonstrated by the vanishing of sin(θ).

where Qn is the capacitor charge on the gain side (n = 1) and on the lossy side (n = 2), and

Q̇n ≡ dQn/dt is the current flowing into the capacitor. We define the system’s state vector

as Ψ(t) ≡ [Q1, Q2, Q̇1, Q̇2]
T, consisting of a combination of stored charges and currents on

both sides, and the superscript T denotes the transpose operation. Thus, we describe the

system in a Liouvillian formalism as
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dΨ
dt

= MΨ,

M =



0 0 1 0

0 0 0 1

− 1
LC1(1−k2)

k
LC2(1−k2)

G1

C1
0

k
LC1(1−k2)

− 1
LC2(1−k2)

0 −G2

C2


.

(2.2)

We are interested in finding the eigenfrequencies and eigenvectors of the system matrix M.

Assuming signals of the form Qn ∝ ejωt, we write the eigenvalues problem associated with

the circuit equations, (M− jωI)Ψ = 0, where I is a 4 by 4 identity matrix. Then, by solving

P (ω) ≜ det(M− jωI) = 0, the four eigenfrequencies are found. By assuming C1 = C2 = C0

and linear G1 = G2 = G, a symmetry condition that has been described as PT symmetric

[17], the characteristic the equation takes the simplified form

P (ω) = (1− k2)
(

ω
ω0

)4

+(G2Z2 (1− k2)− 2)
(

ω
ω0

)2
+ 1 = 0,

(2.3)

where Z =
√
L/C0 is a convenient normalizing impedance, and ω2

0 = 1/ (LC0). The charac-

teristic equation is quadratic in ω2; therefore, ω and −ω are both solutions. Moreover, the

ω’s coefficients in the characteristic equation are real, hence ω and ω∗ are both solutions,

where * represents the complex conjugate operation. The 4 by 4 matrix M results in 4

angular eigenfrequencies which are found analytically as,

ω1,3 = ±ω0

√
1

1− k2
− G2Z2

2
−
√
b, (2.4)
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ω2,4 = ±ω0

√
1

1− k2
− G2Z2

2
+
√
b, (2.5)

b = − 1

1− k2
+

(
G2Z2

2
− 1

1− k2

)2

. (2.6)

Because of the mentioned symmetries of the eigenfrequencies in a realistic system with

purely-real time domain signals (e.g., voltages and currents), in the follwoing we will focus

mainly on the two solutions with positive real part, namely ω1 and ω2. The EPD frequency

is found when the component values obey the condition

b = 0. (2.7)

So far b = 0 is a necessary condition, but in a simple system like this, the eigenvectors can

be represented as a function of the eigenvalues so this condition is also sufficient to show

the convergence of the eigenvectors, hence for an EPD to occur. Under this condition, we

calculate the EPD angular frequency based on Eqs. 2.4 and 2.7 as ω1 = ω2 = ωe where

ωe =
ω0

4
√
1− k2

. (2.8)

Only the two eigenfrequencies with positive-real part, namely ω1 and ω2, are shown in Fig.

2.1(b) and (c) varying G. It is seen from this plot that the system’s eigenfrequencies are

coalescing at a specific balanced linear gain/loss value G = Ge, where b = 0. Note that in

this scenario, the EPD-enabling value Ge is derived from Eq. (2.7) as
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Ge =
1

Z

(
1√
1− k

− 1√
1 + k

)
. (2.9)

For clarification, when G = 0 (lossless and gainless circuit), we have two pairs of resonance

frequencies ω1,3 = ±ω0/
√
1 + k and ω2,4 = ±ω0/

√
1− k, and ω1 ̸= ω2 always, except for

the trivial case with k = 0, when these eigenfrequencies are equal to those of the isolated

circuits, but since the two circuits are isolated this is not an important degeneracy. With

the given values of L and C in the caption of Fig. 2.1, a second-order EPD occurs when

G = Ge = 20.52mS. In this case, the circuit’s currents and charges grow linearly with

increasing time as Qn ∝ tejωet), and they oscillate at the degenerate frequency ωe. Also, when

perturbing G near the EPD point, the eigenfrequencies have a square root-like behavior as

|ω−ωe| ∝ ±
√

(GZ)2 − (GeZ)
2[3]. A second coalescence (i.e., degeneracy) happens for larger

values of G, i.e., at G
′
e =

1
Z

(
1√
1−k

+ 1√
1+k

)
. However, when G > G

′
e all eigenfrequencies are

purely imaginary, so we only study cases with G < G
′
e, discussed next. In the strong coupling

regime, 0 < G < Ge, the eigenfrequencies are purely real, and the oscillation wave has two

fundamental frequencies. In the weak coupling regime, Ge < G < G
′
e, the frequencies are

complex conjugate and the imaginary part of the angular eigenfrequencies is non-zero, and it

causes two system solutions (Q1 and Q2) with damping and exponentially growing signals in

the system. Since the solution of the circuit is Qn ∝ ejωt, the eigenfrequency with a negative

imaginary part is associated to an exponentially growing signal and the oscillation frequency

is associated to the real part of the eigenfrequency.

At each positive (real part) angular eigenfrequency ω1 and ω2, calculated by Eqs. (2.4) and

(2.5), we find the two associated eigenvectors Ψ1 and Ψ2 by using Eq. (2.2). A sufficient

condition for an EPD to occur is that at least two eigenvectors coalesce, and that is what

we check in the following. Various choices could be made to measure the state vectors’

coalescence at an EPD, and here, the “Hermitian angle” between the state amplitude vectors
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Ψ1 and Ψ2 is defined as [90]

θ = arccos

(
| < Ψ1,Ψ2 > |
||Ψ1|| ||Ψ2||

)
. (2.10)

Here, the inner product is defined as < Ψ1,Ψ2 >= Ψ†
1Ψ2, where the dagger symbol †

denotes the complex conjugate transpose operation, || represents the absolute value, and || ||

represents the norm of a vector. According to this definition, the state vectors Ψ1 and Ψ2

correspond to resonance frequencies ω1 and ω2, respectively. When some system’s parameter

is varied, eigenfrequencies and associated eigenvectors are calculated using Eq. (2.2). In

the case when G varies, Fig. 2.1(d) shows that the sine of the angle θ between the two

eigenvectors vanishes when the eigenfrequencies coalesce, which indicates the coalescence

of the two eigenmodes in their eigenvalues and eigenvectors and hence the occurrence of a

second-order EPD.

2.3 Oscillator Characteristics

This section describes the important features of a double-pole (degenerate) oscillator made

of two coupled resonators with discrete (lumped) elements with balanced gain and loss,

coupled wirelessly by a mutual inductance as in Fig. 2.1. The transient time-domain,

frequency spectrum, and double pole (or zero, depending on what we look at) features are

discussed. A cubic model (nonlinear) of the active component providing gain is considered.

The parameters used here are the same as those used in the previous section, where Ge =

20.52mS leads to an EPD of order two at a frequency of 16.1 MHz, except that red here

−G1 accounts also for the nonlinear part responsible for the saturation effect.
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Figure 2.2: (a) Cubic gain i − v curve with parameters G1 = Ge = 20.52mS and α =
6.84mS/V2 (it corresponds to Vb = 1 V). Time-domain response and frequency spectrum
of the oscillatory signal with a cubic model where the gain is always 0.1% more than the
loss (i.e., G1 = 1.001G2) with: (b) G2 ≲ G1 < Ge, (c) G1 = 1.001Ge and G2 = Ge, and (d)
G1 ≳ G2 > Ge, where Ge = 20.52mS.
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A. Transient and Frequency Behavior

Time and frequency-domain responses of the coupled resonators circuit are obtained by using

the Keysight Advanced Design System (ADS) circuit time-domain simulator, as shown in

Fig. 2.2(b)-(d). The cubic model for gain, in Fig. 2.2(a), represented as

i = −G1v + αv3 (2.11)

is a simplified description of the gain obtained from a cross-coupled transistor pair or an

operational amplifier (opamp) based circuit. Here, −G1 is the small-signal gain provided by

the negative slope of the i − v curve, i.e., is the negative conductance in the small-signal

region, and α = G1/ (3V
2
b ) is a third-order nonlinearity that describes saturation, where

Vb is the turning point voltage determined by the biasing direct current (DC) voltage. We

assume Vb = 1 V, and to start self-sustained oscillation, we assume that gain −G1 is not a

perfect balance of the loss G2. Indeed, we assume that G1 is 0.1% larger than G2. Therefore,

the system is slightly perturbed away from the PT-symmetry condition to start with. We

also assume white noise (at the temperature of 298 K) is present in the loss resistor and it

is indeed the initial condition for starting oscillations. The slightly broken small-signal gain

and loss symmetry causes an eigenfrequency to have a slightly negative imaginary part. The

signals in the system are in the form of ejωt and even a small negative imaginary part of

an eigenfrequency makes the system unstable because the system’s signal grows. Therefore,

the system starts oscillating at a frequency associated to the eigenfrequency with a negative

imaginary part; then, such frequency is slightly perturbed because of the nonlinear saturation

effect.

Therefore, because G1 = G2(1+0.001) the circuit is slightly unstable and starts oscillations;

after a transient, the circuit saturates, yielding a stable oscillation, as shown in Fig. 2.2(b)-

(d). As it was shown in Figs. 2.1(b) and (c) assuming linear gain, for values of G1 = G2 < Ge,
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the system has two distinct eigenfrequencies ω1 and ω2 with zero imaginary part. However,

when using the cubic nonlinear model with G1=1.001G2, with G2 ≲ G1 < Ge, the imaginary

part is not zero anymore because of the slightly broken PT-symmetry. Thus, when using the

cubic model, after an initial transient, the oscillation signal associated to the eigenfrequency

with a negative imaginary part dominates and makes the system saturates. Considering

again the initial result in Figs. 2.1(b) and (c) assuming linear gain, it is noted that when

G1 = G2 > Ge, we have two complex conjugate eigenfrequencies, and the one associated

to the negative imaginary part makes the circuit oscillate. However, when using the cubic

gain model with G1=1.001G2, with G1 ≳ G2 > Ge, eigenfrequencies approximately follow

the linear gain eigenfrequency trend. It means that for the values G1 ≳ G2 > Ge, we have

a larger negative imaginary part of the eigenfrequency than when G2 ≲ G1 ≤ Ge. The

rising time is related to the magnitude of the negative imaginary part of the eigenfrequency;

indeed, as shown in Fig. 2.2(b)-(d), the rising time is different in the three cases. By going

further from the EPD point, the signal saturates in a shorter time. In all cases, the frequency

spectrum of the time-domain signal is found by taking the Fourier transform of the voltage

on the gain side after reaching saturation, for a time window of 103 periods.

B. Root Locus of Zeros of the Total Admittance

This subsection discusses the frequency (phasor) approach to better understand the degener-

ate resonance frequencies of the coupled resonators circuit. We use the admittance resonance

method and we demonstrate the occurrence of double zeros at the EPD. The resonance con-

dition based on the vanishing of the total admittance implies that

Yin(ω)−G1 =
P (ω)

j L
ω2
0
(1− k2)ω3 + L2G1 (1− k2)ω2 − jLω

= 0, (2.12)

where the Yin is the input admittance of the linear circuit, including the capacitor C1, looking
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right as shown in Fig. 2.2(a). Here, we assume linear gain with G1 = G2 = G, i.e., satisfying

PT symmetry.

The polynomial P(ω) is given in Eq. (2.3). We calculate the eigenfrequencies by finding

the zeros of Yin(ω) − G, and this leads to the same ω-zeros of P (ω) = det(M − jωI) = 0.

Note that both ω(G) and −ω(G) are both solutions of Eq. (2.12), as well as both ω(G) and

ω∗(G). The trajectories of the zeros of this equation, i.e., the resonance frequencies ω(G), are

shown in Fig. 2.3 by varying linear G from 18mS to G = 22mS (we recall that in this case

G = G1 = G2), in the complex frequency plane. We show only the roots with Re(ω) > 0 for

simplicity. At the EPD occurring when G = Ge = 20.52mS, the two ω-solutions coincide,

and the above equation reduces to Yin(ω) − Ge ∝ (ω − ωe)
2, i.e., the admittance exhibits a

double zero at the EPD angular frequency ωe. This unique property is also responsible for

the square root-like behavior of resonance frequency variation due to the perturbation in a

system, as discussed next, which is the key to high sensitivity. Moreover, for values G < Ge,

the two resonance frequencies are purely real, and for G > Ge, the two resonance frequencies

are a complex conjugate pair.

2.4 Sensor Point of View

A. High Sensitivity and the Puiseux Fractional Power Expansion

As mentioned in the Introduction, when the system operates at an EPD, the eigenfrequencies

are extremely sensitive to the system perturbations. This property is intrinsically related to

the Puiseux series [89] that provides a fractional power series expansion of the eigenvalues

in the vicinity of the EPD point. We consider a small relative perturbation
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Figure 2.3: The trajectories of the zeros of Yin(ω)−G = 0 show the two resonance frequencies
when varying G from 15mS to 25mS (we assume linear gain with G1 = G2 = G). When
G = Ge, the two branches meet at ωe. Therefore, at the EPD, the frequency ωe is a double
zero of Yin(ω) − Ge = 0. We plot only the trajectories of the two eigenfrequencies with
positive real part.

∆X =
X −Xe

Xe

, (2.13)

where X is the perturbated value of a system’s element, and Xe is the unperturbed value

that provides the EPD of second order. A perturbation ∆X leads to a perturbed matrix

M(∆X) and, as a consequence, it leads to two distinct perturbed eigenfrequencies ωp(∆X),

with p = 1, 2, near the EPD eigenfrequency ωe as predicted by the Puiseux series containing

power terms of ∆
1
2
X. Accordingly, a good approximation of the two ωp(∆X), with p = 1, 2, is
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given by the first order expansion

ωp(∆X) ≃ ωe + (−1)pα1

√
∆X. (2.14)

Following [89, 33], we calculate α1 as

α1 =

√√√√− ∂H(∆X,ω)
∂∆X

1
2!

∂2H(∆X,ω)
∂ω2

, (2.15)

where H(∆,ω) = det[M(∆) − jωI] and its derivatives are evaluated at the EPD, i.e., at

∆X = 0 and ω = ωe.

Consider a coupled LC resonator, as described in Fig. 2.2(a), assume the capacitor C2 on

the lossy side is perturbed from the initial value as (1+∆C2)Ce, where Ce is the unperturbed

value for both C1 and C2: the coefficient α1 is found analytically as

α1 =

√√√√L2ω2
eG

2
e

(
1 + Ceωe

Ge

)
(1− k2) + (1− CeLω2

e)

L2 (6C2
eω

2
e +G2

e) (1− k2)− 2CeL
. (2.16)

The Puiseux fractional power series expansion Eq. (2.14) indicates that for a small per-

turbation such that |∆X| ≪ 1, the eigenfrequencies change dramatically from their original

degenerate value due to the square root function. The Puiseux series first-order coefficient

is evaluated by Eq. (2.16) as α1 = 107(1.693+ j1.530) rad/s. The coefficient α1 is a complex

number implying that the system always has two complex eigenfrequencies, for any C2 value.

In Fig. 2.4 (a) and (b), the estimate of ωp, with p = 1, 2, using the Puiseux series is shown

by a dashed black line. The calculated eigenfrequencies by directly solving the characteristic

equation of Eq. (2.3) are shown by solid blue and red lines, representing unstable and stable

solutions, respectively.
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Figure 2.4: High sensitivity of the circuit to a variation of capacitance C2 . We show the (a)
positive-real and (b) imaginary parts of the resonance frequencies (using linear gain) when
varying C2, compared to the frequency of oscillation after saturation when using nonlinear
gain. Solid blue and red lines show the resonance frequencies obtained by solving the charac-
teristic equation of Eq. (2.3); dashed lines show the estimate obtained by using the Puiseux
fractional power series expansion truncated to its first order. In both cases, gain is a linear
negative conductance with G1 = G2 = Ge. Green dots in (a) show the oscillation frequen-
cies using nonlinear gain; results are obtained by using the time-domain circuit simulator
Keysight ADS using the small-signal negative conductance −G1 with G1 = 1.001Ge, i.e., it
has been increased by 0.1% from its loss balanced value Ge (we recall that G2 = Ge). The
frequencies of oscillation are obtained by applying a Fourier transform of the capacitor C1

voltage after the system reaches saturation, for each considered value of C2. (c) Sensitivity
comparison with single linear LC resonator, when varying ∆C2 . The much higher sensitivity
of the EPD oscillator with double pole is clear. Note that the whole frequency variation
relative to the full perturbation range of capacitance (−5% < ∆C2 < 5%) for the single LC
resonator could be achieved by only 1/10 of the perturbation (−0.5% < ∆C2 < 0.5%) when
the EPD based circuit is used. The highest sensitivity of the EPD circuit is shown for very
small perturbations ∆C2 .
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Figure 2.5: Robustness of the high sensitivity of the circuit to a variation of capacitance
C2 .The oscillator’s fundamental frequencies of the circuit after each 0.5% perturbation on
C2 by using nonlinear gain are shown here, considering three values of gain G1 = Ge(1 + δ),
where G2 = Ge, for three different values of δ = 0, 0.001, and 0.01. These three plots are
on top of each other, meaning that even with a 1% mismatch between gain and loss, the
oscillator’s fundamental frequencies are the same as those for smaller unbalanced situations.
It is important to note that both positive and negative perturbations of C2 are detected.

In this example, C2 is the sensing capacitance to detect possible variations in chemical or

physical parameters, transformed into electrical parameters, like the frequency of oscillation

in the circuit. For a small value of ∆C2 , around the EPD value ∆C2 = 0, the imaginary

and real parts of the eigenfrequencies experience a sharp change, resulting in a very large

shift in the oscillation frequency. Note that this rapid change in the oscillation frequency is

valid for both positive and negative changes of ∆C2 , which can be useful for various sensing

applications. Note also that a perturbation of PT symmetry led to instability.

To show how the telemetric sensor with nonlinearity works, we now consider that the gain

element is nonlinear, following the cubic model in Eq. (2.11), where the small-signal negative

conductance is −G1, with value G1 = 1.001Ge, i.e., increased by 0.1% from its loss balanced

value Ge, as discussed earlier, to make the circuit slightly unstable and start self oscillations.

The capacitor C2 on the lossy side is perturbed by ±0.5% steps and we perform time-domain

simulations using the circuit simulator implemented in the Keysight ADS circuit simulator.

Noise is assumed in the lossy element G2 to start oscillations. The time-domain voltage signal

at the capacitor C1 on the gain side is read, and then, we take the Fourier transform of such
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signal, after reaching saturation, for a time window of 103 periods. The oscillation frequency

evolution by changing ∆C2 is shown in Fig. 2.4 by green dots. There is no imaginary part

of the frequency associated to such a signal since it is saturated and steady, and the time-

domain signal has the shape of an almost pure sinusoid after reaching saturation (phase noise

is discussed later on in this chapter). The oscillation frequency curve dispersion (green dots)

still has a square root-like shape of the perturbation.

To show how the sensitivity is improved when using the second-order EPD (double-pole)

oscillator, we compare its sensitivity to an analogous scheme made of one single LC resonator,

with an inductance of L = 0.1 µH and capacitance of C2 = 1 nF (same values as in the

case of coupled LC circuits) without adding gain or loss. The resonance frequency of the

LC resonator is f0 = 1/(2π
√
LC2) and by perturbing the capacitance C2, the resonance

frequency changes as f ≈ f0(1−∆C2/2). Figure (2.4) (c) shows the comparison between two

cases: (i) oscillation frequency of the EPD based oscillator with nonlinear gain (green dots)

using the time-domain circuit simulator Keysight ADS, and (ii) the resonance frequency of

the single LC resonator (dashed pink). The results demonstrate that the EPD-based circuit

with nonlinearity has higher sensitivity (square root-like behavior due to the perturbation)

than a single-LC resonator without EPD (linear behavior). The whole frequency variation,

relative to the full perturbation range of capacitance (−5% < ∆C2 < 5%) for the single

LC resonator, could be achieved by only 1/10 of the perturbation (−0.5% < ∆C2 < 0.5%)

when the EPD based circuit is used. The highest sensitivity of the EPD circuit is shown

for very small perturbations ∆C2 ,e.g., |∆C2| ≈ 1%. For larger ∆C2 variations, i.e., around

|∆C2| ≈ 5%, the slope of the flattened square root-like curve is similar to the slope of the

curve relative to the perturbed LC resonator.

Figure 2.5 shows another important aspect, the flexibility in choosing the gain value in

the nonlinear circuit, i.e., different levels of mismatch between gain and loss, using different

values for the small-signal negative conductance G1 = Ge(1+δ) where δ = 0, 0.001 and 0.01,
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represents the mismatch between the loss and gain side (we recall that G2 = Ge). As shown

in Fig. 2.5, even with 1% mismatch between gain and loss, the nonlinear circuit shows the

same behavior in the perturbation of the oscillation frequency, that is even matched to the

case with δ = 0. Thus, working in the unstable oscillation configuration using nonlinearity

in the coupled circuit gives us the freedom to losely tune the gain component’s value and it

works well even with some mismatch between gain and loss.

The oscillation frequency is highly sensitive to the capacitance perturbation on either side

of the circuit, either on the loss or gain side. Though not shown explicitly, we have observed

this feature theoretically, by calculating the eigenfrequencies from det(M − jωI) = 0 when

varying C1, and also verified the shifted resonance frequencies using the prediction provided

by the Puiseux series. Also, we have observed in time-domain analyses with Keysight ADS

circuit simulators using nonlinear gain, that the shift of the oscillation frequency is more

sensitive to perturbation of C1 than C2. In this chapter, however, we only show the result

from perturbing C2 because we want to investigate how a telemetric sensor works (i.e., the

sensing capacitance is on the passive part of the coupled resonators circuit).
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Figure 2.6: (a) Coupled resonators terminated with gain −G1 and loss G2, with G1 = G2 =
Ge = 9mS, and L = 10µH, coupling capacitance Cc = 1.5 nF, capacitances C1 = C2 = Ce =
1.5 nF. These parameters lead to an EPD. The isolated (i.e., without coupling) resonance
frequency of each LC resonator is ω0 = 1/

√
LCe = 25.8 × 106 s−1. The eigenfrequencies of

the coupled circuit are calculated by solving det(M − jωI) = 0. (b) Positive-real and (c)
imaginary parts of the angular eigenfrequencies normalized by ω0, varying C2 around the
EPD value Ce. Blue and red solid lines represent the unstable and stable eigenfrequency
solutions, respectively. (d) At the EPD, the coalescence parameter sin(θ) vanishes, indicating
that the two state vectors coalesce.
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2.5 Experimental Demonstration of High Sensitivity:

Case with Coupling Capacitance

An analogous system with the properties highlighted in the previous sections is made by the

two resonators with balanced gain and loss (PT-symmetry) coupled by a capacitor Cc as

shown in Fig. 2.6. Note that in this case the sensing part is capacitor-wired to the active

part, whereas in the previous circuit the sensing part was connected without wires; both

circuits are relevant in applications. In the following, we discuss the condition to have an

EPD in this configuration with coupling capacitance and demonstrate the high sensitivity

theoretically and experimentally.

First, we find the EPD condition by writing down Kirchhoff’s laws and using the Liouvillian

formalism using the system vector Ψ = [Q1, Q2, Q̇1, Q̇2]
T, where Qn is the capacitor charge

on the gain side (n = 1) and the lossy side (n = 2), and Q̇n = dQn/dt, leading to

dΨ
dt

= MΨ

M = 1
A



0 0 A 0

0 0 0 A

− B2

LC1
− Cc

LC2
2

GB2

C1
−GCc

C2
2

− Cc

LC2
1
− B1

LC2

GCc

C2
1
−GB1

C2



A = 1 + Cc

C1
+ Cc

C2
, B1 = 1 + Cc

C1
, B2 = 1 + Cc

C2
.

(2.17)

In this configuration, EPD occurs at C1 = C2 = Cc = Ce = 1.5 nF, linear gain and loss

G1 = G2 = Ge = 9 mS, L = 10 µH. Figures 2.6(b) and (c) show the positive-real and

imaginary parts of the eigenfrequencies when perturbing C2, calculated by solving for ω
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Figure 2.7: Experimental proof of exceptional sensitivity. (a) Experimental and theoretical
changes in the real part of the resonance frequencies f due to a positive and negative relative
perturbation ∆C2 applied to the capacitance C2 as (1 + ∆C2)Ce. Solid blue and red lines
represent the unstable and stable eigenfrequency solutions, respectively. Eigenfrequencies
are calculated by finding the zeros of the dispersion equation det(M− jωI) = 0 using linear
gain G1 = G2 = Ge = 9 mS. Dashed-black: an estimate using the Puiseux fractional power
expansion truncated to its first order, using linear gain. Green triangles: oscillation frequency
measured experimentally (using nonlinear gain) after reaching saturation for different values
of C2. The measured oscillation frequency significantly departs from the EPD frequency
fe = 988.6 kHz even for a very small variation of the capacitance, approximately following
the fractional power expansion f(∆C2) − fe ∝ Sgn(∆C2)

√
|∆C2|. Note that both positive

and negative capacitance perturbations are measured.

the dispersion equation det(M − jωI) = 0, and Fig. 2.6(d) demonstrates the convergence

of eigenvectors at C2 = Ce, hence demonstrating the EPD existence. The eigenfrequency

shown with a solid blue line, with a negative imaginary part, represents the unstable solution

that determines the oscillation frequency. The coalescence of two eigenvectors is observed

by defining the angle between them as in Eq. (2.10), and this indicates the coalescence of

the two eigenmodes in their eigenvalues and eigenvectors, and hence the occurrence of a

second-order EPD. It is seen from this plot that the system eigenfrequencies are coalescing

at a specific capacitance C2 = Ce. The system is unstable for any C2 ̸= Ce because of
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Figure 2.8: (a) Measured time-domain voltage signal at the capacitor C1 using an oscillo-
scope, when the system is perturbed from EPD by C2 − Ce = 20 pF, corresponding to a
∆C2 = 0.013. (b) Measured wideband spectrum by Spectrum Analyzer (Rigol DSA832E)
signal analyzer as an inset with a fundamental frequency of oscillation of 1.002 MHz (theo-
retical expectation based on det(M− jωI) = 0 is at 1.004 MHz). Phase noise of the power
spectrum is measured by the Spectrum Analyzer at frequency offsets from a few Hz to 10
kHz. The resolution bandwidth is set to 300 Hz, while video bandwidth is set to 30 Hz to
fully capture the spectrum. (c) Measured power spectrum corresponding to a perturbation
∆C2 = 0.013 applied to C2, using two different gain values: the red curve is based on gain
of the EPD, and the blue curve is based on a gain that is around 1% larger than the EPD
value.

broken PT symmetry, since there is always an eigenfrequency with Im(ω)¡0 (blue curve).

Moreover, the bifurcation of the dispersion diagram at the EPD is in agreement with the

one provided by the Puiseux fractional power series expansion truncated to its first order,

represented by a dashed black line in Fig. 2.7. The Puiseux series coefficient is calculated

as α1 = 1.084 × 106 + j1.43 × 106 rad/s by using Eq. (2.15), assuming negative linear

gain. The coefficient α1 is a complex number that implies that the system always has two

complex eigenfrequencies, for any C2 value; that results in an unstable circuit, since one

eigenfrequency has Im(ω) < 0, for any C2 value.

In order to confirm experimentally the high sensitivity to a perturbation in the proposed

oscillator scheme based on nonlinear negative conductance (nonlinear gain), the gain is now

realized using an opamp (Analog Devices Inc., model ADA4817) whose gain is tuned with

a resistance trimmer (Bourns Inc., model 3252W-1-501LF) to reach the proper small-signal

gain value of −G1 = −9 mS. Note that we assume that the nonlinear gain is a bit larger
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(around 0.1 %) than the loss on the other side of the circuit to make the system slightly

unstable. In the experiment, all the other parameters are as in the previous simulation

example: a linear conductance of G2 = 9 mS, capacitors of C1 = C2 = Cc = 1.5 nF,

and inductors of L = 10 µH (Coilcraft, model MSS7348-103MEC). This nonlinear circuit

oscillates at the EPD frequency. The actual experimental circuit differs from the ideal

simulations using nonlinear gain only in a couple of points: First, extra losses are present in

the reactive components associated with their quality factor. The inductor has the lowest

quality factor in this circuit with an internal d.c. resistance of 45 mΩ, from its datasheet,

which is however small. Second, electronic components have tolerances. To overcome some

of the imperfections in the experiment process, we use a capacitance trimmer (Sprague-

Goodman, model GMC40300) and a resistance trimmer in our printed circuit board (PCB)

to tune the circuit to operate at the EPD. Also, to have more tunability, a series of pin

headers are connected in parallel to the lossy side, where extra capacitors and resistors could

be connected in parallel, as mentioned in Appendix 2.8. The circuit is designed to work at

the EPD frequency of fe = 988.6kHz, and indeed after tuning the circuit, we experimentally

obtain an experimental EPD frequency at f = 989.6 kHz as shown in Fig. 2.7 with a green

triangle at C2 = Ce, very close to the designed one. The oscillation frequency is obtained by

taking the FFT of the experimentally obtained time-domain voltage signal of the capacitor C1

using an oscilloscope (Agilent Technologies DSO-X 2024A) after the signal reaches saturation

for a time window of 102 periods with 106 points. The obtained oscillation frequency is in

agreement with the result read directly on the spectrum analyzer (Rigol, model DSA832E).

We then perturb C2 as (1 + ∆C2)Ce where Ce satisfies the EPD condition, with small steps

∆C2 as explained in Appendix 2.8. As shown in Fig. 2.7, the measured oscillation frequency

dramatically shifts away from the EPD frequency, following the trend of square root of

∆C2 as theoretically predicted by Eq. (2.14) for the linear-gain case. The experimental

results (green triangles) in Fig. 2.7 demonstrate that even for a small positive and negative

perturbation C2−Ce = ±20 pF, corresponding to a ∆C2 = ±0.013, the oscillation frequency
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significantly changes, which can be easily detected even in practical noisy electronic systems.

Figure 2.8(a) shows the experimental time-domain voltage signal of the capacitor C1 with

respect to the ground, when a relative perturbation ∆C2 = 0.013 is applied to C2, measured

by an oscilloscope. The spectrum’s frequency is now measured with a spectrum analyzer,

and shown in 2.8(b) as an inset. The frequency of the spectrum matches the perturbed

(∆C2 = 0.013) oscillation frequency, green triangle in Fig. 2.7, obtained from the Fourier

transform of the time domain experimental data. These results confirm that the structure

is oscillating at the predicted perturbed resonance condition after saturation.

An essential feature of any oscillator is its ability to produce a near-perfect periodic time-

domain signal (pure sinusoidal wave), and this feature is quantified in terms of phase noise,

determined here based on the measured power spectrum up to 10 kHz frequency offset. The

phase noise and power spectrum in Fig. 2.8(b) demonstrate that electronic noise (which is

significant in opamp) and thermal noise in the proposed highly sensitive oscillator scheme

does not discredit the potential of this circuit to exhibit measurable high sensitivity to

perturbations. Indeed, the low phase noise of −80.8dB/Hz at 1kHz offset from the oscillation

frequency shows that the frequency shifts observed in Fig. 2.7 are well measurable. Note

that this result is intrinsic in the nonlinear saturation regime proper of an oscillator. The

resonance oscillation peaks have a very narrow bandwidth (linewidth), which makes the

oscillation frequency shifts very distinguishable and easily readable.

In the experiment, a relative perturbation ∆C2 = 0.013 (i.e., 1.3%) applied to C2 led to

a frequency shift ∆f∆C2
= 1002 kHz − 989.6 kHz = 12.4 kHz,that is much larger than the

1 kHz offset associated to −80.8 dB/Hz noise. The measured −3dB (half power) spectral

linewidth in the inset of 2.8(b) is equal to 0.8 kHz (using a resolution bandwidth of 300 Hz,

and a video bandwidth of 30 Hz) that is much narrower than the measured frequency shift

∆f∆C2
= 12.4 kHz.

In this oscillator-sensor system, we also have some freedom in choosing the small-signal gain
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value because the dynamics are also determined by the saturation arising from the nonlinear

gain behavior. For example, in the experiment, we have verified that circuit has the same

oscillation frequency when using an unbalanced small-signal gain 1% larger than the balanced

loss value. Figure 2.8(c) shows two measured frequency spectra corresponding to a relative

perturbation ∆C2 = 0.013 applied to C2, using two different gain values. The spectrum has

been measured using a resolution bandwidth of 300 Hz, while the video bandwidth is set

to 30 Hz to fully capture the spectrum. The red curve is for the case with gain around

1% larger than the balanced loss whereas the blue curve is for the case where gain and loss

are balanced. These two frequency responses show the same oscillation frequency, with a

very small difference in the power spectrum peak, which is 0.2 dBm higher for the case with

1% larger gain, as shown in Fig.2.8(c). This important feature helps us design the circuit

without a very accurate balance between gain and loss, i.e., oscillator-sensors can be realized

without satisfying exactly PT symmetry (assuming the sensing perturbation is not applied

yet). As mentioned earlier, the nonlinear oscillator with broken PT symmetry exhibits the

very important feature that the oscillation frequency shifts are both positive and negative,

depending on the sign of the perturbations ∆C2 , hence allowing for sensing both positive and

negative values of ∆C2 . Note that the oscillator-sensing scheme is achieved without tuning

the capacitance in the active part to keep the symmetry (to avoid instability), as it was

instead done in a previous scheme using a PT-symmetric circuit [6].

2.6 Conclusions

We demonstrated that two coupled LC resonators terminated with nonlinear gain, with al-

most balanced loss and small-signal gain, working near an EPD, make an oscillator whose

oscillation frequency is very sensitive to perturbations. The nonlinear behavior of the ac-

tive component is essential for the three important features observed by simulations and
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Figure 2.9: Negative resistance converter circuit implementation by using an opamp.

experimentally: (i) the oscillation frequency is very sensitive to perturbations, and both

positive and negative perturbations of a capacitor are measured leading to very high sensi-

tivity based on shifted oscillation frequency that approximately follows the square-root law,

proper of EPD systems; (ii) the measured spectrum has very low phase noise allowing clean

measurements of the shifted oscillation frequencies. (iii) It is not necessary to have a perfect

gain/loss balance, i.e., we have shown that slightly broken gain/loss balance leads to the

same results as in the case of a perfectly balanced gain and loss.

Note that none of the features above are available in current PT-symmetry circuits in the lit-

erature [3, 6]: Indeed, only one sign of the perturbation is measurable with the PT-symmetry

circuits published so far, since the other sign leads to the circuit instability. Furthermore, to

make a single sign perturbation measurement, in the literature, e.g., [6], the capacitor C1 on

the gain side has been tuned using a varactor to reach the value of the perturbed capacitor

(C2) on the reading side in order to rebuild the PT symmetry (but in a sensor operation it

is not possible to know a priori the value that has to be measured); furthermore, to work at

or very close to an EPD, using linear gain, the gain has to be set equal to the loss (balanced

gain/loss condition).
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The oscillation frequency shift follows the square root-like behavior predicted by the Puiseux

series expansion, as expected for EPD-based systems. We show the performance of the

oscillator-sensor scheme based on two configurations: wireless coupling with a mutual in-

ductor, and wired coupling by a capacitor. The latter oscillator scheme has been fabricated

and tested. We have analyzed how the nonlinearity in the gain element makes the circuit

unstable and oscillate after reaching saturation. The oscillator’s characteristics have been

determined in terms of transient behavior and sensitivity to perturbations due to either ca-

pacitance or resistance change in the system. The experimental verification provided results

in very good agreement with theoretical expectations. The measured high sensitivity of the

oscillator sensor to perturbations can be used as a practical solution for enhancing sensitiv-

ity, also because the measured shifted frequencies are well visible with respect to underlying

noise. The proposed EPD-based oscillator-sensor can be used in many automotive, medi-

cal, and industrial applications where detections of small variations of physical, chemical, or

biological variations need to be detected.
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Figure 2.10: (a) Schematic of the two LC resonators coupled by Cc = 1.5 nF with inductor
L1 = L2 = L = 10 µH, the opamp U1 (Analog Devices Inc., model ADA4817), the variable
resistance RV1 (Bourns Inc., model 3252W-1-501LF) and variable capacitance VC2 (Sprague-
Goodman, model GMC40300), biasing capacitors C4 = C6 = 0.1 µF C5 = C6 = 10 µF as
datasheet suggested. (b) PCB layout of the assembled circuit where the top layer traces
are red, the ground plane and bottom traces are green, and the connecting vias are orange.
In this design, Via J1 is a probe point for the capacitor voltage, whereas Vias J6 and J4
are test points connected to the ground plane and are used to connect the ground of the
measurement equipment to the ground of the circuit. All the ground nodes are connected to
the bottom green layer.
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2.7 Appendix A: Negative Resistance

Several different approaches provide negative nonlinear conductance needed for proposed

circuits. In this subsection, we show the circuit in Fig. 2.9 that utilizes opamp to achieve

negative impedance. The converter circuit converts the impedance as Zin = −R1 while we

design the circuit to work at the EPD point by choosing R1 = 1/Ge. In the experiment, we

used R1 = 100Ω, and R2 = 2kΩ to achieve the EPD value. We tuned the negative resistance

with resistor trimmer Rv to reach the EPD value Ge = 9 ms.

2.8 Appendix B: Implementation of the Nonlinear

Coupled Oscillator

We investigate resonances and their degeneracy in the two LC resonators coupled by a

capacitor as in Fig. 2.10(a), whereas Figs. 2.10(b) and (c) illustrate the PCB layout and

assembled circuit. In the fabricated circuit, the sensing capacitance is shown in the red

dashed box, the nonlinear gain is in the orange dashed box, and the DC supply is in the

yellow dashed box. Inductors have values L1 = L2 = 10 µH, the loss value is set to

G2 = 9 mS with a linear resistor, the capacitor on the gain side and the coupling capacitor

are C1 = Cc = 1.5 nF. The gain element is designed with an opamp (Analog Devices Inc.,
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model ADA4817), where the desired value of gain is achieved with a variable resistor RV1.

In the experiment, we setup the nonlinear gain to be a bit larger (around 0.1%) than the

balanced gain by tuning the RV1 to make the system slightly unstable.To tune and find

the exact value of the capacitance that leads to an EPD (C2 = Ce), a variable capacitor

(Sprague-Goodman, model GMC40300) and a series of pin headers, where extra capacitors

could be connected in parallel to C2, are provided. By adding small and known capacitors

values on the load side, we tuned the capacitance C2 to bring the circuit very close to the

EPD and observe the EPD oscillation frequency f = fe.

To show the square root-like behavior of the oscillator’s frequency due to perturbations in

Fig. 2.7 and 2.6, we perturbed the capacitor C2 with pairs of extra 10 pF capacitors to make

20 pF steps, connected in parallel to C2, using the pin headers shown in Fig. 2.10. After

each perturbation, the oscillation frequency is measured with an oscilloscope and also with

a spectrum analyzer (for comparison and verification purposes), as discussed in Section 2.8,

and shown in Fig. 2.7 with green triangles. Moreover, for the perturbed circuit, considering

∆C2 = 0.013 applied to C2 (any perturbed point can be chosen), we changed the variable

resistor RV1 to study oscillation frequency variation for different unbalanced nonlinear gains.

The goal was to show that the circuit using a bit unbalancednonlinear gain still has the

same oscillation frequency. Indeed, by trimming the RV1, we verified the same oscillation

frequency for roughly 1% unbalanced gain and loss, as shown in Fig. 2.8(c). Note that on

the PCB, the ground plane (on the bottom layer) is designed to connect all the ground of

the measurement equipments and DC supply to the circuit’s ground.
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Chapter 3

High-Sensitive Parity-Time

Symmetric Oscillator in Coupled

Transmission Lines with Nonlinear

Gain

A scheme for generating oscillations based on an exceptional point of degeneracy (EPD)

is proposed in two-coupled resonators made of two coupled transmission lines terminated

on balanced gain and loss, exhibiting a double pole. The EPD is a point in the parameter

space of the system at which two or more eigenmodes coalesce in both their eigenvalues (here,

resonance frequencies) and eigenvectors. We show that a finite-length single transmission line

terminated with gain and loss possesses no degeneracy point, whereas second-order EPDs are

enabled in two finite-length coupled transmission lines (CTLs) terminated with balanced gain

and loss. We demonstrate the conditions for EPDs to exist for three different termination

configurations with balanced gain and loss, and show the eigenfrequency bifurcation at the

EPD following the fractional power expansion series related to the Puiseux series. We study
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the oscillatory regime of operation assuming the gain element is nonlinear, and the extreme

sensitivity of the degenerate self-oscillation frequency to perturbations and how it compares

with the sensitivity of the linear-gain case. Finally, we show that the sensitivity of the EPD-

CTL resonator is much higher than the one of a single-TL resonator. The very sensitive

EPD based oscillator can be used as sensors when very small variations in a system shall be

detected.

3.1 Motivation and State of the Art

In this chapter, we present two interesting concepts: the double pole oscillator where the

instability is related to a double pole instead of the usual one, and also an application

of this concept as a very sensitive sensor. In particular, we study a system made of two

distributed resonators, i.e., made of two coupled waveguides terminated on balanced gain

and loss elements. It is important to distinguish between EPDs in systems made of coupled

resonator (as in this chapter) where the eigenvalues are the natural frequencies, and EPDs

in waveguides where the eigenvalues are the wavenumbers. This chapter deals with two

coupled resonators made of two coupled waveguides of finite length, therefore the coalescing

eigenvalues are two eigenfrequencies.

In the following, we first discuss the eigenfrequency of a “single pole” resonator made of

finite-length transmission lines (TL) terminated on a gain and loss balance condition. Then,

we investigate two CTLs terminated with balanced gain and loss following the PT-symmetry

scheme and we show the existence of EPDs in such structures under different gain and loss

configurations. Moreover, we characterize the performance of the CTL “double pole” oscil-

lators operating at an EPD and show the transient behavior and their frequency response.

We discuss the location of the double “poles” or “zeros” of the system and how they are

sensitive to perturbations. Finally, we show the large resonance frequency shift due to sys-
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𝑅

−𝑅
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Figure 3.1: Two parallel coupled microstrip lines on a grounded dielectric substrate with
terminations on a ground plane. This configuration exhibits the strong degeneracy condition
called EPD.

tem’s perturbations and discuss how such shift is predicted by the Puiseux fractional power

expansion related to the Puiseux series. Such large frequency shift is also observed from

time-domain simulation results obtained by Keysight ADS circuit simulator using nonlinear

gain [7, 8] representing active semiconductor components based on CMOS transistors or op-

erational amplifiers. The proposed circuit and method can be used in ultra high-sensitive

sensing applications. The EPD-based circuit has a double pole, which makes the oscillation

frequency highly sensitive to any perturbation to the system, like changes in permittivity,

load resistance, etc. Indeed, the high sensitivity could be a drawback when implementing an

oscillator using the proposed concept because the oscillation frequency would be highly sen-

sitive to any imperfection, however, because of this sensitivity feature can also be used to our

advantage, the proposed circuit is a good candidate for being used in sensing applications.

The concepts explained here can be generalized to even higher operating frequencies.
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Figure 3.2: (a) Single finite-length TL terminated with RL and RR at its left and right
ports, respectively. (b) Real and imaginary parts of the resonance frequency for different
harmonics, calculated using Eq. (3.2). The complex resonance frequencies are calculated
with the parameters of the structure set as L0 = 480 nH, C0 = 57.9 pF, d = 40.1mm,
RR = 50Ω and varying RL. There is no EPD.

48



3.2 Single TL Oscillator

We consider a single finite-length TL terminated with a gain element (i.e., negative resis-

tance) at one end and with a resistive load at the other end as shown in Fig. 3.2(a) where

Z0 =
√
L0/C0 is the characteristic impedance of the TL and d is its length. The resonance

condition is

1− ΓLΓRe
−j2βd = 0, (3.1)

where β = ω
√
L0C0 is the propagation constant, ΓL = (RL − Z0)/(RL + Z0) and ΓR =

(RR − Z0)/(RR + Z0) are the reflection coefficients at the left and right ports, respectively

(RL is assumed negative), and we implicitly adopt the exp(jωt) time convention. The

complex-valued resonance frequency of such a structure is derived from Eq. (3.1) as

fn =
1

4πd
√
L0C0

(∠ΓL + ∠ΓR + 2nπ − j ln |ΓLΓR|) . (3.2)

In general, for arbitrary values of RL and RR, the resonance frequency of such a structure is

complex with a positive imaginary part when |ΓLΓR| < 1, corresponding to decaying voltage

and current; it has a negative imaginary part for |ΓLΓR| > 1 corresponding to growing

voltage and current in a lossless transmission line. In other words, for a nonzero imaginary

part of the resonance frequency, an initial energy in the system will fully dissipate or will

grow indefinitely. However, assuming |ΓLΓR| = 1, the resonance frequency is purely real

and such a condition corresponds to RL + RR = 0. Under this condition, we have a single

TL where its left and right ports are terminated with balanced gain and loss loads, i.e.,

the two loads have the same magnitude with opposite signs (in other words, the resonator

satisfies PT-symmetry). PT-symmetry is based on the combination of two operators: the
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“P” parity transformation to make spatial reflections (x → −x) and the “T” time-reversal

transformation (t → −t) , where x is the transverse coordinate and t is the time. In the

phasor domain, the time-reversal operator “T” makes the imaginary unit j → −j, hence

loss goes into gain and vice versa. Therefore, since ΓLΓR = 1, the structure has purely real

resonance frequencies regardless of balanced gain and loss values. One may note that there

exists no coalescence of the modes in such a single TL with balanced gain and loss; thus, we do

not observe any exceptional point. Figure 3.2(b) shows the three lowest resonance frequencies

of the single TL terminated with gain RL and loss RR for different values of RL/RR. The

parameters are set as L0 = 480 nH, C0 = 57.9 pF, d = 40.15mm, and RR = 49.88Ω. This

plot shows that the single TL has a purely real oscillation frequency when gain and loss

are balanced. In summary, this system supports independent resonance modes and cannot

achieve exceptional degeneracy of modes required for the occurrence of exceptional points.

3.3 Coupled TLs Oscillator

Two coupled, lossless, and identical TLs with finite length are shown in Fig. 3.3, terminated

with resistive loads Rl1 and Rl2 at their left ports, and resistive loads Rr1 and Rr2 at their

right ports. This is a model of the coupled microstrip circuit in Fig. 3.1, as well as many

others. The distributed (per-unit-length) inductance and capacitance of the lines when they

are isolated are L0 and C0, hence, the per unit length inductance and capacitance matrices

of the coupled lines reads as [91, 92]

L =

 L0 Lm

Lm L0

 , C =

 C0 + Cm −Cm

−Cm C0 + Cm

 , (3.3)

when the coupling between the lines is modeled by introducing a mutual per unit length

inductance and capacitance Lm and Cm. Such a structure supports four different propagating
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Figure 3.3: Two finite-length CTLs with terminations. The CTLs are both electrically and
magnetically coupled. This configuration exhibits EPDs.

modes with propagation constants ±ke and ±ko where

ke = ω/ue, ko = ω/uo, (3.4)

and ue = 1/
√

(L0 + Lm)C0 and uo = 1/
√
(L0 − Lm)(C0 + 2Cm) are the phase velocities of

the even and odd modes.

Using the even and odd mode wavenumbers of the modes in the infinitely long CTL given

in Eq. (3.4), we write the state vector Ψ = [ V1, V2, I1, I2 ]T that describes the voltages

and currents at any point z as the summation of four modes

Ψ(z) = Ψ+
e e

−jkez +Ψ−
e e

jkez

+Ψ+
o e

−jkoz +Ψ−
o e

jkoz, (3.5)

where the corresponding eigenvectors are
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Ψ+
e = V +

e

[
1, 1, Ye, Ye

]T
,

Ψ−
e = V −

e

[
1, 1, −Ye, −Ye

]T
, (3.6)

Ψ+
o = V +

o

[
1, −1, Yo, −Yo

]T
,

Ψ−
o = V −

o

[
1, −1, −Yo, Yo

]T
.

Here, Ye = ueC0 and Yo = uo(C0 + 2Cm) represent the characteristic admittances of the

even and odd modes, respectively, and the superscript T denotes the transpose operation.

Using the state vector in Eq. (3.5), in order to derive the resonance frequencies for the two

finite-length CTLs shown in Fig. 3.3, we enforce the boundary conditions at the four ports

of the structure. We obtain a homogeneous system of four linear equations as

A(ω)V = 0, (3.7)

where V = [V +
e , V

−
e , V

+
o , V

−
o ]T represents the voltage amplitude vector, and

A(ω) =



1 + YeRl1 1− YeRl1 1 + YoRl1 1− YoRl1

1 + YeRl2 1− YeRl2 −1− YoRl2 −1 + YoRl2

(1− YeRr1)e
−jωd/ue (1 + YeRr1)e

jωd/ue (1− YoRr1)e
−jωd/uo (1 + YoRr1)e

jωd/uo

(1− YeRr2)e
−jωd/ue (1 + YeRr2)e

jωd/ue −(1− YoRr2)e
−jωd/uo −(1 + YoRr2)e

jωd/uo


. (3.8)

Free oscillation in such a structure occurs when there is a non-trivial solution of Eq. (3.7);

therefore, oscillation frequencies are calculated as the roots of the vanishing determinant of
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Figure 3.4: Three distinct cases of two coupled TLs termination and complex dispersion of
the resonance frequencies. Blue lines show the two fundamental resonances and red lines
represent the next two higher resonances. (a) Case I, showing the two coupled TLs where
upper TL is terminated with linear gain −R and load R; and lower TL is shorted at both
ports. (b) Plots of real and imaginary parts of resonance frequencies varying R for Case I
depicted in (a). (c) Case II, two coupled TLs where upper TL is terminated with linear gain
−R at the left port and it is shorted at the right port; and lower TL is shorted at the left
port and it is terminated with load R at its right port. (d) Plots of real and imaginary parts
of the resonance frequencies varying gain/load value R for Case II shown in (c). (e) Case
III, two coupled TLs where upper TL is terminated with linear gain −R at the left port and
it is shorted at the right port; lower TL is terminated with load R at the left port and it is
shorted at its right port. (f) Plots of real and imaginary parts of the resonance frequencies
varying gain/load value R for Case III shown in (e).
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A as

det(A(ω)) = 0. (3.9)

At each resonance frequency ωi, with i = 1, 2, derived from Eq. (3.9) (we only show frequen-

cies with positive real part here), we find the vector kernel Vi i = 1, 2 of the matrix A(ωi)

using the Gaussian elimination method. In other words, vectors V1 and V2 are the volt-

age amplitude vectors at the resonance frequencies ω1 and ω2, respectively. Various choices

could be made to measure the coalescence of the voltage amplitude vectors at the resonance

frequencies, and here the Hermitian angle between the voltage amplitude vectors V1 and V2

is adopted and defined as [90, 93, 2]

cos θ =
|⟨V1,V2⟩|
∥V1∥ ∥V2∥

.

The cos θ is defined via the inner product ⟨V1,V2⟩ = V†
1V2, where the dagger symbol †

denotes the complex conjugate transpose operation, | | represents the absolute value and

∥V∥ =
√
⟨V,V⟩ represents the norm of a complex vector. According to this definition,

when sin θ = 0 the voltage amplitude vectors V1 and V2 coalesce, corresponding also to the

coalescence of the two resonance frequencies ω1 and ω2.

In this chapter, we are interested in CTLs terminated on symmetrically balanced gain and

loss, hence, in the following we consider three different values of R, −R, and 0 as loads in such

a structure. Note that, different arrangement of these three load values at four distinct ports

of the structure results in twelve sets of boundary conditions. However, since the structure

is symmetric with respect to its ports, these twelve arrangements of loads shrink to only

three distinct ones; shown in Fig. 3.4(a), (c) and (e). In the following, we analyze each
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particular structure separately and find the resonance frequency in two CTLs with balanced

gain and loss varying the gain/loss value R in the absence of voltage generators. Moreover,

we show the existence of EPD resonances, where resonance frequencies coalesce as well as

the corresponding voltage vectors V1 and V2.

In the following examples, the CTL is made of two TLs with parameters L0 = 480 nH,

C0 = 57.9 pF, d = 40.15mm, they are same as those we used for the single TL, but we now

consider the coupling inductance Lm = 367.4 nH and capacitance Cm = 102.7 pF between

the two TLs. As shown later on, a gain-resistance value of R = 49.88Ω will lead to an EPD

of order two.

3.4 CTLs Oscillator Characteristics

We show some important features of an oscillator based on the CTLs of Case II, namely, the

transient time-domain behavior, frequency spectrum, and sensitivity to perturbations. The

oscillator is studied using a cubic model (nonlinear) of the active component providing gain.

The CTL parameters used here are the same as those used in the previous section. A value

R = 49.88Ω leads to an EPD of order two at a frequency of 1 GHz.

3.4.1 Transient Behavior and Frequency Spectrum

The time-domain (TD) response of the proposed CTLs oscillator as well as its frequency

spectrum are depicted in Fig. 3.5 where the structure is terminated with balanced gain and

loss satisfying the resonance condition. The TD simulation result is obtained using the TD

method implemented in the circuit simulator of Keysight ADS. The gain element is realized

using a cubic model with an i− v curve described as
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Figure 3.5: (a) The cubic model used as a realistic gain element where its i − v curve is
shown in the inset. Parameters of the cubic model are set as gain gm = 20.1mS, α = 6.7mS
and saturation voltage Vb = 1V. (b) Time-domain simulation result of the PT-symmetric
oscillator shown in (a) and the frequency spectrum of the load voltage as the inset.

i = −gmv + αv3, (3.10)

shown in Fig. 3.5(a), where−gm is the negative slope of the i−v curve in the active resistance

region and α is the third-order nonlinearity constant that models the saturation characteristic

of the device. To realize a constant DC voltage-biased active device, we choose the turning

point Vb of the i− v characteristics to be constant (when varying gm) and equal to Vb = 1V

under different biasing levels. The value of the saturation characteristic α determines the

steady-state oscillation amplitude and in particular, we set α = gm/(3V
2
b ). Moreover, for
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simplicity we assume that the parasitic capacitance associated with the negative resistance

device is negligible. In the shown TD results, the resistor is chosen to be R = 49.88Ω,

the gm has been increased by 0.1% from its EPD gain-loss balanced value (in other words,

the PT-symmetry is slightly perturbed), hence gm = 1.001/R, in order to make the system

unstable, hence to start and reach a stable oscillation. We use a voltage pulse at the right

port of the first transmission line as the initial condition to start oscillations (alternatively,

the simulation may have assumed the presence of noise to start oscillations). The frequency

spectrum of the voltage at the load location is shown as an inset in Fig. 3.5(b), and it

shows the fundamental frequency and harmonics of the oscillating voltage. The harmonics

of the fundamental frequency are generated by the nonlinear nature of the gain element. An

important observation is that the oscillation frequency mainly coincides with the fundamental

EPD frequency of 1 GHz.

3.5 Double Pole Behavior and High Sensitivity to Per-

turbations

In this subsection, we study the system in the frequency (phasor) domain to offer a different

perspective of the special degeneracy discussed in this chapter. The resonance frequencies

of the system are here determined by using the impedance resonance method, and we show

the relation between the EPD and the occurrence of double solutions (double zeros). With

reference to the Case II structure in Fig. 3.6(a), the resonance condition imposed by the

vanishing of the total series impedance implies that

Zin (ω)−R =
det [A (ω)]

P (ω)
= 0, (3.11)

where P (ω) is
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P(ω) = R (Y 2
0 + Y 2

e ) sin
(

ωd
ue

)
sin
(

ωd
u0

)
−2RYeYo

(
1 + cos

(
ωd
ue

)
cos
(

ωd
u0

))
−2j

(
Yecos

(
ωd
ue

)
sin
(

ωd
u0

)
+ Yocos

(
ωd
u0

)
sin
(

ωd
ue

))
,

(3.12)

and −R is the gain element, assumed linear in this subsection. Here, Zin (ω) is the input

impedance of the CTLs seen from the upper left port when a load resistor R is connected

to the bottom right port, shown in Fig. 3.5(a). The input impedance is obtained using the

transfer matrix T = exp(−jωMd) of a CTL of length d, where is the waveguide system

matrix M is defined in Appendix A, and assuming the upper CTL is shorted at the right

port, and the lower CTL is shorted at the left port. The series total impedance Zin(ω)−R

has the same ω-zeros as det [A(ω)] . Note that ω(R) and −ω∗(R) are both solutions of

Eq. (3.11). In Fig. 3.6(a), we plot the zeros with Re(ω) > 0 of Zin(ω) − R for varying

R, in the complex frequency plane (there are other zeros, but we plot only those relative

to the fundamental pair of frequencies). The trajectory of the resonance frequencies ω

for the two modes with Re(ω) > 0 are plotted with increasing resistance R from 40Ω to

60Ω. The double zero at ωEPD occurs at REPD = 49.88Ω, where the two curves meet.

Therefore, when R = REPD = 49.88Ω, for frequencies close to the EPD one can write

Zin(ω) − R ∝ (ω − ωEPD)
2 and the resonance condition becomes (ω − ωEPD)

2 = 0, which

shows the double (degenerate) resonance. From this interesting property one can infer that

if a perturbation is applied to the circuit so it is not anymore at its EPD, the variation of the

resonance frequency follows a square root behavior, which is the key to high sensitivity. For

resistances such that R > REPD, the two resonance frequencies are purely real, despite the

presence of balanced losses and gain. Instead, for R < REPD, the two resonance frequencies

are complex conjugate, as shown in Fig. 3.6.
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3.5.1 Oscillation Frequency Highly Sensitive to Perturbations

It is known that in systems operating at EPDs some quantities (like eigenvalues and eigen-

vectors) are extremely sensitive to perturbation of system parameters. In particular, a small

perturbation ∆X of a system parameter X results in a tremendous change in the state of the

system [94, 6, 78]. By applying a perturbation ∆X as

∆X =
X −XEPD

XEPD

, (3.13)

where X is the perturbed component’s value, and XEPD is the unperturbed value that

provides the EPD condition, the matrix A (∆X) is perturbed. In the CTLs structure with

balanced gain and loss, the two degenerate resonance frequencies (they are the eigenvalues)

change due to a small perturbation ∆X, resulting in two distinct resonance frequencies,

following the behavior predicted by the fractional power expansion series. The two perturbed

angular eigenfrequencies ωi (∆X), with i = 1, 2, are estimated by using the fractional power

expansion series around a second-order EPD given by

ωi (∆X) ≃ ωEPD + (−1)i α1

√
∆X + α2∆X. (3.14)

Following the steps in Appendix A and [95, 89], we calculate the coefficients as

α1 =

√√√√− ∂H(∆X,ω)
∂∆X

1
2!

∂2H(∆X,ω)
∂ω2

, (3.15)

α2 = −
α3
1
1
3!

∂3H(∆X,ω)
∂ω3 + α1

∂2H(∆X,ω)
∂ω∂∆X

α1
∂2H(∆X,ω)

∂ω2

, (3.16)

where H (∆X, ω) = det [A (∆X, ω)] and its derivatives are evaluated at the EPD, i.e., at
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∆X = 0 and ω = ωEPD. This fractional power expansion provides a good approximation of

the perturbed eigenfrequencies as demonstrated in the following.

We consider the CTLs in Case II shown in Fig. 3.4(c), with an EPD resonance when

R = REPD, and we assume the same parameter values given in Sec. 3.3. We apply a small

perturbation in both linear gain and resistance as R = REPD (1 + ∆R). The calculated

coefficient α1 = 5.56 × 109 rad/s is purely real and Fig. 3.6(b) illustrates the separation

between the two resonance frequencies varying the perturbation ∆R.

The result in Fig. 3.6(b) demonstrates that for a small perturbation−0.1 < ∆R < 0.1 of both

the positive and negative resistive terminations, the resonance frequency f is significantly

changed for positive resistive changes ∆R > 0, where the real part of the resonance frequency

follows the square root behavior. The square root behavior shows the exceptional sensitivity

of the proposed system operating at an EPD, which can be used to conceive a new class

of very sensitive sensors. For positive values ∆R, the structure shows two real resonance

frequencies. Fig. 3.6(b) exhibits also the structure’s sensitivity due to the fractional power

expansion series limited to its first order, displayed by a dashed line. Moreover, green dots

show results using the nonlinear cubic model for gain: the frequencies are calculated from

the Fourier transform of the time-domain circuit simulator implemented in Keysight ADS

after reaching saturation, using the nonlinear cubic model for the gain in Eq. (3.10) where

gm = 1.001/R, i.e., has been increased by 0.1% from its loss balanced value. We use a

voltage pulse at the right port of the first transmission line as the initial condition to start

oscillations. For both resistance-gain perturbations with R > REPD, the circuit oscillates

at two distinct resonance frequencies (green dots). This latter result demonstrates the ultra

sensitive frequency of oscillation (green dots) of the oscillator when used in a sensor scheme.

The fast Fourier transform is calculated from 500 MHz to 1.5 GHz using 106 signal samples

in the time window from 200 ns to 1 µs.
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Figure 3.6: (a) Root locus of two frequency zeros of Zin(2πf)−R showing the fundamental
pairs of resonance frequencies of the CTLs in Case II, varying both the linear negative and
positive values of R. (b) Resonance frequencies obtained from solving Eq. (3.9) (red line),
and from the first-order fractional power expansion series expansion (dashed blue line), when
varying both the linear gain and resistance R. Results accounting for the nonlinear cubic
model of the gain elements Eq. (3.10) using the time-domain circuit simulator by ADS
Keysight are shown by green dots, where gm = 1.001/R has been increased by 0.1% from its
loss balanced value.

3.5.2 Sensitivity to Variations of the Load Resistance R Only

This section discusses how sensitive the circuit is to the perturbation of only the passive

resistance (i.e., the one on the lossy side). This perturbation could be the one happening

in a sensor based on resistivity changes. By breaking PT-symmetry and perturbing just the

lossy side resistance as R = REPD(1+∆R) from its EPD value REPD, while the (linear) gain

component is kept fixed to −REPD, the circuit shows a large shift of the resonance frequencies

for positive resistive changes ∆R > 0, where the real part of the resonance frequency follows

the square root behavior as shown in Fig. 3.7(a). This perturbation brings the system away

from the PT–symmetry condition and the system becomes unstable demonstrated by the

fact that shifted frequencies have an imaginary part with a negative sign, for either sign of

∆R as shown in Fig. 3.7(b). The solid-red line shows the resonance frequency evaluation

by solving Eq. (3.9), the dashed-blue line represents the two eigenfrequencies estimated
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by the fractional power expansion series truncated to its second order. The coefficients in

Eqs. (3.15) and (3.16) are calculated as α1 = 3.95 × 109 + j3.91 × 108 rad/s and α2 =

−9.40 × 107 − j2.61 × 109 rad/s, they are complex, which means that for all values of

small loss resistance changes, the two eigenfrequencies are complex valued and the system is

unstable, for either ∆R < 0,(i.e., R < REPD) or ∆R > 0 (i.e., R > REPD). For ∆R > 0, the

bifurcation of Re(ω) is more significant than for ∆R < 0, thus, the circuit is more sensitive

to positive changes of ∆R, corresponding to a larger value of Re(ω) than Im(ω). To have

approximately the same frequency shift for either positive or negative relative perturbations

∆R, one should design an EPD where the real and imaginary parts of α1 are approximately

equal. Moreover, the green dots show the frequencies calculated when using the nonlinear

gain in Eq. (3.10), where gm has been increased by 0.1% than the EPD value, hence gm =

1.001/REPD. The result is obtained by applying the Fourier transform to the TD signal

after reaching saturation evaluated using the circuit simulator implemented in Keysight

ADS, using the same initial condition as in the last section. For different loss resistance

perturbations, the circuit oscillates at two resonance frequencies, shown in green dots. This

latter result demonstrates the high sensitivity of the frequencies of oscillation (green dots)

when used in a sensor scheme. This configuration where the loss resistance is changing

is useful for sensors like a moister detector, strain gauge, thermistor, etc. The frequency

domain spectrum is calculated from 500 MHz to 1.5 GHz using 106 signal samples in the

time window from 200 ns to 1 µs.

3.5.3 Sensitivity to the Per-Unit-Length Capacitance C0

The oscillator scheme described in this chapter can be used as a distributed capacitance

sensor, i.e., for sensing perturbations of the per-unit-length capacitance C0 of both the CTLs

as shown in Fig. 3.8. In this setup, the system is very sensitive to a change in permittivity

in the materials (above or below) surrounding the CTLs. Assuming that the perturbation
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Figure 3.7: (a) Real part and (b) imaginary part of the eigenfrequencies, when varying only
the load resistance and the gain is −REPD. The red-solid line represents the resonance
frequencies obtained by solving Eq. (3.9), using linear model of the gain. The dashed-blue
line represents the eigenfrequencies estimated using the fractional power expansion series up
to the second order, using linear model of the gain. The green dots represent the frequencies
obtained by applying the Fourier transform to the TD results using the nonlinear cubic
model of the gain elements Eq. (3.10) where gm = 1.001/R.

∆C0 is applied to the per unit length self capacitance of the CTLs C0, the perturbed C

is expressed as C = (1 + ∆C0)C0. In this scheme, the oscillation frequency is sensitive to

negative changes of the per-unit-length capacitance ∆C0 < 0 where the real part of the

resonance frequency follows the square root behavior. The active gain element is assumed

to be the nonlinear cubic model in Eq. (3.10), where gm = 1.001/REPD has been increased

by 0.1% from its EPD gain-loss balanced value 1/REPD. Using a voltage pulse at the right

port of the first transmission line as the initial condition the circuit starts to oscillate.

Fig. 3.8(a) shows the TD simulation result using Keysight ADS by using the cubic model for

the gain in Eq. (3.10) of the perturbed circuit with ∆C0 = −5% (green color) and ∆C0 = −1%

(blue color). By perturbing C0, the circuit oscillates at two resonance frequencies as seen

in the frequency spectrum of the load voltage in the inset, calculated from 500 MHz to

1.5 GHz using 106 signal samples in the time window of 200 ns to 1 µs. The two oscillation

frequencies shift further away from each other when more perturbation is applied to C0. The
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difference between the two frequencies ∆f is shown in Fig. 3.8(b) for negative values of

∆C0 , obtained from TD simulations using nonlinear gain, and the square root-like behavior

shows the high sensitivity to perturbations of C0. For instance, when C0 is perturbed by

−1 % from its EPD value, the CTL shows the two real resonance frequencies at 959 MHz

and 1.04 GHz, associated to a ∆f/fEPD = 8.3%. Also, when C0 is perturbed by −5% from

its EPD value, the CTL shows the two real resonance frequencies at 906 MHz and 1.09 GHz,

associated to a ∆f/fEPD = 19 %. In conclusion, when there is a small perturbation in the

per-unit-length capacitance, the oscillation frequencies shift dramatically so the proposed

circuit has a promising use as a scheme for high-sensitive sensors. To better understand

how the EPD-based sensor improves the sensitivity compared to a conventional resonator,

we compare its sensitivity to the one of single TL terminated with a short circuit on both

sides without adding gain or loss. The lowest resonance condition for such single TL is

βd = π, which corresponds to the resonance frequency f = 1/
(
2d
√
L0C0

)
. By perturbing

the per-unit length capacitance of the TL, C0, the resonance frequency is shifted by ∆f =

−∆C0/(4d
√
L0C0). In Fig. 3.8(b), we show a comparison between the shift of resonance

frequency due to perturbations in C0 for two cases: (i) the EPD-CTL (solid red line) and

(ii) the single TL (solid black line). This figure shows that the sensitivity of the EPD-CTL

structure with nonlinear gain (solid red line) is much higher (it follows a square–root-like

behavior) than the one of the conventional TL without EPD (solid black line).
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Figure 3.8: (a) Frequency spectrum of the load voltage obtained from the Fourier transform
of the time-domain simulation result using the nonlinear cubic model of the gain elements Eq.
(3.10) where gm = 1.001/REP.D. We perturb the per-unit-length capacitance as ∆C0 = −1%
(blue line) and ∆C0 = −5 % (green line). The system shows two oscillation frequencies
and the separation depends on the perturbation. (b) Separation between the two oscillation
frequencies varying ∆C0 based on the EPD-CTL structure with nonlinear gain (red line). For
comparison we also show the shift of the eigenfrequency of the resonator made of a single
TL varying ∆C0(black line). The EPD-CTL shows much higher sensitiviy to a perturbation.

3.6 Conclusions

We have shown the existence of a second-order EPD in two coupled resonators made of

a pair of finite-length CTLs, terminated with balanced gain and loss satisfying different

configurations of PT-symmetry. The degenerate eigenfrequencies are highly sensitive to
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perturbations of the system. We have also provided an alternative view of second-order

EPD of the system observing the occurrence of a “double pole” and that the CTL oscillator

oscillates at that double-pole frequency also when gain is nonlinear. We have analyzed three

different scenarios to perturb the system. First, by perturbing both gain and loss together

(PT-symmetry is slightly broken by putting gain 0.1% higher than the balanced loss value,

to start oscillations), then by perturbing the loss resistance while the gain is kept constant

and equal to the EPD value, and finally by perturbing the per-unit-length capacitance of

both the TLs: all the three cases lead to large values of resonance frequency shifts and

consequently to shifts of the self-oscillation frequencies. . We have shown that the circuit’s

eigenfrequencies are exceedingly sensitive to a perturbation of the circuit components, and

this may have significant implications in sensing technology and RF sensors. Note that

however the system needs to work at, or very close to, the EPD to obtain the square root

sensitivity. While any imperfection in manufacturing leads to a shift from the EPD, a fine-

tuning process is required to configure the system at the EPD to be ready to exhibit the

square root sensitivity to perturbations. Finally, we have demonstrated that the sensitivity

of the EPD-based CTL oscillator is much higher than the one of a conventional resonator

made of a single TL not working at an EPD.
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3.7 Appendix A: Using Puiseux Series To Calculate

The Sensitivity To System’s Perturbations

In this Appendix, the z -axis origin is assumed to be at the center of the CTL for convenience,

and by applying the boundary conditions at z = −d/2 and z = d/2 shown in Fig. 3.9, the

A matrix reads

A(ω) =



(1 + YeRl1) e
+jωd/(2ue) (1− YeRl1) e

−jωd/(2ue) (1 + YoRl1) e
jωd/(2uo) (1− YoRl1) e

−jωd/(2uo)

(1 + YeRl2) e
+jωd/(2ue) (1− YeRl2) e

−jωd/(2ue) (−1− YoRl2) e
jωd/(2uo) (−1 + YoRl2) e

−jωd/(2uo)

(1− YeRr1) e
−jωd/(2ue) (1 + YeRr1) e

jωd/(2ue) (1− YoRr1) e
−jωd/(2uo) (1 + YoRr1) e

jωd/(2uo)

(1− YeRr2) e
−jωd/(2ue) (1 + YeRr2) e

jωd/(2ue) − (1− YoRr2) e
−jωd/(2uo) − (1 + YoRr2) e

jωd/(2uo)


.

(3.17)

The goal is to provide an analytical expression for the perturbed eigenfrequencies of the

system when a small perturbation ∆X is applied to one of its parameters or components

without starting from an eigenvalue problem. The eigenfrequencies are given by solving

H (∆X, ω) ≜ det [A (∆X, ω)] = 0 for ω. Close to the EPD angular frequency ωEPD , the

matrix A (∆X, ω) is expanded as

A (∆X, ω) = A (∆X, ωEPD) +
dA (∆X, ω)

dω
|ωEPD (ω − ωEPD) +O, (3.18)

where O (∆X, ω) defines higher order terms, i.e., terms that vanish at least as (ω − ωEPD)
2,
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Figure 3.9: Shifting the z-axis to the middle of the transmission line to find the new A.

where ωEPD is the solution of det [A (∆X = 0, ω)] = 0. In order to apply the Puiseux series to

find the perturbation of the eigenfrequencies for a small ∆X, we rewrite the system equation

A (∆X, ω)V = 0 in an eigenvalue problem form, e.g., as (B− ωI)V = 0, assuming that

ω ≈ ωEPD, where I is the 4×4 identity matrix. This can be achieved by left multiplying Eq.

(3.18) by D (∆X) ≡ −
(

dA(∆X,ω)
dω

|ωEPD

)−1

. It is convenient to define

B (∆X) = ωEPDI+D (∆X)A (∆X, ωEPD) , (3.19)

where B depends only on the perturbation ∆X, and not on ω. This procedure leads to

B (∆X)− ωI = D (∆X)A (∆X, ω) +OB, (3.20)

where OB = −DO is a term that vanishes at least as (ω − ωEPD)
2. Since from Eq. (3.7) we

know that at each eigenfrequency one has A (∆X, ωi)V = 0, at those eigenfrequencies we

have

(B− ωiI)V = DAV +OBV = OBV ≈ 0. (3.21)
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Therefore, the terms of this equation tend to zero as ωi → ωEPD, which means that the

angular frequencies that satisfy (B− ωI)V = 0 and AV = 0 are approximately the same,

for any ∆X, when they are very close to ωEPD. Furthermore, when ∆X = 0, the eigenvalue

of (B− ωI)V = 0, coincides with the ω-solution of AV = 0. A more precise procedure

should show also the higher order terms when discussing the approximation. We now use

the Puiseux series expansion [89] to estimate the perturbed eigenvalues of (B− ωI)V = 0

when a perturbation ∆X is applied to the system. The first-order Puiseux series expansion

yields

ωi (∆X) ≃ ωEPD + (−1)i α1

√
∆X, (3.22)

which describes the perturbation of the two eigenvalues (i = 1, 2) when a small relative

perturbation ∆X of a system’s parameter near its EPD value ∆X = 0 occurs. The series

coefficients are calculated using the explicit recursive formulas given in [89] pertaining to

the eigenvalue problem (B− ωI)V = 0. Thus, to find α1 we have to find the derivatives of

HB (∆X, ω) ≜ det (B− ωI) with respect to ∆X and ω at the EPD point as

α1 =

√√√√− dHB(∆X,ω)
d∆X

1
2!

d2HB(∆X,ω)
dω2

|ωEPD, XEPD
. (3.23)

Using Eq. (3.20), the relation between HB and H (∆X, ω) ≜ detA (∆X, ω) is found to be

HB(∆X, ω) ≈ detD (∆X)H (∆X, ω). (3.24)

Using this relation between HB and H, the numerator in the square root of α1 is rewritten

as

dHB

d∆X

≈ detD
dH

d∆X

+H
ddetD

d∆X

. (3.25)

69



Note that α1 has to be calculated at the EPD point and H (∆X, ω) |ωEPD, XEPD
=

detA (∆X, ω) |ωEPD, XEPD
= 0, so we simplify the above relation as

dHB

d∆X

|ωEPD, XEPD
≈ detD|XEPD

dH

d∆X

|ωEPD, XEPD
. (3.26)

Analogously, the denominator in the square root of α1 at the EPD point is found to be

d2HB

dω2
|ωEPD, XEPD

≈ detD|XEPD

d2H

dω2
|ωEPD, XEPD

. (3.27)

Therefore, we calculate the d2HB/dω
2 and dHB/d∆X at the EPD point (ωEPD, XEPD), lead-

ing to the approximation for α1 as

α1 =

√√√√− dHB

d∆X
|ωEPD, XEPD

1
2!

d2HB

dω2 |ωEPD, XEPD

≈

√√√√− dH
d∆X
|ωEPD, XEPD

1
2!

d2H
dω2 |ωEPD, XEPD

. (3.28)

We conclude that α1 found for the Puiseux series expansion of the ω-eigenvalues of B (∆X)

is approximately the same as the coefficient used in the fractional power series expansion of

the ω solutions of detA (∆X, ω) = 0, demonstrating Eq. (3.15).
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Chapter 4

Exceptional Points in Gyrator-Based

Circuit and Nonlinear

High-Sensitivity Oscillator

We present a scheme for high-sensitive oscillators based on an exceptional point of degener-

acy (EPD) in a circuit made of two LC resonators coupled by a gyrator. The frequency of

oscillation is very sensitive to perturbations of a circuit element, like a capacitor. We show

conditions that lead to an EPD, assuming one of the two resonators is composed of an induc-

tor and a capacitor of negative values. The EPD occurrence and sensitivity to perturbations

in the linear case are demonstrated by showing that the eigenfrequency bifurcation around

the EPD is described by the relevant Puiseux (fractional power) series expansion. We also

investigate the effect of small losses in the system and show that they lead to instability. We

fabricate the circuit, and exploit its instability and nonlinearity, observing experimentally

stable self-oscillations under the saturated regime. We measure the circuit’s sensitivity to

a small capacitor perturbation. A shift in frequency of oscillation after saturation is well

detectable with very distinct spectral peaks with 10 Hz linewidth, clean until -70 dB from
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the peak value. The sensitivity is (i) higher than the one of a comparable simple LC linear

resonator, (ii) comparable or better than other published EPD circuits, and (iii) applica-

ble to both negative and positive values of the capacitance perturbation, contrary to what

happens in PT-symmetric circuits. The proposed scheme can pave the way for a new gener-

ation of high-sensitive sensors to measure slight variations in physical, chemical or biological

quantities.

4.1 Motivation and State of the Art

Recent advancements associated with the concept of exceptional points of degeneracy (EPDs)

have attracted a surge of interest due to their potential for various applications. An EPD is

a point in the parameter space of a system for which the eigenvalues and the eigenvectors

of the relevant matrix coalesce [31, 32, 33, 34, 35, 62, 84, 65, 63]. The EPD concept has

been investigated in temporally periodic electric and mechanical systems [78, 96], in coupled-

resonator systems with loss and/or gain under parity-time symmetry [40, 84, 3, 70]. The EPD

concept using saturable nonlinear gain has been exploited in conceiving oscillators based on

two coupled transmission line [70, 97] and two resonator circuits [98]. Since the characterizing

feature of an exceptional point is the full degeneracy of at least two eigenmodes, as mentioned

in [66], the significance of referring to it as “degeneracy” is here emphasized, hence including

the D in EPD. In essence, an EPD is obtained when the system matrix associated to a

linear system is similar to a matrix that comprises a non-trivial Jordan block. In recent

years, frequency splitting phenomena at EPDs have been proposed for sensing applications

[99, 100, 101]. Frequency splitting occurs at degenerate resonance frequencies where system

eigenmodes coalesce. Such a degenerate resonance frequency is extremely sensitive to a

small perturbation in system parameters. This perturbation leads to a shift in the system

resonance frequency that can be detected and measured. This concept has been exploited
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in new sensing schemes such as optical microcavities [16], optical gyroscopes [102, 103] and

mass sensor [104]. Recently, EPD in nonlinear systems has gained interest by showing its

potential in advancing sensing technologies and stability analysis. These studies [105, 106]

illustrate how nonlinear dynamics at EPDs enhance sensor sensitivity and signal-to-noise

ratio and pave the way for innovative electronic system designs, underlining EPDs’ critical

role in sensing applications.

It has been recently shown that negative capacitors and inductors are useful to realize EPDs

in a system made of two resonators coupled via a gyrator [107, 108, 68, 109]. These non-

passive negative reactive components are synthesized with negative impedance converters

(NICs) or negative impedance inverters (NIIs), which produce a negative capacitor or a

negative inductor with feedback circuits [110]. Negative capacitances and inductances are

largely used in electronics where negative capacitors are obtained with op amps [111, 112]

or with other semiconductor devices [113]. Negative inductances were obtained as early

as 1965 using a grounded NII [111], and various circuits have been proposed for floating

negative inductance using different types of op amps for operation below 1 MHz. An ideal

gyrator is a two-port network that transforms a current into a voltage and vice versa and

causes 180 degrees phase shift difference in the signal transmission from one side to the

other [114]. Gyrators have been designed using operational amplifiers (op amps) [115] or

microwave circuits [116].

In this paper, we explore for the first time the saturation regime due to the nonlinearity in

active negative inductance and negative capacitance, in an EPD resonator topology based

on a gyrator, and explore the measured high sensitivity. We describe several EPD fea-

tures in gyrator-based coupled resonant circuits, where two LC resonators (series-series and

parallel-parallel configurations) are coupled to each other through a gyrator. We illustrate

the necessary conditions to obtain the EPD in both parallel and series resonant circuit con-

figurations and show the signal behavior using time domain simulations. We also provide
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a frequency domain analysis in terms of phasors and show that the EPD corresponds to

a double zero of the total impedance defining the resonance. Importantly, we discuss the

effect of additional losses in the system and show how they make the circuit unstable. The

effect of the circuit’s nonlinearities is observed experimentally after saturation is achieved,

leading to a stable oscillatory regime. When the system is perturbed away from its EPD,

the self-oscillation frequency is shifted, and such a shift is measured to determine the cir-

cuit’s sensitivity. Compared to our previous studies in [107, 108, 68, 109], we focus on the

analysis of the series-series configuration including losses that we did not explore before;

we also analyze a parallel-parallel configuration, and fabricate a gyrator-based circuit for

the first time. We then observe experimentally the self oscillatory regime under saturation

and perturb a capacitance value to measure the oscillation frequency shifts. In addition,

we compare the sensitivity of our proposed circuit to previous linear and nonlinear circuits

supporting EPD [3, 98, 78, 97], highlighting how its sensitivity is comparable and emphasiz-

ing the capability of detecting small perturbations. The proposed circuit and method have

promising applications in ultrasensitive sensors at various operating frequencies.

4.2 EPD in Parallel Configuration

We show a configuration in which we get an EPD by using a gyrator-based circuit. Two par-

allel resonators are utilized in two different lossy/lossless configurations. We briefly introduce

the gyrator element and later on, we write the required circuit equations in the Liouvillian

formalism. Then, we solve the eigenvalue problem to calculate the resonant frequencies (i.e.,

the eigenfrequencies) and determine the conditions for obtaining EPD at a desired frequency

in a lossy circuit. We discuss the conditions for real-valued EPD frequency and stability

in the system. In order to provide a comprehensive analysis of the presented circuit and

its stability, in Section 4.2.2, we study the eigenfrequencies in the lossless resonators, and
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we verify our theoretical calculations by using a time-domain circuit simulator (Keysight

Advanced Design System (ADS)). Then, we provide an example and the eigenfrequency dis-

persion with respect to changes in parameters and we show the perturbation effects on the

circuit’s eigenfrequencies.

Figure 4.1: Schematic view of the lossy parallel-parallel configuration including losses in each
resonator. Inductance and capacitance are negative in the right resonator.

4.2.1 EPD in Lossy Parallel Circuit

The gyrator is a passive, linear, lossless, nonreciprocal, two-port electrical element. It allows

network realizations of devices that cannot be realized with the conventional four components

(i.e., resistors, inductors, capacitors, and transformers) [114, 117]. An important property

of a gyrator is that it inverts the current-voltage characteristic; therefore, an impedance

load is also inverted across the gyrator. In other words, a gyrator can make a capacitive

circuit behave inductively, and a series LC circuit behaves like a parallel LC circuit. The

instantaneous voltages and currents on the gyrator ports are related by [114]

 v2 = Rgi1

v1 = −Rgi2

(4.1)

where the gyration resistance Rg is the important parameter in the ideal gyrator. In the

parallel-parallel configuration, two parallel RLC resonators are coupled by a gyrator as dis-
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played in Fig. 4.1. We find the EPD condition in this circuit by writing the Kirchhoff

current law equations and finding the associated Liouvillian matrix. Hence, we assume

that all components are ideal, and inductors and capacitors contain no additional resis-

tance. We write the two Kirchhoff current law equations and by using the state vector as,

Ψ ≡
[
Q1, Q2, Q̇1, Q̇2

]T
, where Qn is the stored charge in the capacitor Cn (n = 1 for the left

resonator and n = 2 for the right resonator), and the superscript T denotes the transpose

operation. The circuit dynamics are described based on the Liouvillian formalism as

dΨ

dt
= MΨ, M =



0 0 1 0

0 0 0 1

−ω2
01 0 −γ1 1

RgC2

0 −ω2
02 − 1

RgC1
−γ2


, (4.2)

where M is the 4 × 4 circuit matrix, and γ1 = 1/ (R1C1) and γ2 = 1/ (R2C2) represent

the resonators loss parameter (losses on the right resonator are represented by a negative

γ2 since C2 is negative). Furthermore, ω01 = 1/
√
C1L1, and ω02 = 1/

√
C2L2 are resonance

angular frequencies of two isolated left and right resonators, assumed to be both real (the

case where they are imaginary is shown in Ref. [68]. Assuming signals of the form Qn ∝ ejωt,

we write the associated eigenvalue problem, and the characteristic equation is obtained from

det (M− jωI) = 0, where I is the identity matrix, leading to

ω4 − jω3 (γ1 − γ2)− ω2
(
ω2
01 + ω2

02 + γ1γ2 +
1

RgC1C2

)
+jω (γ1ω

2
02 + γ2ω

2
01) + ω2

01ω
2
02 = 0.

(4.3)

The coefficients of the odd-power terms of the angular eigenfrequency (ω and ω3) in the

characteristic equation of Eq. (4.3) are imaginary. Eigenfrequencies ω and −ω∗ are both

roots. In order to have a stable circuit with real-valued eigenfrequencies, the odd-power terms

of the angular eigenfrequency −jω3 (γ1 − γ2) and jω (γ1ω
2
02 + γ2ω

2
01) in the characteristic
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equation of Eq. (4.3) should be zero. The coefficient of the ω3 term is zero when γ1 = γ2.

We recall that γ2 is negative, so the condition γ1 = γ2 happens either in absence of losses or

when one resonator has gain. However, under this latter gain condition enabling γ1 = γ2,

the coefficient of the ω term γ1 (ω
2
02 + ω2

01) is non-zero because ω2
01 and ω

2
02 are both positive,

and also in this case it would not be possible to have purely real eigenfreqiencies. On the

other hand, the coefficient of the ω term vanishes when γ1/γ2 = −ω2
01/ω

2
02, and under this

condition, the coefficient of the ω3 term γ1 (1 + ω2
02/ω

2
01) cannot vanish. In summary, it

is not possible to have all real-valued coefficients in the characteristic polynomials, unless

γ1 = γ2 = 0, which corresponds to a lossless circuit. In other words, under any amount of

small loss, there is no condition to make both ω and ω3 coefficients equal to zero, hence the

eigenfrequencies are complex, leading to instabilities that cause oscillations. In the following

subsection, we analyze the eigenfrequency in a lossless structure to further understand the

stability of the lossless structure.

4.2.2 EPD in Lossless Parallel Circuit

To meet the EPD condition for real valued eigenfrequency, we assume γ1 = γ2 = 0. Accord-

ingly, the circuit consists of two lossless parallel LC resonators coupled by a gyrator. The

eigenfrequencies for this case are found by solving

ω4 − ω2

(
ω2
01 + ω2

02 +
1

C1C2Rg

)
+ ω2

01ω
2
02 = 0. (4.4)

All the ω’s coefficients are real hence ω and ω∗ are both roots of the characteristic equation.

Moreover, it is a quadratic equation in ω2, therefore ω and −ω are both solutions. The

system’s angular eigenfrequencies are

ω1,3 = ±
√
a+ b, ω2,4 = ±

√
a− b, (4.5)
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a =
1

2

(
ω2
01 + ω2

02 +
1

C1C2Rg

)
, (4.6)

b2 = a2 − ω2
01ω

2
02. (4.7)

The EPD is obtained when the resonance frequencies of the circuit coalesce, i.e., when

b = 0, (4.8)

which happens when a2 = ω2
01ω

2
02. The positive EPD angular frequency is then given by

ωe =
√
a, where we assume a > 0. The condition to obtain real value for EPD frequency is

rewritten as

ω2
01 + ω2

02 − ω2
gp > 0, (4.9)

where it has been convenient to define ω2
gp = −1/ (C1C2Rg) for the parallel-parallel config-

uration (note that ω2
gp > 0 because one capacitor is negative). When both Eq. (4.8) and

inequality in Eq. (4.9) are satisfied, two eigenfrequencies coalesce at a real EPD angular

frequency,

ωe =
√

1
2

(
ω2
01 + ω2

02 − ω2
gp

)
=
√
ω01ω02. (4.10)
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4.2.3 Dispersion Relation of Lossless and Lossy Parallel-parallel

Configurations

As an example, we use the following values: L1 = 47 µH, L2 = −47 µH, C2 = −47 nF, and

Rg = 50Ω. We then obtain two values of capacitance C1,e = 6.34nF and C1,e = 125.25nF by

imposing Eq. (4.8) to be satisfied. Here, both capacitors lead to a > 0, enabling the EPD

angular frequency to be real valued. Indeed, the C1,e = 6.34nF leads to ωe = 1.11×106 rad/s,

whereas C1,e = 125.25nF leads to ωe = 5.26×105rad/s. In the following we use C1,e = 6.34nF.

The results in Figs. 4.2(a) and (b) show the branches of the real and imaginary parts of

perturbed eigenfrequencies obtained from the eigenvalue problem when varying the gyrator

resistance near Rg,e = 50Ω. The bifurcation of the real part in this case happens for Rg > Rg,e

. Perturbing other components like C1 or L1 leads to analogous results.

The time domain simulation result for the node voltage v1 in Fig. 4.2(c) is obtained using

the Keysight ADS circuit simulator by employing the ideal model for the gyrator, using the

above circuit values that lead to the EPD. We assume the capacitor has an initial voltage

on C1 equal to 1 mV. The voltage grows linearly with increasing time, demonstrating two

eigenvalues of the circuit are coalescing, and the system exhibits a double pole, as shown

later on. This is peculiar of a second-order EPD. The spectrum of the voltage v1 in Fig.

4.2(d) is calculated after performing the FFT. The oscillation frequency is fo = 176.66 kHz,

which is the EPD frequency calculated above.

By perturbing the gyration resistance, the circuit no longer operates at EPD. For a higher

gyration resistance value, Rg = 52.5 Ω > Rg,e = 50 Ω as a 5% increase, we obtain two

distinct real-valued eigenfrequencies in the system. Thus, we could estimate the amount of

perturbation in Rg by measuring the frequency of these two resonances. On the other hand,

by reducing the amount of perturbed parameter by 5%, leading to Rg = 47.5Ω < Rg,e = 50Ω,

the system has two complex eigenfrequencies with non-zero imaginary parts. The circuit
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Figure 4.2: Variation of the (a) real and (b) imaginary parts of the two eigenfrequencies
to a gyration resistance perturbation in the lossless parallel-parallel configuration. The
bifurcation in the real part is observed for Rg > Rg,e. Voltage v1 under the EPD condition in
the (c) time domain, and (d) frequency domain. The frequency domain result is calculated
from 150 kHz to 200 kHz performing an FFT with 106 samples in the time window between
0 ms to 0.2 ms.

contains signals that are damping or growing exponentially.

In the lossy circuit, we use the same values of lossless parallel-parallel configuration for the

resonators and gyration resistance plus the two resistances. In Figs. 4.3(a) and (b), we

vary γ1 and assume γ2 = 0, whereas in Figs. 4.3(c) and (d), we perturb −γ2 and assume

γ1 = 0. In fact, when we vary γ1 or γ2, we actually vary R1 or R2, while keeping constant

C1 and C2. When γ1 = γ2 = 0, the EPD frequency is the same as the one found earlier

for the lossless configuration in Section 4.2.2. Figures 4.3(a)-(d) show the bifurcation of the

real and imaginary parts of eigenfrequencies on both sides of the EPD. It means that the
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circuit is very sensitive to both positive and negative variations in the resistance value. The

angular eigenfrequencies are complex-valued for any amount of loss and the circuit is in the

self-oscillation regime. The circuit’s signal oscillates with the frequency associated with the

real part of the unstable eigenfrequency, and the signal grows exponentially based on the

unstable imaginary part of the eigenfrequency. The calculated results show that we achieve

higher sensitivity when perturbing γ2.

Figure 4.3: Variation of (a) real and (b) imaginary parts of the angular eigenfrequencies to
a resistor perturbation on the left resonator. In these plots, γ1 is varied whereas we assume
γ2 = 0. Variation of (c) real and (d) imaginary parts of the angular eigenfrequencies to a
resistor perturbation on the right resonator. In these plots, −γ2 is varied whereas we assume
γ1 = 0. In these plots, blue curves show stable branches with positive imaginary parts and
red curves show unstable branches with negative imaginary parts. In addition, the right half
of each plot demonstrates the variation in eigenfrequencies due to varying positive resistance,
whereas the left half demonstrates the variation in eigenfrequencies due to varying negative
resistance.
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4.2.4 Parallel Lossless Circuit Sensitivity

The degenerate eigenvalue (resonance frequency) at an EPD is exceedingly sensitive to per-

turbations of system parameters. Here, we show that the sensitivity of a system’s observable

to a specific variation of a component’s value is large because of EPD. Let us consider the

parallel-parallel configuration in the EPD regime, with the values of the components given

in Section 4.2.2. We select the parallel case because all elements are grounded and this

sometimes represents a simplification when using realistic active components that require

biasing (for more information on dispersion relation for series-series configuration you can

refer to the Appendix 4.5-A). For simplicity, we discuss the case without resistances and we

define the relative circuit perturbation ∆X as

∆X =
X −Xe

Xe

, (4.11)

where X is the perturbed value of a component and Xe is the unperturbed value that

provides the EPD. The subscript “X” denotes the perturbed parameter. In this section, we

consider variations of C1 and L1, one at a time, in the lossless configuration. The calculated

diagrams for the real and imaginary parts of the eigenfrequencies near the EPD are shown

in Fig. 4.4. We conclude that the individual variation of the parameters of C1 or L1 show

similar sensitivity behavior, i.e., the real part of the eigenfrequencies splits for ∆X < 0. Note

that the L1 perturbation shows higher sensitivity because of the wider bifurcation in the

dispersion diagram.
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Figure 4.4: High sensitivity of the (a) real and (b) imaginary parts of the eigenfrequencies
to relative capacitance perturbation ∆C = (C1 − C1,e)/C1,e. The two perturbed frequencies
are real for ∆C < 0. High sensitivity of the (c) real and (d) imaginary parts of the eigen-
frequencies to relative inductance perturbation ∆L = (L1 − L1,e) /L1,e. The two perturbed
frequencies are real for ∆L < 0.

We explain the extreme sensitivity by resorting to the general theory of EPDs. Note that

after applying a perturbation in ∆X value, we will have a perturbed matrix M (∆X). Con-

sequently, the two degenerate eigenvalues at the EPD change considerably due to the small

perturbation in ∆X, resulting in two distinct eigenfrequencies ωp (∆X), with p = 1, 2. A

single convergent Puiseux series is used to represent the two perturbed eigenvalues near an

EPD, where the coefficients are calculated using the explicit recursive formulas presented in
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[89]. An approximation of ωp (∆X) around a second-order EPD is given by

ωp (∆X) ≈ ωe + (−1)p α1

√
∆X + α2∆X. (4.12)

Following [89], we calculate the coefficients as

α1 =

√√√√− ∂H(∆X,ω)
∂∆X

1
2!

∂2H(∆X,ω)
∂ω2

, (4.13)

α2 = −
α3
1
1
3!

∂3H(∆X,ω)
∂ω3 + α1

∂2H(∆X,ω)
∂ω∂∆X

α1
∂2H(∆X,ω)

∂ω2

, (4.14)

evaluated at the EPD, i.e., at ∆X = 0 and ω = ωe, where H (∆X, ω) = det [M (∆X)− jωI].

Eq. (4.12) indicates that for a small perturbation ∆X ≪ 1, the eigenvalues change dra-

matically from their original degenerate value due to the square root function. In the

first example, the perturbed parameter is the positive capacitance on the left resonator,

∆C = (C1 − C1,e) /C1,e, and the Puiseux series first-order coefficient is calculated by

Eq. (4.30) as α1 = j4.4138 × 105 rad/s and the second-order coefficient is calculated as

α2 = −3.6503 × 105 rad/s. The result in Figs. 4.4(a) and (b) shows the two branches of

the perturbed eigenfrequencies ω obtained directly from the eigenvalue problem (or charac-

teristic equation) when the perturbation ∆C is applied. This example uses C1 as a sensing

component to detect variation in physical or chemical parameters converted into electrical

parameters. However, variation in other components’ values can also be used in various

realistic scenarios. Figures 4.4(a) and (b) demonstrate that the perturbed eigenvalues can

be estimated with great accuracy by using the Puiseux series truncated at its second order

(green dashed lines). We have also shown the first-order approximation in Figs. 4.4(a) and

(b) for better comparison (black dashed lines), which is also in good agreement with the
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eigenfrequencies obtained by the characteristic equation. For a small positive value of ∆C,

the imaginary parts of the eigenfrequencies experience a sharp change, while their real parts

remain more or less constant. A small negative value of ∆C causes a rapid variation in the

real part of the eigenfrequencies.

In the second example, the perturbed parameter is the positive inductance on the left res-

onator, ∆L = (L1 − L1,e) /L1,e, and the Puiseux series first-order coefficient is calculated

by Eq. (4.31) as α1 = j7.2792 × 105 rad/s and the second-order coefficient is calculated

as α2 = −5.1598 × 105 rad/s. The calculated results in Fig. 4.4(c) and (d) show the two

branches of the perturbed eigenfrequencies obtained from the eigenvalue problem when the

perturbation in inductance is applied. By applying the Puiseux series truncated at its second

order, it is possible to estimate the perturbed eigenfrequencies with high accuracy. However,

the first order also provides relatively accurate results. The imaginary parts of the eigenfre-

quencies undergo a sharp change for very small positive perturbations, while their real parts

remain relatively unchanged. A small negative perturbation in the inductor value causes

rapid variation in the eigenfrequencies’ real part. This feature is one of the most extraor-

dinary physical properties associated with the EPD and it can be exploited for designing

ultra-sensitive sensors [5].

4.2.5 Frequency Domain Analysis of The Degenerate Resonance

We show how the EPD regime is associated to a special kind of circuit’s resonance, directly

observed in a frequency domain analysis of the circuit. We calculate the total input admit-

tance, Ytotal (ω) (see Fig. 4.5(a)), for the parallel-parallel circuit by finding the transferred

impedance Ytrans (ω) on the left side of the circuit. We define the two admittances of the

resonators as Y1 = jωC1 + 1/ (jωL1), Y2 = jωC2 + 1/ (jωL2), and calculate the transferred

admittance on the left side as
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Ytrans (ω) =
1

R2
gY2

. (4.15)

The total admittance Ytotal (ω) is calculated as

Ytotal (ω) ≜ Y1 (ω) + Ytrans (ω) = Y1 +
1

R2
gY2

. (4.16)

The resonant angular frequencies are obtained imposing Ytotal (ω) = 0. A few steps lead to

the same ω-zeros given by Eq. (4.5). We calculate the resonance frequencies for various

gyration resistance values in Fig. 4.5(b). When considering the EPD gyrator resistance

Rg = Rg,e = 50Ω, one has Ytotal (ω) ∝ (ω − ωe)
2, i.e., the two zeros coincide, represented

by the point where the two curves meet exactly at EPD angular frequency. For Rg < Rg,e,

resonance angular frequencies are complex conjugate pairs and for Rg > Rg,e, the resonance

angular frequencies are purely real, consistent with the results in Fig. 4.2(a) and (b).

4.3 Experimental Sensitivity in the Saturated Regime

We explore experimentally what happens in the proposed second-order EPD circuit due to

unavoidable instabilities, and we actually exploit them by making an oscillator. The key

experimental observations are that we have stable oscillations after reaching saturation and

the oscillation frequency exhibits high sensitivity to perturbations. We also show that such

sensitivity is higher than that of a perturbed single LC resonator. We begin with the linear

case, detailing the design of the different components in the circuit. Furthermore, we test

the proposed circuit for each part, such as the gyrator implementation with op amps.
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Next, we study the gyrator-based circuit in the saturation regime, where the oscillation occurs

due to the nonlinearity induced by op amps and losses/gains in each resonator. Finally, we

analyze the circuit’s sensitivity to capacitance changes. The values for the experiment are

set as C1 = 400 nF, L1 = 47 µH, L2 = −10 µH and C2 = −470 nF where these values ideally

lead to an EPD at f = 51.9 kHz.

Figure 4.5: (a) Schematic view of the lossless parallel-parallel configuration. (b) Root locus
of zeros of Ytotal shows the real and imaginary parts of resonance frequencies of the parallel
configuration when varying gyration resistance. The EPD frequency corresponds to a double
zero of the admittance Ytotal.

4.3.1 Observation of Instability in The Circuit

The gyration resistance has an associated direction indicated by an arrow in the schematic

illustrated in Fig. 4.6(a). Consider the gyrator circuit shown in Fig. 4.6(b) implemented
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using two op amps of the same model (Texas Instruments, model TLE2071ACP) and seven

resistors. By selecting the proper value for the resistors (i.e., Rg in Fig. 4.6(b)), we control

the gyration parameter Rg. The gyrator asymmetric impedance matrix Zg is given by Eq.

(4.1). To achieve a gyration Rg = 10Ω, all the resistances in the circuit shown in Fig. 4.6(b)

are set to the same value of 10 Ω. We tested the gyrator circuit shown in Fig. 4.6(b) with

different loads to ensure that it works properly. We put a load of ZL = 33 Ω on the right

port of gyrator and measure the transferred impedance on the left port as Ztrans = 3.56 Ω

and Ztrans = 3.42 Ω, at frequency of 10 and 100 kHz, respectively, showing an experimental

gyration of approximately 9.3Ω and 9.65Ω, respectively. The impedances are measured with

an LCR meter (Keysight, model U1733C).

Figure 4.6: (a) Gyrator schematic and corresponding voltages, currents, and gyration resis-
tance direction. (b) A possible circuit for a gyrator implementation by using two op amps
and seven resistors.

To satisfy the EPD condition based on the theory discussed in Subsection 4.2.2, the positive

capacitance in the experiment C1 is built by paralleling fixed capacitors with values 220 nF,

150 nF, 22 nF and a trimmer (FTVOGUE , model Variable Capacitance Kit) to reach the

value of 400nF. The inductance L1 is built by using a commercial inductor of 47µH (Coilcraft,

model MSS7348-473) with a series DC loss of 0.15Ω and ±20% tolerances. However, due to

tolerances, our chosen inductor had a smaller value than the nominal one. We then tuned
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the inductance by a series inductor with a value of 1µH (Bourns, model 78F1R0K-TR-RC),

reaching the measured value of 46.8 µH at 100 kHz.

The negative capacitance and inductance are implemented based on the circuits shown in

Appendix 4.8-D using the same op amp model of the gyrator. In particular, the negative

inductance L2 is built by using a commercial inductor of 10 µH (Coilcraft, model MSS7348-

103MEC) with a series DC loss 0.045 Ω and ±20% tolerances followed by an inverter in

Appendix 4.8-D. However, due to tolerances, our chosen inductor had a smaller value than

the nominal one. Then, we tuned the inductance by adding a series inductor with a value of

1 µH (Bourns, model 78F1R0K-TR-RC) and a 0.47 µH (Bourns, model 542-78FR47K-RC)

reaching a measured value of 10.1 µH at 100 kHz.

The value of C2 = −470 nF comes from the inverter described in Appendix 4.8-D, where

we ignored the gain associated to inversion because of the capacitance’s high quality factor.

We use a capacitance trimmer (FTVOGUE , model Variable Capacitance Kit) in parallel

to a commercial fixed capacitor with a value of 470 nF to achieve a value close to the

desired capacitance of 470 nF. All capacitances and inductances are measured with an LCR

meter (Keysight, model U1733C) at 100 kHz to ensure the tuning process leads to the

desired capacitances and inductances design values. The dispersion diagram of the complex

eigenfrequencies by varying the capacitance C1 is shown in Fig. 4.7. The system is unstable

for any shown value of the perturbed capacitor because of the non-zero imaginary part of

eigenfrequencies.

Due to the presence of loss in the prototype, which is caused mainly by the two inductors, we

do not have the perfect degeneration of the eigenfrequencies, as shown in Fig. 4.7(b) where

we do not have any more Im (f) = 0 near the bifurcation (plot obtained via simulation in the

linear regime). In addition, in the nonlinear regime, the negative inductance and capacitance

are responsible of the saturation regime because they act as gain when transferred by the

negative impedance converter shown in Appendix 4.8-D. Nevertheless, we can still get in the
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vicinity of the original EPD frequency.

Since the stored charge in the capacitors is Qn ∝ ejωt, even a small negative imaginary part

of an eigenfrequency leads to an instability and the establishment of self substained oscilla-

tions, while the charge associated with the other eigenfrequency with positive imaginary part

decays. In conclusion, the small gain generated by the inverters leads to non-zero Im (f) ,

which induces the system state vectors to grow exponentially and it results in an unstable

system. We use the instability of the system to our advantage by letting the system oscillate

at the EPD frequency, and we investigate the sensitivity of the system in the saturation

regime close to the original EPD frequency.

4.3.2 Measurements in The Saturation Regime

In the experimental setup, the system saturates exhibiting a steady oscillation at fosc,0 =

50.7kHz, measured using a spectrum analyzer (Rigol, model DSA832E), which is close to the

frequency shown in Fig. 4.7 where the bifurcation is imperfect. We observe that the gyration

value is close to the designed value of 10 Ω even after reaching saturation by measuring the

voltages v1 and v2 in the circuit shown in Fig. 4.6(a). Also, we considered the transformed

admittance of the positive LCR tank after the gyrator (1/Ytrans = R2
g(C1jω ∥ 1/(L1jω+R1))

at the frequency of oscillation to find i2 = v2Ytrans. As a result, the gyration parameter in the

saturated regime at the oscillation frequency of fosc = 50.7kHz was calculated as Rg = 10.8Ω,

which is close to the theoretical design value of Rg = 10 Ω and from those measured in the

linear regime.
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Figure 4.7: Variation of (a) real (blue) and (b) imaginary (red) parts of the eigenfrequencies
to a capacitance perturbation on the left resonator.

The goal here is to measure the sensitivity of the self oscillation frequency (after reaching

saturation) to the perturbation of the capacitance C1. Indeed, the measured oscillation

frequency dramatically shifts away significantly from the unperturbed frequency fosc,0 =

50.7 kHz even when small perturbations are applied. Figure 4.8(a) shows the experimental

time-domain voltage signal v1 of the capacitor C1 with respect to the ground, when a relative

perturbation ∆C = 2.5% (∆C = ∆C/C1,0, where subscript 0 refers to the unperturbed value

of C1,0 = 400 nF) is applied to C1, measured by an oscilloscope. The voltage frequency

is measured with a spectrum analyzer (Rigol DSA832E), and shown in Fig. 4.8(b), for

various C1 values. A fundamental frequency of oscillation of fosc,0 = 50.7 kHz was observed

for no perturbation (blue); 49.96 kHz for perturbation ∆C = 0.625 % (gray); 49.8 kHz for

perturbation ∆C = 1.25 % (green); 49.43 kHz for perturbation ∆C = 1.875 % (purple); and

48.9 kHz for perturbation ∆C = 2.5 % (red). We used a resolution bandwidth of 10 Hz, and

a video bandwidth of 10 Hz. In all cases, the measured spectrum is clean approximately

down −70 dB from the peak values. The linewidths, calculated at −3 dB from the peak,

are approximately 10 Hz which are significantly smaller than the measured frequency shifts.
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The measured oscillation frequencies versus C1 are captured in Fig. 4.8(c) with circles, with

the corresponding colors used in Fig. 4.8(b). In the experiment, a relative perturbation

∆C = 2.5 % applied to C1 in the gyrator-based circuit led to a frequency shift |∆f | =

|48.9 kHz− 50.7 kHz| = 1.8 kHz, where fosc,0 = 50.7 kHz is the oscillation frequency with

no perturbation and fosc = 48.9 kHz is perturbed oscillation frequency. The measured

−3-dB (half power) spectral linewidth of 10 Hz (using a resolution bandwidth of 10 Hz,

and a video bandwidth of 10 Hz) is 180 times narrower than the measured frequency shift

|∆f | = 1.8 kHz. For the smallest perturbation of ∆C = 0.625 %, the associated frequency

shift |∆f | = 0.74 kHz is 74 times larger than the linewidth of 10 Hz, indicating that the

perturbed frequency spectrum is clearly detectable (consider also that the noise floor is 70

dB lower than the peak).

4.3.3 Discussion on Sensitivity and Capability to Detect Small

Perturbation

We now elaborate on the sensitivity of the gyrator-based oscillator in the saturation regime

to circuit perturbations and discuss how the obtained experimental results are comparable to

those of (i) a single LC resonator in the linear regime, and (ii) other circuits based on EPDs

from the literature [3, 78, 98, 97]. In particular, we compare the sensitivity S = |∆f | / |∆X|

in the various cases, where ∆f = |∆f | /f0 and ∆X = |∆X| /X0 are the normalized changes

in the perturbed frequency and a generic parameter X in the circuit (subscript 0 refers

to the unperturbed value). The change in the generic parameter X represents changes in

capacitance or resistance, as will be discussed next.
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Figure 4.8: (a) Measured time-domain voltage signal at the capacitor C1 when the system
is perturbed from the EPD by C1−C1,0 = 2.5 nF. (b) Measured capacitor voltage spectrum
with the unperturbed frequency of oscillation of 50.7 kHz (blue); 49.96 kHz for perturbation
∆C = 0.625% (gray); 49.8kHz for ∆C = 1.25% (green); 49.43kHz for ∆C = 1.875% (purple);
and 48.9 kHz for ∆C = 2.5 % (red). (c) Comparison of the measured oscillation frequencies
of the proposed nonlinear circuit (color dots) and those of the perturbed single LC linear
circuit (dashed black line), when perturbing the positive capacitance.

We first look at the comparison with a single LC resonator in linear regime, shown in Fig.

4.8(c), where the variation of the experimental oscillation frequency by perturbing the pos-

itive capacitor C1 (colored circles) of the gyrator-based circuit is compared to the resonant

frequency shift of a linear single LC resonator (dashed black line). The single LC res-

onator has an inductance Ls = 24.5 µH and capacitance Cs = C1 = 400 nF (same as C1,0

value at EPD), with resonance frequency f0 = 1/
(
2π
√
LsCs

)
= 50.8 kHz. Perturbing the

capacitance Cs leads to a changed frequency of approximately f ≈ f0 (1−∆Cs/2), where

∆Cs = (C − Cs) /Cs. The results clearly showcase that the gyrator-based circuit in the

saturation regime exhibits higher sensitivity compared to that of the linear single LC res-

onator. Notably, the resonance frequency variation due to the perturbation of capacitance of

∆Cs = 10% for the single LC resonator is comparable of the oscillation frequency shift of only

1/8 of the perturbation (∆C = 1.25%) when using the saturation regime of the gyrator-based

oscillator. This result shows that the sensitivity of our proposed gyrator-based oscillator is

8 times larger than the one of a single LC resonator.

We now compare the sensitivity of the presented oscillator with those obtained using the
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four circuits in Refs. [3, 78, 98, 97]. In our developed gyrator-based circuit, we measured

a first perturbed frequency |∆f | = 1.46 % for the smallest capacitance perturbation ∆C =

0.625 %. Hence, the gyrator-based EPD oscillator exhibits a sensitivity of S = 2.34, (for

∆C = 0.625 %.) which is comparable to or higher than the counterpart circuits as shown

next. In the linear single LC resonator, the sensitivity shown in Fig. 4.8(c) is S = 0.5, hence

it is lower than that of the proposed circuit oscillator.

In Ref. [78], they used a linear regime in a single time-varying resonator, and they measured

a sensitivity of |∆f | = 0.66 %, calculated based on the separation of the two perturbed

resonance frequencies, for their smallest perturbation considered ∆C = 0.3 % , as shown in

Fig. 6(a) of their paper. Thus, in [78], they achieved an approximate sensitivity of S = 2.2

for the first perturbation.

Sensitivity in the PT-symmetric two-coupled resonators in Ref. [3] was measured approx-

imately as S = 0.75 in Fig. 2 of that paper with |∆f | = 5 %, calculated based on the

separation of the two resonance frequencies after perturbation, for their smallest applied

perturbation of ∆γ = 6.7 % where in this case X = γ = R−1
√
L/C. Therefore, the highest

sensitivity measured in [3] was just slightly higher than that of a single linear LC resonator.

Since experimental data at the EPD were not available, the sensitivity was calculated based

on the frequency shift corresponding to perturbation of normalized γ approximately from

1.042 to 0.975. These two points correspond to the first perturbations occurring just before

and after the EPD.

In Ref. [98], the authors used an oscillator scheme using a nonlinear saturated regime

(analogous to what considered in this paper) in two-coupled resonators, and measured a

frequency change of |∆f | = 1.29 % for their smallest perturbation of ∆C = 1.3%. Therefore,

in [98], the sensitivity was measured to be S = 0.99.

In [97], the EPD concept using saturable nonlinear gain was exploited to design oscillators
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based on two coupled transmission lines as in [70]. They observe oscillation frequency changes

in response to perturbations in the load resistance, so in this case we have X = R, and

∆X = ∆R. In their measurement (Fig. 16 in [97]), they observed a |∆f | = 20% for a resistance

perturbation of ∆R = 9.8%, resulting in a sensitivity of S = 2.04. Since experimental data

at the EPD were not available, the sensitivity was calculated based on the frequency shift

obtained by perturbing the load resistance from 51 Ω to 56 Ω, relative to a fundamental

frequency of 1 GHz.

Note that besides aiming at high sensitivity, another very important parameter is the capa-

bility to detect small perturbations. The measured capacitance variation ∆C = 0.625% in the

gyrator-based circuit in this paper is higher only than the case in Ref. [78] where ∆C = 0.3%.

Hence, the smallest perturbation in the gyrator-based oscillator is smaller than the one in

[98] where ∆C = 1.3%, and it is much smaller than the smallest variation in [3], ∆γ = 6.7%

(note that the low sensitivity measured in [3] probably depends on the large variation they

considered, since the EPD-based sensitivity decreases when moving away from the EPD).

Furthermore, the perturbation measured in [97] was ∆R = 9.8%.

The capability to detect small variations ∆X depends on both the sensitivity and the

linewidth of the oscillator spectrum. The linewidth of the experimental oscillation frequency

was measured to be only 10 Hz. However, such a linewidth could be even smaller than

that measured value because we did not have the capability to use a narrower intermediate

frequency bandwidth of the spectrum analyzer to test it.

Nonlinear effects such as gain saturation and Kerr nonlinearity in systems with EPD play

an important role in sensitivity and stability [118]. The analysis of the nonlinear modes

of the system can be carried over by resorting to nonlinear dynamics tools [119], where the

modes of the system are identified as fixed points of the system equations. At the same time,

the stability of such fixed points (ultimately determining whether the system will operate in

those modes) is obtained from the Lyapunov exponents associated to the Jacobian matrix of
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the system equations linearized around the fixed point. Some dynamics related to EPDs in

nonlinear systems are discussed in [120, 121], or more recently in the framework of electronic

circuits, in [105] where a singularity is found in the nonlinear framework. In [105], they

discussed the sensitivity of the system supporting the EPD and how nonlinearity helps the

signal-noise ratio (how much noise contributes to the system). In this work, we do not

focus on describing the system’s nonlinearity but we observe the saturated regime using an

implementation with electronic components. Based on the experimental results shown in

Fig. 4.8(b) , which shows a clear and sharp spectrum, for each perturbed case, we conclude

that our nonlinear system works effectively in the saturation regime, for each value of the

perturbed capacitor.

4.4 Conclusions

We have shown that two resonators connected via a gyrator support an EPD when one

resonator is made of a negative inductance and a negative capacitance. We have provided

the theoretical conditions for such EPD to exist at a purely real frequency and verified our

theoretical calculations by using a time domain circuit simulator (Keysight ADS). We have

demonstrated that the eigenfrequencies are exceptionally sensitive to a perturbation of the

system and this may have significant implications for ultra-sensitive sensing technology and

RF sensors. In addition, we show that the system has two complex eigenfrequencies, one of

which is always associated to the circuit instability. We have fabricated the circuit and using

the saturated regime, we have measured the sensitivity of the self-oscillation frequency to

small capacitance perturbations. We have measured both the sensitivity and the linewidth

of the oscillator’s spectrum, because these two parameters are important for detecting small

circuit perturbations. The spectrum exhibited a very narrow linewidth (i.e., 10 Hz), and

the measured signal had a noise floor at −70 dB from the spectrum peak, and the circuit’s
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sensitivity was measured to be comparable or better than cases previously published. We

believe that the demonstrated concept of an oscillator in the saturated regime that is very

sensitive to perturbations could pave the way for the development of new operation schemes

to boost the performance of highly sensitive sensors.
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4.5 Appendix A: Circuits Duality

The concept of duality applies to many fundamental physics/engineering concepts. For in-

stance, this concept has been utilized many times in electromagnetic and electric circuits.

Two circuits are dual if the mesh equations that describe one of them have the same math-

ematical form as the nodal equations that characterize another circuit [122]. We consider

the mesh equations in the parallel-parallel configuration using the Kirchhoff’s voltage law.

According to the duality theorem, if we substitute voltage by current, current by voltage,

capacitance by inductance, and inductance by capacitance, we can obtain mesh equations

for series-series configuration. Thus, we present a dual circuit of the parallel configuration,

achieving an EPD by utilizing gyrator-based circuits with two series-series resonators.
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Figure 4.9: (a) Schematic view of the lossy series-series configuration including a resistor
in each resonator. The right resonator is made of negative inductance and capacitance.
Variation of (b) real and (c) imaginary parts of the angular eigenfrequencies to a resistor
perturbation in the left resonator. In these plots, γ1 is varied whereas we assume γ2 = 0.
Variation of (d) real and (e) imaginary parts of the angular eigenfrequencies to a resistor
perturbation on the right resonator. In these plots, −γ2 is varied whereas we assume γ1 = 0.
In these plots, blue curves show stable branches with positive imaginary parts and red
curves show unstable branches with negative imaginary parts. The right half of each plot
demonstrates the variation in eigenfrequencies due to varying positive resistance, whereas the
left half demonstrates the variation in eigenfrequencies due to varying negative resistance.
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4.5.1 EPD in Lossy Series Circuit

We analyze the EPD condition in the series-series configuration by accounting for series

resistors R1 and R2 in both resonators. Using the Liouvillian formalism, the Kirchhoff

voltage law equations for the two loops of the circuit in Fig. 4.9(a), and the state vector of

Ψ ≡
[
Q1, Q2, Q̇1, Q̇2

]T
, we obtain

dΨ

dt
= MΨ, M =



0 0 1 0

0 0 0 1

−ω2
01 0 −γ1 Rg

L1

0 −ω2
02 −

Rg

L2
−γ2


, (4.17)

where, γ1 = R1/L1 and γ2 = R2/L2 describe losses (losses on the right resonator are rep-

resented by a negative γ2 since L2 is negative). These eigenfrequencies are solutions to the

following characteristic equation

ω4 − jω3 (γ1 − γ2)− ω2
(
ω2
01 + ω2

02 + γ1γ2 +
Rg

L1L2

)
+jω (γ1ω

2
02 + γ2ω

2
01) + ω2

01ω
2
02 = 0.

(4.18)

An eigenfrequency with a negative imaginary part is associated with an exponentially grow-

ing signal. The coefficients of the odd-power terms of the angular eigenfrequency (ω and ω3)

in the characteristic equation of Eq. (4.18) are imaginary. In the characteristic equation,

eigenfrequencies ω and −ω∗ are both roots. In order to have a stable circuit with real-

valued eigenfrequencies the odd-power terms of the angular eigenfrequency −jω3 (γ1 − γ2)

and jω (γ1ω
2
02 + γ2ω

2
01) in the characteristic equation of Eq. (4.18) should be zero, otherwise

a complex eigenfrequency needed to satisfy the characteristic equation of Eq. (4.18). The

coefficient of the ω3 term is zero when γ1 = γ2, and under this condition the coefficient of
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the ω term γ1 (ω
2
02 + ω2

01) is non-zero value because ω2
01 and ω

2
02 are both positive. Moreover,

the coefficient of the ω term vanishes when γ1/γ2 = −ω2
01/ω

2
02, and under this condition,

the coefficient of the ω3 term γ1 (1 + ω2
02/ω

2
01) cannot vanish. Thus, it is not possible to

have all real-valued coefficients in the characteristic polynomials, unless γ1 = γ2 = 0 which

corresponds to a lossless circuit. In the following subsection, we examine the eigenfrequency

in a lossless structure to understand its stability conditions.

4.5.2 EPD in Lossless Series Circuit

To have a real-valued EPD frequency and fulfill the EPD conditions, we suppose γ1 = γ2 = 0.

In this configuration, two series LC resonators are connected by a gyrator, as illustrated in

Fig. 4.10(a). We assume that all components are ideal, and the circuit does not contain

any resistance. By writing down the Kirchhoff voltage law equations in two loops, we write

the eigenvalue problem associated to the circuit equations, and the characteristic equation

is obtained from det (M− jωI) = 0, leading to

ω4 − ω2

(
ω2
01 + ω2

02 +
Rg

L1L2

)
+ ω2

01ω
2
02 = 0. (4.19)

In this characteristic equation, ω is the angular eigenfrequency of the system. All the ω’s

coefficients are real hence ω and ω∗ are both roots of the characteristic equation, where *

represents the complex conjugate operation. Moreover, it is a quadratic equation in ω2;

therefore, ω and −ω are both solutions. For Rg = 0, the two resonators are uncoupled, and

the two circuits have two angular eigenfrequency pairs of ω1,3 = ±ω01, and ω2,4 = ±ω02.
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Figure 4.10: (a) Series-series configuration: two different LC resonators in series configura-
tion connected via an ideal gyrator. The right resonator is made of negative inductance and
capacitance. Variation of the (b) real and (c) imaginary parts of the two eigenfrequencies to
a gyration resistance perturbation. The bifurcation in the real part is observed for Rg < Rg,e.
Voltage v1 under the EPD condition in the (d) time domain, and (e) frequency domain. The
frequency domain result is calculated from 150 kHz to 200 kHz with 106 samples in the time
window between 0 ms to 0.2 ms.

We assume that the resonance frequency of each single LC resonator is real-valued; this

happens when inductance and capacitance in the same resonator have both the same sign.

In this case, the component values on the left side are positive, whereas they are negative
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on the right side. We explain the reason for this issue in Appendix 4.6-B1. The angular

eigenfrequencies (resonance frequencies) in the coupled circuit are calculated as

ω1,3 = ±
√
a+ b, ω2,4 = ±

√
a− b, (4.20)

where

a =
1

2

(
ω2
01 + ω2

02 +
Rg

L1L2

)
, (4.21)

b2 = a2 − ω2
01ω

2
02. (4.22)

According to Eq. (4.20), the EPD condition requires

b = 0, (4.23)

and the EPD angular frequency is ωe = ±
√
a. Here, we assume positive values for a in order

to have a real EPD angular frequency and we will only refer to positive values of ωe in the

following. From Eq. (4.22), the EPD condition is rewritten as a2 = ω2
01ω

2
02. Since we look

for real-valued EPD frequencies, a > 0, and from Eq. (4.21) one has

ω2
01 + ω2

02 − ω2
gs > 0, (4.24)

where it has been convenient to define the equivalent gyrator frequency ω2
gs = −Rg/(L1L2)

for the series-series configuration (note that ω2
gs > 0 because one inductor is negative). The

EPD frequency is calculated by using Eqs. (4.21), (4.22), and (4.23) as
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ωe =
√

1
2

(
ω2
01 + ω2

02 − ω2
gs

)
=
√
ω01ω02. (4.25)

4.5.3 Dispersion Relation of Lossless and Lossy Series-Series Con-

figurations

As an example, we explain the required procedure to obtain an EPD in this configuration

by presenting a specific example. Many different combinations of values for the circuit’s

components will satisfy the EPD condition, and here as an example, we assume this set

of values for components: L1 = 47 µH, L2 = −47 µH, C2 = −47 nF, and Rg = 50 Ω. As

mentioned before, the desired value for the gyration resistance is achieved by determining the

appropriate values for the resistors in the circuit for the gyrator illustrated in Fig. 4.6(b).

Also, the capacitance C1 is determined by solving the quadratic equation from the EPD

condition in Eq. (4.23). There are two different values of the capacitance C1 in the first

resonator that satisfy Eq. (4.23), namely C1,e = 7.05 nF and C1,e = 139.16 nF. For the

smaller value (C1,e = 7.05 nF), we obtain a positive value for a in Eq. (4.24), so the EPD

frequency is real. On the contrary, the second value (C1,e = 139.16 nF) gives us a negative

value for a, so the EPD frequency would be imaginary and we discard it since we investigate

a gyrator-based circuit with real-valued EPD frequency in this paper. In the following, we

select the smaller value for the left resonator capacitance, C1 = 7.05 nF. The results in

Figs. 4.10(b) and (c) exhibit the two branches of the real and imaginary parts of perturbed

eigenfrequencies obtained from the eigenvalue problem, varying the gyration resistance Rg

in the neighborhood of Rg,e = 50Ω. Here, only the two solutions with Re (ω) > 0 are shown

in Figs. 4.10(b) and (c). In this example, we obtain ωe = 1.08× 106 rad/s and the coalesced

eigenvalues at EPD are exceedingly sensitive to perturbations in system parameters.

The time domain simulation results obtained using the Keysight ADS circuit simulator are
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illustrated in Figs. 4.10(d) and (e). These two plots show the voltage v1 (t) in the left

resonator, and its spectrum, where we put 1 mV as an initial voltage on C1. In the circuit

simulator, an ideal gyrator has been utilized. According to Fig. 4.10(d), the voltage grows

linearly with increasing time. This important aspect is peculiar of an EPD, and it is the

result of coalescing system eigenvalues and eigenvectors that also corresponds to a double

pole in the system. A linear growth indicates a second-order EPD in the system. We take

a fast Fourier transform (FFT) of the voltage v1 (t) to show the frequency spectrum, and

the calculated result is illustrated in Fig. 4.10(e). The observed oscillation frequency is

fo = 172.05 kHz, which is in good agreement with the theoretical value ωe/ (2π) calculated

above.

By perturbing the gyration resistance, the operation point moves away from the EPD. By

selecting a lower value for the gyration resistance, the system has two different real-valued

eigenfrequencies. For instance, we reduce the amount of perturbed parameter by 5% equal

to Rg = 47.5 Ω < Rg,e = 50 Ω. In the perturbed condition, we do not observe any signal

growth in the system with increasing time. If we consider an additive 5% of perturbation

in the gyration resistance, i.e., Rg = 52.5 Ω ¿Rg,e = 50 Ω, the imaginary part of the angular

eigenfrequencies is non-zero, and it causes eigensolutions with damping and growing signals

in the system. Since the signal is in the form of Qn ∝ ejωt, the eigenfrequency with negative

imaginary part is associated to an exponentially growing signal.

In lossy circuit, we use the same values as lossless series-series configuration for the resonators

and gyration resistance. In Figs. 4.9(b) and (c), γ1 is varied while we assume γ2 = 0. In

Figs. 4.9(d) and (e), −γ2 is perturbed while γ1 = 0. These two figures show the real and

imaginary parts of eigenfrequencies when perturbing each resistor individually. The EPD

angular frequency is obtained when γ1 = γ2 = 0, which is the same EPD frequency as the

lossless configuration shown in Section 4.5.2. In Figs. 4.9(b)-(e), we observe the bifurcations

of the real and imaginary parts of the eigenfrequencies, so the circuit is very sensitive to
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variations in both resistance values. Angular eigenfrequencies here are complex-valued; it

means that by perturbing γ1 or γ2 away from γ1 = γ2 = 0, the circuit gets unstable;

hence it starts to oscillate with the fundamental frequency associated with the real part

of the unstable angular eigenfrequency. When γ1 or γ2 is perturbed from the EPD value,

the oscillation frequency is shifted from the EPD frequency, and it could be measured for

sensing applications. In Figs. 4.9(b)-(e), both conditions γ1 > 0 and −γ2 > 0 represent

losses, whereas the conditions γ1 < 0 and −γ2 < 0 represent gains in the circuit through a

negative resistance. In both cases, by adding either losses or gains, the system is unstable. We

observe more sensitivity when perturbing R2, because a small perturbation in R2 results in

a larger variation of the eigenfrequencies than when varying R1. Indeed, a wider bifurcation

indicates higher sensitivity.

4.5.4 Frequency Domain Analysis of The Degenerate Resonance

We calculate the total input impedance, Ztotal (ω) (see Fig. 4.10), for the series-series cir-

cuit with the same approach discussed in the Section 4.2.5. We calculate the transferred

impedance on the left side of the circuit in Fig. 4.10, that is

Ztrans (ω) =
R2

g

Z2

. (4.26)

where Z2 (ω) = jωL2 + 1/ (jωC2) is the series impedance on the right side of the circuit.

Thus, the total impedance observed from the input port in this circuit is calculated by

Ztotal (ω) ≜ Z1 (ω) + Ztrans (ω) = Z1 +
R2

g

Z2

, (4.27)

as shown in Fig. 4.10, where Z1 (ω) = jωL1 + 1/ (jωC1). The complex-valued resonant

frequencies are obtained by imposing Ztotal (ω) = 0. A few steps lead to the ω-zeros given
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by Eq. (4.20). Figure 4.11 shows the zeros of such total impedance Ztotal (ω) for various

gyration resistance values. When considering the EPD gyration resistance Rg = Rg,e = 50Ω,

one has Ztotal (ω) ∝ (ω − ωe)
2, i.e., the two zeros coincide with the EPD angular frequency

ωe, that is also the point where the two curves in Fig. 4.11 meet. For gyrator resistances

such that Rg < Rg,e, the two resonance angular frequencies are purely real. Instead, for

Rg > Rg,e, the two resonance angular frequencies are complex conjugate, consistent with the

result in Fig. 4.11. In other words, the EPD frequency coincides with double zeros or double

poles of the frequency spectrum, depending on the way the circuit is described.

Figure 4.11: Root locus of zeros of Ztotal (ω) of the series-series configuration when varying
the gyration resistance. The EPD frequency corresponds to a double zero of the impedance
Ztotal (ω).
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4.6 Appendix B: Components Sign and Simplification

of EPD Condition

1) Series-Series Configuration

In order to obtain an EPD in the series-series configuration using Eqs. (4.21), (4.22) and

(4.23) the following equation must be satisfied:

(ω01 − ω02)
2 = ω2

gs. (4.28)

We investigate three possible scenarios to satisfy Eq. (4.28). First, if ω01 and ω02 are pure

real, the values of L1 or L2 should be negative to have the same sign on both sides of Eq.

(4.28). Thus, one of the resonators should have a negative inductance to have a pure real

ω01 or ω02. Second, if both ω01 and ω02 have imaginary values, the considered values for L1

and L2 should have the same sign, either positive or negative. When L1 and L2 are positive,

C1 and C2 should be negative or vice versa. Finally, if just one of the ω01 or ω02 is imaginary

and the other one has a real value, there are no conditions to obtain an EPD.

To have a real EPD frequency ωe = ±
√
a, a should be positive and this happens when

Eq. (4.24) is satisfied. The region leading to a > 0 is represented by the white area in

Fig. 4.12(a), whereas the gray area represents the region with a < 0. The red curves

show different combinations of ω01 and ω02 which satisfy the EPD condition of Eq. (4.28),

assuming ωgs constant. In this figure, C1 = 1/ (ω2
01L1) and C2 = 1/ (ω2

02L2) are varied, while

Rg, L1 and L2 are constant. We have shown only results for positive real values of ω01 and

ω02. The green cross marks the values used for the example provided in Section 4.5.2.
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Figure 4.12: Possible combinations of ω01 and ω02 to have a real eigenfrequency in the
(a) series-series and (b) parallel-parallel configurations are shown by the white area, and
the gray area represents complex eigenfrequencies based on (a) Eq. (4.24) for series-series
configuration and (b) Eq. (4.9) for parallel-parallel configuration. Red curves satisfy (a) Eq.
(4.28) for series-series configuration and (b) Eq. (4.29) for parallel-parallel configuration and
show possible combinations of ω01 and ω02 that lead to a real EPD frequency. In the results
presented in plot (a), we keep Rg, L1 and L2 fixed as in Section 4.5.2, and C1 and C2 are
varied. In the results presented in plot (b), we keep Rg, C1 and C2 fixed as in Section 4.2.2,
and L1 and L2 are varied.

2) Parallel-Parallel Configuration

In order to get an EPD in the parallel-parallel configuration by using Eqs. (4.6), (4.7) and

(4.8) the following condition must be satisfied:

(ω01 − ω02)
2 = ω2

gp. (4.29)

We consider three different cases for the parallel-parallel configuration to choose the compo-

nents’ values. First, if ω01 and ω02 are pure real, the values of C1 or C2 should be negative

to have the same sign on both sides of Eq. (4.29). Hence, to have a real ω01 and ω02 one

resonator should be made of both negative C and L. Second, if both ω01 and ω02 have
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imaginary values, then C1 and C2 should have the same sign. Finally, if just one of the ω01

or ω02 is imaginary and the other is real, there is no condition that leads to an EPD. In this

paper, we consider the first scenario, where both ω01 and ω02 are real.

To have a real EPD frequency ωe = ±
√
a, a should be positive and this occurs when Eq. (4.9)

is satisfied. The region leading to a > 0 is represented by the white area in Fig. 4.12(b),

whereas the gray area represents the region with a < 0. The red curves show different

combinations of ω01 and ω02 which satisfy the EPD condition of Eq. (4.29), assuming ωgp

constant. In this figure, L1 = 1/ (ω2
01C1) and L2 = 1/ (ω2

02C2) are varied, while Rg, C1 and

C2 are constants. We show only results for the positive and real values of ω01 and ω02. The

points on the red curves, which are located in the white area, can be selected to have an

EPD with real and positive EPD frequency. The location marked by the green cross shows

the values used for the example in Subsection 4.2.2.

4.7 Appendix C: The Coefficient of The Leading Term

of The Puiseux Series

Using Eq. (4.13), we obtain the following expression for the coefficient of the leading term

of the Puiseux series,

α1 =

√
ω2
01Rg (ωe − ω2

02) +
ωe

C1C2

1
C1C2

+Rg (ω2
01 + ω2

02 − 6ωe)
, (4.30)

when we perturb the capacitance. Instead, when we perturb the inductance, the coefficient

is
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α1 =

√
ω2
01Rg (ωe − ω2

02)
1

C1C2
+Rg (ω2

01 + ω2
02 − 6ωe)

. (4.31)

4.8 Appendix D: The Impedance Inverter

There are several circuits that can provide for negative capacitances and inductances needed

for the gyrator-based EPD circuits. Two circuits to obtain negative impedances by using

op amps are shown in Fig. 4.13. The circuit in Fig. 4.13(a) converts the impedance

ZLoad (ω) to Zin (ω) = −ZLoad (ω). Therefore, when ZLoad (ω) in the circuit in Fig. 4.13(a)

is a capacitor in parallel to an inductor, i.e., ZLoad (ω) = 1/ (jωC) ∥ (jωL), we obtain

Zin (ω) = − (1/ (jωC) ∥ (jωL)) at the input port, that corresponds to a negative capacitor

in parallel to a negative inductor. In Sec. 4.3, we used this method to realize negative

capacitance and inductance in the measurement. Figure 4.13(b) shows an alternative way

to achieve negative inductance without an inductor. By using a single capacitor in the

mentioned inverter ZLoad (ω) = 1/ (jωC) resulting in Zin (ω) = −jωR2C, hence, desired

negative inductance values are achieved with proper sets of values for R and C. Therefore,

it is possible to generate a negative capacitance and a negative inductance by only using

capacitive loads.
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Figure 4.13: Negative impedance converter circuit implementations by using an op amp.
(a) Circuit used in the experimental setup where the load is the parallel between a positive
capacitor and a positive inductor. (b) A negative inductance can be generated using a
positive capacitor (not used in the experimental setup).

4.9 Appendix E: Implementation of The Gyrator-

based Circuit

Assembled gyrator-based circuit with different blocks highlighted is shown in Fig. 4.14. The

green dashed square shows the designed gyrator using two op amps, and the red dashed

square shows the inverter circuit to provide a negative inductor in parallel to a negative

capacitor. The circuit also consists of a sensing capacitor C1, where a variable capacitor

(FTVOGUE, model Variable Capacitance Kit) and a series of extra capacitors could be

connected in parallel, as shown in the blue box. To demonstrate the sensitivity of the

oscillator’s frequency to perturbations, we perturb the capacitor C1 by connecting pairs of

extra 2.5 nF capacitors in parallel to C1. After each perturbation, the oscillation frequency

is measured using an oscilloscope and a spectrum analyzer for comparison and verification

purposes. Note that on the board, all elements and the DC supply share a common ground
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and the VSS (−5 V) and VCC (+5 V) are connected to op amps as shown in Fig. 4.14.

Figure 4.14: Assembled gyrator-based oscillator circuit prototype with different blocks high-
lighted.
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Chapter 5

How to achieve exceptional points in

coupled resonators using a gyrator or

PT-symmetry, and in a

time-modulated single resonator: high

sensitivity to perturbations

We study the rise of exceptional points of degeneracy (EPD) in various distinct circuit con-

figurations such as gyrator-based coupled resonators, coupled resonators with PT-symmetry,

and in a single resonator with a time-varying component. In particular, we analyze their high

sensitivity to changes in resistance, capacitance, and inductance and show the high sensitiv-

ity of the resonance frequency to perturbations. We also investigate stability and instability

conditions for these configurations; for example, the effect of losses in the gyrator-based cir-

cuit leads to instability, and it may break the symmetry in the PT-symmetry-based circuit,

also resulting in instabilities. Instability in the PT-symmetry circuit is also generated by
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breaking PT-symmetry when one element (e.g., a capacitor) is perturbed due to sensing. We

have turned this instability ”inconvenience” to an advantage, and we investigate the effect

of nonlinear gain in the PT-symmetry coupled-resonator circuit and how this leads to an os-

cillator with oscillation frequency very sensitive to perturbation. The circuits studied in this

chapter have the potential to lead the way for a more efficient generation of high-sensitivity

sensors that can detect very small changes in chemical, biological, or physical quantities.

5.1 Motivation and State of the Art

In order to improve the detection limit for small perturbation sensors, an operation based

on the exceptional point of degeneracy concept (EPD) can be a valuable option. EPD is a

point at which two or more eigenvalues and the corresponding eigenvectors of the system

coalesce (i.e., they are degenerate) [31, 123, 33, 34, 124, 35, 40, 125, 62, 38, 39, 36, 37,

64, 52, 126]. The main feature of an exceptional point is the strong full degeneracy of the

relevant eigenmodes (including their eigenvectors), justifying the presence of ”D” in EPD

that stands for ”degeneracy” [66]. Exceptional points have been observed in various circuits

as in coupled resonators [6, 67, 3, 71, 17, 68, 127], temporally-periodic systems [78, 4, 79],

and spatially periodic structures [38, 1, 128].

Sensors are used widely and extensively in many industrial, automotive, and medical ap-

plications. In recent years, numerous approaches have been used to sense variations of

physical, biological, or chemical changes, e.g., to sense pressure [6, 129, 130], temperature

[131], humidity [132], electron beam velocity [100], and chemical or biological quantities

[133, 134, 135, 136]. Since sensitivity is an essential feature of measurement systems, various

types of sensors are needed to sense. Thus, low-cost, simple, and highlysensitive sensors

are desirable to measure different quantities. In conventional sensors, the perturbation by a

small value ∆ results in shifting the system’s eigenfrequency by an amount in the same order
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(c)

Figure 5.1: Three different configurations where support EPD. (a) Two resonators coupled
through gyrator. (b) Two mutually coupledresonator terminated with balanced gain and loss
(PT-symmetry circuit). (c) Time-varying circuit which just one component in the circuit
needed to change over time periodically. The time-varying component here could be capacitor
or inductor or loss.

of ∆ (linear behavior), like perturbing a simple LC resonator (or tank). It means that in con-

ventional sensing applications, the perturbation and the measurable changes, like frequency,

follow the same trend. To increase the sensitivity, EPDs have offered a new method. Rather

than typical detecting systems, where the eigenfrequency changes are of the same order of

the perturbation ∆, the change of an eigenfrequency ∆ω in a system working at an EPD of

order two follows the behavior ∆ωα∆1/2 as shown in [137, 99, 94, 138]. EPDs are found in

many physical settings under PT-symmetry properties [40, 6, 67, 3, 17, 76]. However, EPDs

are also found in more general forms, which do not require a system to satisfy PT-symmetry

[78, 4, 79, 137, 139]. Breaking the symmetry due to the external perturbance eigenvalues

split from the degenerated value can be used as a detecting system.

This chapter treats EPDs using four methods: First, by using the circuit’s characteristic

equation and showing the degeneracy of the eigenmodes. Second, the coalescence of eigen-

vectors, which is observed analytically. Third, timedomain results obtained from simulations

show the linear growth revealing the second-order EPD. The related frequency response is

also studied, and it is shown how it is associated with the EPD. Fourth, the approximate

fractional power expansion series using the Puiseux series shows the bifurcation and square

root-like behavior of the eigenvalues with respect to perturbations.

To address the effectiveness of the discussed EPD circuits, we consider the systems’ sensi-
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tivity to perturbations of capacitance, inductance, and resistance, which are used as sensing

elements, depending on the application. In Section 5.2, we provide an overview of the three

circuit configurations leading to second-order EPDs. In Section 5.3, we describe the second-

order EPD in the gyrator-based circuit with parallel configuration in lossless and lossy cases.

Also, we study the stability of the circuit, manifested in its eigenfrequencies. Details and

analysis of the series configuration, not shown here, are discussed in [68, 127, 108, 107].

In Section 5.4, we study the second-order EPD in two coupled resonators with balanced

gain and loss satisfying PT-symmetry. In this circuit, we consider nonlinear gain, and by

perturbing only one side of the coupled resonator, we break PT-symmetry making the sys-

tem unstable and causing oscillation. In [6], when a perturbation occurs on one side of the

coupled resonator circuit, the other side is tuned accordingly to keep PT-symmetry. This

procedure made the operational regime difficult to implement since the exact value of the

changes should be known a priori. Moreover, the sign of the perturbation was consistent

with the bifurcation direction, which means that only either positive or negative changes

in the circuit’s quantities could be sensed, not both. Instead, working as in the oscillator

regime enables sensing of perturbations with both positive and negative signs. Also, when

using nonlinear gain and the oscillatory regime, there is no need to tune a circuit’s side to

keep symmetry, as we show in Section 5.4. Nonlinearity plays a critical role in this circuit

operational regime and helps us find the EPD more easily. While the circuit with EPD and

nonlinearity is sensitive to any perturbation sign, the nonlinearity keeps the circuit at an

EPD even with a 1% miss-match between the gain and loss. Finally, in Section 5.5, we study

a single LC resonator with a time-varying element and show how this simple configuration

leads to an EPD by just tuning the modulation frequency. In order to find the EPD, we

assume a time-varying capacitor connected to a fixed inductance. Then, the loss effect is

taken into account in the analysis. We study the eigenfrequency dispersion by varying mod-

ulation frequency, where the LC tank is connected to loss or gain. Also, EPD is found in

the time-modulated circuit when the LC tank is terminated with time-varying gain or loss.
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5.2 Second-order EPD in Three Distinct Possible Con-

figurations

We discuss here three different methods to obtain a secondorder EPD. First, the degeneracy

of the eigenvalues (i.e., eigenfrequencies) occurs in a gyrator-based circuit where two LC

tanks are coupled with a gyrator, as shown in Fig. 5.1(a). Second, we study two mutually

coupled LC circuits with balanced gain and loss, satisfying PT-symmetry, shown in Fig.

5.1(b).

In Figs. 5.1(a) and (b), both circuits support square root sensitive behavior to perturbations

of the resistance, capacitance, and inductance. However, some differences must be observed:

for example, the conventional PT-symmetry circuit in Fig. 5.1(b) needs the tuning on both

sides to keep the PT-symmetry and avoid self oscillations (arising from non-zero Im(ω)). In

other words, it is not possible to change one side only and observe two purely real eigenfre-

quencies. Instead, the gyrator-based circuit shows that the perturbation on only one side

leads to two purely real eigenfrequencies. Thus, there is no need to tune the other side after

a perturbation in the gyrator-based circuit. However, any gain or loss in the gyrator-based

circuit will cause oscillation and instability, as we will discuss later in more detail.

We show how to turn the instability of a circuit (e.g., the one in Fig. 5.1(b)) to our advan-

tage. Using nonlinear gain, we make the circuit oscillate and saturate, and by perturbing

the capacitance on one side, a square root-like change in oscillation frequency is detected.

Working in an oscillator regime has certain advantages compared to the conventional PT-

symmetry regime of operations in the previous literature [18]. For instance, there is no need

to tune the circuit to reach PT-symmetry again after the perturbed values (of a capacitor,

for example) are measured in this circuit. Also, nonlinearity helps to fine-tune the circuit to

the EPD in an easier way. We discuss these concepts in more detail later on in Section 5.4.

117



The third circuit we discuss here, shown in Fig. 5.1(c), is a linear time-varying (LTV) system

in which an inductor is connected to the time-varying capacitor. This configuration does not

need any negative components to realize the EPD, like a negative capacitance and inductance

in the gyrator-based circuit or an active gain element in the PT-symmetric coupled-resonator

circuit. In addition, we need only one time-varying resonator in this third scheme rather

than two fixed resonators. Similarly, an EPD is found in the LTV circuit when an inductor

and capacitor are connected in parallel to the time-varying loss or gain.

5.3 EPD in Gyrator-Based Circuit

In this section, we study the first scheme to obtain EPD by using two coupled LC tanks

connected through a gyrator. An ideal gyrator is a nonreciprocal linear two-port device

whose current on one port is related to the voltage on the other port. More details about

the gyrator and various realization methods are discussed in references [114, 140, 141, 142].

The instantaneous relations between voltages and currents on the gyrator are described by

 v2(t) = Rgi1(t)

v1(t) = −Rgi2(t),
(5.1)

where the gyration resistance Rg has a unit of Ohm with the direction indicated by an arrow

in the circuit.

We find the eigenvalues (i.e., the eigenfrequencies) and demonstrate the condition for obtain-

ing an EPD at the desired frequency. Finally, we show the sensing potentials by applying

a perturbation, and we study the effects of losses on the stability of eigenfrequencies. In

addition, by using a time-domain circuit simulator, we verify the circuit behavior predicted

by the theoretical calculations and also show that the eigenfrequencies can be predicted by
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using the Puiseux fractional power series expansion.

5.3.1 Lossless Configuration

Two parallel LC tanks are coupled by a gyrator, as shown in Fig. 5.2(a). By writing the

circuit equations and defining the state vector as Ψ ≡
[
Q1, Q2, Q̇1, Q̇2

]T
, leads to

dΨ

dt
= MΨ, (5.2)

where

M =



0 0 1 0

0 0 0 1

−ω2
01 0 0 1

RgC2

0 −ω2
02 − 1

RgC1
0


, (5.3)

and M is the circuit matrix. The eigenfrequencies of this circuit are calculated by solving

the characteristic equation [127, 143],

ω4 − ω2

(
ω2
01 + ω2

02 +
1

C1C2R2
g

)
+ ω2

01ω
2
02 = 0. (5.4)

The characteristic equation is quadratic in ω2 and all the coefficients are real, so both ω

and −ω and ω and ω∗ are solutions. The angular eigenfrequencies are determined as

ω1,3 = ±
√
a+ b, ω2,4 = ±

√
a− b, (5.5)
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a =
1

2

(
ω2
01 + ω2

02 +
1

C1C2R2
g

)
, (5.6)

b2 = a2 − ω2
01ω

2
02. (5.7)

According to Eq. (5.5), a necessary condition for an EPD to occur is b = 0, which results in

an EPD angular frequency of ωe =
√
a =
√
ω01ω02. So, we rewrite Eq. (5.7) as

(ω01 − ω02)
2 = − 1

C1C2R2
g

(5.8)

In order to obtain an EPD with real angular frequency, we consider the case with purely

real value for ω01 and ω02, so the value of either C1 or C2 should be negative. As a result,

to have a real value for ω01 and ω02, one resonator needs to be composed of both negative

C and L, and more details are discussed in [108, 107]. Another scenario with an unstable

uncoupled resonator is conceivable, which was studied for a series configuration in [68]. As

an example, here we use the following values for the components shown in Fig. 5.2(a):

L1 = 100 µH, L2 = −100 µH, C2 = −100 nF, and Rg = 50 Ω. Then, the positive capacitance

C1 is found by solving the quadratic equation obtained from the EPD condition. Since the

equation of the EPD condition is quadratic, it would yield two answers for C1. In this

chapter, we select the value that leads to real EPD frequency, which is C1 = 13.51nF. Then

the corresponding value for EPD angular frequency is calculated as ωe = 5.22×105 rad/s. In

this circuit, an opamp-based invertor could realize the negative components. The designed

circuit to obtain negative impedance is shown in Fig. 5.2(b), which converts the impedance

Zl(ω) to Zinvert (ω) = −Zl(ω). Thus, we can provide the required negative capacitance and

inductance by employing that configuration.
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Figure 5.2: (a) The gyrator-based circuit with the ideal gyrator connected two parallel LC
tanks. (b) Opamp-based circuit configuration to obtain negative inductance and capacitance.
The sensitivity of the (c), (e), real and (d), (f), imaginary parts of the eigenfrequencies
to (c), (d) gyration resistance, (e), (f) positive capacitance C1. Solid lines: solution of
eigenvalue problem of Eq. (5.2); green-dashed lines: Puiseux series approximation truncated
to its second term. Voltage of positive capacitance v1(t) at EPD (g) time-domain, and (h)
frequency-domain. The frequency-domain result is calculated by applying an FFT with 106

samples in the time window of 0 to 3 ms. (i) Root locus of zeros of Ytotal (ω) = 0 showing
the real versus imaginary parts of resonance frequencies by perturbing gyration resistance.
At the EPD, two zero collide at ωe and the system’s total admittance has the form of
Ytotal(ω) ∝ (ω − ωe)

2.

The real and imaginary parts of perturbed eigenfrequencies normalized to the EPD an-

gular frequency by varying Rg are shown in Figs. 5.2(c) and (d), and analogous results

by perturbing the positive capacitance C1 are shown in Figs. 5.2(e) and (f). In addi-

tion, the eigenfrequencies are well approximated by using the Puiseux fractional power se-

ries expansion (green dashed lines). Appendix 5.7 provides the concept and formulas for

this method. The approximated results obtained by the Puiseux series show an excellent
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agreement with the “exact”values calculated directly from the eigenvalue problem. The

coefficients of the Puiseux series up to second-order for the mentioned example are cal-

culated as, α1 = 3.85 × 105 rad/s, and α2 = 1.42 × 105 rad/s when perturbing Rg, and

α1 = j2.07 × 105 rad/s, and α2 = −1.72 × 105 rad/s when perturbing C1. The bifurcation

of the real part of the eigenfrequencies, which indicate the stable sensing region, is observed

when Rg > Rg,e, and C1 < C1,e.

Time-domain simulation result for the voltage v1(t) is obtained using the Keysight Advanced

Design System (ADS) time-domain circuit simulator, and the result is plotted in Fig. 5.2(g).

The frequency spectrum corresponding to the simulated time-domain voltage is found by

taking the Fast Fourier Transform (FFT), as shown in Fig. 5.2(h). The results are obtained

using the initial voltage of 1 mV on the left capacitor C1. We observe that the voltage

increases linearly with time. As well known in circuit theory, this linear growth indicates

that two system eigenvalues collided, and a double pole describes the system response. This is

a specific property of a second-order EPD. The oscillation frequency is ωo = 5.22×105 rad/s,

which is exactly equal to EPD angular frequency ωe.

We now observe the EPD in a frequency-domain analysis by calculating the circuit’s total

input admittance Ytotal(ω), as shown in Fig. 5.2(a). We define the two admittances of two

LC tanks as Y1 = jωC1 + 1/ (jωL1) and Y2 = jωC2 + 1/ (jωL2). Then the transferred

admittance of the Y2 to the left side is Ytrans(ω) = 1/
(
R2

gY2
)
. The total admittance observed

from the circuit input port is calculated by

Ytotal (ω) = Y1(ω) + Ytrans (ω) (5.9)

The resonant angular frequencies are achieved by imposing Ytotal (ω) = 0; the normalized

resonance frequencies to the EPD angular frequency by varying the gyration resistance are
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Figure 5.3: (a) Schematic view of the lossy gyrator-based circuit, with a resistor in each
resonator. Variation of (b) real and (c) imaginary parts of the angular eigenfrequencies to
a resistor perturbation on the left resonator, i.e., when γ1 changes and γ2 = 0. Variation of
(d) real and (e) imaginary parts of the angular eigenfrequencies to a resistor perturbation
on the right resonator, i.e., when −γ2 changes and γ1 = 0.

shown in Fig. 5.2(i). Two zeros of total admittance coincide exactly at EPD.

5.3.2 Lossy configuration and stability

In this section, we study the loss effects on the eigenfrequencies of the gyrator-based circuit.

Two parallel resistors R1 and R2 are connected to both resonators, as shown in Fig. 5.3(a).

By writing down the circuit equations and assuming the same state vector as introduced in

the lossless case, the associated Liouvillian formalism reads as

dΨ

dt
= MΨ, (5.10)
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M =



0 0 1 0

0 0 0 1

−ω2
01 0 −γ1 1

RgC2

0 −ω2
02 − 1

RgC1
−γ2


, (5.11)

where γ1 = 1/ (R1C1) and γ2 = 1/ (R2C2) represent the losses made by resistors. The

eigenfrequencies are found by solving the characteristic equation,

ω4−jω3 (γ1 − γ2)−ω2

(
ω2
01 + ω2

02 + γ1γ2 +
1

C1C2R2
g

)
+jω

(
γ1ω

2
02 + γ2ω

2
01

)
+ω2

01ω
2
02 = 0.

(5.12)

Here, eigenfrequencies ω and −ω∗ are both roots of the characteristic equation. In order to

have a stable circuit, eigenfrequencies should be purely real, but the characteristic equation in

Eq. (5.12) has some imaginary coefficients. Here, to have purely real eigenfrequencies in the

lossy circuit, the odd-power terms of the angular eigenfrequency in the characteristic equation

should vanish. Otherwise, a complex eigenfrequency is needed to satisfy the characteristic

equation. There is no condition to make both ω and ω3 coefficients equal to zero [68].

Hence, eigenfrequencies are always complex, leading to instabilities that cause oscillations in

the circuit.

By considering the same value for components as already used in the lossless case, the

evolution of eigenfrequencies is shown in Figs. 5.3(b) and (c). In these plots, loss on the

first resonator is changed, and loss on the second resonator is eliminated. Moreover, in

Figs. 5.3(d) and (e), we perturb the loss on the second resonator while the loss on the first

resonator is removed. When both losses are zero, the system has the same EPD frequency of

a lossless configuration, but perturbed eigenfrequencies are complexvalued for any amount

of losses. So, the lossy circuit oscillates at the frequency associated with the real part of the
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unstable eigenfrequency. Also, the eigenfrequency is extremely sensitive to either positive or

negative variations in the parallel resistances (square root behavior due to the perturbation).

A working option is based on preventing the circuit from reaching saturation by switching

off the circuit and operating on the circuit’s transient response, as was done in [78] for an

EPD based on a time modulated circuit.

5.4 EPD in PT-Symmetric Coupled Resonators and

Nonlinearity Effects

This section discusses the EPD in two mutually coupled resonators based on PT-symmetry.

This is the circuits studied so far by most of the researchers in the last decade [40, 6, 67, 3, 17].

We show the occurrence of an EPD by using the concept of the eigenvector coalescence

parameter. Moreover, we study the resonance condition when the total admittance of the

circuit is equal to zero (i.e., the double zero condition). The negative conductance in the

analyzed circuit could be achieved via cross-coupled or opamp-based circuits. The negative

conductance obtained from these transistor-based circuits has nonlinearity effects due to the

saturation. Thus, the nonlinearity in negative conductance would alter the circuit operation,

as discussed later on. We model the nonlinearity with a cubic i− v characteristic and show

the time-domain analysis and frequency responses by using time-domain simulations that

are the right tool when nonlinearity is present.

Moreover, we stress the EPD sensitivity characteristic and provide an example where the

sensing scheme involves the perturbation of a capacitance. It means that the PT-symmetry

is broken. We demonstrate the high sensitivity behavior of the eigenfrequencies for either

positive or negative changes in capacitance and show that the system becomes unstable.

In [6], the authors discussed sensitivity using two PT-symmetric coupled resonators. They
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demonstrated the sensitivity of the eigenfrequencies of the circuit due to the capacitance

perturbation while they kept the PT-symmetry configuration. Thus, they needed to tune

the other (nonsensing) side of the circuit to have balanced capacitance on both sides to

keep the PT-symmetry even after each sensing operation. It means that the exact value of

the changes in the sensing capacitance should be somehow known to tune the other side,

which is not possible in practical sensing scenarios. Also, they could only measure the

perturbation in the bifurcation direction (i.e., only the negative (or positive) capacitance

changes, based on the design). Both positive and negative capacitance perturbation sensing

ranges should be desirable, and the tuning process should be made easier since there is no

priori knowledge of the sensing capacitance variation. Hence, it is not possible to keep the

system PT-symmetric while sensing unless possible iterative schemes are researched that

guess the unknown capacitance value. Finally, we confirm the eigenfrequency’s sensitivity

and square root behavior to the perturbation by using the Puiseux fractional power series

expansion.

5.4.1 EPD in Mutual Coupled Resonators with PT-Symmetry

Two coupled LC tanks terminated on the left side with a gain given by the negative conduc-

tance −G1 and terminated on the right side with loss G2 are illustrated in Fig. 5.4(a). By

writing Kirchhoff’s current law, we obtain the two equations for the circuit

 Q̈1 = − Q1

LC1(1−k2)
+ kQ2

LC2(1−k2)
+ G1

C1
Q̇1

Q̈2 =
kQ1

LC1(1−k2)
− Q2

LC2(1−k2)
− G2

C2
Q̇2

, (5.13)

where Q1 is the capacitor charge on the gain side (left resonator), Q2 is the capacitor charge

on the loss side (right resonator), and k = M/L is the transformer coupling coefficient. In

addition, Q̇1, Q̈1, Q̇2, and Q̈2 are the first and the second time derivatives of the capacitors’
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charge. We define the state vector as Ψ ≡
[
Q1, Q2, Q̇1, Q̇2

]T
where superscript T denotes

the transpose operation. Therefore, the circuit evolution is described by

dΨ

dt
= MΨ, (5.14)

M =



0 0 1 0

0 0 0 1

−1
LC1(1−k2)

k
LC2(1−k2)

G1

C1
0

k
LC1(1−k2)

−1
LC2(1−k2)

0 −G2

C2


. (5.15)

Assuming signals in the form of Qn ∝ ejωt, C1 = C2 = C0 and G1 = G2 = G; we get the

eigenfrequencies of the circuit by solving the characteristic equation, det(M − jωI) = 0,

leading to

 ω1,3 = ±ω0

√
1

1−k2
− γ2

2
−
√
b

ω2,4 = ±ω0

√
1

1−k2
− γ2

2
+
√
b
, (5.16)

where

b = − 1

1− k2
+

(
γ2

2
− 1

1− k2

)2

. (5.17)

In the above equations, γ = G
√
L/C0 and ω0 = 1/

√
LC0. According to Eq. (5.17), the

required condition to obtain an EPD is b = 0, which leads to an EPD angular frequency of
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Figure 5.4: (a) Two mutually coupled LC tanks terminated with balanced gain on the left
and loss on the right side G1 = G2 = G; (b) real and (c) imaginary parts of evaluated
eigenfrequencies by perturbing G. In the illustrated plots, only eigenvalues with the positive
real parts are drawn. (d) The coalescence factor corresponding to calculated eigenvectors
which showing the degeneracy of two eigenvectors exactly at Ge(e) Root locus of zeros of
Yin(ω)−G = 0 showing the real and imaginary parts of resonance frequencies of the circuit
when perturbing both load resistance and gain G. At the EPD, the system’s total admittance
is Yin(ω)−Ge ∝ (ω − ωe)

2; hence it shows a double zero at ωe.

ωe =
ω0

4
√
1− k2

. (5.18)

In the presented example, we use L = 1µ H, C1 = C2 = 1 nF, where inductors are mutually

coupled via k = 0.2, and terminated with balanced gain and loss G1 = G2 = G. After solving

the eigenvalue problem, the evolution of real and imaginary parts of the eigenfrequencies are

shown in Figs. 5.4(b) and (c). The eigenfrequencies of the circuit coalesce at a specific

balanced gain/loss value of γ = γe = 0.205, where γe that leads to an EPD is derived as

γe =
1√
1− k

− 1√
1 + k

. (5.19)

To validate the results, we assume γ = 0, which means there is no gain or loss in the sys-
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tem and it results in two simple mutual LC tanks. The mentioned circuit has two pairs of

eigenfrequencies ω1,3 = ±ω0/
√
1 + k and ω2,4 = ±ω0/

√
1− k. If we remove the coupling,

i.e., k = 0, the eigenfrequencies are equal to the independent LC tank circuits ±ω0. For

the values, 0 < γ < γe, the system’s eigenfrequencies are purely real, and the system has

two fundamentals real eigenfrequencies. For the values, γe < γ, the two eigenfrequencies

are complex conjugate, and system solutions grow or damp depending on the sign of the

imaginary part of the angular eigenfrequencies; the system exhibits self (unstable) oscilla-

tions at the frequency associated with the real part of the eigenfrequency. The eigenvector

coalescence factor is defined to evaluate how the circuit’s operation point is close to an EPD

and measure the coalescence of two eigenvectors. It is defined as C.F. = | sin(θ)|, where

cos(θ) is

cos(θ) =

(
|⟨Ψ1,Ψ2⟩|
∥Ψ1∥ ∥Ψ2∥

)
. (5.20)

In the determined equation ⟨ , ⟩ is the inner product and ∥∥ denotes the eigenvector norm.

The coalescence factor for the presented example is shown in Fig. 5.4(d). As we observe in

this plot, two eigenvectors have coalesced at the corresponding value for EPD.

5.4.2 Root locus of zeros of admittance

In this section, the resonance condition based on the vanishing of the total admittance is

studied. We find the admittance Yin, shown in Fig. 5.4(a), and demonstrate its double zero

at the EPD. The resonance condition for this circuit is expressed as

Yin(ω)−G = 0. (5.21)
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Figure 5.5: (a) Two mutually coupled LC tanks terminated with nonlinear gain on the left
and linear loss resistance on the right side where always G1 = 1.001×G2. (b) Time domain
response. (c) Frequency response of the gain-side capacitor voltage at the EPD point. (d)
Real and (e) imaginary parts of the eigenfrequencies versus load capacitance perturbation
∆C2; solid line: result from det(M− jωI) = 0; green dashed line: Puiseux fractional power
series expansion terminated to its second order; black dots are obtained from the nonlinear
time domain simulation. (f) Oscillation frequency versus load capacitance perturbation for
three different mismatches between gain and loss δ = 0, 0.001, 0.01: the three different gains
provide the same saturated oscillation frequencies.vc (0

−) = 50 mV, and fm = 63.95 kHz.

Here, the circuit is PT-symmetric, assuming linear gain and loss with G1 = G2 = G. We

calculate the eigenfrequency by finding the zeros of the Yin(ω)−G, which results in the same

eigenfrequencies obtained from det(M − jωI) = 0. From the zeros trajectory, both ω and

−ω and ω and ω∗ are solutions of Eq. (5.21), and we only show the eigenfrequencies with

positive real value in Fig. 5.4(e).

5.4.3 Nonlinear Gain and Oscillator Characteristics

In this section, we discuss the oscillator characteristics and nonlinear gain effects in two

wireless coupled resonators, as in Fig. 5.5. The transient and frequency response of the

system are discussed when using a cubic (nonlinear) negative conductance model of the gain

element. The system’s parameters are the same as in the previous section where G1 = G2 =
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Ge = 6.49 mS, and the EPD angular frequency is ωe = 3.19×106rad/s. The relation between

voltage and current of the nonlinear negative conductance is [8]

i = −G1v + αv3, (5.22)

where −G1 is the small-signal negative conductance and α = G1/3 is a third-order non-

linearity that is related to the active device’s saturation. We now assume the small-signal

nonlinear gain G1 to be slightly bigger than the balanced loss, as G1 = 1.001G2 = 1.001Ge

to make the circuit slightly unstable (slightly breaking PT-symmetry). The timedomain re-

sponse and frequency response obtained from Keysight ADS time-domain circuit simulator

are shown in Figs. 5.5(b) and (c), where the circuit operates in the proximity of the EPD.

To show the sensitivity of this oscillator, we perturb the capacitor C2 on the lossy side by

0.5%. The oscillation frequency at each perturbation, shown with the black dots, is found by

taking the FFT of the time-domain voltage signal at the capacitor C1 (on the gain side) after

reaching saturation. The FFT is calculated by using 106 samples in the time window of 1000

periods after saturation, for each perturbed case. The system shows a distinct saturated

oscillation frequency at each perturbed capacitor value. The frequency shift from the case

without perturbation could be easily measured. For the sake of comparison with the linear

case, solid blue and red lines in Figs 5.5(d) and (e) show the eigenfrequency evolution versus

load capacitance perturbation as ∆C2 = (C2 − C2,e) /C2,e ( C2,e is the capacitor’s value at

EPD) by assuming linear gain for −G1. The green dashed lines show the Puiseux fractional

power series expansion truncated to its second order, which exhibits the square-root-like

sensitivity of the eigenvalues to a perturbation. Using both linear and nonlinear gain, the

resonance frequency behavior shows the square root variation with capacitance perturbation.

The difference in the frequency values between the nonlinear time-domain simulation and

theoretical eigenvalue solutions arises from the nonlinearity and the subsequent saturation

regime. The Puiseux series coefficients are calculated as, α1 = 5.35×106− j4.84×106 rad/s,
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Figure 5.6: (a) Time periodic capacitor connected to the inductor in parallel. The capacitor
varies between two values C1 and C2 with Tm period, as shown as an inset. (b) Real and
(c) imaginary parts of resonanse frequency evolution varying modulation frequency fm. (b)
The time domain signal revealing the second order EPD due to the capacitor’s voltage linear
growth, with initial condition of vc (0

−) = 50 mV, and fm = 63.95 kHz.

and α2 = −7.90× 106 − j1.62× 106 rad/s.

The use of nonlinear gain in the circuit and the saturation effects make the EPD sensing

regime robust. An error-correction method is discussed to enhance the robustness of sensing

using nonlinearity in [86]. Also, the nonlinearity works as a self-correcting process in two

coupled optical ring resonators in [144]. Nonlinearity in our proposed circuit helps maintain

the oscillation frequency at the EPD frequency, within a range of small mismatches between

gain and loss. The results obtained from the simulation shown in Fig. 5.5(f) demonstrate

that even with a 1% mismatch between gain and loss, the circuit oscillates at the same

frequency as the case with balanced loss and gain.

The red curve shows the oscillation frequency for the system with an exact match between

the (nonlinear) smallsignal gain and loss (i.e., G1 = G2 ), the dashed green is related to the

case with G1 = 1.001G2, and the black points denote the case with even larger small-signal

gain, G1 = 1.01G2. They all show the same results in terms of shifted oscillation frequency

versus C2 perturbation.
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5.5 EPD in a Time-Varying Single Resonator

We now discuss a completely different way to obtain an EPD in a single resonator containing

a time-varying element. It can be used as a highly sensitive circuit. As in the PT-symmetry

system with balanced gain and loss discussed in the previous section, the EPD’s highly

sensitive characteristics are also found in the time-varying single resonator, without the

need for a gain component. For instance, we show an EPD in a periodic time-varying

simple LC circuit in Fig. 5.6(a). We summarize the general formulation that can be applied

to electronic and optical circuits. By assuming the state vector Ψ(t) = [Ψ1(t) , Ψ2(t)]
T

where T is the transpose operator. The differential equation describing the state vector time

evolution is

dΨ(t)

dt
= M(t)Ψ(t), (5.23)

where M(t) is the 2 × 2 time-variant system matrix. Here, the system matrix changes

periodically in time, unlike the cases discussed in Sections 5.3 and 5.4. Thus, we do not have

only one system matrix, and we employ time-periodic analysis to achieve eigenvalues using

the transition matrix. For LTV systems with period Tm, the state vector evolution from the

time instant t to t+ Tm is given by

Ψ (t+ Tm) = Φ (t+ Tm, t)Ψ(t), (5.24)

where Φ (t2, t1) is the state transition matrix that transfers the state vector Ψ from t1 to t2

[145]. The eigenvalue problem is

(Φ− λI)Ψ(t) = 0, (5.25)
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where I is a two-by-two identity matrix and λ represents an eigenvalue. The eigenvalues are

found by solving the characteristic equation det(Φ− λI) = 0, leading to

 λp =
tr(Φ)

2
±
√(

tr(Φ)
2

)2
− det(Φ), p = 1, 2

Ψp(t) = [Φ12, λp − Φ11]
T ,

(5.26)

where Φ12 and Φ11 are elements of the two-by-two matrix Φ. For the illustrated circuit in

Fig. 5.6(a), the eigenvalues are λp = ej2πfpTm, with p = 1, 2, where fp are the two resonance

frequencies, with all fp±nfm harmonics ( n is the integer number with modulation frequency

fm = 1/Tm).

We now demonstrate the degeneracy in an LTV-LC tank shown in Fig. 5.6(a). The capac-

itance C(t) varies between two values C1 = 1.5C0 and C2 = 0.5C0 with period Tm, where

C0 = 20 nF.

Defining the state vector Ψ(t) = [q(t), i(t)]T with capacitor’s charge q(t) and the inductance

current i(t), we find the system matrix as

Mp =

 0 −1

1/ (L0Cp) 0

 , p = 1, 2. (5.27)

The resonant frequencies versus modulation frequency fm are shown in Figs. 5.6(b) and (c).

We restrict the plot to frequencies with positive real value, in the range of 0 < f/fm < 1,

which could be identified as the fundamental Brillouin Zone (BZ) in a time-varying system.

EPD happens at fm,e = 71.72 kHz and fm,e = 63.95 kHz, where the subscript e denotes

the corresponding value at the EPD. At an EPD, two eigenvectors and eigenvalues collide,

corresponding to a non-diagonalizable transition matrix Φ with a degenerate eigenvalue λe

which is related to the resonance frequency fe. In this configuration, two scenarios may
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happen to have the EPD (i.e., when the state transition matrix Φ is equivalent to a second-

order Jordan-Block matrix). First, when the degenerate eigenvalue is λe = −1, which

is related to a resonance frequency fe = fm/2, and due to the time periodicity, it also

happens at harmonics (fe = fm/2± nfm). Second, when λe = 1, which is related to fe = 0

and to the harmonics fe = ±nfm. Note that here we assume a lossless LC tank (besides

the energy injection due to time variation), and we consider the loss effects later on. For

modulation values such that 63.95kHz < fm < 71.72kHz, the system has two real resonance

frequencies, whereas for modulation frequency such that 71.72kHz < fm < 74.13 kHz, the

system experiences complex resonance frequencies, which cause instability and oscillation

(rising signal associated with the resonance frequency’s negative imaginary part). Here, we

tend to work on the stable part, which has two different real resonance frequencies. At the

EPD frequency associated with a modulation frequency of fm = 63.95 kHz, the capacitor’s

voltage grows linearly, considering the initial condition of vc (0
−) = 50 mV, which indicates

that two eigenfrequencies have coalesced.

5.5.1 Loss Effects on LTV Circuit

We shall consider and study loss effects. To validate the occurrence of the EPDs in temporally

LC resonator with losses, we assume an LC tank where the constant conductance G is

associated to the losses or gain is connected in parallel, as shown in Fig. 5.7(a). In this circuit,

the capacitance C changes between two-level capacitance ( C1 = 1.5C0 and C2 = 0.5C0

) with period Tm, as in the previous lossless case. We consider two scenarios where we

connect the system to a loss (G > 0) or gain (G < 0) element. Defining the state vector

Ψ(t) = [q(t), i(t)]T with capacitor’s charge q(t) and the inductance current i(t), we find the

system matrix as
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Figure 5.7: (a) Time periodic capacitor C(t) connected to the inductor L0 and associated
loss/gain G in parallel. The capacitor varies between two values C1 and C2 with Tm period,
as shown in the subset. (b) Real and (c) imaginary parts of resonance frequency evolution
varying modulation frequency fm where the LC tank is connected to the lossy conductance
G = 1 mS. (d) The time domain signal of the second order EPD which is indicated the
decaying signal associated to the positive imaginary part of eigenfrequencies. (e) Real and
(f) imaginary parts of resonance frequency evolution varying modulation frequency fm where
the LC tank is connected to the negative conductance G = −1 mS. (g) Capacitor’s voltage
obtained from Keysight ADS circuit simulator, which shows the rising signal. In all time
domain simulation, the capacitor has an initial condition of vc (0

−) = 50 mV.

Mp =

 −G/Cp −1

1/ (L0Cp) 0

 , p = 1, 2. (5.28)

Time-Varying Capacitor: lossy case (G > 0)

The eigenfrequencies’ dispersion diagram in Figs. 5.7(b) and (c) show real and imaginary

parts of the eigenfrequencies versus modulation frequency shown. The system parameters

are the same as those as in the previous section: L0 = 33 µH, C0 = 20 nF, G = 1mS. Figure

5.7(d) shows the capacitor’s voltage at the EPD associated with fm = 63.95 kHz due to
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the initial condition of vc (0
−) = 50 mV obtained from Keysight ADS time-domain circuit

simulator.

Figure 5.8: (a) Circuit scheme including LC tank connected to the time-varying loss. (b)
Real and (c) imaginary parts of eigenfrequency versus modulation frequency fm, where the
loss average is zero. (d) Time-domain signal capacitance’s voltage vc(t), which shows the
linear growth at EPD. (e) real and (f) imaginary parts of eigenfrequency versus modulation
frequency fm, where the loss average is positive ( G works as a lossy component in average).
(g) Time-domain signal capacitance voltage vc(t) is decaying related to the positive imaginary
part of eigenfrequency at EPD. (h) Real and (i) imaginary parts of eigenfrequency versus
modulation frequency fm, where the loss average is negative (G works as a gain component in
average). ( j ) Time-domain signal capacitance voltage v1(t) is rising related to the negative
imaginary part of eigenfrequency at EPD. In all time-domain simulation the capacitor has
an initial condition of vc (0

−) = 50 mV.

In this configuration, the LTV circuit with loss shows that the imaginary part of the eigen-

frequency at every EPD is positive. The state vector, which contains the capacitor’s voltage

and inductor current, is proportional to the ejωt. An eigenfrequency with a positive imag-
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inary part leads to a decaying signal (exponential decay in system state vector), as shown

for the case in Fig. 5.7(d).

Time-Varying Capacitor: Gain Case (G < 0)

Figs 5.7(e) and (f) show the real and imaginary parts of the system’s eigenfrequencies where

the system’s parameters are selected as L0 = 33 µH, C0 = 20 nF, G = −1 mS. The negative

conductance G here shows the gain which results in EPD frequencies with a negative imag-

inary part. Thus, the state vector is rising exponentially and making the system unstable.

Fig. 5.7(g) shows the capacitor’s voltage at an EPD associated to fm = 63.95 kHz due to

the initial condition of vc (0
−) = 50mV obtained from Keysight ADS circuit simulator. The

signal shows a rising behavior, which makes the system unstable and oscillating.

5.5.2 Time-Varying Conductance

In this section, we consider the time-varying loss/gain element with the time periodicity

of Tm in the LTV circuit in Fig. 5.8(a). We show the occurrence of EPDs. The parallel

conductance is set to G1 for half period, and to G2 for the other half. Generally, G1 and G2

could be positive and negative values acting as loss or gain in this scheme. By defining the

state vector Ψ(t) = [q(t), i(t)]T with capacitor’s charge q(t) and the inductance current i(t),

we find the system matrix as

Mp =

 −Gp/C0 −1

1/ (L0C0) 0

 , p = 1, 2. (5.29)

We have three scenarios where the time average of the conductance,
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Avg(G) = G1
Tm
2

+G2
Tm
2
, (5.30)

is positive (lossy), negative (gain), and zero. The average Avg(G) > 0 means that loss is

dominant, whereas Avg(G) < 0 means that gain is dominant, and when Avg(G) = 0 the

system has balanced gain and loss. The solution for the system’s state vector Ψ (contains

the solution of the charge on the capacitor and current on the inductor) is proportional to

the eigenfrequency as Ψ ∝ ejωt. The signal at an EPD, i.e., when the system experiences

the coalescence of the eigenvalues at a real ωe, voltages and currents grow linearly as tejωt.

This is due to the double pole in the Laplace transform of a signal of a system at the

EPD. Moreover, when the eigenfrequencies are complex, signals in the system (currents and

voltages) experience exponential growth or decay. In this section, the value of components

in the LC tank is set as L0 = 33 µH and C0 = 20 nF.

Time-Varying Conductance: Zero Average Avg(G) = 0

Figs. 5.8(b) and (c) show the complex dispersion diagram, eigenfrequencies versus frequency

modulation, with a zero time-average conductance. The conductance for half a period Tm/2

is G1 = 4 mS while for the other Tm/2 is G2 = −4 mS. The EPDs eigenfrequencies are

real-valued here, and the dispersion diagram looks the same as the dispersion diagram of the

lossless system. To validate it, we calculate the determinant of the transition matrix as

det(Φ) = e−(G1
Tm
2

+G2
Tm
2 )/(2C0) (5.31)

Thus, for zero time-average conductance (Avg(G) = 0) we have det(Φ) = 1, which leads

to λe = ±1. Thus, under the mentioned conditions, the system has a real-valued EPD
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frequency fe. Fig. 5.8(d) shows the time-domain signal obtained from Keysight ADS that

indicates the secondorder EPD behavior associated to fm = 56.2kHz, which exhibits a linear

growth of the capacitor’s voltage as vc ∝ t cos(ωt+ θ).

Time-Varying Conductance: Positive Average Avg(G) > 0

The real and imaginary parts of the eigenfrequencies for positive time average conductance

(Avg(G) > 0) are shown in Figs. 5.8(e) and (f). The system’s parameters are, G1 = 4mS and

G2 = −2 mS, hence the loss is dominant in the system. The EPDs are complex frequencies

with a positive imaginary part, which is associated with a damping signal in the circuit, as

exhibited in Figure 5.8(g), where modulation frequency is fm = 56.2 kHz.

Time-varying Conductance: Negative Average Avg(G) < 0

Figs. 5.8(h) and (i) show the real and imaginary parts of the eigenfrequencies for negative

time average conductance (Avg (G) < 0 ). The conductances areG1 = 2mS andG2 = −4mS,

hence the gain is dominant in the system. The EPDs frequencies have a negative imaginary

part corresponding to an exponential rise of the signal making the system unstable, as shown

in Fig. 5.8(j), where modulation frequency is fm = 56.2 kHz.

5.6 Conclusions

We considered three different circuit configurations supporting an EPD of order two: gyrator-

based, PT-symmetry based, and linear time-varying systems. All the configurations exhibit

ultra-sensitive responses to perturbations, though their operational regimes differ. Each

design has some advantages compared to the others. For example, in a gyrator-based circuit,
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the system has purely real perturbed eigenfrequencies when perturbing one component (e.g.,

a capacitor), while negative capacitance and inductance are needed to realize such a circuit,

which require active components. Small losses or gains in this circuit cause instability.

Though it seems to be a complication at first sight and may require working in the transient

regime before reaching saturation, instability offers the possibility to work in the unstable

oscillatory regime. An EPD is also present in two coupled resonators with balanced gain and

loss, i.e., satisfying PT symmetry. The presence of gain in one side of the circuit requires

active electronic components to provide a precise gain value. To achieve the sensitive feature

of the EPD, a component is varied in a standard sensing scheme (e.g., a capacitor), and

the perturbed resonant frequency is detected. However, the sensing scheme proposed in the

PT-symmetry regime required tuning the capacitance on the nonsensing part of the circuit

to keep the circuit under PT-symmetry while the sensing component is varied [6]. This was

done to keep the two shifted frequencies real-valued and avoid instabilities. (However, in a

sensing scheme, the value of the varied component is usually the one to be measured; hence

it is not known a priori). This complication is not needed in the circuit using the gyrator,

and it is also not needed in the circuit based on the single LTV resonator.

Compared to the conventional PT-symmetric circuit where people observed shifted resonance

frequencies [6, 3], here instead, we have shown that we can work in an oscillatory regime

generated by the instability and the nonlinear behavior of the circuit. In other words, we have

turned the instability due to broken PT-symmetry (due to a perturbation) to our advantage.

The oscillation frequency after reaching saturation is very sensitive to perturbations. Still, it

shows the square-root-like dependency with respect to perturbations and the possibility to

measure both signs of an element perturbation (this is not possible with the other schemes in

the linear regime discussed in this chapter). This nonlinear oscillator scheme is also robust

in terms of bringing the system near the EPD, independent of the amount of (nonlinear)

small gain used.
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Finally, EPDs are found in linear time-varying single resonator circuits where a time-varying

capacitor is connected to an inductor. There is no need for gain and lossy elements, though

the time modulation requires active components. The effect of additional loss and gain has

been discussed for this circuit. We have also shown that timevarying gain or loss connected

to a stationary LC tank is another method that leads to EPDs. The simple tuning procedure

is one important advantage of the LTV circuit compared to gyrator-based and PT-symmetric

circuits. In PT-symmetric and gyrator-based circuits, a tuning process is needed to obtain

an EPD, e.g., variable capacitors, gain, or resistors are deemed necessary. On the other

hand, in the LTV circuit, the EPD is found by simply changing the modulation frequency,

which is done easily in electronics. Note that to obtain the system’s resonance frequency,

we need a long enough time interval to measure the signal to derive its frequency response

with good accuracy. Thus, the rise/fall time of the signal is important. In this chapter,

we used the practical quantities as modulation frequency discussed in [78]. There are two

work regimes for the system to study the resonance frequencies evolution. First, the circuit

needs to be reset periodically, like the circuit in [68], and resonance frequencies are found

by looking at the transient response. Second, let the system saturate and then study the

system in an oscillatory regime. Note that the system must be designed properly to have

a rational rise/fall time in signals. At the same time, fast rising or damping signals cause

losing the frequency response resolution.

Acknowlegment

The text of Chapter 5 of this dissertation is a reprint of the material as it appears in Alireza

Nikzamir, Kasra Rouhi, Alexander Figotin, and Filippo Capolino. How to achieve excep-

tional points in coupled resonators using a gyrator or PT-symmetry, and in a time-modulated

single resonator: high sensitivity to perturbations. EPJ Applied Metamaterials, vol. 9, p.

142



14, 2022. The coauthors listed in this publication are Kasra Rouhi, Alexander Figotin, and

Filippo Capolino. Alexander Figotin and Filippo Capolino directed and supervised research

which forms the basis for the dissertation. This material is based upon work supported by

the National Science Foundation (NSF) awards ECCS-1711975 and by the Air Force Office

of Scientific Research Award No. FA9550-19-1-0103.

5.7 Appendix A: Puiseux Fractional Power Series Ex-

pansion

The sensitivity of a system due to the perturbation of a system’s component is detected by

measuring changes in the system’s observables, like the system’s resonance frequency. The

Puiseux fractional power series expansion helps us find the eigenvalues ωp related to the

perturbations when working at an EPD of order p. We consider a small perturbation ∆X of

a system parameter X as

∆X =
X −Xe

Xe

, (5.32)

where Xe is the parameters’ value at the EPD, and X is the parameter’s value after applying

perturbation.

Away from an EPD of order p, the system matrix M is diagonalizable, and there are p

independent eigenvectors. Whereas at an EPD, M is non-diagonalizable, and the system

has only one eigenvector and p− 1 generalized eigenvectors, and p repeated eigenvalues (i.e.,

eigenfrequencies). Therefore, the system matrix is similar to a matrix that contains a p× p

dimension Jordan block.
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For a system with the characteristic equation of det (M (∆X)− jωI) = 0, under the condition

∂ [det (M (∆X)− jωI)] /∂ω ̸= 0 at the EPD, the M matrix is made of a p× p Jordan block.

Thus, the perturbed eigenfrequencies could be expressed by the Puiseux fractional power

series expansion, including powers of ∆
1/p
X such as

ωp = ωe + α1ζ + α2(ζ)
2 + α3(ζ)

3 + . . . (5.33)

where ζ = exp(2πj/p)∆
1/p
X and the series is a kind of convergent Taylor series of power of

∆
1/p
X . Note that the eigenvalues follow the Puiseux fractional power series expansion at and

very near the EPD frequency is a way to validate the existence of an EPD (bifurcation of

the eigenvalues). Eq. (5.33) shows that the eigenfrequency shift from an EPD |ω (∆X)− ωe|

is proportional to ∆
1/p
X for small ∆X . For second order EPDs, a perturbation ∆X results

in the perturbed eigenvalues ωp (∆X) with p = 1, 2, and the Puiseux fractional power series

expansion of ωp (∆X) is given by [34, 89]

ωp (∆X) ≈ ωe + α1(−1)p
√

∆X + α2∆X . (5.34)

The first two coefficients are expressed

α1 =

(
−

∂H(∆X ,ω)
∂∆X

1
2!

∂2H(∆X ,ω)
∂ω2

) 1
2

(5.35)

α2 = −
α3
1

3!
∂3H(∆X ,ω)

∂ω3 + α1
∂2H(∆X ,ω)
∂ω∂∆X

α1

(
∂2H(∆X ,ω)

∂ω2

) , (5.36)

where H (∆X , ω) = det (M (∆X)− jωI). The coefficients are calculated at the EPD, i.e., at

∆X = 0 and ω = ωe.
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Chapter 6

Time Modulation to Manage and

Increase the Power Harvested from

External Vibrations

We investigate how a single resonator with a time-modulated component extracts power from

an external ambient source. The collected power is largely dependent on the black precise

modulation signal frequency choice. We focus on the power absorbed from external vibration

using a mechanical resonator and how time modulation of the damper can make a significant

difference in the amount of harvested power, leading to more than 10 times enhancement

compared to an analogous system without time modulation. We also find that a narrow band

pair of peak and dip in the spectrum of the absorbed power occurs because of the presence of

an exceptional point of degeneracy (EPD). In this narrow frequency range, the delay between

the damper modulating signal and the external vibrating signal largely affects the collected

power. The high frequency-selectivity of EPD-induced power management could potentially

be used in sensing and spectrometer applications.
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6.1 Motivation and State of the Art

Energy harvesting has attracted considerable interest in electrical [146, 147] and mechanical

[148, 149] systems. It offers a battery-less strategy by recovering energy from ambient sources

such as vibrations, wind, etc., and transform it into another form, such as electrical power.

Applications include micro-electromechanical systems (MEMS) vibration energy harvesters

[150, 151], low-power wireless sensors [152] and fluid energy harvesting [153]. In some of

these applications, only a small fraction of energy needs to be extracted to power isolated

devices. Therefore, collected power from a nearby ambient source can be used to power

the inside isolated circuits. A dynamic system has parametric excitation when the effect

of force appears as a coefficient of a variable in the governing equations of motion [154,

155]. The parametric excitation leads to a class of time-varying equations, whose coefficients

are explicit functions of time. Parametric excitation can enhance the maximum response

attainable in different kind of systems [156]. Different vibration-based energy harvesting

methods have been used recently [157, 158, 159, 160, 161, 162], though more work needs to be

done on utilizing parametric excitation in time-varying systems. Analogous principles could

be used to manage the absorption of vibration or filter out particular vibration frequencies

in mechanical systems [163].

Low vibration amplitudes cannot be efficiently collected, hence various approaches are de-

veloped to increase energy harvesting efficiency [164, 165]. Vibration energy harvesters have

been proposed with different nonlinear arrangements that increase their frequency range

and dynamic range, most notably using nonlinear springs and dampers [166, 167]. More-

over, semi-active strategies and nonlinear damping in the form of cubic damping [160, 161]

and nonlinear piezoelectric converters [168, 169] have been used to extend an energy har-

vester’s dynamic range. In addition, some have analyzed systems where mass changes over

time [170, 171, 172]. However, challenges remain about maximizing the amount of energy

harvested, and the ideas should be further explored.

146



Figure 6.1: Time-modulated mechanical system for kinetic energy harvesting. The external
vibrational displacement of the whole system is ys (t). Two examples of time modulation of
the chapter).

In this letter, a resonator with a linear time-periodic (LTP) damper is considered for harvest-

ing or managing energy from an outside source, focusing on a mechanical mass-spring-damper

resonator subject to external vibration [148, 173], as shown in Fig. 6.1. However, the phys-

ical principle here discussed is general and can be applied to other systems as shown in the

appendixes A and D. We demonstrate how parametric LTP modulation can boost motion

amplitude, enabling a more efficient flow from the energy source to the harvesting system.

By applying time variation to the system, power harvesting is improved (even 10 times)

in a specific frequency range compared to the unmodulated system. We observe extremely

narrow spectral features in the harvested energy spectrum and explain it by resorting to

the concept of exceptional points of degeneracy (EPD). Such degeneracy is a point in the

parameter space of a resonating system at which multiple eigenmodes coalesce in both their

eigenvalues and eigenvectors [31, 35, 38, 84]. The concept of EPD has been investigated in

circuits with loss and/or gain under parity-time symmetry [17, 3], and also in spatially [1, 2]

and temporally [4, 174, 78] periodic structures. Moreover, the degenerate eigenvalues of the

system are exceptionally sensitive to perturbations in system parameters [33] that can be

used to achieve high sensitivity in various sensing scenarios [3, 5, 6, 100, 68, 98].

The kinetic energy harvesting mechanical scheme discussed here is shown in Fig. 6.1. The
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Figure 6.2: Time-averaged power levels after reaching steady state for: (a) P0 delivered to
the damper c0; (b) Pm provided by the time-varying damper cm (t); and (c) Ps extracted
(harvested) from the external vibration, by varying the vibration frequency in a wide range
around f0 = 1Hz. Two time-modulated cases are considered here: (i) modulation frequency
fm = 2 Hz at the center of the modulation gap (blue), and (ii) modulation frequency fm =
fm,e = 1.984 Hz (green). For comparison, powers are also shown for the case without time
modulation (red). (d)-(f) Zoomed-in analysis for frequencies near the EPD frequency fe =
fm,e/2 = 0.992Hz and with time modulation at fm = fm,e = 1.984Hz. There is a remarkable
highly varying power level around fe. (g) Collected time-average power P0 equals the sum
of Pm and Ps.

system consists of a mass connected to a spring and a damper with an additional time-varying

portion. It is excited by external monochromatic vibration represented by the imposed

displacement ys (t), caused by an external force that drives the mechanical resonator. Here,

m is the mass, k is the spring stiffness constant, c (t) = c0+ cm (t) is the damping parameter

that includes a constant part c0 and a time-periodic one cm (t) of period Tm and x represents

the mass displacement. The electric counterpart circuit, the possible practical methods to

realize time-modulated dampers and the realistic application of a spring-mass-damper model

are discussed in Appendix A. The governing equation of the time-varying system is

mẍ+ c (t) (ẋ− ẏs) + k (x− ys) = 0. (6.1)
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The constant damping coefficient c0 = cp+ ct represents the energy losses within the system

due to parasitic loss mechanisms cp (e.g., viscous friction with air), and by the intentional

mechanism of damping ct, i.e., the mechanical energy extracted by the transduction mech-

anism [175, 176, 177]. Hence, part of the mobile mass’s kinetic energy is lost in mechanical

parasitic damping and some other is turned into electricity thanks to an energy converter

(e.g., magnet/coil, piezoelectric material, variable capacitor, etc.) [178, 179, 180]. Here, we

presume that the damping force is proportional to the velocity, which can be described as

an electromechanical transducer [181, Ch. 2]. However, our study is general in nature, and

this method can be applied to any system described by the differential equation shown in

Eq. (6.1). We define the relative mass displacement parameter z = x−ys, and the governing

dynamic equation is rewritten as

z̈ + 2ζ (t)ω0ż + ω2
0z = −ÿs, (6.2)

where ζ (t) = ζ0 + ζm (t) = c0/ (2mω0) + cm (t) / (2mω0) is the time-modulated damping

rate and ω0 =
√
k/m is the natural angular frequency of the unmodulated and lossless

system. Assuming a time harmonic dependence of the form z ∝ ejωt for the unmodu-

lated homogeneous system (cm = 0 and ys = 0), we obtain the complex eigenfrequencies

ω = ω0

(
±
√

1− ζ20 + jζ0

)
associated to damped oscillations. We define the state vector as

Ψ (t) ≡ [z, ż] T, where the superscript T denotes the transpose operation, leading to

dΨ (t) /dt = M (t)Ψ (t) +

 0

−ÿs

,

M (t) =

 0 1

−ω2
0 −2ζ (t)ω0

 ,

(6.3)
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where M (t) is the time-variant system matrix. We analyze the power transfer from an ex-

ternal vibration ys (t) = y0 cos (2πfst), where y0 is its amplitude and fs is its frequency, into

the LTP spring-mass-damper system using a time-domain numerical simulator (see Supple-

mentary Material S1). We determine the time-averaged power Ps delivered by the external

vibration, the time-averaged power Pm delivered by the time modulation, and the time-

averaged power P0 delivered to (or harvested by) the constant damper c0. Note that fm is

the modulation frequency of the time-varying damper. In realistic applications, particularly

those on a small scale, mechanical systems are very small, and ambient vibrations are gener-

ally low in amplitude (0.1–5m/s2) and frequency (< 100Hz) [179]. Because of the low energy

of some external sources in realistic applications, we investigate how we can maximize both

the power Ps absorbed from the external source and the power P0 harvested by the constant

damper by using time modulation.

Figure 6.3: The (a) real and (b) imaginary parts of eigenfrequencies ω + qωm, where q
is an integer, of the system by varying ωm. (c) Frequency spectrum of the relative mass
displacement z (t). The largest frequency spectral component of the displacement occurs at
the fundamental harmonic q = 0, i.e., at the EPD frequency fe = fm,e/2 = 0.992 Hz.

An example is shown in Fig. 6.2, where k = 4π2 N/m and m = 1 kg leading to f0 = 1 Hz,

and y0 = 1mm. We only consider for simplicity a two-level piece-wise constant time-periodic
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damping c (t), which is c0+cm in the time interval 0 ⩽ t < Tm/2 and c0−cm in Tm/2 ⩽ t < Tm.

We assume c0 = 0.1Ns/m and cm = 0.15Ns/m. We also study the unmodulated system with

constant damper c (t) = c0, where maximum energy can be extracted when the excitation

frequency fs matches the natural frequency of the system f0. In Fig. 6.2 we compare

the LTP system with the unmodulated system to show that time modulation has a strong

effect on the time-averaged powers Ps and P0. For the considered modulation frequency of

fm = 2Hz that is equal to 2f0, Ps and P0 are largely enhanced when fs is in the neighbor of

f0. The plot in Fig. 6.2(c) shows the maximum harvested power in the unmodulated system

is Ps = 19.7 mW, whereas the maximum power that the time modulated system absorbs

from the source is Ps = 198.4 mW(10 times higher).

The results in Figs. 6.2(a)-(c) show also another interesting feature, i.e., the very narrow

frequency range around fs = 0.992Hz (which is half of fm,e) where the power exhibits a sharp

maximum and a local minimum when fm = fm,e, where fm,e = 1.984 Hz is a modulation

frequency that leads to the EPD. This rapid power level variation is shown better in the

zoomed-in frequency region in Figs. 6.2(d)-(f). To understand the reasons for this very

sharp variations in the time averaged power values we look at the eigenvalues of the system

and their degeneracy.

We look at the eigenstates of the time-varying system without external vibration. The

evolution of the state vector in the LTP system with time periodicity Tm is given by

Ψ (t+ Tm) = Φ (t+ Tm, t)Ψ (t), where Φ (t+ Tm, t) = eM2Tm/2eM1Tm/2 is the state transi-

tion matrix, where M1 and M2 are the system matrices in the first and second time intervals

[182, Ch. 2]. We look for eigensolutions of the system that satisfy

Ψ (t+ Tm) = ejωTmΨ (t) , (6.4)

where ω (with all the harmonics ω+2πq/Tm, where q is an integer) is the complex eigenfre-
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quency. Therefore, the eigenvalue problem is

ΦΨ (t) = λΨ (t) , (6.5)

and the eigenvalues λn = ejωnTm , n = 1, 2, are obtained by solving the characteristic poly-

nomial equation det (Φ− λI) = 0. The eigensolutions Ψ (t) have Fourier harmonics with

frequencies ωn + qωm, where ωm = 2πfm is the modulation angular frequency [4]. When a

transition matrix made of real values elements describes the system, the characteristic poly-

nomial has real coefficients, so the eigenvalues are either real or complex conjugate pairs.

The transition matrix determinant is written as [182, Ch. 2]

det (Φ) = λ1λ2 = e[tr(M1Tm/2)+tr(M2Tm/2)], (6.6)

where tr is the trace of the matrix. The determinant can be either det (Φ) = e2Im(ω1)Tm ,

when eigenvalues are complex conjugate pair, or det (Φ) = ejsπe(Im(ω1)+Im(ω2))Tm , when λ1

and λ2 are both real and s is an integer. The two eigenvalues are

λ1,2 =
tr (Φ)

2
±

√(
tr (Φ)

2

)2

− det (Φ), (6.7)

and the two associated eigenvectors are

Ψ1 =

 φ12

λ1 − φ11

 , Ψ2 =

 φ12

λ2 − φ11

 , (6.8)

where φ11 and φ12 are elements of the matrix Φ. The two eigenvalues are degenerate (λ1 =

λ2 = tr (Φ) /2) when
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tr (Φ) = ±2
√

det (Φ). (6.9)

Figure 6.4: Time-averaged powers by varying the modulation frequency fm (blue curves), for
the case of fs = fm,e/2. (a) P0; (b) Pm; and (c) Ps. The red dashed line is the time-averaged
power level of the unmodulated system. (d) Collected time-average power P0 equals the sum
of Pm and Ps.

According to Eq. (6.8), degenerate eigenvalues result in degenerate eigenvectors. A transition

matrix at an EPD is similar to a Jordan block with two degenerate eigenvalues associated

with degenerate eigenvectors. As a matter of energy analysis, in a time-periodic system

energy can be transferred into or out of the system via the time-variation mechanism.

Figure 6.5: (a) Source sinusoidal signal with a period of Ts = 2Tm. (b) Piece-wise constant
time modulated damper with a period of Tm and (c) shifted by a delay τ . (d) Time-averaged
power Pm versus delay τ for three different scenarios.
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Figure 6.6: Time-averaged power levels, after reaching steady state, as in Fig. 6.4, but
assuming a time delay τ = 0.51Tm in the modulation of the damper, in the case of fs = fm,e/2.

The system’s eigenfrequency dispersion diagram is shown in Figs. 6.3(a) and (b). EPDs

happen at two modulated frequencies, fm,e = 1.984Hz and fm,e = 2.015Hz. The quality factor

of a resonating system is Q = Re (ω) / (2Im (ω)), that is higher for smaller Im (ω). In general,

a higher quality factor implies a higher power harvested by the system. A modulation gap

in the dispersion diagram of eigenfrequencies happens when the two eigenfrequencies have

two non-vanishing imaginary parts, i.e., between two closeby EPDs. When the modulation

frequency is selected in the middle of the modulation gap, i.e., fm = 2Hz, one eigenfrequency

has the smaller Im (ω), corresponding to a better quality factor compared to the two neighbor

EPDs at slightly higher and lower frequencies. Thus, we expect the largest improvement in

harvested power in the middle of the modulation gap. Also, by selecting fm,e = 1.984Hz the

system experiences harsh changes around fs = fm,e/2 = 0.992Hz due to the degeneracy of the

eigenfrequencies. The spectrum of the relative displacement z (t) when the source-free system

is modulated at fm = fm,e = 1.984Hz and it is excited by an initial condition (see Appendix

A) is illustrated in Fig. 6.3(c). The spectrum peak is observed at fe = fm,e/2 = 0.992 Hz,

that is same as the one obtained from solving the eigenvalue problem shown in Figs. 6.3(a)

and (b).

When fm = fm,e = 1.984 Hz, the mechanical system operates at the EPD. The frequency

spectrum in Fig. 6.3(c) shows that the first harmonic at f = fe = fm,e/2 = 0.992 Hz,

154



carries the maximum power. After setting fs = fe = fm,e/2 = 0.992 Hz, Fig. 6.4 shows

the powers by varying the modulation frequency around its EPD value fm,e = 1.984 Hz. In

this plot, time-modulated case is in blue curve, whereas the red dashed-line reminds the

power values of the system without time-modulation. The numerical results show that the

system operating close to EPD (cyan point) harvests more power from the external source

(Ps = 20.9 mW) compared to the system without time-modulation (Ps = 10.5 mW). Thus,

time modulation leads to harvest more power from external vibration, with an improvement

of 99%. In addition, the time-modulated element delivers the power of Pm = 80.3 mW to

the system and the constant part of the damper absorbs P0 = Ps + Pm = 101.2 mW from

the system, at the EPD frequency.

The eigenfrequencies near the EPD are very sensitive to a system’s variation, like a small

change in the modulation frequency, as discussed in Appendix C. When such a small

relative perturbation δm = (fm − fm,e) /fm,e is applied, the resulting two distinct eigen-

frequencies f1,2 (δm) are estimated using the Puiseux series power expansion f1,2 (δm) ≈

fe∓ j (fm/2π)α1

√
δm [78], where α1 is the first-order expansion coefficient. The square root

function demonstrates that the eigenfrequencies are highly sensitive to modulation frequency

perturbations around the EPD, as shown in Fig. 6.3. This is reflected by the power levels

that change dramatically when a small change in fm is applied, as shown in Fig. 6.4. To

harvest power, the modulation frequency must be chosen precisely, very close to the EPD

frequency. It could be chosen exactly either at the EPD or between the two EPD frequencies

as explained in the following.

To control the power provided by the time modulated portion of the circuit, Fig. 6.5(d)

shows Pm delivered by cm (t) versus delay τ . Three combinations of modulation and source

frequencies are considered. For the two cases shown with blue and yellow curves in Fig.

6.5(d), we assume that the frequency of the source is fixed to fs = fm/2, hence, the period of

the modulation signal is half of the source’s one when operating at the EPD (Tm,e = Ts/2).
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In the third case (orange line), we assume that fm = fm,e, and source frequency at fs = 1Hz.

It is clear that the variation of the delay τ has a strong effect on Pm when the modulation

frequency is selected as fm = 2fs (both blue and yellow curves). However, in the case shown

by the orange curve, which is a slight modification from the other two cases, Pm is more or

less constant and the delay does not have much effect on it. When fm = fm,e, and fs = fm/2

(blue curve), and at a specific delay τ = 0.51Tm, the power delivered by the time-varying

damper reaches the minimum and it is as small as Pm = 0.04 mW. By assuming the latter

particular condition with fs = fm,e/2 and τ = 0.51Tm, the numerical results in Fig. 6.6 show

the source, modulation and constant damper powers by varying the modulation frequency

(compared to the results in Fig. 6.4, where τ = 0). Blue curves represent the power in the

system with time modulation (note that the modulated power is near zero at the EPD),

while red curves illustrate the power levels for the case without time modulation, as was

done in Fig. 6.4. At the EPD modulation frequency fm = fm,e = 1.984 Hz (cyan point),

the power extracted from the source vibration is Ps = 19.38mW and the power delivered to

the constant part of the damper is P0 = 19.42 mW. Thus, time modulation improves power

harvesting by 85% compared to the case without time modulation. Note also that in this

case the power delivered by the modulation is very small (P0 ≈ Ps). However, the calculated

powers around the EPD vary dramatically when changing the modulation frequency. That

is one of the most peculiar properties associated with an EPD, as already depicted in Figs.

6.4, and 6.6. The reason is that the eigenstates at the EPD are extremely sensitive to

any perturbation, as shown in Fig. 6.3, which causes large variation when interacting with

forced excitation. The system could possibly harvest even more power with a precise choice

of modulation frequency close to EPD and proper time delay. However, even without a

precise modulation frequency choice, the system harvests more power on average, over fs or

fm variation.

As a conclusion, we have shown that a mechanical resonator with time modulation harvests

much higher power (even ten times higher) from ambient vibration than its counterpart
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without time modulation. Moreover, using the concept of second-order EPDs, we also ex-

plain the existence of a very sharp spectral peak at some modulation frequencies. The power

levels vary rapidly with only a very slight variation in a parameter (like modulation fre-

quency). Indeed, using the Puiseux fractional series expansion, we have demonstrated that

the degenerated system’s eigenfrequency is highly sensitive to perturbations in the modula-

tion frequency. It would be possible to use this effect for sensing applications or very precise

spectrometers. The physics associated with an EPD in an LTP mechanical system is vital for

getting a deeper insight into different ways to improve the narrow frequency features of the

power transfer mechanism. We used a time-modulated damping factor that could be realized

in a variety of ways including magneto-rheological or electro-rheological dampers where the

damping factor can be tuned by changing fields. Specifically, the improvement in harvest-

ing power is advantageous for applications with low energy requirements and low ambient

source amplitude where direct access to the device is not possible and battery recharging or

replacement is not feasible such as wireless sensors, bio-implantable devices, wireless body

area networks, etc. Nevertheless, the capabilities of this method are not limited to low power

applications and LTP energy harvesters can be beneficial for energy harvesting in building

structures, roadways, railways, bridges, wind turbines, etc [183, 11].
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6.2 Appendix A: Dual Circuit with Time-Modulated

Conductance

We show the analogous (dual) system made of a LC resonator and a linear time-periodic

(LTP) conductance connected to the external source in series to the capacitor as shown in

Fig. 6.7. In order to calculate the power in the dual LTP system, we consider piece-wise

constant time-periodic conductance G (t), i.e., G (t) = G0 + Gm during the time interval

0 ≤ t < Tm/2, and G (t) = G0 − Gm during the time interval Tm/2 ≤ t < Tm. Analogously

to the mechanical LTP system, we define the system state vector as Ψ (t) = [v (t) , v̇ (t)]T,

where v (t) is the voltage on the inductor and v̇ (t) is its time derivative. In general, G (t)

can be either lossy or gain (positive or negative respectively). Kirchhoff’s circuit laws apply

to time-varying circuits as follows:

Figure 6.7: The dual time-varying circuit where an inductance is connected in parallel to
a time-varying conductance, with an external source vs (t) in series to the capacitor. The
conductance is designed to have a two-level piece-wise constant time-periodic conductance,
where G (t) = G0 +Gm during the time interval 0 ≤ t < Tm/2, and G (t) = G0 −Gm during
the time interval Tm/2 ≤ t < Tm.
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G (t) v̇ +
v

L
+ C (v̈ + v̈s) = 0. (6.10)

The circuit equation is rewritten as

v̈ + 2α (t) v̇ + ω2
0v = −v̈s. (6.11)

where α (t) = α0 + αm (t) = G0/ (2C) +Gm (t) / (2C) is the time-modulated damping factor

and ω0 = 1/
√
LC is the natural frequency of the unmodulated and lossless circuit. Assuming

time harmonic dependence of the form v ∝ ejωt for the unmodulated homogeneous circuit,

we obtain the eigenfrequencies as ω = jα(1 ±
√
1− ω2

0/α
2). By writing the differential

equation in the eigenvalue problem format, the time evolution of the state vector Ψ (t) is

given by

dΨ (t) /dt = Mc (t)Ψ (t) +

 0

−v̈s

 ,

Mc (t) =

 0 1

−ω2
0 −2α (t)

 ,

(6.12)

whereMc (t) is the equivalent circuit matrix. The differential equation and the circuit matrix

are dual to the time-varying mechanical system whose time-varying damper is connected to

the spring and mass. The duality transformation is k → 1/L, m → C and c (t) → G (t)

and both systems have an external excitation ÿ(t) → v̈s(t) as summarized in Table 6.1

[184]. Also, we show the duality of the characteristic equations in mechanical systems and

their dual version in electric circuits in Table 6.2. By applying the conversion between

force and current (F ←→ i) and velocity and voltage (ż ←→ v), Newton’s equations and
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instantaneous mechanical power relate to the electric dual equations. We analyze the dual

LTP circuit by using the Keysight Advanced Design System (ADS) time-domain simulator

to calculate the power. We excite the circuit with a sinusoidal source at a frequency of fs

and the amplitude of 10 mV. Also, the capacitor has a 10 mV as an initial condition for

the case where no external source excites the system. We numerically calculate the power

using a built-in power block in the simulator and then report the time-averaged power based

on 1000 time periods after the time domain signal saturates (i.e., for the time window from

3500 s to 4500 s).

Table 6.1: Component values in the mechanical system and their dual values in the dual
electrical circuit.

Mechanical system Dual electrical circuit Duality

k = 4π2 N/m L = 0.025 H k → 1/L

m = 1 kg C = 1 F m→ C

c0 = 0.1 Ns/m G0 = 0.1 S c0 → G0

cm = 0.15 Ns/m Gm = 0.15 S cm → Gm

c (t) =

{
c0 + cm, 0 ≤ t < Tm/2
c0 − cm, Tm/2 ≤ t < Tm

G (t) =

{
G0 +Gm, 0 ≤ t < Tm/2
G0 −Gm, Tm/2 ≤ t < Tm

c (t)→ G (t)

6.3 Appendix B: Vibration Conversion

Table 6.2: Dual equations in the mechanical system and dual electrical circuit, where F is
the force and i is the current.

Mechanical system Dual electrical circuit

Spring F = kz i = (1/L)
∫
v dt

′
Inductor

Mass F = mz̈ i = Cv̇ Capacitor
Damper F = cż i = Gv Conductance

Mechanical Power p = F ż p = iv Electrical Power
Duality
F ←→ i
ż ←→ v

As already mentioned in the paper, c0 = cp + ct is responsible for the energy losses within

the system due to parasitic loss mechanisms cp (e.g., viscous friction with air), and by the
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intentional mechanism of damping ct, i.e., the mechanical energy extracted by the transduc-

tion mechanism. This model is based on the idea that converting energy from an oscillating

mass to electricity (whatever the mechanism is) can be modeled as a linear damper in a

mass-spring system. This model is quite accurate for certain types of electromechanical con-

verters, such as those analyzed by Williams and Yates [185]. For other types of converter,

such as electrostatic and piezoelectric, the model may be modified. However, the conversion

will always result in a loss of mechanical kinetic energy, which can be referred to as damping

[186]. Despite the fact that the current damper model does not accurately model all kinds

converter types, the present analysis can be extended to electrostatic and piezoelectric sys-

tems [186]. The power extracted from the mechanical system via ct is due to electrically

induced damping and it is constitutes the whole time-averaged power P0 if the parasitic

damping vanishes. The instantaneous power in the constant part of the damper c0, i.e., the

combination of parasitic loss mechanisms cp and transduction mechanism ct, can be calcu-

lated as a product of induced force c0ż and velocity ż. Thus, the absorbed instantaneous

power in the constant part of the damper is expressed by

p0(t) = c0ż
2. (6.13)

The total time-averaged power P0 is calculated by averaging the time domain expression. In

a monochromatic regime, assuming no modulation, the total time-averaged power dissipated

within the damper, i.e., the power extracted via the transduction mechanism and the power

lost by parasitic damping mechanisms, is given by [176, 181, 187]

P0 =
mζ0ω0ω

2
s

(
ωs

ω0

)3
y20(

2ζ0
ωs

ω0

)2
+

(
1−

(
ωs

ω0

)2)2 , (6.14)

161



where y0 is the magnitude of the source vibration, ζ0 = ζt + ζp = c0/ (2mω0) is the constant

damping ratio. Maximum power dissipation within the generator occurs when the device

is operated at ωs = ω0, and in this case the total time-averaged power dissipated in the

constant part of the damper is given by

P0 =
mω3

0y
2
0

4ζ0
. (6.15)

6.4 Appendix C: Sensitivity to Perturbation

Sensitivity of a system’s observable to a particular parameter is a measure of how much a per-

turbation to that parameter affects the observable quantity of the system. The eigenvalues

of the system at exceptional points of degeneracy (EPDs) are extremely sensitive to param-

eter changes, which is a significant feature. Applying a perturbation to a system parameter

such as the modulation frequency δm = (fm − fm,e) /fm,e, leads to a perturbed transition

matrix Φ (δm) and perturbed eigenvalues λp (δm), with p = 1, 2. Therefore, the degenerate

resonance frequency occurring at the EPD fe, splits into two distinct resonance frequencies

fp (δm), due to a small perturbation δm. We can calculate the perturbed eigenvalues near

the EPD by using the convergent Puiseux fractional power series expansion, with coefficients

calculated using the explicit recursive formulas in [89]. In the presented mechanical system

with a second-order EPD, we utilize a first-order approximation of the perturbed eigenvalues

as

λp (δm) ≈ λe + (−1)p α1

√
δm, (6.16)

where λe is the eigenvalue at EPD and the first order coefficient is expressed by
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α1 =

(
− ∂H (δm, λ) /∂δm

1
2!
∂2H (δm, λ) /∂λ2

) 1
2

∣∣∣∣∣
δm=0, λ=λe

, (6.17)

where H (δm, λ) = det (Φ (δm)− λI) and I is the 2 × 2 identity matrix. The perturbed

resonance frequencies are approximately calculated as

fp (δm) ≈ fe ± j
fm
2π

(−1)p α1

√
δm. (6.18)

This formula proves that the time-modulated system supporting the EPD is very sensitive

to variations in the modulation frequency fm. Figures 2, 4 and 6 of the paper demonstrate

that the harvested power is very sensitive to variations in the system’s parameters when

operating at or near an EPD.

Figure 6.8: (a) The cantilever beam with tip mass, (b) multilayer PZT subjected to transverse
external vibration excited at the base and (c) equivalent lumped spring-mass-damper system
[11, Ch. 1].

6.5 Appendix D: Realistic Applications

In general, a mechanical model based on a spring–mass system gives a meaningful description

of vibration behavior and can be used to model energy harvesting devices and inertial-based

generators. For example, the cantilever can be represented by its equivalent model, which

is composed of a mass, a spring and a damper. All these components are enclosed in a

casing and mechanically connected to the vibration source. The most common examples of
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cantilever design are cantilevered balconies, walkways, and overhangs, as well as some parts

of bridge designs [188, Ch. 4], [189, Ch. 11]. In addition, our method can be extended to

piezomagnetoelastic cantilevers [178, 190], a basic bimorph piezoelectric cantilever [188, Ch.

4], and a piezoelectric pendulum [191] in a realistic setup.

Fig. 6.8(a) shows a diagram of a cantilever beam with piezoelectric plates bonded on a

substrate and a proof mass at the end; Fig. 6.8(b) shows multilayer piezoelectric plates

and Fig. 6.8(c) provides the equivalent lumped spring-mass with external excitation. For

piezoelectric energy harvesting devices, cantilever structures with tip masses are the most

commonly used configurations. The vibration source is shown with an arrow at the base

of the contact point. The configuration shown in Fig. 6.8(c) applies to both the energy

harvesting mechanisms illustrated in Fig. 6.8(a) and (b).

6.6 Appendix E: Realization of Time-Modulated

Damper

The time varying mechanisms can be implemented in realistic designs using tun-

able/controllable devices. For example, a controllable damper can be realized via variable

orifice dampers with an external actuator modifying the orifice diameter, controllable fluid

dampers and adjustable tuned liquid dampers [192, 193, 194, 160]. The variable orifice

dampers have shown relatively low response speeds. However, in recent years, magneto-

rheological (MR) dampers where the viscosity of the magnetic fluid is controlled via tuning

of the field have received considerable attention due to their ability to rapidly alter their

properties in response to the applied magnetic field [195]. In this configuration, variable

damping control can be achieved by varying a small electric current to the MR dampers

[196, 197, 198].
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An alternative method of achieving semi-active damping is the use of electro-rheological (ER)

fluids whose viscosity can be controlled by applying an electric field. This technology has been

applied to the control of semi-active suspensions and flexible structures [199, 200, 201]. More

investigation into the tunability methods and review of the recent works in this area can be

found in [195].We can therefore realize the time-modulated damper needed for our proposed

structure by varying the damping coefficient periodically via the described approaches.

6.7 Appendix F: Scale Parameter in the Mechanical

System

In this paper, we adopted practical values for system parameters. However, according to the

governing equation of the time-varying system in Eq. (1), parameters can be scaled by a

factor S as shown in Table (6.3).

Table 6.3: Parameters in the mechanical system scalable by factor S.

Parameter Scale

Mass m→ Sm
Spring stiffness k → Sk

Damper damping c→ Sc

As a result of applying this transformation, we obtain the same governing equation with the

same eigenvalues.
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6.8 Appendix G: Noise in the Energy Harvesting Sys-

tems

Ambient noise may strongly influence the energy harvesters performance, therefore it is im-

portant to study energy harvesting systems to improve the performance. For developing

micropower generators applicable to noise environments, it has become important to harvest

energy utilizing different mechanisms. Even though many configurations have been devel-

oped to harvest ambient vibration energy, crucial questions remain about how to optimize

performance under different noise levels [202]. The efficiency of harvesting energy from noise

has also been explored by some researchers [203, 204, 205, 206, 207, 208, 209, 210, 211].

Borowiec et al. [212] investigated the effect of noise on energy harvester performance.

In summary, noise in an energy harvesting system has been investigated from different per-

spectives. First, noise can affect the main resonator and the relevant circuit. Nevertheless,

the resonator is isolated from the environment, which minimizes the noise effects. Secondly,

noise in the ambient source can affect energy harvesting system performance. For instance,

Liu et al. proposed a stochastic averaging method to study the response characteristics of

an energy harvesting system in the case of colored noise [207]. Also, Su et al. analyzed

the effect of Gaussian white noise intensity on the system [213]. Moreover, the influence of

ambient sinusoidal excitation and additive noise on the energy harvesting performance of

piecewise bistable energy harvesters were investigated in [214]. Considering the importance

of this topic, many other studies have studied noise’s effect on ambient sources in detail

[215, 216, 217, 218, 219, 220, 221, 222]. Furthermore, noise may be a source of energy, and

an energy harvester could be designed in such a way that it extracts the maximum power

from the statistical external noise [223, 224, 225, 226]. Finally, noise may be affected by

EPDs. Some papers have discussed the relation between noise and EPD and provided meth-

ods to analyze it [227, 82, 228, 229, 85, 230, 231, 232, 233, 58]. However, this subject is

166



beyond the scope of this paper and requires a separate in-depth study.
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Chapter 7

Exceptional Point Degeneracy as

Desirable Operation Point of

Oscillator Array with Discrete

Nonlinear Gain and Radiating

Elements

In this chapter, We show that an oscillator array prefers to operate at an exceptional point

of degeneracy (EPD) occurring in a waveguide periodically loaded with discrete nonlinear

gain and radiating elements. The concept of the EPD is employed to conceptualize an

exceptional synchronization regime, which leads to enhanced radiating power efficiency. The

system maintains a steady-state degenerate mode of oscillation at a frequency of 3 GHz, even

when the small-signal nonlinear gain values are nonuniform along the array. We designed

the system using small-signal gain to work at the EPD of zero phase shift in consecutive unit

cells. Contrarily to the original expectation of zero phase shift, after reaching saturation, the
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time domain signal in consecutive unit cells displays a π phase shift. Hence, we demonstrate

that the saturated system tends to oscillate at a distinct EPD, associated to a π phase shift

between consecutive cells, than the one at which the system was originally designed using

small-signal gain. This new EPD at which the nonlinear system is landing is associated to

higher radiating power efficiency with respect to power provided by nonlinear gains. Finally,

we demonstrate that the oscillation frequency is independent of the length of the array,

contrarily to what happens ordinary oscillating systems based on one-dimensional cavity

resonances. These findings may have a high impact on high-power radiating arrays with

distributed active elements.

7.1 Motivation and State of the Art

Exceptional points of degeneracy (EPDs) in waveguides have become increasingly popular

in the fields of electromagnetics, photonics, and radio frequency (RF) circuits [75, 36, 76,

234, 235, 2]. EPD is the condition at which two or more eigenmodes coalesce in their

eigenvalues and eigenvectors [31, 33, 32, 35]. The term EP has been in use since [33]; as was

also emphasized in [66], the key physics feature is the ”degeneracy”, and that is the reason

for the ”D” in EPD. Exceptional points have been the subject of study in different areas,

including absorbers [236], reflectionless applications [237], sensing applications [99, 238], and

low thresholds lasers [15]. At the EPD, the system matrix or transfer matrix representing

the mode evolution in the system is similar to a matrix containing a non-trivial Jordan block

[39, 239]. The order of the degeneracy is the number of coalescing eigenmodes at the EPD.

Close to an EPD of order 2 in a waveguide, the dispersion relation between frequency and

wavenumber is (ω − ωe) ∝ (k − ke)2, where the subscript e denotes EPD. When the system

refractive index obeys n(x) = n∗(−x), where x is a coordinate in the system orthogonal

to the propagation direction z, and ∗ is the complex conjugate, the system is parity time
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(PT) symmetric [40, 240, 44]. PT symmetry is a condition that enables the occurrence

of EPDs with a degenerate real eigenvalue [36, 235, 241, 76], though it is not a necessary

condition to get EPDs [30]. Moreover, the degeneracy of eigenvalues discussed in this chapter

is in the wavenumber k, rather than the degeneracy of PT-symmetric structure that is

often in the eigenfrequency domain ω as in [3, 71, 6]. EPDs in periodic structures can

be classified into two categories: (i) those obtained without gain and loss [39, 242, 243, 2]

(note that in some of these papers, the author did not use the term EP), and (ii) those

obtained with gain and/or loss [44, 36, 76, 75, 9, 30, 232]. The occurrence of an EPD

enables special and unique physical features that can be used in different applications from

RF to optics. The EPD concept has been proposed to provide notable enhancements in the

performance of oscillators and amplifiers: there are two main categories of these applications,

classified according to the presence or absence of loss and gain. The first category involves

EPD in waveguides without loss and gain, such as the degenerate band edge (DBE) or

stationary inflection point (SIP) laser concepts [15] that exhibit a new threshold scaling law of

quality factor and absorbance [244, 245], and in microstrip waveguides for arrayed antennas

and providing a stable oscillation [12]. The second category involves waveguides where

EPDs are obtained thanks to the presence of loss and gain (PT symmetry is an example)

that leads to the concepts of arrays of radiators with high-output power, backward-wave

oscillators with distributed power extraction, etc [9, 30, 246, 128] (these examples do not

involve PT symmetry; one involves Glide-Time symmetry). In particular, accurate particle-

in-cell simulations have shown that this kind of EPD in a waveguide with distributed gain

and power extraction may enhance the performance of high-power electron beam devices

[246]. In this chapter, we focus on the second category of EPDs, i.e., EPDs that exist in

waveguides with loss and gain, aiming at applications where a large array radiates a highly

coherent beam with high power.

Oscillators play a vital role in microwave, THz, and optics applications. At RF, there is

interest in making oscillators that offer stable oscillation frequency [25, 247], high-quality
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Figure 7.1: (a) Schematic of a periodically loaded waveguide represented by its equiva-
lent transmission line (TL). Each unit cell is made of two TL segments with characteristic
impedance Z0 and same electrical lengths θ, loaded with a lossy shunt element Yr represent-
ing a radiator (e.g., an antenna) and a shunt nonlinear gain element Yg. (b) Time-domain
voltage signals v4(t) and v5(t) are evaluated at the two middle unit cells’ active elements, for
an array with N = 8. Radiation is given by YrZ0 = 2.5 and the nonlinear small-signal gain
is gZ0 = 0.5. (c) Frequency spectrum of the voltage v4(t) in dB scale shows the oscillation
at the fundamental frequency fosc = 3 GHz.

factor [26, 248], loading independency [12], and high output power [27]. The EPD concept

with gain and loss has been proposed to enhance the performance of distributed oscillators in

various ways [128, 30, 246]. A method to design distributed oscillators with EPD is through

the utilization of waveguide loaded with periodic nonlinear gain and loss [128]. In this

approach, losses represent the arrayed radiating elements, e.g., antennas. This chapter does

not focus on providing a theoretical analysis of the nonlinear modes and bifurcation dynamics

[119] of the system, but rather shows its dynamics as a result of numerical experiments fully

accounting for nonlinearities.

This chapter presents a waveguide system modeled as a transmission line (TL), periodically

loaded with discrete nonlinear gain and radiating elements as shown in Fig. 7.1(a). Rather
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than the general EPD conditions discussed already in [128], here we explore the resonances

of the finite-length array with gain and radiating elements, and the nonlinear features of the

same structure, including the saturation from a nonuniform distribution of nonlinear gain

elements. The analysis of nonuniform distribution of gain is extremely important in practice

because it is impossible to guarantee that the active elements have the same value of gain

along a waveguide, at both RF and optical frequencies. Variation in nonlinear gains over the

arrayed structure, due to device tolerances, may alter the oscillator operation and affect the

power extraction from radiating elements. Therefore, we show that when utilizing the EPD

concept in waveguide oscillators, even nonuniform distributions of nonlinear gain elements

along the array lead to a stable oscillation regime, and this stationary regime leads to a

uniform saturated gain distribution. To confirm the full degeneracy of the eigenmodes, we

employ the ”coalescence parameter” tool to demonstrate the coalescence of the eigenvectors.

Also, we show that the system maintains a stable oscillation frequency even when varying

the length of the structure (number of unit cells), and also when the nonlinear small-signal

gains or radiation losses are not uniform along the array, and when loads on the two sides

are varied. Finally, we discuss the degeneracy condition in the presence of an additional

small reactance in parallel to the gain element, and identify the EPD using the coalescence

parameter tool. We provide an example where a small capacitance is added to each gain

element, and we demonstrate that the system exhibits stable oscillation at a different EPD.

This approach shows that we can create a tunable oscillator by adding a small tunable

capacitor in each unit cell. Additionally, we confirm that the system tends to oscillate at a

state where the nonlinear saturated gain is diminished, bring the system to another EPD.
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Figure 7.2: (a) Saturated gain calculated at each unit cell, found by Eq. 7.2, for two arrays
with different nonlinear small-signal gain. Radiation losses are YrZ0 = 2.5 in both cases.
For two cases of arbitrary uniform nonlinear small-signal gain values gZ0 = 1 (orange line)
and gZ0 = 0.2 (yellow line), the real and imaginary part of the saturated gain will end up
at Ygsat,nZ0 ≈ 0 in each unit cell.

7.2 Oscillatory Regime with Nonlinear Gain

The array oscillator consists of a waveguide, modeled as a TL with characteristic impedance

Z0 = 50 Ω, with a periodic distribution of N lumped nonlinear gain elements, described

by shunt admittances Yg,n with n = 1, 2, ..., N (not necessarily equal to each other), and

N + 1 radiating elements described by shunt admittances Yr (all equal to each other), both

arranged periodically with period d as shown in Fig. 7.1(a). This assumption reflects

realistic scenarios where it is easy to make radiators that are very similar to each other,

hence exhibiting the same admittance (e.g., dielectric resonator antennas, patch antennas,

slot antennas, etc.) whereas it is almost impossible to ensure that the gain of each element

is the same when using active components like transistors or even in the case of optically or

electrically pumped lasers. Impinging signals of a certain strength may have an effect on the

oscillation operation, but we did not consider their effects on the array in this chapter.

For brevity, we only consider the case where radiating and gain lumped elements are sepa-

rated by d/2. Therefore, each TL segment has electric length θ = kwd/2, where kw = 2πf/vw
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is the wave propagation constant in the uniform TL segments where f is the frequency, and

the phase velocity vw is assumed to be dispersionless for simplicity. The array structure is

symmetric, i.e., we terminate the left and right ends with loads ZL = Yr/2, and on the right

side there is an extra shunt radiating element Yr. Thus, the structure with N unit cells has

N nonlinear gain elements, N + 1 radiating elements, and left and right load terminations.

Each gain element is described by a negative small-signal conductance Yg,n = −gn and sat-

uration effect, where the current in and voltage vn, with n = 1, 2, ..., N , are related by the

i− v cubic model

in = −gnvn + αnv
3
n, (7.1)

and αn = gn/3 (unit of S/V2) describes the saturation level. This cubic model provides a

negative conductance Yg,n = −gn for small voltage in the range between −1 V < vn < 1 V.

At RF, the active component with the small-signal negative conductance can be realized in

various ways, including a Gunn diode [249], a cross-coupled transistor pair [250], an op-amp

[251], and other possible approaches. Due to the 3rd-order nonlinearity, each active element

saturates to an admittance value Ygsat,n that provides a gain −Re(Ygsat,n) to the system,

which differs from the small-signal gain gn. We implicitly assume the time convention ejωt.

The saturated gain admittance (magnitude and phase) is found numerically by looking at

the frequency components of the voltage and current, selecting the oscillation frequency fosc,

by using the fast Fourier Transform (FFT) as


|Ygsat,n| =

|FFT(in)|fosc
|FFT(vn)|fosc

∠Ygsat,n = (∠FFT (in)− ∠FFT (vn))|fosc

, (7.2)

where | | represents the magnitude, and ∠ represents the phase. Numerical simulations
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are carried out in the time domain using the Keysight Advanced Design System (ADS)

circuit simulator. We first assume that the uniform (i.e., gn = g, constant along the array)

normalized nonlinear small-signal gain and radiating element are gZ0 = 0.5 and YrZ0 = 2.5,

respectively. Figure. 7.1(b) shows the time domain oscillatory signals v4 and v5 in the middle

of the array. We observe that the time domain signal at the two consecutive unit cells has

a π phase shift. Figure 7.1(c) shows the frequency spectrum of v4 with the fundamental

frequency of oscillation of 3 GHz, calculated by using the built-in fast Fourier transform

(FFT) in the Keysight ADS simulator of the saturated signal in the time window from 2 µs

to 12 µs, with 106 points. We observe the presence of higher harmonics of the oscillating

voltage in this structure because of the nonlinearity in the gain. Simulation results show that

the fundamental frequency carries the highest power in the array, and the next harmonic (9

GHz) is 9.7 dB smaller than the fundamental one.

To understand the observed oscillatory regime, we consider two other uniform cases with

initial small-signal gain values of gZ0 = 1 and gZ0 = 0.2, and we calculate the cells’ saturated

gain using Eq. (7.2) after reaching saturation. Importantly, we observe that in both cases,

after reaching saturation, the system still oscillates at f = 3GHz, as observed in the previous

case with gZ0 = 0.5. Furthermore, we observe that the time domain voltages on the gain

elements in consecutive unit cells still have a π phase shift, as in the previous case with

gZ0 = 0.5. For the cases of gZ0 = 1 and gZ0 = 0.2, Figs. 7.2(a) and (b) show the real and

imaginary parts of the saturated gain −Ygsat,n in each unit cell, which is mainly real positive.

The real part −Re(Ygsat,n) of the saturated gain at steady state regime are smaller than g,

in both cases. At this stage, it seems that the system tends to work at the point that has a

saturated gain such that −Re(Ygsat,n) << (1/Z0). In the following, we analyze the modes of

the structure to determine the characteristics of this specific point.
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7.3 Formulation of a waveguide periodically loaded

with discrete linear gain
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Figure 7.3: (a) Schematic of a periodic waveguide represented in terms of an equivalent
TL with characteristic impedance Z0 = 50 Ω, loaded periodically with a lumped loss Yr
and linear gain Yg admittances. We assume YrZ0 = 2.5 and θ = π/2 at 3 GHz. (b) The
vanishing of the coalescence parameter shows two EPDs calculated from Eq. 7.6, for varying
small-linear gain g. The two EPs are at kd = 0 (for gZ0 = 1.6) and kd = π (for gZ0 = 0).
Dispersion relation of the real and imaginary parts of the complex-valued wavenumber k
versus frequency for (c) gZ0 = 1.6 and (d) gZ0 = 0. In the inset, the dispersion diagram
is fit with the quadratic equation (f − fe) = ±η(k − ke)2 denoted by the black dashed line,
with η ≈ 7.153× 104 m2/s. (e) A case without supporting EPD (gZ0 = 0.8).

Second order EPDs can occur in the waveguide under study. We find the system’s eigenmodes

by using the transfer matrix approach as in [9, 128, 252]. We define the state-vector Ψ(z) =

[V (z), I(z)]T with voltage V (z) and current I(z) along the waveguide, and T is the transpose
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action. The state vector in the periodic structure with a period of d changes as

log10│det(𝐌)│

𝑔𝑍0 = 0

(a)

𝑔𝑍0 = 1.6
(b)

log10│det(𝐌)│

-2

0

2

-2

1

4

Figure 7.4: The vanishing of the determinant provides the complex resonances of the finite-
length array in the complex s = jω plane, with a zoomed-in version around the resonances.
We consider two cases of gain, both with losses YrZ0 = 2.5. They pertain to the two EPDs
in Fig. 7.3: (a) gZ0 = 0 and (b) gZ0 = 1.6. Instability occurs when poles have Re(s) > 0.

Ψ(z + d) = TUΨ(z), (7.3)

where TU is the 2× 2 transfer matrix relative to a unit cell denoted by a dashed line in Fig.

7.1(a). It is built using the sub blocks relative to shunt gain Tgain, shunt loss Tloss, and two

lossless transmission lines with electric length θ = kwd/2, TTL. Multiplying each segment’s

transfer matrix yields the unit-cell’s transfer matrix
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TU = TgainTTL(θ)TlossTTL(θ). (7.4)

The eigenmodes supported by the waveguide system are found by solving the eigenvalue

problem

(TU − λI)Ψ(z) = 0, (7.5)

in which I is the identity matrix of order two [128]. Eigenvalues are in the form of λi = e−jkid,

with i = 1, 2, and ki is the Floquet–Bloch modal wavenumber in the periodic waveguide.

The eigenvalues are obtained by calculating the roots of the characteristic equation det(TU−

λI) = 0 that is

λ2 +
[
− 2 cos(2θ) + YgYrZ

2
0 sin

2(θ)

−jZ0Yr(1 + Yg/Yr) sin(2θ)
]
λ+ 1 = 0.

(7.6)

The characteristic equation is a second-order polynomial that results in k2 = −k1. In the Eq.

7.6, the λ’s coefficient equal to ±2 is a sufficient and necessary condition to have a second

order degeneracy of the eigenvalues at λe, leading to the two EPD conditions

−2 cos(2θ) + YgYrZ
2
0 sin

2(θ) = ±2

jZ0Yr(1 + Yg/Yr) sin(2θ) = 0,
. (7.7)

where +2 corresponds to an EPD at kd = π and the −2 corresponds to an EPD at kd = 0.

The degeneracy conditions are discussed in [128] with more details. Here, we just provide a

brief summary of the conditions to obtain the EPD for the special case with θ = π/2 at 3

GHz where the phase velocity to unit-cell period ratio is vw/d= 6× 109 s−1. There are three

possible degeneracy conditions with real Yg = −g: (i) no linear gain or loss (Yr = 0 or g = 0);
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Figure 7.5: Saturated gain admittance −Ygsat,n calculated at each unit cell (blue curve), for
an array with N = 8 unit cells. The radiating elements have conductance YrZ0 = 2.5. We
consider two cases: (a) all unit cells have the same small-signal gain gZ0 = 1.6; and (b)
each unit cell has a different small-signal gain gnZ0 = γn1.6, with factors γn equal to 85%,
90%, 110%, 105%, 82%, 89%, 95%, 101%, respectively, of the EPD small-signal gain. The
saturated gain −Ygsat,n (blue) converged to a much smaller value than the initial small-signal
gain, and tends to vanish for longer arrays. For infinite arrays it converges to Ygsat,nZ0 = 0
that is associated to an EPD at 3 GHz with kd = π, shown with a dashed red line.

(ii) Symmetric linear gain and loss (YrZ0 = gZ0 = 2) results in an EPD at kd = π; (iii)

Asymmetric linear gain and loss where the EPD at kd = 0 happens when gZ0 = 4/(YrZ0)

and the EPD at kd = π happens when g = 0. In this chapter, we focus on the EPD condition

(iii), i.e., the asymmetric linear gain and loss case, and analyze the nonlinear effects. To

confirm the coalescence of the eigenvectors in our system, we use the concept of coalescence

parameter C (also called hyperdistance) [2]. The coalescence parameter is a mechanism to

measure the separation between the eigenvectors and how close they are to their degeneracy.

The coalescence parameter vanishes when the eigenvectors collide. Thus, the Hermitian

angle ϕ between the eigenvectors Ψ1 and Ψ2 is defined as [90, 93].

C = |sin (ϕ)| , cos (ϕ) =
|⟨Ψ1,Ψ2⟩|
∥Ψ1∥ ∥Ψ2∥

. (7.8)

The cos (ϕ) is found by using the inner product of the two eigenvectors ⟨Ψ1, Ψ2⟩ =
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oscillation frequency (orange) versus the total number of unit cells N .(b) Radiated power
Pr delivered to the periodic elements with conductance Yr. The total power Pg is delivered
by the nonlinear gain elements Ygsat,n. The efficiency is Pr/Pg. The array has N = 8 unit
cells and Z0 = 50 Ω. The small-signal is gZ0 = 1.6, and the radiation conductances have
YrZ0 = 2.5. (c) Delivered power to the radiating elements Pr, to the loads on the left and
right PL, and delivered by the nonlinear gain elements Pg, versus load variation ZL. We also
show the efficiency Pr/Pg and the oscillation frequency fosc.

∑2
q=1 ψ1,qψ

∗
2,q, absolute value | | and norm of a complex vector ∥Ψ∥ =

√
⟨Ψ,Ψ⟩. When

the sin (ϕ) = 0 two eigenvector coalesce at the eigenvectors Ψe defining the EPD corre-

sponding to the eigenvalue λe. Different combinations of the loss Yr and gain g lead to EPDs

at various frequencies. Here, we choose the parameters to find an EPD that occurs at 3

GHz. Figure. 7.3 (b) shows the coalescence parameter for different normalized gain values

with a fixed loss YrZ0 = 2.5, showing two degeneracies of the eigenvectors at kd = π (when

gZ0 = 0) and kd = 0 (when gZ0 = 1.6). Figure 7.3(c) shows the dispersion relation of

complex-valued wavenumber versus frequency for the case with YrZ0 = 2.5 and gZ0 = 1.6,

where the EPD happens at f = 3 GHz at kd = 0. The dispersion is fitted by the quadratic

curve (f − fe) ∝ η(k− ke)2, where fe is the frequency at which the two modes coalesce, and

ke is the wavenumber at the degeneracy point (black dashed line). The flatness coefficient η

(m/s2) shows the flatness of the dispersion in proximity of the degeneracy and it is related

to ∂2f/∂k2. A lower value of η means a flatter dispersion, and by engineering the structure,

the desired parameters could be achieved. In the studied case we have η ≈ 2.06× 105 m2/s.

Note that Figs. 7.3(b) and (d) exhibit another EPD at f = 3 GHz and kd = π. The EPD
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is found for loss and gain at YrZ0 = 2.5 and gZ0 = 0, respectively. The dispersion is fitted

by the quadratic formula (f − fe) = ±η(k − ke)
2 with η ≈ 7.153 × 104 m2/s, denoted by

the black dashed line. As a reference, we also show in Fig. 7.3(e) a dispersion relation for

a case without EPD with gain gZ0 = 0.8 and loss YrZ0 = 2.5. We see that the eigenvalues

are crossing but we do not have a degeneracy and the relation (f − fe) ∝ η(k − ke)2 is not

satisfied. The results shown in Fig. 7.3 are numerically calculated with MATLAB.

To predict the self-oscillation of the system, we look at the poles of the finite-length system

(N = 8) by imposing boundary conditions (i.e., the loading) at the two array terminations.

We first define the two-state vectors at the left and right terminations, Ψl = [Vl, Il]
T and

Ψr = [Vr, Ir]
T, respectively. Assuming the loading on two ends ZL = 1/Yr and applying the

two boundary conditions, leads to

Ψr = TN
UΨl,

Vl + IlZL = 0,

Vl − IlZL = 0,

→M

 Ψr

Ψl

 = 0. (7.9)

The three equations are combined in a linear system with the 4×4 system matrix of M. The

resonances are found by solving |det(M)| = 0 for s = jω, assuming a uniform YrZ0 = 2.5 for

the two cases supporting EPD, at gZ0 = 0 and gZ0 = 1.6. Figure 7.4 shows the log10|det(M)|

to demonstrate the resonances in the s = jω complex plane. The system with no gain (g = 0)

has all the poles such that Re(s) < 0. The case with gain (gZ0 = 1.6) shows that the poles

are such that Re(s) > 0, i.e., they are all unstable. The finite-length array is stable at the

EPD with gZ0 = 0; however, it becomes unstable with a relatively tiny nonlinear small-signal

gain and oscillates close to the EPD frequency with gZ0 = 0, as demonstrated in Fig. 7.6 in

the next section that focuses on the array oscillatory regime.
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7.4 Oscillator Operating at Second Order EPD

We now consider the waveguide with EPD at kd = 0 at 3 GHz, by selecting small-signal gain

gZ0 = 1.6 and radiation loss YrZ0 = 2.5, while each segment has the same electric length

as previously, with θ = π/2 at 3 GHz. Then, we set the number of unit cells to be N = 8,

and when using nonlinear gain as in Eq. (7.1) and we observe that the system oscillates

at fosc = 3 GHz. Since the system was designed at the EPD with kd = 0 (based on the

small-signal gain value), one would expect the signal of each unit cell to have the same phase

of oscillation. But, in reality, we observe that contiguous unit cells have a π phase difference.

In other words, under the small-signal condition, the system should operate at the EPD with

kd = 0, but we observe that after reaching saturation it operates at another point.

To gain physical insight, we calculate the saturated gain Ygsat,n on each unit cell as shown

in Fig. 7.5 (a). For example, the saturated gain of the 4th active element of the array was

found to be −Ygsat,4Z0 = 0.003, which is very far away from the starting small-signal one

(gnZ0 = 1.6). The other saturated gains Ygsat,n follow an analogous behavior, as shown in

Fig. 7.5 (a). We then look at the color map in Fig. 7.3(b) and observe that there is another

point where the coalescence parameter C vanishes, at gZ0 = 0, yielding a different EPD

condition. From Fig. 7.3(d), we also observe that the phase shift associated to this EPD has

kd = π, which is what we are observing in the saturated regime, even if the system started

from the other EPD condition associated with kd = 0. Further investigation is needed

to study the stability of these EPDs by looking at the Lyapunov exponents and nonlinear

dynamics, as discussed in Refs. [121, 120, 105].

In summary, results from an array with a finite number N of elements indicate that the

system tends to work at the point where the real and imaginary parts of the saturated

gain is close to zero (as verified next). From the dispersion diagram of the complex-valued

wavenumber k versus frequency, we have verified that the saturation point is at a gain value
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that corresponds to another EPD condition with kd = π, which explains the observed π phase

shift in the time-domain waveform. Numerical investigations show that the nonlinearity

in the gain elements and their saturation raise an interesting point regarding the circuit’s

behavior; the system reaches a point where the oscillation frequency is insensitive to gain

variations. A deeper theoretical investigation should be carried out in the future.

As further confirmation of these interesting dynamic properties, we also investigate the

case where the nonlinear small-signal gain in each unit cell is nonuniform, i.e., varies as

gnZ0 = γn1.6 from the EPD value gnZ0 = 1.6. For the case shown in Fig. 7.5 (b), small-

signal gain varies with an arbitrary value −15% < γn < 15%. Specifically for the mentioned

arbitrary case, nonlinear active elements with small-signal gains are set on each unit cell

with γn as 85%, 90%, 110%, 105%, 82%, 89%, 95%, 101%, respectively. After the system

reaches saturation, the time domain waveforms show that the system tends again to work

at the point where the saturated gain in each unit cell tends to be uniform and such that

−Ygsat,nZ0 << 1. The saturated gain values in Fig. 7.5 (b) are very close to those in Fig. 7.5

(a). Thus, random variations in small-signal gain in each unit cell do not affect the system’s

saturation regime at the EPD. Moreover, even the implementation of actual radiators in the

array might have an imperfection, therefore we have analyzed a deviation from the uniform

array assuming that the actual radiators are ζnYrZ0, where YrZ0 = 2.5. For a given arbitrary

value −5% < ζn < 5%, we consider the particular example with ζn as 95%, 98%, 102%, 101%,

96%, 102%, 99%, 97%, when n = 1, .., 8. After conducting time domain simulation with ADS

with fixed small-signal gain gZ0 = 1.6, we tracked the oscillation frequency on each unit cell,

and the array still oscillates at 3 GHz.

We have performed time domain calculations on arrays with various lengths N and observed

how the length affects the saturation regime. We considered nonlinear active elements with

small-signal gain of gZ0 = 2. Figure 7.6 (a), shows the saturated gain in the middle of the

array −Ygsat,n in the middle of the array (where n is either (N +1)/2 or N/2 for odd or even
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N , respectively) for different array lengths N (blue line), and the corresponding oscillation

frequency after reaching the saturated regime (orange line). As N increases, the saturated

gain has a monotonic decrease, as shown in the inset of Fig. 7.6 (a), indicating that the

saturated system seems to converge to the EPD at kd = π that occurs at 3 GHz. Indeed, in

the saturation regime, the array exhibits stable oscillations at fosc = 3GHz. The oscillation

frequency is almost stable at the EPD frequency by only a 0.003% deviation (∼100 KHz)

when changing the structure length from N = 3 to N = 13.

We then investigate the efficiency of the system in terms of radiating power with respect to

the power arising from the gain elements for the case of an array with N = 8 gain elements.

In the saturated regime, we calculated the power Pr radiated by the radiating elements,

and the one delivered by the nonlinear gain elements Pg. The efficiency of the system is

defined as the ratio Pr/Pg evaluated in the saturated regime. Simulations are performed for

different values of uniform nonlinear small-signal gains, ranging from gZ0 ≈ 0 to gZ0 = 1.6,

as shown in Fig. 7.6(b). These two values represent the two small-signal gains that are

associated to the two EPDs in Fig. 7.3(b). The results reveal that when the system starts

from a small-signal gain close to zero, after reaching saturation it operates with maximum

efficiency. The efficiency decreases when the system starts from a larger value of small-signal

gain; the efficiency is low even in the case when the system starts from the EPD associated

with gZ0 = 1.6 and kd = 0. Overall, the oscillating array system offers stable frequency

of oscillation for all small-signal gain values, and high efficiency in radiating power for the

lower end of small-signal gain values.

Additionally, we investigate the impact of the two load impedances ZL on the saturation

regime, displayed in Fig. 7.6(c). Time-domain simulations have been performed for ZL

ranging from 0.1 Ω to 1 kΩ, and then the power in the saturated regime has been evaluated.

We still assume N = 8 nonlinear gain elements with gZ0 = 1.6 and radiating elements with

YrZ0 = 2.5. Figure 7.6(c) shows the power Pr radiated by the arrayed radiating elements
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(dashed green), the power PL delivered to the two load terminations (dashed red), and the

power delivered by the nonlinear gain elements in saturation (solid blue). Additionally, the

figure presents the efficiency of the structure defined as Pr/Pg (solid black), and the oscilla-

tion frequency (solid orange). These outcomes demonstrate that remarkably the oscillation

frequency at fosc = 3GHz remains almost constant, i.e., almost equal to the EPD one, with

a negligible shift of only 0.006% (∼200 KHz) when varying ZL from 0.1 Ω to 1 kΩ. The

stability of the oscillation frequency over a wide range of variations of the load resistance

and also of the array length (number of unit cells) shows the robustness of the proposed

array oscillator whose saturated regime always converges to an EPD state.

7.5 Tunability

The effect of the reactive part in the active element components Yg is analyzed here. Such

reactance can be present because of parasitic effects (e.g., in the solid state device or in its

packaging, because of the way they are mounted, etc.) or because it can be added for tuning

purposes. Therefore, even for small signals, we assume that the uniform linear gain elements

Yg are not a purely real negative conductance and we consider the effect of an additional

inductive/capacitive susceptance as Yg = −g + jb. The EPD condition corresponding to

kd = π (i.e, the λ coefficient in Eq. (7.6) is equal to +2) is discussed in the following.

Accounting for the reactive part b, the EPD condition leads to these two new equations by

setting both the imaginary and real parts equal to zero:
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Figure 7.7: (a) The vanishing of the coalescence parameter shows different values for re-
actance satisfies the EPD condition. The EPs happen in different θ for different reactive
susceptance b. (b) The frequency spectrum of the nonlinear gain voltage v4(t), which shows
the oscillation frequency shifts when we added a small reactance to all nonlinear gain through
the structure at fosc = 2.91 GHz

bYr sin
2(θ) + Yr(1− g/Yr) sin(2θ) = 0

−Yrgsin2(θ)− b sin(2θ)− 4 cos2(θ) = 0

(7.10)

Therefore, by setting g = 0 and b = −2 cos θ/ sin θ, the degeneracy condition at kd = π is
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satisfied. Hence, we can still find an EPD if the active reactance value is b = −2 cos θ/ sin θ,

which implies that θ ̸= π/2 anymore, hence the EPD frequency is not at 3 GHz anymore.

This analysis also clarifies why the results of Sec. 7.4, based on assuming that θ = π/2 at 3

GHz, implied that the imaginary part of the saturated nonlinear gain approached zero.

Figure 7.7(a) shows the vanishing of the coalescence parameter C by varying x and

θ = kwd/2, where kw = 2πf/vw, assuming Re(Yg) = −g = 0. Since the vanishing of the

coalescence parameter indicates the occurrence of an EPD, the results illustrate how EPDs

occur at frequencies f = θvw/(πd) that depend on b. The EPD frequency decreases/increases

for larger capacitive/inductive b. For instance, we assumed that the uniform nonlinear small-

signal gain admittance Yg = −g+ jb comprises a capacitive reactive susceptance b = j2πfC

(C = 0.1 pF) equal to bZ0 = 0.091 at 2.91 GHZ.

We then perform the nonlinear time-domain simulation for an array of N = 8 gain elements,

assuming a small capacitor of 0.1pF in parallel to the nonlinear small-signal gain conductance

g in each unit cell as depicted in Fig. 7.7(b). Time domain results obtained by the Keysight

ADS simulator show that after saturation the oscillation frequency is fosc = 2.91 GHz,

corresponding to the EPD point denoted by the cross symbol in Fig. 7.7(a). Analogously to

what has been demonstrated in the last section, here we start from a given value of small-

signal gain, and after reaching saturation the admittance is Ygsat,nZ0 ≈ 0+ jb. For example,

assuming the nonlinear small-signal gain conductance of gZ0 = 0.3, the saturation gain on 4th

unit cell calculated at the oscillation frequency fosc = 2.91GHz is Ygsat,4Z0 = −0.009+j0.093

where the reactive part mostly comes from the added capacitor. Thus, the numerical result

confirms that the system once again after starting from a given small-signal admittance value

(including a reactance) converges to the limiting value associated to the EPD at kd = π where

the saturated admittance is Ygsat,n = 0 + jb. In summary, an additional reactive part of the

nonlinear gain can be adjusted to achieve tunability of the frequency of the stable oscillation.
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7.6 Conclusions

We have investigated the effect of nonlinear active elements in a waveguide with a periodic

array of radiating elements and discrete gain elements that supports EPDs. Importantly, by

using a nonlinear gain for each active element in a finite-length array, we have demonstrated

that for arbitrary choices of gain values, the array reaches a stable oscillation regime operat-

ing at a specific EPD at kd = π, independently of the number of array elements. Our results

showed that even a 15% arbitrary variation in small-signal gain in each of the nonlinear

elements does not alter the overall performance and the saturated gain is uniform and inde-

pendent of the initial choice of the small-signal gain because the saturated gain is associated

to an EPD. In other words, we have demonstrated the concept that the saturated system

tends to operate at the exceptionally degenerate eigenmode. However, the initial choice of

nonlinear small-signal gain affects the radiation power efficiency. We have also demonstrated

that not all EPD are desirable points of operation, indeed in one representative example the

initial choice of small-signal gain was an EPD but the system migrated to another EPD after

reaching saturation. Further studies are needed to provide a more comprehensive analysis

of nonlinear dynamics of systems with EPDs.

The proposed strategy to conceive coherent arrays of oscillators based on EPD operation

provides a stable oscillation frequency (even when there is an unbalanced nonlinear gain

across the array). Furthermore, the oscillation frequency does not change when varying the

array length and the impedance loading at the two array ends. Numerical simulation results

show that the array dynamics collapses onto a regime based on the EPD with kd = π, even

when the gain elements are nonuniform along the array. Moreover, we have shown also

the EPD condition in the presence of reactance in the active elements and justify the EPD

occurrence by using the vanishing of the coalescence parameter. Our analysis revealed that

the EPD occurs at a frequency that depends on the shunt capacitive or inductive reactance

values. Nonlinear time-domain simulation has shown that a tunable EPD oscillator with a

188



stable oscillation frequency is conceived by adding small shunt capacitances to all the gain

elements.

This proposed EPD oscillating array scheme may have diverse applications, including ra-

diating arrays of active integrated antennas, and distributed high-power oscillators. The

fundamental principles analyzed in this chapter are valid for a synchronized array of os-

cillators, from radio frequency to optics. The demonstrated concept is applicable also to

high-power lasers with distributed power extraction (like in a vertically emitting laser). The

proposed strategy is general, and it focuses on demonstrating possible advantages of EPD-

based distributed oscillators in the robustness of oscillation, coherence of radiation with small

phase noise, and high power in large apertures of radiators.
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Chapter 8

Array oscillator in coupled

waveguides with nonlinear gain and

radiation resistances saturating at

exceptional point

A periodically loaded waveguide composed of periodic discrete nonlinear gain and radiating

elements supports a stable oscillation regime related to the presence of an exceptional point

of degeneracy (EPD). After reaching saturation, the EPD in the system establishes the oscil-

lation frequency. We demonstrate a synchronization regime at a stable oscillation frequency,

resulting in uniform saturated gain across the array and uniform radiating power. Unlike con-

ventional one-dimensional cavity resonances, the oscillation frequency is independent of the

array length. Our investigations further show that when small-signal gain is non-uniformly

distributed across the array, the saturated gain results in having a uniform distribution at

a gain value that generates an EPD. Experimental validation using the measured board

confirmed that the system saturates at an EPD, with a measured spectrum exhibiting very
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low phase noise. This low noise allows for operation at a clean oscillation frequency. Addi-

tionally, the measured uniform power across the array corresponds to the simulation results.

The proposed scheme can pave the way for a new generation of high-power radiating arrays

with distributed active elements.

8.1 Motivation and State of the Art

Exceptional points of degeneracy (EPD) in a system are singular points in a parameter

space where some eigenstates experience a ”full” degeneracy, i.e., when their eigenvectors

and eigenvalues experience degeneracy [31, 32, 33, 34, 35]. We stress that we deal with an

exceptional ”degeneracy” as noted in Ref. [66], and that is the reason we have added the ”D”

in EPD. In the waveguide implementation studied in this paper, the eigenvalues correspond

to the modal wavenumbers, and the eigenvectors represent the associated polarization states,

here in terms of voltages and currents, that coalesce at an EPD. In general, an EPD occurs

in systems that are periodic in space [39, 2, 55], in time [78, 174], in systems that are

uniform and have spatial dispersion [74], or that have gain and loss [72, 2]. The class of

EPD structures that have been mainly studied in the literature is based on parity-time (PT)

symmetry [40, 44, 36, 76, 240, 71, 235] with balanced gain and loss [241, 76, 36, 70, 97].

The general conditions for EPD formation in a periodically loaded waveguide with discrete

lossy elements and saturable gain were studied in Ref. [128], showing self-standing oscilla-

tions. Subsequent studies including nonlinearity in the array through discrete gain elements

[253] focused on the saturation regime performance. It was found that the system converges

to an EPD while undergoing saturation. However, the saturated gain value would vanish

when increasing the length of the array. The purpose of this paper is to show that there are

array oscillators where the saturated gain converges to a nonvanishing value related to an

EPD. This demonstration has strong implications for high-power radiation when the length
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Figure 8.1: (a) Periodic array with elements radiating synchronously while oscillating. Power
is radiated by the Yr elements, two per unit cell, representing antennas. (b) Schematic of a
unit cell with length D = 2d made of two coupled transmission line (CTL) segments. The
CTLs are characterized by even and odd mode impedances and effective permittivities Ze,
Zo and ϵr,e, ϵr,o, respectively. The CTL is periodically loaded with both a lossy shunt element
Yr representing a radiator (e.g., an antenna) and a shunt nonlinear gain element Yg at the
same position z. The glide symmetry shift length is d. Voltages V1 and V2 are given with
respect to the ground, not shown for simplicity.

of the array of antennas increases.

Recently, there has been an increasing interest in exploring the effects of nonlinearities in

systems that support different kinds of EPD conditions. Studies have examined how nonlin-

ear effects impact PT symmetry in lasing systems [118], EPD-based sensors with saturable

gain [98, 86], oscillator arrays [253, 12], oscillator arrays based on degenerate band edge

in microstrip circuit [8], and noise-resilient systems based on operation near an EPD [105].

Among these EPD-based applications, our focus is on the exceptional degeneracy conditions
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in waveguides and on what possible advantages they offer. Specifically, we aim to explore

the effects of nonlinearities in the saturation regime to design a periodic oscillator based

on a waveguide with an array of antennas for efficient high-power radiation with a narrow

spectral linewidth. Furthermore, it is important to confirm that such an array system should

effectively operate under challenging conditions, such as system tolerances and partial fail-

ure. This situation includes the case where all the array elements do not have the same gain

or one of the array elements fails or is damaged. To use the proposed concept in real life,

the study of robustness and the system’s resistance to failed components and perturbations

is essential.

To address these challenges of robust stable oscillation, some of the present authors recently

introduced a waveguide with loaded discrete nonlinear gain and antennas (simply represented

by linear lossy elements for simplicity) that supports steady oscillation at a second-order EPD

[253]. The EPD was the favorable regime of operation after reaching saturation. However,

the saturated gain would vanish when the array length was growing to infinity. That finding

raised a question that would be important for high-power radiating arrays: is it possible to

have an array system supporting EPD with loss and gain where the saturated gain does not

decrease with increasing array length?

This paper provides an affirmative answer to such a question that may lead to important

applications. We propose a new method of designing arrays that saturate at an EPD with a

non-vanishing saturated gain value, resulting in a stable oscillation frequency with increasing

radiated power for longer arrays. Remarkably, while undergoing saturation, the gain in the

radiating and oscillating array converges to operate at an EPD frequency at steady-state.

We also show that this dynamic is independent of the value of the small-signal gain of the

discrete active elements. Additionally, we also investigate the resilience of the oscillation

frequency to element failure and variations in the small-signal gain and loss values. This

feature is important for practical applications where guaranteeing a constant small-signal
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gain level across the array is very challenging. Operating at an EPD generally leads to high

radiation power and high synchronization of the signal over the radiating elements of the

waveguide. It is due to the excitation of an exceptionally degenerate mode, which also leads

to a low phase noise performance.

8.2 Active Waveguide Array in Saturated Oscillatory

Regime

We analyze the self-oscillation mechanism due to instability in a waveguide made of two

coupled microstrips periodically loaded with discrete nonlinear gain and radiating elements

(modeled simply as lossy loads), as shown in Fig. 8.1(b). In each unit cell of length D,

there are two nonlinear gain elements Yg and two linear lossy loads Yr, which alternate loca-

tions along the waveguide. Hence, the periodic waveguide has glide symmetry as defined in

Ref. [254], with an effective period of d = D/2. Indeed, the structure is equal to itself when

a half unit cell shift d is followed by a mirror operation in a transverse plane [254]. The first

array case treated in Secs. 8.3 and 8.4 is neither PT symmetric nor glide-time (GT) sym-

metric. The concept of GT symmetry is defined and further explored in Ref. [9]. In Secs. 8.3

and 8.4, we study the tendency of the steady-state system to operate at an EPD associated

to the gain values after reaching saturation. In simulations, the nonlinearity is provided by

a cubic i− v curve. In the following, we show that this waveguide ensures stable oscillation

frequency at an EPD related to a non-zero saturated gain Ygsat of the active elements, over-

coming the challenges outlined above. Additionally, the “radiated” power (i.e., the power

dissipated at the lossy loads Yr) is mostly uniform across the array. The waveguide’s unit

cell is depicted in Fig. 8.1(b). In Sec. 8.5 we analyze a fabricated prototype to experimen-

tally prove the discovered concepts. The experimented array in Sec.8.5 is GT-symmetric in

the linear small-signal regime, and we show that it converges to a non GT-symmetric satu-
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rated regime. Gain is provided by negative resistances built using operational amplifiers (op

amps). For convenience, the experiment in Sec. 8.5 is carried out at lower frequencies than

the design introduced in Sec. 8.3, and the coupling between the two microstrips is enhanced

by adding a capacitance Yc in each unit cell of the array. Furthermore, we investigate the

stability of the oscillation frequency and system performance when the system is subjected

to element failure and under variations in loss and gain values across the array.

8.3 Nonlinear Simulation Results

Nonlinearities play an important role in radio-frequency (RF) and microwave systems and

bring both complexity and benefits [255]. In our theoretical analysis, we use time-domain

simulations by Keysight Advanced Design System (ADS) circuit simulator to study the

operation of the periodic waveguide in the saturated regime. The nonlinearity of the nth

element is modeled via the i− v cubic model, as described in Ref. [253], through a negative

small-signal conductance Yg,n = −gn. The current in and voltage vn relationship at the

discrete nonlinear gain elements in the ADS simulator is defined as

in = −gnvn + αnv
3
n, (8.1)

where αn = gn/3 (unit of S/V2) describes the saturation level with a 1 volt turning point.

As it will become clear later on, the system is unstable and it oscillates at a frequency fosc

after reaching saturation. With the time-domain results obtained from ADS, we calculate

the complex saturated gain admittance in the phasor domain using the Fourier transform

of the voltage and current at the oscillation frequency fosc. We implicitly assume the time

convention ejωt. Using the fast Fourier transform (FFT), the magnitude and phase of the

admittance are calculated as
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Figure 8.2: (a) Time domain signal in the saturation regime for a system with 16 unit cells
in the array showing zero phase shift between voltages of nonlinear gain elements vg,4 and
vg,6 with small signal gain g = 10 mS. (b) The frequency spectrum of voltage vg,9 (near the
middle position of the system) showing an oscillation frequency of fosc = 3.91 GHz in the
saturation regime. (c) Calculated real and imaginary parts of the saturated gain along the
structure highlighting a uniform saturated gain around gsat = 0.51 mS and near negligible
imaginary part. (d) The calculated real and imaginary parts of the saturated gain in the
middle position of the structure (n = N/2) for different structure lengths N , showing a
trend where the saturated gain approaches gsat = 0.51mS and Im(Ygsat ≈ 0). (e) Oscillation
frequency with respect to structure length, showing a remarkably stable frequency. A total
change of 0.01% in oscillation frequency was observed when increasing the number of array
elements from N = 6 to N = 18. (g) Total radiated power from the arrays for longer
structure lengths shows that the radiated power more than doubles when increasing the
array length from N = 6 to N = 15. (f) The radiated power of each array element along the
structure for N = 16. There is near uniform power in the middle of the array. In the inset,
half of the unit cell is displayed schematically and the radiation power from the nth array is
denoted as Pr,n.

|Ygsat,n| =
|FFT(in)|fosc
|FFT(vn)|fosc

∠Ygsat,n = (∠FFT (in)− ∠FFT (vn))|fosc

, (8.2)

where | | represents the absolute value, and ∠ represents the phase. We performed time-

domain simulations for a waveguide consisting of 8 unit cells (equivalent to N = 16 nonlinear

elements) with a small-signal gain of g = 10 mS and a loss of Yr = 40 mS (representing

radiation).
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In our design, we set the microstrips to have a width W = 10 mm, a length d = 198 mm,

and spacing between the CTL pair to be S = 0.3mm. The waveguide is implemented on an

FR4 substrate with a relative permittivity ϵr = 4.2 and a substrate height h = 2 mm. The

microstrip is designed using 1 ounce copper, equivalent to a thickness t ≈ 35 µm. Using the

Lincalc tool in Keysight ADS for coupled microstrip lines, we calculated the electrical values

of the even and odd modes in the CTL at a frequency of 1 GHz. The relative permittivities

for the even and odd modes are ϵr,e = 3.75, ϵr,o = 3.02, derived from ϵr,e = (c/vp,e)
2 and

ϵr,o = (c/vp,o)
2, where c is the speed of light and vp is the phase velocity of the respective

mode. The corresponding characteristic impedances are Ze = 29.8 Ω, and Zo = 19.8 Ω.

Additional information on the electrical parameters of coupled microstrip lines derived from

their physical dimensions is discussed in Ref. [256].

To perform the finite-length simulation in Keysight ADS, the array is constructed by con-

necting the unit cells in series. An additional coupled transmission line segment with a

length of d is added at the right end of the structure. Consequently, the array begins and

ends with coupled transmission lines of length d, both terminated with open circuits. After

conducting the time domain simulation in Keysight ADS, the voltage signals of the system

are shown in Fig. 8.2(a), with the corresponding frequency spectrum shown in Fig. 8.2(b).

The transient period is when a system transitions to a steady state, while the rising time

indicates how long it takes to reach saturation. The time duration of the transient regime

of the system is directly related to the initial small-signal gain. For a value of g = 10 mS, it

takes 150 ns for the system to reach saturation.

The time domain result in Fig. 8.2(a) shows zero phase shift between the nonlinear gain

voltages vg,4 and vg,6 (out of 16 of them) in two consecutive unit cells (of size D) in the

saturated regime. This means the periodic waveguide operates with zero Floquet-Bloch

wavenumber, i.e., k = 0, at that frequency. The frequency spectrum of the middle nonlinear

gain element vg,8 in the saturation regime shows an oscillation frequency of 3.91 GHz. The
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Figure 8.3: (a) Radiated power along the structure when the small-signal gain is nonuniform
with random values γn shown as an inset. The γ5 = −98% value is associated with a faulty
nonlinear element. (b) Radiated power along the structure with a random perturbation on
the array’s admittances−5% < δn < 5% for the small gain g = 10mS. Radiated power for the
perturbed array’s admittances in orange follows the uniform one in blue well. (c) Radiated
power for different small-signal gain values along the structure. (d) Saturated gain of each
nonlinear gain element for different small-signal gain values. The calculated saturated gains
are uniform along the structure, with the calculated value closely approaching the reported
saturated gain of g = 0.51 mS in the middle of the structure.

frequency spectrum is calculated by applying the FFT on the saturated signal in the time

window from 0.1µs to 1µs. We used 106 points in a frequency window of 0.1 GHz to 5 GHz.

To better characterize the saturated oscillation regime, in Fig. 8.2(c) we show the real and

imaginary parts of saturated gain Ygsat,n, where n = 1, 2, ..., N , over the N = 16 active

elements using Eq. (8.2). The saturated gain is mostly uniform across all the nonlinear

active elements, suggesting a high level of synchronization across the structure. While the

system starts with all elements having a small-signal gain of g = 10 mS, it operates with a

saturated gain gsat close to 0.51 mS.

To further investigate this behavior, in Fig. 8.2(d) we examine the saturated gain in the

middle array element, Ygsat,n, where n = N/2, varying the total (even) number of nonlinear
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elements N . There are N/2 unit cells, each with two gain elements. For the longer structures,

the saturated gain tends to a purely real value, gsat = 0.51 mS and the saturated reactance

vanishes.

Additionally, this array displays an exceptionally stable oscillation frequency. This feature is

depicted in Fig. 8.2(e), which shows the oscillation frequency at the middle of the array for

lengths ranging from N = 6 to N = 18 nonlinear elements. The oscillation frequency only

changes by 0.01% when the array length is tripled, thus demonstrating its stability against

variations in the overall array length.

We analyze the power performance of the array by defining the total time-average “radiated”

power of the array as the sum of the emitted powers at each radiating element, i.e., Pr =∑N
n=1 Pr,n, where Pr,n is the time-average power radiated from each array in the steady-

state regime. In the saturated regime (i.e., the steady-state regime), we calculate the total

time-average power Pr radiated by the radiating elements Yr, for growing array length N .

The results are depicted in Fig. 8.2(g), showing that longer structures radiate more power.

Moreover, the power distribution along the length of an array is very important for many

applications. Figure 8.2(f) and its inset show the time-average radiated power Pr,n by each

element n in an array of N = 16 nonlinear gain elements. The radiating power tends to

be uniform in the middle of the array, and it does not vary much over the whole array, in

agreement with the observed uniform saturated gain shown in Fig. 8.2(c).

As outlined in Ref. [253], the EPD of the infinitely long array (in this limit, the eigenvalue

is the wavenumber) was the desirable point of operation after saturation. In Ref. [253], it

was observed that when the system saturates at an EPD, the associated saturated gains

of the array elements approached zero when the array length N was increasing. For that

array system, the total radiated power grows with array length, but it tends to flatten with

growing N because the saturated gain values in the whole array vanish. Notably, we have

demonstrated here that it is possible to have systems where the power grows linearly with
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array length (Fig. 8.2(g)), hence with saturated gain values that tend to a constant for

growing array length N . And, importantly, the saturated regime is still associated to an

EPD of the infinitely long array. This leads to a stable frequency of oscillation and low

phase noise, as demonstrated next.

8.3.1 Gain and Loss Perturbation and Failure Analysis

RF or microwave oscillator schemes are required to have a stable oscillation frequency [25,

247], a high-quality factor [26, 248], a strong independence with respect to the loads [12], and

a high output power [27]. To confirm these dynamic properties and to confirm the robustness

of our proposed structure with respect to fabrication errors and tolerances, we examine a

scenario where the small-signal gain g in each unit cell varies randomly within a certain range.

The reason for this study is due to the greater difficulty in designing active elements than

the passive ones. Therefore, we initially focus on perturbations of the values of the active

elements, i.e., the nonlinear gain. Specifically, the gain varies as gn = 10× (1+ γn) mS, with

n = 1, 2, ..., N and where the −10% < γn < 10% values are shown in Fig. 8.3(a). The γn

values follow a uniform random distribution, as assumed in Ref. [253].

We also study the resilience of the system to a damaged active element by setting γ5 =

−98%, which is equivalent to an element with near-zero small-signal gain. The resulting

power delivered to each radiating element Yr, depicted in Fig. 8.3(a), shows that even with

tolerances in the small-signal gain gn and with faulty elements, the array operates at the

desired oscillation frequency fosc = 3.91 GHz, and power delivered to all the loads Yr follows

a similar pattern as the unperturbed case where γn = 0. Also, the power radiated by Yr,5,

the lossy element adjacent to the faulty gain element, does not change.

Since lossy elements generally display lower tolerances than active elements, we assume that

the arrays’ admittances have a 5% variation around a nominal value Yr = 40 mS, i.e., they
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are Yr,n = (1 + δn)× 40 mS. Even with the values displayed in Fig. 8.3(b) for the perturbed

array elements, we observe roughly uniform power radiation along the system.

Additionally, we studied changes in structure performance when the small-signal gain g is

chosen to be constant over the entire array, but assuming three different values. Figure 8.3(c)

shows the power delivered to the array elements Yr, and Fig. 8.3(d) shows the saturated gain

values over the discrete array elements. These results were obtained by performing time-

domain simulations with three different values of the small-signal gain: g = 10mS, g = 5mS,

and g = 3 mS for all the elements across the array. In all cases, the system oscillates and

retains the same stable oscillation frequency of fosc = 3.91 GHz regardless of the chosen

small-signal gain value, and it displays roughly the same power distribution across the array.

Moreover, the saturated gain values shown in Fig. 8.3(d) are approximately the same as the

g = 0.51 mS in the original design. These results demonstrate that systems with different

initial small-signal gain values still saturate close to the same gain value as the original

design.

The saturation behavior of the system is intricately connected to the behavior of its modes.

The results described in Sec. 8.3 suggest the saturated system operates at or near an EPD, as

previously shown in Ref. [253]. Oscillators operating at an EPD show a very stable oscillation

frequency, that is roughly independent of waveguide length [12]. Additionally, EPD-based

oscillators display synchronized radiation across the array, caused by operation at the center

or edge of the first Brillouin zone of the Bloch mode dispersion diagram, i.e., with k = 0 or

k = π/D, as shown in the next section. We investigate the relationship between the system’s

modes, their degeneracy, and the overall performance.
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8.4 Coupled Transmission Lines with Discrete Gain

and Radiation Admittances

Exploiting the concept of EPDs to improve the performance of oscillators with distributed

gain and loss has been explored in the past (see Refs. [128, 30, 246] for details). Here, as

in Ref. [128], the array’s radiating elements are simply represented by periodic radiation

admittances Yr along the TL. Though gain elements are nonlinear, in this section we assume

they are linear and have their saturated gain value. We analyze the modes supported by

the unit cell discussed in Fig. 8.1(b). The transfer matrix of the CTLs of given length

d requires introducing even and odd modes, with propagation constants βe = 2πf
√
ϵr,e/c

and βo = 2πf
√
ϵr,o/c, where c is the speed of light, and characteristic impedances Ze and

Zo. Their mode propagation is synonymously described in Ref. [257], but using the forward

transfer matrix formalism, we have

V (d)

I(d)

 =

 cos(βd) −jZ sin(βd)

−j sin(βd)/Z cos(βd)


V (0)

I(0)

 , (8.3)

where β = βe,o, and Z = Ze,o. Furthermore, V = Ve,o and I = Ie,o are the voltage and

currents of the even and odd modes, defined by

Ve =
V1+V2

2
, Ie =

I1+I2
2

Vo =
V1−V2

2
, Io =

I1−I2
2

. (8.4)

It is convenient to define the waveguide state vector as Ψ(z) =

(
V1, I1, V2, I2

)T

, where the

superscript T denotes transpose operation, and the parameters are defined in Fig. 8.1(b).

This formulation is analogous to the one used for electric fields in optical waveguides [258].

The “evolution” of the state vector across the CTL segment of length d is given by
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(a)

(b)

Figure 8.4: (a) Real and imaginary parts of the complex wavenumber k of the modes sup-
ported by the infinitely long array versus frequency with a zoomed-in version around the
degeneracy at kD/π = 0. Branches coalesce at a second-order EPD at 3.915 GHz. This is
the same steady-state oscillation frequency of the array of finite length in the steady state
regime (i.e., after saturation), obtained from time domain simulations. (b) The vanishing of
the coalescence parameter confirms the coalescence of two eigenvectors at 3.915 GHz.



V1(d)

I1(d)

V2(d)

I2(d)


=



T11 T12 T13 T14

T21 T11 T23 T13

T13 T14 T11 T12

T23 T13 T21 T11





V1(0)

I1(0)

V2(0)

I2(0)


, (8.5)

where the 4x4 matrix represents the transfer matrix TCTL of the CTL segment. Its elements

are
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T11 = (cos θe + cos θo)/2
T12 = −j(Ze sin θe + Zo sin θo)/2
T13 = (cos θe − cos θo)/2
T14 = −j(Ze sin θe − Zo sin θo)/2
T21 = −j(sin(θe)/Ze + sin(θo)/Zo)/2
T23 = −j(sin(θe)/Ze − sin(θo)/Zo)/2,

where θe = βed and θo = βod are the electric lengths of the even and odd modes of the two

uniform waveguide segments, respectively. The transfer matrix of the unit cell, depicted in

Fig. 8.1(b), is defined as

TU =

 Tloss 0

0 Tgain

TCTL

 Tgain 0

0 Tloss

TCTL, (8.6)

where 0 is a 2× 2 matrix of zeros and Tgain, Tloss are the transfer matrices of the shunt gain

and loss elements, i.e.,

Tgain =

 1 0

−Yg 1

 , Tloss =

 1 0

−Yr 1

 . (8.7)

In the small signal regime, we would have Yg = −g. However, for us it is more important to

analyze the state of the system after reaching saturation, hence we assume Yg = Ygsat. The

analysis in the previous section tells us that Ygsat = −gsat and we can neglect the reactance

since it is almost zero.

The evolution equation for the state vector across a unit cell is given by Ψ(z+D) = TUΨ(z).

The modes supported by the periodic guiding structure are found by applying the Floquet-

Bloch theorem [259], resulting in Ψ(z+D) = e−jkDΨ(z) where D = 2d is the unit-cell period

and k is the Floquet-Bloch wavenumber. Note that d is the length of the CTL segments.

The eigenmodes are found by solving the eigenvalue problem, i.e.,
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(TU − ζI)Ψ = 0, (8.8)

where I is the identity matrix of order four, ζ = e−jkD is the eigenvalue of a mode, and Ψ

is its associated eigenvector. The four eigenvalues are found by solving the characteristic

equation det (TU − ζI) = 0. After some algebra, we obtain

ζ4 + bζ3 + cζ2 + bζ + 1 = 0, (8.9)

where the coefficients b and c are given in Appendix A. Because of reciprocity, discussed in

Appendix A, the characteristic equation is equivalent to

(ζ2 − a1ζ + 1)(ζ2 − a2ζ + 1) = 0, (8.10)

where a1 = ζ1 + 1/ζ1, a2 = ζ2 + 1/ζ2. The terms ζ1 and ζ2 are the eigenmode solutions for

Eq. (8.9), as well as 1/ζ1 and 1/ζ2 leading to the four wavenumbers k1 and −k1, and k2 and

−k2.

In the remainder of this section, we discuss the EPD condition based on the characteristic

equation with the coefficients shown in Appendix A. The relationship between the coefficients

in the full dispersion equation in Eq. (8.9) and in the general polynomial in Eq. (8.10) are

b = −a1 − a2

c = 2 + a1a2

. (8.11)

The four modes that satisfy Eq. (8.10) are
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ζ1,3 =
a1±
√

a21−4

2
, ζ2,4 =

a2±
√

a22−4

2
. (8.12)

Based on the above Eq. (8.12), this structure can support exceptional degeneracies (i.e.,

EPDs) of orders 2 and 4 (involving either 2 or 4 coalescing modes, respectively). An EPD

of order 2 or 4 is formed when the modes of the system fall into one of the following cases:

(I) when either ζ1 = ζ3 or ζ2 = ζ4, that is, when either a1 = ±2 or a2 = ±2, and a1 ̸= a2.

In this case, there is one EPD of order 2, represented as the point in the dispersion diagram

where the slope vanishes, at the center or edges of the Brillouin Zone (BZ), i.e., k = 0 when

either a1 or a2 is 2, or k = π/D when either a1 or a2 is −2. The remaining two modes do not

merge. (II) When ζ1 = ζ3 and ζ2 = ζ4, yet ζ1 ̸= ζ2. This is equivalent to the condition that

a1 = ±2, a2 = ±2, with a1 ̸= a2. There are then two EPDs of order 2 at the same frequency,

where one occurs at the center of the BZ and the other one at its edges. In this case, the

dispersion diagram denotes two distinct EPDs at the same frequency, one at k = 0 and at

k = ±π/D. (III) When ζ1 = ζ2 and ζ3 = ζ4, namely, when a1 = a2 ̸= ±2. In this instance,

there are two EPDs of order 2 which occur at reciprocal positions off the center or edges of

the BZ, i.e., k1 = k2, k3 = k4, and kn ̸= 0,±π/D. (IV) When ζ1 = ζ2 and a1 = a2 = ±2, the

four eigenvalues become degenerate, potentially leading to the formation of a fourth-order

EPD at the center or edges of the BZ. In this work, we focus on the formation of EPDs of

order 2 belonging to case I, so cases II, III and IV are not considered in the following.

Figure 8.4(a) displays the dispersion diagram of the periodic waveguide with the same pa-

rameter values in the saturation regime as in Sec. 8.3, namely, gsat = 0.51mS, Yr = 21.3mS,

d = 198 mm, ϵr,e = 3.75, ϵr,o = 3.02, Ze = 29.8 Ω and Zo = 19.8 Ω. As expected

from the results in Ref. [253], the saturated periodic system displays a second-order EPD,

and the frequency at which it occurs corresponds to the frequency at which the finite-

length array discussed in the previous section operates after reaching saturation, namely
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fEPD = fosc = 3.915 GHz. At this frequency, we calculate a1 = 2 and a2 = 1.912 + 0.228i,

which show that the EPD is at k = 0.

The occurrence of the exceptional degeneracy is confirmed by using the concept of coalescence

parameter C, introduced in Ref. [2] where it is referred to as hyperdistance. This parameter

C is a figure of merit to assess how close the infinitely-long array is to an EPD by observing

the degree of coalescence of the system’s eigenvectors. The coalescence parameter of two

eigenvectors m and n is defined as

Cmn = |sinθmn|, cos θmn =
|⟨Ψm,Ψn⟩|
∥Ψm∥ ∥Ψn∥

, (8.13)

where θmn, with any choice of n = 1, ..., 4 and m = 1, ..., 4, with m ̸= n, represents the

angle between 2 eigenvectors m and n in a four-dimensional complex vector space via the

inner product ⟨Ψm,Ψn⟩ = Ψ†
mΨn, where the dagger symbol † denotes the complex conjugate

transpose operation, and ∥Ψ∥ =
√
⟨Ψ,Ψ⟩ represents the norm of a complex vector [90, 260].

The coalescence parameter defined in Eq. (8.13) is always positive and smaller than one with

small values indicating that the eigenvectors of the structure are close to degeneracy. At an

EPD, the transfer matrix of the unit cell TU is similar to a Jordan Block matrix [261, 39].

Since the transfer matrix is a 4x4 matrix, it supports four eigenmodes and eigenvectors.

We are searching for a minimum coalescence parameter between each pair of eigenvectors

C = minm,n(Cmn). The coalescence parameter is equal to zero when two eigenvectors in the

waveguide coalesce, i.e., when the CTL system experiences a second-order EPD. In physical

systems and numerical studies, the coalescence will never be exactly zero. Figure 8.4(b)

shows the minimum of the coalescence parameter versus frequency. A degeneracy is clearly

identified at f = 3.915 GHz, which is the same oscillation frequency associated with the

steady-state regime of oscillation with saturated nonlinear gain values shown in Fig. 8.2(b).

In conclusion, we have demonstrated via simulations that the finite-length periodic array
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with nonlinear gain elements saturates and oscillates at an EPD frequency of the waveguide

dispersion. The EPD condition can be thought of as a “destination” the nonlinear system

approached upon saturation.

8.5 Experimental Confirmation of EPD-Based Stable

Oscillation

To provide an experimental confirmation of a periodic array system that oscillates at an EPD

related to saturated nonlinear gain, as shown in the previous sections, we create another

design at a lower frequency in the MHz range, instead of the fosc = 3.91 GHz previously

considered. By operating at lower frequencies, we can neglect several parasitic capacitances

and small lengths, and therefore we can test the array using standard wiring.

The new design shows that the array oscillates at fosc = 21.67 MHz. To build an array that

achieves uniform power distribution across the structure, we consider the same configuration

discussed in Fig. 8.1. Due to the long period of the original unit cell, here we reduce the

period D in experimental verification because of fabrication limitations. When decreasing

the unit-cell period while maintaining differences between the even and odd modes, a strong

coupling between CTLs is needed. Since it is difficult to operate with a very large difference

in even and odd mode permittivities ϵr,e and ϵr,o, respectively, here we include additional

capacitances between the CTLs next to the lossy and active loads as shown in Fig. 8.5(a).

After this modification, we first numerically verify the system’s performance, followed by

experimental results that validate our findings in Sec. 8.3 and Sec. 8.4.
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8.5.1 Theory and Simulation of Experimental board

The theoretical investigation slightly differs from that in the previous sections because of the

two extra capacitances per unit cell shown in Fig. 8.5. We will first show the time-domain

simulation results by modeling the nonlinear gain as described earlier in Eq. (8.1) using

ADS Keysight. Then, the modal dispersion and EPD are verified using the transfer matrix

accounting for the coupling capacitors, given by

TU =


Tloss

0 0

Yc 0

0 0

Yc 0
Tgain


TCTL


Tgain

0 0

Yc 0

0 0

Yc 0
Tloss


TCTL, (8.14)

where Tgain and Tloss are the transfer matrices of the shunt gain and loss with the added

capacitor, i.e.,

Tgain =

 1 0

−(Yg + Yc) 1

 , Tloss =

 1 0

−(Yr + Yc) 1

 , (8.15)

where Yc = jωC is the coupling capacitive admittance. We use the Rogers RO4350B

grounded dielectric substrate with relative permittivity ϵr = 3.48 and height h = 2 mm,

covered by 1 ounce copper. It has low loss, characterized by tanδ = 0.003 for frequencies

ranging from 0.1 MHz to 1 GHz. We design the microstrips with a width W = 10 mm and

a length d = 50 mm. The spacing between the CTL segments is S = 1 mm. The unit-cell

period is D = 2d = 100 mm, roughly a quarter of the value in the original design. The

coupled microstrips are characterized by ϵr,e = 3.2, ϵr,o = 2.7, Ze = 32 Ω, and Zo = 24.4 Ω,

at a frequency of 1 GHz. The loads representing the radiation admittance are Yr = 21.3mS.
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Figure 8.5: (a) Proposed circuit with a coupling capacitive admittance Yc = jωC between
the two TLs. (b) Frequency spectrum of the voltage vg,8 (near the middle position of the
system) after reaching the saturation regime. (c) Saturated gain calculated in the saturation
regime over the structure for N = 16. (d) Calculated dispersion diagram and coalescence
parameter for the structure using gsat = 18.1 mS as gain, showing an EPD close to the
spectrum maximum in (b).

To conduct the finite-length simulation in Keysight ADS and ensure consistency with the

experimental board being tested later on, the array starts with a coupled transmission line

of length d/2 in the first unit cell instead of d. Similarly, an additional CTL of length d/2 is

included at the other end. As a result, the system begins and ends with coupled transmission

lines of length d/2, both terminated with open circuits. Via ADS Keysight simulations, we

found that increasing the coupling capacitance from C = 1 nF to 16 nF, with a small-signal

gain of g = 21.3 mS, leads to a significant reduction in the oscillation frequency. To make

fabrication and measurement feasible, we chose a coupling capacitance of C = 16 nF, which
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significantly lowers the oscillation frequency to fosc = 21.67 MHz for N = 16 nonlinear

gain elements as seen as the first peak in Fig. 8.5(b) that shows the frequency spectrum of

the system. Based on the theoretical investigation and time-domain simulation results in

Sec. 8.3, we expect uniformly saturated gain values across the array.

Figure 8.5(c) shows the real part of the saturated gain along the array for three different

small-signal gains: g = 20 mS, g = 21.3 mS, and g = 22.7 mS. These results show the

expected behavior for the oscillation frequency at fosc = 21.67 MHz, with a saturated gain

value close to gsat,8 = 18.1mS, in all cases, independently of the value of the small-signal gain

considered. The array primarily oscillates at the fundamental frequency, with the third har-

monic appearing 20.4 dB below the peak at the fundamental frequency fosc = 21.67MHz in

the obtained simulated frequency spectrum for Keysight ADS. Using the calculated value of

the eighth element’s saturated gain, gsat,8 = 18.1mS, in Fig. 8.5(d), we plot the wavenumber

dispersion of the modes in the infinitely long array, and the coalescence parameter C whose

minimum reveals how close the system is to the ideal EPD. It is important to note that

this coalescence is determined by finding the minimum among six possible combinations of

the four eigenvectors, as outlined in Sec. 8.4. The system exhibits a second-order EPD at

21.1 MHz based on the calculated coalescence parameter, which is close to the frequency of

oscillation of the finite-length array with nonlinear elements. In these results, the coalescence

parameter does not completely vanish, but it is very close to zero, revealing that the system

approaches the ideal EPD of the infinitely long array. By analyzing the dispersion of this

updated design, we see that it is a second-order EPD of case (I) as in the previous design.

8.5.2 Experimental Results

The experimental board is shown in Fig. 8.6(a). This board implements the structure

shown in Fig. 8.5(a), where the nonlinear gain is created with an op amp-based inverter
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Figure 8.6: (a) Assembled array with a length of N = 6 (three unit cells). (b) Measured time-
domain voltage signal at the fourth array element Yr,2 using an oscilloscope. (c) Measured
spectrum using a spectrum analyzer (Rigol DSA832E) with the fundamental frequency of
oscillation at 21.2MHz at the fourth gain element. (d) The phase noise of the power spectrum
measured by the spectrum analyzer at frequency offsets from a few Hertz to 20 kHz, with a
resolution bandwidth of 100Hz and a video bandwidth of 30Hz to fully capture the spectrum.
(e) Real and imaginary parts of the complex wavenumber k as a function of frequency,
showing a second-order EPD at 21.1 MHz using the saturated gain value gsat = 19 mS. (f)
Coalescence parameter confirming at least two eigenvectors coalescence at 21.1 MHz. (g)
Measured radiated power along the array.

circuit (Texas Instruments, model LMH6702MAX/NOPB), as depicted in Fig. 8.10(a) in

Appendix D. To achieve a small-signal gain of g = 21.3mS, we used a 47 Ω resistor in series

with a 1Ω resistor. The additional 1Ω resistor was added to compensate for the loss produced

by the dummy 1 Ω resistor placed in series with the inverter. This dummy resistor allows

us to measure the current entering the inverter system, enabling us to calculate the active

admittance in the saturated regime as detailed in Appendix D. By setting g = 21.3 mS,

we measure the time domain of vr,2 and frequency spectrum signal of vg,4, as shown in

Fig. 8.6(b) and (c), respectively. Based on the measurements discussed in Appendix D, the

negative gain admittance achieved by the inverter circuit is mainly real valued. We measured
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Figure 8.7: (a) Measured saturation gain distribution across the array for N = 6. (b) Voltage
amplitudes corresponding to each gain element. They are both more or less constant across
the array.

the oscillation frequency to be fosc = 21.2 MHz, noting a slight shift from the simulation

results. We suspect this small difference between the simulated and measured oscillation

frequencies can be attributed to different nonlinearity and saturation models.

To confirm that the system tends to oscillate at an EPD in the saturation regime, we mea-

sured the saturated gain of the active elements. Using the technique discussed in Appendix D,

we measured gsat,4 ≈ 19 mS, which is close to the real value found via ADS time-domain

simulations. The measured saturation gain gsat across the arrayed active elements and the

corresponding voltage amplitudes are shown in Fig. 8.7(a) and (b), respectively. The mea-

sured gsat,n shows a uniform gain distribution across the array.

An essential feature of any oscillator is its ability to produce a near-perfect periodic time-

domain signal, which is quantified in terms of phase noise [262, 263]. The phase noise refers

to the random fluctuations in the phase of an oscillator’s output, and it plays a critical role

in determining the stability and quality of the output signal. Minimizing phase noise ensures

reliable performance in applications where precise frequency control is necessary [264]. The

measured power spectrum and phase noise up to a 20 kHz frequency offset are shown in

Fig. 8.6(c) and (d). Despite the presence of electronic noise (which is significant in the op

amp) and thermal noise, the proposed oscillator exhibits stable oscillation with notably small

harmonics. The low phase noise of−89dB/Hz at a 10kHz offset from the oscillation frequency
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confirms the oscillator’s stability and precision. A key indicator of clean oscillation is the

narrow linewidth of the oscillation spectrum in Fig. 8.6(c). We used a resolution bandwidth

of 100Hz and a video bandwidth of 100Hz. All the measured frequency spectra of gain over

the array remain clean, approximately down to −81 dB from the peak value. At the fourth

gain element, the linewidth, measured at −3dB from the peak, is around 0.8kHz, indicating

the very narrow linewidth relative to the oscillation frequency.

To confirm the saturated system supports an EPD at the oscillation frequency, we calculate

the Bloch mode dispersion diagram using the gain of gsat = 19mS measured in the saturation

regime. The real and imaginary parts of the complex Bloch wavenumber k as a function

of frequency are shown in Fig. 8.6(e). The plot highlights the presence of a second-order

EPD with k = 0 at 21.1MHz, which is very close to the oscillation frequency obtained from

both the time-domain simulations and the experimental measurements. To further validate

the EPD occurrence, we calculate the coalescence parameter C using the measured saturated

gain of gsat = 19mS. As shown in Fig. 8.6(f), the coalescence parameter reaches its minimum

at 21.1 MHz, verifying the existence of an EPD in the system.

Figure 8.6(g) shows the measured time-average power delivered to each array element. The

power Pr,n = Yr|Vr,n|2/2 is determined by measuring the voltage Vr,n on each real-valued

radiation admittance Yr = 21.3mS. Here, |Vr,n| represents the phasor magnitude, calculated

as the peak value of the measured time-domain signal. For example, the measured time-

average power Pr,4 = 19.4 mW delivered to the fourth array element is more or less close to

the power generated by the fourth active element Pg,4 = gsat,4|Vg,4|2/2 = 26.8 mW.

The plot in Figure 8.6(g) also shows that the power over the array elements is more or less

constant across the array. We have used resistors with a 1% tolerance, while the active

elements may have an ever larger small-signal gain variation across the array. The uniform

power distribution delivered to the admittances Yr,n implies that arrayed antennas working at

an EPD will maintain constant radiated power across the array, highlighting the robustness of
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the design in practical scenarios with elements’ variability. These findings show the important

result that the array radiates power at a stable, low-noise, oscillation frequency, as discussed

in Sec. 8.5.1, even when perturbations occur.

8.6 Conclusions

We have demonstrated that the proposed array of active nonlinear elements and loads (repre-

senting antennas), achieves a stable oscillation frequency and uniform power distribution over

the lossy elements with a non-zero saturated gain across the array. The work in Ref. [253]

showed a degenerate active array structure that saturated gain that decreases when increas-

ing the array length, converging to an EPD. In this work, we overcome that limitation by

achieving a periodic array system with non-zero saturated gain across the array, oscillating

at a stable frequency, with a narrow linewidth, and with uniform power distribution across

the array. The active array consistently operates near an EPD in its steady state, regardless

of the initial small-signal gain values. This inherent stability, along with the resilience to

variations in gain or loss variations and discrete element failure, underscores the robustness

of the new concept. These concepts have been verified via simulations for two array designs,

and experimentally for the second design.

Our findings indicate that the EPD is the desirable operational regime, because of the nonlin-

ear gain dynamics. Indeed, the saturated gain is predominantly uniform across all nonlinear

active elements and equal to the one that leads to an EPD in the infinitely long array.

The system’s tendency to reach a purely real saturated gain, especially in longer structures,

further supports the effectiveness of the proposed design in maintaining the exceptional

degenerate regime under various conditions.

By operating at an EPD, the array oscillator not only stabilizes the oscillation frequency
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with respect to the array length but also provides radiation power that increases with the

array length, making it highly suitable for high-power radiation applications requiring a

stable frequency with low noise.

8.7 Appendix A: Coefficients for the Dispersion Rela-

tion

The coefficients b and c in Eq. (8.9) are

Re(b) = (Yr − g)2 (Zo sin θo − Ze sin θe)
2 /4

−2YrgZeZo sin θe sin θo + 4 (1− cos2 θe − cos2 θo)

Im(b) = (g − Yr) (Ze sin(2θe) + Zo sin(2θo))

Re(c) = (Yr − g)2 (Zo sin θo − Ze sin θe)
2 /2− (Yr − g)2 (Ze sin θe cos θo + Zo sin θo cos θe)

2

+(YrgZeZo sin θe sin θo + 4 cos θe cos θo)
2 − 4ZeZo sin θe sin θoYrg − 8 cos2(θo)− 8 cos2 θe + 6

Im(c) = (Yr − g)[YrgZoZe

(
Ze sin(2θo) sin

2 θe + Zo sin(2θe) sin
2 θo
)
+ 2Zo sin(2θo) cos(2θe)

+2Ze sin(2θe) cos(2θo)],

(8.16)

where Ze and Zo are characteristic impedances and θe = βed and θo = βod are the electric

lengths of the even and odd modes of the uniform coupled waveguide segments, respectively.

Because of reciprocity, if a complex wavenumber k is a solution to the characteristic equation,

−k is also a solution. Therefore, we simplify the characteristic equation as follows: the

eigenvalues ζ1, 1/ζ1, ζ2 and 1/ζ2 are the four solutions of the characteristic equation that is
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rewritten as

(ζ − ζ1)(ζ − 1/ζ1)(ζ − ζ2)(ζ − 1/ζ2)

= (ζ2 − a1ζ + 1)(ζ2 − a2ζ + 1) = 0,
(8.17)

where

a1 = ζ1 + 1/ζ1, a2 = ζ2 + 1/ζ2. (8.18)

Expanding this equation, we write

ζ4 − ζ3(a1 + a2) + ζ2(2 + a1a2)− ζ(a1 + a2) + 1 = 0, (8.19)

which coincides with 8.9, whose solutions are the four Bloch eigenmodes.

8.8 Appendix B: Resilience to Small-Signal Gain Vari-

ations

To ensure the experiment’s resilience to tolerances, we consider scenarios where there are

variations in the active elements and investigate via simulations the resilience of the system

to such perturbations. We examine two different initial small-signal gains, g = 21.3 mS and

22.7mS. In each case, we assume a large variation of the small-signal gain values from array

element to element. Specifically, the small-signal gain varies, for each of the two different

scenarios, as gn = g×γn, where −5% < γn < 5% or −10% < γn < 10%. These variations are

illustrated in Fig. 8.8. For the cases with maximum perturbation of 5% or 10%, the γn values

are shown as an inset. In each scenario, the resulting saturated gain value, obtained via ADS

time-domain simulations, is more or less the same and it leads to an EPD at roughly the same

frequency. Furthermore, the oscillation frequency in the steady state regime is maintained

at fosc = 21.67 MHz in all six cases.
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Figure 8.8: Simulated saturated gain of each nonlinear gain element for two small-signal
gain values g = 21.3 mS and g = 22.7 mS. In each case, we apply a random perturbation
of the array’s small-signal admittances Yg,n = −gn across the array with relative variation
−5% < γn < 5% and −10% < γn < 10%. The saturated gains are basically the same for all
the six cases considered, confirming that the array saturates at and EPD independently of
the variations and perturbations of small-signal gain.

8.9 Appendix C: Power Extraction and Oscillation

Frequency Stability Varying Array Length

Here, we demonstrate how the power extraction (i.e., delivered to the loads Yr) increases

when the array length increases, while maintaining a stable oscillation frequency. To do this,

we conducted time-domain simulations using Keysight ADS to determine the total power,

and oscillation frequency versus array length. All the results in this Appendix are based on

simulations, assuming the small-signal gain is g = 21.3 mS. Additionally, we analyze the

saturated gain in the middle of the structure as a function of N . Our goal is to confirm that

the structure operates at the EPD, independently of the array length.

Figure 8.9(a) illustrates the total power delivered to all the N elements Yr, showing a clear

increase in radiated power as the array lengthens. Moreover, in Fig. 8.9(b) we present the

saturated gain in the middle of the structure, i.e., for n = N/2, as a function of N , revealing

a more or less constant gsat,n ≈ 18mS, with n = N/2, after N = 12. Furthermore, Fig. 8.9(c)
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Figure 8.9: (a) Total “radiated” power increases with array length, where N is the number
of active elements. (b) Calculated real part of the saturated gain in the middle of the array
(n = N/2) versus array length N , which shows a trend where the saturated gain approaches a
constant value gsat ≈ 18mS independently of the array length. (c) The oscillation frequency
remains stable with changes in array length, showing less than 1% variation when the number
of array elements doubled from N = 10 to N = 20. (d) Oscillation signal’s voltage amplitude
at the active elements at the center of the array (n = N/2), from N = 10 to N = 20.

demonstrates that the oscillation frequency within the array is fosc = 21.67MHz, confirming

that the concept of extracting more power from a longer array with stable oscillation is

feasible. The result shows that the oscillation frequency changes by less than 1 % as the

system length increases from N = 10 to N = 20.

Figure 8.9(d) shows the voltage amplitude of the oscillation signal at the middle gain element

(n = N/2) for array lengths ranging from N = 10 to N = 20. For instance, in an array

with N = 14, the voltage amplitude at the center element is Vg,7 = 1.6 V. To further

validate the measurement results, the power provided by this active element in the steady

state regime is calculated as Pg,7 ≈ 23 mW, which corresponds to the measured power Pr,4

delivered on Yr shown in Fig. 8.6(g). Furthermore, since the system operates in a saturated

gain regime with approximately constant gain across the array, the total power produced

by all the active elements is expected to follow Pg ≈ N × Pg,N/2, where Pg is the total

power and Pg,N/2 represents the power delivered by the middle gain element. By analyzing

the voltage distribution for different array lengths and the total power, we confirm that the
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system maintains a uniform operational state due to the EPD.

8.10 Appendix D: Measurement of Negative Conduc-

tance in the Saturated Regime

Several approaches can provide the negative conductances for the proposed array. In the

experiment, we have used the circuit shown in Fig. 8.10(a) that utilizes an operational

amplifier (op amp) to generate a negative impedance. The converter circuit modifies the

impedance such that Zin = −(1/g + 1) + 1 Ω. In our experiment, we used 1/g = 47 Ω and

R2 = 1 kΩ to achieve the small-signal gain of g = 21.3 mS.

To measure the gain in the saturated regime, we first measured the voltage vin = v1 at the

nonlinear active element in Fig. 8.10(a) in the saturation regime. We also measured the

voltage across a dummy 1 Ω resistor that leads to the calculation of the input current of

the active element. Note that we have added another 1 Ω in the inverter in series to 1/g

to compensate for the dummy resistance 1 Ω, resulting in Zin = −1/g = −1/21.3 (1/mS).

In Fig. 8.10(b), we show the measured v1 and v2 for the fourth nonlinear gain element with

respect to the ground using an oscilloscope. The voltage difference is measured to estimate

the current iin = (v1− v2)/(1Ω); the measured saturated gain is calculated, in phasor terms,

as Ygsat = Iin/Vin. As expected, the phase shift observed between the voltage v2 and v1 across

the 1Ω resistor is negligible, as shown in Fig. 8.10(b), leading to an almost real-valued Ygsat.

To further analyze the voltages v1 and v2, we used a spectrum analyzer to measure their

spectrum in Fig. 8.10(c), that confirm that their oscillation frequency is 21.2 MHz. These

measurements are done using a resolution bandwidth of 300 kHz and a video bandwidth

of 300 kHz. Based on the measured voltages, we obtained a saturated gain admittance

gsat,4 ≈ 19 mS.
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Figure 8.10: (a) Schematic of the circuit using an op amp to provide a negative conductance
Yg = −g. (b) Measured time-domain signals v1 and v2 in phase, showing that Ygsat,4 is mainly
real. (c) The measured frequency spectrum of v1 and v2, showing the oscillation frequency
is 21.2 MHz when N = 6.
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