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Chapter 1

Introduction

1.1 Motivation: the role of fluid in seismicity

Fluid-fault interaction in the Earth’s crust can cause earthquakes (Ellsworth, 2013). Sub-

surface fluid changes can cause spatial and temporal changes in pore pressure and stress that

contribute to fault (in)stability (Segall and Lu, 2015). Increasing fluid pore pressure on faults

reduces the effective normal stress (Terzaghi et al., 1943) and makes earthquakes more likely.

Only small changes in stress (0.01-0.1 MPa) (Reasenberg and Simpson, 1992; Stein, 1999) are

needed to reactivate faults and cause earthquakes. A variety of natural and anthropogenic pore

pressure and stress changes can reactive faults. A non-exhaustive list includes natural tectonic

plate motion, surface hydrologic loads, production/injection of fluids, and a host of industrial

activity (e.g. hydraulic fracturing, CO2 sequestration, and enhanced geothermal exploration).

With increasing industrial activities across the globe, the rise of human-induced earth-

quakes also increased substantially over the past two decades and is projected to increase further

(Foulger et al., 2018; Keranen and Weingarten, 2018). A considerable amount of seismicity

was observed in historically aseismic regions, particularly in regions with large volumes of

wastewater disposal (Ellsworth, 2013). Scientifically, injection-induced seismicity created a
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natural laboratory that provided scientists with invaluable data to better understand the earthquake

process. Societally, the moderate magnitude induced events (M5+) created risk in historically

aseismic regions. Several induced earthquakes have had damaging effects, including the 2011

M5.6 Prague, Oklahoma earthquake, the 2011 M5.3 Trinidad CO earthquake and the 2012 M4.8

Timposon Texas earthquake (Keranen et al., 2013; Rubinstein et al., 2014; Frohlich et al., 2014).

Moderate magnitude events associated with industrial activities spurred an area of ongoing

research investigating how to best mitigate the seismic hazard/risk associated with industrial

activities (Schultz et al., 2021). Currently, traffic light protocols are implemented in order to

manage and reduce risks of induced seismicity (Bommer et al., 2006; Zoback, 2012). However,

these protocols remains have been implemented with varying degree of success (Woo et al., 2019;

Ellsworth et al., 2019). Recent efforts have redefined improved traffic light protocols through a

variety of different methods (Douglas and Aochi, 2014; Mignan et al., 2017; Baisch et al., 2019;

Cremen and Galasso, 2020; Langenbruch et al., 2020).

Part of the difficulty in choosing what strategies are best to mitigate induced hazard/risk

is the ambiguity in forecasting the magnitude of the events caused by human-induced changes.

For example, it remains somewhat in contention whether or not the magnitude of earthquakes

are a function of the total volume of fluid injected or as large as statistically expected (McGarr,

2014; Van der Elst et al., 2016). Additionally, it is clear that the rate of fluid pressure increase

also contributes to increasing seismicity (Toda et al., 2002; Qin et al., 2022). However, models

agree generally that continuing fluid injection increases the chance of a larger earthquake. The

fundamental mechanism, in most instances, is not that the industrial activities are increasing the

total energy of the system, but instead are accelerate preexisting and critically stressed faults

towards failure (Walsh III and Zoback, 2015; Zoback and Townend, 2001).

Therefore, in nearly all cases of human-induced seismicity, there exists stress changes

that trigger seismicity on preexisting and critically stressed faults (McGarr et al., 2002). The fluid

effects that promote and cause failure of a particular fault may not be the same effects that cause
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failure in successive earthquakes (Glasgow et al., 2021a; Zaliapin and Ben-Zion, 2016). The

discrimination of events that were caused by the release of tectonic energy and those triggered by

human-induced stress changes is capable of revealing important characteristic of the earthquake

process (Eyre et al., 2019; Glasgow et al., 2023). Furthermore, efforts have extended to detailed

simulations of induced seismicity to explore the physical conditions that may result in larger

magnitude events, like runaway or unbounded ruptures that extend outside the perturbable region

of a fault (Gischig, 2015; Norbeck and Horne, 2018; Kroll and Cochran, 2021).

Outside of the realm of industrial activities, hydrological loads from natural and anthro-

pogenic sources can contribute to increases in pore pressure, flexural stresses, and poroelastic

effects that stimulate seismicity (Simpson, 1976; Talwani, 1997; Gupta, 1992; Roeloffs, 1988b;

Gupta, 2002; Luttrell et al., 2007; Brothers et al., 2011). Stimulated seismicity may occur

shortly after reservoir impoundment of the hydrologic load from poroelastic coupling, or at longer

timescales due to the increase of pore pressure at depth as a result of permeability dependent

fluid diffusion (Talwani, 1997; Rajendran and Talwani, 1992). Permeability is enhanced within

fault damage zones, which decays with distance away from the fault core (Fialko et al., 2002a;

Cochran et al., 2009; Mitchell and Faulkner, 2009). The increased permeability act as fluid

pathways that can facilitate fluid transport to seismogenic depths.

It is clear that our understanding of the role of fluid in seismicity is extensive, ongoing, and

growing (Ge and Saar, 2022). In all instances of fluid induced seismicity discussed, the accurate

characterization of fluid-fault interactions is dependent on calculations of pore pressure and stress

through space and time. Therefore, the necessity of physics-based models that can accurately

resolve the spatio-temporal pore pressure and stress distribution is critical. To evaluate pore

pressure and stress conditions requires time-dependent coupling between the porous media and

fluid pressure as well as the fluid flow within the media addressed by the theory of poroelasticity.
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1.2 Linear Poroelasticity

The theory of linear poroelasticity requires the linear constitutive relations described

by Biot (1941) coupled to fluid flow of Darcy’s law (Darcy, 1856). Two formulations of Biot

poroelasticity widely used today are Rice and Cleary (1976a) and Wang (2000). The geophysics

community has widely adopted Rice and Cleary (1976a), with the rock mechanics community

widely adopting Wang (2000). I prefer to use Wang’s formulation as it more clearly resembles

the equations solved in the finite-element method employed in this dissertation (Wang, 2000).

The constitutive equations, six for stress (or strain), and one for pore pressure (or increment of

fluid content) (the latter depending on what is chosen as the independent or dependent variable)

are combined with three (one for each dimension) force equilibrium equations and an additional

pressure diffusion equation by merging Darcy’s law with the requirement of conservation of fluid

mass (Wang, 2000).

Accordingly, the governing equations for a fully coupled linear poroelastic 3D medium

are definable as (Wang, 2000):

G∇
2ui +

G
1−2v

∂2u j

∂xi∂x j
= α

∂P
∂xi

−Fi (1.1)

α
∂εii

∂t
+Sε

∂P
∂t

= k
µ∇2P+Q (1.2)

Where G is the shear modulus, u the displacement, v the Poisson’s ratio, α the Biot-Willis

coefficient, F the body force, k the permeability, µ the fluid viscosity, Sε the constrained specific

storage, εii the dilatancy (trace of the strain tensor), P the pore pressure, and Q the fluid source

(Wang, 2000). These equations are nearly identical to the classic equations for linear elasticity

and diffusion of pore pressure, except for the coupling of pore pressure in the conservation

of momentum equation (1.1) and the fluid flow coupled to strain by the requirement of fluid

continuity (1.2).
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There are some often mistaken similarities, yet important differences, with these equations

and variables compared with hydrogeologic definitions of fluid flow. The hydrogeologic specific

storage (Ss, [m−1]) is defined as the volume of water release per unit decline of head per unit

bulk volume while maintaining the representative element volume (REV) in a state of zero lateral

strain and constant vertical stress:

Ss =
1

Va

dVw

dh
=

1
Va

dVw

dP
dP
dh

=
1

Va

dVw

dP
γw (1.3)

The hydrogeologic one-dimensional (uniaxial) specific storage Ss can also be represented in terms

of pressure (S = Ss
ρ f g). With the proper substitutions (Wang, 2000) we arrive at Jacob’s equation

(Jacob, 1950), a common mechanical representation of hydrogeologic specific storage:

S =
α2

Kv
+φ(

1
K f

− 1
Kφ

) (1.4)

S =
1

Kv
+φ

1
K f

(1.5)

Where Kv is the uniaxial drained bulk modulus, K f the fluid bulk modulus, Kφ the unjacketed pore

bulk modulus, and K′
s is the unjacketed bulk modulus (the solid grain bulk modulus). Equation

(1.5) is under the assumption that solid grains and pores are incompressible ( 1
K′

s
= 1

Kφ
= 0). Note

that α = 1− K
K′

s
. It is important to realize that S here is not the same as Sε found in Equation (1.2)

The major difference being that Sε is the volume of water released per unit decline of head per

unit volume while holding the control volume constant. Therefore, Sε will always be smaller than

S since the changing volume can not contribute to the fluid released. It is helpful to represent the
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constrained specific storage in terms of compressibilities:

Sε =
1
K′

s
(1− K

K′
s
)+φ(

1
K f

− 1
Kφ

) (1.6)

Sε = φ
1

K f
(1.7)

Equation (1.7) is under the assumption that solid grains and pores are incompressible ( 1
K′

s
= 1

Kφ
=

0). Comparing (1.5) and (1.7) yields an important definition of the storage coefficients Sε ≤ S

which through more rigorous means can be shown to always be the case without the assumption

of incompressible grains or fluids when ν >−1 (Wang, 2000).

Under uniaxial strain and constant vertical stress, ie. S is the specific storage variable,

then equation (1.2) can be simplified to the classic hydrogeology groundwater flow equation

(Wang, 2000):

S
∂P
∂t

=
k
µ

∇
2P+Q (1.8)

Ss
∂h
∂t

= KH∇
2h+Q (1.9)

Compared with equation (1.2), the major differences are the change of specific storage and the

coupling of the strain field, ie. α∂εkk
∂t into the fluid flow equation. The assumptions of uniaxial

strain and constant vertical stress misrepresent the strain field at all REV in the domain since the

fluid flow also distorts the strain field.

The reason for elaborating on the differences between the fully coupled poroelastic

equations and the groundwater flow equations is due to use of these equations in modeling fluid

flow in geological settings. Different simplifications to the choice of governing equations will

result in different pore pressure and stress calculations through the physical model domain. Due

to the coupling found in equations (1.1 and 1.2), analytical solutions are limited and numerical

6



models using the finite-element method are the only viable solution for 3D heterogeneous real-

Earth problems.

In this dissertation, I resolve the fully coupled poroelastic equations (1.1 and 1.2) by

building and solving numerical models with the finite-element software Abaqus (Dassault Sys-

temes, 2020). Large Earth models are computationally expensive and we therefore required

resources from the CSRC high-performance computing cluster at San Diego State University

(Computational Science Research Center, 2023). The spatial evolution of pore pressure and

stress is often post-processed in Matlab in order to characterize the fluid effects on faults and

characterize fault instability.

1.3 Characterizing Fault Instability

An important development in visualizing fault instability is the graphical tool called the

Mohr circle (Mohr, 1882). All possible orientations of shear and normal stress (for plane stress)

acting on different angled failure planes can be described by a semicircle, called a Mohr circle

(Figure 1.1).

Combining the the Mohr circle with a failure threshold allows for the characterization of

fault instability. The Mohr-Coulomb failure criterion (Coulomb, 1773) can be represented as the

linear envelope obtained from a plot of the shear stress versus the effective normal stress (Figure

1.1 - red line). This envelope represents a critical shear stress, that when reached by the material,

will cause failure. Any configuration of stress below this threshold is stable and anything tangent

or greater is unstable. This line is expressed as:

|τmax|=C+µ f σn (1.10)

Where |τmax| is the maximum shear strength limit, C is the cohesion, µ is the coefficient of friction
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(Byerlee, 1978a), and σn is the effective normal stress.

The theory of effective stress was first developed by Terzaghi (Terzaghi et al., 1943) to

describe how pore pressure changes the state of stress. The effective stress σn is defined as (Nur

and Byerlee, 1971):

σn = σ+P (1.11)

σn = σi j +δi jαP (1.12)

Pore pressure (P) only effects the normal stress but not the shear stress. Increasing pore pressure

will reduce the effective normal stress, which shifts the Mohr-circle closer to the failure envelope.

Thus, increasing pore pressure will always reduce the effective stress and promote failure. It is

important to note that poroelastic stresses will change the shape of the circle as well e.g., Fig. 1

Keranen and Weingarten, 2018.

In all chapters of this thesis, increasing pore pressure from hydrologic loading or the

injection of fluid is critically important to the change in effective stress. Decreasing effective

stress due to increasing pore pressure always contributes to the destabilization of faults. The

change in pore pressure often represents the largest component of the Coulomb stress change

in our models. When this is not the case, poroelastic stress contributes more to failure on the

fault and is frequently important in the far-field (Segall and Lu, 2015). In our models, we define

Coulomb stress changes as the relative change from background conditions (King et al., 1994a;

Cocco, 2002):

∆CFS = ∆τs +µ(∆σn +∆P) (1.13)

in which ∆τs is the change in shear stress, µ is the coefficient of friction (Byerlee, 1978a; Sibson,

1994; Fialko and Jin, 2021b), ∆σn is the change in normal stress (increases in compression are

deemed negative) and ∆P is the change in pore-fluid pressure (increases in fluid pressure are

deemed positive). The sign convention indicates that a positive change in the effective stress ∆σn,
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as well as a positive change in shear stress ∆τs, promote failure.

1.4 Dissertation Summary

This dissertation investigates how fully coupled poroelastic models can improve our

understanding of fluid-fault interactions from hydrological loads and wastewater injection. This

dissertation is structured follows: In Chapter 2, we use a numerical model and paleoseismic data

to study the poroelastic stress induced by ancient Lake Cahuilla on the Southern San Andreas

Fault over the past millennium. We find that stress and stressing rate changes were likely sufficient

for triggering major earthquakes in the paleoseismic record. In Chapter 3, we combine statistical

methods with a poroelastic model of to produce a map of fluid injection to forecast seismic hazard

associated with wastewater injection in the Raton Basin. We also build an optimization framework

on top of this forecasting model in order to maximize wastewater injected while reducing the

seismic hazard. In Chapter 4, we combine machine learning random forests with a poroelastic

model of fluid injection to forecast seismicity rate at the Paradox Valley Unit, CO. The induced

seismicity is further treated with a game theory analysis to procure features that contributed the

most to help decipher earthquake triggering mechanisms of the induced earthquakes. The analysis

is complemented by a nearest neighbor distance clustering analysis to gain further insight into the

type of earthquakes that are triggered more predominantly from injection stress stress direction or

earthquakes triggered predominantly by prior earthquakes.
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Tables and Figures

Table 1.1: Symbols (by order of appearance).

G shear modulus
u displacement
ν Poisson’s ratio
α Biot-Willis coefficient
k permeability
µ fluid viscosity

Sε constrained specific storage
P pore pressure
Ss hydrogeologic uniaxial specific storage
Va bulk volume from which water is released
Vw volume of water released from storage

h hydraulic head
γw specific weight of water
S uniaxial specific storage

ρ f fluid density
Kv uniaxial drained bulk modulus
K f fluid bulk modulus
Kφ unjacketed pore bulk modulus
K′

s unjacketed bulk modulus
KH hydraulic conductivity

|τmax| maximum shear strength limit
C cohesion

µ f coefficient of friction
σn effective normal stress

CFS Coulomb failure stress
τs shear stress
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Figure 1.1: Mohr-Coulomb Diagram illustrating the effect of pore on the effective normal
stress. The leftmost intersections of the Mohr circle and the x-axis is the σmax and the rightmost
intersection of the Mohr circle is the σmin. Both are equally reduced by the increasing pore
pressure which shifts the Mohr circle closer to the failure envelope. The dash circle represents
the change from the initial state with increasing pore pressure. During injection or hydrological
loading the shift towards failure increases the chance of an earthquake.
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Chapter 2

Major Southern San Andreas Earthquakes

Modulated by Lake Filling Events

Hydrologic loads can stimulate seismicity in the Earth’s crust (Talwani, 1997), however

evidence for triggering of large earthquakes remains elusive. The Southern San Andreas Fault

(SSAF) in Southern California lies next to the Salton Sea (Tostrud, 1997), a remnant of ancient

Lake Cahuilla that periodically filled and desiccated over the last millennium (Waters, 1983;

Philibosian et al., 2011; Rockwell et al., 2018). Here, we use new geologic and paleoseismic data

to demonstrate that the past 6 major earthquakes on the SSAF likely occurred during highstands

of Lake Cahuilla (Rockwell et al., 2018; Rockwell et al., 2022). To investigate possible causal

relationships, we computed time-dependent Coulomb stress changes (King et al., 1994b; Cocco,

2002) due to variations in the lake level. Using a fully coupled model of a poroelastic crust (Rice

and Cleary, 1976b; Wang, 2000; LaBonte et al., 2009) overlying a viscoelastic mantle (Segall,

2010; Barbot and Fialko, 2010), we find that hydrologic loads increased Coulomb stress on the

SSAF by several hundred kilopascals, and fault stressing rates by more than a factor of 2, likely

sufficient for earthquake triggering (King et al., 1994b; Cocco, 2002). The destabilizing effects

of lake inundation are enhanced by a non-vertical fault dip (Fialko, 2006; Lin et al., 2007b; Fuis
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et al., 2012; Lindsey et al., 2014), presence of a fault damage zone (Fialko et al., 2002b; Cochran

et al., 2009), and lateral pore pressure diffusion (Caine et al., 1996; Bense et al., 2013). Our

model may be applicable to other regions where hydrologic loading, either natural (Cocco, 2002;

Nof et al., 2012) or anthropogenic (Talwani, 1997; Gupta, 1992), was associated with significant

seismicity.

2.1 Main

The Southern San Andreas Fault (SSAF) is the only historically quiescent seismogenic

section of the San Andreas Fault system (Fig. 1), believed to pose the largest seismic hazard in

California (Weldon et al., 2005; Fialko, 2006; Field et al., 2014). The last major earthquake on

the SSAF occurred around 1726 (Fumal, 2002). The modern open interval of ∼300 years is well

in excess of the average recurrence interval of 180±40 years over the last millennium (Fumal,

2002; Philibosian et al., 2011; Rockwell et al., 2018). Previous studies suggested that at least

some large events on the SSAF may have occurred during highstands of ancient Lake Cahuilla

(Gurrola and Rockwell, 1996; Thomas and Rockwell, 1996; Waters, 1983). Lake Cahuilla was

a prehistoric lake that formed from periodic meandering of the Colorado River north into the

Salton Trough, and had an estimated maximum volume of 236 km3, ref. (Rockwell et al., 2018).

Filling and draining of the lake subjected the SSAF system to surface loads corresponding to

∼100 meter-deep body of water (Gurrola and Rockwell, 1996; Thomas and Rockwell, 1996;

Waters, 1983). Prior studies suggested that loading due to ancient Lake Cahuilla inhibited failure

on most of the SSAF, except maybe for a small portion within the lake boundary (Luttrell et al.,

2007), or that triggering of large events on the SSAF was mediated by slip on nearby extensional

stepover faults (Brothers et al., 2011). Here, we combine new paleoseismic and geologic data

with state-of-the-art numerical modeling to investigate the relationship between lake loading and

major earthquakes on the SSAF over the last ∼1100 years.
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Paleoseismic evidence is critically important in determining both the timing of large

earthquakes and lake history. Previous work at the Coachella paleoseismic site, just below the

ancient Lake Cahuilla shoreline (Fig. 1), suggested five probable and two possible earthquakes

over the last millennium (Philibosian et al., 2011). Recently, Rockwell et al. (Rockwell et al.,

2022) reinterpreted the stratigraphy at the Coachella site, building upon the results developed for

the past two full lake inundations, which consider both the historical record and drowned stump

ages (Rockwell et al., 2018). Three different lake level models, varied by different sampling

assumptions, were constrained by over 122 radiocarbon dates across several paleoseismic sites in

the ancient Lake Cahuilla inundation zone. The resulting nearly 2000 year history of ancient Lake

Cahuilla is based on an extensive compilation and review of radiocarbon samples throughout the

lake basin, and on the unique character of some stratigraphic unit interpretations. Distinct organic

layers, measuring 1-2 cm in thickness and originally described as “soils”, were reinterpreted

to be the result of lake inundations. These organic-rich layers record where organic materials

floated to near the shoreline and were incorporated into a lake sequence during rising lake waters.

Supporting this interpretation is the fact that organic soils are not present in the hyper-arid

environment of the Lake Cahuilla basin and that such organic layers have only been identified at

or below the shoreline of Lake Cahuilla (Sieh, 1986; Gurrola and Rockwell, 1996; Rockwell et

al., 2022). Similar observations have also been made along the Laguna Salada Fault further to the

south (Mueller, 1984).

Based on these insights into the paleo-lake chronology, we interpret that 6 of the past 7

SSAF earthquake horizons lie within lacustrine sediments. This is critical, as new paleoseismic

data that refine the history of lake ages (Rockwell et al., 2022) also place tighter constraints on the

timing of past earthquakes. We converted the 14C radiocarbon ages of organic material to calendar

years C.E. using the OxCal algorithm v. 4.4 and the history of atmospheric 14C concentrations

(Bronk Ramsey, 2009; Reimer et al., 2020). The OxCal algorithm produces probability density

functions (PDFs) of each date by convolving uncertainties in the radiocarbon measurements.
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An ordered sequence based on the stratigraphic layering provides additional constraints to the

radiocarbon age PDFs. The statistically consistent earthquake PDFs are calculated based on

the interpretation of their timings in conjunction with the full sequence. The details of our

interpretation of the paleoseismic record and OxCal model are provided in the Supplementary

Materials. Our interpretations of where earthquake horizons lie in the stratigraphy are mostly

unchanged from Philibosian et al. (2011). The major differences in earthquake ages are a result

of re-classifying which sediments are lacustrine, as well as assuming most charcoal and all

organic layers are from material that grew within the lake perimeter, and therefore have ages

corresponding to the preceding dry periods between lakes (Rockwell et al., 2022). Figure 2

shows the calculated PDFs for major seismic events that occurred on the SSAF over the last

∼1100 years (see Extended Data Table 1 for earthquake dates). Also shown in Fig. 2 is the

preferred history model of Lake Cahuilla (Rockwell et al., 2022) that includes the following

six highstands: 1731-1733 CE (Lake A), 1618-1636 CE (Lake B), 1486-1503 CE (Lake C),

1192-1241 CE (Lake D), 1007-1070 CE (Lake E), 930-966 CE (Lake F). Highstands are preceded

by a 13 yr-long inundation period and followed by a 50 yr-long dessication period consistent with

prior lake models (Rockwell et al., 2018). The same radiocarbon dates are used to inform the

timing of the earthquake and lake ages, but the lake timings are further constrained by climate

data (Rockwell et al., 2022). While previous studies were inconclusive about temporal correlation

of the earthquakes and lake episodes over the last millennium (Philibosian et al., 2011), the

new earthquake history strongly suggests that all lake filling events were accompanied by large

earthquakes (Fig. 2).

Such a correlation between the earthquake and lake timings is unlikely coincidental. A

Monte Carlo statistical test of the lake and earthquake timings confirms a non-random relationship

with >97% confidence (Extended Data Fig. 1). Also, hydrologic loads are known to stimulate

seismicity (Roeloffs, 1988a; Segall, 1989; Gupta, 1992; Gupta, 2002; Talwani, 1997). Possible

mechanisms include increases in pore pressure, flexural stresses, and poroelastic effects (Luttrell et
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al., 2007; Brothers et al., 2011). Seismicity may be triggered shortly after reservoir impoundment

by the poroelastic load of the lake at the Earth’s surface, as well as on longer time scales due to

the time-dependent diffusion of pore pressure to greater depths (Roeloffs, 1988a; Rajendran and

Talwani, 1992; Talwani, 1997). Increases in pore fluid pressure, in general, bring faults closer to

failure, and may potentially advance the timing of large events (Simpson et al., 1988; Talwani,

1997; Tao et al., 2015). Another factor relevant to triggering of seismicity is the presence of fluid

pathways due to rock damage. Faults are commonly associated with damage zones, (Fialko et al.,

2002b; Cochran et al., 2009) resulting in enhanced permeability that decays with distance away

from the fault core (Mitchell and Faulkner, 2009; Dor et al., 2006; Rockwell et al., 2009; Morton

et al., 2012; Rempe et al., 2013). Fault damage zones can therefore substantially facilitate fluid

transport to seismogenic depths (Caine et al., 1996; Bense et al., 2013). There is evidence for an

extensive SSAF damage zone from field observations at surface exposures, borehole data, and

Earth tidal analyses (Morrow et al., 2014; Xue et al., 2016). Models of lake loading therefore need

to account for the fully coupled poroelastic response and the heterogeneous hydro-mechanical

properties of the fault zone and ambient crust.

To quantify the effects of lake loading, we built a fully-coupled, three-dimensional finite

element model of the Salton Trough that accounts for time-varying surface loads, a realistic fault

geometry, crustal poroelasticity, and viscoelastic relaxation in the ductile substrate (see Methods

and Extended Data Fig. 2). We performed numerical simulations in which we varied material

properties of the host rocks and damage zone to constrain a plausible range of pore pressure

and stress evolution due to ancient Lake Cahuilla (Extended Data Fig. 3 ; Figs. S1-S4). The

temporal evolution of the lake load, which is ascribed as both a pore pressure and vertical stress

boundary condition at the Earth’s surface, is constrained by the latest geologic data (Rockwell et

al., 2022) (Fig. 2). Unless otherwise noted, models presented below assume the lake depth of

97 m, consistent with previous studies (Luttrell et al., 2007), but we also considered a spatially

variable surface load controlled by bathymetry. Each lake episode consists of a unique filling,
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highstand, desiccation, and consolidation history. We resolve the coupled deformation transient

from the refined ∼1100 year lake history with ∼200 adaptive time steps across our numerical

model domain. The increase in pore pressure within the basement is highly dependent on the

assumed parameters of the fault zone, in particular the damage zone permeability (Extended

Data Table 2). For a given loading history, higher values of permeability give rise to greater

pore pressures at depth (Extended Data Fig. 3). Additionally, similar to the analytic solution

(see Methods; Extended Data Fig. 4), we observe the “memory” effect of pore pressure at depth,

whereby subsequent lakes can contribute to higher pore pressure due to the diffusive time lag of a

previous lake superimposing on the next (Fig. 3).

The evolution of faults toward (or away from) failure is commonly described in terms

of the Coulomb failure stress (∆CFS) (Roeloffs, 1988a; King et al., 1994b; Cocco, 2002) (also,

see Methods). The calculated values of ∆CFS resolved on a potential failure plane (Figs. S3

and S6) exhibit a strong sensitivity to the fault geometry, and in particular the fault dip angle.

We assume an average strike of 313o based on the fault trace (Fig. 1) (USGS and California

Geological Survey, 2019) and a fault dip of 60o NE, which is constrained by geodetic and seismic

data (Fialko, 2006; Lin et al., 2007b; Fuis et al., 2012; Schulte-Pelkum et al., 2020). ∆CFS values

are inversely proportional to the fault dip angle: a steeper fault experiences a smaller change

in the Coulomb stress, and a more shallowly dipping fault experiences a larger change in the

Coulomb stress (Fig. S1). Another factor affecting ∆CFS is a time-dependent flexure due to the

varying surface load and the associated viscoelastic relaxation in the underlying ductile substrate.

For a range of possible substrate viscosities suggested by previous work (Luttrell et al., 2007),

the effects of viscoelastic relaxation on ∆CFS are relatively minor (Fig. S2). Our simulations

indicate that variations in the pore pressure are the dominant contributor to the total ∆CFS (Figs.

S3 and S4). Models that used a simplified representation of only the elastic crust suggested higher

values of ∆P but lower values of the effective ∆CFS (Figs. S3 and S4).

We find that the magnitude of shear stress (∆τs), effective normal stress (∆σ̄n), pore
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pressure (∆P), and ∆CFS increase throughout the sequence of flooding cycles (Fig. 4a). Most

importantly, ∆CFS remains predominantly positive across the fault surface during each cycle

(Fig. 4a and Video S1-S3). Positive ∆CFS outside the lake boundary, albeit smaller in magnitude,

is a consequence of lateral pore pressure diffusion (Fig. 3 and Video S1-S3). When the lake is at

highstand, shear stress is positive (i.e., encouraging failure) in parts of the fault closest to the lake

center, and slightly negative (i.e., inhibiting failure) outside of the lake. In contrast, the normal

stress is negative (i.e., inhibiting failure) directly below the lake due to the increased vertical

compression during lake impoundment. However, the effective normal stress stays positive on

much of the fault due to increases in pore pressure. The modeled compression directly below the

lake simply moderates the magnitude of the Coulomb stress in that region. Models with lower

permeability display a similar evolution, although the spatial extent of pore pressure diffusion is

smaller.

Figure 4 depicts evolution of ∆CFS for a single point on the fault plane near the center

of the lake at the representative seismogenic depth of 7km (Point 21 in Fig. S5) for a range of

models (M1-M5, see Extended Data Table 2) with different permeabilities of the fault damage

zone (Lin et al., 2007b; Brothers et al., 2011). In each model, as the lake fills, the ∆CFS increases

rapidly due to the initial lake impoundment (i.e., undrained response). During the desiccation

phase of the lakes, the overall ∆CFS decreases, but remains mostly positive except for the current

dry period from ∼1733 to the present, and dry period between lakes C and D. The models at the

high end of the assumed damage stays positive in most parts of the fault zone permeability reveal

a relatively rapid diffusion of pore pressure from the surface to seismogenic depths. The increased

rate of ∆CFS during the lake highstands is indicative of the higher permeability. Additionally, the

results depict how the short time interval between highstands in the first 2-3 lakes contributes to an

overall cumulative increase in the Coulomb stress for the second (Lake E) and sometimes the third

(Lake D) lakes, depending on the modeled fault permeability and depth. The remnant diffusion of

pore pressure due to the first (F) lake coincides with the impoundment of the subsequent lake,
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producing a larger overall ∆CFS. This additive effect is even more pronounced for lower fault

zone permeabilities. We acknowledge that shorter lake highstands would reduce the additive

effect on ∆CFS discussed in this paper as we use the maximum durations for the lake highstands

(Rockwell et al., 2022). We also performed simulations in which the surface load is controlled by

a local bathymetry. The results are similar to the reference model assuming a constant depth of 97

m, except the calculated stress changes and stressing rates are reduced by ∼40%. This is because

the average lake depth is less than the maximum depth of 97 m. Predictions of the reference

model therefore should be considered an upper bound. Depending on the rate of diffusion, depth

of interest, and time interval between lakes, the effect of previous lakes may persist during

subsequent impoundments. This memory effect is more pronounced for Model 3 and Model 4

due to lower permeability at depth (Extended Data Fig. 5). All models, including Model 5, which

does not include a fault damage zone, produce positive ∆CFS values greater than ∼0.1 MPa,

likely large enough for earthquake triggering (King et al., 1994b; Goebel et al., 2017; Verdecchia

et al., 2021).

In addition to the magnitude of stress changes, earthquake triggering may be affected

by variations in the stressing rate (Toda et al., 2002; Qin et al., 2022). We evaluate the ratio of

the calculated stressing rate from the lake load to the average tectonic loading rate through time

(Fig. 4b). The latter is calculated using a geodetically constrained dislocation model assuming a

secular slip rate of 18 mm/yr (Lindsey and Fialko, 2013), which is in agreement with the most

recent constraints on the long-term geologic slip rate (Blanton et al., 2020) (and refs. therein).

The estimated tectonic stressing rate at seismogenic depth is σ̇13 = 16 kPa/yr (see Methods). We

find that the largest perturbations in stressing rates occur, as expected, during the early flooding

stages of each of the past six lakes (Fig. 4b). For 6 of the past 7 earthquake events on the SSAF

(±2σ uncertainties; Extended Data Table 1), the resolved stressing rate from lake loading was

greater than the tectonic loading rate. The respective perturbations remain positive through the

lake highstands until dessication begins, during which the stressing rates drop below the average
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interseismic stressing rate. Over the past ∼1100 years, the fault stressing rate during lake loading

increased by more than a factor of 2 (Fig. 4b). These high stressing rates from lake loading

persisted for multiple decades during each lake cycle. The relationship between lake cycles and

earthquakes is potentially known at higher precision exclusively from the stratigraphy. There is

evidence to suggest that events Coa-5 and Coa8+ may have occurred during lake filling phases

while Coa-1, Coa-2 ,Coa-3&4, and Coa-6 occurred during highstands (see Methods).

Loading from ancient Lake Cahuilla induced stress changes capable of triggering events

on the SSAF, increased ∆CFS across most of the fault, and on average increased peak stressing

rates during lake flooding well above the tectonic stressing rate (Fig. 4b; Video S1-S3). Larger

fault locking depths (Lindsey et al., 2014), smaller earthquake nucleation depths (Jin and Fialko,

2020), and elastic moduli of the host rocks (Eissa and Kazi, 1988) would result in a lower tectonic

stressing rate, and a correspondingly higher contribution of the lake loading. Our model does not

account for possible memory effects from earthquakes that occurred more than ∼1000 years ago,

as such effects are likely negligible if the interseismic interval exceeds several hundred years (see

Fig. 4a; also ref. (Salditch et al., 2020)). We also do not account for stress transfer due to slip on

subsidiary faults that could potentially amount to ∆CFS on the order of 1 MPa (Brothers et al.,

2011). Our models thus provide a conservative estimate for the modulation of stress on the SSAF

by the filling and desiccation of ancient Lake Cahuilla.

Our results bear on the current 300 yr-long quiescent period on the SSAF. Variations

in stress and stressing rate on the SSAF due to the lake load suggest that a gradual decline in

water level since ancient Lake Cahuilla’s last highstand may affect the timing of the SSAF’s

next event. Indeed, our model predicts predominantly negative ∆CFS for sufficiently long dry

periods. The negative ∆CFS during dry periods is primarily due to the flexure of the upper crust

caused by a decreased lake level, and, to a smaller degree, viscoelastic relaxation below the

brittle-ductile transition. A gradual decrease in the ∆CFS since the last highstand was briefly

reversed in 1905-1907 due to an overflow of the Colorado River into Salton Basin, which led

20



to formation of the present-day Salton Sea (Brothers et al., 2011). Our model predicts a sharp

increase in ∆CFS, on the order of 0.1 MPa, for most of the fault during the filling phase of the

Salton Sea from 1905-1907 (Figs. S11-S16). This increase in ∆CFS was accompanied by the 18

April 1906 MI 6.1 (MMI 8) event in the Salton Trough near Brawley, CA. The latter event was

previously argued to be triggered by the great 1906 California Earthquake near San Francisco that

occurred 11 hours before and 700 km away from the MI 6.1 event (Meltzner and Wald, 2003). It

is possible that such distant triggering was facilitated by the lake load. After 1907, the model

predicts a subsequent decrease in ∆CFS as the Salton Sea started to decline- below the 0.1 MPa

triggering threshold (Figs. S5-S11; Videos S1-S3). Further desiccation of the Salton Sea in the

future will continue to have a stabilizing effect on the SSAF, but potentially increase the stress to

be released in a future event (or a sequence of events).

Our results demonstrate how improved paleoseismic and paleo-lake records, together

with advanced models of hydrologic loading of a heterogeneous poroelastic crust, provide new

insights into the relationship between water level variations of ancient Lake Cahuilla and the past

7 major earthquakes on the SSAF. We find that increases in lake level result in positive Coulomb

stress changes on most of the SSAF with stressing rates as high as 2-3 times the tectonic loading

rate. Positive ∆CFS values are also seen on sections of the SSAF that are outside of the lake

due to lateral diffusion of pore pressure along a permeable fault zone. This indicates that our

model predictions are not strongly sensitive to uncertainties in the location of nucleation sites

of past (as well as future) large events on the SSAF (See Figs. S10-S16 and Videos S1-S3).

The pore pressure “memory effect” amplifies the contribution of successive lakes provided that

intervals between inundations do not significantly exceed the characteristic diffusion time within

the seismogenic layer. Our model may also be applicable to other areas where seismogenic faults

are subject to hydrologic loads from natural or anthropogenic sources (Nof et al., 2012; Gupta,

2002; Talwani, 1997).
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2.2 Online Methods

2.2.1 Calculation of the Coulomb stress changes

The change in ∆CFS is defined as (Roeloffs, 1988a; King et al., 1994b; Cocco, 2002):

∆CFS = ∆τs +µ(∆σn +∆P) (2.1)

where ∆τs is the change in shear stress, µ is the coefficient of friction, ∆σn is the change in normal

stress (increases in compression are deemed negative) and ∆P is the change in pore fluid pressure

(increases in fluid pressure are deemed positive). The sign convention indicates that a positive

change in the effective stress σ̄n = σn+P, as well as a positive change in shear stress ∆τs, promote

failure. In this paper, we assume a typical value for static friction of µ=0.6 (Byerlee, 1978b;

Sibson, 1994; Fialko and Jin, 2021a; Fialko, 2021), although it may vary considerably depending

on a rock type and ambient conditions (Lockner et al., 2011; Mitchell et al., 2013; Mitchell et al.,

2015). The Coulomb stress changes ∆CFS are computed by resolving the normal and absolute

shear stress components using a full stress tensor, the prescribed fault geometry, and sense of slip.

Calculations were performed using a Matlab toolbox Abaqus2Matlab (Papazafeiropoulos et al.,

2017).

Both the magnitude and sign of the estimated ∆CFS is sensitive to several parameters

in the context of poroelastic deformation, including: (i) the fault zone permeability, width, and

connectivity to regions where large seismic events nucleate. Higher permeability values allow

for pore pressure to diffuse faster, increasing pore pressure and ∆CFS at depth (Durham, 1997;

Miller, 2013). A larger fault zone width and pore connectivity may also increase pore pressure

and ∆CFS on the fault at greater depths (Chang and Segall, 2016). (ii) The fault dip angle (Fialko,

2006; Fuis et al., 2012), the varying geometry of the lake, and the concomitant surface load

(Luttrell et al., 2007). The lake load produces regions of relative compression and extension
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within the seismogenic crust (Extended Data Fig. 6). Regardless of the fault attitude and sense

of slip, increases in the fault-normal compressive stress are expected to inhibit failure, and

decreases in compressive stress are expected to promote failure. (iii) The undrained pore pressure

effect, without which the total pore pressure will be underestimated (Ge, 2011; Tao et al., 2015)

(Extended Data Fig. 6).

2.2.2 Fully-coupled 3-D finite element models

The governing equations for a fully coupled linear poroelastic three-dimensional medium

are defined as (Biot, 1941; Rice and Cleary, 1976b; Wang, 2000):

G∇
2ui +

G
1−2v

∂2u j

∂xi∂x j
= α

∂P
∂xi

−Fi (2.2)

α
∂εii

∂t
+Sε

∂P
∂t

= k
µ∇2P+Q (2.3)

Where G is the shear modulus, u the displacement, v the Poisson’s ratio, α the Biot-Willis

coefficient, F the body force, k the permeability, µ the fluid viscosity, Sε the constrained specific

storage, εii the dilatancy (trace of the strain tensor), P the pore pressure, and Q the fluid source

(Wang, 2000). Equations (2)-(3) are nearly identical to the classic equations for linear elasticity

and diffusion of pore pressure, except for the coupling of pore pressure in the conservation of

momentum equation (2) and the fluid flow coupled to strain by the requirement of fluid continuity

(3). Analytic solutions to the system (2)-(3) are restricted to a few highly idealized cases. We

solve the respective equations numerically using the three-dimensional finite element software

Abaqus-Simulia (Dassault Systemes, 2020; LaBonte et al., 2009).

As a preliminary cross-check, we considered a one-dimensional analytic solution for a

periodic fluctuation of a surface load in a poroelastic half-space (Roeloffs, 1988a) (see Methods).

For a reasonable choice of model parameters, the analytic solution reveals a cumulative increase
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in pore pressure at depth through multiple inundation events. This “memory” effect is due to the

fact that the maximum pore pressure increase at depth is delayed due to diffusion and does not

completely vanish before the next flooding event. The timing of the superposition depends on the

depth, permeability, and wavelength of the lake load. One important caveat is that the memory

effect only emerges when one considers multiple lake cycles.

To account for spatial heterogeneity and anisotropy of the hydraulic properties of the lake

sediments, upper crust and the fault zone, we construct a three-dimensional hydro-mechanical

model based on parameters constrained by previous studies. Tompson et al. (Tompson et al.,

2008) developed and arranged the hydro-stratigraphy of the Salton Trough sediments into three

broad classes in order of increasing depth: Brawley, Palm Springs and Imperial Formations. The

composition of these formations vary from sandstones to shales, shaley sandstones, conglomeratic

and arkosic sandstones (see Extended Data Table 2). The Salton Trough sediments directly

overlie a basement formation and upper mantle layer. The elastic parameters of the basement

formation are based on inference from seismic wave velocities, and hydrological parameters

are based on crustal depth dependencies which produce material properties close to those of

Westerly granite (Extended Data Table 2) (Allam and Ben-Zion, 2012; Shmonov et al., 2003a;

Wang, 2000). A crustal thickness of 18 km is assumed based on seismic observations of the

region (Richards-Dinger and Shearer, 1997). We modeled the upper mantle both as an elastic

(Sup. S6,S7) and a viscoelastic layer. The viscoelastic mantle is modeled similarly to previous

studies as a simple linear Maxwell material (Luttrell et al., 2007; Lundgren et al., 2009; Pearse

and Fialko, 2010; Johnson, 2013). We use a non-linear geometry option in Abaqus (NLGEOM )

based on the results of Hampel et al. (2019), who recommended it for models involving isostatic

effects (Hampel et al., 2019).

The fault damage zone is modeled in accordance with field hydrogeologic estimates of

SAF permeability (Xue et al., 2016). Xue et al. (2016) estimated a relatively high permeability

(10−14 m2) constrained by borehole tidal responses using earth tidal analysis compared with
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inferred permeability in the region and laboratory values (Brace, 1980; Morrow et al., 2014; Ross

et al., 2020). We use this estimate of permeability as a high-end value and explore a range of fault

damage zone permeabilities between the high-end value and permeability of the ambient crust

(i.e., no contrast in permeability between the fault zone material and the host rocks; Extended Data

Table 2). Therefore, we test the sensitivity of our model results to a range of fault permeabilities

from k = 10−14 m2 (Model 1) to values consistent with the intact crystalline basement k = 10−18

m2 (Model 5) (Shmonov et al., 2003a). The fault permeability in Model 1 is considered high

when compared to other fault zones worldwide or laboratory measurements. Thus, our preferred

model (Model 2) uses k = 10−15 m2 which is more consistent with regional measurements and

laboratory data (Brace, 1980; Morrow et al., 2014; Ross et al., 2020). Observations also show

that the effective shear modulus of rocks within a fault zone may be lower than that of the host

rock by as much as a factor of 2 (Fialko et al., 2002b; Cochran et al., 2009; Jeppson et al., 2010;

Lindsey et al., 2014). In our model the shear modulus of rocks in the fault zone is taken to be a

factor of 2 smaller than the shear modulus of the host rocks (Extended Data Table 2).

The numerical domain was developed and discretized in Abaqus/CAE (Dassault Systemes,

2020). The numerical domain has horizontal dimensions of 600 km x 600 km and a depth of

50 km, with the y-axis corresponding to North for the Universal Transverse Mercator (UTM)

11 North zone (Extended Data Fig. 2). The finite element mesh consists of nearly 2 million

first-order linear tetrahedral elements. Characteristic element sizes vary from 30,000 m in the

far-field to less than 100 m on the fault and lake edges. The SSAF fault trace is based on the

USGS Quaternary fault database (USGS and California Geological Survey, 2019). We model

a 60◦ northeast dip for the SSAF, which is consistent with geodetic slip models, seismicity,

and seismic tomography data (Lindsey and Fialko, 2013; Schulte-Pelkum et al., 2020). We

consider a 200 meter-wide damage zone centered on the SSAF slip interface (Cochran et al.,

2009; Jeppson et al., 2010; Morrow et al., 2014). The lake shoreline is based on coordinates used

by Luttrell et al. (2007) and a similar assumption in lake depth (97.2 m) across the entire lake

25



footprint to maintain consistency in model comparisons (Luttrell et al., 2007; Rockwell et al.,

2018). Models that considered spatially variable lake depth used the SRTM Digital Elevation

Model (Farr and Kobrick, 2000) and bathymetry of the Salton Sea to assign the vertical stress and

pressure boundary conditions at the nodes within the lake boundaries.

The evolution of the poroelastic effects requires a careful consideration of the model

boundary and initial conditions. We assume initial conditions of equilibrium stress and pore

pressure (chapter 9 in ref. Segall, 2010). These conditions imply that the model only considers

the effect of the lake and does not include any loading from tectonic stress. Gravity is included,

with stress and pore pressure calculated as relative change from geostatic equilibrium. This is an

important consideration as neglecting gravity in the viscoelastic model may overestimate surface

displacements on time scales that exceed the characteristic relaxation time (Pollitz and Sacks,

1997; Barbot and Fialko, 2010). The bottom and sides of the model are fixed in the surface normal

direction, and free of shear stress (a “roller” condition). The bottom of the poroelastic domain is

considered to be insulated (zero flux boundary condition), while the sides and top of the model

are considered to be permeable, and subject to vanishing pore pressure (P = 0). The top surface

of the model is stress-free outside of the lake area. The lake extent is the only boundary condition

that varies through time.

2.2.3 Tectonic Loading

We approximate the secular tectonic loading using a model of a screw dislocation in an

elastic half-space (Savage and Burford, 1973) (see equation 2.25 in ref. (Segall, 2010)). The

respective interseismic shear strain rate is given by:

˙ε13 =
−ṡ
4π

[
x2 −d2

(x2 −d2)2 + x2
1
− x2 +d2

(x2 +d2)2 + x2
1

]
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where ṡ is the fault slip rate (taken to be 18 mm/yr, ref. (Lindsey and Fialko, 2013)), x1 is the

horizontal coordinate with respect to the center of the fault damage zone, x2 is the assumed depth

of nucleation of large events, and d = 10 km is the estimated locking depth of the SSAF (Lin et

al., 2007a; Lindsey and Fialko, 2013).

For typical values of the shear modulus of the upper crust G = 28− 32 GPa (Lindsey

and Fialko, 2013), the stressing rate predicted by equation (6) at the bottom of the seismogenic

zone (x2=6-8 km) is σ̇13 = 2G(ε̇13) = 25− 51 kPa/yr. However, the distribution of stressing

rates throughout the seismogenic layer depends on details of a transition between the locked

and creeping parts of the fault(e.g., Lindsey and Fialko, 2016), as well as the degree of strain

localization below the brittle-ductile transition(e.g., Takeuchi and Fialko, 2012). A dislocation

model over-predicts the stressing rate, especially at the bottom of the seismogenic zone, due to a

strong stress singularity. Also, the depth distribution of earthquakes in California shows that most

earthquakes nucleate at depth of 3-4 km (Jin and Fialko, 2020). Therefore, we use the stressing

rate at the free surface (x2 = 0), σ̇13 ∼ 16 kPa/yr as a conservative lower bound, for the entire

seismogenic layer.

2.2.4 San Andreas Fault, Coachella Site Earthquake History

The Coachella paleoseismic site (33.72722◦N, 116.16976◦W) trenches provide evidence

of 6 or 7 lake phases and 5 to 7 earthquakes on the southern San Andreas fault over the last

millenium (Rockwell et al., 2022). Four types of stratigraphy have been identified at the Coachella

site: lake clay/silt, recessional sand, aeolian sand, and fluvial alluvium. The distinction between

aeolian sand and recessional sand may be difficult, as the aeolian sand can be derived entirely

from the recessional and shoreline sand deposits. Please refer to Philibosian et al. (2011) Figure 5
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for a generalized visual of the stratigraphic section and brief descriptions of each unit (Philibosian

et al., 2011).

An “organic-rich layer” is described near the top of unit 1L which is strikingly similar to

other organic mats from near shoreline sites that are interpreted as the debris that accumulates near

the shoreline from the inundation of the lake basin. Unit 1L is described as a massive silt layer of

lacustrine origin. An alternative interpretation is that unit 1L represents deltaic sedimentation

during flooding of the site. In either case, 1L and 1S collectively represent regional Lake A at

the Coachella site (Rockwell et al., 2022) [see their Supplementary Material]. The most recent

event occurred during the highstand of Lake Cahuilla in 1726±7 C.E. (Sieh, 1986; Rockwell et

al., 2018).

The penultimate lake earthquake, Coa-2, clearly occurs during deposition of unit 2L,

which represents the lacustrine phase of Lake B (Philibosian et al., 2011; Rockwell et al., 2022),

based on extensive liquefaction (only possible with water present) and upward fault terminations

(Philibosian et al., 2011; Rockwell et al., 2022). That places Coa-2 to have occurred during Lake

B.

Coa-3 was interpreted to have occurred during Lake C based on weak evidence of sediment

(unit 3L) filling a structural trough. Coa-4 was interpreted as occurring before Lake C but between

two organic layers in unit 4S. However, the reinterpretation is that these organic layers were

deposited during the rising stages of Lake C along with fine sand deposits (probably of deltaic

origin) implying that Coa-4 occurred during the early phase of Lake C and that the structural

trough formed by Coa-4 was filled by the same lake phase, Lake C (Rockwell et al., 2022). Belle

Philibosian agrees with this reinterpretation (Rockwell, personal communication, 2022). This

means that the evidence for Coa-3 and Coa-4 are the same and that there was only one rupture,

which occurred during the filling phase of Lake C but when the water had essentially reached the

highstand shoreline (as the Coachella site lies at 9 m, only 4 m below the highstand).

Coa-5 was interpreted by Philibosian et al. (2011) as having occurred between deposition
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of units 5S and 4L, with the units 5S and 5L folded and capped by undeformed unit 4L (Philibosian

et al., 2011). Rockwell et al. (2022) interpret the organic unit at the top of unit 5S to represent

the inundation and accumulation of organics associated with the drowning phase of Lake D

(Rockwell et al., 2022). Coa-5 deforms the organic layer along with the underlying lake deposits,

implying that the earthquake occurred after its deposition during the rising stages of Lake D.

Supporting this interpretation, the strata of units 5L and 5S are plastically deformed, which in

this arid environment, almost certainly required the presence of water which will only be present

during a lake stand. Hence, Coa-5 is interpreted to have occurred during Lake D, and probably

during the late filling stage as the event is capped by fine-grained deposition associated with the

highstand of Lake D.

Coa-6 is interpreted to have occurred during deposition of unit 5L (Lake E) based on

apparent upward terminations and a possible colluvial wedge of material derived from unit 5L.

This evidence was considered weak, but the presented images look convincing, so we confirm the

occurrence of a rupture during the highstand of Lake E.

Event Coa-7 is interpreted to have occurred between units 6S and 5L based on upward

terminations and displaced strata capped by undeformed strata. This would potentially place this

earthquake to between lakes E and F as there is no evidence of the presence of water at that time

(no documented liquefaction).

A seventh event, Coa8+, is interpreted to have occurred in unit 7S, which Philibosian et al.

(2011) describe as “coarse sand, gravel, and rounded cobbles form cross-cutting channel deposits”

which are obviously fluvial in origin (Philibosian et al., 2011). Unit 7L is bedded fine sand and is

only exposed at the very base of the section. It is interpreted by Philibosian et al. (2011) as “likely

lacustrine” but a lake affiliation is not clearly demonstrated. An alternative interpretation is that

unit 7L is a deltaic section that was buried by a large fluvial flood event (not a lake-filling flood

event) during rising lake level. The rationale for this is that unit 7S is several meters thick and a

date a charcoal sample from unit 7S returned an age of 1185±30 rcyBP (sample Sb4m14A-c),
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which is consistent with Lake F or the dry period immediately preceding Lake F and not the

significantly older Lake G.

Furthermore, the unit does not display the oxidation that is characteristic for sediments

of Unit G, which were exposed at the surface for nearly 1 ka. Hence, we interpret the charcoal

date as indicating that L7 may actually be the lower part of Lake F (deltaic rising lake phase). If

correct, an earthquake occurred during the early depositional phase of lake F, followed by a large

depositional event and then more lacustrine sediments. The well-sorted sand of the base of unit

7S appears to extend down through unit 7L and may represent a feeder pipe, with the lowest part

of unit 7S possibly a liquefaction deposit.

2.2.5 Periodic loading of a poroelastic half-space

As a preliminary, we consider an analytical solution for a periodic fluctuation of water

level over a poroelastic half-space (Roeloffs, 1988a). For a half-space extending in the positive

direction of z (vertical) axis from z = 0 to z = ∞ with a periodic water load of amplitude ps at

the surface given as both vertical stress and pore pressure boundary conditions σzz(z = 0, t) =

−p(z = 0, t) = psexp(iwt) leads to the following solution(Wang, 2000):

p̄z = γps +(1− γ)psexp(−z
√

(w/2c))exp(−iz
√

(w/2c)) (2.4)

Where γ = B(1+vu)
3(1−vu)

is the loading efficiency and c is the diffusivity. If we assume incompressible

grains and fluid (γ = 1) then the response is entirely the vertical stress associated with water load

and constant at all depth (undrained response) (Extended Data Fig. 6). The other end-member

(γ = 0) assumes that the pore pressure is uncoupled from the applied stress and is given by the

pore pressure diffusion solution (drained response) (Turcotte and Schubert, 2002; Wang, 2000)

(equation 4-14) (Extended Data Fig. 6). Moreover, equation (1) is linear with respect to ps. If
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p(0, t) is known, the solution for p(z, t) may be parameterized in the frequency domain with the

Green’s function that carries a pressure disturbance for frequency w at z = 0 to z > 0:

p(z, t) =
∫

G(z,w)H(w)e−iwtdw, (2.5)

where

G(z,w) = γ+(1− γ)exp(−z
√

w/2c)exp(−iz
√

w/2c),

and H(w) is the Fourier transform of the surface (z = 0) history of the pressure:

p(0, t) =
∫

H(w)e−iwtdw

Therefore, if we know the lake loading history at the surface, p(0, t), we can simply take its

Fourier transform, multiply this pore pressure distribution with the Green’s function (3) in the

frequency domain, and take the inverse Fourier transform of the product to arrive at the solution

to the pore pressure distribution for all depths and times (Extended Data Fig. 4).

Given a quasi-periodic lake loading history (Rockwell et al., 2022), the distribution of

pore pressure reveals an interesting effect. While the shape of the pore pressure distribution

beyond the Earth’s surface is entirely dependent upon the poroelastic constants in Eq. (1), for

reasonable values of poroelastic constants of rocks comprising the upper ctust (Extended Data

Table 2), the high frequency of the surface lake levels reveal a gradual increase of pore pressure

magnitude. This effect would not be present in a “single lake” simulation, as the amplitude of the

maximum P would just decay exponentially. Instead, with multiple lakes, the “memory” pore

pressure effect is the result of a superposition of each independent Fourier component of p(0, t).

For example, the diffusive (drained) component of the poroelastic response of Lake F (Fig S5) lags
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its surface response at depth. This is readily observed at greater depth (9 km) where essentially

only the instantaneous (undrained) response to the surface load is felt through the entire load of

a single lake cycle. Consequently, the lag of the maximum (drained) response of pore pressure

can coincide with the maximum (undrained) response of pore pressure for subsequent lakes thus

leading to larger pore pressures compared to a single lake response. Therefore, with multiple

lakes there is an inherent temporal dependence of the maximum pore pressure. A point in our

finite element model (model 2) below the lake at a depth of 7.2 km that lies within our fault

is more coincident to the one-dimensional model at shallower 1 km depth (Extended Data Fig.

5). This 1D solution serves to conceptualize the important delayed memory effects of variable

pore pressure. While the analytical 1-D solution is a useful first-order approximation, especially

for locations directly below the lake, it fails to account for other potentially important factors

affecting stress on the fault such as crustal heterogeneities, viscoelastic relaxation, and lateral

pore fluid diffusion.
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Tables and Figures

Table 2.1: Earthquake dates. Best estimates (to the nearest decade) and 95% confidence ranges
of earthquake dates from the OxCal model.

Earthquake Year 95% Confidence Range
Coa-1 1730 1721-1731
Coa-2 1610 1586-1636

Coa-3/4 1480 1459-1503
Coa-5 1200 1165-1244
Coa-6 1020 995-1040
Coa-7 970 923-1022
Coa-8 930 905-961
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Table 2.2: Material properties. Best estimates (to the nearest decade) and 95% confidence
ranges of earthquake dates from the OxCal model. ∗The mantle is modeled as a simple linear
viscoelastic material with 3·1019 Pa·s viscosityLuttrell et al., 2007. Bulk modulus of permeating
fluid (water) is assumed to equal 2.2·109 Pa. Several simulations were performed to evaluate
the model sensitivity to the assumed parameters. Models 1-4 considered the effect of fault zone
permeability for the following assumed permeability values: [10−14,10−15,10−16,10−17] m2,
respectively. Model 5 corresponds to a case of no damage zone (permeability and Young’s
modulus are the same as those of the host rock). Model 2a uses the same material properties as
Model 2, but assumes a spatially variable surface load controlled by a local bathymetry.

Hydrostratigraphy Unit Post Brawley / Brawley Palm Springs / Borrego Imperial Crystalline Basement Mantle∗ Fault Zone
Depth Range [km] 0-0.5 0.5-3 3-7 7-18 18-50 0-18
Poisson’s Ratio 0.25 0.25 0.25 0.25 0.36 0.25
Young’s Modulus [GPa] 50 50 50 58.4 140 1/2 host rock
Permeability [m2] 2·10−13 1.2·10−12 9·10−14 10−18 / 10−14,10−15,10−16,10−17

Bulk Modulus of Solid Grains [GPa] 33 33 33 39 / host rock
Reference Tompson et al., 2008 Tompson et al., 2008 Tompson et al., 2008 Shmonov et al., 2003a Turcotte and Schubert, 2002 Fialko et al., 2002b; Lindsey and Fialko, 2013

34



.

Figure 2.1: Map of the Salton Trough and present-day Salton Sea (9.5 m average water depth).
Blue dotted line denotes the historical extent of ancient Lake Cahuilla (13 m above sea level;
97.2 m maximum water depth) (Luttrell et al., 2007). Red lines denote traces of several major
faults (USGS and California Geological Survey, 2019). Green ’X’ symbol marks the location of
the Coachella paleoseismic site (Philibosian et al., 2011)
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Figure 2.2: Earthquake PDFs (black dotted lines, right axis) calculated in this study (see
Methods) and the relative lake loading history (blue dashed lines, left axis) from ref. (Rockwell
et al., 2022). PDFs of pre-historic earthquakes (see Extended Data Table 1) are color-coded as
follows: Coa-1 is blue, Coa-2 is green, Coa-3&4 is pink, Coa-5 is magenta, Coa-6 is yellow,
Coa-7 is red, and Coa-8+ is orange.
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Figure 2.3: Left: Spatiotemporal evolution of pore pressure for a single lake cycle of ancient
Lake Cahuilla. Calculations assume a constant lake depth of 97.2 m. The cross section cuts
through the northwestern end of the lake and through the embedded dipping fault. A) Pore
pressure immediately increases as the lake begins to inundate. B) At the time of lake highstand
the pore pressure has diffused down much of the higher permeable fault but is more slowly
varying elsewhere due to the surrounding low permeability basement. C) As the lake desiccates
higher pore pressures remain in and around the fault. D) Subsequent lakes further increase
the previously elevated pore pressure at basement depth. Right: The Coulomb stress change
(∆CFS), pore pressure (P), effective stress (σ̄n), and absolute shear stress (τs) perturbations on
the SSAF fault plane for a single time frame in the lake cycle. The magenta line represents the
outline of ancient Lake Cahuilla at the surface.
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Figure 2.4: A) ∆CFS (MPa) on the SSAF as a function of time C.E. (years) at 7 km depth
for location 21- a point on the fault near the center of the lake (See Fig. S5). Color lines
correspond to models assuming different permeability of the fault zone (see Methods, Extended
Data Table 2), from highest (Model 1) to lowest (Model 5, no permeability contrast with the
host rocks). Same plot for a point farther from the lake center also shows predominantly positive
∆CFS, albeit of lower magnitude (Extended Data Fig. 5). B) The Coulomb stressing rate due
to the lake loading normalized by the tectonic loading rate (16 kPa/yr, see Methods). Light
blue line represents predictions of Model 2 (same as in panel A), and dark blue dotted line
represents predictions of Model 2a that considers a spatially variable surface load based on
a local bathymetry. The small peak in 1905 is due to the inundation of the Salton Sea (see
Figs. S5-S11). Models 1-5 do not include Salton Sea inundation. Vertical color bars denote ±2
standard deviations of the estimated earthquake dates.
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Appendix

2.A Appendix to Chapter 2

2.A.1 Supplementary figures for Chapter 2
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Figure 2.A.1: Extended Data Figure 1: Results of Monte Carlo statistical testing (10,000
samples) based on sampling earthquake PDF distributions and lake timings. After sampling the
earthquake PDFs we determine how many fall inside the lake timings when the lake was greater
than 70% full. We compare these timings to a uniform random distribution of 7 times across the
same lake loading time range. We find that the mean timings that occur within lakes is >97% of
the earthquake timings of a uniform random distribution that occur within lakes.
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Figure 2.A.2: Extended Data Figure 2: 3D FEM model domain. The model mesh contains
∼2 million tetrahedron elements. The light blue color represents the extent of Ancient Lake
Cahuilla. The prescribed vertical load is hydrostatic, to the lake maximum water head (97.2 m).
The solid red line is the SSAF fault trace. The fault zone is modeled as a slab dipping to the
north-east at 60o (Lindsey and Fialko, 2013), with the assumed thickness of 200 m (Cochran et
al., 2009; Jeppson et al., 2010; Morrow et al., 2014).
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Figure 2.A.3: Extended Data Figure 3: Pore Pressure (MPa) on the SSAF as a function of time
C.E. (years) at 7 km depth for location 21- a point on the fault near the center of the lake (See
Fig. S5). Each model is based on the variable fault permeability with Model 1 as the highest
permeable and Model 5 as no damage zone (Extended Data Table 2).
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Figure 2.A.4: Extended Data Figure 4: 1D analytical model of pore pressure for a variety of
different depths (blue) with surface lake level pore pressure (black). The smaller surface profile
from 1905 to the present is the Salton Sea (Tostrud, 1997). FEM Model2 at 7.2 km depth (green
line) shows the effect of 3D diffusion with a high-permeability fault damage zone embedded in
a lower permeability host rock. The FEM model at 7.2 km resembles pore pressure in the 1D
analytical case at 1 km, demonstrating how a fault damage zone can transmit pore pressure to
depth effectively. (γ = 0.1685 ; k f ault = 1e-15 [m2]; khost/1Dmodel = 1e-18 [m2]).
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Figure 2.A.5: Extended Data Figure 5: Similar to Figure 4A from main text, but for a point
farther away from the lake center (Point 24 in Fig. S5).
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Figure 2.A.6: Extended Data Figure 6: The instantaneous and transient effects of the undrained
and drained effect. At t = 0 the undrained effect is felt nearly instantaneous throughout the
poroelastic medium beneath the lake. As time progresses this effect attempts to equillibriate at
depth. At t = 0 the drained effect is not felt except for thesruface poroelastic medium and the
bottom of the lake. As time progresses this effect increases pore pressure as diffusion drives
fluid from the surface down. Furthermore, as the lake load is applied areas of compression form
immediately beneath lake while areas of extension are formed near the edges.
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Figure 2.A.7: Figure S1: ∆CFS is dependent on different Fault dip angles. Based on the location
of our lake geometry a steeper dip angle yields lower overall ∆CFS while a shallower dip angle
yields higher overall ∆CFS. A steeper dip accommodates more compressional stress and is
therefore lower while a shallower fault accommodates more extensional stress. Plot presented is
based on a preliminary lake model that contains minor differences in ages.
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Figure 2.A.8: Figure S2: ∆CFS at 7 km depth for location 21- a point on the fault near the
center of the lake (See Figure S10)∆CFS for the fastest relaxation time endmember (20 years),
the slowest (200 years), and preffered model viscosity (70 years) (Model 2) (Luttrell et al.,
2007). Changing the viscosity of the mantle results in minor changes to the maximum ∆CFS.
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Figure 2.A.9: Figure S3: Model 1, 7 km depth for viscoelastic mantle and elastic mantle. Pore
pressure is a dominant signal of the total ∆CFS. The elastic mantle model resolves larger pore
pressure values, but lower ∆CFS−∆P values. Plot presented is based on a preliminary lake
model that contains minor differences in ages.
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Figure 2.A.10: Figure S4: Model 4, 7 km depth for viscoelastic mantle and elastic mantle.
Pore pressure is still the dominant signal of the total ∆CFS despite having a significantly less
permeable damage zone. The elastic mantle model resolves larger pore pressure values, but
lower ∆CFS−∆P values. Plot presented is based on a preliminary lake model that contains
minor differences in ages.
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Figure 2.A.11: Figure S5: Test points along the SSAF equivalent to 6 rows at (3,4,5,6,7,8 km
depth) and 5 columns as shown as green squares on a reduced cloud of black points of the fault.
Red line is the perimeter of Ancient Lake Cahuilla and the blue line is the perimeter of the
Salton Sea.

50



Figure 2.A.12: Figure S6: 6 row points for (3,4,5,6,7,8 km depth) associated with column 1
from S5 (Model 2).
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Figure 2.A.13: Figure S7: 6 row points for (3,4,5,6,7,8 km depth) associated with column 3
from S5 (Model 2).
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Figure 2.A.14: Figure S8: 6 row points for (3,4,5,6,7,8 km depth) associated with column 5
from S5 (Model 2).
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Figure 2.A.15: Figure S9: 5 column points associated with row 1 (3 km depth) from S5 (Model
2). Notice Point 3 has lower ∆CFS than points 4 and 5 which are farther away from the center of
the lake which may seem counter intuitive. The reason for a lower magnitude is due to the lake
geometry. The lake bottlenecks above point 3 and then increases in size allowing for more pore
pressure diffusion near the end, then in the middle. Watch Video S1 to see the pore pressure
increasing in this somewhat bimodal distribution.
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Figure 2.A.16: Figure S10: 5 column points associated with row 3 (5 km depth) from S5 (Model
2).
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Figure 2.A.17: Figure S11: 5 column points associated with row 4 (7 km depth) from S5 (Model
2).
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Chapter 3

Mitigation and optimization of induced

seismicity using physics-based forecasting

It is well recognized that underground fluid injection can induce seismicity by altering

stresses on pre-existing faults. Here, we investigate minimizing induced seismic hazard by

optimizing injection operations in a physics-based forecasting framework. We built a 3D finite

element model of the poroelastic crust for the Raton Basin, Central US, and use it to estimate

time dependent Coulomb stress changes due to ∼25 years of wastewater injection in the region.

Our finite element model is complemented by a statistical analysis of the seismogenic index (SI),

a proxy for critically stressed faults affected by variations in the pore pressure. Forecasts of

seismicity rate from our hybrid physics-based statistical model suggest that induced seismicity in

the Raton Basin, from 2001 - 2022, is still driven by wastewater injection. Our model suggests

that pore pressure diffusion is the dominant cause of Coulomb stress changes at seismogenic

depth, with poroelastic stress changes contributing about 5% to the driving force. Linear pro-

gramming optimization for the Raton Basin reveals that it is feasible to reduce seismic hazard for

a given amount of injected fluid (safety objective) or maximize fluid injection for a prescribed

seismic hazard (economic objective). A common theme across the scenarios presented shows the
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optimization tends to spread out high-rate injectors and shift them to regions of lower SI. This

intuitive result has practical importance: managing injection rate per unit field area may be a

useful tool to reduce induced seismic hazard. Our optimization framework is both flexible and

adaptable to mitigate induced seismic hazard in other regions and for other types of subsurface

fluid injection.

3.1 Key Points

1. Hybrid fully-coupled poroelastic physical and statistical model suggests induced seismicity

in Raton Basin is still primarily driven by wastewater injection.

2. Linear-programming optimization can reduce seismic hazard for a given amount of in-

jected fluid (safety objective) or maximize fluid injection for a prescribed seismic hazard

(economic objective).

3. Optimization tends to spread out higher rate injection wells, thus managing injection rate

per unit field area may be a useful tool to reduce basin-scale induced seismic hazard.

3.2 Plain Language Summary

The Raton Basin, in the central United States, has had a remarkable increase in seismicity

coincident with large wastewater injection since 2001. This seismicity primarily occurs at depths

greater than several kilometers where preexisting faults in the crystalline basement are reactivated

by fluid percolation. The spatial extent and rate of the induced earthquakes can inform hazard

maps which display the probability of an earthquake occurrence within a specific time period.

We use the physics-based and statistical models to develop an optimization framework that may

help inform well operations. The proposed method allows for the maximization of injected fluid
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(the economic objective) and the reduction of seismic hazard (the safety objective).

3.3 Introduction

Induced seismicity is a growing problem world-wide as it accompanies a variety of

industrial activities, including hydraulic fracturing (Rutqvist et al., 2015; Bao and Eaton, 2016)

and wastewater disposal (Ellsworth, 2013; Keranen et al., 2014; Shirzaei et al., 2016), extraction

and storage of natural gas (Grasso and Wittlinger, 1990; Thienen-Visser and Breunese, 2015;

Zbinden et al., 2017), CO2 sequestration (Goertz-Allmann et al., 2014; White and Foxall, 2016),

and renewable geothermal energy exploitation (Fialko and Simons, 2000; Giardini, 2009; Majer

and Peterson, 2007; Mignan et al., 2015). Within the last decade, a dramatic increase in seismic

activity in the Central and Eastern United States (CEUS) was caused by deep injection of water

that was co-produced with oil (Keranen et al., 2014; Walsh III and Zoback, 2015; Langenbruch

and Zoback, 2016; Langenbruch et al., 2018). Several moderate (M5+) events were induced in

historically aseismic regions (Ellsworth, 2013; Weingarten et al., 2015; Foulger et al., 2018).

Like natural tectonic earthquakes, induced events occur on pre-existing critically stressed faults,

primarily in the crystalline basement (Townend and Zoback, 2000).

The occurrence of induced seismicity is attributed to various physical mechanisms, includ-

ing pore pressure diffusion, poroelastic coupling and stress changes caused by seismic or aseismic

fault slip (Segall and Lu, 2015; Keranen and Weingarten, 2018; Ge and Saar, 2022). In general,

all mechanisms may contribute to the triggering of seismicity, because induced earthquakes

can be triggered by stress changes just above stress perturbations caused by the Earth’s tides

(1-10 kPa) (Bachmann et al., 2012; Cacace et al., 2021; Wang et al., 2022; Stokes et al., 2023).

Modelling studies at well-characterized injection locations show that the relative significance of

these mechanisms varies from site to site depending on the physical rock properties, reservoir

structure, fault geometry, seismotectonic conditions, and distance from injection among others.
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Pore pressure diffusion and poroelastic stress changes are considered primary mechanisms for

induced seismicity (Segall and Lu, 2015; Keranen and Weingarten, 2018; Zhai et al., 2019; Ge

and Saar, 2022; Stokes et al., 2023).

Understanding and mitigating the seismic response to fluid injection is still a major

challenge, not just for wastewater disposal, but for other types of subsurface fluid injection: CO2

sequestration, enhanced geothermal systems and hydraulic fracturing. In each region where

subsurface fluid injection occurs, it is paramount to future operations to find an optimal balance of

efficient yet safe injection practices. The field of hydrogeology has long used coupled groundwater

simulations and management models to optimize pressure changes in multiple wells for a certain

benefit (Gorelick, 1983; Gorelick and Zheng, 2015). For example, (Gorelick and Remson,

1982) sought the optimal solution that maximized pollutant disposal while meeting spatial water

quality standards at the wells over time. A similar approach in the case of wastewater injection

and induced seismicity could be to maximize injection while meeting spatial fault reactivation

constraints.

Here, we present a framework that seeks to optimize the amount of wastewater injected

at the basin-scale with a fully-coupled poroelastic model combined with a statistical seismicity

forecasting model. Optimization is performed under a spatially varying Coulomb failure stressing

rate constraint dependent on faulting orientation (King et al., 1994a; Cocco, 2002; Jin et al., 2022).

We first demonstrate the hybrid model’s effectiveness at forecasting the observed seismicity in

the Raton Basin of Colorado and New Mexico – a long-standing and well-documented case of

induced seismicity. We then demonstrate the feasibility of future induced seismicity management

using optimization of injection under various constraint scenarios.

For our simulation and management models, we take advantage of the linearity in the

fully coupled poroelastic equations as well as the linearity in the Coulomb stress equation.

Coupled poroelastic calculations are performed using a 3D finite element hydromechanical model

(Dassault Systemes, 2020). Our statistical seismicity model follows the methodology of prior
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work performed in Oklahoma and Kansas, where spatiotemporal variations of induced seismic

hazard are calculated from pore pressure changes and spatial variations of the subsurface’s

susceptibility to induced earthquakes (Langenbruch et al., 2018). The susceptibility is described

by the spatially varying seismogenic index (SI), a proxy for the number and stress state of pre-

existing basement faults affected by stress changes (Langenbruch and Zoback, 2016; Shapiro et

al., 2010). Note that the SI model applied in Oklahoma and Kansas only considered pore pressure

changes, while we consider the fully coupled problem by including poroelastic stress changes in

the Coulomb stress analysis. We then form a management model using a response matrix for rate

dependent model constraints provided by the SI.

The management models considered are three 5-year prospective scenarios that use the

remnant pore pressure and stress conditions from prior injection in the Raton Basin. In each

scenario, the optimization chooses which injection wells to operate and at which monthly rate

of injection. The first scenario optimizes induced seismic hazard for an injection strategy that

tapers the overall injection by 70% from the 2022 levels (reduction objective). The second

scenario minimizes the seismic hazard for the current Raton Basin injection rate, thus optimizing

seismic hazard for a given injected volume (safety objective). The third scenario maximizes

the total injected volume while holding constant Raton Basin’s currently forecasted seismic

hazard (economic objective). The total framework serves as a flexible platform by which the

optimization of injection activities are drafted to reduce the seismic hazard and maximize an

economic objective.

3.3.1 Raton Basin

The Raton Basin, a ∼150 km long by ∼75 km wide sedimentary basin situated along

the border between Colorado and New Mexico, has shown a remarkable seismic rate increase

coincident with the beginning of industrial-scale wastewater injection in 2001 (Rubinstein et al.,
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2014) (Figure 3.1). The rate increase was punctuated by the August 23rd, 2011 M5.3 Trinidad,

Colorado earthquake, which caused structural damage in the nearby town of Trinidad, as well as

17 M4+ events, the most recent of which occurred on March 10th, 2023 [ANSS Comprehensive

Catalog] (Figure 3.1). Previous studies have linked seismicity and wastewater injection wells

operating in the basin using observational evidence and physical modeling (Rubinstein et al.,

2014; Barnhart et al., 2014; Nakai et al., 2017b). The time-dependent seismic hazard associated

with these induced events can change based on the pumping rates associated with the injection

wells. Understanding both the spatial and temporal change of past seismic hazard is critical to

mitigating future hazard.

Injection induced seismicity began in 2001 and peaked in late 2011 with the August 23rd,

2011 M5.3 Trinidad, Colorado earthquake (Figure 3.2). Since 2011, regional injection rates have

declined more than ∼33%, but the basin continues to exhibit an elevated seismicity rate with

several recent M4+ events (Glasgow et al., 2021a). The regional stress field is heterogeneous,

with a substantial rotation of the maximum horizontal stress from predominantly north-south

to east-west directions (Snee and Zoback, 2022). The earthquake focal mechanisms indicate a

mixture of normal and strike-slip earthquakes (Wang et al., 2020; Glasgow et al., 2021a).

Geologic and hydrogeologic data indicate that the injection reservoir, the Dakota-Purgatoire

Formation, a fractured sandstone reservoir, and underlying sedimentary units are permeable and

hydraulically connected over a large lateral extent of the basin (Geldon, 1989; Nelson et al.,

2013). The injection reservoir is also well-confined from the shallower stratigraphy within the

basin by more than 700 m of poorly-permeable Pierre Shale. Additionally, the western boundary

is characterized by the Sangre de Cristo Mountain thrust fault system, a complex of west-dipping,

Laramide-age thrust faults that show dip-slip offsets of 0.6 to 3 km (Clark et al., 1966). The

observed seismicity in the Raton Basin is primarily found within the crystalline basement at

average depths of 5 - 7 km below surface (Nakai et al., 2017b; Glasgow et al., 2021a). There is

also strong evidence to suggest three prominent zones of seismicity: Tercio, Vermejo Park, and
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Trinidad (Figure 3.1) (Macartney and O’Farrell, 2010; Higley, 2007; Barnhart et al., 2014).

3.4 Physics-based Forecasting Model

3.4.1 Methods

Linear poroelasticity

To understand how injection across the Raton Basin is changing stress on pre-existing

basement faults, we develop a fully coupled poroelastic model and compute the Coulomb stress

changes at depth. Linear poroelasticity is essential to understanding the time-dependent coupling

between the deformation of, and fluid flow in, hydrogeologic units within the Earth. The governing

equations for a fully coupled linear poroelastic three-dimensional medium are defined as (Biot,

1941; Rice and Cleary, 1976b; Wang, 2000):

G∇
2ui +

G
1−2ν

∂2uk

∂xi∂xk
= α

∂p
∂xi

−Fi, (3.1)

α
∂εkk

∂t
+Sε

∂p
∂t

= k
µ∇2 p+Q, (3.2)

where G is the shear modulus, u the displacement, ν the Poisson’s ratio, α the Biot-Willis

coefficient, F the body force, k the permeability, µ the fluid viscosity, Sε the constrained specific

storage, εkk the volumetric strain, and Q the fluid source (Wang, 2000). Equations (3.1) are nearly

identical to the classic equations for linear elasticity except for the coupling of pore pressure in

the conservation of linear momentum equations (3.1) and the fluid flow coupled to strain by the

requirement of fluid continuity (3.2). However, the system (3.1)-(3.2) is more difficult to solve,
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with analytic solutions restricted to a few highly idealized cases. We solve the respective equations

numerically using the three-dimensional finite element software Abaqus FEA (Dassault Systemes,

2020; LaBonte et al., 2009; Pearse and Fialko, 2010; Hill et al., 2023).

The pore pressure diffusion is governed by an inhomogeneous diffusion equation Eq. (3.2).

Because the fluid flow is coupled with the strain field pore pressure changes have direct effects

on the stress and changes in the strain have direct effect on the fluid pressure. Under different

assumptions, the stress field will uncouple from the pore pressure field and the diffusion equation

resembles its hydrogeologic counterpart; the ground water flow equation S∂p
∂t =

k
µ∇2 p+Q (where

S = Sε
K(u)

v
Kv

) (Detournay and Cheng, 1993; Wang, 2000).

Following (Gorelick and Remson, 1982) and (Gorelick et al., 1993), we use a physics-

based numerical model to generate a unit source response matrix (see section 3.5.1). The key

difference is that our simulation model incorporates the fully coupled poroelastic response (3.1-

3.2), calculated using a finite element model, and generates a unit source response matrix of

Coulomb stress (3.3) which is only possible due to the linearity in all the equations. The Coulomb

stress is also dependent on fault geometries (SM Figure 3.B.1).

Stressing rate and earthquake probability

Triggering of seismic events due to fluid injection can be adequately described by equa-

tions (3.1-3.2) and changes in Coulomb stress (Wang, 2000; Cocco, 2002). We define Coulomb

stress τ as:

τ = τs +µ(σn +P), (3.3)

where τs is the shear stress on a fault plane, σn is the normal stress (compression is deemed

negative), P is the pore pressure, and µ is the coefficient of friction. An increase in pore pressure

reduces the absolute value of the effective stress (σe = σn +P) such that the Coulomb stress
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increases, corresponding to promotion of failure. In the presence of a regional stress field even

modest perturbations in pore pressure may encourage slip on preexisting critically stressed

faults. The diffusion of pore pressure is highly dependent on hydraulic properties. Furthermore,

depending on fault geometries, the poroelastic coupling of the fluid may play a significant role

in promotion or inhibition of fault failure, especially in the far field where the effects of fluid

percolation are negligible (Segall and Lu, 2015).

Similar to previous work (Langenbruch et al., 2018), which was carried out in the region of

north-central Oklahoma and southernmost Kansas, seismicity data in the Raton Basin also shows

the expected increase of earthquake probability with the rate of stress increase (Supplementary

Methods). These observations can be used to describe the monthly earthquake rates R≥M(r, t)

according to a modified Gutenberg-Richter law for induced earthquakes (Langenbruch et al.,

2018):

R≥M(r, t) = 10a(r,t)−bM =

[
∂

∂t
ττ(r, t)

]2

10Στ(r)−bM , (3.4)

Here, we replaced the pore pressure rate, used by Langenbruch et al. (2018) by the monthly

Coulomb stressing rate ∂

∂t ττ(r, t) in space and time to add the effect of poroelastic coupling.

Στ(r) is the spatially varying Seismogenic Index (SI). The SI and b values are evaluated through

a specific calibration period (see section 3.4.3). The calibrated parameters are then used to

forecast expected earthquake rates and to initialize the management model (see section 3.5) for

optimization. An important distinction from previous studies (Langenbruch et al., 2018) is the

use of Coulomb stressing rate ∂

∂t ττ(r, t) as opposed to pressure rates. While pore pressure rates

are still the dominant signal (SM Figure 3.B.2), the fully coupled numerical model takes into

account the stress field.
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3.4.2 Numerical Domain

The numerical domain was developed and discretized in Abaqus CAE (Complete Abaqus

Environment, Dassault Systemes, 2020). The domain has horizontal dimensions of 120 km x

200 km and a depth dimension of 14 km, with the y axis corresponding to north in the Universal

Transverse Mercator coordinates (Figure 3.3). The finite-element mesh consists of nearly 1.5

million first-order hexahedral elements. Characteristic element sizes vary from 5,000 m in the far

field to less than 500 m near the injection wells and in the vicinity of the central basin. The depth

domain is partitioned into the 5 distinct hydrogeologic layers of the basin. The heterogeneous

hydrogeologic properties of the model are summarized in Table 1. Permeability and storage

parameters of the primary injection formations, the Dakota-Purgatoire and Morrison-Glorieta,

were calibrated from analysis of injection step-rate tests (see Supplementary Materials). The

permeability k of the Dakota-Purgatoire formation and the Morrison-Glorietta formation is taken

to be 6.4 - 6.8 ×10−14 and 5.8 - 8.9 ×10−14 m2, respectively. While no wells penetrate the

crystalline basement for diagnostic analysis of basement permeability, we chose a crystalline

basement permeability (k = 1× 10−15 [m2]) that results in the best correlation between the

observed seismicity rates and modelled pressure rates (Figure 3.2). While this permeability

is slightly higher than that inferred from small-scale field measurements of basement in other

regions, it is similar to large-scale measurements made in regions of induced seismicity. In

addition, it is also consistent with depth-dependent permeability models for continental crust at

the mean depth of seismicity (k ≈ 3.35×10−15 [m2]) (Shmonov et al., 2003b), and constraints on

in situ hydraulic diffusivity of the upper crust from observations of post-seismic deformation(e.g.,

Fialko, 2004). The increased permeability is chosen to capture the basin-scale permeable faults

that transmit fluid pressure to seismogenic depths.

We assume initial conditions of equilibrium stress and pore pressure (Segall, 2010; chapter

9). Therefore, the model only considers the perturbing effects of the wastewater injection and

does not include any tectonic loading. The bottom and sides of the model are fixed only in
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the surface normal direction (the roller boundary condition). The top surface of the model is

stress-free. We model the Sangre de Cristo Mountain complex of thrust faults as barriers to

cross-fault fluid flow and use an insulating condition at the western boundary of the model. We

use the same injection depth of 1,500 m for all wells as the former is the middle depth of the

modelled Dakota-Purgatoire injection reservoir. We record pore pressure and stress perturbations

at the mean seismogenic depth of ∼7,040 m which is equivalent to ∼38,000 observation points

for each time step. Generation of the SI map requires the full 29 well injection profile data ranging

from November 1994 to December 2017, giving rise to 331 time steps, while the 5 year response

matrix models require only 61 time steps.

3.4.3 Seismogenic Index (SI)

The SI map is a map of the seismo-tectonic state controlled by the number and stress state

of pre-existing faults in the crystalline basement affected by Coulomb stress changes (Figure

3.4) (Langenbruch et al., 2018). The SI (Στ(r)) is determined in local regions of 7 km radius

at ∼25,000 seed points. The seed points represent the interpolated Coulomb stress changes

produced by the model at the mean seismogenic depth within the crystalline basement. The higher

the SI (Στ(r)) at each seed point, the higher the earthquake rate caused by a given Coulomb stress

increase, because a higher number of (or more critically stressed) preexisting faults are affected

by the Coulomb stress increase (see Eq. 3.4).

Calibration of the SI is set based on a calibration time period. In this way, future modelled

Coulomb stressing rates are used to forecast expected spatiotemporal earthquake rate. We set

the calibration time (Nov 1994 to July 2016) of our SI map prior to the Glasgow et al., 2020

study and find that forecasted earthquakes (July 2016 to July 2020) are well explained by basin

Coulomb stressing rate, despite lowered injection rates at this time (Figure 3.6).

Calibration of SI follows closely to previous methods (Langenbruch et al., 2018). The
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following steps are performed to calibrate the SI maps:

1. Monthly Coulomb stressing rates ∂

∂t ττ(rn, t) at all n seed points with a radius of 7-km

around a selected seed point up to a given calibration time tc (we use Nov-1994 to July-2016)

are extracted, squared, and summed ∑
n

[
∂

∂t ττ(rn, t ≤ tc)
]2

2. The total number NM≥Mc(t ≤ tc) (Mc = 2.5, see Supplementary Figure 3.B.3) of earthquakes

within a 7-km radius around the current seed point observed up to the given calibration

time is summed.

3. Estimate of the b-value is computed using all M ≥ Mc earthquakes recorded through the

calibration time tc in the complete study area.

4. The SI at location r is evaluated:

Στ(r) = log10 NM≥Mc(t ≤ tc)− log10

{
∑
n

[ ∂

∂t
ττ(rn, t ≤ tc)

]2
}
+b(tc)M (3.5)

Due to to the occurrence of singular earthquakes outside of the local areas of elevated seismicity

one can get outlier SI values. These events are often attributed to Coulomb stressing rates that

are quite low which results in significantly larger than average SI at those locations. Prior work

found that as soon as two earthquakes occurred within the chosen radius of any given seed point a

good estimate of the SI can be obtained (Langenbruch et al., 2018). Our region uses a smaller

radius and calibration magnitude. Therefore we precondition the SI to only be evaluated when

there are more than 3 earthquakes. We evaluate the sensitivity of the SI for a smaller 5-km radius

and removal of the “more than 3 earthquakes” precondition. These changes produce an SI map

that appears different, as outliers are now included, but the overall seismicity rate remains very

similar (SM Figure 3.B.4-3.B.6).

Within the central basin region, we find that the SI varies by about 1.5 units (Figure 3.4).

A one unit increase in SI is the equivalent of expecting 10 times more earthquakes for the same
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CFS rate change at that location. A higher SI in the central basin corresponds spatially with the

well known zones of seismicity: Tercio, Vermejo Park, and Trinidad.

The SI is dependent on the spatial density of the observed seismicity and the radius of

inclusion. This implies that seed points without observed seismicity in a 7-km radius will not

produce SI. For the purpose of forecasting seismicity and optimizing injection rates for the entire

basin we use an inverse distance weighting interpolation (power=2, radius=∞) (Figure 3.4) in

areas that have no observed seismicity during the calibration period. The interpolated map helps

inform the Coulomb stressing constraints in the SI dependent response matrix models.

3.4.4 Results & Discussion: Forecast Performance (2016 - 2020)

The results of the time dependent pore pressure evolution and associated seismicity during

our calibration time are shown in Figure 3.5. The pore pressure continues to increase at depth

within the basin due to the diffusion of fluid pressure despite lowered injection rates during

2016-2022. The total pore pressure increases, but the rate of increase declines (Figure 3.2).

Returning to Eq. (3.4), we can now forecast seismicity rate beyond our calibration time using

both the SI map and Coulomb stress perturbations from the numerical model. Figure 3.6 depicts

the seismicity rate forecasts from a variety of calibration time periods and the resulting projected

seismicity rate between 2016 and 2020. There is little sensitivity of the modelled earthquake rates

to the calibration time. We find that the observed seismicity rate from 2016 to 2020 is fit well by

our calibrated SI model and the computed Coulomb stress changes.

Furthermore, assuming the occurrence of induced earthquakes follows a Poisson process

(Langenbruch et al., 2011; Langenbruch and Zoback, 2016; Shapiro et al., 2010), the probability

of exceeding a magnitude M, that is the probability to observe one or more events of magnitude
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M or larger, is given by (Langenbruch et al., 2018):

Pr(M) = 1−Pr(0,M,N≥M) = 1− exp(−N≥M) (3.6)

Where, (N≥M) is the expected number of events of magnitude M or larger in a considered time

interval (see Eq. 3.4).

Based on our calibrated model, we compute the annual expected number of events in the

range from M 2.5-6.5 and determine magnitude exceedance probabilities using Eq. 3.6 (Figure

3.7). Our results suggest that between 2016-2020 there was a ∼85% probability to observe

one or more M≥4+ earthquakes and a ∼18% probability to observe one M≥5+. We find that

Coulomb stress rates at seismogenic depth continued to trigger seismicity between 2016-2020

although injection rates declined. Therefore, induced seismicity was still driven by wastewater

injection during this time period. Declining injection rates alone are not necessarily an indicator

of decreased seismic hazard as one must also consider diffusion-driven time delays in the induced

seismicity process.

3.4.5 Results & Discussion: Business As Usual Forecast (2022 - 2027)

In this section we explore the seismicity forecasted by our calibrated model from 2022

through 2027 under a ’business as usual’ (BAU) injection scenario. The BAU scenario uses the

last observed monthly injection rate for each well from May 2022 and holds them constant until

May 2027 (Figure 3.8). This scenario serves as the baseline comparison for the optimization

scenarios presented in Section 3. We list the following important results of the BAU forecast:

• The BAU forecast from 2022-2027 shows that the probability to exceed a M≥5+ event is

∼15% and a M≥4+ event is ∼75% (Figure 3.9).

• Spatially, higher rate injection wells are clustered in the central portion of the basin near
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the Vermejo Park cluster. Injection wells in this area, just south of the CO-NM border, on

average inject at rates higher than 20,000 m3 per month (Figure 3.10 (B)).

• Seismic hazard is also mostly elevated in this same region for the BAU forecast (Figure 3.10

(A)). Within this region of clustered injection, the spatial probability to exceed a M≥4+ is

∼20% over the 5-year BAU forecast.

• Seismic hazard in the North of the basin is proportionally smaller. We interpret this as

a result of lower injection rates, largely below ∼10,000 m3 per day, and lower SI in this

region.

• The two observed M4+ events that have occurred from May 2022 to September 2023 occur

within the zone of elevated seismic hazard forecasted by our model (Figure 3.10).

• In comparison to a complete shut-in of injection in May 2022, BAU injection increases

the likelihood of an M≥4+ event by 150% (from 30% to 75%) and a M≥5+ by more than

200% (from 5% to 15%) (Figure 3.9).

SM Figures 3.B.7-3.B.8 show the seismicity rate forecasts resulting from the BAU projected

injection rates. The forecasted seismicity rates are used to produce magnitude exceedance

probabilities from our calibrated SI model (Figure 3.9). Figure 3.9 also includes the lower bound

on any optimization we can achieve, the shut-in scenario, which represents the post-diffusion

pore pressure and stress effects from the full injection history (ie. blue line in Figure 3.8). The 5

year hazard for the shut-in scenario is also characterized spatially for a probability of exceeding a

M≥4+ (Figure 3.11). Given enough prior seismicity to produce a SI map and a physical model to

produce Coulomb stress rate any future injection scenarios can be considered in our model. We

elaborate on three management models in the following sections.
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3.5 Physics-Based Forecasting with Optimization

3.5.1 Methods

The previous sections describe the methods to construct the simulation model built from

two data sets: (1) the physics-based poroelastic model and (2) the statistical seismicity model or

SI map (Figure 3.12). In this section we describe the additional methods required to frame our

problem as a management model that allows for varied optimizations. In our optimization model,

the objective function allows for the maximization of a desired objective, i.e. total injection

rate, using decision variables (monthly injection rates) subject to constraints, such as CFS rate

at a particular location. In order to solve this optimization problem, we must build a response

matrix of the system and use mixed-integer and linear programming to resolve our objective. An

overview of the simulation-optimization procedure, including the construction of the simulation

model, is provided in Figure 3.12.

Objective Function

In our study of the Raton Basin, the objective function is framed to maximize a desired

objective over the 5-year management period. This objective function is maximized subjected to

specific constraints, i.e. Coulomb stress or Coulomb stress rate τ̇, below a threshold at chosen

locations. Linear programming employs the unit-source solutions of the response matrix by linear

superposition to acquire the optimal injection rates at each of the 29 wells in our model. The

general framework of the linear program is represented as:

min
q

f T q (3.7)
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subject to

Rq ≤ x (3.8)

0 ≤ q ≤ ub (3.9)

where q is the injection rate at each of the wells for each time step (i.e. monthly), f T is a row

vector of negative ones [-1,· · · ,-1] so that the objective function seeks to maximize the cumulative

injection, R is the response matrix (see section 3.5.1), x is the constraint vector (τ̇) at each of the

model output locations, and ub is the upper bound on the monthly injection rate for each well.

For all optimization scenarios presented, the upper bound for a single well injection rate is 1500

m3/day, which represents the threshold of high-rate well injection nationwide (Weingarten et al.,

2015). We solve the linear program using the linprog() function in MATLAB which generates

optimal values of q, i.e. the injection rates, for each well that does not exceed the constraints

at the model output points. This objective function subject to various constraints is flexible and

adaptable to a wide variety of adjustments within linear programming optimization. In section

3.5.1, we elaborate on different ways to alter the management model constraints and provide a

selection of controls that may be of interest to real-world injection practices.

Response Matrix

Given any linear system used to describe a given simulation model, a management model

can be built with a response matrix. Construction of the response matrix requires individual

unit-source solutions for each well operating within the management model. A unit-source

solution is generated by producing an impulse from an individual well (i.e. unit flow rate) and

measuring its response at all model output locations for the duration of the management period.

The impulse has a fixed value for a specified period and a value of zero thereafter. The response

of the system are changes in pore pressure and stress. Due to the linearity of the Coulomb stress
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equation (Eq. 3.3), Coulomb stress and Coulomb stress rate are derived from this response (see

Appendix for rate response matrix construction).

In our model, the Raton Basin contains 29 wells. Therefore, we must generate 29

independent, unit-source impulses (one for each well) and record the unit response at all model

output locations. We must record each response for the entire 5-year management period (ie.

June-2022 to June-2027). Each time step in the model is 30 days. Hence, the unit-source response

is a single flow rate equivalent to 100 m3/day for the first time step and then zero for the 60

months after. The result of this procedure is the unit-source response matrix of CFS rate produced

by each well at every model output location (SM Fgure 3.B.9). An example of this procedure is

provided in the supplement (SM Methods 3.B.3; SM Figure 3.B.10).

Considering Injection Prior to Management Time Period

Our optimization management model optimizes injection rates under a set of given

constraints for a prescribed management time period. It does not, inherently, consider injection

prior to the management time period. We solve this issue by taking the difference of Coulomb

stress between two simulations: (1) an ABAQUS simulation which considers all injection from

Nov 1994 - 2027 (BAU rates) and (2) a response matrix simulation which considers only injection

from 2022 - 2027 (BAU rates). The resulting Coulomb stressing rates represent the contribution

of all prior injection during the management time period. This could be considered a ‘complete

shut-in’ scenario from 2022 - 2027.

We calculated seismicity rates and a probability of exceedance curve expected from this

shut-in scenario (Figure 3.9). SM Figure 3.11 depicts the spatial distribution of hazard for yearly

time steps. If wells were to have suddenly shut-off in May 2022 our model predicts that there

would still be a ∼35% probability of exceeding a M>4+ earthquake in the next 5 years. The

shut-in Coulomb stress rate perturbations are added to the Coulomb stress rate constraints of the

optimization results prior to the seismicity rate and seismic hazard calculations, thus serving as
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the initial conditions or starting point in the optimizations. This step is essential, otherwise the

seismic hazard is underestimated by the optimizations alone.

Mixed Integer Programming

Mixed-integer programming (MIP) allows the optimization manager to impose constraints

that simulate real-world injection practices (Gorelick and Remson, 1982; Hsu and Yeh, 1989).

Without MIP, the optimization solution is free to produce large swings in injection rate at

individual wells. In reality, large injection wells have tolerances for injection rate changes over

time. MIP allows the optimization manager to place controls what wells are operating and how

the wells operate (independent or dependent on one another) through time. Injection rates can

be constrained within a running average of past injection at a particular well, or monotonically

increase or decrease injection through time, or exclude certain wells during certain periods.

The process of applying different types of MIP constraints is similar for most scenarios.

First, a mixed-integer matrix is constructed R∗ such that R∗q ≤ x∗, where q is the corresponding

injection well location for each management period and x∗ is a vector of additional constraints.

Both R∗ and x∗ are concatenated with original response matrix equation, Eq. (3.8), and the

objective function is maximized subject to these combined constraints (R and R∗). A simplified

example is provided in SM Section 3.B.3, and further description of applying each type of MIP

constraint in the management model is provided in SM Section 3.B.4.

Setting a Desired Seismic Hazard

The optimization problem described above is setup to constrain only CFS rate at specified

locations through time. However, the optimization manager may still use our methodology to

achieve a desired seismic hazard. This is performed by combining the calculated CFS rates with

the SI model to produce seismicity rate forecasts. Optimization is still possible without coupling

to a SI map if desired (See Supplementary Methods 3.B.3; SM Figure 3.B.13-3.B.14).

75



For a desired magnitude exceedance probability Pr(M) (Eq. 3.6), a user can solve for

the total number of earthquakes expected during the management period (N≥M). This N≥M, in

combination with spatially varying SI map Στ(r), can be used to calculate desired Coulomb stress

rate constraints xτ̇ for the management model:

xτ̇ =
∂

∂t
ττ(r, t) =

√
N≥M

P ·T
10−Στ(r)+bM (3.10)

where P now refers to the total number of constraint points in the SI model and T refers to the

to total time chosen for the management period. This initialization assumes that each point in

the model will carry a scaled portion of the total earthquake probabilistic hazard- ie. N≥M
P·T 10bM

which is scaled by the SI (ie. 10−Στ(r)). In our case, the total number of model points exceeds

the computational limitation of the linear program and a subset of the total model points must be

chosen. For example, the output of our model contains >30,000 points across the basin, but we

reduce this total to 500 constraint locations for the management model. The chosen points are

based on a uniform random distribution of points within a circle that contains all of the seismicity

(SM Figure 3.B.15).

In practice, we have found that the CFS rate constraints provided by equation 3.10 always

produce a basin-wide Pr(M) lower than the desired threshold Pr(M). The desired threshold

Pr(M) would only be met if the CFS rate constraint threshold is met at all points P for all time

T . To resolve this issue, we iteratively solve the optimization model while increasing the CFS

rate constraints at locations within the model that reached that threshold at any time during the

management period. In this way, the constraints slowly increase based on which locations require

a higher CFS rate in order to produce the desired Pr(M) in the basin. For our study, we set a goal

of achieving the desired Pr(M) in the basin to within ±0.2% (See Methods 3.B.5).

The following steps describe the methodology, generalized for application to other studies:

1. Choose a desired exceedance probability for an arbitrary magnitude threshold and solve for
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N≥M (Eq. 3.6).

2. Calculate CFS rate constraints for the management model (Eq. 3.10).

3. Find optimal injection rates for calculated CFS rate constraints.

4. Calculate exceedance probabilities Pr(M) across the basin for the optimized solution.

5. Check if exceedance probabilities Pr(M) are within ±0.2% of desired Pr(M).

6. If yes, skip steps 7 and 8.

7. If no, adjust CFS rate constraints dependent on too high or too low of threshold.

8. Return to step 3.

3.5.2 Prospective Case ‘Reduction’ - Reduce the Seismic Hazard

The first prospective case we consider is called ‘Reduction’ (Figure 3.8 - Prospective

Case Reduction). Prospective case ‘Reduction’ is the management solution for a hypothetical

well operation that seeks to reduce the overall injection and maintain the hazard within a chosen

threshold. We include a constraint that the overall injection must be reduced by at least 80% from

May 2022 levels by the end of the 5 year management window. Additionally, we constrained

seismic hazard such that the probability of exceeding a M≥ 4+ event is 40% lower than the

BAU forecast (Figure 3.9). The optimization and iterative method arrive at a solution to these

constraints while maximizing the amount of fluid injected.

In order to achieve a smooth tapering of injection from the BAU initial injection rate of

∼10,000 m3 per day we incorporate a MIP constraint to the management model. The constraint

is a monotonic decrease of at least 2% each month for all injection wells (see 3.B.4) (Figure

3.8 - yellow line). This constraint smoothly reduces the overall injection rate and therefore the

Coulomb stress rate by the end of the five year management period.
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We find that there are several wells in the optimization that are never injecting, and that

the algorithm preferentially chooses injectors towards the northeast more than other locations

(Figure 3.13b). The northeast portion of the basin is a relatively low SI area (Figure 3.4). The

west-central portion of the basin, which contains the highest SI hazard, does not have large

amounts of injection during the management period. The optimization preferentially chooses to

spread out large injectors from one another and to regions of lower SI (Figure 3.13b).

Another important observation is that prior injection still drives significant hazard due to

the time delay of pressure diffusion continuing to elevate the Coulomb stress rate in the periphery

of the basin (Figure 3.13a). Hazard is elevated in the west-central and western portion of the

basin by prior injection, despite the optimization lowering injection in these areas. Our iterative

technique still slowly reduces injection at wells and areas associated with high prior hazard if

hazard thresholds are not initially met. In this way, our method takes into account prior injection

through iterative forward solutions without direct inclusion in the optimization constraint vector

(see Section 3.B.5).

The enhanced hazard to the west in all of our models does not consider previously mapped

faults unless they were captured by the SI map. This hazard is primarily driven by continued

Coulomb stress rate increase from prior injection. The inclusion of known faults is currently

a limitation to our method. However, additional spatial constraints from known faults could

be implemented as additional rows/elements in the response matrix/constraint vector prior to

optimization. Constraint thresholds of Coulomb stress or Coulomb stress rate could be applied to

these known faults.

Visualizing the optimization at each time step is informative to the evolution of hazard and

how each individual well injects over time (SM Video 1 ). For the prospective case ‘Reduction’,

wells inject continuously in the northeast - a low SI area - for the entire management period.

Higher SI areas still receive injection but the optimization tends to spread the overall hazard

across the basin.
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3.5.3 Prospective Case ‘Safety’

Our second prospective case consider how the optimization algorithm might disperse

BAU injection rates in order to minimize seismic hazard (i.e. ’Safety’) (see Section 3.4.5 and

Figure 3.8).

The second optimization solution, which we call prospective case ‘Safety’, seeks an

optimized solution that lowers the overall seismic hazard while the basin-wide injection rate

is constrained at May 2022 levels for the 5 year management period. The optimization will

preferentially increase volume in wells where SI is lower, because the Coulomb stress rate

constraints will be relaxed in these areas (see Equation 10). By moving injection volume to wells

and areas with lower SI, the forecasted seismic hazard is reduced. The solution therefore produces

an overall annual exceedance curve that is lower for the same total injection volume (Figure 3.8 -

pink line).

Figure 3.14 describes the optimization results across the basin for prospective case ‘Safety’.

When the spatial distribution of injection is compared to the Business As Usual case, we find

that the optimization spread injection volume out more evenly throughout the basin, instead of

clustering injection in the central region. At the same, seismic hazard increases on the peripheries

of basin away from the higher SI zones in the central basin. In the central basin, forecasted

haard is reduced greatly, with less than 2% probability to exceed an M≥4+ within 7 km. This is

compared to nearly 20% probability to exceed an M≥4+ within 7 km in the Business As Usual

case in the central basin. Forecasted hazard is highest in the northeast portion of the basin, with

10% probability to exceed an M≥4+ within 7 km.

Our solution, during the 5 year management window, reduces the basin-wide annual

exceedance probability M≥4+ from 75% to 71%. This optimized result is a relatively small

reduction in the annual exceedance probabilities. However, we found that injection prior to the

management period contributes to a large portion of the overall hazard observed during the 5

year window. If the prospective case ’Safety’ is run without prior injection, the optimization can
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reduce the annual exceedance probability M≥4+ from 75% to 58% (Figure 3.9 - green line). This

reduction in seismic hazard is due to the optimization shifting injection to areas of lower SI.

Simply excluding prior injection does not, in and of itself, reduce the overall exceedance

probabilities. We ran a seismic hazard forecast for the Business As Usual case excluding prior

injection and found the annual exceedance probability for a M≥4+ earthquake increased from

75% to 80% (Figure 3.9 - BAU without prior injection line). The reason for this increase in

overall seismic hazard when excluding prior injection is that prior injection was on a long-term

decline, especially in areas with high SI. These declining injection rates prior to the management

time period actually reduce the Coulomb stress rate in areas where the BAU injection is high.

Therefore, counter intuitively, excluding prior injection increases the seismic hazard in the BAU

case and decreases in the ’Safety’ case.

The results from the ’Safety’ case reveal that prior injection can have a large influence on

how much the optimization method reduces overall seismic hazard. Furthermore, it highlights

the importance of optimizing injection as early as possible in the course of an induced seismic

sequence. In the case of Raton Basin, injection and induced seismicity have been ongoing for

multiple decades, which reduce the positive safety effects of minimizing seismic hazard during

the management period.

3.5.4 Prospective Case ‘Economic’

The third optimization solution, which we call prospective case ‘Economic’, seeks to

increase the overall injection rate but maintain the same basin-wide seismic hazard as the BAU

case (see Section 3.4.5 and Figure 3.8). In this case, we allow the optimization freedom to

increase the overall volume that can be injected in any month of the 5 year management window.

An optimal solution is found when the basin-wide annual exceedance probabilities are within

≤ 2% of the BAU probability of exceedance for M≥4+ (∼75%). We include two constraints on
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individual wells in this solution: (1) no individual well injection rate can exceed 1,500 m3/day,

and (2) an MIP constraint that limits individual well injection rates to within a 6-month running

average so that the optimization cannot drastically front-load or back-load the management period

with injection volume. Again, the Coulomb stress rate constraints derived from the SI map force

the optimization to preferentially increase volume in areas away from the largest seismic hazard

(i.e. lower SI).

An optimal solution was found for the ’Economic’ case, which increased the overall

injection rate basin-wide compared to the BAU case (Figure 3.8 - green line). The solution shows

a gradual increase in basin-wide injection rate from ∼300,000 m3/month in 2022 to ∼375,000

m3/month in 2027. The increase in cumulative volume injected in the ’Economic’ case is more

than 1,080,000 m3 (∼6,750,000 barrels) when compared to the BAU case.

The spatial distribution of injection in the ’Economic’ case shows a substantial change in

the how the field would be operated during the 5 year management period (Figure 3.15b). Of

the 29 potential injection wells, the optimization chooses to inject at only 12 wells, while the

remaining 17 are completely shut-in. Of the 12 wells which operate during the 5 year window,

only 6 inject at rates higher than 20,000 m3/month. These 6 injectors, where the vast majority

of fluid is injected, are spread out across the entirety of the well field and to regions of lower SI.

These 6 wells inject at a more or less a constant rate for the entire management time (SM Video

2). Clustering of injection is held to a minimum when compared to the ’Reduction’ or ’Safety’

case.

This case highlights what the optimization method ultimately attempts achieve: spa-

tially distributed injection across regions of lower SI. By spreading out injectors, the basin-wide

Coulomb stress rate is reduced by minimizing superposition of clustered injectors. By concentrat-

ing injection in regions of lower SI, the Coulomb stress rate that is created by injection results in

lower induced seismicity. This combination of effects – spatially distributed injection in regions

of lower SI – allows for the highest basin-wide injection rates (and largest cumulative injected
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volume) for a given seismic hazard.

3.6 Discussion

The combination of physics-based forecasting with optimization management shows

promise for future work in mitigating induced seismic hazard at the basin-scale. The optimization

framework allows a user to maximize a particular objective (i.e. reduction, safety or economic)

while maintaining a specified induced seismic hazard. Our method is also flexible and adaptable

to other regions or other types of fluid injection that induce seismicity. The main components are

the following:

1. Physics-based model of pressure and/or stress change. First, a physics-based model

of injection must be built of the region that has good estimates of the relevant reservoir

flow parameters. Here, we have built a fully coupled, poroelastic numerical model using

the finite-element method calibrated using injection data from reservoir step-rate tests.

However, a finite-difference model could also work (e.g. MODFLOW). Any linear system

is the key. Depending on whether the poroelastic stress effects are marginal to the pore

pressure effects may influence this decision.

2. Seismogenic Index (SI) Map. Second, a SI map (see Section 3.4.3) must be calibrated

from the empirical relationship of seismic response to injection. Thus, some degree of

prior injection and earthquake history are required for forecasting. Without the SI map,

optimization is still possible, but will not be constrained by desired seismic hazard.

3. Response Matrix. Third, a response matrix of system is built from impulse-responses of

the system to a unit injection at each prospective injection site (see Section 3.5.1). The

response matrix allows the optimization to scale injection rates of individual wells to find

the combination which both satisfies the constraints and maximizes the objective function.
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4. Optimization Framework. Lastly, an optimization framework of an objective function,

constraints and decision variables are input. The model then seeks the optimized solution

that will satisfy either a reduction, safety or economic objective and maximize fluid injected.

The adaptability of this method to other regions is possible through the gathering of

required basin-specific input data on reservoir flow parameters, injection and seismicity response.

In addition, the method is flexible enough to consider any fluid injection that produces a linear

poroelastic response. Listed below are some of the potential improvements and limitations of the

current framework:

1. Real-time optimization and forecasting: Once the physics-based model and SI map are

initially calibrated the user could develop an optimal injection strategy and continuously

update the SI map if seismicity evolves in new areas. The response matrix method allows

for quick integration of new constraints without the need to re-run elaborate physical

models continuously. Therefore, rapid adjustments in well optimization are possible as the

SI adjusts and improves in new areas of the basin.

2. Stacked optimization for model uncertainty: As described in Section 3.B.4, stacked

optimization allows the user to find one set of optimal injection rates that explicitly account

for the uncertainty in the physical model. The existing framework contains uncertainty in

the seismic hazard due to the Poisson distribution within the SI model. However, stacked

optimization allows the user to consider uncertainty within the physical model (i.e. a

distribution of flow parameters). Stacked optimization does require more computational

power as it requires N (where N is the number of wells) additional model runs for each

uncertain distribution to be appended to the response matrix.

3. Non-linear programming: Non-linear programming allows optimization of non-linear

objective functions and constraints. Currently, our linear program cannot explicitly optimize

injection using seismic hazard (R) as a constraint because R is non-linearly related to CFS
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rate. Therefore, we rely on an iterative approach to optimize injection to a desired seismic

hazard (see Section 3.B.5). Non-linear programming may be able to address the issue of

local-minima in the optimal solution where currently non-unique solutions may be found

by a linear program. Our iterative method slowly adjusts the constraint locations one at a

time to prevent any over saturation in hazard and injected fluid at any one location in the

solution. Non-linear programming may be able to save computational time as compared to

the iterative approach.

4. Incorporating known fault maps: A key piece of future work is the integration of known

fault maps within the optimization framework. Known faults would serve as additional

constraint locations appended to the response matrix and constraint vector, where pressure

and/or stress change would be limited. From a practical point of view, known faults in

many cases of induced seismicity are not the primary drivers of induced seismic hazard

(i.e. Oklahoma), but users may desire to avoid stressing faults when optimizing basin-scale

injection. This optimziation framework would allow the consideration of both an SI map

and fault maps.

5. Incorporating risk for policy: While we looked at the total hazard in the region, it would

be possible to constrain hazard spatially depending on seismic risk (Schultz et al., 2021).

For example, agreement might be met with industrial well operations that maximizes the

fluid injected while restricting hazard in an area with high risk, like a densely populated area.

A scientifically informed policy, for example one that limits the probability of exceeding a

M≥5+ earthquake within a high risk zone, could be met while still reaching the economic

objective of the well operators.
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3.7 Conclusions

Here, we investigated the relationship between wastewater injection and seismicity in the

Raton Basin of Colorado and New Mexico using a physics-based forecasting framework. First, a

3D finite element model of a poroelastic crust is used to estimate time dependent Coulomb stress

changes over the more than two decades of Raton Basin injection. The outputs of Coulomb stress

rate from our finite element model were combined with a seismogenic index (SI) model to forecast

induced seismicity in space and time throughout the basin. Using this hybrid physics-statistical

forecasting model we found the following conclusions:

1. The recent and ongoing induced seismicity within the Raton Basin is well explained by

our physics-based forecasting model. Declining seismicity rates between 2016 - 2022

are forecasted well by the decline in basin-wide injection rate. Despite injection rate

declines, modeled Coulomb stress rate is still increasing in several regions of the basin,

suggesting that induced seismic hazard is still ongoing. Our model also shows that induced

seismicity is driven primarily by the pore pressure component of the poroelastic stresses,

with poroelastic stress changes accounting for about 5% of the driving force.

2. Using our physics-based forecasting model, we estimated the induced seismic hazard

produced by continued Raton Basin injection at May 2022 levels through 2027 (Business

As Usual case). Our 5 year forecast estimates the probability to exceed a M≥4+ event is

75% and M≥5+ event 14%.

3. Linear-programming optimization using the response matrix method is implemented suc-

cessfully using a safety objective framework that reduces seismic hazard for given amount

of fluid injection (safety objective) or (b) maximizes fluid injection for a prescribed seismic

hazard (economic objective).

4. Across the different objectives tested, the optimization algorithm tends to spread injection
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out across the field when compared to the Business As Usual case. In the safety and

economic objective cases, we observed the algorithm spreading out higher rate injection

wells from one another and to regions lower seismogenic index (SI). We also demonstrate

that injection prior to the optimization management period may have differing effects on

seismic hazard during the management period. In the reduction and safety cases, we show

that prior injection enhanced seismic hazard during the management period, thus decreasing

the impact of injection optimization. We conclude that optimization of injection earlier in

an induced sequence will allow for better control of seismic hazard during the management

period.
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Tables and Figures

Table 3.1: Material Properties. Hydrogeologic material values for different units and their
corresponding depths in the numerical model. Note that the model begins at 1 km depth below
the surface.

Unit Pierre-Benton-Niobrara Dakota-Purgatoire Morrison-Entrada-Gloreita Sangre De Cristo Crystalline Basement
Depth (km) 1-1.4 1.4-1.6 1.6 - 2 2 - 2.8 2.8 - 15
Permeability (m2) 1·10−20 6.7·10−14 8.9·10−14 8·10−15 1·10−15

E (GPa) 0.22 38 32 40.74 60
v 0.3 0.287 0.13 0.15 0.25
Ks (GPa) 0.34 33.8 26.6 36.6 42
φ 0.38 0.25 0.07 0.06 0.01
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Figure 3.1: Regional Context. Light grey outline is the Raton Basin. Blue triangles are the 29
injection wells. Grey dots are earthquakes with M≥2.5 and red dots are earthquakes with M≥4
from Nov-2001 to July-2020. Boxed regions represent zones of seismicity: Tercio, Vermejo
Park, and Trinidad.
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Figure 3.2: Injection, induced earthquakes, and Coulomb stress rate. Total monthly injection
volume (grey), observed earthquakes M≥2.5 (1 year moving mean), and the average modelled
Coulomb stress rate in the study area. The Coulomb stress rate lags the injection rate due to the
diffusion of pore pressure into the crystalline basement. A correlation between increased stress
at depth and seismicity is observed.

89



Figure 3.3: Numerical Domain. Three-dimensional finite-element model domain. The model
mesh contains about 1.5 million hexahedron elements. The Red dots represent the well injection
locations. The blue dotted line represents pore pressure and stress output location at the mean
seismogenic depth (∼7 km depth or 4240 m below the top of the crystalline basement).
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Figure 3.4: Seismogenic Index Στ Maps. Mapped spatial variability of the SI in the Raton
Basin. The SI is computed in local regions of 7-km radius around the 25,000 seed points (grey
dots in panel A) ). The calibration time is between Nov-1994 and July-2016. See Methods
for additional details. Red dots represent earthquakes M≥2.5 used in calibration. Panel B)
represents the inverse distance weighted interpolation of the SI to the model points used in the
forward model management solutions.
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Figure 3.5: Pore Pressure Increase. A)) Pore pressure increase at mean seismogenic depth
across the basin including seismicity from Dec 1994 through Jan 2016. Black dots represent
earthquakes with M≥2.5+ and magenta stars are earthquakes with M≥4+. B) Pore pressure
increase at mean seismogenic depth across the basin including seismicity between July 2016 to
July 2022.
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Figure 3.6: Seismicity Rate Forecast. Seismicity rate forecasts, above our completeness
magnitude M≥2.5, compared to observed seismicity rate (1 year moving mean). Calibration
period is from Nov 1994 through 2013, 2014, 2015, and 2016 prior to the Glagow et al.,
2021 study (Glasgow et al., 2021a). The earthquakes and longest calibration time period used
to calibrate the SI model is represented by the red line. The varying dashed lines and grey
boundaries are the 95% confidence bounds forecasted by the seismicity rate produced from
the SI model that includes the inverse distance weighted interpolation (right panel of Figure
3.4). Magenta line represents the observed seismicity from Glasgow et al., 2021 which is well
explained by the seismicity rate forecasted by our model.
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Figure 3.7: Forecasted Magnitude Exceedance Probabilities. Exceedance probabilities for
magnitudes M≥2.5-6.5 from our physic-based forecasting model. Each line represents the
probability forecasted by our model based on the calibrated SI map and computed Coulomb
stress model outputs. The forecasted probability from 2016-2020 is significantly higher than the
tectonic background (grey line) and is highest in 2016. Background probabilities are derived
from prior work (Rubinstein et al., 2014). Each year from 2016 to 2019 the the magnitude
exceedance probabilities or decreasing, but still above the tectonic background level. From 2016
to 2020 the potential to trigger a M≥5+ increases to ∼18%.
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Figure 3.8: Different Optimization Scenarios. Plot shows the monthly injection rate (total
of all 29 wells) for the observed data (blue). At June-01-2022, the next 5 year window (gray
box) represent the forecasted injection rates. The business-as-usual rate takes the last known
injection rates and holds them constant for the five years (blue-dash). The prospective case
‘Reduction’ is the optimized injection rates subject to reducing the overall injection by 70% in 5
years as well as a taper in individual well rates (yellow). The prospective case ‘Safety’ is the
optimized injection rates subject to the constraint that the total fluid injected must be the same
as the BAU, but reduces the overall hazard (Figure 3.9) (red). The prospective case ‘Economic’
is the optimized injection rates subject to the constraint that the overall 5 year hazard must be
the same as the BAU, but increases the overall injection (green).
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Figure 3.9: Seismicity Rate Forecasts and Forecasted Magnitude Exceedance Probabilities
(Optimizations). A) Seismicity rate for M≥2.5 from beginning of injection until beginning
of optimization management period. Each of the 5 year optimizations have an associated
exceedance probability in the next panel. B) Exceedance probabilities for scenarios projected into
the future (see main text). The Business as Usual (BAU) forecast is determined by extrapolating
the last observed injection well data into the next 5 years. The shut-in forecast is determined in
a similar way, but for immediate shut-in of all wells in June-2022. Prospective Case ‘Reduction’
considers reducing overall injection volume by 80% while not allowing the probability of
exceeding a M≥4+ to be over 45%. Prospective case ‘Safety’ considers the same amount of
fluid as the BAU case, but a more spatially optimized strategy based on the SI map. Prospective
case ‘Economic’ optimizes to a solution for much more fluid for the same seismic hazard as the
BAU case.
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Figure 3.10: BAU Hazard and Mean Injection Rate. A) Magnitude exceedance hazard
map for M≥4+ for the 5 year management window. Each location is taken as the sum in a 7
km radius. Magenta stars (3) represent the locations of actually observed M≥4+ earthquakes
between June-2022 and Sept-2023. B) The Mean well injection rate (m3/month) for all 29 wells
(triangles) in the BAU extrapolation. Grey dots represent model nodes.
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Figure 3.11: Shutin Hazard. The 5 year hazard for the shut-in scenario (all wells cease
injection in May 2022 and stay off for 5 years) is also characterized spatially for a probability of
exceeding a M≥4+. Shut-in represents the post-diffusion pore pressure and stress effects from
the full injection history that continue to linger through the model and contribute to perturbations.
Note that the colorbar axis is lower (5%) compared to all other maps which use 20% to clearly
show the spatial distribution of the hazard.
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Figure 3.12: Simulation Optimization Schematic. Beginning at the top, operations consider
quantitative decisions in well placing and operation prior to injection. By developing a numerical
model and SI map from current injection a simulation model is built. The simulation model is
used to build a response matrix which through linear programming solves a desired objective
function (maximize the fluid injected). Additional constraints further inform the optimization
which arrives at informed injection rates and spatial hazard maps to then advise future operation
practices.
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Figure 3.13: Prospective Case ‘Reduction’ Results. A) Magnitude exceedance hazard map for
M≥4+ for the 5 year management window. Each location is taken as the sum in a 7 km radius.
B) Mean injection rate (m3/month) at each well location (triangles). There are several locations
where the optimization chooses not to inject. The grey dots represent the model nodes.
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Figure 3.14: Prospective Case ‘Safety’ Results. A) Total probability of exceeding a M≥4+
earthquake across the entire basin during the total 5 year management window. Hazard is spread
more evenly throughout the model and in less than the BAU case in areas that contribute to high
hazard. B) Mean injection rate in m3/month at each well location (triangles). There are several
locations where the optimization chooses not to inject. The grey dots represent the model nodes.
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Figure 3.15: Prospective Case ‘Economic’ Results. A) Total probability of exceeding a
M≥4+ earthquake across the entire basin during the total 5 year management window. The
highest probability western part of the basin is associated with the large fluid injection. B) Mean
injection rate in m3/month at each well location (triangles). There are several locations where
the optimization chooses not to inject. The grey dots represent the model nodes.
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Appendix

3.A Appendix to Chapter 3

3.B Supplementary

3.B.1 Data

Wastewater injection well data for Las Animas County, Colorado was retrieved from

Colorado Oil and Gas Corporation Commission Website (https://ecmc.state.co.us/#/home),

(Accessed: 20223-10-10). Wastewater injection well data for Colfax County, New Mexico was

retrieved from New Mexico Oil Conservation Division Permitting Website

(https://wwwapps.emnrd.nm.gov/OCD/OCDPermitting/Data/Wells.aspx) (Accessed: 20223-10-

10). In this study we convert injection well data from bbl/month to m3/day across 29 wells from

Nomber 1994 to May 2022 (See Supplementary Data).

Multiple seismic studies have taken place in the Raton Basin. We leverage these combined

data sets to form a comprehensive catalog of earthquakes up to July-2020. Earthquakes from

1963–2013 are given from Rubinstein et al., 2014, which include recorded earthquakes by the

USGS temporary seismic networks from 2001-2011 (Rubinstein et al., 2014). Earthquakes from

2008-2010 were recorded by the EarthScope Transportable Array (Nakai et al., 2017a). Past
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2013, we rely on cataloged earthquakes from USGS National Earthquake Information Center

(NEIC). Furthermore, from July 2016 to July 2020 Earthquakes are provided from a combined

broadband seismometer and geohpone node study available from the International Seismological

Centre (Glasgow et al., 2021a; Glasgow et al., 2021b).

3.B.2 Step Rate Tests

Prior work calibrated reservoir permeability in the main injection reservoirs, the Dakota

Formation and the Entrada Formation, from injection-recovery step rate tests (Hernandez and

Weingarten, 2019). A step rate test determines how pressures within a formation change as

a result of small-scale injection. The pressure changes can be converted to input parameters

for AQTESOLV which utilizes a Theis step-drawdown test to approximate hydraulic properties

(Duffield, 2007). SM Table 1 provides the permeability values obtained from AQTESOLV for

different cases: case 1 considered the lowest values of psi from each step, case 2 considered the

highest values of psi, case 3 used an incremental increase per minute, and case 4 was simply

the recovery data. Case 4 provided the lowest mean residual for both reservoirs (SM Figure

3.B.11-3.B.12) and was chosen as the preferred permeability for the model. We include plots

from within AQTESOLV of the data and transmissivity solution The calculated permeability are

within those reported by previous studies (Belitz and Bredehoeft, 1988; Nakai et al., 2017b).

3.B.3 Simplified Optimization Example (no SI map required)

There is strong evidence to suggest that stressing rate and accumulated stress, the latter

which is related to the total injected volume (
∫

V ∆τ(P)∼ ∆V ) (Van der Elst et al., 2016), are key

factors that influence the occurrence of induced seismicity (McGarr, 2014; Weingarten et al.,

2015; Toda et al., 2002; Qin et al., 2022). As an example, the following management model

uses the prior total Coulomb stress τ and Coulomb stress rate τ̇ at locations in the Raton Basin
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that were associated with injection induced M≥ 4+ events. We make the assumption that all

former M≥ 4+ events occurred at the mean seismogenic depth where model results are output.

This management model can be thought of as a retroactive example since we exclusively let

the previous stress conditions of past large earthquakes inform the management model solution.

Therefore, this method does not require an SI map to forecast the hazard, although the solution

to the injection rates q can be used to forward solve the hazard if desired. The following steps

describe the methodology, generalized for application to other studies:

1. Resolve the stress and pore pressure spatiotemporal evolution from the numerical domain

based on the full well injection history.

2. Record the τ and τ̇ at each M≥4+ earthquake location in the numerical domain during the

time step it occurred. These will provide the constraints for the xτ and xτ̇ respectively.

3. Generate response matrix Rτ and Rτ̇ (See Appendix) for both τ and τ̇ then stack them

vertically; This requires running Q individual models based on Q wells for the length of the

management period desired.

4. Solve the linear program management model:

Rτ

Rτ̇

q ≤

xτ

xτ̇


SM Figure 3.B.13 describes the derived constraints at each of the earthquake locations and

the resulting optimization of the τ and τ̇ at each of the locations during the management period.

Note that the total Coulomb stress and Coulomb stressing rate thresholds are never exceeded.

The cumulative injection rate is also reduced. Another important feature of the optimization

is the shape of the τ and τ̇ at each of the locations during the management period. Notice that

τ steadily increases and that τ̇ increases near the end. The optimization only considers the 5

year management period, and therefore does not consider what ramping the injection rates and

subsequent τ and τ̇ near the end of the management period would do for the months following the

management period. We present the solution this way to introduce the response matrix method
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and reveal the inherent flaws in the optimization since this exact solution would not be ideal

for practical use. However, there are a variety of solutions that makes use of mixed-integer

programming to control the behavior of the injection wells to avoid this type of solution which

we elaborate on in the main text and incorporate for prospective case ‘Reduction’.

3.B.4 Mixed-Integer Programming and Additional Constraints

Monotonic decreasing/increasing is an injection scenario by which the injection for all

the wells is only ever decreasing/increasing and never increasing/decreasing. The construction of

the mixed-integer R∗ matrix for a monotonically decreasing scenario is simple. If we consider

q jk to represent the injection rate for well j at managment period k, then for all k the constraint

q j,k+1 ≤ q j,k must be satisfied for monotonically decreasing rates. To ensure that this constraint is

met x∗ must equal a column vector of zeros with length m, and the integer matrix R∗ would contain

−1s across the diagonal and 1s offset from the diagonal by the number of wells. Similarly, for

the monotonic increasing scenario the constraint that q j,k ≤ q j,k+1 must be satisfied. To achieve

this the integer matrix R∗ would contain 1s along the diagonal and −1s offset from the diagonal

by the number of wells, but with the important inclusion that the diagonals associated with the

last time step at all well locations is 0 because otherwise q j,k ≤ 0 which would result in zero

injection rates for all time. We include the monotonically decreasing constraint for Prospectice

case ‘Reduction’.

Running average constrains the injection rates to to be equivalent to an average over t

management periods such that the constraint q j,k+1+q j,k+2+···q j,k+t
t ≤ q j,k is satisfied. The running

average is useful if smoothing of injection rates through time is desired. The mixed integer

construction still results in a column vector of zeros with length m for x∗. The integer matrix R∗

therefore contains diagonal integer values equivalent to −t and t 1s offset from the diagonal by

the number of wells times t.
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Exclusion of certain wells is another constraint that is necessary for typical injection

management practices. The construction of the integer matrix R∗ is similar to the monotonic

scenario. In order to satisfy the constraint for specific wells such that q j,k ≤ 0 wells at specified

management periods in the R∗ matrix are represented with 1s since Eq. (3.8) limits the injection

rate q as nonnegative. The combination of monotonic, running average, and exclusion of wells

allows for a wide variety of variable injection scenarios that are all possible to optimize for.

Furthermore, uncertainty in the simulation model is also possible to incorporate into the

management solution. While not included in this study, the concept is similar to the previous

management model controls. For example, in our model of the Raton Basin, if there was

significant uncertainty in the fault permeability structure we could recreate an entirely new

response matrix based on an altered simulation model where the fault zone permeability in the

model was changed. This would require 29 (each well) different unit-source solutions ie. model

runs. The newly formed response matrix is appended with the primary response matrix and also

the constraint vector is appended. The linear program will find an optimal solution again, but

with the inclusion that the uncertainty in permeability is accounted for. Uncertainties in any

of the material parameters is accountable for different model realizations which are ‘stackable’

ad infinitum. It is important to note that solving the linear program in this way means that the

solution finds the optimal injection solution to the uncertainty instead of with uncertainty. The

only ’free’ uncertainty that does not require additional simulation model realizations is that of

the fault geometry. Additional τ response matrices are calculable for different receiver fault

geometries and concatenated in the same way as any other uncertainties.

3.B.5 Iterative Method

The iteration technique is designed to slowly adjust the rate constraints at the subset of

model output locations such that the forward solution of the constraints and subsequent seismicity
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rate and seismic hazard across the entire basin arrives at the desired threshold. The technique is

not exhaustive or optimized, but was found to work adequately for our efforts.

1. Given the forward solution of rate constraints x from the optimized injection rates q resolve

the total seismicity rate and subsequent hazard across the basin. If within the tolerance of

the desired threshold finish the iteration. If not within the tolerance of the desired threshold

continue to the next step.

2. Find the locations l used in the optimization (ie. the 500 subset of points used in optimiza-

tion (SM Figure 3.B.15)) that for all time during management period (ie. 5 years) reached

their constraints, even one time step.

3. For the specific locations l, increase their constraints (for all time) by a small amount. That

is to say use a multiplier that increases the constraint. The amount is based on how far way

from the desired solution the current total probability is. If close, then the scaling is low,

but if far the scaling can be larger if desired by the user. Otherwise if the probability is too

high reduce all constraints by an adjustable percentage.

4. Solve the optimization again with the adjusted constraints which will produce a new q

array.

5. Forward solve a solution for the rate constraints x given the new q.

6. If you are incorporating previous remnant stress fields, add those stress rates to x now. This

is for Prospective Case #2.

7. Return to step 1.

3.B.6 Supplementary figures for Chapter 3
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Table 3.B.1: Permeability Calibration. Calculated permeabilities in each step rate case test for
the Dakota and Entrada formations obtained from AQTESOLV (Hernandez, 2020).

Permeability m2

Test Case Dakota Entrada
Low Displacement 6.825 · 10−14 5.892 · 10−14

High Displacement 6.415 · 10−14 6.164 · 10−14

Increasing Displacement 6.607 · 10−14 5.836 · 10−14

Recovery 6.667 · 10−14 8.924 · 10−14
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Figure 3.B.1: Map of the ∼25,000 seed points (A) and M≥2.5+ earthquakes (B) with their
associated fault geometries (strike/dip). The strikes were determined by a nearest neighbor
search (NNS) across the basin by choosing several varying locations of strikes given by previous
work (Glasgow et al., 2021a) (their Fig. 5). Dips were determined by taking the closest large
event focal mechanisms. Regardless of inaccuracies in our fault geometry assumptions, the
fault geometries play a minimal role in the overall Coulomb stress rate calculations since the
pore pressure rate is the largest component which is independent of fault geometry (SM Figure
3.B.2).
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Figure 3.B.2: Average stressing rates for the central Raton basin at 4.2 km depth. The dominant
signal of the Coulomb stress rate is the pore pressure rate.
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Figure 3.B.3: GR law of earthquake catalog prior to higher resolution data from Glagow et al.,
2021 (Glasgow et al., 2021a) (see Data). A magnitude cut-off of Mc=2.5 is chosen from visual
inspection where the frequency of events experience ’roll-off‘ from b-value estimate.
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Figure 3.B.4: SI map for varying calibration period 2013-2016. With increasing earthquake
count the SI improves in spatial resolution, but there is little change among the different
calibration years.
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Figure 3.B.5: SI map for varying calibration period 2013-2016 for the model that uses a 5-km
search radius and removes the >3 earthquake precondition. Outliers away from the basin provide
high localized areas of enhanced SI. Notice that within the basin though, the overall structure
and features of enhanced SI do not change.
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Figure 3.B.6: Seismicity rate forecasts, above our completeness magnitude M≥2.5, compared
to observed seismicity rate (1 year moving mean). Calibration period is from Nov 1994 to July
2016, prior to the Glagow et al., 2021 study. The earthquakes and time period used to calibrate
the SI model is represented by the red line. The grey areas are the 95% confidence bounds
for the different calibration time periods for the the forecasted seismicity rate produced from
the SI model that includes the inverse distance weighted interpolation (right panel of Figure
3.4). Magenta line represents the observed seismicity from Glasgow et al., 2021 which is well
explained by the seismicity rate forecasted by our model.
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Figure 3.B.7: Seismicity rate for four different calibration periods including the BAU forecast
after May 2022. This is the forecast based on our SI model shown in Figure 3.B.4.
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Figure 3.B.8: Seismicity rate for four different calibration periods including the BAU forecast
after May 2022. This is the forecast based on our SI model shown in SM Figure 3.B.5. Notice
that the seismicity rate increases much more than the prior model in SM Figure 3.B.7. The
reason is that the large outliers of SI now experience elevated rates of Coulomb stress rate which
contribute to the overall seismicity rate considerably more.
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Figure 3.B.9: Response Matrix. As an example, we denote the Coulomb stress response matrix
as Rmn, where m=732 is the number of rows that equals the number of model output locations
(12) times the number of time steps (61), and where n=1769 is the number of columns that
equals the number of wells (29) times the number of time steps (61). Steps to form the response
matrix for the Coulomb stress rate are provided in the Appendix. If we denote q as the injection
rates at each of the 29 wells for all time steps (61), we can multiply Rq to produce the resulting
Coulomb stress at each of the observed locations for each time step. This is the foundation for
the management model and linear program optimization. An example of using 12 model output
locations is presented in the Supplementary Methods 3.B.3).
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Figure 3.B.10: Visualization of Response Matrix Generation. Panel a) shows a zoomed in
portion of the model with corresponding well locations (blue triangles) and 12 model output
locations where prior M≥4+ events occured in the basin. Panel b) is the unit impulse injection
rate. We create 29 separate models that follow this injection profile for each well. The impulse
response is an injection of 100 m3 immediately followed by zero injection rate with no injection
at the other well locations. Note that the unit impulse response shares both the number of
time steps and total time length of the management model. We then record the response at the
entire basin (model points in grey). For this example we choose 12 points associated with prior
earthquakes. Panel c) shows the 29 responses that each unit response has on each given location.
These response values are combined in the response matrix (Figure 3.B.9).
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Figure 3.B.11: Dakota Formation (Recovery). Dakota formation residual drawdown over
log(t/t ′) calculated fit from AQTESOLV. Transmissivities were converted to permeability (Table
1).
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Figure 3.B.12: Entrada Formation (Recovery). Entrada formation residual drawdown over
log(t/t ′) calculated fit from AQTESOLV. Transmissivities were converted to permeability (Table
1).
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Figure 3.B.13: Simple Optimization Example (12 points) Panel a) is the modelled Coulomb
stress at the 12 model output points with dots at the time of previously recorded M≥4+ earth-
quakes at that location. Panel b) is the modelled Coulomb stress rate at the 12 model output
points with dots at the time of the M≥4+ earthquake at that location. Notice how the Coulomb
stress rate at the model output points 4,5,8,6,7,10 coincide when rates were peaking indicating
good, and entirely independent, agreement between Coulomb stress rate and timing of seismicity.
Panel c) is the optimized Coulomb stress which is considerably lower than the modelled stress.
Panel d) is the optimized Coulomb stress rate. Notice how some locations clearly reach the
maximum allowed rate for some time steps. Individual model output locations compared to the
overall and rate constraints through time are provided in the Supplementary (SM Figure 3.B.14).
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Figure 3.B.14: Simplified management model example results that does not require an SI
map. The (blue line) is the optimized Coulomb stress results for the 12 model output locations
compared to the maximum Coulomb stress allowed (horizontal red dash line) and compared to
the maximum Coulomb stress rate (angled red dash line) allowed at each of the model output
locations.
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Figure 3.B.15: Uniform random distribution of points (500) used for management model 2
examples. The red dots represent the earthquakes in the basin with M≥2.5. The red circle
represents the subset of the model points used such that all seismicity is within it ensuring that
the random points chosen for the initialization of the optimization are not irrelevant.
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Chapter 4

Deciphering earthquake triggering

mechanisms with a fully coupled poroelastic

model and machine learning analysis:

application to the case of Paradox Valley

Unit, Colorado

In areas of induced seismicity, both stress changes from fluid injection and from static

deformation caused by slip along faults can trigger earthquakes. Distinguishing the difference

between injection-driven independent events and earthquake-driven events will improve our

understanding of the spatio-temporal behavior of induced seismicity. Here, we explore earth-

quake triggering mechanisms by combining (1) a calibrated fully coupled poroelastic model of

wastewater injection, (2) static stress from fault dislocations, (3) a machine learning random

forest regression model composed of varying stress metrics, (4) Shapley values to determine

feature importance, and (5) temporal clustering techniques to validate our results. Our case study
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area, the Paradox Valley Unit, Colorado, presents a relatively simple, idealized case to test our

methodology: a single, high-pressure injector that has induced >7000 earthquakes between 1991

and 2012 with a detailed earthquake catalog, injection history, and well defined hydrogeologic

heterogeneities. Our poroelastic model, built with Abaqus, resolves time dependent stress change

at ∼3000 hypocentral locations within 8 km of the well for 284 monthly time steps.

4.1 Introduction

A variety of anthropogenic industrial activities, including wastewater disposal, cause

induced seismicity (Ellsworth, 2013; Keranen et al., 2014; Shirzaei et al., 2016). Similar to

natural events, induced seismicity occurs on pre-existing critically stressed faults (Townend and

Zoback, 2000). Generating induced seismicity from the reactivation of faults is attributed to

several physical mechanisms: increasing pore pressure diffusion (Keranen and Weingarten, 2018;

Weingarten et al., 2015; Langenbruch et al., 2018), poroelastic coupling (Segall and Lu, 2015),

and stress changes caused by seismic or aseismic fault slip (Ge and Saar, 2022; Brown and Ge,

2018).

These physical mechanisms for induced seismicity contribute to the triggering potential

of each earthquake. Since induced earthquakes can be triggered by small stress changes (1-

10 kPa) (Bachmann et al., 2012; Cacace et al., 2021; Stokes et al., 2023) a large difficulty

arises in deciphering which mechanism was responsible for triggering each earthquake. We are

particularly interested in discerning which earthquakes were driven by fluid stress changes and

which earthquakes were driven by stress changes from prior earthquakes. Furthermore, site-to-site

differences in physical rock properties, reservoir structure, fault geometry, and remnant tectonic

stress could contribute relative differences in mechanism dependencies.

A major difficulty in deciphering induced earthquake triggering mechanisms is uncertainty

in the absolute stress within the Earth’s crust (Delorey et al., 2021). Relative stress changes from
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fluid injection require analytical or numerical models to resolve the spatio-temporal evolution

of pore pressure and poroelastic stress. To capture the fully-coupled poroelastic stress changes

(Biot, 1941; Rice and Cleary, 1976b; Wang, 2000) induced from the fluid sources requires

detailed knowledge of the hydrogeologic properties of the region. Point measurements of absolute

stress magnitudes are possible from overcoring, hydraulic fracturing, or the focal mechanism

stress inversion method (Bredehoeft et al., 1976; Fama and Pender, 1980; Tanaka et al., 1998;

Zoback and Healy, 1992; Gephart and Forsyth, 1984). These measurements allow for estimation

of the principal stress directions and typical faulting geometry. The fault geometry is critical

for resolving fault plane stress tractions that characterize fault stability (King et al., 1994a;

Cocco, 2002). Hence, any attempt at discerning induced earthquakes requires an accurate and

comprehensive hydrogeological model, detailed injection well data, precise fault geometries, and

high-resolution earthquake catalog.

Here, we build a three-dimensional (3D) fully-coupled poroelastic model of Paradox

Valley Unit, CO (PVU) and resolve time dependent pore pressure and stress changes due to

wastewater injection in an attempt to discern earthquake triggering mechanisms. The primary goal

is defining what earthquakes are predominantly triggered by stress changes from the injection and

what earthquakes are predominantly triggered by earthquake-earthquake interaction. To inform

the contribution of our earthquake triggering mechanisms, we use a random forest regression

machine learning analysis and SHapley Additive exPlanations (SHAP), a game theoretic approach

to explain the output of any machine learning model (Lundberg and Lee, 2017). We corroborate

our results with an independent induced seismicity cluster analysis, which reveals strong evidence

that the physics-based machine learning method provides novel insight into discerning triggering

mechanism not previously captured. This model explores the induced earthquake triggering

process and could help discern what regions are more or less susceptible to stress changes from

anthropogenic sources. The methodology presented here is applicable not just for wastewater

disposal, but to other types of subsurface injection: CO2 sequestration, enhanced geothermal
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systems, and hydraulic fracturing.

4.2 Paradox Valley Unit (PVU) Data

The PVU is a program run by the U.S. Bureau of Reclamation which has been disposing

deep brine into a confined aquifer between 4.3 and 4.6 km depth in Paradox Valley, Colorado since

1995 (Ake et al., 2005; Denlinger and RH O’Connell, 2020) (Figure 4.1). The high-pressure fluid

injection induced >7000 earthquakes between 1991 and 2012, which have all been documented

as induced seismicity (Ake et al., 2005; Block et al., 2015; King et al., 2016; Denlinger and

RH O’Connell, 2020). Most seismicity within 5 km of the injection well were induced within

the first 10 years and nearly all within the high permeability injection reservoir known as the

Leadville formation. This zone is highly pressurized from decades of continuous pumping and

dictates the lateral migration of seismicity away from the wellbore. These carefully studied events

support the notion of a
√

t diffusion model for pressurization from the well (Block et al., 2015;

King et al., 2016) (Figure 4.2). Additional ancillary data also make this an ideal study region:

numerous wells that extend into deeper formations than just the Leadville aquifer, 3D seismic

tomography, logs of P-wave velocity, density and porosity from the near surface to basement

in the injection well, and logging of geologic units in other wells in the area (Denlinger and

RH O’Connell, 2020).

Most importantly, previous work has already compiled a detailed, fully coupled poroelastic

model (Denlinger and RH O’Connell, 2020). This model is given by a grid description of nodes

with corresponding parameter values which we validate in Abaqus with improved meshing near

the well where pressure and stress gradients are highest (see SM 4.A.1). Figure 4.2 includes a

plot of the earthquake distribution overlayed on a cross-section of the numerical model mesh.
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4.3 Methods

Here, we resolve time dependent pore pressure and stress changes throughout the PVU.

The pore pressure and stress perturbations are taken to produce von Mises stress features that are

fed into the ML/SHAP analysis. An additional feature, which we call the earthquake feature, is

created and also fed into the ML/SHAP analysis. The earthquake feature is calculated from prior

earthquakes that may have perturbed the current earthquake. The ML/SHAP analysis seeks to

find the model contribution of both the stress and earthquake features at each earthquake for all

time. We support our interpretations of triggering mechanisms from the ML/SHAP with results

from a nearest neighbor distance cluster analysis.

4.3.1 Numerical Model

We model the relative increase in pore pressure ∆P (scalar) and poroelastic stress ∆S

(2nd order tensor) for the PVU using a model with one injection well in the center of the model

domain (SM Figure 4.A.1). The hydrogeologic structure is based on a unique nodal distribution

of parameters that we reduced down to 1000 unique unit formations and use Abaqus to resolve

the linear poroelastic equations (Hill, 2021) (see SM 4.A.1). The model dimensions are 50 km

by 50 km with a 18 km depth. Figure 4.2 shows a cross-section through the well injection zone.

The injection is divided across three perforated zones consistent with prior modeling and uses the

entire injection history as 7952 unique daily rates in our model from 10-July-1991 to 16-April-

2013 (Denlinger and RH O’Connell, 2020) (Figure 4.2). We output ∆P and ∆S from these daily

steps across the entire domain at 284 monthly time steps. We do not include earthquakes in our

study that occur outside of our model domain time despite the earthquake catalog extending until

31-December-2019 (Figure 4.2).
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4.3.2 Stress Features

The Abaqus outputs of ∆P and ∆S were post-processed in Matlab using abaqus2matlab

(Papazafeiropoulos et al., 2017). The stress features of ∆P and ∆S represent the relative change

induced from the fluid injection and are resolved at the closest value in the domain to each

∼3000 earthquakes during our study time. The stress features are direct input parameters in

the ML/SHAP analysis and therefore we looked at a variety of different stress features during

the preliminary stages of this work consistent with prior forecasting methodologies (DeVries

et al., 2018; Sharma et al., 2020; Qin et al., 2022) (see Supplementary). We found that von

Mises stress and von Mises stress rate were often the best stress features for forecasting the

seismicity rate and are the only two stress features we consider in our current model. We make

the assumption that the von Mises stress is resolved uniformly using a strike azimuth of 2600

and vertical dip consistent with the most common faulting structure present from the earthquakes

locations (Denlinger and RH O’Connell, 2020).

4.3.3 Earthquake Feature

Static stress transfer modeling can successfully resolve stress transfer between faults in an

elastic half space with homogeneous isotropic elastic properties (Lin and Stein, 2004; Toda et al.,

2005). Stress transfer can promote or reduce the potential of earthquake triggering, depending

on the coefficient of friction, fault geometry, and sense of slip (King et al., 1994a; Stein, 1999).

Since the exact geometries of every earthquake in our model are unknown, we choose to develop

an earthquake feature that is based on prior perturbable earthquakes.

We use ‘cutde’ (Thompson, 2021) to resolve stress transfer produced from fullspace

triangle dislocation elements (Nikkhoo and Walter, 2015). Several assumptions are required for

the static stress transfer modeling: (1) We assume a uniform stress drop for every event of 3

MPa, (2) a shear modulus of 30 GPa, and (3) a Poisson ratio of 0.25. Under this framework we
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show that the von Mises stress is self similar for both parallel and perpendicular receiver receiver

planes at a given distance from the event (SM Figure 4.A.11). By varying event magnitude, we

calculate a radius from the center of the dislocation that can increase the potential of failure up to

a distance that intersects the 10 kPa triggering threshold (Reasenberg and Simpson, 1992; Stein,

1999). Then, for every earthquake, we create an earthquake-to-earthquake feature, which counts

the number of earthquakes that could have perturbed it. The earthquake count is represented by

ln(N +1), where N is the number of perturbable earthquakes to have occurred prior to each event.

Higher N indicates a higher likelihood of earthquake-earthquake interaction.

4.3.4 ML/SHAP Analysis

We use the machine learning technique of random forest regression (RFR) to fit our

observed seismicity (Ho et al., 1995; Ho, 1998). The RFR model makes a prediction on the target

variable, which are one-hot encoded occurrences of the observed earthquakes. Contrary to typical

applications of machine learning , we do not split our dataset into training and test sets. Instead,

we fit the entire data set since we are interested in the feature importance during each event.

We use a set of input features from both the stress and earthquake feature as well as their

time lags. The time lags are introduced to capture any potential anisotropy or hydromechanical

heterogeneity that the numerical model is not capturing or time delayed effects that former

earthquakes may have when perturbing the current earthquake. We avoid overfitting and optimize

hyper-parameters by using 5-fold cross validation. We find that including more lags improves the

overall fit of our model, up to ∼50 lags, but is likely over-fitting and unrealistic. We assume that

the physical meaning of the lags are unreasonable beyond ∼1 year before the actual earthquake

timing and reserve our total lags to the local minimum of 5 lags (SM Figure 4.A.12). In other

words, a model can contain the current stress/earthquake feature (+0 lag), the time period prior

(+1 lag), and the time periods before that (+2-+5 lag etc..) or any combination of that set (SM
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Figure 4.A.12).

To assess our feature-importance we avoid permutation-based feature importance in ran-

dom forest analyses. This method randomly shuffles each feature and computes the model’s

change in performance with the features that impact the performance the most having higher

importance. Instead, we use SHAP, which explains the predictions of our target variable (earth-

quake or no earthquake) by computing the contribution of each feature to the prediction (Shapley

et al., 1953; Lundberg and Lee, 2017). The major difference between permutation based and

SHAP based feature importance is that SHAP represents an additive feature attribution method

and quantifies the magnitude of feature attributions. The amount that a feature i contributes to the

model prediction is a linear function of binary variables given as:

g(z′) = φ0 +
M

∑
i=1

φiz′i (4.1)

Where z′ ∈ {0,1}M and M is the number of simplified input features and φi ∈ ℜ. Here, f is the

original prediction model to be explained by the explanation model g. An effect φi matches to

each feature, and the sum of all feature attributions approximates the output f (x) of the original

model. Since the Shapely value is represented as an additive feature, it is a linear model and the

contributions of each feature can be added to describe the contribution that the stress features

have compared to the earthquake features. This is preferred compared to permutation feature

importance which chooses importance based on the decrease in model performance.

4.3.5 Cluster Analysis

As an independent test of earthquake behavior, we investigate how the PVU seismicity is

distributed in magnitude, space, and time using a traditional cluster analysis. We use the nearest

neighbor distance (NND) space-time-magnitude domain (Baiesi and Paczuski, 2004) for each
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pair of events i and j using the following equation:

ηi j =

 ti j(ri j)
d10−bmi, ti j > 0;

∞, ti j ≤ 0
(4.2)

Where, ti j is the interevent time (year), ri j is the inter event distance (km), d is the dimension

of the earthquake hypocenter distribution (1.6), b is the b-value (1.0), and mi is the ith event

magnitude (Zaliapin and Ben-Zion, 2013; Schoenball et al., 2015). The NND is separable into

rescaled distance (Ri j) and rescaled time (Ti j) where (Zaliapin et al., 2008; Zaliapin and Ben-Zion,

2013):

ηi j = Ri jTi j (4.3)

Ri j = (ri j)
d10−bmi/2 (4.4)

Ti j = (ri j)
d10−bmi/2, (4.5)

An advantage of this form of NND is that the clustering style of seismicity can be displayed by

a joint 2D distribution of rescaled time log10 Ti j and rescaled distance log10 Ri j (Zaliapin et al.,

2008; Zaliapin and Ben-Zion, 2013; Zaliapin and Ben-Zion, 2016). The distribution helps to

describe the type of earthquake clustering style since observed seismicity often shows a bimodal

joint distribution divided by a constant line and chosen nearest-neighbor threshold n0. Events

below this threshold are classified as clustered (i.e. earthquake-earthquake) and the events that are

above this threshold are classified as background (i.e. stress-driven or independent) (Zaliapin and

Ben-Zion, 2016). We use the NND distributions for the PVU as an independent test of the physical

mechanism driving each earthquake in the sequence. We hypothesize that our ML/SHAP model

will preferentially separate stress-driven vs earthquake-earthquake driven events as identified by

Zaliapin and Ben-Zion (2016).
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4.4 Results

4.4.1 Numerical Model Results

The fully-coupled poroelastic model shows that areas with seismicity experience pore

pressure increase from 0.005 MPa to 9 Mpa. Most pore pressure increase occurs within within

an 8 km radius around the injection well (SM Figures 4.A.5-4.A.10). Most seismicity occurs in

close vicinity of the injection well and the ∆P is highest in early 1999 (∼9 MPa). The pressure

changes near the well mimic injection rate changes as the temporal delay of diffusion is negligible.

Elsewhere, the diffusion process dominates the pressure changes and therefore the increase in pore

pressure is more gradual through time (SM Figure 4.A.8-4.A.9). Across the domain, seismicity

occurs during the highest rates of pressure increase. This observation is consistent with other

instances of wastewater induced seismicity (Langenbruch et al., 2018; Qin et al., 2022). The

increasing pore pressure diffuses laterally through the highly permeable Leadville formation. Low

permeability confining units above and below the reservoir restrict vertical pressure migration

(SM Video 1).

4.4.2 Cluster Analysis Results

Results of the NND cluster analysis show that a larger portion of the earthquakes are

classified as the clustered mode (Zaliapin and Ben-Zion, 2016; Goebel et al., 2019)(Figure 4.3).

The constant threshold value η0 =−5.4 is chosen based on a 1D Gaussian mixture model analysis

(Zaliapin et al., 2008; Zaliapin and Ben-Zion, 2016). The clustering behavior is similar to other

cases of wastewater induced seismicity (Zaliapin and Ben-Zion, 2016; Glasgow et al., 2021a).

The cluster distribution is marginally bimodal with the dominant clustered events occurring at

short space-time distances. These results are also dissimilar from other cases of induced seismicity

where background-to-cluster proportions are higher, albeit different mechanical processes are
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occurring (e.g., The Geysers, Zaliapin and Ben-Zion, 2016). A large portion of the background

domain is characterized by low Ri j and large Ti j, which often characterizes these events as

repeaters (Zaliapin and Ben-Zion, 2016). These events make sense in the context of single well

injection. The cyclical nature of the injection means repetitive changes in stress occur at the same

locations. This is observed in the pore pressure results at different clusters near the well where

the pore pressure closely follows the flux of the injection (SM Figures 4.A.5-4.A.8).

4.4.3 ML/SHAP Model Results

Our best-fit model uses the following: 1000 total trees, 10 tree maximum depth, 10

minimum sample split, and 4 minimum samples for a leaf node. The best-fit model was decided

from a 5-fold cross-validation analysis grid searched over the hyperparameters. Figure 4.3 shows

the fit of our random forest model for two different model types. One model uses only the von

Mises stress rate and earthquake feature while the other model uses both the von Mises stress and

the von Mises stress rate as well as the earthquake feature (including lags). We find that the mean

squared error (MSE) is slightly lower for the model that includes both stress features. However,

we choose to present the parsimonious solution of one stress feature and refer the reader to the

supplementary for the results including both stress features, which contains small differences to

the main results (SM Figures 4.A.16-4.A.19).

The SHAP analysis results are summarized in SM Figure 4.A.13. We output the results

exclusively at the time when the earthquakes occur since we are only interested in discerning

the contribution of the stress features at that time. A summary of the SHAP contributions for all

time, not just when the earthquakes occur, is presented in the supplementary material (SM Figure

4.A.14). The feature with the higher overall impact on the model is the perturbable earthquake

feature. This feature represents the number of earthquakes that occurred during the chosen time

step that potentially perturbed the earthquake in question. The next most important features,
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with nearly equal importance, are the lagged von Mises stress rate. These stress features are

considerably less important on average compared with the earthquake feature.

To assess the total contribution of the stress features vs the earthquake features, we com-

pare the cumulative feature results. Separating which earthquakes are dominated by cumulative

feature importance, SM Figure 4.A.15 shows that the ratio of earthquakes that have a higher

stress feature contribution compared to earthquakes that have a higher total earthquake feature

contribution is about 1:5. We examined the sensitivity of this since it would be expected that

increasing lags may contribute to higher contribution to stress. While the stress contribution does

increase for models that include 0,+1,+2 lags, after the model reaches +3 lags, earthquakes that

are considered to have a higher total stress contribution increase marginally. For example, from

+3 lags to +5 lags the ratio has a percent increase of only ∼0.5% (SM Figure 4.A.20). We do not

pursue sensitivity past +5 lags as the SHAP analysis is computationally expensive with increasing

features. It is important that when testing increasing lag sensitivity the ratio of the total number

of stress features to earthquake features remains the same.

4.5 Discussion

We compare the earthquakes total stress feature contribution percent to the NND (ηi j)

in Figure 4.4. We find that earthquakes the ML/SHAP model identify as having a >50% stress

feature contribution tend to be events characterized as background mode in the NND model.

Furthermore, in the NND model, the background events are mostly the independent Poisson

mode (Zaliapin et al., 2008; Zaliapin and Ben-Zion, 2016). This comparison shows many of

the stress driven earthquakes behave as parent earthquakes that were likely induced by pore

pressure and stress changes first that then trigger further seismicity. We compare the earthquake

distributions that are >50% stress feature contribution compared to the overall seismicity to

confirm whether these two sets of values are from the same distribution. We perform a two sample
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Kolmogorov–Smirnov test and reject the null hypothesis that the two distributions come from the

same distribution with 99% confidence (SM Figure 4.A.21).

We also compare the spatial distribution of the earthquakes that have a >50% stress

feature contribution (Figure 4.5). We find that many of the stress driven earthquakes are clustered

near the injection well. This would be expected, since these earthquakes are occurring at sharp

changes in the stress changes produced in the immediate vicinity of the well. There are some

clusters away from the well that show large amounts of seismicity, but only a few stress dominated

earthquakes. We would expect that these earthquakes would occur earlier in the onset of each

cluster if they were to cause the subsequent triggering of other offspring earthquakes. Often,

clusters do behave in this manner. This observation is consistent with the machine learning

process since earthquakes that had no prior earthquakes would not be expected to have a strong

prior earthquake feature contribution. However, some stress dominated earthquakes do not occur

earlier than their surrounding earthquakes as well as within a cluster there is sometimes more

than one stress driven earthquake. Some areas that are not entirely discernible as clusters appear

to behave as multiple stress driven earthquakes.

Results of this study indicate that the physics-based model combined with the machine

learning and SHAP analysis can discern a large portion of the independent background mode

events identified by the NND cluster analysis. These earthquakes are mostly parent earthquakes

that result in further seismicity in either the same area or help start sequences of clustered

events. This result is critical for future wastewater practices. If an injection produces seismicity

driven dominantly by earthquake-earthquake interaction that area may be considered as highly

triggerable and less susceptible to control via well operation best practices. On the contrary, if

most earthquakes are stress driven, then the site may be more susceptible to well operational

control.
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4.6 Conclusion

We combined a 3D fully-coupled poroelastic model of the PVU with a RFR and SHAP

analysis to discern earthquake triggering mechanisms. We compared these results with NND

cluster analysis to support our claims of earthquakes driven by the pore pressure and stress

perturbations induced from the injection well as opposed to earthquakes driven by static stress

transfer of prior earthquakes. The novel method, which incorporates game theory methods

not previously explored, reveals that there is good agreement between cluster style and stress

contribution from the SHAP analysis. Our results indicate that approximately ∼20% of the

earthquakes are driven by stress changes from the well while the remaining earthquakes are

driven by static stress changes from prior earthquakes. We expect this ratio of injection-driven vs

earthquake-earthquake driven seismicity to vary by geologic region, stress state, distribution of

preexisting faults, and injection style. Deciphering the earthquake triggering process at candidate

injection sites will discern good candidates for a variety of anthropogenic activities as areas that

produce many triggered clusters from induced industrial activities could make worse candidates.

We foresee this method applied to data with higher temporal and spatial resolution could improve

the RFR and SHAP results.
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Tables and Figures

Figure 4.1: A) Regional setting of the Paradox Valley Unit, CO (PVU). The well is denoted
by a red ‘X’ on the map. The deep brine injection began in 1991 at a depth of 4.3 km. Most
seismicity is clustered near the well where stress perturbations are largest and fluctuate the most.
B) Same view as (A), but temporal timing of events. There are more than 7000 earthquakes in
the catalog, but within the 8 km radius around the well which we use for analysis includes only
3000.
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Figure 4.2: Left) Earthquakes plotted as their radial distance from the well and time. Most
earthquakes behave in a typical

√
(t) diffusion rate away from the well consistent with progres-

sive lateral migration of seismicity through the permeable Leadville (Ake et al., 2005; Block et
al., 2015; Denlinger and RH O’Connell, 2020). Flow tests were performed prior to 1995. Notice
injection is highest during peak injection rates ∼1997. Our model records pore pressure and
stress perturbations from 10-July-1991 to 16-April-2013. Right) Numerical model cross section
with earthquake and well depth superimposed. The model a fully-coupled poroelastic model
based on prior work (Denlinger and RH O’Connell, 2020). We increase the grid discretization
near the well to capture large changes in pressure gradients (see Supplementary Methods).
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Figure 4.3: A) Nearest neighbor time-distance distributions for the seismicity of the PVU. The
color bar represents the number of event pairs. The total number of earthquakes used in this
analysis is 2927. The diagonal dashed line is the η0 background (above) and clustered (below)
mode threshold. The value is a constant value determined by the 1D Gaussian mixture model
and is -5.4. B) Forecasted seismicity rate across for all time steps. Orange line represents the
best fit model that includes only the von-Mises stress rate. The green line includes von-Mises
stress and has slightly better fit.
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Figure 4.4: A) The SHAP stress feature contribution vs. the nearest neighbor distance value.
Many of the earthquakes cluster below the 50% stress feature contribution indicating and to
the left of the -5.4 cluster threshold. However, earthquakes that have >50% stress feature
contribution, denoted as red circles on both panels, tends to fall on the ‘background’ mode
of the NND (to the right of -5.4). These results are consistent with what we might expect for
earthquakes driven by stress from the injection since they would act as initial parent earthquakes
that might trigger subsequent seismicity in a region that has experienced stress changes high
enough to begin seismicity. B) Comparing the earthquakes that have a >50% stress feature
contribution on the rescaled distance rescaled time plot. Many of the earthquakes cluster in the
independent background mode with a second distribution towards the repeater mode and a few
earthquakes spread out in the cluster mode.
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Figure 4.5: A) Map view of most earthquakes used in our study and denoted in color by the time
inwhich they occured. The red circled events represent those circled in red in Figure 4.3 (i.e.
earthquakes that had >50% stress feature contribution). B) same as above panel, but zoomed
in near well. The earthquakes strongly stress driven near the injection well, but also appear
at different clusters throughtout the domain. Often those away from the well have early times
compared to the other earthquakes in their cluster suggesting they may be starting the seismicity
in those areas. There are some examples of earthquakes that are close but nearly stress driven as
opposed to earthquake driven as well.

143



Appendix

4.A Appendix to Chapter 4

4.A.1 Model Pre-processing

A variety of issues and subsequent solutions arose in the model preprocessing that is

important to elaborate on. As mentioned, previous work already compiled resources into a

comprehensive, fully coupled poroelastic model of the PVU (Denlinger and RH O’Connell, 2020).

However, this model was not easily portable to Abaqus and lacked sufficient discretization to

capture large pressure gradients near the well. The methodology used to transfigure the initial

model are presented here. We compare the model to a well known analytical solution and observed

wellhead pressures to confirm its robustness.

Material Parameters and Meshing

The first difficulty with the Denlinger and O’Connel (D&O) model (Denlinger and RH

O’Connell, 2020) is that the poroelastic material parameters are all defined at the nodes of the

mesh. In Abaqus, there are a few material parameters defined at the nodes (pore pressure, void

ratio, and saturation), but the elements (hexahedrons defined spatially by 8 nodes) are assigned

other material parameters (ie. Young’s modulus and bulk modulus of solid grains). After simple
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conversions of the given material parameters in the D&O model to the values used in Abaqus, we

thought the best way to solve the issue of defining the node only values to elements would be to

average the 8 nodal coordinates that make up a hexahedron element to the value at that element.

However, the averaging proved ineffective for a variety of reasons. First, the D&O model

near the region of the well head experiences strong changes in material values. The Leadville

formation, the high permeable injection formation, is embedded in low permeable material. The

nodal change between these materials was actually only 1 node thick in some instances so by

taking the average of 8 nodes resulted in significantly reducing the order of magnitude of material

permeability for areas near fluid injection. Second, the strong changes in material values coupled

with the large spatial discretization of the D&O model near the wellhead resulted in unrealistic

gradients and convergence issues.

Therefore, in order to solve the issues present with the conversion of the D&O model to

Abaqus, we decided to make several adjustments to our model that we believe make it a stronger

model overall. First, we decided to reduce the spatial discretization near the well head. The well

head is actually composed of 3 separate perforated injection zones and creates strong pressure

gradients that require smaller spatial sampling in order to capture the large and rapid changes

there. This is difficult to do based on the previous mesh since preserving spatial features such as

dipping beds and down scaling material features is not straight forward. Thankfully, the vertical

discretization was already well defined by the D&O model so the only change to the discretization

was the horizontal directions. We solved this problem by preserving the number of elements

whilst changing the horizontal spacing to grow exponentially from the location of the well head.

Then, the vertical spacing and material parameters of the D&O model are preserved in the smaller

spacing by using a nearest point search measured in Euclidean distance. The spatial meshing

changes between the D&O model and ours are shown in Figure 4.A.1.

The second adjustment we made was in the determination of material parameters through-

out the model. As previously mentioned the D&O model allows for entirely unique material
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parameters at every node, which caused difficulties in convergence for Abaqus. Using the newly

discretized mesh of nodes/elements, and their associated material parameters, we applied a

k-medoids clustering algorithm to cluster the nodes/elements based on similar material metrics

across the combined set of materials. K-medoids is similar to k-means clustering, but instead

of choosing the average from the kth cluster it chooses an actual data point as the center of the

cluster. We worked with several different material cluster values, but ultimately decided on 1000.

At this number, the model preserves many of the naturally occurring geological features such as

the layered beds and salt domes whilst also maintaining a high level of material contrast near the

wellhead without generating drastic gradients.

FEM Results Compared to Analytical Solution/Observation

A well known analytical solution exists to describe the spatial and temporal evolution of

pore pressure due to continuous fluid injection into a poroelastic full space (Rudnicki, 1986). In

order to gauge the success of the model, we first compare this solution to the 3D model using

homogeneous material parameters. Additionally, we reduce the 3 injection nodes to a single

node to better reflect the analytical solution. The radial analytical solution of pore pressure is

compared with the closest radial axis given by the nodes shown in Figure 4.A.2. The solution for

pore pressure matches well to the analytical solution after 10 days of constant injection using a

typical bulk value of the crust as shown in Figure 4.A.3.

One thing to note is that the solution of pore pressure increases rapidly closer to the point

of injection. The strong pressure gradients at this location require smaller elements then the

horizontal discretization in the D&O model (200 m).

With the model now confirmed in the simplest case it was time to test a variety of k-medoid

models, as previously described, and compare them to the observed wellhead pressures to confirm

that the model was capable of capturing the observations. It is important to note that any complex

model will result in overfitting of the wellhead data, and thus poor predictive ability for future
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data.

There has been a plethora of previous work from observational drilling to pressure-flow

modeling designed to capture the reservoir permeability structure (King and Block, 2019). These

different observations and modeling have provided a sizeable range of permeability values. For

example, the permeability of intact limestone and dolomite varies from 0.01 to 0.1 mD (Bear,

1988). Fracturing is expected to increase permeability outside of this laboratory setting. Drill

stem tests gave an original permeability of 7.97 mD, yet at the same time additional analysis

indicated permeability between 1.3 and 1.5 mD. Samples from a well 4.6 km to the northeast

yielded permeability ranges of 0.03 to 1.3 mD (Harr, 1988). An earlier model by Denlinger and

Roeloffs (Roeloffs and Denlinger, 2009) arrived at a permeability in the injection zone of 28 mD,

with significantly lower values for the other formations. Additional pressure-flow models also

arrive at ranges of 9.06 to 29.2 mD for certain injection phases (King and Block, 2019). The

current best model (the D&O model) throughout the entire model domain, only has a maximum

permeability of 1.97 mD. The final 1000 k-medoids model, modeled at constant injection rate

(typical daily average from PVU injection data), is compared with several hypothetical analytical

solutions for constant injection rate for a range of bulk permeabilities in Figure 4.A.4.

The final 3D heterogeneous model compares well with a range of typical observational

values and observed wellhead pressures. In the near-field, the permeability matches the higher

permeability analytical solutions as expected since there is likely fractured media in this location

(King and Block, 2019). In the far-field, where the permeability structure is expected to decrease,

the model approaches the lower permeability analytical solution. For the future, it will likely be

important to test a variety of physics based models to understand the sensitivity introduced in the

machine learning. However, we are confident in the evidence presented that our current model,

adopted from the D&O model, is robust enough to continue with the primary goal of this work.
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4.A.2 Supplementary figures for Chapter 4

Figure 4.A.1: Previous model mesh from D&O model (Panel A) with surface view of well
location compared to (Panel B) our smaller discretized model with similar surface view.
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Figure 4.A.2: Nodes used in comparison with analytical solution. Well is located on the left
and extends to the far field on the right.
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Figure 4.A.3: Analytical solution compared to the homogeneous 3D model. Dashed red line
represents the average well head pressure of the observed PVU.
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Figure 4.A.4: Final 1000 k-medoids model compared to several analytical solutions for a variety
of constant rate injection times.
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Figure 4.A.5: Different k-means cluster locations (1-15) of seismicity for the PVU. We extract
the pore pressure at the center of each seismicity cluster from the numerical model in the
subsequent figures. We include results for the near well cluster (7), two further regions with
more diffuse responses (4) and (10) as well as farther distance (2) and (6).
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Figure 4.A.6: Cluster 7 near the well and pore pressure profile at the center of cluster. The pore
pressure mimics the injection well rates due its close vicinity to the well.
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Figure 4.A.7: Cluster 4.
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Figure 4.A.8: Cluster 10.
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Figure 4.A.9: Cluster 2.
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Figure 4.A.10: Cluster 6.
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Figure 4.A.11: The von Mises stress in kPa for the three varying earthquake magnitudes (0.0,
2.0, and 4.0). We use cutde (Thompson, 2021) to resolve stress transfer produced from fullspace
triangle dislocation elements assuming a uniform stress drop of 3 MPa, a shear modulus of 30
GPa, and a Poisson ratio of 0.25. We show that the von Mises stress is self similar for opposite
receiver planes at certain distances, dependent on the magnitude, produced by the dislocation.
We use thetriggering threshold of 10 kPa (Reasenberg and Simpson, 1992; Stein, 1999) which
increases depending on the magnitude size. This distance is our perturbable radius used for the
earthquake feature.
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Figure 4.A.12: A sensitivity test to increasing and the overall MSE fit to the seismicity rate. We
find that there is a local minimum near 5 lags. The fit does not improve after approximately 50
lags.
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Figure 4.A.13: Mean absolute SHAP value for times in the model that an earthquake actually
occured. This represents 2927 total events. The most important feature is the number of
perturbable earthquakes (NumEQsP) that occurred during that same time step as the earthquake
in question. The next 6 variables are all the stress rate from the stress change from the injection.
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Figure 4.A.14: Simlar to SM Figure 4.A.13 except for all time steps in the model which includes
the time steps when an earthquake is not occurring (2927∗284 = 831,268 total samples).
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Figure 4.A.15: Ratio of the earthquake stress contribution totals for both the stress features
and the earthquake features. For our model of including +5lags the stress feature to earthquake
feature ratio approximately 1:5.
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Figure 4.A.16: Similar to SM Figure 4.A.13 but for the model that includes both the von Mises
stress and the von Mises stress rate. This represents 2927 total events. The most important
feature is the number of perturbable earthquakes (NumEQsP) that occurred during that same
time step as the earthquake in question. The next 65 variables are a mix of the von Mises and
von Mises rate.
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Figure 4.A.17: Similar to SM Figure 4.4 but for the model that includes both the von Mises
stress and the von Mises stress rate. There is more earthquakes associated with the clustered
mode, but still a large amount of background mode earthquakes.
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Figure 4.A.18: Similar to SM Figure 4.4 but for the model that includes both the von Mises
stress and the von Mises stress rate. There is more earthquakes associated with the clustered
mode, but still a large amount of background mode earthquakes.
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Figure 4.A.19: Similar to SM Figure 4.A.15 but for the model that includes both the von Mises
stress and the von Mises stress rate. Ratio of the earthquake stress contribution totals for both
the stress features and the earthquake features. For our model of including +5lags the stress
feature to earthquake feature ratio approximately 1:3 which is must higher than the (1:5) ratio
seen in the model that only has one stress feature.
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Figure 4.A.20: Similar to SM Figure 4.A.15 but for the model that includes both the von Mises
stress and the von Mises stress rate and only +3 lags. The ratio is (0.3774) compared with the
ratio at +5 lags (0.3794) shown in Figure SM 4.A.19.
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Figure 4.A.21: Empirical cumulative density functions of the two sample Kolmogorov–Smirnov
test. We show that the distribution for the earthquakes with stress contribution >50% are not
drawn from the same distribution as the total earthquakes with 99% confidence. Dashed line
represents lower and upper confidence bounds for each distribution.
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