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Abstract

Background: Collaborative research often combines findings across multiple, independent 

studies via meta-analysis. Ideally, all study estimates that contribute to the meta-analysis will be 

equally unbiased. Many meta-analyses require all studies to measure the same covariates. We 

explored whether differing minimally sufficient sets of confounders identified by a directed acyclic 

graph (DAG) ensures comparability of individual study estimates. Our analysis applied four 

statistical estimators to multiple minimally sufficient adjustment sets identified in a single DAG.

Methods: We compared estimates obtained via linear, log–binomial, and logistic regression and 

inverse probability weighting, and data were simulated based on a previously published DAG.

Results: Our results show that linear, log–binomial, and inverse probability weighting estimators 

generally provide the same estimate of effect for different estimands that are equally sufficient to 

adjust confounding bias, with modest differences in random error. In contrast, logistic regression 

often performed poorly, with notable differences in effect estimates obtained from unique 

minimally sufficient adjustment sets, and larger standard errors than other estimators.

Conclusions: Our findings do not support reliance of collaborative research on logistic 

regression results for meta-analyses. Use of DAGs to identify potentially differing minimally 

sufficient adjustment sets can allow meta-analyses without requiring the exact same covariates.
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Introduction

Collaborative epidemiologic science is vital to advancing knowledge to inform public health 

decisions.1 Researchers may require that all participating studies measure the exact same 

variables for data pooling or meta-analysis.2 When exposures and outcomes are measured 

similarly across the studies but the available covariates differ, meta-analysis across studies 

may still be feasible.

An important consideration when combining effect estimates with meta-analyses is whether 

or not individual study effect estimates are confounded. Directed acyclic graphs (DAGs) 

provide a useful means to evaluate the potential for confounding of adjusted effect estimates.
3–5 Notably, a single DAG may suggest different subsets of potential confounders that could 

be used to obtain an unbiased estimate of the causal or conditionally causal exposure–

outcome relationship. While a DAG provides guidance for selection of appropriate 

adjustment sets, DAGs are qualitative and non-parametric;5 hence, they do not inform the 

choice of statistical model.6

The present study evaluates performance of four statistical estimators when adjusting for 

different minimally sufficient confounder sets. Results have implications for confounder 

control in meta-analysis.

METHODS

Estimands, -mators, and -mates

We assessed the ability of four different estimators to return similar or equal estimates of an 

estimand when conditioning on different adjustment sets. To clarify these terms: An 

estimand is the effect measure we aim to quantify; the estimator is the tool or statistical 

model we use to obtain this parameter; and the resultant quantity is the estimate.

A challenge for combining results from different studies may arise when estimands differ. 

Our Figure was informed by a previously published DAG developed for the association 

between pre-pregnancy body mass index and cesarean delivery.7 This DAG contains nine 

potential confounders: maternal age (continuous), race (categorical), education (categorical), 

height (continuous), and poverty index (dichotomous), gestational weight gain (continuous), 

estimated fetal weight (continuous), presence of pre-eclampsia (dichotomous) and chronic 

hypertension (dichotomous). The previously published DAG supported four minimally 

sufficient adjustment sets and, thus, four possible estimands from which a presumably 

unconfounded effect of the relationship between the exposure and the outcome was possible. 

From Figure 2 in reference 7, these four minimally sufficient adjustment sets are as follows: 

#1 [C1,C2,C4,C5,C7], #2 [C1,C2,C4,C5,C8], #3 [C1,C2,C4,C6,C7], and #4 

[C1,C2,C4,C6,C8].
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Structure of the simulated data

The exposure and outcome of interest were both simulated as normally distributed variables 

with a mean of zero and variance of one. Dichotomous versions of the exposure and 

outcome were simulated with prevalence of 30% and 10% by categorizing the simulated, 

continuous variables to obtain the desired exposure or outcome prevalence. All of the 

covariates of interest were simulated based on the structure of each from the previously 

published DAG as noted above. The direction of the confounding effect was based on 

expectations from previous research. We also structured the simulations to avoid sources of 

bias including: measurement error, differential selection, positivity, causal consistency, 

interference, and incorrect model specification.

We evaluated four covariate-adjusted statistical estimators, each estimating a distinct 

quantity. Linear regression quantifies a risk difference; the conditional effect estimated by 

linear regression equals the marginal effect. Log–binomial and logistic regression estimate a 

risk and odds ratio, respectively, which are conditional exposure effects. Because of known 

challenges of the conditional odds ratio obtained from logistic regression, namely 

noncollapsibility,8 we also applied inverse probability weighting to estimate a marginal odds 

ratio for comparison with the typical conditional odds ratio.

We used linear regression for the continuous outcome; for dichotomous outcomes, other 

models were used. Because log–binomial regression models often fail to converge, we 

estimated (conditional) risk ratios assuming a Poisson outcome distribution and applied a 

robust standard error correction.9 The value for the true effect of continuous exposure on the 

continuous outcome was directly parameterized in the simulation. However, for the 

dichotomous outcome, the true value was estimated by running the simulation 100 times for 

a sample size of 1 million. This allowed us to fix the outcome prevalence, which otherwise 

would not be possible. We emphasize that the true value differs across the different 

estimands. As an alternative, we compared each estimand to a reference estimand from a 

model that included all potential confounders.

The results for minimally sufficient adjustment sets #1 and #3 were very similar; this was 

also the case for minimally sufficient adjustment sets #2 and #4. Therefore, we present 

results for minimally sufficient adjustment sets #1 and #2 only. Confounder #8 (C8) was 

based on a continuous quantity: gestational weight gain. Thus, to evaluate the potential 

influence of residual confounding, we dichotomized this confounder at the median, which is 

referred to as minimally sufficient adjustment set with error, or 2e.

We ran each simulation 1000 times for samples sizes of 1000 and 300. We conducted 

simulations in which the target estimate was positive and near zero. We evaluated estimator 

performance by calculating average standard error (average of standard errors estimated for 

each simulation), MSE (average squared difference between reference values and simulated 

values), and 95% confidence interval coverage (proportion of confidence intervals that 

contain the reference value). The code necessary for recreating all simulations and results 

using R statistical software is provided in eAppendix 1 and eAppendix 2.

Hamra et al. Page 3

Epidemiology. Author manuscript; available in PMC 2022 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



RESULTS

All results describe simulations with a sample size of 1000. Simulations for a sample size of 

300 provided no additional insight and, thus, are not presented. Table 1 summarizes results 

for simulations exploring the impact of a continuous exposure on both continuous and 

dichotomous outcomes. For linear and log–binomial models, estimates were approximately 

equal to the reference value, regardless of outcome prevalence. Performance of log–binomial 

regression improved with increasing outcome prevalence, as reflected by the reduced 

average standard error, MSE, and 95% confidence interval coverage. When applying logistic 

regression, estimates noticeably differed from the reference value. Average standard errors 

slightly improved when outcome prevalence was increased. Interestingly, with logistic 

regression and continuous exposure, confidence interval coverage improved with decreasing 

outcome prevalence, even as both average standard error and MSE increased. Inducing 

residual confounding in the parameterization of confounder #8 (minimally sufficient 

adjustment set 2e) did not materially impact results.

Table 2 summarizes results for simulations exploring a dichotomous exposure with 

prevalence of 30% and a positive effect estimate. Linear, log–binomial, and inverse 

probability weighting models generally returned estimates that approximate the reference 

value. Conventional logistic regression models returned mean effect estimates that were 

notably biased away from the reference values across all simulations. Confidence interval 

coverage was closer to optimal for logistic regression compared to Table 1 simulations for a 

continuous exposure; however, we believe this is a consequence of increased average 

standard error rather than improved performance.

We further simulated scenarios where the outcome prevalence was reduced to 10% and 

where the reference value was near null. The performance of each estimator was largely 

consistent with Table 2 results, so these alternative scenarios are presented as in eAppendix 

3.

DISCUSSION

We explored the ability of common statistical estimators to provide similar quantitative 

estimates of effect when estimands were different and non-null, but theoretically equally 

unbiased in terms of control for confounding. We found that linear, log–binomial, and 

inverse probability weighted estimators obtained estimates that were similar across different 

minimally sufficient adjustment sets. Conventional logistic regression was unsuccessful in 

returning comparable estimates for positive effect estimates. However, for null effect 

estimates, all estimators performed relatively accurately.

It is, perhaps, not surprising that the logistic regression estimates for different estimands 

were not quantitatively similar. Others have demonstrated that the conditional odds ratio is a 

non-collapsible quantity; that is, the marginal estimate is not equal to a weighted average of 

conditional estimates.8,10,11 Our findings further illustrate the distinction between principles 

of confounding and non-collapsibility. In other words, it cannot be assumed that odds ratio 

values from individual studies subject to a meta-analysis differ as a result of random error or 
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residual confounding. Rather, these quantities are fundamentally different, regardless of 

adequate confounder control.

CONCLUSION

We conclude that collaborative research should not rely on conventional covariate-adjusted 

(conditional) logistic regression when combining information across cohorts.12 Rather, after 

articulating a research question, investigators should choose among alternative estimators, 

including inverse probability weighted models which, thanks to advances in statistical 

software, are more accessible.

Meta-analysts may assume that the same set of covariates must be available in all individual 

cohorts, and as a result, reduce the set of required covariates to accommodate more studies 

or exclude cohorts whose covariate sets do not match. What this study demonstrates is that it 

is not necessary for individual studies to measure the same covariates in most cases. Instead, 

a carefully constructed DAG may identify multiple sufficient confounder adjustment sets 

and thereby allow meta-analyses to include more studies while maintaining strong 

confounder control, so long as researchers avoid a conditional estimator.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure. 
Directed acyclic graph on which simulated data are based. This DAG was constructed with 

DAGitty online software (http://www.dagitty.net/).
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