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ABSTRACT OF THE DISSERTATION

Graph-Based Learning and Data Analysis

by

Hao Li

Doctor of Philosophy in Mathematics

University of California, Los Angeles, 2020

Professor Andrea Bertozzi, Chair

We present several results on the subject of graph-based semi-supervised learning and a

novel application of network analysis to analyzing complex spatiotemporal data. The first

piece of work showcases a specific graph-based semi-supervised learning algorithm in the

application to ego-activity classification in body-worn video. The classification method is

inspired by three interrelated processes: the Allen–Cahn equation, the Merriman–Bence–

Osher scheme, and mean curvature flow. We present results on real-world body-worn videos

and demonstrate our method’s comparable performance to supervised methods. The second

piece of work presents semi-supervised learning problem in the framework of Bayesian inverse

problems; we prove posterior consistency and elucidate how hyperparameter choices in the

Bayesian model combine to affect the contraction rates of the posterior. The third piece of

work presents a method of uncertainty quantification in the aforementioned framework; we

also develop the foundations for a system with a human in the loop who serves to provide

additional class labels based on the uncertainty quantification. The fourth piece of work

further extends the Bayesian inverse problem framework to the active learning problem.

We introduce an adaptation of non-Gaussian Bayesian models to allow efficient calculations

previously done only on Gaussian models and a novel way of choosing new training data. The

last piece of work presents a multivariate point-process model that infers latent relationships

from complex spatiotemporal data.
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CHAPTER 1

Introduction

We present several results on the subject of graph-based semi-supervised learning (SSL) in

Chapters 2–5 and an application of network analysis to complex spatiotemporal data via

point-process models in Chapter 6. Semi-supervised learning is the problem of labeling all

points within a dataset (the unlabeled data) by utilizing knowledge of a subset of noisy

observed labels (the labeled data). This is done by exploiting correlations and geometric

information present in the dataset combined with label information [77,171]. Semi-supervised

learning has been studied extensively in the past two decades and has been successfully

applied to, for instance, hyperspectral images [101] and body-worn videos [99]. We focus

on graph-based methods that utilize similarity graphs; a similarity is measured for each

pair of nodes (i.e. data points) and label information is spread across the similarity graph

from a small set of labeled fidelity points. The similarity information is often leveraged via

graph Laplacians, which have been used in a myriad of machine-learning methods (see, for

instance, [161, 165, 169, 173]). The analogy between the graph Laplacian and the classical

Laplacian operator inspires a number of PDE-based classification methods, e.g. [17, 52];

this also motivates the recent development in uncertainty quantification to the machine

learning community. In their recent work [19], the authors used an efficient sampling method

that was originally developed for PDE-based inverse problems [31] to perform uncertainty

quantification for the binary classification problem.

Chapter 2 showcases a specific graph-based semi-supervised learning algorithm in the

context of ego-activity classification in body-worn video. The proposed method quantifies

the similarities between pairs of short segments of video according to motion-based features.

Then, it spreads the label information from a small set of manually labeled video segments

1



to unlabeled data. This process is inspired by three interrelated dynamical processes on

graphs: the Allen-Cahn equation [7], the Merriman-Bence-Osher scheme [102], and the mean

curvature flow [17]. With the aid of the Nyström extension [47], the proposed algorithm can

be scaled to handle the enormous size of body-worn video datasets. We present results

on real-world body-worn videos and demonstrate its comparable performance to supervised

methods.

In Chapter 3, we study SSL problem in the framework of Bayesian inverse problems

(BIPs). In this context the Bayesian formulation has a novel structure in which the unla-

beled data defines the prior distribution and the labeled data defines the likelihood. We

study posterior consistency; that is, the contraction of the resulting Bayesian posterior dis-

tribution onto the ground truth solution in certain parametric limits related to parameters

underlying our model. We adopt ideas from spectral clustering [161] in unsupervised learn-

ing to construct and analyze the prior arising from a similarity graph constructed from the

unlabeled data. This prior information interacts with the labeled data via the likelihood.

When the prior information (from the unlabeled data) and the likelihood (from the labeled

data) complement each other, then a form of Bayesian posterior consistency can be achieved

and the posterior measure on the predicted labels contracts around the ground truth. Fur-

thermore our analysis elucidates how hyperparameter choices in the prior and quantitative

measures of clustering in the dataset and the noise in labels combine to affect the contraction

rates of the posterior.

Chapter 4 concludes the theoretical discussion and presents a method of uncertainty

quantification (UQ) in the aforementioned framework. This work is inspired by [19] of which

the authors proposed to pair binary classification problem with UQ. Besides a label assigned

to each data point, UQ seeks to estimate a measure of uncertainty; the uncertainty measure

helps identify hard-to-classify data points that require further investigation. We push the

previously binary UQ methodology to a multi-class setting. We extend the binary graphical

probit method to a multi-class version and develop a Gibbs sampler that draws samples

from the posterior distribution. We propose a confidence measure for each data point that
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we find correlates with the classification performance; we observe that data points with higher

confidence scores are more likely to be classified correctly. Along with the new methodology

and the empirical observations, we develop the foundations for a system with a human in

the loop who serves to provide additional class labels based on the confidence scores; our

UQ method identifies hard-to-classify data points and the human in the loop assigns ground

truth to them, leading to improved classification performance.

Chapter 5 further extends the BIP framework to active learning problem, in which an

active learner intelligently select the training data to optimize the overall classification per-

formance. We focus on the pool-based active learning paradigm; that is, the active learner

has access to a fixed pool of unlabeled data points from which it can decide the next training

point. We provide a unifying framework for active learning in many graph-based SSL models

based on the BIP framework discussed in Chapter 3. We also introduce an adaptation of

non-Gaussian Bayesian models to allow efficient calculations previously done only on Gaus-

sian models and a novel model-change active learning acquisition function built around our

adaptation.

Lastly, Chapter 6 presents a multivariate point-process model that enables us to infer

latent relationships from complex spatiotemporal data. The inferred relationships provide

considerable insights into the structure and dynamics of complex spatiotemporal data [13] via

network analysis [111]. In our model, each node in a network is associated with a spatiotem-

poral point process. The nodes can “trigger” each other, so events that are associated with

one node increase the probability that there will be events associated with the other nodes.

Such triggering should decrease with both distance and time according to some spatial and

temporal kernels. We adopt a nonparametric approach [97] to learn both spatial and tem-

poral kernels from data using an expectation-maximization-type (EM-type) algorithm [160]

in the absence of the knowledge of the actual triggering mechanism.
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1.1 Notation for Graph-Based Semi-Supervised Learning

In this section, we summarize relevant notation common to Chapters 2–5; notation specific

to each individual chapter will be presented in the chapter.

Consider a set of nodes Z = {1, · · · , N} and an associated set of feature vectors X =

{x1,x2, · · · ,xN}. Each feature vector xj is assumed to be a point in Rd. We may view X as

a function X : Z → Rd or as a matrix in Rd×N with columns given by xj. We refer to X as

the unlabeled data. We assume that every element of Z belongs to one of M classes.

Now let Z ′ ⊆ Z be a subset of J ≤ N nodes and define a function Y : Z ′ → RM ,

noting that this may also be viewed as a matrix Y ∈ RJ×M . The rows of Y are denoted

by {Y (1), · · · , Y (J)} and comprise a collection of noisy observed labels on Z ′; in practice,

we use Y (j) ∈ {e1, · · · , eM} where the ej ∈ RM are the standard coordinate vectors. We

refer to Y as the labeled data. We further define H ∈ RJ×N to be the matrix obtained by

removing the Z \ Z ′ rows of the identity matrix IN ∈ RN×N .

We construct the similarity graph G = {Z,W} with vertices Z and self-adjoint weighted

adjacency matrix W = (wij). The weights wij ≥ 0 reflect the affinity of data pairs (xi,xj) ∈
X × X, the edge set of the graph. For example, we may construct W using a kernel κ :

R+ → R+ by setting

wij = κ(|xi − xj|). (1.1)

The kernel κ is assumed to be positive, non-increasing, and with bounded variance; a natural

example is the Gaussian kernel κ(t) = exp (−|t|2/r2), or the indicator function of the interval

[0, r], both with bandwidth r ∈ R+. Note that (1.1) implies that W is symmetric and the

suggested weight constructions lead to wij which encode the pairwise similarities between

the points in X.

Given a weight matrix W with the properties illustrated by this explicit construction, we

introduce a graph Laplacian operator on G of the form

L = D−p(D −W )D−p, (1.2)
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where D = diag{di} with entries di :=
∑

j∈Z wij is the diagonal degree matrix and p ∈ R

is a user-defined parameter. Taking p = 0 gives the unnormalized Laplacian while p = 1/2

gives the normalized Laplacian. Other normalizations of L are also possible and can result

in non-symmetric operators; see [60, Sec. 5.1] for a detailed discussion.

We let 〈·, ·〉 denote the Euclidean inner product and |·| the Euclidean norm; we use ‖·‖2

to denote the induced operator Euclidean norm on matrices. Recall that ‖·‖F denotes the

Frobenius norm on matrices and define 〈A,B〉F := Tr
(
ATB

)
, the inner-product which in-

duces this norm. We use ⊗ to denote the Kronecker product between matrices. Occasionally

we use |S| to denote the cardinality of a set S; confusion with the Euclidean distance should

not arise as we will clarify the notation based on the context.
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CHAPTER 2

Application to Body-Worn Video Classification

2.1 Background

In this chapter, we discuss an application of graph-based semi-supervised learning to the

problem of ego-activity recognition in body-worn video; we classify camera-wearer’s activities

when the videos were recorded. This application takes advantage of both PDE-based image

processing of the video using classical optical flow techniques and discrete graph clustering of

the video frames according to their ego-activity. This is a version of [87]. This work was done

in collaboration with Matt Haberland, with whom I supervised undergraduate researchers

Honglin Chen, Alexander Song, Osman Akar, Adam Dhillon, and Tiankuang Zhou. They

helped label body-worn video footage and conduct preliminary experiments. I devised and

implemented the algorithm and designed and conducted the final set of experiments of which

results are shown in this chapter.

With the development of body-worn camera technology, it is now possible and convenient

to record continuously for a long period of time, enabling video capture of entire days.

Research in summarizing and segmenting egocentric videos recorded by body-worn cameras

dates back to the early 2000s [5]. Since then, this has been an active research area due

to the advancement in computer vision and machine learning [37]; classifying ego-activities

in body-worn video footage is well-studied in the context of sports videos [74] and life-

log videos [44, 120, 122, 135]. The task of activity recognition in body-worn video can be

categorized into three lines of research: (1) one relies on object-hand interactions and video

content (i.e. what objects and people are in the video), (2) one uses the motion of the

camera, and (3) ones uses a combination of the previous two.
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Works following the first approach rely on object detection and tracking to classify the

camera-wearer’s activities, for instance, [43, 44, 88, 120, 139]. Popular benchmark data sets

used to validate methods focusing on hand-object interactions are the GTEA (Georgia Tech

Egocentric Activity) and GTEA Gaze+ data sets, provided by [44], and ADL-short (Activi-

ties of Daily Living) in [135] and ADL-long in [120]. The GTEA and GTEA Gaze+ data sets

were recorded by Tobii eye-tracking glasses when wearers are cooking in a natural setting,

so these two data sets contain eye-gaze direction information not typically available in other

body-worn video data sets. Both ADL data set are recorded with a chest-mounted camera

when the wearers are performing various daily tasks indoors.

The second line of research is to recognize activities based on motion analysis. A wide

variety of motion features have been proposed in the literature. The authors of [74] used

a histogram-based motion feature to classify sports activities in videos recorded by head-

mounted GoPro cameras. Ryoo and Matthies [128] proposed a motion descriptor that in-

spired our feature selection method. In [99], the authors used inferred camera movement

signals and their dominant frequencies. Many ways of incorporating temporal information

in motion analysis were proposed; for instance, the authors of [129] proposed to apply multi-

ple temporal pooling operators to per-frame motion descriptors. Deep convolutional neural

networks were also used to extract motion features; for instance, Abebe and Cavallaro [1]

proposed to learn a motion representation by using two-dimensional convolution neural net-

work on stacked spectrograms and a Long Short-Term Memory (LSTM) network. With

multiple available features extracted, the authors of [117] proposed a multiple kernel learn-

ing method to combine local and global motion features. A benchmark data set for this line

of research is the HUJI EgoSeg data set provided by the authors of [121], which was recorded

when the wearer is performing a variety of activities in both indoor and outdoor settings.

For the third line of research, methods that utilize both appearance (i.e. object recog-

nition and tracking) and motion cues are often combined with deep learning. Both [122]

and [93] use a two-stream deep convolution neural network, one stream for images and

another stream for optical flow fields, to discover long-term activities in body-worn video.
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Figure 2.1: A summary of the proposed method. First, we compute a dense optical flow field

for each pair of consecutive frames. We then divide each optical flow field into sx×sy spatial

regions, where each region consists of dx× dy pixels, and divide the video into st temporal

segments, where each segment consists of dt frames. For each dx×dy×dt cuboid, we count

the number of flow vectors with direction lying within in each octant, yielding a sx × sy

histogram for each segment of video. We reshape and concatenate each histogram into a

single feature vector of dimension sx × sy × 8 describing the motion that occurs within the

video segment. The dimension of the feature vectors is reduced with NMF and we smooth

them with a moving-window average operator. Finally, we classify the smoothed features

with a semi-supervised MBO scheme.

Both [20] and [164] use an auto-encoder network to extract motion and appearance features

in an unsupervised fashion.

2.2 Method

We start with extracting features based on motion cues from the video. The extracted motion

features are potentially high-dimensional, so they are compressed to a lower-dimensional (50

dimensions in our experiments) representation to alleviate computational burden. Finally,
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we classify the video footage with the low-dimensional representation using a PDE-based

semi-supervised learning method with only 10% training data from each class of activity.

The flowchart in Figure 2.1 summarizes the proposed system, which we detail below.

2.2.1 Motion Descriptor

Our motion descriptor is similar to the one presented in [128] except for the final dimension re-

duction step: [128] uses principle component analysis (PCA) whereas we choose non-negative

matrix factorization (NMF) because the features are inherently non-negative. Before we com-

pute any feature, we resize all video frames to have a resolution of 576× 1024 and hence an

aspect ratio of 16 : 9, allowing us to choose a uniform set of video parameters across all data

sets.

2.2.1.1 Dense Optical Flow Fields

Dense optical flow fields [12, 41, 64, 91], which describe relative motion between objects in

the scene and the camera, form the basis of our motion analysis. Optical flow fields are

fields of two-dimensional vectors (u, v) defined on the two-dimensional domain of images. In

the discrete setting, an optical flow field associates each pixel in an image with an optical

flow vector which consists of a horizontal and vertical component. An optical flow field

is calculated from a pair of consecutive frames under the assumption that pixels displaced

according to the optical flow field should preserve their intensities after the displacement.

Formally, let x(t), y(t) be the pixel location of a particular pixel that is displaced according

to the optical flow field,

d

dt

x
y

 =

u(x(t), y(t))

v(x(t), y(t))

 .
Then the intensity constancy assumption can be formulated by

d

dt
I (x(t), y(t), t) = 0, (2.1)
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which yields the following identity [64],

∂I

∂x
u+

∂I

∂y
v +

∂I

∂t
= 0.

The well-known Horn-Schunk method then seeks the optical flow field (u, v) by minimizing∫∫ (
∂I

∂x
u+

∂I

∂y
v +

∂I

∂t

)2

+ λ
(
|∇u|2+|∇v|22

)
dx dy. (2.2)

Note that the first term of (2.2) encourages the flow fields to satisfy the intensity constancy

assumption (2.1) while the second term regularizes this ill-posed problem by promoting

smooth vector fields. In their original paper, the authors of [64] solve the Euler-Lagrange

equation of (2.2) to determine the optical flow fields; myriads of optical flow methods have

been proposed in the past three decades and we refer readers to the survey paper [45] for

this subject.

Assuming that the objects recorded in a pair of frames are static, the optical flow field en-

codes the movement of the camera and hence the movement of the camera-wearer. Although

this assumption does not necessarily hold perfectly for real-world body-worn video footage,

static background objects often cover the majority of frames, and thus we can use optical

flow fields to estimate the movement of the camera-wearer. Even when this assumption is

not true, we have found that optical flow fields induced by the movement of objects instead

of the camera-wearer are still helpful in certain situations. For instance, they characterize

driving a car by the static interior of the vehicle and the movement in the windshield region.

This is also observed in the experiments conducted by [122]; the authors find distinctive pat-

terns of optical flow fields in the windshield region that correspond well to the camera-wearer

driving a car.

2.2.1.2 Histograms on Dense Optical Flow Fields

Using optical flow fields is common in classifying ego-activities. Different motion features

are effectively different ways of aggregating them. For instance, the authors of [74,128,129]

binned optical flow vectors to construct features in the form of concatenated histograms, the

authors of [20,122,164] aggregated them via convolution kernels, and the authors of [99,121]
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inferred camera movement using unaggregated optical flow fields as input. In our case,

we compute the motion descriptors, proposed in [128], as histograms of extracted dense

optical flow vectors. We bin the vectors according to their locations in the frames and

orientations, and then count the number of vectors in each bin. Note that we lose magnitude

information in this process because the bins only correspond with locations and orientations.

The features proposed in [74] retain magnitude information by further grouping optical

flow vectors according to their magnitudes, but in our experiments we observe comparable

performance using the simplified features.

To compute the motion descriptors from the optical flow fields, we consider a video as

a 3D volume with frames (optical flow fields) stacked along the time axis. We spatially

divide each frame into sx by sy rectangular regions of fixed width dx and height dy pixels;

the choice of dx and dy determines the spatial resolution of the final features. We have

found that choosing dx and dy that are divisible by the total number of pixels in length and

height, respectively — yielding sx = 16 and sy = 9 — gives good performance on all data

sets tested. We also divide the video into st video segments, each with a fixed time duration

∆T with dt frames. We choose ∆T depending on the time scale of the ego-activities that

we wish to classify. For instance, we choose ∆T = 0.2 second for videos containing a mix of

long term and short term ego-activities, whereas we choose ∆T = 4 seconds if we wish to

classify relatively long-term activities. The choice of ∆T also determines the computation

cost of the subsequent analysis. A finer time resolution, i.e. a smaller ∆T , yields more video

segments for a given video and hence results in more computations.

Consider the optical flow vectors in each dx × dy × dt volume. We place each of them

into one of the pre-defined eight histogram bins based on its orientation. Formally, a vector

is placed in a bin depending on its phase. Repeating the above steps for every dx× dy × dt

volumes in each video segment of duration ∆T , we obtain a feature vector with a dimension

of sx× sy × 8 for each segment, which we reshape into a single column vector. By repeating

the above procedures for every video segments of length ∆T and stacking obtained feature

vectors, we obtain a data matrix D with the number of columns equal to the number of
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segments in the video. A detailed description of this procedure is presented in Algorithm 3.

2.2.1.3 Non-Negative Matrix Factorization

The concatenated histograms for each video segment can have 9 × 16 × 8 = 1152 entries,

which can potentially be expensive to compute with. To alleviate this problem, we employ

dimension reduction techniques. In [128], the authors use the principal component analysis

(PCA) to perform dimension reduction. However, we use non-negative matrix factorization

(NMF) [85] because the concatenated histograms are inherently non-negative. NMF is widely

used in the context of topic modeling, where users want to learn topics, a collection of words

that often co-occur in textual documents, each of which is represented by a histogram of

words. In our case, each video segment is represented by a histogram of “motion words”;

each motion word is the movement of a specific orientation in a specific region of the frame.

Analogously, a topic — a collection of motion words — describes a global movement pattern.

We then model the concatenated histogram of motion words of each video segment as a non-

negative linear combination of the topics.

NMF factorizes a non-negative d′×N matrix D (in our case, d′ = sx×sy×8 and N = st)

into the product of two low-rank non-negative d′ × d and d × N matrices X ′ and X. The

number d is chosen by the users according to their computation resources.We choose d = 50

for all considered data sets. Formally, this is achieved by solving the following constrained

minimization problem,

min
X′,X
‖D −X ′X‖2

F , subject to X ′ ≥ 0, X ≥ 0. (2.3)

Each column in X ′ represents a basis vector (a topic), and each entry in X represents the

non-negative linear combination coefficients. Each column in the matrix X is the feature

vector for a single video segment, which will be passed into our classification algorithm after

a post-processing step (detailed in Section 2.2.1.4).
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2.2.1.4 Post-Processing

We assume a certain degree of temporal regularity of the extracted features: the duration

of activities is typically much longer than transitions between them, and so transitions are

relatively rare. We note that none of our previous feature extraction procedures take advan-

tage of this temporal regularity. Each optical flow field is computed from only two adjacent

frames, motion descriptors are aggregated within non-overlapping video segments, and NMF

treats columns in the data matrix D (motion descriptors of video segments) independently.

We apply a moving-window average operator on each row of X and then pass these averaged

features to the classification method.

2.2.2 Classification Method

In this section, we outline a graph-based semi-supervised learning method based on mini-

mizing the graph total variation (TV), which has been studied in [17, 52, 100]. We consider

each video segment as a node in a weighted graph. The edge weight between a pair of nodes

i and j is chosen to be the similarity

wij = exp

(
−|xi − xj|2

rij

)
, (2.4)

where rij are scaling constants. Here xi is the ith column of matrix X obtained from NMF.

The scaling constants can either be the same chosen to be r for all pairs of i and j, or chosen

locally for each individual pair [169]. We choose the local scaling constants rij = rirj where

ri is the distance between i and its kth nearest neighbor.

We aim to partition N nodes into M classes (i.e. ego-activities) such that

1. similar nodes between which edge weights are large (i.e. wij are close to 1) should be

in the same class, and

2. fidelity nodes (i.e. manually labeled nodes) should be classified according to their

labels.
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To achieve (1), we optimize the graph total variation defined as follows. Let U be an {0, 1}M -

valued assignment function on the set of nodes, that is U(i) = em meaning we assign the ith

data point to class m. We can then define the graph total variation

|U |TV =
1

2

∑
i,j∈Z

wij‖U(i)− U(j)‖1, (2.5)

which is referred to as anisotropic total variation by [54]. We observe that (2.5) admits a

trivial minimizer that is constant across all nodes. To avoid this problem and to incorporate

the training data, we introduce a least-squares data fidelity term

Φ(U ;Y ) =
1

2γ2

∑
i∈Z′
|U(i)− Y (i)|2 ; (2.6)

recall from Section 1.1 that Z ′ ⊆ Z is a subset of J ≤ N nodes that are labeled and

Y : Z ′ → RM comprises a collection of observed labels on Z ′. We weight the fidelity term

by a positive parameter 1/γ2 to balance the graph TV term and the fidelity term in the

objective function,
1

2
|U |TV +Φ(U ;Y ). (2.7)

Instead of minimizing (2.7) directly, we solve the Ginzburg-Landau relaxation [17] for

U(i) ∈ RM . Namely, we replace the graph total variation |U |TV with

GLε(U) =
1

4

∑
i,j∈Z

wij|U(i)− U(j)|2+
1

ε

∑
i∈Z

P (U(i)) , (2.8)

where ε is a small positive constant, and P is a multi-well potential with minima at the

corners of the unit simplex, for instance

P (U(i)) =
M∏
m=1

1

4
‖U(i)− em‖2

1. (2.9)

The authors of [157] prove the following Γ-convergence;

GLε(U)
Γ−→


|U |TV , if U is binary

+∞, otherwise.

(2.10)
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as ε → 0 in the case of M = 2. The Γ-convergence ensures that the minimizers of GLε(U)

approach the minimizers of |U |TV and hence justifies the Ginzburg-Landau relaxation of the

Total Variation. After the Ginzburg-Landau relaxation, we arrive at the objective function

GLε(U) + Φ(U ;Y ), (2.11)

which we minimize with respect to U .

To formulate (2.11) in terms of matrices, we first identify U by a N ×M matrix and Y

by a J ×M matrix of which the ith row of U and Y is given by U(i) and Y (i), respectively.

We can write (2.11) in the matrix form

1

2
〈U,LU〉F +

1

ε

∑
i∈Z

P (U(i)) +
1

2γ2
‖HU − Y ‖2

F , (2.12)

where L is the graph Laplacian matrix with p = 0 in (1.2). In practice, we choose L to be

the symmetrically normalized Laplacian with p = 1/2.

2.2.2.1 Optimization Scheme

Minimizing (2.12) using the standard gradient descent method yields

∂U

∂t
= −LU − 1

ε
∇P̂ (U)− 1

γ2
HT (HU − Y ), (2.13)

where P̂(U) =
∑

i∈Z P (U(i)). This is known as the graph Allen–Cahn equation. In the

continuum, the Allen–Cahn equation converges to the mean curvature flow and an analogous

convergence for the graph case has been established in [92]. We follow [98] to use a variant

of the Merriman–Bence–Osher (MBO) scheme to approximate and solve (2.13). We note

that, in the continuum, the MBO scheme is known to approximate the mean curvature flow,

just as the Allen–Cahn equation. An explicit connection between the graph Allen–Cahn

equation and the MBO scheme has been explored in the recent artical [26]. In short, we first

randomly initialize U0, which we use as the initial condition for (2.13). We then alternate

between the following two steps:

1. Diffusion: for given U j, we obtain U j+ 1
2 by solving a force-driven heat equation

∂U

∂t
= −LU − 1

γ2
HT (HU − Y ), (2.14)
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for tj ≤ t ≤ tj + 1
2
∆t, where ∆t is a parameter.

2. Threshold : we threshold U j+ 1
2 to obtain U j+1, i.e.

U j+1(i) = em̂ , where m̂ = arg max
m

U
j+ 1

2
m (i). (2.15)

For a small ε, this approximates solving

∂U

∂t
= −1

ε
∇P̂(u) (2.16)

for tj + 1
2
∆t ≤ t ≤ tj+1 = tj + ∆t.

Choosing ∆t is delicate. If it is too small, U j+1 = U j after thresholding, whereas if it is

too large, U converges to the steady-state solution of (2.14),(
L+

1

γ2
HTH

)−1

HTY,

in one diffusion step, independent of the initial condition U j. Either way, extreme ∆t results

in a “freezing” scheme. In [158], the authors give guidance on how to choose ∆t in the case

of unnormalized graph Laplacian and M = 2 (i.e. binary classification). Currently, there is

no analogous result for normalized graph Laplacian and multi-class classification. We have

found, however, that ∆t = 0.1 gives nontrivial dynamics (i.e. convergent and not “freezing”)

on all data sets used in testing.

2.2.2.2 Numerical Methods

We follow [17, 52] to employ a semi-implicit ordinary differential equation solver to solve

(2.14), and use a pseudo-spectral method coupled with the Nyström extension to make the

ordinary differential equation solver efficient. We note that the graph Laplacian matrix L is

large, with N2 entries where N is the number of data points; it is also not inherently sparse,

which makes approximation techniques such as the Nyström extension necessary.

For the ordinary differential equation solver, we take Nstep time steps to reach U j+ 1
2 from

U j, where Nstep is a parameter to choose. Formally, we let U j,s, s = 0, 1, · · · , Nsteps denote
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the numerical solutions of (2.14) at intermediate time tj + sδt, where δt = ∆t/2Nstep. We

solve

U j,s+1 − U j,s

δt
= −LU j,s+1 − 1

γ2
(HU j,s − Y ) (2.17)

for U j,s+1. We use Nstep = 10 to ensure convergence of the ordinary differential equation

solver when η < 500 and ∆t = 0.1.

We use a pseudo-spectral method to solve (2.17). We project the solution U onto an

orthonormal eigenbasis of the graph Laplacian L, or an eigen-subbasis that consists of Neig

eigenvectors corresponding to the smallest Neig eigenvalues. We detail how we compute

the spectrum of L with the Nyström extension in Section 2.2.3. Choosing an Neig � N will

greatly improve the efficiency of the algorithm because solving (2.17) only requires O(NNeig)

operations if the eigenvectors and eigenvalues of L are provided. Suppose φ is an N ×Neig

eigenvector matrix, of which the ith column φi is the eigenvector of L corresponding to

the ith smallest eigenvalue λi, and Λ is the diagonal matrix containing all Neig smallest

eigenvalues λj. We let a denote the coordinates we obtain by projecting columns of U

onto the eigen-subspace spanned by columns of φ, i.e. a = φTU . Solving (2.17) in the

eigen-subspace φ leads to an explicit update rule for a and U :

aj,s+1 = (I + δtΛ)−1aj,s − δt 1

γ2
φTHT (HU j,s − Y ) ,

U j,s+1 = φaj,s+1 .

2.2.3 Nyström Extension

We employ the Nyström extension [47], which approximates the eigenvectors and eigenvalues

of L with O
(
NN3

eig

)
computation complexity and O(NNeig) memory requirement. With

Neig � N , the computation complexity and memory scales linearly with respect to the

number of data points. The idea of the Nyström extension is to uniformly randomly sample

a smaller set of data points A ⊂ Z with |A|= Nsample � N , perform spectral decomposition

on an Nsample×Nsample system calculated from the set of data points A, and then interpolate
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Algorithm 1 Graph MBO scheme [17]

1: Inputs: φ,Λ, H, Y, γ, and initial guess U0.

2: Outputs: U .

3: Initialize U0,0 = u0, a0,0 = φTU0.

4: for k = 1, 2, · · · , MaxIter or U j has converged do

5: a. Diffusion:

6: for s = 0, 1, · · · , Nstep − 1 do

7: aj,s+1 = (I + δtΛ)−1aj,s − δt 1
γ2
φTHT (HU j,s − Y ).

8: U j,s+1 = φaj,s+1.

9: end for

10: b. Threshold U j+1/2 = U j,Nstep :

11: for i = 1, 2, · · · , N do

12: U j+1,0(i) = em̂, where m̂ = arg maxm U
j,Nstep
m (i)

13: end for

14: end for
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the result to obtain an approximation to the spectral decomposition of the entirety of L.

Let Ac be the complement of A. Let WAA denote the weights associated with nodes in set

A, and similarly, let WAAc = W T
AcA denote weights between nodes in set A and Ac. If we

reorder the nodes so that A = {1, 2, · · · , Nsample} and Ac = {Nsample + 1, Nsample + 2, · · · , N},
we can rewrite

W =

WAA WAAc

WAcA WAcAc

 . (2.18)

It can be shown [47] that the matrix WAcAc can be approximated by WAcAc ≈ WAcAW
−1
AAWAAc

in the context of approximating the spectral decomposition. The Nyström extension uses

this property to approximate the spectrum of W , and henceforth L. We summarize the

Nyström extension algorithm to approximate the spectrum of symmetric graph Laplacian

in Algorithm 2. An analogous algorithm for unnormalized graph Laplacian can be found

in [17]. In Algorithm 2, 1 denotes a vector of one’s that is used to compute the strength of

each nodes, i.e. the sum of weights, and let ·./· denote component-wise division between two

matrices of the same size. We let
√· denote the non-negative square root of each component

of a non-negative matrix.

2.3 Experiments

We apply our method on two publicly available data sets, the Quad data set [74], and the

HUJI (Hebrew University of Jerusalem) EgoSeg data set [121], and compare our results

to those reported in [74, 121, 122, 129, 150]. We also apply both our method and the one

proposed in [99]1 on a police body-worn video data set provided by the LAPD. The goal of

our research on police body-worn video is to help promote transparency and accountability

of law enforcement. Our experimental procedures and parameters are summarized in Table

2.1. The measures of success that we use are precision

True Positive

True Positive + False Positive
× 100%

1The implementation of method proposed in [99] was kindly provided by the authors.
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Algorithm 2 Nyström extension for symmetrically normalized graph Laplacian [17] [47]

1: Inputs: {xi}Ni=1 and {rij}Ni,j=1.

2: Outputs: φ, {λj}Neig

j=1 .

3: Uniformly sample A ⊂ Z = {1, 2, · · · , N} with |A|= Nsample ≥ Neig at random.

4: Compute WAA and WAAc using (2.4).

5: Compute the strength of nodes in A, dA = WAA1.

6: Approximate the strength of nodes in B, dB = WAcA1 +WAcAW
−1
AAWAAc1.

7: Normalize WAA = WAA./
√
dAdTA.

8: Normalize WAAc = WAAc ./
√
dAdTAc .

9: Perform spectral decomposition on WAA + W
−1/2
AA WAAcW

T
AAcW

−1/2
AA to obtain the Neig

largest eigenvalues {ωi}Neig

i=1 and the corresponding eigenvectors {ψi}Neig

i=1 . We let Ψ denote

the matrix of the eigenvectors and Ω be a diagonal matrix with ωi’s on the diagonal.

10: Output λi = 1− ωi, and φ =

 W
1/2
AA

WAcAW
−1/2
AA

ΨΩ−1/2.

and recall
True Positive

True Positive + False Negative
× 100%,

within each class, mean precision and recall directly averaged over all classes, and the overall

accuracy, i.e. the percentage of correctly classified data points.

The feature extraction is done on an offline machine to ensure the security of the LAPD

video. Subsequent analysis, including the Nyström extension and the graph MBO scheme, is

performed on a 2.3GHz machine with Intel Core i7 and 4 GB of memory. Both experiments

on the Quad data set and the HUJI EgoSeg data set can be finished within a minute after

extracting features; each batch of the LAPD body-worn video data set (see Section 2.3.2 for

details) takes around two minutes.
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Table 2.1: Setup of experiments on body-worn videos

Motion feature NMF Spectrum of the Graph Laplacian MBO

∆T

(sec)
FPS

Number of

segments

Window size

(segment)
d Neig rij Nsample

Batch size

(segment)
1/γ2 ∆t Nstep

Quad 1/60 60 14,399 - 50 500 τ = 1 1000 - 300 0.1 10

LAPD 1/5 30 274,443 5 50 2000 k = 100 2000 30000 400 0.1 10

LAPD [99] 1/5 30 274,443 - - 2000 k = 100 2000 30000 400 0.1 10

HUJI 4 15 36,421 20 50 400 k = 40 400 - 300 0.1 10

2.3.1 Quad Data Set

The authors of [74] choreographed and made public the Quad data set, which is about

four minutes long and filmed at 60 frames per second. The footage was recorded with a

head-mounted Go-Pro Camera while the camera-wearer was undergoing nine ego-activities

(reported in Table 2.2), such as walking, jumping, and climbing up stairs2. The authors

of [74] and [99] tested their ego-activity classification methods on this data set; we follow

the same experimental protocol as [99]. Each video “segment” is chosen to be an individual

frame and we uniformly sample 10% segments within each category as fidelity in agreement

with the protocol employed in [99]. This choice of one frame per segment yields 14,399

segments.

In Table 2.2, we report precision within each category and the mean precision, averaged

over nine classes; the authors of [74] have also reported the mean precision and the authors

of [99] provided detailed precision per class. Both our method and the method in [99] use

10% of the video, sampled uniformly, as fidelity. The method in [74] is unsupervised and the

reported mean precision is calculated after matching the discovered ego-activity categories

to the given labels in a way that the best match gives the highest harmonic mean of the

precision and recall (i.e. the best F-measure). Our result is overall an improvement upon [99]

in terms of precision.

The Quad data set only consists of a short choreographed video, in which activities of

2The reported categories of ego-activities are the same ones used in [99] but are different from [74].
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Table 2.2: Class proportion and precision of the Quad data set

Precision

Class Proportion [74] [99] Ours

Jump 14% - 92% 99%

Stand 13% - 87% 87%

Walk 12% - 84% 98%

Step 12% - 93% 98%

Turn Left 11% - 89% 96%

Turn Right 10% - 92% 96%

Run 9% - 92% 96%

Look Up 8% - 80% 90%

Look Down 7% - 84% 89%

Mean 11% 95% 88% 94%

interest have a relatively balanced proportion, and the challenges we observe in the field

data sets are absent. However, the experiment on the choreographed data set validates the

ability of our method in recognizing ego-activities in body-worn videos. We further test our

method and showcase the applicability of our method to data sets that consist of multiple

videos of different lengths that are not choreographed and recorded in a variety conditions.

2.3.2 LAPD BWV Data Set

The LAPD body-worn video data set consists of 100 videos with a total length of 15.25 hours

recorded at 30 frames per second. The video footage is recorded by cameras mounted on

police officers’ chests when they are performing a variety of law enforcement activities. The

data set consists of videos recorded both inside vehicles and outdoors and under a variety of

illumination conditions. We manually annotated each frame of all 100 videos with one of 14

class labels. Although we train on and classify video footage in all 14 categories, we exclude

five classes, “exit driver seat”, “exit passenger seat”, “enter passenger seat”, “enter driver
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seat” and“obscured camera”, from performance evaluations of the ego-activity recognition

algorithms as they are transitioning activities. We report activity proportions of the selected

classes in Table 2.3 and, for completeness, all 14 classes in Table 2.5.

We apply the method in [99] with the provided implementation on the LAPD body-worn

video data set. [99] computes a feature vector per frame instead of per short video segment,

which consists of 6 frames (0.2 seconds). The average of the frame-wise features over a

segment is used as the feature vector of the segment. By doing so, the numbers of video

segments to classify in both methods are the same. We apply a moving window average

operator with a window size of one second (five segments) to our features. The features

of [99] inherently incorporate temporal information, so we use the mean per-frame features

averaged over each video segment.

We divide the 274,443 segments into 9 disjoint batches, each of which consists of approxi-

mately 30,000 segments. As each segment has a duration of 0.2 seconds, each batch therefore

consists of 100 minutes of footage spanning multiple videos. We perform the classification

on each batch independently and concatenate the classification results. We note that both

our method and the method proposed in [99] make use of the Nyström extension and the

MBO scheme described in Section 2.2.3 and 2.2.2, respectively, so they share the same set of

parameters. We choose Nsample = 2000 and Neig = 2000 to be the same for both methods for

each batch so that they share the same computation cost and both give good performance

relatively to other choices of parameters. We tested parameters 1/γ2 ranging from 0.01 to

1000 on both methods and found that 1/γ2 = 400 and r selected automatically according

to [169] with k = 100 work well for both methods.

With regards to sampling fidelity points, we use the same protocol as the one used in [99]

where we uniformly sample 10% segments within each class. Consequently, we have many

more samples of common activities than rare activities.

In Table 2.3, we report the precision and recall within each class and their respective

means averaged over the selected nine classes. We refer readers to Table 2.5 for a full table

of all 14 classes as well as the overall accuracy, which is the proportion of video segments
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Table 2.3: Class proportion, precision, and recall of the selected nine classes in the LAPD

body-worn video data set

Precision Recall

Class Proportion [99] Ours [99] Ours

Stand still 62% 73% 89% 85% 95%

In stationary car 16% 41% 93% 43% 89%

Walk 9% 38% 70% 19% 59%

In moving car 5% 70% 91% 25% 84%

At car window 0.64% 17% 71% 10% 45%

At car trunk 0.58% 73% 71% 11% 51%

Run 0.33% 96% 75% 11% 53%

Bike 0.33% 85% 86% 14% 75%

Motorcycle 0.08% 100% 92% 10% 71%

Mean 10% 66% 82% 25% 69%

that are correctly classified. We also present a sample of the color-coded classification results

in Figure 2.2 and the confusion matrices in Figure 2.3. We report the classification results

of the entire 14 ego-activity categories in the LAPD body-worn video data set in Table 2.5

as well as the full confusion matrices in Figure 2.6.

Our method outperforms [99] in most of the categories in terms of precision and is a

major improvement according to recall. We theorize that the features proposed in [99] are

too simple to distinguish among the increased variety of ego-activities in the larger LAPD

body-worn video data set. The features they propose do not make use of the locality of

motion within each frame, which we consider crucial in order to differentiate, for instance,

driving a car and walking forward. Both activities feature forward motion, but the motion

is localized within the windshield region only in the former case.
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Figure 2.2: Classification results on a contiguous sample of 4000 segments (approximately

13 minutes) from the LAPD body-worn video data set. The results are obtained by running

both methods with the parameters described in Section 2.3.2.
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Figure 2.3: Confusion matrices for the LAPD body-worn video data set. The background

intensity in cell (m,m′) corresponds to the number of data points in class m that are classified

as class m′ by the algorithm.
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2.3.3 HUJI EgoSeg Data Set

We also evaluate the performance of our method on the HUJI EgoSeg data set [121] [122].

This data set contains 65 hours of egocentric videos including 44 videos shot using a head-

mounted GoPro Hero3+, the Disney data set [42] and other YouTube videos3. The data set

contains 7 ego-action categories: Walking, Driving, Riding Bus, Biking, Standing, Sitting,

and Static. We normalize the frame rate of each video to 15 frames per second to match

with the normalized frame rate in [122]. We divide each video sequence into segments of 4

seconds (∆T = 4 seconds, 60 frames), which also matches the length of each video segment

in [122]. The activities in the HUJI EgoSeg data set are all relatively long-term activities

compared to the LAPD body-worn video data set, so using longer video segments reduces

the number of data points without the risk of missing short-term activities. With our choice

of ∆T , we have 36,421 segments. For the Nyström extension and the MBO scheme, we

choose the combination of Nsample = 400, Neig = 400, 1/γ2 = 300, and k = 40.

We follow the same experimental protocol of [121, 122] to divide the entire data set

into a training set and a testing set. We randomly pick video sequences until we have 1300

segments (approximately 90 minutes of video) per class as the training set, and we uniformly

sample 10% of the training set as fidelity points, which is about 10% of the training data

used in [122]4. In this experiment, we use recall to evaluate the performance since it is the

common measure of success in [121,122,129,150]. Table 2.4 details the classification results

on the testing set. The classification performance of methods other than ours are reported

in [122]. We also report the confusion matrix in Figure 2.4 and a color-coded sample of the

classification result in Figure 2.5.

We observe that the recalls of “sitting”, “standing”, and “riding bus” are typically lower

than other activities across all five methods, so we believe that these activities are inher-

3The HUJI EgoSeg data set can be downloaded at http://www.vision.huji.ac.il/egoseg/videos/

dataset.html.

4The authors of [122] do not explicitly mention the fidelity percentage; we estimate the percentage
according to their released code at http://www.vision.huji.ac.il/egoseg/.
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Figure 2.4: Confusion matrix for the HUJI EgoSeg data set. The background intensity in

cell (m,m′) corresponds to the number of data points in class m that are classified as class

m′ by the algorithm.

ently difficult to recognize with motion-based features. According to Table 2.4, our method

outperforms other methods that use handcrafted motion and/or appearance features with or

without deep convolution neural networks, with the exception of [122]. We emphasize that

our method uses around one-tenth of the training data of the supervised methods and still

achieves comparable results. When we use the entire training set as fidelity, the mean recall

only increases slightly.

2.4 Conclusion

In this chapter, we study an application of graph-base semi-supervised learning method

to ego-activity recognition in first-person video. We propose a system for classifying ego-

activities in body-worn video footage using handcrafted features based on motion cues. Our

experiments illustrate that the features are able to differentiate a variety of ego-activities
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Figure 2.5: Classification results on a contiguous sample of 4000 segments (approximately 4

hours) from the testing set of HUJI EgoSeg data set. The recall of the same experiment is

reported in Table 2.4.

Table 2.4: Class proportion and recall of the HUJI EgoSeg data set

Recall

Class Proportion [121] [129] [150] [122] Ours

Walking 34% 83% 91% 79% 89% 91%

Sitting 25% 62% 70% 62% 84% 71%

Standing 21% 47% 44% 62% 79% 47%

Biking 8% 86% 34% 36% 91% 88%

Driving 5% 74% 82% 92% 100% 95%

Static 4% 97% 61% 100% 98% 96%

Riding Bus 4% 43% 37% 58% 82% 84%

Mean 14% 70% 60% 70% 89% 82%

Training ∼60% ∼60% ∼60% ∼60% 6%
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and yield better classification results than an earlier work [99]. The semi-supervised classi-

fication method addresses the challenge of insufficient training data; it achieves comparable

performance to supervised methods on two publicly available benchmark data sets using

only 10% of training data. The proposed system also demonstrates promising results on

field data from body-worn cameras used by the Los Angeles Police Department.

Table 2.5: Class proportion, precision , recall, and accuracy on the LAPD body-worn video

data set

Precision Recall

Class Proportion [99] Ours [99] Ours

Stand still 62% 73% 89% 85% 95%

In stationary car 16% 41% 93% 43% 89%

Walk 9% 38% 70% 19% 59%

In moving car 5% 70% 91% 25% 84%

Obscured camera 2% 51% 80% 15% 70%

At car window 0.64% 17% 71% 10% 45%

At car trunk 0.58% 73% 71% 11% 51%

Exit driver 0.35% 6% 50% 11% 21%

Exit passenger 0.34% 79% 48% 11% 26%

Run 0.33% 96% 75% 11% 53%

Bike 0.33% 85% 86% 14% 75%

Enter passenger 0.20% 5% 45% 13% 24%

Enter driver 0.12% 5% 34% 12% 20%

Motorcycle 0.08% 100% 92% 10% 71%

Mean 7% 53% 71% 21% 56%

Accuracy 65% 88%
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Algorithm 3 Global Motion Descriptor

1: Inputs: Optical flow fields matrix O ∈ Rnf×nx×ny×2

2: Outputs: Matrix X ∈ Rst×(sx·sy ·8)

3: Initialize dt = 60, dx = dy = 64, sx = nx/dx, sy = ny/dy,

st = bnf/dtc, histogram count matrix D′ ∈ Rst×sx×sy×8

4: for i = 0 : st do

5: for j = 0 : sx do

6: for k = 0 : sy do

7: % Step 1. Partition:

8: cuboid = O[idt : (i+1)dt, jdx : (j+1)dx,

kdy : (k+1)dy, :]

9: % reshape: Rdt×dx×dy×2 7→ R(dt·dx·dy)×2

10: cuboid = reshape(cuboid)

11: % Step 2. Histogram count:

12: for l = 0, 1, · · · , (dt · dx · dy) do

13: bin = bphase(cuboid[l, :])/π
4
c

14: D′[i, j, k, bin] = D′[i, j, k, bin] + 1

15: end for

16: end for

17: end for

18: end for

19: % reshape: Rst×sx×sy×8 7→ R(sx·sy ·8)×st

20: D = reshape(D′)
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Figure 2.6: Confusion matrices for the LAPD police body-worn video data set. The back-

ground intensity of cell (m,m′) corresponds to the number of data points in class m that are

classified as class m′ by the algorithm.
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CHAPTER 3

Bayesian Framework and Posterior Consistency

3.1 Background

In this chapter, we study SSL problem in Bayesian inverse problems (BIPs) framework, build-

ing on a widely adopted semi-supervised regression (SSR) approach to SSL developed in the

machine-learning community. In this context, the Bayesian formulation has a novel structure

in which the unlabeled data defines the prior distribution and the labeled data defines the

likelihood. This chapter is a version of [18]. This work was done in collaboration with Kevin

Miller and Bamdad Hosseini under the supervision of Andrew Stuart and Andrea Bertozzi.

Bamdad Hosseini and Andrew Stuart introduced me to the posterior consistency problem

that we study and background knowledge of Bayesian inverse problems. I contributed most

of the proofs and designing numerical experiments to illustrate the theoretical results.

The goal of this chapter is to study posterior consistency; that is, the contraction of the

resulting Bayesian posterior distribution onto the ground-truth solution in certain parametric

limits related to parameters underlying our model. We adopt ideas from spectral clustering

in unsupervised learning to construct and analyze the prior arising from a similarity graph

constructed from the unlabeled data. This prior information is combined with the labeled

data via the likelihood. When the prior information (from the unlabeled data) and the

likelihood (from the labeled data) complement each other, then a form of Bayesian posterior

consistency can be achieved and the posterior measure on the predicted labels contracts

around the ground truth. Furthermore our analysis elucidates how hyperparameter choices

in the prior, quantitative measures of clustering in the data set and the noise in labels combine

to affect the contraction rates of the posterior. In the following three subsections, we review
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relevant literature, formulate the problem mathematically and describe our contributions.

3.1.1 Relevant Literature

Many approaches to SSL and SSR have been developed in the literature and a detailed

discussion of all of them is outside the scope of this chapter. We refer the reader to the

review articles [171] and [77] for, respectively, the state-of-the-art in 2005 and a more recent

appraisal of the field.

The consistency of supervised learning and regression is well-developed; see [147] for a

literature review, as well as the preceding work in [141,142,167] which establish the problem

in the framework of [159]. All of this work on supervised classification focuses on the large

data/large number of features setting, and often considers only linearly separable data; that

is, a straight line can separate the data correctly according to the ground-truth labels.

Therefore, these previous works do not leverage the power of graph-based techniques to

extract geometric information in large unlabeled data sets, a primary feature of the SSR

problems studied in this work.

Graph-based techniques are widely used in unsupervised learning [15,161], a subject that

has seen significant analysis in relation to consistency. The papers [137,138] perform a careful

analysis of the spectral gaps of graph Laplacians resulting from clustered data, studying

recursive methods for multi-class clustering. The paper [112] introduced an approach for the

analysis of multi-class unsupervised learning based on perturbations of a perfectly clustered

case. The paper [162] introduced the idea of studying the consistency of spectral clustering

in the limit of large data sets in which the graph Laplacians converge to a limiting integral

operator. The articles [152, 153] took this idea further by proving the convergence of graph

Laplacian operators to differential operators by controlling the local connectivity of the graph

as a function of the number of nodes.

In this chapter, our focus is on SSL [77] in the framework of the influential papers [173,174]

where the categorical labels {1, . . . ,M} are embedded in RM and the SSR approach to SSL is

adopted. Bertozzi and Flenner [17] introduced an interesting relaxation of this assumption,
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by means of a Ginzburg-Landau penalty term which favors real-values close to ±1 but does

not enforce the categorical values ±1 exactly. In contrast to these relaxations, the probit

approach to classification, described in the classic text on Gaussian process regression [127]

and analyzed in [61] in the context of SSL, works directly with the categorical labels and

does not rely on the embedding step.

The idea of regularization by graph Laplacians for SSL was developed in different con-

texts such as manifold regularization [16], Tikhonov regularization [14] and local learning

regularization [166] as well as more recent articles focusing on large data settings [58, 59].

However, while graph regularization methods are widely applied in practice the rigorous anal-

ysis of their properties, and in particular asymptotic consistency and posterior contraction

rates, are not well-developed within the context of SSL and SSR. Indeed, to the best of our

knowledge the Bayesian consistency of SSR has not been analyzed. Studying SSL/SSR in a

Bayesian setting introduces new challenges that require careful consideration about assump-

tions regarding graph structure and statistical properties of the resulting model [73]. We

build on the spectral analysis of the graph Laplacian introduced in [112] to study unsuper-

vised learning, and refined in [61] to study the consistency of optimization-based approaches

to binary and one-hot SSL.

The subject of Bayesian posterior consistency is aimed at reconciling the large data limits

of frequentist and Bayesian approaches to statistical inference problems. Early influential

works in this field concentrated on negative results concerning the Bayesian nonparametric

setting where the prior and likelihood were inconsistent [38]. Subsequent work in this area

concentrated on positive results, demonstrating that minimax rates of convergence can be

obtained within the Bayesian setting [53, 155] by studying posterior measure concentration

through Bernstein-Von Mises-type theorems [50, 155] provided that priors are constructed

carefully. The celebrated paper [25] demonstrates how large data and small noise limits (i.e.

in the limit of noise variance going to zero) are intimately related, and this link underpins

subsequent studies of inverse problems from the perspective of Bayesian posterior consistency.

This line of work was initiated in the paper [156] where the small noise limit of linear inverse
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problems was studied. A number of papers in this area followed [3, 107] and it is currently

an active research area, particularly in relation to nonlinear inverse problems [55].

In some problems, optimization approaches other than fully Bayesian approaches are

adopted, and the study of consistency for inverse problems in this setting is overviewed

in [40]. Linking this to maximum a posteriori (MAP) estimators for inverse problems was a

subject developed in [35] and the study of consistency for MAP estimators in semi-supervised

learning, and in particular use of the probit likelihood model, is undertaken in [61].

3.1.2 Problem Setup

Underlying this analysis is the assumption that the labeled data is determined by a generative

model of the form

Y = HU † + γη, (3.1)

here U † ∈ RN×M is the ground-truth latent variable that gives the true labels of all of the

nodes in Z and η ∈ RJ×M is a matrix with independent standard Gaussian entries, i.e.,

ηjm
iid∼ N (0, 1). The parameter γ > 0 is the standard deviation of the observation noise.

It is instructive to think of the rows of U † as being chosen from {e1, · · · , eM}, although

generalizations of this setting are possible.

The model (3.1) casts the SSL problem of inferring the true labels on Z as the SSR

problem of finding U †, adopting the terminology of [77]: our modeling assumption makes

the observations Y real-valued, rather than categorical as in classification, and therefore is

considered a regression problem. The SSR problem is ill-posed, requiring the learning of

NM parameters from JM noisy data points, since we typically have far fewer labels than

the total number of unlabeled data points, i.e. J � N . The labeled data may be viewed as

providing prior information that renders this ill-posed problem tractable. To this end, we

formulate SSR in the framework of Bayesian inversion [28,36,70].

The main goal is to analyze the consistency of the Bayesian SSR problem by identifying

the conditions under which the posterior measure µY (defined in (3.7) below) contracts
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around the ground-truth matrix U † in (3.1). Formally, we define the following functional as

a measure of posterior contraction

I := EY |U†EµY
∥∥U − U †∥∥2

F
, (3.2)

where the inner expectation is with respect to the posterior measure µY on U while the outer

expectation is with respect to the law of Y |U † following (3.1). With this notation, our aim

is to solve the following problem:

Problem 1 (Posterior consistency of Bayesian SSR). Under what conditions on the graph G,

the labeled set Z ′, the ground-truth U † and the hyperparameters τ, α entering the definition

of the prior can we ensure that I ↓ 0 as the noise-level γ in the unlabeled data, and some

measure ε of closeness to perfect clustering in the labeled data, tend to zero.

Indeed we will find explicit bounds on I which give consistency in the limit (ε, γ)→ 0 and

reveal the role of parameter choices for τ, α in the form of the contraction rate. Our bounds

are applicable for small values of γ, τ, ε (the explicit condition under which the bounds hold

will be presented) and not just in the asymptotic regimes where (γ, τ, ε)→ 0.

3.1.3 Main Results

We study posterior contraction, as measured by the quantity I. In the theory we develop,

the quantity of labeled data and unlabeled data will be fixed. The prior that we use is a

discrete analog of the Matérn prior with graph Laplacian used in place of the continuum

Laplacian in the differential operator formulation popularized in [90]. In this interpretation

τ is an inverse length-scale and α controls the regularity of the prior; details are given in the

next section. The parameter γ is the noise standard deviation in (3.1) and the parameter ε

is defined formally through the notion of a weakly connected graph as introduced in [112]

and used in [61]:

Definition 1 (Weakly connected graph). Let 0 < ε� 1, then a graph G = {Z,W} is weakly

connected with K clusters if it consists of pathwise connected components G̃k = {Z̃k, W̃k} for
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k = 1, . . . , K so that the edge weights between elements in different G̃k are O(ε). In other

words, up to a reordering of Z, the matrix W is an O(ε) perturbation of a block diagonal

weight matrix, and the graph Laplacian associated with each block has a one-dimensional

null-space.

The following informal theorem is stated with precise conditions as Corollary 1 which

itself follows from Theorem 2, both stated and proved in Section 3.3.

Main Theorem. Let G = {Z,W} be weakly connected with K components G̃k and

perturbation parameter 0 < ε � 1 as in Definition 1. Suppose that the columns of the

ground-truth matrix U † ∈ RN×M belong to the span of the indicator functions of the G̃k and

fix α > 0 and fix τ so that

ε = ε0τ
max{2,2α}.

Then, for appropriately chosen ε0, there exists Ξ > 0, independent of ε and γ, so that

I ≤ Ξ max
{
γ2, εmin{1,α}} .

After stating the theorem, let us give insight into it. The parameters ε and γ are inherent

to the specific SSR problem and the data set at hand. Broadly speaking ε is a geometric

property of the point cloud X of unlabeled data and γ is the noise standard deviation of the

labels. Hence these parameters are fixed, although they are generally unknown. Then the

theorem implies the following:

• If εmin{1,α} ≤ γ2, then the measurement noise dominates over the measure of closeness

to perfect clustering and posterior contraction is controlled by the γ parameter.

• If γ2 < εmin{1,α}, then the measure of closeness to perfect clustering is dominant in

comparison to the measurement noise, and posterior contraction is controlled by the ε

parameter.

• In the latter case, we also observe that choosing α < 1 gives a sublinear contraction

rate in ε while a linear rate is achieved if α ≥ 1. Thus it is preferable to tune (α, τ 2)
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Figure 3.1: A numerical demonstration of Theorem 2 on a synthetic data set (detailed in

Subsection 3.4.1). Details of this experiment are described in Section 3.4. The value of I
reduces with γ up to the point where γ2 ≈ εmin{1,α} where the errors saturate as predicted by

the upper bound in the main theorem. Smaller values of ε result in smaller values of I that

indicates higher concentration of posterior probability mass around the ground-truth U †.

so that α ≥ 1 and τ 2 = O(ε1/α). For reasons related to the large data limit N → ∞,

it is natural to choose α > d
2

and since d is typically larger than 2, this enforces α > 1;

see [60].

These insights are also supported by our numerical experiments in Section 3.4; further-

more these experiments also verify the sharpness of the upper bound in Theorem 2. As a

prelude to these detailed experiments, Figure 3.1 contains the results of a computational

example which illustrates our main theorem on a synthetic data set. We postpone details of

this experimental set-up to Section 3.4, but studying the figure at this point already gives

useful insight: for fixed values of ε the value of I goes to zero at a rate proportional to γ2

until an inflection point, around γ2 ≈ εmin{1,α}, after which the error saturates; the saturation

levels themselves go to zero like εmin{1,α}. These facts are exactly as predicted by our theory.

The rest of this chapter is structured as follows. We outline the details of the Bayesian

SSR problem in Section 3.2, introducing the likelihood and the prior in Subsections 3.2.1

and 3.2.2 followed by an analytic expression for the posterior measure in Subsection 3.2.3.
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Section 3.3 is dedicated to our consistency analysis and presents detailed versions of our pri-

mary results that are summarized in the Main Theorem. We first analyze the disconnected

graph case in Subsection 3.3.1 to gain some insight into the behavior of the posterior. We

then study the weakly connected graph setting in Subsection 3.3.2. We present the proofs

of these results, relying on lemmata that are stated in Section 3.3, but deferring their proof

to Section 3.5. We collect numerical experiments in Section 3.4 that demonstrate the sharp-

ness of the contraction rates and bounds obtained in Section 3.3. We present experiments

which illustrate situations in which the label noise dominates the closeness to clustering, and

vice versa. Section 3.5 contains the detailed proofs of the lemmata that support the main

theoretical results developed in Section 3.3; these are also illustrated by numerical results

presented in Subsections 3.6.1 and 3.6.2.

3.2 Bayesian Formulation Of SSR

In this section we outline the Bayesian formulation of the SSR problem in detail. We derive

the likelihood potential Φ in Subsection 3.2.1 and construct the prior measure in Subsec-

tion 3.2.2. An analytic expression for the posterior measure is given in Subsection 3.2.3.

3.2.1 The Likelihood

Based on the generative model (3.1) for the labeled data Y ∈ RJ×M , we define the likelihood

distribution P(Y |U) with density proportional to

exp

(
− 1

2γ2
‖HU − Y ‖2

F

)
. (3.3)

It is therefore convenient to define the likelihood potential

Φ : RN×M × RJ×M → R+, Φ(U ;Y ) :=
1

2γ2
‖HU − Y ‖2

F . (3.4)

Remark 1. We note that if the entries in the noise matrix η are not independent but rather

correlated, then the expression (3.4) needs to be modified by weighting the ‖·‖F norm by the

inverse square root of the covariance operator of η. This will make no significant difference
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to what follows and we work with i.i.d. noise only to simplify the exposition.

3.2.2 The Prior

We now detail the Gaussian prior measure construction and demonstrate how it expresses the

geometric information in the unlabeled data X. Recall the definition of the graph Laplacian

in Section 1.1; we define the prior covariance matrix Cτ ∈ RN×N with hyperparameters

τ 2, α > 0 to be

Cτ := τ 2α(L+ τ 2IN)−α. (3.5)

Graph Laplacian operators are positive semi-definite (see [161, Prop. 1]); the matrix Cτ is

therefore strictly positive definite thanks to the shift by τ 2IN . The normalization by τ 2α

ensures that the largest eigenvalue of Cτ is 1, while α > 0 controls the rate of decay of the

rest of the eigenvalues of Cτ ; when the graph Laplacian is constructed from nearly clustered

data, Cτ will exhibit a spectral gap and the eigenvectors associated with eigenvalues near

one will contain geometric information about the clusters; we refer to this phenomenon as

the smoothing effect of Cτ .

With Cτ at hand, we conclude our definition of the prior on the unknown U , the Gaussian

measure µ0(dU) = N (0, IM ⊗ Cτ ) with Lebesgue density

µ0(dU) :=
1

[(2π)Ndet(Cτ )]
M
2

exp

(
−1

2
〈U,C−1

τ U〉F
)

dU. (3.6)

If we introduce the columns {u1, · · · ,uM} of U , then we note the prior can be written as

µ0(dU) =
1

[(2π)Ndet(Cτ )]
M
2

M∏
m=1

exp

(
−1

2

〈
um, C

−1
τ um

〉)
dum.

The above expression reveals that, a priori, each column of U has the same distribution, and

is independent of the others, and that this distribution on columns favours structure across

Z which reflects the eigenvectors of the largest eigenvalues of Cτ . The matrix Cτ is chosen so

that this eigenstructure reflects clustering present in the unlabeled data, for appropriately

chosen τ , determined through the analysis in this chapter.
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Remark 2. The prior covariance Cτ defined in (3.5) depends on the unlabeled data X

through the matrix L and the weight matrix W . This perspective differs significantly from

standard BIPs, where the data only appears in the likelihood and the prior is constructed

independent of the data (other than, perhaps, a noise-dependent scaling). In our formulation

of SSR, the labeled data appear in the likelihood potential Φ while the unlabeled data are used

to construct the prior measure µ0.

3.2.3 The Posterior

Using Bayes’ rule, we can determine the posterior µY from the likelihood P(Y |U) and prior

µ0 defined through the Radon-Nikodym derivative

dµY

dµ0

(U) =
1

ϑ(Y )
exp

(
− Φ(U ;Y )

)
. (3.7)

The posterior measure µY is the Gaussian defined by

µY (dU) =
1

ϑ(Y )
exp

(
− 1

2γ2
‖HU − Y ‖2

F −
1

2

〈
U,C−1

τ U
〉
F

)
dU. (3.8)

It is well-known that linear inverse problems with additive Gaussian noise and a Gaussian

prior result in Gaussian posteriors [165]; this is due to the conjugacy of the prior and the

likelihood. In this case, we have the additional property that the independence of the columns

u` of U under the prior µ0 is preserved under the posterior µY . To see this, we introduce

the columns {y1, · · · ,yM} of Y and note that we may write

µY (dU) ∝ exp

[
−1

2

M∑
m=1

1

γ2
|Hum − ym|2 +

〈
um, C

−1
τ um

〉]
.

Using this structure as the product of i.i.d. Gaussians in each of the M columns of U ,

Proposition 1 shows that µY = N (U∗, I ⊗ C∗), where U∗ ∈ RN×M is the matrix with

columns

u∗m =
1

γ2
C∗HTym, m = 1, . . . ,M,

and C∗ is the covariance matrix

C∗ =

(
C−1
τ +

1

γ2
HTH

)−1

.
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3.3 Consistency Of Bayesian SSR

In this section, we prove consistency of the posterior µY . We study consistency with re-

spect to two small parameters: γ, which measures noise in the the labeled data Y , and

ε, which measures the closeness to perfectly clustered unlabeled data X. Recall from the

main theorem that our goal is to show that the measure of contraction I (defined in (3.2))

is controlled with the noise standard deviation γ or the geometric perturbation parameter

ε, whenever the prior hyperparameters τ, α satisfy certain conditions that will be presented

in the following sections. We will show that letting γ → 0 results in posterior contraction,

until a floor is reached that is determined by ε. Furthermore the analysis will reveal guidance

about the choice of the hyperparameters τ and α in the prior. In Section 3.3.1 we consider

the case of a disconnected graph with ε = 0 and obtain contraction rates with respect to γ.

In Section 3.3.2 we build on the disconnected case to obtain our desired results for weakly

connected graphs with ε small.

3.3.1 Disconnected Graph

Consider a weighted graph G0 = {Z,W0} consisting of K < N connected components

G̃k, i.e., the subgraphs G̃k are pathwise connected — any two nodes can be joined by a

path within G̃k — but the weight of edges that connect two distinct components G̃i, G̃`

are zero. Without loss of generality, we assume that the nodes in Z are ordered so that

Z = {Z̃1, Z̃2, · · · , Z̃K} with the Z̃k denoting the index set of nodes in subgraph G̃k. We refer

to Z̃k as the clusters and let Ñk = |Z̃k| denote the number of nodes in the k-th cluster. We

make the following assumptions on the graph G0.

Assumption 1. The graph G0 = {Z,W0} satisfies the following conditions:

(a) The weighted matrix W0 ∈ RN×N is block diagonal

W0 = diag(W̃1, W̃2, · · · , W̃K),

with W̃k ∈ RÑk×Ñk denoting the weight matrices of the subgraphs G̃k.

42



(b) Let L̃k be the graph Laplacian matrices of the subgraphs G̃k, i.e.,

L̃k := D̃−pk (D̃k − W̃k)D̃
−p
k

with D̃k denoting the degree matrix of W̃k. There exists a uniform constant θ > 0 so

that for k = 1, · · · , K the submatrices L̃k satisfy

〈v, L̃kv〉 ≥ θ〈v,v〉, (3.9)

for all vectors v ∈ RÑk and v⊥D̃p
k1 with 1 ∈ RÑk denoting the vector of ones. In other

words, the L̃k have a uniform spectral gap.

Remark 3. The existence of such θ as in (3.9) follows from [161, Props. 2 and 3], which

states that 0 is an eigenvalue of L̃k with multiplicity 1 and that the corresponding eigenvector

is D̃p
k1, under the pathwise connected assumption.

With a disconnected graph G0 as above, we proceed as in Section 3.2.2 and consider

graph Laplacian and covariance matrices of the form

L0 := D−p0 (D0 −W0)D−p0 and Cτ,0 := τ 2α(L0 + τ 2IN)−α, (3.10)

with D0 denoting the diagonal degree matrix of W0 and parameters τ, α > 0. Note that

L0 = diag(L̃1, L̃2, · · · , L̃K),

and that Cτ,0 inherits a similar block-diagonal structure. We use the covariance matrix Cτ,0

to define prior measures µ0 of the form (3.6). In order to show posterior contraction with

such a prior, we also need to make some assumptions on the index set of labeled data Z ′

and the ground-truth matrix U †; these encode the idea that the labels are coherent with the

geometric structure implied by the perfect clustering of the data.

Assumption 2. At least one label is observed in each cluster Z̃k; that is,

|Z ′ ∩ Z̃k| > 0 ∀k = 1, . . . , K.
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Assumption 3. Let (u†m)T for m = 1, . . . ,M denote the columns of U †. Then u†m ∈
span{χ̄1, . . . , χ̄K}, where the weighted set functions are defined by

χ̄k :=
Dp

01k
|Dp

01k|
, (3.11)

with 1k ∈ RN denoting indicator of the cluster Z̃k.

Remark 4. We note here that our current exposition does not address posterior contraction

when Assumption 3 is violated. While this is an interesting and practically pertinent question,

we delay it for future study. We conjecture that as long as the ground-truth variable U †

is consistent with the observed labeling and the true underlying clustering structure of the

unlabeled data X, then posterior contraction will occur around the projection of U † onto

span{χ̄1, . . . , χ̄K}.

With the above assumptions in hand, we are ready to present our first posterior contrac-

tion result in the case of disconnected graphs.

Theorem 1. Suppose that Assumptions 1, 2 and 3 are satisfied in turn by the disconnected

graph G0, the labeled set Z ′ and the ground-truth matrix U †. Consider the label model (3.1),

the prior measure µ0(dU) = N (0, Cτ,0) as in (3.6), and the resulting posterior measure

µY (dU) as in (3.8). Then there is a constant Ξ > 0 so that, for every fixed γ, τ, α > 0, we

have

I(γ, α, τ) ≤ Ξ max
{
γ2, τ 2α

} (
1 + max

{
γ2, τ 2α

}
‖U †‖2

F

)
.

We prove this theorem in Section 3.3.1.1; here we discuss the intuition behind it. If

U ∼ µ0 as above then um
iid∼ N (0, Cτ,0) where we recall um are the columns of U . Thus by

the Karhunen-Loéve (KL) theorem,

um
d
=

N∑
j=1

1√
λj,0

ξmjφj,0,

with {(λj,0,φj,0)}Nj=1 denoting the eigenpairs of Cτ,0 and ξmj
iid∼ N (0, 1). The matrix L0

has a K dimensional null-space spanned by the χ̄k and this null-space is associated to the
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eigenvalue 1 for Cτ,0. Furthermore, when τ 2 is small the remaining eigenvalues of Cτ,0 are

also small. These ideas are made rigorous in [61, Lemm. A.2 and Prop. A.3]. From those

results it follows that

um
d
=

K∑
j=1

ξmjχ̄j +O(τ 2α), (3.12)

meaning that the prior is concentrated on span{χ̄1, . . . , χ̄K}. The posterior µY also decouples

along the columns um following Proposition 1 and so the SSR problem can be viewed as M

separate BIPs for each column of um, all with the same structure. In the limit of τ → 0,

the prior mass concentrates on the K dimensional subspace spanned by the set-functions

χ̄k. Since the posterior is absolutely continuous with respect to the prior, the posterior mass

will also concentrate on the same subspace. The assumptions on the ground-truth U † ensure

that the data is consistent with the columns um lying in this subspace and give information

on assignation of labels, corresponding to weights on the χ̄m. Hence, letting γ → 0 yields

concentration of the posterior around the ground-truth matrix U † under Assumptions 2 and

3.

Remark 5. Theorem 1 suggests that, in this perfectly clustered setting, choosing τ to achieve

τ 2α = γ2 is optimal, since it balances the two sources of error in the contraction rate. How-

ever, in the next section, we study the case that the unlabeled data is not perfectly clustered,

where we measure the proximity of it to being perfectly clustered with the parameter ε. We

state our theorems in a setting in which τ scales as a power of ε, rather than γ. We make this

choice because τ and ε are linked intrinsically through the unsupervised learning task encapsu-

lated in the prior measure, based on the unlabeled data, whilst γ enters separately through the

likelihood, which captures the labeled data. In a broader picture, these considerations about

the choice of τ suggest the importance of choosing this hyperparameter according to the data

and the importance of using hierarchical Bayesian methods to learn such parameters.

3.3.1.1 Proof of Theorem 1

We first bound the expectation with respect to the posterior distribution in (3.2), which is

the mean square error of the estimator U |Y . We define the matrix C∗0 to be the posterior
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covariance obtained by substituting the prior covariance Cτ,0 from (3.10) into (3.24), i.e.,

C∗0 :=

(
C−1
τ,0 +

1

γ2
B

)−1

. (3.13)

For brevity we suppress the dependence of C∗0 on τ, α, and γ and we let B := HTH. We

then have

EU |Y ‖U − U †‖2
F=

M∑
m=1

Eum|ym
∣∣um − u†m

∣∣2 = MTr(C∗0) +
M∑
m=1

∣∣∣∣ 1

γ2
C∗0H

Tym − u†m

∣∣∣∣2 .
The first identity relies on the independence of the columns um of U under the posterior

distribution, as established in Proposition 1. The second identity comes from the fact that

the mean square error is the sum of the variance and squared bias of the estimator of each

column.

We may now apply the outer expectation in definition of I with respect to the data Y |U †,
and since Tr(C∗0) does not depend on Y , we may pull it out of the outer expectation and

write

I(γ, α, τ) = MTr(C∗0) + EY |U†

(
M∑
m=1

∣∣∣∣ 1

γ2
C∗0H

Tym − u†m

∣∣∣∣2
)
. (3.14)

Since we assumed

ym|u†m ∼ N (Hu†m, γ
2IJ) (3.15)

and the columns
{
yTm
}M
m=1

are independent conditional on U †, we can write

EY |U†
∣∣∣∣ 1

γ2
C∗0H

Tym − u†m

∣∣∣∣2 = Eym|u†m

∣∣∣∣ 1

γ2
C∗0H

Tym − u†m

∣∣∣∣2 .
This expectation is the mean square error of the posterior mean estimator of u†m, which can

be decomposed into a variance and a squared bias term:

Eym|u†m

∣∣∣∣ 1

γ2
C∗0H

Tym − u†m

∣∣∣∣2 = Tr

(
Cov

(
1

γ2
C∗0H

Tym

))
+∣∣∣∣Eym|u†m

(
1

γ2
C∗0H

Tym

)
− u†m

∣∣∣∣2 ,
where Cov(·) denotes the covariance matrix of a random vector. We compute the variance

term using (3.15):

Cov

(
1

γ2
C∗0H

Tym

)
=

1

γ2
C∗0H

TCov (ym)
1

γ2
H(C∗0)T =

1

γ2
C∗0BC

∗
0 ,

46



where we used the fact that Cov(ym) = γ2IJ and B = HTH ∈ RN×N . For the bias term,

we can write

Eym|u†m

(
1

γ2
C∗0H

Tym

)
=

1

γ2
C∗0H

THu†m =
1

γ2
C∗0Bu†m.

Putting these terms together yields

Eym|u†m

∣∣∣∣ 1

γ2
C∗0H

Tym − u†m

∣∣∣∣2 =
1

γ2
Tr (C∗0BC

∗
0) +

∣∣∣∣ 1

γ2
C∗0Bu†m − u†m

∣∣∣∣2 .
Substituting this identity back into (3.14) yields

I(γ, α, τ) = MTr(C∗0) +
M

γ2
Tr(C∗0BC

∗
0) +

M∑
m=1

∣∣∣∣ 1

γ2
C∗0Bu†m − u†m

∣∣∣∣2 . (3.16)

The desired bound now follows from Lemmata 1, 2, and 3 that in turn bound the first,

second, and third term in the right hand side of (3.16). These Lemmata are proved in

Section 3.5.2.

Lemma 1. Suppose Assumptions 1 and 2 are satisfied by the disconnected graph G0 and the

labeled set Z ′, respectively. Then there exists a constant Ξ > 0, such that for any γ, τ, α > 0,

we have

Tr(C∗0) ≤ Ξ max{γ2, τ 2α}, (3.17)

where C∗0 is the posterior covariance matrix in (3.13).

Lemma 2. Suppose Lemma 1 is satisfied. Then for any γ, τ, α > 0, we have

1

γ2
Tr(C∗0BC

∗
0) ≤ Ξ max

{
γ2, τ 2α

}
,

with the same constant Ξ > 0 as in (3.17).

Lemma 3. Suppose Assumptions 1, 2, and 3 are in turn satisfied by the disconnected graph

G0, the labeled set Z ′, and the ground-truth function U †. Then for any γ, τ, α > 0 and

m = 1, . . . ,M , we have ∣∣∣∣ 1

γ2
C∗0Bu†m − u†m

∣∣∣∣ ≤ Ξ max{γ2, τ 2α},

where Ξ > 0 is the same constant as in (3.17).

47



3.3.2 Weakly Connected Graph

We now consider a generalization of the setting in the previous subsection, in which the

disconnected graph G0 = {Z,W0} is perturbed, and the perturbation results in a connected

graph Gε = {Z,Wε}. Following [61] we summarize the following set of assumptions on this

perturbed graph Gε.

Assumption 4. The graph Gε = {Z,Wε} satisfies the following three conditions.

(a) The weight matrix Wε can be expanded in the form

Wε = W0 +
∞∑
h=1

εhW (h), (3.18)

where W0 is the weight matrix of a disconnected graph G0.

(b) The matrices W (h) are self-adjoint and {‖W (h)‖2}∞h=1 ∈ `∞.

(c) Let w
(0)
ij and w

(h)
ij denote the entries of W0 and W (h) respectively. Then, for h ≥ 1, we

assume w
(h)
ij ≥ 0, if w

(0)
ij = 0 for i, j ∈ Z, i 6= j

w
(h)
ii = 0.

(3.19)

The assumptions (b) and (c) above ensure that Wε is a well-defined adjacency matrix.

Also note that (c) allows for w
(h)
ij , h ≥ 1, to be negative whenever w

(0)
ij > 0. With the above

assumptions identified we can proceed analogously to Section 3.2.2 to define Laplacian and

covariance matrices

Lε := D−pε (Dε −Wε)D
−p
ε and Cτ,ε := τ 2α(Lε + τ 2IN)−α, (3.20)

with Dε denoting the degree matrix of Wε and parameters τ, α > 0. We then use the

covariance matrix Cτ,ε to define a prior measure µ0 of the form (3.6) on the weakly connected

graph Gε. With the assumptions made about the disconnected set-up in Subsection 3.3.1

and the above new assumptions on the weakly connected set-up, we can now present our

main posterior contraction result, the analogue of Theorem 1, for weakly connected graphs

Gε.
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Theorem 2. Suppose Assumptions 1, 2, 3 and 4 are satisfied by the disconnected graph G0,

the labeled set Z ′, the ground-truth matrix U † and the weakly connected graph Gε. Fix α > 0.

Then there exist constants ε0 ∈ (0, 1) and Ξ,Ξ1 > 0 such that for any sequence (ε, τ, γ)→ 0,

the following holds uniformly:

I(γ, α, τ, ε) ≤ Ξ max

{
γ2,

(
τ 2

1− Ξ1ε/τ 2

)α}
×
(

1 + max

{
γ2,

(
τ 2

1− Ξ1ε/τ 2

)α}[
ε+

ε

τ 2α
+
(

1 +
ε

τ 2

)α]2

‖U †‖2

)
.

The intuition behind the proof is that we use the same ideas which underlie Theorem 1,

which concerns the case ε = 0, coupled with new arguments which control perturbations to

the spectrum of Cτ,ε with respect to that of Cτ,0. Specifically Cτ,ε now has a one-dimensional

null-space associated with the eigenvalue 1, but has an additional K − 1 eigenvalues of size

1−O(ε/τ 2). The remaining eigenvalues are small, of O(τ 2α), if an appropriate relationship

between ε and τ is imposed. The eigenfunctions associated with the K eigenvalues at, or

near, 1, nearly span the same space as the N weighted set-functions {χ̄k}Kk=1. Let (um)T

denote the columns of U that is drawn from the prior distriubtion µ0. Then it follows

from [61, A.10] that these columns concentrate on the span of the χ̄k with errors of the form

O (ε2τ−4 + τ 4α + ε2) when ε = o(τ 2) and of the form O (τ 4α + ε2) when ε = Θ(τ 2). These

approximation results for the columns um under the prior underlie the proof. The rest of

the proof follows in the footsteps of Theorem 1. First, we decouple the posterior on the

columns of U using Proposition 3.23 to obtain M independent BIPs. In each BIP, the prior

concentration on the span of χ̄k results in posterior concentration along the same subspace,

at which point, the noise standard deviation γ in the likelihood potential Φ controls the

contraction of the posterior around the ground-truth matrix U † under Assumptions 2 and 3.

3.3.2.1 Proof of Theorem 2

Let us define the perturbed posterior covariance matrix

C∗ε :=

(
C−1
τ,ε +

1

γ2
B

)−1

, (3.21)
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following (3.20) with the prior covariance matrix Cτ,ε. Observe that the arguments leading

up to the upper bound (3.3.1.1) hold with C∗0 replaced with C∗ε . Thus we immediately obtain

the identity

I(γ, α, τ, ε) = MTr(C∗ε ) +
M

γ2
Tr(C∗εBC

∗
ε ) +

M∑
m=1

∣∣∣∣ 1

γ2
C∗εBu†m − u†m

∣∣∣∣2 . (3.22)

Similarly to Section 3.3.1.1, we prove Theorem 2 by bounding each term in the right-hand

side of (3.22) in the Lemmata 4, 5, and 6 below. The proofs are collected in Section 3.5.3.

Lemma 4. Suppose Assumptions 1, 2, and 4 are satisfied by the disconnected graph G0, the

labeled set Z ′, and the weakly connected graph Gε. Fix α > 0. Then there exist constants

ε0 ∈ (0, 1) and Ξ0,Ξ1 > 0 such that along any sequence (ε, τ, γ) → 0, the following holds

uniformly:

Tr(C∗ε ) ≤ Ξ0 max

{
γ2,

(
τ 2

1− Ξ1ε/τ 2

)α}
,

with C∗ε as in (3.21).

Lemma 5. Suppose that the conditions of Lemma 4 are satisfied and fix α > 0. Then

there exist constants ε0 ∈ (0, 1) and Ξ0,Ξ1 > 0 such that for any sequence (ε, τ, γ) → 0, the

following holds uniformly:

1

γ2
Tr(C∗εBC

∗
ε ) ≤ Ξ0 max

{
γ2,

(
τ 2

1− Ξ1ε/τ 2

)α}
,

where ε0 ∈ (0, 1) and Ξ0,Ξ1 > 0 are the same constants as in Lemma 4.

Lemma 6. Suppose Assumptions 1, 2, 3, and 4 are satisfied by the disconnected graph G0,

the labeled set Z ′, the ground-truth matrix U † and the weakly connected graph Gε respectively

and fix α > 0. Then there exist constants ε0 ∈ (0, 1) and Ξ1,Ξ2 > 0 such that for any

sequence (ε, τ, γ)→ 0, the following holds uniformly:∣∣∣∣ 1

γ2
C∗εBu†m − u†m

∣∣∣∣ ≤ Ξ2 max

{
γ2,

(
τ 2

1− Ξ1ε/τ 2

)α}[
ε+

ε

τ 2α
+
(

1 +
ε

τ 2

)α]
|u†m|.
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3.3.3 Corollary

We now present a corollary of Theorem 2 that is the precisely stated version of our informal

main theorem from Section 3.1.

Corollary 1. Suppose that the conditions of Theorem 2 are satisfied and that for a fixed

α > 0, the hyperparameters (ε, τ) are chosen to satisfy

2Ξ1ε = τmax{2,2α}.

Then there exists Ξ2 > 0 depending on α and the constants Ξ,Ξ1 from Theorem 2 but

independent of ε and γ, so that

I ≤ Ξ2 max
{
γ2, εmin{1,α}} .

Remark 6. The reader is encouraged to study the discussion following the informal main

theorem for an interpretation of this result in terms of asymptotic consistency. We also note

that an application of Markov’s inequality can immediately extend the bound in Corollary 1

to a bound on the expected probabilities of posterior samples being found far from the ground-

truth U †. More precisely,for any δ > 0 we have that

EY |U†
{
µY
(∥∥U − U †∥∥

F
> δ
)}
≤ I
δ2
.

3.4 Numerical Experiments

In this section, we provide numerical experiments that elucidate our main theoretical results

and in particular examine the convergence rate of the contraction functional I with respect

to both the ε and γ parameters. We use a synthetic example in Subsection 3.4.1 as well as

the MNIST database of handwritten digits [84] in Subsection 3.4.2. In both examples, we

compute I via the decomposition given in (3.16), which provides us with an explicit formula

to numerically compute the contraction measure. We then vary ε and γ parameters while

choosing τ = ε1/max{2,2α}. We numerically differentiate log(I) with respect to log(ε) and

log(γ) to estimate the rate of convergence with respect to these two parameters. A surface
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plot of these derivatives is then presented in Figures 3.2 and 3.3, for the two respective data

sets, in which the color encodes the estimated rate of convergence in terms of the respective

variables. The dark blue colors in these plots indicate a rate of convergence of I that is close

to zero, while bright yellow colors indicate larger convergence rates of I. Further numerical

results are presented in Subsections 3.6.1 and 3.6.2, taking a closer look at the rates of

convergence of different bias and variance terms that contribute to I.

3.4.1 Synthetic Data

We construct a synthetic weakly connected graph consisting of three clusters of 100 nodes

each, where each cluster represents a different class. We obtain the weight matrix Wε follow-

ing (3.18); we truncate the expansion at the ε3 level. Each entry of weight matrices W0 and

W (h), h = 1, 2, 3 are drawn independently from a uniform distribution on [0, 1]. The matrices

W0 and W (h), h = 1, 2, 3 are fixed once sampled and are used to construct Wε for different

ε values. Each Wε is then symmetrized via the transformation Wε 7→ (Wε + W T
ε )/2. We

pick one node from each cluster to be labeled and choose ground-truth U † = [χ̄1, χ̄2, χ̄3]T .

We vary ε values from 10−1 to 10−15 and γ ranging from 10−1 to 10−7.5; τ is taken to be

ε1/max{2,2α}.

In Figure 3.1, we demonstrate the convergence of I in the limit of the noise standard

deviation γ going to zero, for different values of α and ε. We see posterior contraction with

respect to γ until a floor is reached; this floor depends on εand is smaller for smaller ε.

In Figure 3.2, we study this phenomenon in more detail. Let us define

cε := ∂ log(I)/∂ log(ε) ≥ 0 and cγ := ∂ log(I)/∂ log(γ) ≥ 0,

which correspond to contraction rates of O(εcε) and O(γcγ ) respectively. We present surface

plots in Figure 3.2 of cε (top row) and cγ (bottom row) as functions of ε, γ for various

values of α. Darker (lighter) regions correspond to smaller (larger) values of the logarithmic

slopes cε, cγ. In regions with lighter values (i.e. cε, cγ > 0), we observe posterior contraction

because the logarithmic slopes are nonzero. The darker regions correspond to instances
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where the contraction has ceased as indicated by the logarithmic slopes being zero. This is

the phenomenon that is displayed in Figure 3.1, where the value of I reduces with respect

to γ up to the point where the errors saturate at an ε-dependent value as predicted by the

bounds in Theorem 2.

In the bottom row of Figure 3.2, horizontal “slices” of the plot correspond to a fixed

value of ε which is how Figure 3.1 can be obtained. Going from right to left, we observe

that the contraction rate is on the order of γ2, until the point that γ2 ≈ εmin{1,α} when our

theory predicts that the I will saturate and contraction has stopped, i.e., c = 0. These plots

illustrate the sharpness of our theoretical bounds of Theorem 2 for the posterior contraction

measure I. Similar results, with the roles of ε and γ swapped, are seen in the top row of

Figure 3.2.

3.4.2 MNIST Data

In this subsection, we use the MNIST data set [84] to test our theory on an empirical data

set. MNIST is a data set of 70,000 grayscale 28×28 pixel images of handwritten digits (0–9),

of which we use only the digits 1, 4, and 7. Each image is represented by a vector xi ∈ R784

and we normalize the pixel values to range from 0 to 1. To confirm our theory in practice

presents the issue of determining how to control the parameter ε that is inherent to the

clustering structure of a given fixed unlabeled data set X given in application. However, in

this example, we may use the fact that every image is labeled and so the clustering structure

of the data set is known. Using this we may devise an ε-dependent parameter set to observe

what happens in the ε→ 0 limit.

First, we create a similarity graph G based on the unlabeled data X of reshaped images

xi ∈ R784. Given the known clustering (i.e. class memberships) of the points in the MNIST

data set, we can identify the inter-cluster edges, those edges that connect nodes of different

clusters corresponding to different digits. If the original weight matrix is given by W , with
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Figure 3.2: A numerical demonstration of Theorem 2 on a synthetic data set. The top

panels showcase numerical estimates of cε = ∂ log(I)
∂ log(ε)

for different α values and the bottom

panels showcase the numerical estimates of cγ = ∂ log(I)
∂ log(γ)

. In the dark blue regions, cε, cγ ≈ 0,

indicating that I stays approximately flat with respect to the respective variable ε or γ and

so contraction has approximately ceased; the slope of the brighter regions is annoated in

each panel and implies posterior contraction. The transition between the dark and bright

regions occurs approximately at ε = γ2/min{1,α}.
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entries wij, then we scale the inter-cluster edges by ε to obtain Wε as:

[Wε]ij =


wij, if i, j ∈ Z̃k

εwij, if i ∈ Z̃k, j ∈ Z̃`, with k 6= `.

Sending ε→ 0 then results in a disconnected graph, where each cluster represents a different

digit.

For our experiment, we sample 100 images uniformly at random from the digits 1, 4,

and 7. The similarity graph W = (wij) is constructed via the Gaussian kernel and the

Zelnik-Perona scaling [169], wij = exp(−|xi − xj|2/rirj), where ri is the Euclidean distance

between data point i and its 15th nearest neighbor. Following the same procedure as the

synthetic data, we pick one node from each digit to be labeled and choose the ground-truth

U † = [χ̄1, χ̄2, χ̄3]T . We evaluate the contraction measurement I for a range of ε and γ. We

present the results in Figure 3.3. It is clear that Figure 3.3 is nearly identical to Figure 3.2,

demonstrating that the behavior on this MNIST data set is close to that observed in the

synthetic case; the two sets of experiments together attest to the sharpness of our contraction

rate estimates in Theorem 2.

3.5 Proof of Lemmata

In this section, we start by discussing useful properties of the posterior measure in Sub-

section 3.5.1; in particular, we show that the posterior is Gaussian and give closed-form

expressions for its mean and covariance. In Subsections 3.5.2 and 3.5.3, we present de-

tailed proofs of the lemmata used to prove our main results, Theorems 1 and 2. Numerical

experiments which illustrate these lemmata are contained in Subsections 3.6.1 and 3.6.2.

3.5.1 Characterizing the Posterior

Here we collect some results that completely characterize the posterior measure µY as a

Gaussian measure with explicit formulae for its mean and covariance.
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Figure 3.3: A numerical demonstration of Theorem 2 on the MNIST data set with digits 1,

4, and 7. The top panels showcase numerical estimates of cε = ∂ log(I)
∂ log(ε)

for different α values

and the bottom panels showcase the numerical estimates of cγ = ∂ log(I)
∂ log(γ)

. In the dark blue

regions, cε, cγ ≈ 0, indicating that I stays approximately flat with respect to the respective

variable ε or γ and so contraction has approximately ceased; the slope of the brighter regions

is annotated in each panel and implies posterior contraction. The transition between the

dark and bright regions occurs approximately at ε = γ2/min{1,α}. These results are similar to

our synthetic experiment depicted in Figure 3.2.
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Proposition 1. Consider the posterior measure µY given by (3.8). Then

(i) µY = N (U∗, IM ⊗ C∗) and has Lebesgue density

µY (dU) =
1

ϑ(Y )
exp

(
−1

2

〈
(U − U∗)T , (C∗)−1(U − U∗)T

〉
F

)
dU

≡ 1

ϑ(Y )

M∏
m=1

exp

(
−1

2
〈(um − u∗m), (C∗)−1(um − u∗m)〉

)
du`.

(3.23)

Here U∗ is the posterior mean with columns (u∗m)T and C∗ is the covariance matrix of

each row (u∗m)T .

(ii) The posterior means u∗m and covariances C∗ are given by

u∗m =
1

γ2
C∗HTym, C∗ =

(
C−1
τ +

1

γ2
B

)−1

, (3.24)

where B = HTH and yTm are the columns of Y .

(iii) The columns um of U ∼ µY are i.i.d. according to the Gaussian distribution N (u∗` , C
∗).

Proof. To show (i), we begin by expressing the likelihood in terms of the columns of U and

Y ; we get

exp (−Φ(U ;Y )) = exp

(
− 1

2γ2

∥∥HUT − Y T
∥∥2

F

)
= exp

(
− 1

2γ2

M∑
m=1

|Hum − ym|2
)
.

Combining the previous identity with (3.6), we can express the Lebesgue density of the

posterior as

µY (dU) ∝ exp

[
−1

2

M∑
m=1

〈
um, C

−1
τ um

〉
+

1

γ2
|Hum − ym|2

]

= exp

[
−1

2

M∑
m=1

〈
um, C

−1
τ um

〉
+

1

γ2

(
〈um, Bum〉 − 2〈um, HTym〉+ |ym|2

)]

∝ exp

[
−1

2

M∑
m=1

〈
um, (C

∗)−1 um
〉
− 2

〈
um,

1

γ2
HTym

〉
+
〈
u∗m, (C

∗)−1 u∗m
〉]
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= exp

[
−1

2

M∑
m=1

〈
um, (C

∗)−1um
〉
− 2

〈
um, (C

∗)−1 u∗m
〉

+
〈
u∗m, (C

∗)−1 u∗m
〉]

= exp

[
−1

2

M∑
m=1

〈
um − u∗m, (C

∗)−1 (um − u∗m)
〉]

= exp

[
−1

2

〈
(U − U∗)T , (C∗)−1 (U − U∗)T

〉
F

]
,

with u∗m, and C∗ as in (3.24). Assertion (ii) follows from (3.23) and the observation that

the negative log posterior is a sum of identical positive-definite quadratic forms in each um,

from which the expressions for mean and variance of um may be inferred. Assertion (iii) is a

consequence of the fact that uncorrelated Gaussian random variables are also independent.

3.5.2 Proofs of Lemmata 1–3

3.5.2.1 Proof of Lemma 1

Proof. Let P0 ∈ RN×N denote the projection matrix onto span{χ̄k}Kk=1 (recall (3.11)) and

define

β =

√
K

K + ζ2/4
, ζ := min

k≤K
min
i∈Zk
|χ̄k(i)|. (3.25)

Our method of proof is to obtain lower bounds on the Dirichlet energy 〈v, (C∗0)−1v〉 for unit

vectors v ∈ RN by considering two cases where |P0v|≥ β of |P0v|< β. This translates to

a lower bound on the smallest eigenvalue of (C∗0)−1. Since Tr(C∗0) =
∑N

j=1 λj,0, with λj,0

denoting the strictly positive eigenvalues of C∗0 , the lower bound on the Dirichlet energy of

(C∗0)−1 translates to an upper bound on Tr(C∗0).

Case 1 (|P0v|≥ β): Since v is a unit vector, we have that ‖(I − P0)v‖∞≤ |(I − P0)v|≤√
1− β2. The matrix Cτ,0 and its inverse are positive definite, so

〈
v, (C∗0)−1v

〉
=

〈
v,

(
1

γ2
Bv + C−1

τ,0

)
v

〉
≥
〈

v,
1

γ2
Bv

〉
=

1

γ2

∑
i∈Z′

v2
i , (3.26)
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where we used vi to denote the entries of v. Let us write P0v =
∑K

k=1 ckχ̄k with ck := 〈v, χ̄k〉
denoting the basis coefficients of v in span of {χ̄k}Kk=1 and define

k := arg max
k
|ck|,

the index of the absolutely maximal coefficient amongst the ck. The assumption |P0v|≥ β

implies
∑K

k=1 c
2
k ≥ β2. It then follows that

K max
k≤K

c2
k ≥

K∑
k=1

c2
k ≥ β2,

so |ck|= maxk≤K |ck|≥ β/
√
K. Since each χ̄k is supported on Z̃k on which it takes values

that are at least ζ, we have

|(P0v)i|= |ck|(χ̄k)i ≥
βζ√
K

for i ∈ Z̃k,

where we used (P0v)i to denote the i-th entry of the vector P0v. It then follows that for

i ∈ Z̃k, we have

|vi| = |(P0v)i + ((I − P0)v)i|≥ max {0, |(P0v)i|−‖(I − P0)v‖∞}

≥ max

{
0,

βζ√
K
−
√

1− β2

}
.

Substituting the value of β from (3.25), we obtain |vi|≥ (4K/ζ2 + 1)
−1/2

. Following Assump-

tion 2, i.e. Z̃ ′k 6= ∅ for all k, we have

1

γ2

∑
j∈Z′

v2
j ≥

1

γ2
|vi|2 ≥ γ−2

(
4K/ζ2 + 1

)−1
for some index i ∈ Z̃ ′k.

Putting this lower bound together with (3.26) we conclude that for any v such that |P0v|≥ β,

we have

〈v, (C∗0)−1v〉 ≥ γ−2
(
4K/ζ2 + 1

)−1
.

Case 2 (|P0v|< β): We naturally have |(I − P0)v|≥
√

1− β2. Let {(σk,0,φk,0)}Nk=1 denote

the eigenpairs of L0, indexed by order of increasing eigenvalues. Recall from Subsection 3.3.1

that σk,0 = 0 for k = 1, 2, . . . , K and {φk,0}Kk=1 ⊂ span{χ̄k}Kk=1. Moreover, the orthonormal

eigenvectors {φk,0}Nk=1 are also eigenvectors of C−1
τ,0 . With some abuse of notation, we define
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ck := 〈v,φk,0〉 for k = K + 1, . . . , N and write (I − P0)v =
∑N

k=K+1 ckφk,0. In light of this

identity, we compute

〈v, (C∗0)−1v〉 =

〈
x,

(
1

γ2
B + C−1

τ,0

)
v

〉
≥ 〈v, C−1

τ,0v〉

=
K∑
k=1

c2
k +

N∑
k=K+1

c2
kτ
−2α(σk,0 + τ 2)α ≥

N∑
k=K+1

c2
kτ
−2α(σk,0 + τ 2)α. (3.27)

For the first inequality, we have used the fact that B is positive semi-definite. From As-

sumption 1(b), it follows that σk,0 ≥ θ for k ≥ K and subsequently σk,0 + τ 2 ≥ θ for k ≥ K.

With this observation and using the expression for β in (3.25), we continue the calculation

in (3.27) to obtain the lower bound

〈v, (C∗0)−1v〉 ≥
N∑

k=K+1

c2
kτ
−2αθα = τ−2αθα|(I − P0)v|2

≥ 1

4
τ−2αθα

(
4K/ζ2 + 1

)−1
.

Putting together the lower bounds from Cases 1 and 2 gives

〈v, (C∗0)−1v〉 ≥ min

{
γ−2(4K/ζ2 + 1)−1,

1

4
τ−2αθα(4K/ζ2 + 1)−1

}
for all unit vectors v and constants γ, τ, α > 0. Since the trace of a matrix coincides with

the sum of its eigenvalues, we conclude that

Tr(C∗0) ≤ N max
{
γ2(4K/ζ2 + 1), 4τ 2αθ−α

(
4K/ζ2 + 1

)}
,

from which the desired result follows by taking Ξ = N (4K/ζ2 + 1) max {1, 4θ−α} .

3.5.2.2 Proof of Lemma 2

Proof. Recall (3.13). Then

C∗0 = C∗0

(
1

γ2
B + C−1

τ,0

)
C∗0 =

1

γ2
C∗0BC

∗
0 + C∗0C

−1
τ,0C

∗,

which gives the identity

Tr

(
1

γ2
C∗0BC

∗
0

)
= Tr (C∗0)− Tr

(
C∗0C

−1
τ,0C

∗
0

)
.

Both C∗0 and C−1
τ,0 are positive definite and so is their product C∗0C

−1
τ,0C

∗
0 . Therefore, Tr

(
C∗0C

−1
τ,0C

∗
0

)
≥

0, so using Lemma 1 we have Tr
(

1
γ2
C∗0BC

∗
0

)
≤ Tr (C∗0) ≤ Ξ max {γ2, τ 2α} .
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3.5.2.3 Proof of Lemma 3

Proof. Choose any vector v ∈ span{χ̄1, . . . , χ̄K} and recall (3.13), the definition of C∗0 . Then∣∣∣∣ 1

γ2
C∗0Bv − v

∣∣∣∣ =

∣∣∣∣C∗0 ( 1

γ2
Bv − (C∗0)−1v

)∣∣∣∣ ≤ ‖C∗0‖2

∣∣∣∣ 1

γ2
Bv − (C∗0)−1v

∣∣∣∣
= ‖C∗0‖2

∣∣C−1
τ,0v

∣∣ ≤ Tr(C∗0)
∣∣C−1

τ,0v
∣∣ .

Recall from Subsection 3.3.1 that the vectors χ̄k are eigenvectors of L0 corresponding to

an eigenvalue of 0, so they are also eigenvectors of C−1
τ,0 with eigenvalue 1. Therefore, since

v ∈ span {χ̄k}Kk=1 it follows that C−1
τ,0v = v. Using this fact and Lemma 1, we conclude that∣∣∣∣ 1

γ2
C∗0Bv − v

∣∣∣∣ ≤ Ξ max{γ2, τ 2α}|v|.

The desired bound for the vectors u†m now follows trivially from Assumption 3.

3.5.3 Proofs of Lemmata 4–6

3.5.3.1 Proof of Lemma 4

Proof. We use a similar argument to the proof of Lemma 1 and obtain lower bounds on the

Dirichlet energy 〈v, (C∗ε )−1v〉 for unit vectors v ∈ RN . Recall that P0 ∈ RN×N denotes the

projection matrix onto span{χ̄k}Kk=1 and define ζ, β as in (3.25). Once again, we obtain the

lower bounds in two cases: (1) |P0v|≥ β and (2) |P0v|< β.

The case of |P0v|≥ β follows from identical arguments to Case 1 in the proof of Lemma 1.

In fact, the lower bound (3.26) holds for C∗ε replacing C∗0 , so whenever |P0v|≥ β we have

〈v, (C∗ε )−1v〉 ≥ γ−2
(
4K/ζ2 + 1

)−1
.

So we focus on the case where |P0v|< β, which implies that |(I − P0)v|≥
√

1− β2. Let

{(σj,ε,φj,ε)}Nj=1 denote the eigenpairs of Lε, indexed by order of increasing eigenvalue. Note

that these orthonormal eigenvectors are also eigenvectors of C−1
τ,ε . We let Pε ∈ RN×N de-

note the projection matrix onto span{φ1,ε,φ2,ε, · · · ,φK,ε}. The key difference in this proof,

compared to Case 2 in the proof of Lemma 1, is that we need to establish a lower bound on
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|(I − Pε)v|. We show that if ε ∈ (0, ε0) for a sufficiently small constant ε0, then

|(I − Pε)v|≥
1

2

√
1− β2 =

1

2
(4K/ζ2 + 1)−1/2. (3.28)

Using (3.21) and the fact that B is positive semi-definite, we can then write

〈v, (C∗ε )−1v〉 =

〈
v,

(
1

γ2
B + C−1

τ,ε

)
v

〉
≥ 〈v, C−1

τ,ε v〉 ≥
N∑

j=K+1

c2
j,ετ
−2α(σj,ε + τ 2)α, (3.29)

where cj,ε := 〈v,φj,ε〉. By [61, Lemm A.5], the graph Laplacian Lε satisfies an expansion of

the form

Lε = L0 +
∞∑
h=1

εhL(h),

where {‖L(h)‖2}∞h=1 ∈ `∞. Moreover, by [61, Prop. A7] and the binomial theorem, we have

that

τ−2α(σK+1,ε + τ 2)α ≥ τ−2α

(
θ + τ 2 − ε

∞∑
h=1

εh−1‖L(h)‖2

)α

> θατ−2α

(
1− ε

τ 2

∞∑
h=1

εh−1‖L(h)‖2

)α

= θατ−2α
(

1− ε

τ 2
Ξ1

)α
,

where Ξ1 := supε∈(0,ε0)

∑∞
h=1 ε

h−1‖L(h)‖2 which is bounded provided that ε0 < 1. Substituting

this lower bound into (3.29) and recalling the increasing ordering of the σj,ε we obtain

〈v, (C∗ε )−1v〉 ≥ θατ−2α
(

1− ε

τ 2
Ξ1

)α N∑
j=K+1

c2
j,ε

= θατ−2α
(

1− ε

τ 2
Ξ1

)α
|(I − Pε)v|2≥

1

4
θατ−2α

(
1− ε

τ 2
Ξ1

)α
(4K/ζ2 + 1)−1.

Putting this bound together with the lower bound from the first case where |P0v|≥ β, we

conclude that

〈v, (C∗ε )−1v〉 ≥ min

{
γ−2(4K/ζ2 + 1)−1,

1

4
τ−2α(1− ετ−2Ξ1)αθα(4K/ζ2 + 1)−1

}
,

from which it follows that

Tr(C∗ε ) ≤ N max

{
γ2(4K/ζ2 + 1),

1

4
τ 2α(1− ετ−2Ξ1)−αθ−α(4K/ζ2 + 1)

}
,
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provided that ε0 > 0 is sufficiently small which concludes the proof of the lemma.

It remains for us to prove the bound (3.28). By [61, Prop. A.6 and proof of Prop. A.10],

there exist uniform constants ε1,Ξ2 > 0 so that ∀ε ∈ (0, ε1) and for any unit vector v we

have

|(I − Pε)P0v|2≤ Ξ2ε
2 and |(I − P0)Pεv|2≤ Ξ2ε

2,

implying that the range of Pε and P0 are close when ε is small. Therefore, using the fact

that P0 and Pε are symmetric and idempotent, as well as the Cauchy-Schwarz inequality, we

can write

|(P0 − Pε) v|2 = 〈(P0 − Pε)v, P0v〉 − 〈(P0 − Pε)v, Pεv〉

= 〈v, (P0 − Pε)P0v〉 − 〈v, (P0 − Pε)Pεv〉 〈v, (I − Pε)P0v〉+ 〈v, (I − P0)Pεv〉

≤ |v|(|(I − Pε)P0v|+ |(I − P0)Pεv|) ≤ Ξ3ε.

The lower bound (3.28) then follows from the following calculation

|(I − Pε)v| = |(I − P0)v + (P0 − Pε)v|≥ max {0, |(I − P0)v|−|(P0 − Pε)v|}

≥ max
{

0,
√

1− β2 − (Ξ3ε)
1/2
}
≥
√

1− β2

2
=

1

2
(4K/ζ2 + 1)−1/2

where the last inequality holds when ε0 ≤ 1−β2

4Ξ3
.

3.5.3.2 Proof of Lemma 6

Proof. The proof is nearly identical to that of Lemma 2 and is hence omitted.

3.5.3.3 Proof of Lemma 6

Proof. We proceed similarly to the proof of Lemma 3 by choosing a vector v ∈ span{χ̄k}Kk=1.

We then have ∣∣∣∣ 1

γ2
C∗εBv − v

∣∣∣∣ =

∣∣∣∣C∗ε ( 1

γ2
Bv − (C∗ε )−1v

)∣∣∣∣
≤ ‖C∗ε ‖2

∣∣∣∣ 1

γ2
Bv − (C∗ε )−1v

∣∣∣∣ = ‖C∗ε ‖2

∣∣C−1
τ,ε v

∣∣ .
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Now decompose v = Pεv + (I − Pε)v. Since we assumed that v ∈ span {χ̄`}K`=1, it follows

from [61, Prop. A.6] that |(I − Pε)v|≤ Ξ3ε|v| for some Ξ3 > 0 independent of ε, so

∣∣C−1
τ,ε v

∣∣ ≤ ∣∣C−1
τ,εPεv

∣∣+
∣∣C−1

τ,ε (I − Pε)v
∣∣

≤ max
k≤K

(σk,ε + τ 2)α

τ 2α
|Pεv|+ max

k>K

(σk,ε + τ 2)α

τ 2α
|(I − Pε)v|

≤ Ξ4

[(
1 +

ε

τ 2

)α
+ ε

(
1 +

1

τ 2α

)]
|v|.

The third inequality follows from the fact that the σk,ε are uniformly bounded for all ε ∈
(0, ε0) and ε0 < 1. In fact, by [61, Lemm. A.5], we have that

σk,ε = 〈φk,ε, Lεφk,ε〉 ≤ |〈φk,ε, L0φk,ε〉|+
∞∑
h=1

εh |〈φk,ε, Lhφk,ε〉|

≤ ‖L0‖2+
ε

1− ε

(
max
h=1,2,...

‖Lh‖2

)
≤ 1

1− ε

(
max
h=0,1,...

‖Lh‖2

)
.

Now bounding ‖C∗ε ‖2 by Tr(C∗ε ) and envoking Lemma 4 yields

‖C∗ε ‖2

∣∣C−1
τ,ε v

∣∣ ≤ Ξ0Ξ4 max

{
γ2,

(
τ 2

1− Ξ1ε/τ 2

)α}[
ε+

ε

τ 2α
+
(

1 +
ε

τ 2

)α]
|v|.

The theorem follows by setting Ξ2 = Ξ0Ξ4.

3.6 Numerical Demonstration of Lemmata

3.6.1 Numerics in Support of Lemmata 1–3

In Figures 3.4 and 3.5, we present numerics that illustrate the convergence results for Lem-

mata 1 and 3,respectively. These lemmata bound the first and third terms respectively of

the decomposition of

I(γ, α, τ) = MTr(C∗0) +
M

γ2
Tr(C∗0BC

∗
0) +

M∑
m=1

∣∣∣∣ 1

γ2
C∗0Bu†m − u†m

∣∣∣∣2 .
Numerics for the term 1/γ2Tr(C∗0BC

∗
0) are omitted since the corresponding bound in

Lemma 2 is derived from the bound found for Tr(C∗0) in Lemma 1, and exhibit nearly

identical behavior numerically. The top panels in Figure 3.4 show the estimated rate of
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Figure 3.4: A numerical demonstration of Lemma 1 on the synthetic data set with ε = 0.

The top panels showcase the numerical estimates of the logarithmic slope cτ :=
∂ log(Tr(C∗0 ))

∂ log(τ)
for

different α values and the bottom panels showcase the numerical estimates of the logarithmic

slope cγ :=
∂ log(Tr(C∗0 ))

∂ log(γ)
. In the dark blue region, cτ , cγ ≈ 0, indicating that Tr(C∗0) stays

approximately flat with respect to the respective variable τ or γ; the slope of the brighter

regions is annotated in each panel. The transition between the dark and bright regions

occurs approximately at τ = γ1/α.

65



10010−110−210−310−4

γ

100

10−1

10−2

10−3

10−4

10−5

τ

0

2

4

cτ = 2

(a) α = 0.5

10010−110−210−310−4

γ

100

10−1

10−2

10−3

10−4

10−5

τ

0

2

4cτ = 4

(b) α = 1

10010−110−210−310−4

γ

100

10−1

10−2

10−3

10−4

10−5

τ

0

2

4cτ = 5

(c) α = 1.25

10010−110−210−310−4

γ

100

10−1

10−2

10−3

10−4

10−5

τ

0

2

4

cγ = 4

(d) α = 0.5

10010−110−210−310−4

γ

100

10−1

10−2

10−3

10−4

10−5

τ

0

2

4

cγ = 4

(e) α = 1

10010−110−210−310−4

γ

100

10−1

10−2

10−3

10−4

10−5

τ

0

2

4

cγ = 4
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Figure 3.5: A numerical demonstration of Lemma 3 on the synthetic data set with

ε = 0. The top panels showcase the numerical estimates of the logarithmic slope

cτ :=
∂ log(|C∗0Bu†m/γ2−u†m|2)

∂ log(τ)
for different α values and the bottom panels showcase the nu-

merical estimates of the logarithmic slope cγ :=
∂ log(|C∗0Bu†m/γ2−u†m|2)

∂ log(γ)
. In the dark blue region,

cτ , cγ ≈ 0, indicating that |C∗0Bu†m/γ
2 − u†m|2 stays approximately flat with respect to the

respective variable τ or γ; the slope of the brighter regions is annotated in each panel. The

transition between the dark and bright regions occurs approximately at τ = γ1/α.
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convergence of Tr(C∗0) in terms of τ in the log-log scale, while the bottom panels show

the estimated rate of convergence in terms of γ in the log-log scale. Figure 3.5 shows the

estimated rate of convergence
∣∣∣ 1
γ2
C∗0Bu†m − u†m

∣∣∣2 in the parameters τ and γ. From Figure 3.4,

in the region where γ2 � τ 2α, we see that
∂ log(Tr(C∗0 ))

∂ log(τ)
stays close to 2α, whereas

∂ log(Tr(C∗0 ))

∂ log(γ)

is approximately 0. In the region where τ 2α � γ2, we observe that
∂ log(Tr(C∗0 ))

∂ log(τ)
is close to 0,

whereas
∂ log(Tr(C∗0 ))

∂ log(γ)
is around 2. These results illustrate our bound in Lemma 1.

In Figure 3.5, in the region where γ2 � τ 2α, we see that
∂ log(|C∗0Bu†m/γ2−u†m|2)

∂ log(τ)
stays close

to 4α, whereas
∂ log(|C∗0Bu†m/γ2−u†m|2)

∂ log(γ)
is approximately 0. In the region where τ 2α � γ2, we

observe that
∂ log(|C∗0Bu†m/γ2−u†m|2)

∂ log(τ)
is close to 0, whereas

∂ log(|C∗0Bu†m/γ2−u†m|2)

∂ log(γ)
is around 4. These

results illustrate our bounds presented in Lemma 3.

3.6.2 Numerics in Support of Lemmata 4–6

In Figures 3.6 and 3.7, we present numerics that illustrate the convergence results for Lem-

mata 4 and 6, respectively. These lemmata bound the first and third terms respectively of

the decomposition of I:

I(γ, α, τ, ε) = MTr(C∗ε ) +
M

γ2
Tr(C∗εBC

∗
ε ) +

M∑
m=1

∣∣∣∣ 1

γ2
C∗εBu†m − u†m

∣∣∣∣2 .
Again, we omit the second term in this decomposition since the corresponding bound in

Lemma 5 is derived from the bound found for Tr(C∗ε ) in Lemma 4 and exhibit nearly identical

behavior numerically. Just as in Figures 3.2 and 3.3, we have set the scaling ε = τmax{2,2α}.

The top panels in Figure 3.6 show the estimated rate of convergence of Tr(C∗ε ) in terms of τ

on a log-log scale, while the bottom panels show the estimated rate of convergence in terms

of γ on a log-log scale. Figure 3.7 shows the estimated rate of convergence |C∗εBu†m/γ
2−u†m|

in the parameters ε and γ. From Figure 3.6, in the region where γ2 � τ 2α, we see that

∂ log(Tr(C∗ε ))
∂ log(τ)

stays close to 2α, whereas ∂ log(Tr(C∗ε ))
∂ log(γ)

is approximately 0. In the region where

τ 2α � γ2, we observe that ∂ log(Tr(C∗ε ))
∂ log(τ)

is close to 0, whereas ∂ log(Tr(C∗ε ))
∂ log(γ)

is around 2. These

results illustrate our bound presented in Lemma 4.

In Figure 3.7, in the region where γ2 � τ 2α, we see that ∂ log(|C∗εBu†m/γ2−u†m|2)
∂ log(τ)

stays close
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Figure 3.6: A numerical demonstration of Lemma 4 on the synthetic data set with ε = τ 2α.

The top panels showcase the numerical estimates of the logarithmic slope cτ := ∂ log(Tr(C∗ε ))
∂ log(τ)

for

different α values and the bottom panels showcase the numerical estimates of the logarithmic

slope cγ := ∂ log(Tr(C∗ε ))
∂ log(γ)

. In the dark blue region, cτ , cγ ≈ 0, indicating that Tr(C∗ε ) stays

approximately flat with respect to the respective variable τ or γ; the slope of the brighter

regions is annotated in each panel. The transition between the dark and bright regions

occurs approximately at τ = γ1/α.
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Figure 3.7: A numerical demonstration of Lemma 6 on a synthetic data set with

ε = τmax{2,2α}. The top panels showcase the numerical estimates of the logarithmic slope

cτ := ∂ log(|C∗εBu†m/γ2−u†m|2)
∂ log(τ)

for different α values and the bottom panels showcase the numer-

ical estimates of the logarithmic slope cγ := ∂ log(|C∗εBu†m/γ2−u†m|2)
∂ log(γ)

. In the dark blue region,

cτ , cγ ≈ 0, indicating that |C∗εBu†m/γ
2 − u†m|2 stays approximately flat with respect to the

respective variable τ or γ; the slope of the brighter regions is annotated in each panel. The

transition between the dark and bright regions occurs approximately at τ = γ1/α.

69



to 4α, whereas ∂ log(|C∗εBu†m/γ2−u†m|2)
∂ log(γ)

is approximately 0. In the region where τ 2α � γ2, we

observe that ∂ log(|C∗εBu†m/γ2−u†m|2)
∂ log(τ)

is close to 0, whereas ∂ log(|C∗εBu†m/γ2−u†m|2)
∂ log(γ)

is around 4. These

results illustrate our bounds presented in Lemma 6.

3.7 Conclusion

The work in this chapter is, to the best of our knowledge, the first analysis of Bayesian

posterior consistency in SSL. The regression formulation of SSL is convenient for both com-

putations and analysis due to conjugacy of Gaussian likelihoods and priors, leading to a

Gaussian posterior. The resulting closed form is useful in practice [172] and for theory, such

as that developed in this chapter. We formulate SSR problem as a Bayesian inverse problem

in which the unlabeled data defines the prior and the labeled data defines the likelihood.

By postulating coherence between the labeled and unlabeled data we are able to quantify

the convergence of the posterior distribution to the truth in terms of the noise in the labels

and a measure of clustering in the data. As a by-product of the analysis we also learn about

parameter choices within the prior construction.
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CHAPTER 4

Uncertainty Quantification

4.1 Background

In this chapter, we continue the discussion of SSL problems in the BIP framework and

present a method of uncertainty quantification (UQ). We generalize the UQ methodology

— originally proposed in [19] to be paired with the binary-classification problem — to a

multi-class setting. This chapter is a version of [126]. This work was done in collaboration

with undergraduate researchers Yiling Qiao, Change Shi, and Chenjian Wang, whom I su-

pervised together with Matt Haberland. The undergraduate researchers are responsible for

conducting preliminary experiments based on the work by Xiyang Luo and Andrew Stuart.

My contribution includes designing and implementing the algorithm and carrying out the

final set of experiments of which the results are presented in this thesis. The whole project

was supervised by Andrea Bertozzi.

UQ seeks to estimate a measure of uncertainty for a classification; it identifies data whose

classification results are uncertain according to our classification model. We refer the reader

to the books [136, 145] and the recent article [116] for a review of methodologies employed

in the field of UQ. For application to machine-learning methods, the book [165] investigates

UQ for a variety of machine-learning problems using a Gaussian-process prior. Except the

above-mentioned book and the recent work [19], most machine learning methods, even those

developed with a Bayesian way of thinking, focus on finding an optimal classification (and/or

hyperparameters that produce the optimal classification) in an optimization context and do

not consider or utilize UQ.
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4.2 Methodology

We consider a Bayesian model similar to the one studied in Chapter 3. The posterior

distribution of the label assignment function U takes the form

µY (dU) ∝ exp(−J (U)), J (U) =
1

2
〈U,LU〉F + Φ(U ;Y ), (4.1)

so a maximum a posteriori probability (MAP) estimator is a minimizer of J (U). We assume

the prior on U is a Gaussian distribution,

µ0(dU) ∝ exp

(
−1

2
〈U,LU〉F

)
.

To explicitly construct a sample U that follows the prior distribution, we employ the Karhunen-

Loéve expansion. Recall that L = φΛφT is the eigen-decomposition of the symmetrically

normalized graph Laplacian (with p = 1/2 in (1.2)), where the columns of φ ∈ RN×N form

an orthonormal basis of RN and Λ = diag(λ1, λ2, · · · , λN) satisfies

0 = λ1 ≤ λ2 ≤ · · · ≤ λN .

We observe that L is positive semi-definite. Recall that um are the columns of U , so by the

Karhunen-Loéve (KL) theorem, we construct a sample U by specifying its columns as the

random sum

um =
N∑
j=1

1√
λj
ξmjφj, (4.2)

with {(λj,φj)}Nj=1 denoting the eigenpairs of L and ξmj
iid∼ N (0, 1).

We note that the columns um live in span{φ1}⊥ and U has the desired probability

distribution

µ0(dU) ∝ exp

(
−1

2

N∑
i=1

M∑
m=1

λi〈um,φi〉2
)

= exp

(
−1

2
〈U,LU〉F

)
. (4.3)

In their recent work [19], the authors considered several likelihood functions P(Y |U) to

connect the latent variable U to the ground-truth labeling Y for binary classification. In the

previous two chapters, we considered least-squares likelihood. In this chapter, we primarily
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investigate the independent probit likelihood function. Suppose {η(i)}i∈Z′ is a collection of

independent M -variate normal random variables N (0, IM). We connect U to Y via

V (i) = U(i) + γη(i), Y (i) = threshold (V (i)) , i ∈ Z ′,

where γ2 is the noise variance. The threshold operator applied to a vector sets the largest

element in the vector to be 1 and the rest to be 0. With the introduction of latent vari-

ables {V (i)}i∈Z′ , we have, from Bayes’ formula, the following joint posterior probability

distribution:

P(U, V |Y ) ∝ exp

(
−1

2
〈U,LU〉F −

1

2γ2

∑
i∈Z′
|U(i)− V (i)|2

)∏
i∈Z′

1threshold(V (i))=Y (i).

Using a change of variable from u to ξ, for ξ = (ξmj), we can apply our chosen sampling

method to P(ξ, V |U ′). We compute that the joint probability

P(ξ, V |Y ) ∝ exp

(
−1

2
〈ξT ,ΛξT 〉F −

1

2γ2

∣∣HφξT − Y
∣∣2)∏

i∈Z′
1threshold(V (i))=Y (i).

To sample from the joint posterior distribution, a Gibbs sampler will repeat the following

three steps:

(1) Draw ξ from P(ξ|V, Y ),

(2) Construct U from ξ via (4.2),

(3) Draw V from P(V |U, Y ).

For Step (1), we note that for each m ∈ {1, 2, · · · ,M}, the conditional probability for

each row of ξ, denoted as P(ξm,:|V, Y ) has the same distribution as

N (m, C∗) , C∗ =

(
Λ +

1

γ2
φTBφ

)−1

, m =
1

γ2
C∗φTHTym.

In Step (3), for each i ∈ Z ′, we need to sample an M -variate normal random variable

subject to a linear inequality constraint; suppose Y (i) = em, i.e., data point i belongs to
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class m according to the ground-truth label. Then we need to sample V (i) according to the

following conditions:

V (i) ∼ N
(
U(i), γ2IM

)
, vm(i) ≥ vm′(i) for all m′ ∈ {1, 2, · · · ,M}.

We use the algorithm from [22] to efficiently draw samples from the linearly constrained

normal distribution.

4.3 Uncertainty Quantification

Given a set of samples {U (k)}Nsj=1 from the Gibbs sampler, we investigate EU |Y (threshold(U));

i.e. the posterior mean of threshold (U); this can be approximated by the sample mean

sm(i) = EU |U ′ (threshold(U(i))m) ≈ 1

Ns

Ns∑
j=1

threshold(U(i))m.

Since each element threshold (U(i))m is either zero or one, the expectation sm(i) gives the

probability, under the posterior distribution, of the element being one; that is, sm(i) can be

interpreted as the probability data point i belongs to class m. We note that for each data

point, the probability of it belonging to each class should sum to one; i.e.,

M∑
m=1

sm(i) = 1. (4.4)

This is obeyed by both the posterior mean and the sample mean approximation. We can use

the posterior mean s(i) as a classifier, which classifies data point i according to its largest

entry.

Intuitively, a single large sm(i) for a data point i indicates a very confident classification

of class m; in this case, the remaining entries in s(i) are necessarily small due to the sum-to-

one condition (4.4); this creates a large variance in the vector s(i). If entries in the vector

s(i) are all roughly equal, meaning the data point is equally likely to be classified as either

class, the classification has a lot of uncertainty, resulting in an s(i) with a small variance.

Based on this intuition, we measure the classification confidence of node i by the variance
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Figure 4.1: A flow chart summarizing the proposed human-in-the-loop system.

of s(i); that is

S(i) = var (s(i)) =
1

M

M∑
m=1

(
sm(i)− 1

M

M∑
m=1

sm(i)

)2

. (4.5)

We emphasize that this variance is not the posterior variance. However, we can show the

following connection between the quantity S(i) and the posterior variance

S(i) =
1

M
− 1

M2
− 1

M

M∑
m=1

varU |Y (threshold(U(i))m) ,

where varU |Y (·) is the posterior variance. Therefore, the quantity S(i) is a constant minus

the mean posterior variance, which can be interpreted as a measure of uncertainty, averaged

over all classes.

4.3.1 Human-in-the-Loop

In Section 6.4, we demonstrate a positive correlation between the proposed confidence score

and the classification performance; the confidence score enables us to locate hard-to-classify

data points, which we may label and use as additional fidelity. This naturally leads to the idea

of using the confidence measure to intelligently select new fidelity points to achieve a better

classification performance with limited human labeling effort. We design a human-in-the-

loop system as follows (see Figure 4.1). We start with a small set of initial fidelity points and

apply the Gibbs sampler to obtain a confidence score for the entire data set. We randomly

sample, in a uniform fashion, additional candidate fidelity points with low confidence scores.

The human in the loop then observes each of the candidate fidelity points to assign ground

truth to them. We perform the UQ algorithm again to update the confidence scores and

repeat the process until we reach the maximum number of fidelity points permitted (this
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(a) Low confidence (b) High confidence

Figure 4.2: Uncertainty quantification on the MNIST data set. Here S(i) is the proposed

confidence score. For each digit, we present four examples chosen from the top/bottom ten

with the highest/lowest confidence scores within each class.

will be determined by the application). We observe in practice that adding data points with

the lowest confidence scores does not benefit (sometimes even reduces) overall classification

performance because these data points are often outliers. The significance of classifying

these outliers correctly is scenario-dependent. In our experiments, we focus on the overall

accuracy and do not sample fidelity from data points with confidence scores strictly below

the tenth percentile.

4.4 Experiments

We perform UQ on (1) the MNIST data set [84], a handwritten digit data set, and (2)

the HUJI EgoSeg data set [121], a body-worn video data set. Through these experiments,

we illustrate some empirical properties of the confidence score (4.5); we demonstrate its

correlation with the classification performance. We also put our human-in-the-loop system

to test and showcase its ability to improve classification results upon uniformly randomly

sampled training data.
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4.4.1 MNIST

The MNIST data set [84] consists of 70,000 images of handwritten digits; each image is of

the size 28×28 pixels. We choose uniformly at random 500 images each from the digits 1, 4,

7, and 9 to form a graph of 2000 nodes. We follow the graph construction procedure in [19];

each image is projected onto the lead 50 principal components yielding a 50-dimensional

feature vector, and we construct a 15-nearest neighbor graph. The weighting constants rij

are chosen according to [169]. For data point i, we compute the mean distance of its 15

nearest neighbors, denoted as ri; then the weighting constant rij is given by rij = rirj. We

use the symmetrically normalized graph Laplacian (with p = 1/2 in (1.2)) and only its first

300 eigenvalues and eigenvectors. We perform the Gibbs sampler detailed in Section 4.1 with

3% uniformly randomly sampled fidelity points; we choose the noise variance to be γ = 0.1

and we draw 2× 104 samples to estimate the uncertainty. We showcase examples of images

with the highest or the lowest confidence scores in Figure 4.2. It is interesting to note that

the lowest confidence score of the digit 1 is much higher than that of the other digits; we

theorize that it is easier for the algorithm to differentiate 1 than the other three digits.

4.4.2 Body-Worn Videos

We also apply our method to the HUJI EgoSeg data set [121, 122]. This data set contains

65 hours of ego-centric videos, including 44 videos filmed using a head-mounted GoPro

Hero3+, the Disney data set [42] and other YouTube videos1. In the recent paper [87], a

graph-based semi-supervised learning method was applied to this data set to classify video

segments according to camera-wearers’ activities and showed promising results. This data set

consists of footage of 7 activities: Walking, Driving, Riding Bus, Biking, Standing, Sitting,

and Static. We follow the same feature extraction procedure described in [87] to obtain a

50-dimensional feature vector for every 4-second video segments; this yields 36,421 segments.

To speed up our calculation, we sample every fifth segment. We construct the graph from

1This data set can be downloaded from http://www.vision.huji.ac.il/egoseg/.
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Figure 4.3: Classification accuracy on data points with top x% to (x+5)% confidence scores

on the HUJI EgoSeg data set. We group data points based on their confidence score; each

group contains 5% of data points and we evaluate the classification accuracy on each group.

the 50-dimensional feature vectors, and choose the constants rij = rirj according to [169],

where ri is the distance of the 40th nearest neighbor of node i. We employ the symmetrically

normalized graph Laplacian and keep its first 400 eigenvalues and eigenvectors. We compute

the eigenvectors using a low-rank approximation of the graph Laplacian via the Nystrom

extension [47]. We apply the Gibbs sampler with γ = 0.1 and 2× 104 iterations.

We separate the data set into a training and testing set, which are disjoint sets of videos;

the training set contains around 65% of the data, measured in terms of the footage length.

We refer readers to [122] for the details of the experimental protocol. However, we do not

use the full training set, but instead take a portion of it as the fidelity; we train the model

with the set of fidelity points. All classification performances are evaluated on the testing set

only. We first investigate the correlation between the confidence score and the classification

accuracy. We perform UQ with 12% of the training set. Recall that the classification is

produced by taking the largest entry of the posterior mean s(i) for each data point i. In

Figure 4.3, we plot the classification accuracy of the top x% to (x + 5)% confident data

points for each x ∈ {0, 5, 10, · · · , 95}. We observe that the classification is more accurate on

data points with higher confidence scores. We also test our human-in-the-loop system on

this data set. We start with 6% fidelity data and gradually increase the fidelity percentage

to 30% over five iterations; at each iteration, we introduce additional 6% fidelity points

sampled randomly in a uniform fashion from data points with confidence scores in the range
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Figure 4.4: Classification performance of UQ and an MBO classifier using iteratively gener-

ated fidelity (UQ/MBO-iter) and uniformly randomly sampled fidelity (UQ/MBO) on the

HUJI EgoSeg data set.

of the 10th and 50th percentile. We perform UQ as well as a graph-based semi-supervised

learning method (an MBO scheme [17]) using the same set of fidelity points. We compare

the classification performance, measured in terms of accuracy and mean recall averaged

over seven activities, of both classifiers using iteratively generated fidelity against the same

classifiers using uniformly randomly sampled fidelity. The results are presented in Figure 4.4.

We observe that both classifiers benefit from the intelligently sampled fidelity — utilizing

the confidence score produced by UQ — in terms of producing higher accuracy and mean

recall than using uniformly randomly sampled fidelity.

4.5 Conclusion

In this chapter, we study UQ in a graph-based multi-class SSL problem . We generalize

the probit model, originally proposed for the binary classification problem in [19], to the

multi-class case. We propose a Gibbs sampler to sample from the posterior distribution and

a confidence score that connects to the posterior variance. Through our experiments on the

MNIST data set, we demonstrate that the proposed confidence score is easy to interpret;

it is clear to see the contrast between the digit images with low confidence scores and ones

with high confidence scores. The proposed confidence score also exhibits a correlation with

the classification performance in our experiments on the HUJI EgoSeg data set. Based on
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these observations, we design a human-in-the-loop system to efficiently use human labeling

effort to improve classification results. We test this system on the HUJI EgoSeg data set and

observe that the classifiers that we study produce improved classification using the human-

in-the-loop system than the same classifiers using uniformly randomly sampled fidelity.
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CHAPTER 5

Active Learning with Probit Likelihood via Gaussian

Approximations

5.1 Background

This chapter is a version of [103]. This work was done in collaboration with Kevin Miller

under the supervision of Andrea Bertozzi. Kevin Miller proposed the novel active learning

strategy and I contributed the theory and algorithm that enables us to execute the strategy

efficiently. Together, we designed and conducted the experiments.

Active learning in SSL seeks to intelligently select training data to optimize the overall

classification performance. We focus on pool-based active-learning paradigm, as opposed to

online or streaming-based active learning [132]. That is, an active learner has access to

a fixed “pool” of unlabeled data points from which it can decide the next training point.

We consider querying only a single point at a time, as opposed to batch-mode active learn-

ing [62]. We assume the binary-classification case, in which the labels reside in yj ∈ {±1}
(or {0, 1}). In pool-based active learning, most methods alternate between: (1) training

a model given the current labeled data Z ′, {yj}j∈Z′ and (2) choosing an active-learning

query point in the unlabeled set (Z ′)c according to an acquisition function. We can classify

most methods into a few categories: uncertainty [51, 65, 132], margin [10, 68, 149], cluster-

ing [34, 95], and look-ahead [27, 174] acquisition functions. Active-learning methods have

been proposed for graph-based SSL models, which use a similarity graph to represent the

geometric relationships between points in the data set, such as Gaussian random field (GRF)

models [17, 19, 171]. Active learners implementing look-ahead expected risk [69, 174], model
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posterior covariance [67,94], and other measures of uncertainty [80] have been produced for

the GRF model of [171]. The conditional distribution of this foundational GRF model is

a harmonic function on the graph and hence is referred to as the harmonic functions (HF)

model.

Our contributions on this subject are (1) provide a unifying framework for active learn-

ing in many graph-based SSL models, (2) introduce an adaptation of non-Gaussian Bayesian

models to allow efficient calculations previously done only on Gaussian models, and (3) in-

troduce a novel “model-change” active-learning acquisition function built around our adap-

tation.

5.2 Graph-Based SSL Models

In this chapter, we only consider the binary-classification problem. Define a real-valued

function on the nodes of the graph u : Z → R, u ∈ RN whose values reflect the classification

of the data points. Given the current labeled set Z ′, one seeks the solution to the optimization

problem

u∗ = arg min
u∈RN

1

2
〈u, Lτu〉+

∑
i∈Z′

`(ui, yi) := arg min
u∈RN

J`(u; y), (5.1)

where ` : R × R → [0,∞) is a chosen loss function and y ∈ R|Z′| is a vector of labels

yj. Common loss functions include `(x, y) = (x − y)2/2γ2 and `(x, y) = − log Ψγ(xy),

where Ψγ(t) =
∫ t
−∞ ψγ(s)ds is the cumulative distribution function (CDF) of a log-concave

probability density function (PDF) ψγ(s).

This variational perspective has a probabilistic counterpart, from which Bayesian sta-

tistical methods can provide useful ways for devising well-principled acquisition functions.

We can view the objective function in (5.1) as the negative log of an associated Bayesian

posterior distribution; namely, the posterior distribution is proportional to

exp (−J`(u; y)) .

In the case of `(x, y) = (x − y)2/2γ2, we model the likelihood of observations y|u by
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N (Hu, γ2I|Z′|) where we recall that H : RN → R|Z′| is the projection of u onto the la-

beled indices Z ′. This likelihood is Gaussian and therefore the posterior P(u|y) is Gaussian

N(m, C∗), with covariance C∗ =
(
L−1
τ +HTH/γ2

)−1
and mean m = C∗HTy/γ2. We refer

to this as the Gaussian regression (GR) model. The Gaussian structure of this posterior

distribution allows us to efficiently calculate the posterior mean and covariance, including

look-ahead calculations that is detailed in Section 5.2.2. Although the prior is Gaussian, the

posterior distribution for general loss functions ` is not necessarily Gaussian. The key idea

behind our method is to approximate a non-Gaussian distribution with a suitable Gaussian

distribution to exploit the efficient calculations of the look-ahead posterior mean and covari-

ance. This more general formulation allows us to use more realistic models for classification

than just regression. An example of such a non-Gaussian posterior occurs when the loss

function is `(x, y) = − log Ψγ(xy). In this case, the likelihood is derived from the model

yj = Sign(uj + ηj), where ηj ∼ ψγ [61]. We refer to this as the Probit model.

Some common acquisition functions originally derived for Gaussian models are

(1) MBR [174] jMBR = arg minj∈(Z′)c Eyj |m
[∑N

i=1 Err(i,mj,yj)
]

(2) VOpt [67] jV = arg maxj∈(Z′)c
1

γ2+C∗j,j
‖C∗:,j‖2

2

(3) ΣOpt [94] jΣ = arg maxj∈(Z′)c
1

γ2+C∗j,j
〈1, C∗:,j〉

where Err(i,mj,yj) is the estimated risk on the ith data point of the look-ahead mean mj,yj .

These acquisition functions were originally defined on the HF model [174], but have been

generalized here to fit the GR model. To recover the HF model’s acquisition functions, let

γ = 0, yj ∈ {0, 1}, and the posterior covariance C∗ be defined only on the unlabeled nodes

per the conditional nature of the HF model.

5.2.1 Laplace Approximation of the Probit Model

The Laplace approximation is a popular technique for approximating non-Gaussian distri-

butions with a Gaussian distribution [127]. We approximate the Probit posterior with the
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Gaussian distribution:

P̂(u|y) = N (û, Ĉ), û = arg min
u∈RN

J`(u; y), Ĉ = (∇∇J`(u; y)|u=û)−1 . (5.2)

The mean of this Gaussian distribution û is the MAP estimator of the true Probit posterior.

This Gaussian distribution is in a form in which we can apply adaptations of acquisition

functions of GR and HF models, such as VOpt [67], Σ-Opt [94], and MBR [174]. The Laplace

approximations of the GR and HF models are themselves, because the mean and MAP

estimator (i.e. mode) are the same for Gaussian distributions. Furthermore, this Laplace

approximation of non-Gaussian posterior distributions incorporates labeling information that

is not contained in the GR and HF models’ covariance matrices.

5.2.2 Look-Ahead Updates

Acquisition functions such as MBR need a look-ahead model with index j and label yj:

arg min
u∈RN

J j(u; y, yj) := arg min
u∈RN

1

2
〈u, Lτu〉+

∑
i∈Z′

`(ui, yi) + `(uj, yj).

This is simply the updated graph-based SSL problem, having added the index k and associ-

ated label yk to the labeled data. As mentioned previously in Section 5.2, one convenience of

Gaussian models is that we can solve for the look-ahead posterior distribution’s parameters

from the current posterior distribution without expensive model retraining. This is a crucial

property for computing acquisition functions like MBR [174], which consider the effects of

adding an index j with label yj to the labeled data. There is no simple, closed-form solution

for computing the look-ahead MAP estimator ûj,yj from the current û in the Probit model

(5.2) because of the loss function − ln Ψγ(xy). We approximate the look-ahead update ũj,yj

by computing a single step of Newton’s Method on the look-ahead objective J j(u; y, yj),

starting with the current MAP estimator û:

ũj,yj = û−
(
∇∇J j(û; y, yj)

)−1 (∇J j(û; y, yj)
)

= û− F (ûj, yj)

1 + Ĉj,jF ′(ûj, yj)
Ĉ:,j, (5.3)

where F, F ′ are the first and second derivatives of the loss function with respect to the first

argument. We call this single step of Newton’s method as a Newton approximation (NA)
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update. This is a rank-one update of the MAP estimator. The update requires storing

the posterior covariance matrix Ĉ; this is needed for all the aforementioned Gaussian-based

acquisition functions, in this context. Due to the second-order nature of Newton’s method,

we find that this NA update ũj,yj empirically is a good approximation of the true look-ahead

MAP estimator ûj,yj . We also derive a NA posterior covariance update:

Ĉj,yj =
(
∇∇J j(ûj,yj ; y, yj)

)−1 ≈ Ĉ −
F ′(ũ

j,yj
j , yj)

1 + Ĉj,jF ′(ũ
j,yj
j , yj)

Ĉ:,jĈ
T
:,j =: C̃j,yj . (5.4)

With these NA updates, we can straightforwardly apply the Gaussian-based acquisition

functions to our approximation (5.2) of the Probit model. Furthermore, retraining models

on new training data is approximated by using these NA updates of the MAP estimator and

posterior covariance, as we demonstrate in Section 5.3.

5.2.3 Model Change (MC) Acquisition Function

Approximating the change in a model (i.e. classifier) from the addition of an index j and

associated label yj has been investigated previously [27,72]. Employing our NA update (5.3),

we propose an MC acquisition function for our approximated Probit model in a max-min

framework:

jMC−P = arg max
j∈(Z′)c

min
yj∈{±1}

∣∣û− ûj,yj
∣∣ ≈ arg max

j∈(Z′)c
min

yj∈{±1}

∣∣∣∣∣ F (ûj, yj)

1 + Ĉj,jF ′(ûj, yj)
Ĉ:,j

∣∣∣∣∣ .
5.3 Results

We present numerical results demonstrating our Gaussian approximations and subsequent

NA updates in the Probit model on a synthetic data set (Checkerboard [174]) and a real-

world data set (MNIST [84]). In each of the HF, GR, and Probit models, we show the

performance of the MC method of Section 5.2.3, VOpt [67], MBR [174], uncertainty [132],

and sampling new training data uniformly at random. We use “model–method” to indicate

a model and acquisition function combination (e.g. GR–Vopt is referring to using Vopt

acquisition function on the GR model). We calculate the average accuracies over five trials
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Figure 5.1: Classification performances of different combinations of active-learning acquisi-

tion functions and classification models on a checkerboard data set.

according to the underlying SSL classifier of the acquisition function. After comparing

accuracies across all methods with a common classifier (of the Probit model), we find that

each method’s query choices improve the accuracy of its underlying classifier. In Figure 5.3,

we demonstrate how closely the NA updates ũj,yj , C̃j,yj ((5.3), (5.4)) approximate the active

learning choices from retraining the model (i.e. ûj,yj , Ĉj,yj).

5.3.1 Checkerboard Data Set

The checkerboard data set [174] consists of 2, 000 points uniformly sampled on the unit

square [0, 1]2 ⊂ R2, and we divide into two classes based on a 4 × 4 checkerboard pattern.

For each of the five trials, we choose ten points uniformly at random to label initially (five

from each class), and then sequentially choose 200 query points via our list of acquisition

functions. Similar to [80], we showcase this data set because successful active learning in this

data set requires properly “exploring” the many different clusters as well as “exploiting” the

learned decision boundaries efficiently. The best performing methods are the MC methods in

the GR and Probit models, as well as Probit–MBR. These methods not only identify each of

the clusters in the grid (Figure 5.2b, 5.2c) but also explore the decision boundaries between

clusters. In the Probit–Uncertainty(Figure 5.2f) and HF–MBR(Figure 5.2a), the methods

have not explored the extent of the clustering structure and are not as accurate (Figure 5.1).

Conversely, the VOpt acquisition function in each model only identifies points that are inside

each of the clusters. As seen in Figure 5.2d and 5.2e, these acquisition functions have not

explored the boundaries between the clusters and thus do not achieve as high of accuracy.
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(a) MBR on the HF model

(HF–MBR)

(b) MC on the GR model

(GR–MC)

(c) MC on the Probit model

(Probit–MC)

(d) Vopt on the HF model

(HF–Vopt)

(e) Vopt on the GR model

(GR-Vopt)

(f) Uncertainty on the Probit

model

(Probit–uncertainty)

Figure 5.2: Acquisition function choices on a checkerboard data set. Yellow stars show the

200 points chosen by each of the given acquisition functions.
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Figure 5.3: Accuracy comparison for query choices using the true posterior updates ûj,yj , Ĉj,yj

compared to the NA updates ũj,yj , C̃j,yj . NA update denoted with “NA” in legend.
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Figure 5.4: Classification performances of different combinations of active-learning acquisi-

tion functions and classification models on the MNIST data Set.

5.3.2 MNIST

MNIST [84] is a data set of 70,000 grayscale 28×28 pixel images of handwritten digits (0–9).

Each image is represented by a 784-dimensional vector xi and we normalize the pixel values

to range from 0 to 1. We form a set of 4,000 data points by choosing uniformly at random 400

images from each digit. We construct a 15-nearest-neighbor graph among the data points

with weights wij = exp(−‖xi−xj‖2
2/3802). We consider the binary-classification problem of

classifying even digits versus odd digits. For each of the five trials, we start with ten initial

training points evenly distributed between the two classes (not necessarily among the digits)

and use the active learners to query 100 points. The average classification accuracies are

presented in Figure 5.4. Though the MBR methods perform the best, they are more costly

to compute than our competitive MC acquisition functions.

5.4 Conclusion

Under this unifying Bayesian perspective of active learning in graph-based SSL, we use

Laplace and Newton approximations to allow non-Gaussian models to employ acquisition

functions previously only used in Gaussian models. We introduce a novel MC acquisition

function that is both efficient to compute and provides competitive results. Future work

may extend these results to batch-mode active learning, multi-class classification, and kernel
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methods other than graph-based SSL.
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CHAPTER 6

Spatiotemporal Hawkes Processes and Network

Reconstruction

6.1 Background

This chapter is a version of [168]. This work is done in collaboration with Baichuan Yuan un-

der the supervision of Andrea Bertozzi, Jeffrey Brantingham, and Mason Porter. Baichuan

Yuan contributed the algorithm and I am responsible for designing and conducting experi-

ments on a synthetic data set and a Gowalla data set.

Digital devices such as smart phones and tablets generate a massive amount of spatiotem-

poral data about human activities, providing a wonderful opportunity for researchers to gain

insight into human dynamics through our “digital footprints”. A broad variety of human

activities are analyzed using such data, creating new disciplines [83] such as computational

social science and digital humanities. Examples of such activities include online check-ins

in large cities [29], effects of human mobility [9] and currency flow [23] on the spread of

contagious diseases, online communications during Occupy Wall Street [30], crime reports in

Los Angeles county [78], and many others.

Network analysis is a powerful approach for representing and analyzing complex systems

of interacting components [111], and network-based methods can provide considerable in-

sights into the structure and dynamics of complex spatiotemporal data [13]. It has been

valuable for studies of both digital human footprints and human mobility [11]. To give one

recent example, Noulas et al. [113] studied geographic online social networks to illustrate

similarities and heterogeneities in human mobility patterns.
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Suppose that each node in a network represents an entity, and that the edges (which

can be either undirected or directed, and can be either unweighted or weighted) represent

spatiotemporal connections between pairs of entities. For instance, in a check-in data set

from a social medium, one can model each user as a node, which has associated check-in

time and locations. In this case, one can suppose that an edge exists between a pair of users

if they follow each other on the social medium. One can use edge weights to quantify the

amount of “influence” between users, where a larger weight signifies a larger impact. In

our investigation, we assume that the relationships between nodes are time-independent.1

In some cases, the entities and relationships are both known, and one can investigate the

structure and dynamics of the associated networks. However, in many situations, network

data is incomplete — with potentially a large amount of missing data, in the form of missing

entities, interactions, and/or metadata [143] — and the relationships between nodes may not

be directly observable [130]. For example, social-media companies attempt to infer friendship

relationships among their users to provide accurate friendship recommendations for online

social networks.

In the last few years, there has been a considerable amount of work on inferring missing

data (both structure and weights) in networks. A basic approach for inferring relationships

among entities is to calculate cross-correlations of their associated time series [82]. Another

approach is to use coefficients from a generalized linear model (GLM) [109], a generalization

of linear regression that allows response variables to have a non-Gaussian error-distribution.

Recently, people have begun to use point-process methods [134] in network reconstruction.

For example, Perry and Wolfe [119] modeled networks as a multivariate point process and

then inferred covariate-based edges (both their existence and their weights) by estimating

a point process. Among point-process models, it is very popular to use Hawkes processes

(also known as self-exciting point processes) for studying human dynamics [49,89]. Hawkes-

process models are characterized by mutual “triggering” among events [114], as one event

may increase the probability for subsequent events to occur. Such models can capture in-

1For other regimes of relative time scales between spatiotemporal processes and network dynamics, it is
necessary to consider time-dependent edges [63,123].
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homogeneous inter-event times and causal (temporal) correlations, which have both been

observed in human dynamics [76]. These properties make it a useful approach in social-

network applications [71]. It thus seems promising to use such processes for network infer-

ence on dynamic human data, such as crime events or online social activity. For example,

Linderman and Adams [89] proposed a fully-bayesian Hawkes model that they reported to be

more accurate for their data at inferring missing edges than GLMs, cross-correlations, and

a simple self-exciting point process with an exponential kernel. Very recently, self-exciting

point processes were applied in [146] to reconstruct multilayer networks [75], a generaliza-

tion of ordinary graphs. However, the aforementioned temporal point-process models are

not without limitations. For example, most of these models do not use spatial information,

even when it plays a significant role in a system’s dynamics. Furthermore, many assume an

a priori model [89] or a specific parametrization [148] for their point processes.

In this chapter, we consider a nonparametric and multivariate version of the spatiotem-

poral Hawkes process. Spatiotemporal Hawkes processes have been used previously to study

numerous topics, including crime [105], social media [81], and earthquake prediction [48].

In our model, each node in a network is associated with a spatiotemporal Hawkes process.

The nodes can “trigger” each other, so events that are associated with one node increase

the probability that there will be events associated with the other nodes. We measure the

extent of such mutual-triggering effects using a U × U “triggering matrix” K, where U is

the number of nodes. If one considers an exclusively temporal scenario, a point process u

does not “cause” (in the Granger sense [56]) a point process v if and only if K(u, v) = 0 [39].

Because triggering between point processes reflects an underlying connection, one can try

to recover latent relationships in a network from K. Such triggering should decrease with

both distance and time according to some spatial and temporal kernels. In our work, in-

stead of assuming exponential decay [49] or some other distribution [89, 148], we adopt a

nonparametric approach [97] to learn both spatial and temporal kernels from data using an

expectation-maximization-type (EM-type) algorithm [160].

We compare our approach with other recent point-process network-reconstruction meth-
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ods [49, 89] on both synthetic and real-world data sets with spatial information. Our two

examples of the latter data sets come from a location-based social-networking website and

crime topics. We illustrate the importance both of incorporating spatial information and of

using nonparametric kernels. Although we assume that the relationships among nodes are

time-independent, our model still recovers a causal structure among events in synthetic data

sets. We also build event-causality networks on data sets about violent crimes of gangs and

examine gang retaliation patterns using motif analysis.

6.2 Self-Exciting Point Processes

A point process S is a random measure on a complete separable metric space that takes

values on {0, 1, 2, . . .}∪{∞} [131]. We first consider a temporal point process, which consists

of a list {t1, t2, . . . , tN} of N time points, with corresponding events 1, 2, . . . , N . Let S[a, b)

denote the number of points (i.e., events) that occur in a finite time interval [a, b), with a < b.

One typically models the behavior of a simple temporal point process (multiple events cannot

occur at the same time) by specifying its conditional intensity function λ(t), which represents

the rate at which events are expected to occur around a particular time t, conditional on

the prior history of the point process before time t. Specifically, when Ht = {ti|ti < t} is the

history of the process up to time t, one defines the conditional intensity function

λ(t) = lim
∆t↓0

E[S[t, t+ ∆t)|Ht]

∆t
.

One important point-process model is a Poisson process, in which the number of points in

any time interval follows a Poisson distribution and the number of points in disjoint sets

are independent. A Poisson process is called homogeneous if λ(t) ≡ constant and is thus

characterized by a constant rate at which events are expected to occur per unit time. It is

called inhomogeneous if the conditional intensity function λ(t) depends on the time t (e.g.,

λ(t) = sin(t)). In both situations, the numbers of points (i.e., events) in disjoint intervals

are independent random variables.

We now discuss self-exciting point processes, which allow one to examine a notion of
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causality in a point process. If we consider a list {t1, t2, . . . , tN} of time stamps, we say that

a point process is self-exciting if

Cov [S(tk−1, tk), S(tk, tk+1)] > 0 for k such that tk−1 < tk < tk+1 .

That is, if an event occurs, another event becomes more likely to occur locally in time.

A univariate temporal Hawkes process has the following conditional intensity function:

λ(t) = µ(t) +K
∑
tk<t

g(t− tk) , (6.1)

where the background rate µ(t) can either be a constant or a time-dependent function that

describes how the likelihood of some process (crimes, e-mails, tweets, and so on) evolves

in time. For example, violent crimes are more likely to happen at night than during the

day, and business e-mails are less likely to be sent during the weekend than on a weekday.

One can construe the rate µ(t) as a process that designates the likelihood of an event to

occur, independent of the other events. The summation term in (6.1) describes the self-

excitation: past events increase the current conditional intensity. The function g(t) is called

the triggering kernel, and the parameter K denotes the mean number of events that are

triggered by an event. One standard example is a Hawkes process with an exponential

kernel g(t) = ωe−ωt, where ω is a constant decay rate for the triggering kernel that controls

how fast the rate λ(t) returns to its baseline level µ(t) after an event occurs.

6.2.1 Temporal Multivariate Models

In network reconstruction, one seeks to infer the relationships (i.e., edges) and the strengths

of such relationships (i.e., edge weights) among a set of entities (i.e., nodes). When modeling

the relationships in a network, it is more appropriate to use a multivariate point process than

a univariate one. In a temporal multivariate point process, there are U different point pro-

cesses (Su)u=1,...,U , and the corresponding conditional intensity functions are (λu(t))u=1,...,U .

We seek to infer the intensity functions from observed data (tj, uj)j=1,...,N in a time window

[0, T ], where tj and uj, respectively, are the time and point-process index of event j. There
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are numerous applications of temporal multivariate point processes, such as financial mar-

kets [8], real-time crime forecasting [163] and neural spike trains [24]. Here we focus on the

specific application of network reconstruction.

A trivial example of a multivariate point process is the multivariate Poisson process, in

which each point process is a univariate Poisson process. Another example is the multivariate

Cox process, which consists of doubly stochastic Poisson processes in which the conditional

intensity itself is a stochastic process. Perry and Wolfe [119] used a Cox process to model

e-mail interactions (edges) among a set of users (nodes). Neither the multivariate Poisson

nor the multivariate Cox process are self-exciting.

Instead of modeling edges as Cox processes, Fox et al. [49] used multivariate Hawkes pro-

cesses to model people (nodes) communicating with each other via e-mail. Their conditional

intensity function has an exponential kernel and a nonparametric background function µu(t)

for each person (process) u:

λu(t) = µu(t) +
∑
ti<t

Kuiuωe
−ω(t−ti) , (6.2)

where Kuv = K(u, v) is the expected number of events of person v that are triggered by one

event of person u. One can estimate the set of parameters Θ by minimizing the negative

log-likelihood function

− log(L(Θ)) = −
N∑
k=1

log(λuk(tk)) +
U∑
u=1

∫ T

0

λu(t)dt . (6.3)

Recall that uk is the point process associated with event k.

There are several variants of the multivariate Hawkes process. One is to add regulariza-

tion terms to (6.3) to improve the accuracy of parameter estimation. Lewis and Mohler [86]

used maximum-penalized likelihood estimation, which enforces some regularity on the model

parameters, to infer Hawkes processes. Zhou et al. [170] extended this idea and promoted the

low-rank and sparsity properties of K by adding nuclear and L1 norms of K to (6.3) with

the conditional intensity function λu(t) from (6.2). Linderman et al. [89] added random-

graph priors on K and developed a fully Bayesian multivariate Hawkes model. See [96] for
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theoretical guarantees on inferring Hawkes processes with a regularizer. Another research

direction is to speed up the parameter estimation of point-process models. For example,

Hall et al. [57] tried to learn the triggering matrix K via an online learning framework for

streaming data. Instead of using a likelihood-based method, Achab et al. [2] developed a

fast moment-matching method to estimate the matrix K.

6.2.2 Spatiotemporal Point Processes

Many real-world data sets include not only time stamps but also accompanying spatial

information, which can be particularly important for correctly inferring and understanding

the associated dynamics [13]. In earthquakes, for example, most aftershocks usually occur

geographically near the main shock [115]. In online social media, if two people often check

in at the same location at closely proximate times, there is more likely to be a connection

between them than if such “joint check-ins” occur rarely [29]. These situations suggest that

it is important to examine spatiotemporal point processes, rather than just temporal ones.

Indeed, there are myriad applications of spatiotemporal Hawkes processes, including crime

prediction [105], seismology [115], and Twitter topics [81]. The successful employment of

such processes in earthquake prediction and predictive policing [106] have helped inspire our

work, in which we extend these ideas to network reconstruction.

We characterize a spatiotemporal point process S(t, x, y) via its conditional intensity

λ(t, x, y), which is the expected rate of the accumulation of points around a particular

spatiotemporal location. Given the history Ht of all points up to time t, we write

λ(t, x, y) = lim
∆t,∆x,∆y↓0

(
E [S{(t, t+ ∆t)× (x, x+ ∆x)× (y, y + ∆y)}|Ht]

∆t∆x∆y

)
.

For the purpose of modeling earthquakes, [115] used a self-exciting point process with a

conditional intensity of the form

λ(t, x, y) = µ(x, y) +
∑
t>ti

g(x− xi, y − yi, t− ti) .

In this setting, if an earthquake occurs, aftershocks are more likely to occur locally in time

and space. The choice of the triggering kernel g(t, x, y) is inspired by physical properties
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of earthquakes. For example, [115] used a modified Omori formula (a power law) [114] to

describe the frequency of aftershocks per unit time. In sociological applications, there is no

direct theory to indicate appropriate choices for the kernel function. Some researchers have

chosen specific kernels (e.g., exponential kernels) that are easy to compute. For example,

Tita et al. [148] used a spatiotemporal point process to infer missing information about event

participants. They modeled interactions between event participants as a combination of a

spatial Gaussian mixture model and a temporal Hawkes process with an exponential kernel.

A key problem is how to justify kernel choices in specific applications.

6.3 Spatiotemporal Models for Network Reconstruction

Many network-reconstruction methods using self-exciting point processes, such as [49, 89],

have inferred time-independent relationships (i.e., edges) among entities (i.e., nodes) with

corresponding (exclusively) temporal point processes. Entity (process) u is adjacent to v if

K(u, v) > 0, where one estimates the triggering matrix K from the data. Entity u is not

adjacent to v if entity u’s point process does not cause entity v’s point process in time (in the

Granger sense [39]). For many problems, it is desirable — or even crucial — to incorporate

spatial information [13,32]. For example, spatial information is an important part of online

fingerprints in human activity, and it has a significant impact on most other social networks.

In crime modeling, for example, there is a “near repeat” phenomenon in crime locations, indi-

cating the necessity of including spatial information. Specifically, the spatial neighborhood of

an initial burglary has a higher risk of repeat victimization than more-distant locations [133].

In our work, we propose multivariate spatiotemporal Hawkes processes to infer relationships

in networks and provide a novel approach for analyzing spatiotemporal dynamics.

Another important issue is the assumptions on triggering kernels for a Hawkes process.

In seismology, for example, researchers attempt to use an underlying physical model to help

determine a good kernel. However, it is much more difficult to validate such models in

social networks than for physical or even biological phenomena [124]. The content of social

data is often unclear, and there is often little understanding of the underlying mechanisms
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that produce them. With less direct knowledge of possible triggering kernels, it is helpful to

employ a data-driven method for kernel selection. Using a kernel with an inappropriate decay

rate may lead to either underestimation or overestimation of the elements in the triggering

matrix K, which may also include false negatives or positives in the inferred relationships

between entities. Therefore, we ultimately use a nonparametric approach to learn triggering

kernels in various applications to avoid a priori assumptions about a specific parametrization.

A multivariate spatiotemporal Hawkes process is a sequence {(ti, xi, yi, ui)}Ni=1 with N

events, where ti and (xi, yi) are spatiotemporal stamps and ui is the point-process index of

event i. Each of the U nodes is a marginal process. The conditional intensity function for

node u is

λu(t, x, y) = µu(x, y) +
∑
t>ti

Kuiug(x− xi, y − yi, t− ti) . (6.4)

The above Hawkes process assumes that each node u has a background Poisson process that

is constant in time but inhomogeneous in space with conditional intensity µu(x, y). There is

also self-excitation, as past events increase the likelihood of subsequent events. We quantify

the amount of impact that events associated with node ui have on subsequent events of node

uj with a spatiotemporal kernel and the element K(ui, uj) = Kuiuj of the triggering matrix.

6.3.1 A Parametric Model

We first propose a multivariate Hawkes process with a specific parametric form. We use

this model to generate spatiotemporal events on synthetic networks and provide a form of

“ground truth” that we can use later.

The background rate µu and the triggering kernel g for (6.4) are given by

g(x, y, t) = g1(t)× g2(x, y) = ω exp (−ωt)× 1

2πσ2
exp

(
−x

2 + y2

2σ2

)
,

µu(x, y) =
N∑
i=1

βuiu
2πη2T

× exp

(
−(x− xi)2 + (y − yi)2

2η2

)
.

For simplicity, we use exponential decay in time [114] and a Gaussian kernel in space [104].

We let T denote the time window of a data set; Kuiu denote the mean number of the events
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in process u that are triggered by each event in the process ui; the quantity βuiu denote

the extent to which events in process ui contribute to the background rate for events in the

process u; and σ and η, respectively, denote the standard deviations in the triggering kernel

and background rate. The value of σ determines the spreading scale of the triggering effect

in space.

6.3.2 A Nonparametric Model

With the conditional intensity given in (6.4), we estimate the triggering kernel g(x, y, t) =

g1(t) × g2(x, y) nonparametrically using histogram estimators [97]. We assume that g2 is

isotropic, which entails that g2(x, y) = g2(r), where r =
√
x2 + y2. We let h(r) be the spatial

triggering kernel in the polar coordinate: h(r) = 2πrg2(r). We extend the background rate

that was proposed in [48] to the multivariate case and write

µu(x, y) = γuτ(x, y) =
γu
T

N∑
i=1

pii
2πd2

i

exp

(
−(x− xi)2 + (y − yi)2

2d2
i

)
, (6.5)

where γu is the background intensity of process u and pii is the probability that event i is a

background event (i.e., it is not triggered by any event). We compute di by determining the

radius of the smallest disk centered at (xi, yi) that includes at least np other events and is

at least as large as some small value ε that represents the error in location.

Once we fit the model to spatiotemporal data, the triggering matrix K gives our inferences

for the underlying relationships between entities. For two entities u and v, the matrix element

K(u, v) indicates a mixture of temporal causality and spatial dependence between them. In

inferring latent relationships in a network, we assume that entity u is not related to v if

K(u, v) = 0. We threshold the matrix K at a certain level: we set elements that are smaller

than the threshold value to 0 and either maintain the values of larger or equal elements to

obtain a weighted network or set them to 1 to produce an unweighted network. We use K̃ to

denote the thresholded matrix K. We interpret that there is no relation between two nodes

u and v if K̃(u, v) = K̃(v, u) = 0.
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6.3.3 Model Estimation

We use an EM-type algorithm [160] to estimate the parameters and kernel functions of our

model. This EM-type algorithm gives us an iterative method to find maximum-likelihood

estimates of the parameters. We assume that the original model depends on unobservable

latent variables. Suppose that we have data X and want to estimate parameters Θ. One

can view the likelihood function L(Θ;X) as the marginal likelihood function of L(Θ;Y,X),

where Y is a latent variable. We call L(Θ;Y,X) the “complete-data likelihood function”

and L(Θ;X) the “incomplete-data likelihood function”. Because both Y and L(Θ;Y,X) are

random variables, we cannot estimate them directly. Therefore, we consider the following

expectation function:

Q(Θ,Θi−1) = E
[
log(L(Θ;Y,X))|X,Θi−1

]
=

∫
log(L(Θ;Y,X))f(Y |X,Θi−1)dY , (6.6)

where f(Y |X,Θi−1) is the probability density function of Y , given the data X and Θi−1. We

update parameters by solving the following equation:

Θ̂i = arg max
Θ

Q(Θ,Θi−1) .

6.3.3.1 Parametric Model

The log-likelihood for the parametric model defined in (6.4) in a spatial region R and time

window [0, T ] is

log(L(Θ;X)) =
N∑
k=1

log(λuk(tk))−
U∑
u=1

∫∫
R

∫ T

0

λu(t) dt dx dy . (6.7)

We define random variables Yij and Y b
ij using the approach from [104]. If event j triggers

event i via the kernel g, then Yij = 1; otherwise, Yij = 0. The equality Y b
ij = 1 indicates

that event i is triggered by event j at a background rate of µ. We define two expectation

matrices P(i, j) = pij = E[Yij] and Pb(i, j) = pbij = E[Y b
ij]. We convert the incomplete-data
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log-likelihood function in (6.7) into the following complete-data log-likelihood function:

log(L(Θ;X, Y )) =
∑
j<i

Yij log
(
Kuiujg(ti − tj, xi − xj, yi − yj)

)
−

U∑
u=1

N∑
i=1

βuui

−
U∑
u=1

N∑
i=1

Kuiu

(
1− e−w(T−ti)

)
+

N∑
i=1

N∑
j=1

Y b
ij log(µui) .

We then calculate the expectation function using (6.6) to obtain

Q(Θ) =
N∑
i=1

N∑
j=1

pbij log

(
βujui

2πη2T
exp

(
−(xi − xj)2 + (yi − yj)2

2η2

))
−

U∑
u=1

N∑
i=1

βuiu

+
∑
j<i

pij log

(
ωKujuie

−ω(ti−tj) 1

2πσ2
exp

(
−(xi − xj)2 + (yi − yj)2

2σ2

))

−
U∑
u=1

N∑
i=1

Kuiu

(
1− e−w(T−ti)

)
.

We perform the maximization step of the EM-type algorithm (a projected gradient ascent)

[86] directly by taking derivatives with respect to the parameters and setting them to 0. For

the expectation step, we use the “optimal” parameter values from the prior maximization

step to update the probabilities pij and pbij. By (alternately) iterating these the expectation

and maximization steps, we obtain (4) for the parametric model. For initialization, we

sample Θ0, pij, and pbij uniformly at random. Note additionally that pij = 0 for i > j.

6.3.3.2 Nonparametric Model

The log-likelihood function of the nonparametric model is the same as for the parametric

model in (6.7). We use a similar approach as before to derive an EM-type algorithm for the

nonparametric model. The main differences are that (1) only Yij are latent variables and

Yii = 1 signifies that event i is a background event, whereas Yji = 1 signifies that event i

is triggered by event j; and (2) we assume that the triggering kernels g1(t) and g2(r) are

piecewise constant functions. We discretize space and time into nbins
t temporal bins and nbins

r

spatial bins, and the kernel takes a constant value in each spatiotemporal bin.

To formally present the EM-type algorithm (see algorithm 5), we borrow notation from

[48]. Let Ck denote the set of event pairs (i, j) for which tj − ti belongs to the kth temporal
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Algorithm 4 EM-type Algorithm for the Parametric Model

1: Inputs: point process: {(ui, ti, xi, yi)}Ni=1; initial guesses for parameters: Θ(0) =(
{K(0)

uv }Uu,v=1, {β(0)
uv }Uu,v=1, σ

(0), ω(0)
)

and {p(0)
ij }Ni,j=1, {pb,(0)

ij }Ni,j=1; termination threshold: ε.

2: Outputs: model parameters Θ =
(
{Kuv}Uu,v=1, {βuv}Uu,v=1, σ, ω

)
.

3: Initialize δ = 1 and k = 0.

4: while δ > ε do

5: Let η2,(k) and σ2,(k) be the value of η2 and σ2 at the kth iteration.

6: Expectation step: for i, j ∈ {1, 2, · · · , N},
7: p

(k)
ij =

(
Kujuig (ti − tj, xi − xj, yi − yj)

)
/λ (xi, yi, ti) .

8: p
b,(k)
ij = β

(k)
ujui exp

(
− (xj−xi)2+(yj−yi)2

2η2,(k)

)
/2πη2,(k)Tλ(xi, yi, ti) .

9: Maximization step: for u, û ∈ {1, 2, · · · , U},

10: ω(k+1) =

∑
j<i p

(k)
ij∑

j<i p
(k)
ij (ti − tj) +

∑U
u=1

∑N
i=1Kuiu(T − ti)e−ω(T−ti)

,

11: Let nu denote the number of events in point process u; and let iul , with l ∈ {1, . . . , nu},
index the events for process u.

K
(k+1)
ûu =

∑nu
l=1

∑
t
iû
l̂

<tiu
l

p
(k)

iul i
û
l̂

/
∑nû

l=1

(
1− exp

(
−w

(
T − tiû

l̂

)))
,

12: β
(k+1)
ûu =

∑nu
i=1

∑nû
j=1 p

b,(k)

iul i
û
l̂

/nû .

13: σ2,(k+1) =
∑N

i,j=1

(
p
b,(k)
ij + p

(k)
ij

) (
(xi − xj)2 + (yi − yj)2

)
/
∑N

i,j=1 2
(
p
b,(k)
ij + p

(k)
ij

)
.

14: η2,(k+1) = σ2,(k+1) .

15: δ = ‖Θ(k) −Θ(k+1)‖ .

16: k = k + 1.

17: end while
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bin, Dk denote the set of event pairs (i, j) for which rij (the distance between nodes i and

j) belongs to the kth spatial bin, Nu denote the number of events that include node u, the

parameter ∆tk denote the size of the kth temporal bin, and ∆rk denote the size of the kth

spatial bin.

Algorithm 5 EM-type Algorithm for our Nonparametric Model

1: Inputs: point process: {(ui, ti, xi, yi)}Ni=1; initial guesses of parameters: {K(0)
uv }Uu,v=1 and

{p(0)
ij }Ni,j=1; termination threshold: ε.

2: Outputs: model parameters: {Kuv}Uu,v=1; triggering probability between events:

{pij}Ni,j=1; temporal triggering kernel: g1; spatial triggering kernel: g2.

3: Initialize δ = 1 and η = 0 .

4: while δ > ε do

5: Update background kernel τ η(x, y) (see (6.5))

6: γ
(η)
u =

∑
ui=u

p
(η)
ii /Z

(η) , where Z(η) satisfies
∫ T

0

∫∫
S
τ η(x, y)ds dt = Z(η) for a bounded

spatial domain S and for u ∈ {1, . . . , U}.
7: K

(η)
uv =

∑
ui=u

∑
uj=v

p
(η)
ij /Nu for u, v ∈ {1, . . . , U}.

8: g
(η)
1 (t) =

∑
i,j∈Ck p

(η)
ij /∆tk

∑
i<j p

(η)
ij for t in the kth temporal bin.

9: h(η)(r) =
∑

i,j∈Dk p
(η)
ij /∆rk

∑
i<j p

(η)
ij for r in the kth spatial bin. Set g

(η)
2 (r) =

h(η)(r)/(2πr) .

10: p
(η+1)
ij = K

(η)
uiujg

(η)
1 (tj − ti)g(η)

2 (rij) for i < j and p
(η+1)
jj = µ

(η)
uj (xj, yj).

11: Normalize p
(η+1)
ij so that

∑N
i=1 p

(η+1)
ij = 1 for any j.

12: δ = maxi,j‖p(η+1)
ij − p(η)

ij ‖ and η = η + 1.

13: end while

6.3.4 Simulations

To generate synthetic data for model comparisons, we need to simulate self-exciting point

processes with the conditional intensity in (6.4) for each process u. We use the branching

structures [175] of self-exciting point processes to develop algorithm 6 for our simulations.
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Algorithm 6 Simulation of a Multivariate Hawkes Process

1: Inputs: time-window size: T ; spatial region: S ⊂ R2; background rate: {γu}Uu=1;

triggering matrix: {Kuv}Uu,v=1; temporal and spatial triggering kernels: g1(t), g2(x, y) .

2: Output: point process: C = {(ui, ti, xi, yi)}Ni=1 .

3: Initialize an empty set C and an empty stack Q.

4: Generate background events:

5: Draw Nu, the number of background events of type u, from a Poisson distribution

with parameter λ = γuT for each u ≤ U .

6: Add each background event i ≤∑U
u=1 Nu — i.e., (xi, yi, ti, ui) — to the set C and the

stack Q, where (xi, yi, ti) is drawn from the uniform spatiotemporal distribution over

the time interval [0, T ] and a bounded spatial region S.

7: Generate triggered events:

8: while Q is not empty do

9: Remove the most recently added element (xi, yi, ti, ui) from the stack Q.

10: Draw Ni, the number of events triggered by event i, from a Poisson distribution

with parameter λi =
∑U

u′=1Kuiu′ .

11: Generate events (xk, yk, tk, uk) for each k ≤ Ni as follows:

12: Sample tk, (xk, yk) and uk according to g1(t− ti), g2(x− xi, y − yi), and P (uk =

ũ) =
Kuiũ∑U
v=1Kuiv

, respectively.

13: Add (xk, yk, tk, uk) to the set C.

14: if tk ≤ T then

15: Add the element (xk, yk, tk, uk) to the stack Q.

16: end if

17: end while
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6.4 Numerical Experiments and Results

We apply our algorithm to both synthetic and real-world data sets to demonstrate the

usefulness of incorporating spatial information and of our nonparametric approach. We

consider a synthetic data set in Section 6.4.1 and a Gowalla data set in Section 6.4.2. We

compare our nonparametric model (“Nonparametric Hawkes”) with the Bayesian Hawkes

model2 in [89] (“Bayesian Hawkes”), the exclusively temporal Hawkes model with kernel

g(t) = ω exp(−ωt) from [49] (“Temporal Hawkes”), and the parametric spatiotemporal model

detailed in Section 6.3.1 (“Parametric Hawkes”). We make comparisons by examining how

well the following properties are recovered in the inferred triggering matrix: (1) symmetry

and reciprocity; (2) existence of edges; and (3) community structure. We also demonstrate

the ability of our algorithm to infer the triggering kernel g.

6.4.1 Synthetic Data

We first generate synthetic triggering matrices K using a weighted stochastic block model

(WSBM) [4, 118]. We assign a network’s nodes to four sets (called “communities”) and

assign edges to adjacency-matrix blocks based on the set memberships of the nodes. Two

of the communities consist of ten nodes each, and the other two communities consist of five

nodes each. For each edge, we first draw a Bernoulli random variable to determine whether

it exists, and we then draw an exponential random variable to determine the weight of the

edge (if it exists). The parameter of the Bernoulli random variable is 0.68 for there to be

an edge between nodes from the same community and 0.2 for an edge between nodes from

different communities. The decay-rate parameter for the exponential random variable in

these two situations is 0.1 and 0.01, respectively. By construction, our triggering matrices

are symmetric.

The triggering matrices that we generate in this way are not guaranteed to satisfy the

2We use code from the authors of [89]; it is available at https://github.com/slinderman/pyhawkes.
In all of our experiments, we use the default hyperparameters that come with the published code.
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stability condition for Hawkes processes; this condition is that the largest-magnitude eigen-

value of K is smaller than one [33]. When this condition is satisfied, each event has, almost

surely, finitely many subsequent events as “offspring”. In our work, we discard any simulated

adjacency matrix that does not satisfy the stability condition, and we generate a new one

to replace it. (With our choices of the parameters, we discard about 65% of the generated

adjacency matrices.)

With each triggering matrix K, we use algorithm 6 to simulate a multivariate spatiotem-

poral Hawkes process with our parametric model in Section 6.3.1 with ω = 0.6, σ2 = 0.3,

T = 250, S = [0, 1] × [0, 1], and a homogeneous value γu = 0.2 for all nodes u. We then

reconstruct the underlying networks and the triggering kernels from the simulated data.

6.4.1.1 Symmetry and Reciprocity

As we noted in Section 6.4.1, our simulated triggering matrices are symmetric, but our

reconstructed adjacency matrices generally are not symmetric. Measuring deviation from

symmetry gives one way to evaluate the performance of our inference methods. We use

various reciprocity measures to quantify such deviation.

We conduct two sets of experiments. In the first one, we fix a single synthetic triggering

matrix and simulate ten multivariate spatiotemporal Hawkes point processes. We then

estimate the triggering matrix K from each point process using various methods, which

we thereby compare with each other. In a second set of experiments, instead of fixing a

single triggering matrix, we generate ten different triggering matrices using the same WSBM

model and parameters, and we simulate one point process for each triggering matrix.

There is no standard way of measuring reciprocity in a weighted network. In our calcula-

tions, we use diagnostics that were proposed in [140] and [6]. First, as in [140], we compute

the reciprocated edge weight K↔uv = min{Kuv, Kvu}, and we then calculate a network-level

reciprocity score R1 as the ratio between the total reciprocated weight W↔ =
∑

u6=vK
↔
uv

and the total weight W =
∑

u6=vKuv. That is, the “reciprocity” is R1 := W↔/W . Sec-

ond, Akoglu et al. [6] proposed three node-level measures of reciprocity: (1) the “ratio”
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Table 6.1: Reciprocity of the triggering matrices that we infer using different methods. We

report the mean and standard deviation (in parentheses) over ten simulations with the same

(ground-truth) triggering matrix.

Nonparametric Temporal Parametric Bayesian

R1 0.59 (0.05) 0.29 (0.06) 0.54 (0.03) 0.36 (0.03)

Correlation 0.84 (0.05) 0.36 (0.16) 0.79 (0.05) 0.30 (0.14)

Ratio 0.55 (0.02) 0.37 (0.11) 0.58 (0.02) 0.32 (0.02)

Coherence 0.75 (0.01) 0.63 (0.03) 0.71 (0.02) 0.68 (0.02)

Entropy 0.71 (0.01) 0.59 (0.03) 0.68 (0.02) 0.60 (0.02)

Rratio := min{Kuv, Kvu}/max{Kuv, Kvu}; (2) “coherence” Rcoher = 2
√
KuvKvu/(Kuv +Kvu);

and (3) “entropy” Rentropy := −ruv log2(ruv) − rvu log2(rvu), where ruv = Kuv/(Kuv + Kvu).

These last three measures of reciprocity are measured at a node level, whereas R1 is a

network-level measure. For the other measures, we obtain a network-level measure by cal-

culating those scores for each pair of nodes and then taking a mean over all pairs of nodes.

Each of the above quantities gives a score between 0 and 1, where a larger value indicates a

stronger tendency for the nodes in a network to reciprocate. In a perfectly symmetric and

reciprocal network, each of the four methods gives a value of 1.

In Table 6.1, we report the mean reciprocity and the standard deviation over ten sim-

ulations with the same triggering matrix. In Table 6.2, we report the mean results from

ten different triggering matrices. Both spatiotemporal models give higher scores than the

exclusively temporal models, which is what we expected, as the temporal models discard

spatial information. According to these measures of success, the nonparametric model has

the best performance.

6.4.1.2 Edge Reconstruction

We also evaluate the reconstruction methods based on their ability to recover the existence

of edges. This is particularly relevant if we want to know whether there is a connection

between two entities. We will discuss this application in detail using the Gowalla data set
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Table 6.2: Reciprocity of the triggering matrices that we infer using different methods. We

report the mean and standard deviation (in parentheses) over ten simulations, each with a

different (ground-truth) triggering matrix.

Nonparametric Temporal Parametric Bayesian

R1 0.61 (0.12) 0.36 (0.12) 0.55 (0.10) 0.40 (0.05)

Correlation 0.81 (0.16) 0.48 (0.27) 0.76 (0.15) 0.23 (0.14)

Ratio 0.63 (0.04) 0.43 (0.06) 0.62 (0.03) 0.33 (0.03)

Coherence 0.78 (0.04) 0.62 (0.03) 0.72 (0.03) 0.70 (0.03)

Entropy 0.75 (0.05) 0.58 (0.03) 0.69 (0.03) 0.62 (0.04)

(see Section 6.4.2).

In our model, we consider an edge to exist if the corresponding weighted entry in the

inferred triggering matrix exceeds a certain threshold. For different threshold levels, we

compute the numbers of true positives (TP), false positives (FP), true negatives (TN), and

false negatives (FN) for a given ground-truth triggering matrix. We summarize our results

in a receiver operating characteristic (ROC) plot (see Figure 6.1), in which we plot the true-

positive rate (TPR) (where TPR = TP/(TP + FN)) versus the false-positive rate (FPR)

(where FPR = FP/(FP + TN)). A better inference of a triggering matrix gives a larger

value of TPR at a fixed FPR.

Based on the ROC plot in Figure 6.1, we conclude that the spatiotemporal models —

both the parametric and nonparametric Hawkes models that we proposed in Section 6.3

— outperform the exclusively temporal ones. Therefore, incorporating spatial information

improves the quality of our reconstructed binary networks, at least according to this measure

of success. The best results are from our parametric model, which is not surprising, given

that we use the same model to simulate the data. The performance of our nonparametric

model is very close to that of the parametric model, confirming its effectiveness at inferring

the existence of edges.
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Figure 6.1: Model comparison using synthetic networks. We show the mean ROC curves with

error bars (averaged over ten simulations, each with a different triggering matrix) on edge

reconstruction. The ROC curve of a better reconstruction should be closer to 1 for a larger

range of horizontal-axis values, such that it has a larger area under the curve (AUC), which

is equal to the probability that a uniformly-randomly chosen existing edge in a ground-truth

network has a larger weight than a uniformly-randomly chosen missing edge in the inferred

network.
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Table 6.3: The L1 errors of the inferred spatial and temporal kernels. We simulate ten point

processes with the same triggering matrix and triggering kernel. We report the mean and

standard deviation (in parentheses) of the L1 errors averaged over the ten simulations with

the same triggering kernel and matrix. Note that the exclusively temporal model does not

estimate a spatial kernel.

Nonparametric Temporal Parametric

Temporal kernel 0.07 (0.02) 0.20 (0.06) 0.02 (0.02)

Spatial kernel 0.06 (0.02) - 0.12 (0.02)

6.4.1.3 Inferred Kernels

We report the inferred kernels of the different models in Figure 6.2. Recall that the ground-

truth kernels that we use to simulate point processes are g1(t) = ω exp (−ωt) and h(r) =

2πrg2(r) = r
σ2 exp

(
− r2

2σ2

)
, where r2 = x2 + y2, ω = 0.6, and σ2 = 0.3. Let ĝ1 and ĥ denote

the inferred temporal and spatial kernels, respectively.

We calculate the L1 errors
∫
|g1(t)− ĝ1(t)| dt and

∫
|h(r)−ĥ(r)| dr . We report these errors

in Table 6.3 and present visualizations of the inferred kernels in Figure 6.2. As expected,

both spatiotemporal Hawkes models give more accurate kernel inference than the exclusively

temporal model. The nonparametric Hawkes model does not use any information about the

ground-truth kernels. Surprisingly, it is more accurate, in terms of the L1 error, at inferring

the spatial trigger kernel than the parametric model, whose kernel shares the same parametric

form as the ground-truth kernel.

6.4.1.4 Community-Structure Recovery

We also evaluate the quality of the inferred networks based on their community structure,

in which dense sets of nodes in a network are connected sparsely to other dense sets of

nodes [46,125]. Recall that we have planted a four-community structure in the synthetic trig-

gering matrices (see Section 6.4.1). We apply the community-detection methods from [4] (an

inference method for a WSBM), [79] (symmetric non-negative matrix factorization; NMF),
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Figure 6.2: Model comparison using synthetic networks: Inferred (left) temporal and (right)

spatial kernels using different methods: Temporal Hawkes, Parametric Hawkes and Non-

parametric Hawkes. The dashed lines are ground-truth kernels used for the synthetic data.

and [66,108,110,110] (modularity maximization3). The WSBM that we infer for community

detection is the same that one we use to construct the synthetic adjacency matrices (see

Section 6.4.1). To evaluate our inferred community structure, we use the square-root variant

of normalized mutual information (NMI) [144] between the inferred community assignment

and “ground truth” community labels. Specifically, Let S1 and S2 be community assign-

ments of the U nodes to C1 and C2 communities, respectively; and let S`k, with ` ∈ {1, 2}
and k ∈ {1, 2, · · · , C`}, denote the set of nodes in the kth community in assignment S`. The

NMI between S1 and S2 is

NMI(S1, S2) =
I(S1, S2)√
H(S1)H(S2)

∈ [0, 1] ,

where I(S1, S2) =
∑C1

i=1

∑C2

j=1
|S1i∩S2j |

U
log

|S1i∩S2j |/U
|S1i||S2j |/U2 (where |J | denotes the cardinality of the

set J) and the entropy is H(S`) = −∑N`
i=1

|S`i|
N

log |S`i|
N

(with ` ∈ {1, 2}). Intuitively, NMI

measures the amount of information that is shared by two community assignments. If they

are the same after permuting community labels, the NMI is equal to 1. A larger NMI score

implies that the inferred community assignment shares more information with the ground-

truth labels. See [151] for a discussion of other approaches for comparing different community

3For modularity maximization, we use the implementation of a (locally greedy) Louvain-like [21] method
(called GenLouvain) from [66] with the default resolution-parameter value of 1 and the Newman–Girvan null
model.
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Table 6.4: Normalized mutual information (NMI) between the outputs of different commu-

nity-detection methods applied to the inferred networks and the ground-truth community

structure (averaged over ten simulations, each with a different triggering matrix).

Nonparametric Temporal Parametric Bayesian

Weighted SBM 0.80 0.38 0.83 0.36

Symmetric NMF 0.62 0.31 0.66 0.19

Modularity Maximization 0.64 0.47 0.71 0.28

assignments in networks.

There are numerous approaches for detecting communities in networks [46,118,125], and

we use methods with readily-available code. As we show in Table 6.4, all of these community-

detection methods perform better when we infer triggering matrices using both spatial and

temporal information than with with exclusively temporal information. One can, of course,

repeat our experiments using other methods.

6.4.2 Gowalla Friendship Network

Gowalla is a location-based social-media website in which users share their locations by

checking in. We use a Gowalla data set — collected in [29] using Gowalla’s public API — of

a “friendship” network with 196,591 users, 950,327 edges, and a total of 6,442,890 check-ins

of these users between February 2009 and October 2010. The data set also includes the

latitude and longitude coordinates and the time (with a precision of one second) of each

check-in. Similar to a Facebook “friendship” network, the Gowalla friendship network is

undirected. The mean number of friends for each user is 9.7, the median is 3, and the

maximum is 14, 730. We study several subnetworks in the Gowalla data set. We view the

spatiotemporal check-ins of Gowalla users within each subnetwork as events in a multivariate

point process and infer relationships between these users.

We compare our Nonparametric Hawkes method with the Bayesian Hawkes and the

exclusively Temporal Hawkes in terms of how well our inferred edges match the Gowalla
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friendships. Because a Gowalla friendship network is undirected, we first symmetrize the

inferred triggering matrix (via K̃ =
(
K + KT

)
/2) to obtain an undirected network. We

then calculate FPRs and TPRs in the same fashion as Section 6.4.1.2 using K̃’s associated

“ground-truth” friendship network and generate the corresponding ROC curves. In the

ROC curves of three different cities in Figure 6.4, we observe that the best results are

from our nonparametric model that incorporates spatial information. The mean AUCs

are 0.4277 (with a standard deviation of 0.1042) for the Temporal Hawkes method; 0.5301

(with a standard deviation of 0.0585) for the Bayesian Hawkes method; and 0.6692 (with a

standard deviation of 0.0421) for our Nonparametric Hawkes method in all of the examined

subnetworks.

6.4.2.1 New York City (NYC)

We study check-ins in New York City (NYC) during the period April–October 2010. We use

a bounding box (with a north latitude of 40.92, a south latitude of 40.48, an east longitude of

−73.70, and a west longitude of −74.26)4 to locate check-ins in NYC. We consider “active”

users, who have at least 100 check-ins during the period. To alleviate the computational

burden, we also only consider users who have at most 500 check-ins during the period to

reduce the number of users and the total number of check-ins. Our inference process requires

computing a triggering probability for each pair of events (i.e., check-ins), which results in a

full upper-triangular matrix. The number of nonzero entries in this matrix scales with the

square of the total number of events, so the memory requirement also scales quadratically

with the number of events. We perform experiments only for cases in which the total number

of events is at most 10, 000 to be able to store triggering probabilities for all pairs of events in

4-gigabyte memory. There are 5, 801 unique users with at least one check-in in NYC during

the period, and there are 101, 329 check-ins in total. After removing “inactive” users (i.e.,

those with strictly fewer than 100 check-ins) and overly active users (i.e., those with strictly

4We obtain latitude and longitude coordinates from http://www.mapdevelopers.com/geocode_

bounding_box.php.
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more than 500 check-ins), we are left with 160 users and a total of 29, 118 check-ins. We also

restrict ourselves to users in the largest connected component (LCC) of the network. This

yields 46 users and 8, 495 check-ins, on which we apply our inference methodology.

6.4.2.2 Los Angeles (LA)

We apply the same procedure as in Section 6.4.2.1 on the check-in data for Los Angeles

(LA). The bounding box that we use for LA has a north latitude of 34.34, a south latitude of

33.70, an east longitude of −188.16, and a west longitude of −188.67. We restrict the area

of LA to be the same as that of NYC, although LA’s geographic area is much larger than

that of NYC. After selecting only users in the LCC of the Gowalla network among users who

are active (with at least 150 check-ins) but not overly active (with at most 1000 check-ins)

users, we are left with 23 users and 6, 203 check-ins.

6.4.2.3 San Francisco (SF)

To look at a different type of example, we also examine the 1-ego network of the most

popular user (with 14 friends) in San Francisco (SF). (A 1-ego network [154] of a node is an

induced subgraph that includes a focal node — the ego — and its direct neighbors.) The

bounding box that we use for SF has a north latitude of 37.93, a south latitude of 37.64, an

east longitude of −122.28, and a west longitude of −123.17. In this 1-ego network, there are

9, 887 check-ins.

6.5 Conclusion

In this chapter, we use point-process models to infer latent networks from synthetic and real-

world spatiotemporal data sets. We then apply tools from network analysis to examine the

inferred networks. We study the role of spatial information and nonparametric techniques

in network reconstruction.

As we have illustrated, it is very important to incorporate spatial information. However,
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(a) 1-Ego network of a user of

Gowalla in SF.

(b) Largest connected compo-

nent of the Gowalla network in

NYC.

(c) Largest connected compo-

nent of the Gowalla network in

LA.

Figure 6.3: Three different friendships networks in the Gowalla data set. We compare

different network reconstruction methods for these networks.
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(c) Los Angeles

Figure 6.4: ROC curves of different methods for reconstructing three Gowalla friendship

networks. Here dashed lines are for our Nonparametric Hawkes; dotted lines for Temporal

Hawkes; and solid lines for Bayesian Hawkes.)
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using such information effectively requires making a good choice of spatiotemporal triggering

kernels. We achieve this using a nonparametric approach. Through experiments on synthetic

data sets, we show that our nonparametric Hawkes method is capable of doing a good job

of successfully recovering spatial and temporal triggering kernels. Moreover, our approach

is able to infer a network structure that better recovers — compared to other network

reconstruction methods that we studied — symmetry and reciprocity, edge reconstruction,

and community structures. Through experiments on real-world data sets, we illustrat that

the inferred networks of our approach are meaningful, in the sense that they have large

positive correlations with some metadata.
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[117] Fatih Özkan, Mehmet Ali Arabaci, Elif Surer, and Alptekin Temizel. Boosted multiple
kernel learning for first-person activity recognition. In Signal Processing Conference
(EUSIPCO), 2017 25th European, pages 1050–1054. IEEE, 2017.

[118] Tiago P. Peixoto. Bayesian stochastic blockmodeling. Advances in Network Clustering
and Blockmodeling, pages 289–332, 2019.

[119] Patrick O. Perry and Patrick J. Wolfe. Point process modelling for directed interaction
networks. Journal of the Royal Statistical Society: SERIES B: Statistical Methodology,
pages 821–849, 2013.

125



[120] Hamed Pirsiavash and Deva Ramanan. Detecting activities of daily living in first-
person camera views. In Computer Vision and Pattern Recognition (CVPR), 2012
IEEE Conference on, pages 2847–2854. IEEE, 2012.

[121] Yair Poleg, Chetan Arora, and Shmuel Peleg. Temporal segmentation of egocentric
videos. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recog-
nition, pages 2537–2544, 2014.

[122] Yair Poleg, Ariel Ephrat, Shmuel Peleg, and Chetan Arora. Compact CNN for indexing
egocentric videos. In Applications of Computer Vision (WACV), 2016 IEEE Winter
Conference on, pages 1–9. IEEE, 2016.

[123] Mason A. Porter and James P. Gleeson. Dynamical Systems on Networks: A Tutorial,
volume 4. Springer International Publishing, 2016.

[124] Mason A. Porter and Sam D. Howison. The role of network analysis in industrial and
applied mathematics. arXiv preprint arXiv:1703.06843, 2017.

[125] Mason A. Porter, Jukka-Pekka Onnela, and Peter J. Mucha. Communities in networks.
Notices of the AMS, 56(9):1082–1097, 1164–1166, 2009.

[126] Yiling Qiao, Chang Shi, Chenjian Wang, Hao Li, Matt Haberland, Xiyang Luo,
Andrew M. Stuart, and Andrea L. Bertozzi. Uncertainty quantification for semi-
supervised multi-class classification in image processing and ego-motion analysis of
body-worn videos. Electronic Imaging, 2019(11):264–1, 2019.

[127] Carl Edward Rasmussen and Christopher K. I. Williams. Gaussian Processes for Ma-
chine Learning. Adaptive Computation and Machine Learning. MIT Press, Cambridge,
MA, 2006.

[128] Michael S. Ryoo and Larry Matthies. First-person activity recognition: What are they
doing to me? In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 2730–2737, 2013.

[129] Michael S. Ryoo, Brandon Rothrock, and Larry Matthies. Pooled motion features for
first-person videos. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pages 896–904, 2015.

[130] Salvatore Scellato, Anastasios Noulas, and Cecilia Mascolo. Exploiting place features
in link prediction on location-based social networks. In Proceedings of the 17th ACM
SIGKDD international conference on Knowledge discovery and data mining, pages
1046–1054, 2011.

[131] Frederic Paik Schoenberg, David R. Brillinger, and Peter Guttorp. Point processes,
spatial-temporal. Encyclopedia of Environmetrics, 3:1573–1577, 2002.

[132] Burr Settles. Active Learning. Synthesis Lectures on Artificial Intelligence and Machine
Learning, 6(1):1–114, June 2012.

126



[133] Martin B. Short, P. Jeffrey Brantingham, Andrea L. Bertozzi, and George E. Tita.
Dissipation and displacement of hotspots in reaction-diffusion models of crime. In
Proceedings of the National Academy of Sciences, volume 107, pages 3961–3965. Na-
tional Acad Sciences, 2010.

[134] Aleksandr Simma and Michael I. Jordan. Modeling events with cascades of Poisson
processes. In Proceedings of the Twenty-Sixth Conference on Uncertainty in Artificial
Intelligence, UAI’10, page 546–555, Arlington, Virginia, USA, 2010. AUAI Press.

[135] Suriya Singh, Chetan Arora, and C.V. Jawahar. Trajectory aligned features for first
person action recognition. Pattern Recognition, 62:45–55, 2017.

[136] Ralph C. Smith. Uncertainty Quantification: Theory, Implementation, and Applica-
tions, volume 12. SIAM, 2013.

[137] Daniel A. Spielman and Shang-Hua Teng. Spectral partitioning works: Planar graphs
and finite element meshes. In Proceedings of 37th Conference on Foundations of Com-
puter Science, pages 96–105. IEEE, 1996.

[138] Daniel A. Spielman and Shang-Hua Teng. Spectral partitioning works: Planar graphs
and finite element meshes. Linear Algebra and its Applications, 421(2-3):284–305, 2007.

[139] Ekaterina H. Spriggs, Fernando De La Torre, and Martial Hebert. Temporal segmen-
tation and activity classification from first-person sensing. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pages 17–24, 2009.

[140] Tiziano Squartini, Francesco Picciolo, Franco Ruzzenenti, and Diego Garlaschelli. Reci-
procity of weighted networks. Scientific Reports, 3(1):1–9, 2013.

[141] Ingo Steinwart. On the influence of the kernel on the consistency of support vector
machines. Journal of Machine Learning Research, 2(Nov):67–93, 2001.

[142] Ingo Steinwart. Consistency of support vector machines and other regularized kernel
classifiers. IEEE Transactions on Information Theory, 51(1):128–142, 2005.

[143] Alexey Stomakhin, Martin B. Short, and Andrea L. Bertozzi. Reconstruction of missing
data in social networks based on temporal patterns of interactions. Inverse Problems,
27(11):115013, 2011.

[144] Alexander Strehl and Joydeep Ghosh. Cluster ensembles—A knowledge reuse frame-
work for combining multiple partitions. Journal of Machine Learning Research, 3:583–
617, 2002.

[145] Timothy John Sullivan. Introduction to Uncertainty Quantification, volume 63.
Springer, 2015.

[146] Peiyuan Suny, Jianxin Li, Yongyi Mao, Richong Zhang, and Lihong Wang. Inferring
multiplex diffusion network via multivariate marked Hawkes process. arXiv preprint
arXiv:1809.07688, 2018.

127



[147] Ambuj Tewari and Peter L. Bartlett. On the consistency of multiclass classification
methods. Journal of Machine Learning Research, 8:1007–1025, 2007.

[148] George Tita, P. Jeffrey Brantingham, Aram Galstyan, and Yoon-Sik Cho. Latent self-
exciting point process model for spatial-temporal networks. Discrete and Continuous
Dynamical Systems - Series B, 19(5):1335–1354, April 2014.

[149] Simon Tong and Daphne Koller. Support vector machine active learning with appli-
cations to text classification. Journal of Machine Learning Research, 2(Nov):45–66,
2001.

[150] Du Tran, Lubomir Bourdev, Rob Fergus, Lorenzo Torresani, and Manohar Paluri.
Learning spatiotemporal features with 3D convolutional networks. In Computer Vision
(ICCV), 2015 IEEE International Conference on, pages 4489–4497. IEEE, 2015.

[151] Amanda L. Traud, Eric D. Kelsic, Peter J. Mucha, and Mason A. Porter. Comparing
community structure to characteristics in online collegiate social networks. SIAM
Review, 53(3):526–543, 2011.
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