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ABSTRACT OF THE DISSERTATION

Improving Earthquake Source Spectrum Estimation

using Multitaper Techniques

by

Germán A. Prieto

Doctor of Philosophy in Earth Sciences

University of California, San Diego, 2007

Professor Frank L. Vernon, Co-Chair

Professor Peter M. Shearer, Co-Chair

Understanding the physics of the earthquake rupture mechanism is essential, given that

earthquakes are among the most harmful natural disasters. Some earthquake source

parameters such as radiated seismic energy and stress drop can be used to investigate

the properties and dynamics of faulting. Estimates of these parameters have large un-

certainties, leading to discrepancies among different studies, particularly investigations

of the scaling relations of earthquakes.

In order to understand the physics of earthquakes and their behavior as a

function of magnitude, it is necessary to have an idea of the uncertainties of the estimated

parameters (e.g., when comparing two earthquakes). We have developed a method to

estimate the uncertainties of the source parameters as measured from the seismic wave

spectra. The large uncertainties expected require improving the methodologies used to

obtain the source parameters. We present two methods that take advantage of the large

amounts of seismic data available.

In the first method we attempt to separate the effects of anelastic attenuation

from the earthquake source spectrum characteristics. Analyzing the latter we are able

to obtain source parameters with significantly reduced scatter and which indicate that

the earthquake rupture is self-similar in the magnitude range 1.8 to 3.4. In the second

method we perform a weighted average of spectral ratios using 160 small earthquakes

as empirical Green functions to obtain estimates of the source spectrum of the 2001

M5.1 Anza earthquake. The averaging scheme significantly reduces the uncertainties

xiii



and allows us to estimate the radiated seismic energy for this earthquake with greater

confidence than is otherwise possible.

Given that in the methods discussed above the seismic parameters were esti-

mated from the spectrum of the seismic waves, we present a new multitaper algorithm

that has significant bias reduction compared to standard multitaper techniques and at

the same time reducing the roughness of the estimated spectrum. We show that the

method has the ability to estimate both the spectrum and its slope, thus increasing the

degrees of freedom if parameters are to be estimated.

xiv



1

Introduction

Every day there are an immense number of earthquakes occurring somewhere

on Earth. Some of these events may be strong enough to be felt, and some, such as

the recent Sumatra earthquake in December 2004 in combination with its associated

tsunami, generate considerable losses in both infrastructure and human life.

Given that earthquakes are among the most harmful and costly natural disas-

ters, it is essential to have an understanding of the physical processes that lead to their

occurrence as well as a deep comprehension of the actual rupture process. Seismology

– the study of the structure of the Earth and the physics of earthquakes – has thus a

substantial role in mitigating the damaging effects of large earthquakes on our society.

Earthquakes can rupture along just a few meters or along hundreds of kilo-

meters. This study focuses on understanding earthquake ruptures, and to what extent

small earthquakes (such as the commonly occurring minor earthquakes in seismically ac-

tive regions) and large earthquakes (such as the Sumatra earthquake) are generated by

similar physical processes or if they are fundamentally different. The observable features

of earthquake rupture need to be quantified for comparison between these events, and

I investigate how novel time-series analysis tools and inverse problem solving methods

can be brought to answer relevant questions in this field.

1



2

1.1 Earthquake physics

Earth’s tectonic plates slide past each other, in some cases being accommodated

by gradual sliding, in other cases by earthquake rupture that accommodates this motion

by sudden slip on a fault plane. Seismologists try to understand this sudden behavior

by looking at quantifiable features that can be extracted from records of the radiated

elastic waves at seismic stations on or near the surface of the Earth.

An earthquake is a failure in Earth’s crust. Due to plate motion there is a

certain amount of potential energy (gravitational and strain energy) available within

a certain region S. We may assume (for a short-term process) that the accumulated

strain energy is released in the region S by the earthquake rupture. During the failure

process, some energy is radiated as seismic waves (radiated energy ES) and some energy

is dissipated mechanically (fracture energy EG) and thermally (thermal or frictional

heating energy EF ). I will discuss and describe these and other terms in the following

section.

1.1.1 Static and dynamic earthquake parameters

In order to understand the physics of earthquakes, it is important to quantify

the behavior of some seismic parameters that describe the earthquake rupture process.

I will discuss both static as well as dynamic source parameters.

Seismic Moment

Consider a point source in which a displacement offset D between the two

sides of the fault occurs. It can be shown that a double-couple force can produce a

displacement field equivalent to a point dislocation. The scalar seismic moment M0 of

such a double-couple source is given by (e.g., Kanamori and Anderson, 1975; Shearer,

1999):

M0 = µDA (1.1)

where µ is the shear modulus of the material surrounding the fault, D is the fault

displacement, and A is the rupture area. The dimensions of M0 are force × length =

energy, and usually the unit Nm is used.
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Since the rupture in the solid Earth is irreversible, the displacement that occurs

between the two sides of the fault is permanent. This displacement also occurs over some

finite duration, leading to a ramp-like near-field (very close to the fault) displacement as

a function of time.

The far-field displacement, on the other hand, is not permanent and is propor-

tional to the time derivative of the near-field displacement (see Figure 1.1) . Assuming

a seismic station is in the far-field (and there is no attenuation or scattering) the scalar

seismic moment could be represented by the area under the displacement pulse (e.g.,

Madariaga, 1976; Shearer, 1999):

M0 = µD̄A (1.2)

where D̄ is the average displacement across the fault.

Seismic moment is believed to be the most useful and easily measured quantifi-

cation of the size of an earthquake. Unlike other magnitude estimates (local magnitude

or surface wave magnitude), M0 does not saturate for large earthquakes. However, as

discussed above, M0 is a static measure of the size of an earthquake and does not provide

any information on the dynamic properties of the source.

Stress Drop

As suggested above, a certain amount of stress is released by an earthquake rup-

ture. The stress drop is defined as the average difference between the stress (we usually

consider shear stress) on a fault before an earthquake and the stress after the earth-

quake (Kanamori and Anderson, 1975; Kanamori and Brodsky, 2004; Shearer, 1999).

For a point source the stress drop is:

∆σ = σ0 − σ1 (1.3)

where σ0 and σ1 represent the stress on the point before and after the earthquake,

respectively. Since the stress drop can actually be highly variable in certain regions of

the fault plane, we prefer the stress drop averaged over the entire fault plane (Kanamori

and Anderson, 1975; Shearer, 1999):

∆σ =
1
A

∫
S

[σ0 − σ1] dS (1.4)
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Figure 1.1: Relation between near-field and far-field displacement and velocity, and
corresponding far-field amplitude spectra. The seismic moment M0 is proportional to the
shaded area under the far-field displacement curve. The two plots on the right represent
the amplitude spectrum. Another source parameter seen in the near-field signal is the
displacement D. The pulse duration τ and the corner frequency fc are also represented
in time and frequency domains respectively.

where the integral is performed over the surface of the fault.

The limited resolution in seismological methods does not allow determining the

displacement D everywhere on the fault, and forces us to use the approximation

∆σ = Cµ
D̄

L̃
(1.5)

where µ is the shear modulus and comes from the relation between stress and strain

(σ = 2µε), L̃ is a characteristic rupture dimension, and C is a non-dimensional constant

that depends on the geometry of the fault plane.

For the particular case of a circular fault of radius r (Eshelby, 1957; Brune,

1970; Madariaga, 1976), it can be shown (plug 1.2 into 1.5) that the stress drop is

related to the seismic moment M0 by:

∆σ =
7M0

16r3
(1.6)

Note that the stress drop is inversely proportional to the cube of the fault dimension, and

thus any uncertainty in the radius of the fault will propagate into a large uncertainty in

the stress drop. Once again, the stress drop is a static parameter of the seismic source.
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Corner frequency and source dimension

As discussed above, the stress drop can be obtained if we know the seismic

moment (e.g., from the area under the displacement pulse) and the source dimension; in

this case, assuming a circular fault, the source radius. But the source radius r cannot

be measured directly from seismological data and further assumptions are needed.

As suggested by Madariaga (1976), assume a circular fault with radius r with

a rupture starting in the center and moving radially outside with rupture velocity vr =

0.9β, where β is the S-wave speed. The rupture duration time is then

τ =
r

vr
(1.7)

where τ can effectively be extracted from the pulse duration in the displacement record

(Figure 1.1).

One can also study the rupture duration by looking at the spectra of the dis-

placement records. Figure 1.1 plots the spectrum of the far-field displacement. Note that

the spectrum remains constant until it reaches what is known as the corner frequency

fc and then the amplitudes decrease rapidly. The corner frequency is clearly related to

the pulse duration (τ ∝ f−1
c ), and once plugged into Equation 1.7 can also be related to

the radius of the fault

r =
kβ

fc
(1.8)

where k is a nondimensional factor (0.32 for P and 0.21 for S-wave, Brune, 1970;

Madariaga, 1976), depending on whether we are measuring P or S-wave corner fre-

quencies.

Seismic Energy

When an earthquake occurs, some fraction of the total energy is radiated as

seismic waves, while the rest is released as thermal and fracture energies, which together

represent the energy dissipation. I now discuss the energy budget involved in the rupture

process in order to provide a general understanding of the observational and the physical

processes involved. I will assume that the slip weakening model (Ida, 1972; Palmer and

Rice, 1973) is valid. An illustration of the energies related to fractures is shown in Figure

1.2.
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Figure 1.2: Variation of stress at a point on a fault as a function of slip based on the
slip-weakening model. This model explains the partition of energy during rupture and
the relation between radiated energy ES and stress drop ∆σ. The frictional stress σf (s)
is shown as the thick curve. Note that this figure represents a unit fault, the stress
behavior might be different in various regions on the fault plane.

As explained by Kanamori and Rivera (2006), in an expanding crack the initial

stress σ0 increases to the peak stress σp (also known as yield stress) at the onset of

rupture (see Figure 1.2) and then drops following the curve σf (s) as a function of slip.

The behavior of this curve σf (s), the frictional stress, shows the particular state of

stress during the rupture process. The actual variation σf (s) may be very complex and

seismological estimates are most likely smoothed versions of the real behavior.

The energy that is dissipated (EG + EF ) is represented by the area under σf .

This energy includes the energy used in creating new crack surface, energy breaking the

surrounding rock (creating fault gauge, etc) and energy released as heat, due to friction

between the two sides of the fault sliding past each other. Other types of energies

(such as latent heat) may be present if, for example, phase transitions due to heating are

present (Tinti et al., 2005). Even though Figure 1.2 shows a clear separation between the

fracture energy EG and the thermal energy EF , this is not always clear and is dependent

on many assumptions (Abercrombie and Rice, 2005).

The seismically radiated energy is given by the difference between the entire

colored area and the dissipated energy. We can only measure directly from seismograms
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the energy that is radiated as seismic waves ES .

Figure 1.2 also shows the relation between the radiated seismic energy and the

stress drop. As explained before, the stress drop ∆σ is the difference between the initial

stress on the fault σ0 and the final stress σ1. For example, assume that the stress drops

instantaneously to σ1, which would mean there is no fracture energy dissipation and

much more energy is radiated seismically. On the other hand, if stress drops quasi-

statically (e.g., creep, slow earthquakes) there is minimal or no seismic wave radiation.

An intermediate case is the one shown in the example of Figure 1.2.

As suggested by many studies (Mayeda and Walter, 1996; Kanamori and Rivera,

2004; Venkataraman et al., 2006, and many others) the radiated seismic energy is a

dynamic measure of the size of an earthquake. Note that both seismic moment M0 and

stress drop ∆σ are static source parameters, while ES is a dynamic one. The seismic

moment depends on the area of the fault rupture and the average displacement, the stress

drop is a function of the difference between initial and final stress states (see equation

1.2 and 1.3), while the seismic energy is a function of the behavior of the stress (the

function σf ) during earthquake rupture.

While the stress drop and seismic moment remain fixed, the radiated seismic

energy ES may be extremely variable if, for example, σf decreases below the final stress

σ1 and then increases back before rupture stops. Figure 1.3 shows two cases where

the stress drop remains constant while the radiated seismic energy varies, depending on

the rupture history and not only on the initial and final states. Similarly (Kanamori

and Rivera, 2004), we can have a far-field displacement pulse from which we obtain the

seismic moment and may estimate the radiated seismic energy by differentiating. One

can think of a displacement pulse with a very complicated structure, but still keeping

the area under the curve fixed, which would have a very large ES . Again, the seismic

energy is related to the rupture characteristics and is a dynamic parameter.

1.2 Scaling of earthquakes

These are some of the most relevant source parameters used to describe earth-

quake properties. Now, let us consider how they relate to each other, given that these
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Figure 1.3: Comparison of static and dynamic source parameters. For simplicity I
assume peak stress being equal to the initial stress (σp = σ0). Note that while the
stress drop only depends on initial and final stresses, the radiated seismic energy ES is a
function of the frictional stress σf (s) (thick black curve) throughout the rupture process.

relations may be useful in constraining the processes involved in or around the fault.

In addition, I will discuss the behavior of these parameters as a function of

the earthquake size. In other words, is the physics of the faulting mechanism associated

with an M8.0 earthquake different from that of an M2.0 earthquake? The differences (or

lack thereof) could potentially provide means for rapid determination of the size of an

earthquake to use in early warning systems (Kanamori, 2005). Aki (1967) suggested a

scale invariance of the rupture process, consistent with observations that many geological

processes are similar over a wide range of scales (Abercrombie, 1995).

Seismic moment and corner frequency

The relation between the static parameters seismic moment M0 and the length

scale or characteristic rupture dimension L̃ (see equation 1.5) has been widely used in the

literature. As seen from equation (1.8), under certain assumptions the corner frequency

fc or the source duration τ can be used as a proxy for the source dimension.

From compilations of a variety of studies (Brune, 1970; Abercrombie and Leary,

1993; Prieto et al., 2004), a very common scaling relation is M0 ∝ f−3
c . This would

suggest that if this scaling holds (assuming a constant rupture velocity (see Kanamori

and Rivera, 2004)), the scaling of stress drop with seismic moment would be M0 ∝ ∆σ,
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meaning that ∆σ is independent of earthquake size. Other studies suggest (Abercrombie,

1995; Kanamori and Rivera, 2004; Izutani and Kanamori, 2001) that in fact the scaling

should be M0 ∝ f
−(3+ε)
c , where ε 6 1 and ∆σ could be scale dependent.

Seismic moment and radiated energy

The radiated energy is of considerable interest because it has relevant informa-

tion about the dynamics of rupture during an earthquake, and it can be measured with

seismological methods.

A very useful dynamic parameter associated with the radiated seismic energy

ES is the apparent stress, as introduced by Wyss and Brune (1968):

σa = µ
ES

M0
(1.9)

which describes the dynamic properties of an earthquake. Replacing the seismic moment

M0 (Equation 1.2) we have

σa =
ES

D̄A
(1.10)

and can be interpreted as the radiated seismic energy per unit area per unit displacement.

The behavior of apparent stress as a function of earthquake magnitude, the

scaling of σa ∝ M0, is of key importance. Does the earthquake apparent stress change

with magnitude? Does the seismic energy ES (seismic waves that leave the source region)

increase proportionally as the seismic moment M0 (the fault area A and the slip D̄)

increases?

In a very simple way, in Figure 1.4 imagine a unit fault for a small and a large

earthquake (the large earthquake would be composed of a large number of these unit

faults) and their corresponding stress behavior as a function of slip. Clearly, the stress

and slip behavior is not necessarily uniform throughout the fault plane, and we must

deal with the averages during rupture for each event. The focus here is to investigate

how the source parameters (frictional stress, seismic energy, stress drop, etc.) vary over

a wide range of earthquake magnitudes, represented by the slip D̄. The slip can range

from millimeters for small earthquakes to meters for very large ones, and here we take

the averages for individual earthquakes as representative of the relation between stress

and slip.
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Figure 1.4: Models of earthquake rupture for large and small earthquakes. Peak stress
σp is neglected for simplicity and the frictional stress σf (s) is represented by the thick
curves. Due to rupture, the initial stress state σ0 falls to a final value σ1 as the slip
increases to the value D. a) In the self-similar model, ES increases proportionally as a
function of slip D; b) the fracture energy varies with increasing slip D, ES does not scale
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as in the self-similar model, but after a certain slip it decreases even further, generating
a larger stress drop and radiating more energy ES .
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Figure 1.4 shows a small set of models that can be used to describe the earth-

quake rupture process. The self-similar model (Aki, 1967; Prieto et al., 2004) in Figure

1.4a assumes that the fracture energy is constant (at least for a particular region) gen-

erating an ES that scales proportionally to the final slip D. In this case, both the stress

drop ∆σ and the apparent stress σa will be constant as a function of magnitude.

If the fracture energy scales with size (Figure 1.4b) and is scale dependent, then

the σa will not be constant. In this case, the stress drop ∆σ is scale independent, and

the size of the earthquake is related to the fracture energy, that is, the fracture energy is

a property of the fault zone and the ultimate size of the earthquake is in part governed

by the fault zone properties.

A final case is shown in Figure 1.4c, which is known as the fault lubrication

model (Kanamori and Heaton, 2000). In this model the rupture process may behave

like the self-similar model, until it reaches a certain amount of slip, at which point an

additional drop in the frictional stress occurs. This would clearly suggest very different

physical processes during rupture between large and small earthquakes. The additional

weakening mechanism has been explained in various ways, thermal weakening by pore

fluids (Lachenbruch, 1980), elastohydrodynamic lubrication (Brodsky and Kanamori,

2001), and normal stress variations and interface separation during slip (Brune et al.,

1993).

If the source parameters ∆σ and σa are constant within the uncertainties over

a wide magnitude range, the model in Figure 1.4a is possible, and the rupture process

should be considered self-similar. If, on the other hand either or both ∆σ and σa are

scale dependent, then other models must be considered. As in Figure 1.4b, the properties

of the fault zone might be controlling the rupture, or as in Figure 1.4c, it might be that

the rupture for very large earthquakes (large slip D) follows very different physics than

the smaller earthquakes do.

1.3 How do we estimate source parameters?

So far, we have discussed some of the source parameters used for describing

earthquake rupture. What is recorded at a seismic station (using mainly velocity sensor
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and/or accelerometers) is the ground motion associated with the earthquake rupture and

the radiated seismic energy.

Seismic waves travel inside the Earth’s crust and mantle and are affected by

attenuation, velocity and density variations, near surface effects and scattering until they

finally arrive at the seismic station. These disturbances of the original radiated waves

need to be accounted for. In this section I will discuss some of the methods used in the

literature (some used in this thesis) to correct for the propagation effects in order to be

able to investigate the source parameters.

There are also source effects that may be present and need to be corrected or

accounted for to obtain a reliable estimate. These include the radiation pattern and the

directivity effects.

The radiation pattern may alter the amplitudes of the far-field signals recorded,

depending on the azimuthal direction between the earthquake source and the receiver.

The directivity effect is a result of the Doppler shift or Doppler effect, where high-

frequencies are expected to be radiated in the direction of rupture while lower frequencies

will be present in the opposite direction. It has also been argued that the directivity effect

focuses the energy radiation in the direction of rupture (Venkataraman and Kanamori,

2004). A more complete discussion about the Doppler effect and directivity in seismic

sources can be found in Douglas et al. (1988). It is essential to have a good azimuthal

coverage of stations to properly take into account these effects.

Correcting waveforms or their spectra for propagation effects is one of the chal-

lenging aspects in determining the earthquake source properties. Different methods used

for correction of the propagation effects can introduce significant variability in the cal-

culated source parameters as pointed out by Sonley and Abercrombie (2006), even when

applied to the same data (e.g., Prejean and Ellsworth, 2001; Ide et al., 2003).

Many researchers use the amplitude spectra of the seismic waves (Abercrombie,

1995; Ide et al., 2003; Prieto et al., 2004) to calculate radiated seismic energy, stress drop

and other source parameters. A similar result should be obtained if working on the time-

domain signals (Kanamori et al., 1993; Mori et al., 2003), but corrections for attenuation

and deconvolutions are in many cases easier in the spectral domain. As we will discuss

in the next section, in the spectral domain there are state-of-the-art methods to analyze
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the frequency content of complicated signals and study their statistical reliability, which

is more difficult in the time domain.

From this point on, it is assumed that the instrument response has been cor-

rected from the recorded signals and that the effects of any incorrect instrument response

correction are negligible.

Attenuation correction

To obtain earthquake source parameters, there is a need to correct for attenua-

tion, which may vary from study to study. The basic idea is that the source spectrum is

attenuated by the anelastic crust through which it travels. It is customary in earthquake

physics to represent the attenuation with the inverse of the quality factor Q.

It is possible to represent the quality factor by a constant Q (Abercrombie,

1995; Prieto et al., 2006) or as a frequency-dependent function Q(f) = Q0f
b, where

both Q0 and b are constants (Ide et al., 2003; Sonley and Abercrombie, 2006). The

calculation of the Q(f) is not trivial and it is in many cases done simultaneously with

some source parameters, and some trade-offs between these parameters are inevitable.

Even in deep borehole stations it has been shown that a frequency dependent quality

factor may be necessary (Ide et al., 2003).

Empirical Green Functions

The Empirical Green Function (EGF) method (Mueller, 1985; Hartzell, 1978;

Hough, 1997) takes advantage of the records of a smaller earthquake that is collocated

with a larger one. We can assume that up to a certain frequency, the smaller earthquake

can be approximated by a point source in time and space. This means that the ground

motion recorded at a particular station for that earthquake is approximately the impulse

response of the path between the source and the receiver.

This impulse response is then deconvolved from the larger earthquake, in this

way accounting for attenuation, scattering, near-source and other effects. In a sense,

the EGF method provides a more accurate account of path effects than the attenuation

correction. Nevertheless, it also has shortcomings, namely that only events that are

collocated can potentially be used, the signal-to-noise ratio for the smaller earthquakes
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degrades at both low and high frequencies and that other characteristics, such as similar

focal mechanisms for the two earthquakes, are needed.

In principle, this deconvolution can be performed in the time domain (e.g., Mori

et al., 2003) or in the frequency domain (Ide et al., 2003; Abercrombie and Rice, 2005;

Prieto et al., 2004). As we will show in this thesis, the frequency domain methods used

provide an advantage in terms of uncertainty estimation.

1.4 Earthquake source parameters

In this thesis we will focus on the study of earthquake source parameters es-

timated from the spectrum of the seismic signals. Assuming all the propagation effects

have been accounted for, all the parameters can be estimated from the spectra of the

seismic waves.

The seismic moment M0 and the corner frequency fc can be fitted from the

displacement spectra using the Brune (1970) model:

S(f) =
M0

1 + (f/fc)
2 (1.11)

or the Boatwright (1980) model:

S(f) =
M0[

1 + (f/fc)
4
]0.5 (1.12)

As shown in Figure 1.5, the seismic moment M0 is proportional to the zero frequency

amplitude of the displacement spectrum, equivalent to the area under the displacement

pulse in the time domain (see Figure 1.1). The corner frequency is given by the strong

change in slope of the amplitude spectrum, which in the time domain is related to the

width of the source pulse, and can be thought as a measure of the rupture duration. In

general, some kind of non-linear fitting algorithm needs to be used.

The radiated seismic energy ES can also be obtained by converting (rotating)

the spectrum to velocity, squaring and integrating:

ES = C1

∞∫
0

[2πfS(f)]2 df (1.13)

where the constant C1 has additional parameters such as the wave speed and density of

the material surrounding the fault area to obtain the correct units.
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1.5 Spectrum estimation of seismic signals

There are many applications in geophysics where relevant information contained

in a given signal may be extracted from the frequency content of the spectrum. In some

cases the scientist may be interested in periodic components usually immersed in some

background noise (e.g., normal mode seismology (Gilbert, 1970), climate time series

(Chappellaz et al., 1990), etc.), in a general continuous spectrum to be estimated from

a short time series (e.g., earthquake source spectra (Brune, 1970; Prieto et al., 2004))

or in comparing two signals and investigating where the similarities or differences are

(in seismology for example (Vernon, 1989; Hough and Field, 1996), transfer functions in

electromagnetism (Constable and Constable, 2004), elastic thickness of the lithosphere

(Daly et al., 2004), etc.). In each of these cases, it is desirable to be able to obtain a

reasonable spectrum with little or no bias and small uncertainties.

As suggested above, all source parameters we have discussed above can be

obtained by analyzing the spectrum of the seismic signals, after other effects (attenuation,

directivity, etc.) have been accounted for. But the spectrum estimation of seismic signals

poses many difficulties. First, all the seismic waves we are interested in are transient

and, in the case of small earthquakes, the seismic phases (e.g., body waves) are contained

in a short segment within the record. Second, the signals have very high dynamic range,

which might lead to severely biased estimates due to spectral leakage, where frequency
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information with high amplitudes (e.g., close to the corner frequency) leaks into frequency

regions with low amplitudes. A final difficulty is that the signal is non-stationary; that

is, the statistical character of the data changes with position in the record.

It is standard practice to use the discrete Fourier transform (DFT) to estimate

the spectrum of a particular series. However, simply using the DFT and squaring to

obtain the spectrum, in other words using the periodogram, is a poor choice and should

never be done (for discussion about the choice of the periodogram, see Harris, 1978;

Thomson, 1982, and references therein). In general, it is much better practice to window

the time series with a taper before performing the DFT and squaring to reduce spectral

leakage.

Conventional tapers (in the time domain) used for spectrum estimation have

a bell-shaped curve (sometimes with a flat top) and tend to zero at the edges. This

approach has a major limitation, in that by applying a taper we are effectively discarding

significant statistical information in a given time series. The data points at the edges of

the record are down-weighted, while the data in the center is emphasized, which causes

the variance of the spectral estimate to be greater than that of the periodogram.

In Thomson (1982) a different method, called the multitaper spectral analysis,

was introduced. As its name suggests, the idea of the method is to use multiple orthog-

onal tapers to window the time series and reduce spectral leakage, and by applying the

DFT and squaring, obtain almost independent estimates of the spectrum, called eigen-

spectra. As shown in Thomson (1982) and in many other studies (Vernon, 1989; Park

et al., 1987b; Riedel and Sidorenko, 1995) as long as only one taper is used, there will

be a trade-off between the resistance to spectral leakage and the variance of a spectral

estimate.

The tapers are constructed to be leakage-resistant, and sample the time series

in different ways. The information that is discarded by the first taper (whose shape is

very similar to the conventional tapers) is partially recovered by the second taper, and

the information down-weighted by these two tapers is recovered by the third, fourth, etc.

As explained by Park et al. (1987b), single-taper spectral estimates have rel-

atively large variance (increasing as a larger fraction of the data is discarded and the

bias of the estimate is reduced) and are inconsistent estimates (i.e., the variance of the
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estimate does not drop as one increases the number of data points). In the case of single

taper methods a smooth estimate can be achieved by applying a moving-average, thus

reducing the variance, while at the same time reducing the frequency resolution and

increasing the bias of the estimate.

In the multitaper algorithm only a few tapers are used to construct the spectral

estimate. A weighted sum of the eigenspectra is formed, leading to a smooth estimate of

the spectrum with variance reduced due to the averaging process. By using the multiple

tapers, the estimator is also consistent. It has been shown in multiple cases that the

multitaper algorithm outperforms single-taper smoothed spectral estimates (Park et al.,

1987b; Bronez, 1992; Riedel and Sidorenko, 1995).

In terms of non-stationarity, the multitaper estimation is also a better choice.

Because single taper estimates weight the data in the center of the signal more, the

information present at the end of the signal is not used, which may lead to the misrepre-

sentation of the spectrum. Multitaper estimates discard much less data and are sensitive

to information from almost the entire signal.

Another very important feature of multitaper spectral estimates is the possibil-

ity of obtaining measures of uncertainties and confidence intervals from the data. Given

that we have almost independent eigenspectra, it is possible to obtain error estimates of

the spectrum and associated parameters (Thomson and Chave, 1991).

1.6 Objectives

The primary goal of this thesis is to develop methods to obtain better, more

reliable estimates of the seismic source parameters used to investigate the physics of

earthquakes. One of the issues in the physics of earthquakes is the scaling of static and

dynamic parameters and what this tells us about the rupture process. As mentioned

earlier, all these parameters and their scaling can be determined from the spectrum of

the seismic waves, and I will focus on using and improving the state-of-the-art multitaper

spectrum algorithm to obtain the most reliable parameter estimations.

The basic problem in earthquake source scaling can be observed in Figure 1.6.

The figure shows a compilation of different studies on the radiated energy and apparent



18

10 201812 14 16 22
log M0 (Nm)

1 652 3 4 87
Magnitude MW

Abercrombie [1995]

Prieto et al. [2004]

Pérez-Campos and Beroza [2001]

Kanamori et al. [1993] Mayeda and Walter [1996]

σ
a 

(M
Pa

)

10

1

0.1

0.01

10-3

Prieto et al. [2006b]

Figure 1.6: The scaling controversy on energy-seismic moment ratio and apparent stress
as first compiled by Ide and Beroza (2001). Each symbol denotes a different data set as
shown. In red, I added results from studies in the Anza region from Chapter 3 and the
M5.1 Anza earthquake from Chapter 4 with 95% confidence bounds.

stress scaling, ranging from very small earthquakes (M0.0) to very large ones (M8.0)

(Abercrombie, 1995; Mayeda and Walter, 1996; Kanamori et al., 1993; Pérez-Campos

and Beroza, 2001; Prieto et al., 2004; Shearer et al., 2006). The question is whether the

dynamic parameter is constant over this wide range of magnitudes or if there is a change

in behavior as the magnitude increases. Depending on the data you focus on, there could

be a linear increasing trend, but with the large scatter of the data, it is also possible to

have a constant scaling of the dynamics of the earthquake rupture.

I have not organized this thesis by the temporal evolution of my research, but

rather by topic. The first question that may arise from looking at Figure 1.6 is what

points can be believed? What are the error bars of each of these points? Is the large

scatter seen in these data points real, meaning that the rupture process may have very

different dynamic behavior even if the magnitude of the earthquakes is similar, or is this

scatter due to large uncertainties in the individual estimates?

Data shown in Figure 1.6 come from different regions (although most of them

are in California), the signal processing methods are quite different (e.g., time domain

in Kanamori et al. (1993); multitaper spectral analysis in Abercrombie (1995); and coda

wave envelopes in Mayeda and Walter (1996)) and earthquakes include strike-slip, thrust

and normal faulting, making them very difficult to compare.
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Many of the studies shown in the figure and many others published in the

literature lack the analysis of the uncertainties associated with the methodologies used

in the analysis of the seismic parameters. In order to compare two or more estimates, it

is of key importance to have an understanding of the uncertainties and assumptions of

the methods used.

Since this, to me, represents a major shortcoming of the present literature, in

Chapter 2 we present a method to obtain confidence intervals on earthquake source

parameters using the multitaper algorithm from single-station measurements. We discuss

the use of the jackknife variance applied to source parameter estimation, and show that

large uncertainties are expected even in the ideal conditions of deep borehole records. An

extension to multiple station measurements is also discussed. Chapter 2 has appeared

in Geophysical Journal International under the title ”Confidence intervals for earthquake

source parameters” (Prieto et al., 2007a). I participated as primary author in all phases

of the development of this research, including the programing of the computer algorithms.

Given that large uncertainties are expected (even in ideal conditions), we pre-

sent in Chapter 3 and Chapter 4 two different methods to improve the estimation of

the source parameters by taking advantage of the large number of earthquakes that occur

in southern California using the Anza Seismic Network in Southern California. Chap-

ter 3 and Chapter 4 are reformatted versions of the papers ”Earthquake source scaling

and self-similarity estimation from stacking P and S spectra” (in Journal of Geophysical

Research (Prieto et al., 2004)) and ”Uncertainties in earthquake source spectrum esti-

mation using empirical Green functions” (appeared in the AGU Monograph on Radiated

Energy and the Physics of Earthquake Faulting (Prieto et al., 2006)) respectively. In

both cases I was senior author and under the supervision of my co-authors developed

the research and computer codes that form the basis of these chapters.

In Chapter 3, we study the self-similarity and scaling relations of a cluster of

400 earthquakes in the range M0.5 to M3.4 by iteratively stacking spectra of P and S

waves. The iterative approach is aimed at separating the propagation effects from the

source spectra and, hence, be able to study the scaling properties. As I discussed above,

we study the scaling by looking at source parameters (e.g., M0, fc, ES , etc.) and their

relation, but also introduce a test on self-similarity, which is independent of the choice
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of parameterization of the earthquake spectra.

In Chapter 4, we investigate the problem of using Empirical Green functions

(EGF) to obtain the source spectrum and associated source parameters. We show that

the spectrum obtained via the EGF method has large uncertainties and introduce a

method to reduce the uncertainties by using multiple EGFs instead of a single one. The

method is applied to the 2001 M5.1 Anza earthquake in southern California.

The multitaper algorithm presented by Thomson (1982) reduces spectral leak-

age effectively, but suffers from local bias. By performing the weighted averaging of the

different eigenspectra as proposed by Thomson (1982), it is assumed that the spectrum

is white within a certain frequency band. As shown by Riedel and Sidorenko (1995),

there is considerable bias present due to the curvature of the spectrum. In Chapter 5,

we present an extension to the multitaper, which reduces the curvature bias and provides

additional information about the derivative or slope of the spectrum of a particular sig-

nal. We show that this Quadratic multitaper method provides improved estimates of the

spectrum, especially where strong structure is present, for example around the corner

frequency fc. Chapter 5 is under consideration for publication in Geophysical Journal

International as ”Quadratic Multitaper Spectrum” (Prieto et al., 2007b).

Chapter 6 summarizes the main conclusions of the thesis.

Acknowledgments

I would like to thank Greg Beroza and Luis Rivera and Luciana Astiz for

comments on early versions of this chapter. Funding for this research was provided by

NSF Grant number EAR0417983.



2

Confidence intervals for

earthquake source parameters

We develop a method to obtain confidence intervals of earthquake source pa-

rameters, such as stress drop, seismic moment and corner frequency, from single sta-

tion measurements. We use the idea of jackknife variance combined with a multitaper

spectrum estimation to obtain the confidence regions. The approximately independent

spectral estimates provide an ideal case to perform jackknife analysis. Given the partic-

ular properties of the problem to solve for source parameters, including high dynamic

range, non-negativity, nonlinearity, etc., a log transformation is necessary before per-

forming the jackknife analysis. We use a Student-t distribution after transformation to

obtain accurate confidence intervals. Even without the distribution assumption, we can

generate typical standard deviation confidence regions. We apply this approach to four

earthquakes recorded at 1.5 km and 2.9 km depth at Cajon Pass, California. It is nec-

essary to propagate the errors from all unknowns to obtain reliable confidence regions.

From the example, it is shown that a 50% error in stress drop is not unrealistic, and

even higher errors are expected if velocity structure and location errors are present. An

extension to multiple station measurement is discussed.

21
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2.1 Introduction

There is a long-standing controversy on whether stress drop increases with

earthquake magnitude or remains constant over a wide range of earthquake sizes (Aki,

1967; Archuleta et al., 1982; Kanamori et al., 1993; Abercrombie, 1995; Mayeda and

Walter, 1996; Ide and Beroza, 2001). The behavior of source parameters including stress

drop, corner frequency, radiated seismic energy and apparent stress are of key importance

in understanding the physics of earthquakes. However, it is difficult to estimate stress

drop reliably from seismograms since it is dependent on the cube of the corner frequency

fc and in turn, fc is dependent on an accurate account of seismic attenuation, path

effects, etc. These factors lead to considerable uncertainty in estimates of stress drop

and other source parameters.

Abercrombie (1995) used records from a 2.5 km deep borehole in Cajon Pass and

showed that the data supported a constant stress drop, but also an increasing apparent

stress with earthquake magnitude. Also from deep borehole data, Prejean and Ellsworth

(2001) reported a similar result. A magnitude dependency has been supported by some

studies (e.g., Kanamori et al., 1993; Mayeda and Walter, 1996; Mori et al., 2003). while

other studies have suggested scale independence (e.g., McGarr, 1999; Ide and Beroza,

2001; Ide et al., 2003), finding no evidence of increasing stress drop or apparent stress

with magnitude.

More recently Abercrombie and Rice (2005) revisited some of the Cajon Pass

seismograms and using both spectral fitting and Empirical Green Functions (EGF) con-

cluded that both apparent stress and stress drop may increase with increasing earthquake

size, but noted that the uncertainties were still large and scale independence could not

be entirely discarded.

So, what are the uncertainties of the estimated source parameters? Error analy-

sis for source parameters has been attempted before (e.g., Archuleta et al., 1982; Fletcher

et al., 1984) but seems to have been neglected more recently. Recently Prieto et al. (2006)

developed an approach to obtain uncertainties in earthquake source spectrum using EGF

and applied it to obtain confidence intervals of radiated seismic energy. As pointed out

by Tukey (1960):

Probably the greatest ultimate importance, among all types of statistical



23

procedures we now know, belongs to confidence procedures which, by making
interval estimates, attempt to reach as strong conclusions as are reasonable
by pointing out, not single likely values, but rather whole classes (intervals,
regions, etc.) of possible values, so chosen that there can be high confidence
that the ‘true’ value is somewhere among them. Such procedures are clearly
quantitative conclusion procedures. ...

In this paper we use the idea of the jackknife variance (Tukey, 1958) and follow

a similar recipe to the one applied for spectra (Vernon, 1989; Thomson and Chave, 1991)

to construct confidence intervals for earthquake source parameters. This is applied to

single station seismograms but can easily be extended to multiple station and spectral

ratios and EGF techniques. The confidence intervals are of paramount importance to

obtain meaningful scaling relations when different studies, regions, etc. are compared.

We present an example from data recorded at the Cajon Pass Borehole Ex-

periment Phase II with some records also used in Abercrombie (1997) and show the

resultant confidence intervals for stress drop and other source parameters for four small

earthquakes (Table 2.1) that were also recorded by the Southern California Seismic Net-

work (SCSN). Figure (2.1) shows a map with the relocated earthquakes and the borehole

location.

2.2 The Jackknife Method

The jackknife was first introduced by Quenouille (1949) and then named and

extended by Tukey (1958) to estimate variances. It is one of many resampling methods

used for statistical inference. One of the great advantages of the jackknife is that one

does not need to know the statistical distribution of the parameter in question and that

it works on complicated processes reliably (a detailed proof is given in Reeds, 1978). In

this paper we will use the so-called delete-one jackknife, which we will refer to simply as

the jackknife. A good review can be found in Miller (1974) and Efron (1982).

Assume X1, X2, . . . , XK are K independent random observations taken from

an unknown probability distribution characterized by a parameter θ which is to be

estimated. The estimate of θ using all observations is:

θ̂ = θ̂[X1, X2, . . . , XK ] (2.1)
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Let

θ̂_ı = θ̂[X1, . . . , Xi−1, Xi+1, . . . , XK ] (2.2)

be the delete-one estimate of θ, where the ith observation Xi is not used to estimate

θ̂ _ı . The data are thus subdivided in K groups of size (K − 1) by deleting each entry

in turn.

An important application of the jackknife was suggested by Tukey (1958), and

is the jackknife estimate of the variance of θ̂

var{θ̂} =
K − 1

K

K∑
i=1

[
θ̂_ı − θ̂_·

]2
(2.3)

where

θ̂_· =
1
K

K∑
i=1

θ̂_ı (2.4)

is the mean of the delete-one estimates (2.2). Although it has been proposed (Wu,

1986) that deleting an arbitrary number of observations might have better convergence

properties, we use throughout the paper the delete-one jackknife because of its simplicity,

efficiency and independence of an arbitrary chosen subdivision for the groups.

As suggested by Miller (1974) and applied in spectrum estimation (Vernon,

1989; Thomson and Chave, 1991) it is sometimes necessary to use a transformation that

stabilizes the variance, especially when the statistic being investigated is bounded or its

distribution is strongly non-gaussian. This can be important when estimating errors in

stress drop ∆τ , seismic moment M0, and corner frequency fc, all with a range [0,∞).

2.2.1 Jackknife in Regression Problems

Consider the regression problem for a basic model

Y = Aβ + e (2.5)

where Y, e are m sized vectors of the data and the errors, A is a m× p matrix from the

model, and β is a p size vector of the parameters we wish to find.

Miller (1974) examined the traditional jackknife approach by deleting rows of

both Y and A simultaneously and showed the asymptotic normality of the jackknife
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solution vector and its variance under general conditions. The delete-one estimate is

given by solving

Y_ı = A_ı β̂_ı (2.6)

where Y_ı and A_ı have the ith row removed. As will be clear in the subsequent

sections, the problem to solve for source parameters is non-linear and the model (2.5) is

not appropriate. Instead we have

yi = gi(β) + ei (2.7)

where gi is a nonlinear smooth function of the parameters in β (Fox et al., 1980; Wu,

1986). In an analogous way, we want to obtain the delete-one estimates β̂_ı that satisfy

(2.7) by means of one of many non-linear parameter estimation techniques (non-linear

least-squares, grid search, etc).

2.3 Multitaper Spectrum estimates

The multitaper spectrum algorithm was introduced by Thomson (1982) and

has been widely used in the geophysical community (e.g., Park et al., 1987b; Vernon,

1989; Chappellaz et al., 1990; Lees and Park, 1995; Abercrombie, 1995). The method

takes advantage of a family of orthogonal tapers which are resistant to spectral leakage.

Given a time series x(t) with N contiguous data samples and assuming unit

sampling, we multiply the time series by a sequence a(t) called a taper and apply a DFT

Y (f) =
N−1∑
t=0

x(t)a(t)e−2πift with
N−1∑
t=0

|a(t)|2 = 1 (2.8)

to obtain a direct estimate of the true spectrum S(f) of the signal

Ŝ(f) = |Y (f)|2 (2.9)

The question is then what taper to use? Is there a reason to prefer one taper over the

other?

Spectral leakage is the bias introduced by energy leaking from frequencies dif-

ferent from the frequency f for S(f). Now the question becomes: what taper a(t) has
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the greatest concentration of energy in its Fourier transform? Spectral properties of the

taper can be studied from its DFT

A(f) =
N−1∑
t=0

a(t)e−2πift (2.10)

The function |A(f)| for conventional tapers has a broad main lobe and a succession of

smaller sidelobes. The larger the sidelobes, the more spectral leakage is biasing Ŝ(f).

We can express the estimate in equation (2.9) as a convolution of the taper

transform (2.10) and the true spectrum S(f) (see Thomson, 1982; Park et al., 1987b, for

derivation):

Ŝ(f) =

1/2∫
−1/2

|A(f − f ′)|2S(f ′) df ′ (2.11)

The interpretation of this equation is as a convolution describing the smearing of the true

spectrum as a consequence of the discrete sampling. A good taper will have a spectral

window with low amplitudes whenever |f −f ′| gets large and large amplitudes whenever

|f − f ′| is small.

Slepian (1978) suggested choosing a frequency W , where 0 < |W | ≤ 1/2 (unit

sampling) and maximizing the fraction of energy of A at frequencies from (−W,W ). In

mathematical form this is equivalent to:

λ(N,W ) =

W∫
−W

|A(f)|2df

1/2∫
−1/2

|A(f)|2df

(2.12)

Since no finite time series can be completely band-limited, λ < 1. The spectral leakage

comes from the sidelobes of A(f) convolved with the spectrum outside the band (f −

W, f + W ). One can think of λ(N,W ) as the amount of spectral energy at Ŝ(f) that

comes from (f −W, f + W ) and 1− λ as the amount that comes from outside the band

or as the bias from outside the band.

We wish to maximize the value of λ by choosing A(f) appropriately. Substitute

(2.10) into (2.12) and represent a(t) by an N-vector of coefficients a; taking the gradient
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of λ with respect to a and setting to zero leads to the matrix eigenvalue problem:

D · a− λa = 0 (2.13)

where D is a symmetric matrix

D(t, t′) =
sin2πW (t− t′)

π(t− t′)
(2.14)

with eigenvalues 1 > λ0 > λ1 > · · · > λN−1 > 0 and associated eigenvectors vk(t;N,W )

called the Slepian sequences (Slepian, 1978). From now on we will drop the explicit

dependence on N and W .

The eigenvector with the largest eigenvalue is the best possible taper for the

suppression of spectral leakage, and in practice we find λ0 is usually extraordinarily close

to one. But in fact it can be proved that the first 2NW−1 eigenvalues are also very close

to one, leading to a whole family of excellent tapers. The multitaper method exploits this

fact by using all of these tapers rather than merely the first one. Because the eigentapers

are orthogonal (both in time and frequency domains), the estimates based on them are

statistically independent of each other and can therefore be combined together to yield

a more reliable overall estimate as we will explain.

In practice we choose a bandwidth W over which the spectrum is to be smoo-

thed, thus fixing NW , which is called the time-bandwidth product of the system under

study. For practical problems we always choose NW > 1, because we cannot expect to

obtain good concentration into a frequency band narrower than fR = 1/N , the Rayleigh

resolution.

Figure (2.2) shows the Slepian sequences and their Fourier transforms with cor-

responding eigenvalues for a time series with N = 100 samples, NW = 4, and W = 0.04

for unit sampling. The horizontal axis is shown in Rayleigh units, basically equivalent

to the frequency sampling. Figure (2.2) suggests that NW = 4 is equivalent to saying

that the smoothing will take place over NW Rayleigh bins around the frequency of in-

terest. Note that here we have assumed unit sampling – if that is not the case, then the

time-bandwidth product is actually ∆tNW = 4, where ∆t is the sampling rate, in order

to maintain the proper units of W .

Turning back to the spectral estimation problem, given a particular bandwidth
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W , we compute DFTs of the tapered data Yk(f), called the eigencomponents,

Yk(f) =
N−1∑
t=0

x(t)vk(t)e−2πift (2.15)

We generally use k = 1, . . . ,K, where K = 2NW − 1. As expressed above, the corre-

sponding eigenvalues are λk ≈ 1 with good leakage properties.

As suggested by Thomson (1982) we use the adaptive weighting procedure

Yk(f) = dk(f)Yk(f) (2.16)

and the corresponding adaptive spectral estimate

Ŝ(f) =

K−1∑
k=0

|Yk(f)|2

K−1∑
k=0

|dk(f)|2
(2.17)

where the weights dk(f) are chosen to reduce bias from spectral leakage. The frequency

dependent weights are useful in the analysis of high dynamic range spectral processes.

The weights work as follows. At frequencies where the spectrum is reasonably flat, the

weights dk(f) ≈ 1, thus reducing the variance of the spectral estimate by averaging over

all the eigencomponents Yk. At frequencies where the spectrum has a large dynamic

range the higher order eigencomponents might be biased and the weights reduce the

contributions from these components.

The optimal weights dk(f) can be found by minimizing the misfit between the

estimated spectrum and the true spectrum S(f). The approximate optimum weights are

dk(f) ≈
√

λkS(f)
λkS(f) + (1− λk)σ2

(2.18)

where σ2 represents the variance of the time series. The term (1 − λk)σ2 represents

an approximation to the bias from spectral leakage. Since we do not know the true

spectrum, we replace S(f) by an estimate Ŝ(f).

We find the weights and estimated spectrum Ŝ(f) by iteration. As an initial

estimate of S(f) we take the arithmetic average of the first two squared eigencomponents

|Y0(f)|2 and |Y1(f)|2 and substitute in (2.18) to obtain estimates of dk(f). The weights

are then used in (2.16 - 2.17) to obtain a new spectral estimate Ŝ(f) and this process is



31

repeated. Convergence is rapid and only a few cycles are necessary. Note that both the

tapers and weights are normalized in order to keep the spectrum in physical units.

The kth eigenspectrum is

Ŝk(f) = |Ŷk(f)|2 (2.19)

For the jackknife approach, we will use the Ŝk as the K independent estimates of the

spectrum. At each frequency f the multitaper estimate of the log spectrum is given by

ln Ŝ = ln

[
1
K

K∑
k=1

Ŝk

]
(2.20)

and we also define the delete-one spectrum

ln Ŝ_ı = ln

 1
K − 1

K∑
k=1,k 6=i

Ŝk

 (2.21)

The logarithmic transformation of the spectrum is suggested in Thomson and Chave

(1991), providing a more symmetric distribution than the standard χ2 for spectral esti-

mates.

2.4 Source parameter jackknife

A general source model of the displacement spectra of both P and S waves

(e.g., Abercrombie, 1995) is:

u(f) =
Ω0 e−(πft/Q)[

1 + (f/fc)
nγ]1/γ

(2.22)

where Ω0 is the long period amplitude, f is the frequency, fc is the corner frequency, n

the high frequency fall-off rate, γ is a constant, t is the travel time, and Q a frequency

independent quality factor. Modified versions of spectral shapes proposed by Brune

(1970) and Boatwright (1980) can be obtained by changing γ. Based on previous studies

of data from the Cajon Pass Borehole (Abercrombie, 1995, 1997) a value γ = 2 and a

variable fall-off n fits the spectra reasonably well. In this paper we will use

u(f) =
Ω0 e−(πft/Q)[

1 + (f/fc)
2n]0.5 (2.23)
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Following Ide et al. (2003) take the logarithm

lnu(f) = g(f ;β) (2.24)

= lnΩ0 − 0.5 ln(1 + (f/fc)2n)− πft

Q
(2.25)

where β is a vector of three components given by the parameters we are searching

for, namely Ω0, fc, Q. The function g(f, β) is clearly non-linear and some kind of non-

linear inversion is necessary. It is not the aim of this paper to discuss the difficulties

encountered in solving this problem, and we suggest reading Bard (1974) on nonlinear

parameter estimation, as applied to source physics (see Abercrombie, 1995; Ide et al.,

2003, and references therein).

The estimate β̂ of β using all observations (as in equation 2.1) is given by

the solution of (2.24) using the multitaper spectrum estimate (2.20). The delete-one

β̂_ı parameter instead uses the delete-one spectrum (2.21). The result is K delete-one

estimates of the long period amplitude, corner frequency and quality factor, denoted

respectively Ω0,_ı , fc,_ı , Q_ı .

2.4.1 Transformations

The use of transformations before performing the jackknife is in some cases

necessary. In terms of source parameters a logarithmic transformation should provide

more stable estimates of variance. Some reasons for this are as follows:

• The three seismic parameters are non-negative. If a simple Gaussian distribution

is assumed, the tails give a nonzero probability that a parameter is negative, which

is not physical. The jackknife does not constrain variances to be positive.

• As suggested by (Archuleta et al., 1982), if no transformation is performed, the

arithmetical average will be biased to the larger values, while taking a transformed

parameter gives equal weight to all independent estimates.

• A closer to normal distribution of the errors is achieved by such a transformation.

In this respect we will perform the jackknife on θ = ln Ω0 rather than Ω0.
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2.4.2 Confidence intervals

As a result of section 4.1 we obtain an estimate θ̂ = ln β̂ and the variance of

the transformed variable

σ̃2 = var{ln β̂} (2.26)

=
K − 1

K

K∑
i=1

[ln β̂_ı − ln β̂_· ]
2

(2.27)

where β̂_ı is any one of Ω̂0,_ı , f̂c,_ı , and Q̂_ı .

Tukey (1958) suggested that (ln β̂_ı − ln β̂_· )/σ̃ is nearly distributed as Stu-

dent’s t with K − 1 degrees of freedom for small samples. Hinkley (1977) on the other

hand stated that if the data have strongly nonnormal distributions, the Student t approx-

imation can lead to substantial errors. However, if the transformation performed leads to

more nearly normal distributions, the approximation is reasonably accurate (Davidson

and Hinkley, 1997). Note that this distribution is very close to the Gaussian distribution

and for 30 or more degrees of freedom they are almost indistinguishable. With this in

mind, the double-sided 1− α confidence interval of the long period amplitude is

Ω̂0 e−tK−1(1−α/2)σ̃ < Ω̂0 ≤ Ω̂0 etK−1(1−α/2)σ̃ (2.28)

and similar for f̂c and Q̂. If the Student t approximation is not appropriate for the

particular data, one can always simply plot the ±σ̃ bounds by adjusting (2.28). Note

that because of the transformation, the lower limit is never negative.

2.4.3 Seismic Moment, Source Radius and Stress Drop

Other important source parameters estimated from the spectrum are the seismic

moment (M0), the source radius (r) and the stress drop (∆τ) and are often calculated

assuming a circular fault (Brune, 1970; Madariaga, 1976), in which case

M0 =
4πρc3RΩ̂0

Uθφ
(2.29)

r =
kβ

f̂c

(2.30)

where a constant rupture velocity is assumed. From the mean estimates of the previous

two equations,

∆τ =
7M0

16r3
(2.31)
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where ρ, c, R, Uθφ, β are density, wave velocity, hypocentral distance, the mean radiation

pattern (0.52 and 0.63 for P and S waves) and the shear wave velocity at the source. k

is 0.32 and 0.21 for P waves and S waves respectively, assuming the rupture velocity is

0.9β (Madariaga, 1976).

We will assume that the parameters not associated with the source (shear wave

speed, density, etc.) are known exactly, that is, do not contribute to the uncertainties of

seismic moment, source radius and stress drop. We will use the idea of propagation of

errors (Taylor, 1997) to obtain confidence limits of these parameters.

We perform the propagation of errors in the log domain, since it is where we have

variance estimates of lnΩ0 and ln fc, denoted respectively σ2
Ω0

and σ2
fc

. The idea is to

obtain the variance of seismic moment σ2
M0

= var{lnM0}, source radius σ2
r = var{ln r},

and stress drop σ2
∆τ = var{ln∆τ}. After this, equation (2.28) can be used to obtain

confidence intervals. Some rules of propagation of errors are shown in the appendix.

The relation of errors between the source and spectral parameters are

σ2
M0

= σ2
Ω0

(2.32)

σ2
r = σ2

fc
(2.33)

and a more complicated relation is obtained for the stress drop, since it depends on two

variables

σ2
∆τ = σ2

M0
+ 9 σ2

r

= σ2
Ω0

+ 9 σ2
fc

(2.34)

where it is assumed that the covariance of Ω0 and fc is negligible. This relation was

used by Fletcher et al. (1984) to estimate uncertainties of stress drop using a multiplica-

tive error. Again, the bounds (either ±σ or confidence intervals using the Student t

approximation) can be transformed back to the linear domain using (2.28).

2.5 Application to Cajon Pass Data

Because attenuation can also cause fall-off at high-frequencies it is important

to correct observed spectra for Q effects. Full consideration of these effects is beyond our



35

8 131211109

4

8

-4

0

Time (seconds)
D

is
pl

ac
em

en
t (

m
ic

ro
ns

)

ML 3.5    Distance = 43.12 km

Z

H2

H1

Figure 2.3: Example seismogram of the largest event used in this study, ML3.5 recorded
at the deepest borehole sensor 2.9 km. Seismograms have been corrected for instrument
response and are flat to displacement between 2 and 300 Hz. Horizontal bars show the
choice of noise and P wave window.

focus here, therefore as a demonstration of the jackknife procedure to obtain variance

and confidence intervals we choose seismograms recorded at two different depths (1.5 and

2.9 km) at the Cajon Pass Borehole, where attenuation effects are relatively small and

have been previously modeled by Abercrombie (1995). The seismometers that recorded

this data set are 10-Hz L-15LA high temperature geophones, with sample rates of 1000

samples/sec.

Figure 2.3 shows displacement seismograms recorded at the 2.9 km depth sensor

for a ML3.5 earthquake 43 km away (ID 02 in Table 2.1). The spectrum is computed

for a 1 second window, starting 0.15 seconds before the P pick at the station, similar to

windows used in previous work (e.g., Abercrombie, 1995; Prieto et al., 2004; Abercrombie

and Rice, 2005) for small earthquakes.

For each of the three components (Z, H1, H2) we estimate the amplitude spec-

trum using a time-bandwidth product NW = 4 and work with K = 7 tapers. This means

we also compute for each component 7 delete-one spectra as in equation (2.21). The fi-

nal amplitude spectrum is then computed by vector summation of the three component

spectra, and similarly for the delete-one spectra.

Figure 2.4 shows the complete set of delete-one spectra for the ML3.5 earth-

quake recorded at the 2.9 km sensor. The spectra have been shifted for comparison.

In general the spectral shapes are very similar and only slight differences at very low
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Figure 2.4: The delete-one spectrum for the ML3.5 earthquake, from signal in figure
2.3 at the 2.9 km sensor. The spectra have been shifted for comparison purposes. All
spectra show a similar behavior and slight differences are seen. For each spectrum, the
delete-one corner frequency estimates are listed.

frequencies and roughness at higher frequencies are visible. Note that in Figure 2.4 the

delete-one spectra are plotted, which are not independent estimates. Only Ŝk(f) are

treated as independent, given the orthogonality properties of the Slepian tapers.

Here we have a good example of the properties of the multitaper algorithm.

The data from the Cajon Pass have a very strong 60 Hz signal. In this work, we have

N = 1000 samples, dt = 0.001, we chose NW = 4, the band W = 4 Hz and we use

K = 7 tapers. This means that the 60 Hz peak will be smoothed over the band between

56− 64 Hz. In Figure 2.4 we can see a very sharp discontinuity at 64 Hz due to the fact

that outside the band, very little energy is leaked to frequencies f > 64 Hz.

Following Abercrombie (1995) and Abercrombie and Rice (2005) we use Q =

1000 and correct the spectra before performing spectral fitting. We vary the fitting

bandwidth to obtain optimal fits, but the same bandwidth is used for all delete-one

spectra and the average spectra. An example fit to the model (2.25) is shown in Figure

2.5 for the largest and smallest earthquake in this study. Note however that the 1.5 km

sensor data are used for the small earthquake, due to complicated resonances present at
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correction was previously performed, using Q = 1000 as suggested by Abercrombie
(1995).

the 2.9 km sensor spectra that may have affected the results.

As in Abercrombie and Rice (2005) we use density ρ = 2700 kg/m3, α = 6000

m/s and β = α/
√

3 and using equations (2.29 to 2.31) we estimate the source parameters

M0, fc, r,∆τ from the average spectra and the jackknife parameters (e.g., M0,_ı ) from

the delete-one spectra to get the jackknife variance and confidence intervals. Table 2.2

shows the source parameters and 5-95% confidence limits. Figure 2.6 shows plots of

seismic moment and corner frequencies and seismic moment and stress drop for the data

used in this paper.

It is important to note the assumptions and unknowns in the calculations. For

example, we have assumed that the wave speeds (α, β) are known exactly. If there are

errors (and certainly there are) associated with the wave speed, errors will propagate to

M0, r and subsequently to the stress drop. Assuming a 5% error in the S wave speed,

thus affecting the radius uncertainties (and rupture speed), the confidence region for the

stress drop for the ML3.5 earthquake recorded at 2.9 km sensor would be (47, 108), a

change of about 10%. Other sources of errors for this example include the attenuation

correction, the constant Q assumption used, earthquake location errors, radiation pattern
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and directivity, etc. Perhaps most importantly, we assume the validity of the source

model; our method provides an estimate of the errors in ∆τ with respect to random

fluctuations in the data but is not a test of the validity of the model itself.

2.5.1 Extension to multiple stations

A generalization of the jackknife to multiple stations is desirable. A major

source of uncertainty would be directivity, because as expected from directivity, the

pulse width of the source time functions is narrower in the direction of rupture and

broader in the opposite direction, also changing the corner frequency (e.g., McGuire,

2004).

One approach is to treat the different station estimates of corner frequencies fc

and seismic moment M0 as independent, and, after suitable transformations, compute

confidence intervals as explained in sections 2 and 4. If the earthquake source spectrum is

simple (no directivity effects, radiation pattern correctly accounted for, etc.) all stations

would return a similar estimate, thus having small uncertainties, while if there is strong

directivity, certain stations will have considerably different corner frequencies, increasing

uncertainties. A recipe for a multiple station jackknife of fc is as follows:

(1). Compute fc for every station that recorded the earthquake.

(2). Use the log transformation.

(3). Compute a mean ln f̂c (eq. 2.1).

(4). Compute delete-one ln f̂c,_ı (eq. 2.2).

(5). Compute variance var{ln fc} = σ2
fc

(eq. 2.3).

(6). Obtain confidence intervals (eq. 2.28).

A similar approach could be used for other parameters such as long period

amplitude Ω0, Q, etc. Propagation of errors (eqs 2.32 to 2.34) is necessary to obtain

confidence intervals on seismic moment, source radii and stress drop.
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2.6 Conclusions

In estimating source parameters from the seismic spectrum, it is important

not only to obtain a measure of the source parameters but also to obtain a measure

of the uncertainties, by means of confidence intervals. The jackknife is a reliable way

of estimating the variance of source parameters, and, given suitable transformations,

confidence intervals. It should be easy to extend this approach to multiple station studies,

where other sources of error include the radiation pattern and directivity effects which

might generate different corner frequencies and radiated energy.

We calculate source parameters and confidence intervals for four small earth-

quakes as an example of the use of the jackknife approach. The error analysis is necessary

if the data are to be used to constrain rupture models (Abercrombie and Rice, 2005),

examine scaling relations and the size dependence of earthquake parameters, in order to

conclude, within a reasonable reliability, something about the physics of earthquakes.

From Figure (2.6) there appears to be a slight increase of stress drop with

earthquake magnitude, which, unless the errors are kept small, would pass unnoticed.

Note also that the larger uncertainties are associated with the 1.5 km sensor, compared to

at 2.9 km. If some of the assumptions such as radiation pattern and earthquake location

contribute to the errors, the stress drop scaling would be less apparent, suggesting the

need to find ways of reducing uncertainties.

The M3.5 earthquake (ID02) was recorded at two different depths and the

corner frequency confidence regions barely overlap. This variation is likely explained

by other sources of error such as near site effects at the shallower station. This also

shows that even stations close to each other may have very different estimates of source

parameters and uncertainties are needed to address the significance of these estimates.
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Earthquake source scaling and self-similarity

estimation from stacking P and S spectra

We study the scaling relationships of source parameters and the self-similarity

of earthquake spectra by analyzing a cluster of over 400 small earthquakes (ML = 0.5

to 3.4) recorded by the ANZA seismic network in southern California. We compute P ,

S and pre-event noise spectra from each seismogram using a multitaper technique and

approximate source and receiver terms by iteratively stacking the spectra. To estimate

scaling relationships, we average the spectra in size bins based on their relative moment.

We correct for attenuation by using the smallest moment bin as an empirical Green’s

function (EGF) for the stacked spectra in the larger moment bins. The shapes of the

log spectra agree within their estimated uncertainties after shifting along the ω−3 line

expected for self-similarity of the source spectra. We also estimate corner frequencies

and radiated energy from the relative source spectra using a simple source model. The

ratio between radiated seismic energy and seismic moment (proportional to apparent

stress) is nearly constant with increasing moment over the magnitude range of our EGF

corrected data (ML = 1.8 to 3.4). Corner frequencies vary inversely as the cube root of

moment, as expected from the observed self-similarity in the spectra. The ratio between

P and S corner frequencies is observed to be 1.6 ± 0.2. We obtain values for absolute

moment and energy by calibrating our results to local magnitudes for these earthquakes.

This yields a S to P energy ratio of 9 ± 1.5 and a value of apparent stress of about 1

MPa.

42
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3.1 Introduction

A major question in seismology is whether the faulting mechanism of large

and small earthquakes involves different physics. That is, is a M = 8 earthquake just

a M = 2 earthquake scaled upward by a large factor or is something fundamentally

different occurring? Aki (1967) proposed scale invariance of the rupture process, con-

sistent with observations that many geological processes are similar over a wide range

of scales (Abercrombie, 1995). There is currently a debate regarding whether earth-

quakes are truly self-similar over their entire size range or if systematic departures from

self-similarity are observed (see, for example Abercrombie, 1995; Ide and Beroza, 2001).

Thus, although many mechanisms have been proposed for differences in the physics of

larger earthquakes, including shear melting (Jeffreys, 1942; Kanamori and Heaton, 2000),

acoustic fluidization (Melosh, 1979), rough fault sliding-induced normal stress reduction

(Brune et al., 1993), fluid pressurization (Sibson, 1973), and elastohydrodynamic lubri-

cation (Brodsky and Kanamori, 2001), the need for different mechanisms is not yet firmly

established.

Studies of earthquake scaling generally involve comparisons between static mea-

sures of size (e.g., moment) and dynamic measures of size (e.g., energy). Both measures

are typically derived from spectra of seismograms recorded at some distance from the

earthquakes. Because moment is obtained from the low frequency part of the spectra, it

is usually measured much more reliably than energy or corner frequency measurements,

which require the high-frequency part of the spectra where correcting for attenuation

and other path effects can be difficult. Current estimates of seismic moment made inde-

pendently from local, regional and teleseismic data usually agree within about a factor

of two. In contrast, estimates of seismically radiated energy by different investigators for

the same earthquake often differ by more than an order of magnitude (e.g., Singh and

Ordaz, 1994; Mayeda and Walter, 1996).

This uncertainty in seismic energy leads to different interpretations of the en-

ergy density of earthquakes, as measured by the Energy/Moment ratio, which is often

scaled by rigidity to represent the apparent stress. Several authors find evidence that

apparent stress increases with magnitude (Kanamori et al., 1993; Abercrombie, 1995;
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Mayeda and Walter, 1996; Izutani and Kanamori, 2001; Mori et al., 2003) while others

argue that apparent stress is approximately constant (Choy and Boatwright, 1995; Mc-

Garr, 1999; Ide and Beroza, 2001; Ide et al., 2003). Constant apparent stress implies

similar physics for small and large earthquakes, while increasing apparent stress with

magnitude implies that large earthquakes are more efficient radiators of seismic energy

than small ones.

Our approach here is to improve the reliability and stability of source spectra by

stacking and averaging thousands of records from the Anza seismic network in southern

California. We use a simple method (Warren and Shearer, 2000, 2002) to isolate the

relative source spectra from the path and site effects by stacking the computed log

spectra after subtracting the appropriate path-site terms. This approach is also similar

to that used by Andrews (1986) to analyze spectra of the 1980 Mammoth Lakes California

earthquake sequence. Rather than obtaining an absolute measure of individual source

spectra, we obtain relative shapes of spectra with respect to other earthquakes. We then

stack the spectra in bins of similar moment to obtain average spectra (and estimated

uncertainties) as a function of earthquake size and apply attenuation corrections using the

smallest earthquakes as empirical Green’s functions (EGF) (e.g., Mueller, 1985; Hough,

1997). The resulting spectra are sufficiently smooth that direct tests of the self-similarity

hypothesis are possible, as well as measurements of corner frequency and energy. All of

our results indicate self-similarity is closely obeyed over the ML = 1.8 to 3.4 size range

of our EGF corrected data.

3.2 Data Processing

We used records from the Anza seismic network (Berger et al., 1984; Vernon,

1989) [Berger et al., 1984; Vernon, 1989], 9 high-quality, three-component stations lo-

cated on hard rock sites near an active part of the Clark Lake segment of the San Jacinto

fault in southern California (Figure 3.1). We began this study by selecting about 800

earthquakes located in a tightly clustered volume (4.5 km sided area, with most of the

events between 5 and 12 km depth) near the Toro Peak station (TRO) and 50 km from the

most distant station (RDM). In this region, the database is complete to about ML ≥ 0.5
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Figure 3.1: Map showing the cluster of over 400 earthquakes (small black dots) and
ANZA stations (solid triangles) used in this study. The inset shows the location of the
study area (rectangle) in the state of California.

with generally good signal-to-noise ratio records. The earthquakes occurred from 1983

to 1993, at which time the network recorded at 250 samples per second with Geospace

HS–10 2–Hz seismometers. We selected a relatively compact group of earthquakes so

that the path to each station would be similar between different earthquakes, permitting

the use of simple corrections for attenuation and other path effects.

We use both P and S waves and select time windows for P on the vertical

component and time windows for S on all three components. Both windows start 0.5

seconds before the analyst pick of the arrival, with a total window length of 1.28 seconds.

We also select a noise window of the same length, with the last data point just before

the P -wave window. The velocity spectrum is estimated using the multi-taper algorithm

(Park et al., 1987b) and then corrected for the instrument response function. The S wave

spectrum is calculated as the vector summation of spectra from all three components.

Figure 3.2 shows an example of this process for a vertical-component record from station

FRD.

We apply a signal-to-noise ratio cutoff, where we use spectra only when the

mean ratio is greater than 5.0 in the 0–80 Hz frequency band and the ratio is greater
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Figure 3.2: Example of computed spectra from the largest magnitude earthquake in
the study area (ML = 3.4) recorded at station FRD, vertical component. (a) The time
series, with horizontal bars showing the noise, P , and S windows used to compute the
spectra; in this case the S-wave shows up more clearly on the horizontal components.
(b) Spectra for the windows shown in (a), computed using a multitaper method. Note
the rapid decrease in signal to noise ratio at the higher frequencies.

than 3.0 at 80 Hz. At higher frequencies, the signal to noise ratio decreases very rapidly

(see Figure 3.2), so we limit our analysis to frequencies below 80 Hz. After applying

the cutoff, we have 2735 records (including both P and S waves) from 470 earthquakes.

Because of their larger amplitudes, the S waves have generally higher signal-to-noise

ratios than the P waves; thus our signal-to-noise cutoff excludes P waves from the

smallest earthquakes in our data set, which are represented only by S wave spectra.

One possible concern is that P -wave coda may be contaminating the S-wave

window. This potential source of bias is likely to have its largest effect on the closest

stations where the S − P time is the smallest. To test what effect this may be having

on our results, we repeated our analyses using subsets of the data where we removed the

closest, the two closest and the four closest stations from the source region. Although

there was some increase in the variability of the stacked spectra as we reduced the number
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of data in the stacks, there were no systematic changes in the S spectral shapes. Thus

it does not appear that P contamination of S is a significant factor in our analyses.

Since multiple stations record every earthquake and many earthquakes are re-

corded at each station, we can isolate the source and receiver contributions to the spectra.

Because our source region is relatively compact, the receiver contributions will also in-

clude most of the path effects. Following the method described by Warren and Shearer

(2002) it is possible to isolate the relative source spectrum (Figure 3.3) if we assume

that the observed spectrum Dij(f) from each source and receiver (denoted Si for the

ith earthquake and Rj for the jth station) is a product of source effects and path-site

effects. We iteratively stack all log spectra from each earthquake, after removing the

appropriate station term, to obtain the earthquake term:

log(Si) =
1
n

n∑
j=1

[log(Dij)− log(Rj)] (3.1)

and we also stack all log spectra from each station, after removing the earthquake term,

to obtain the path-station term:

log(Rj) =
1
m

m∑
i=0

[log(Dij)− log(Si)] (3.2)

where Dij is the computed spectrum, Si the earthquake term for the ith earthquake and

Rj the path-station term for the jth station. Since the earthquake term and the path-

station term are dependent upon each other, we solve the set of equations iteratively

until we reach a stable result, where the fractional change in either the source or path-

station terms is less than 10−4. We normalize the average log source spectra for all our

earthquakes to unity, as a starting point for the iteration process. In practice we are

mapping the deviations of the source spectra from this reference flat spectrum.

After source and path-station terms are separated we obtain 470 relative source

spectra and 9 path-station spectra (separately for P and S waves). Figure 3.4 shows the

P and S path-site spectra for nine different stations. Because we have not yet assumed a

source model (e.g., ω−2, etc.), the shape of each of these spectra will include both source

and attenuation contributions. The information is contained in the differences between

these curves, which are significant because all of the stations recorded the same set of

earthquakes. Variations in attenuation among the stations can be seen in the position at
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Figure 3.3: Cartoon explaining how spectral stacking is used to obtain the earthquake
term, as in Warren and Shearer (2002). If a given earthquake (star) is recorded at
stations A, B, and C (Figure 3a), the earthquake term is computed by stacking the log
spectrum from earthquake 1 computed for stations A, B and C after removing the path-
station terms for these stations (Figure 3b). An analogous procedure is used to compute
the station terms.

which the spectra begin to falloff at high frequencies. For example, it is clear that station

SND, located within 100 meters of the surface trace of the San Jacinto fault, records a

more attenuating path than station FRD, despite the fact that FRD is located slightly

closer to the earthquake cluster. In general, there is no clear distance dependence to the

observed path-station spectra, suggesting that local site effects beneath each station are

dominating the spectral differences among the stations.

Each of the 470 relative source spectra represents the average log spectra of all

stations recording the earthquake, after correcting for differences among the path-station

terms. To study how these source spectra vary as a function of earthquake size, we divide

our data into 20 bins in relative moment, which is estimated from the low-frequency
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Figure 3.4: Examples of path-station terms for P (solid line) and S (dashed line)
waves. In parenthesis is the number of earthquakes recorded at each particular station.
Note that the path-station term for the S-waves is always larger, reflecting the higher
amplitude of S compared to P .

spectral amplitude. Because our S-wave data span a larger total moment range than

the P -wave data, the moment range within each S-wave bin is larger than in the P -wave

bins. At this stage in our analysis, we do not compare P and S amplitudes directly;

rather we process the P and S spectra separately and obtain independent results for

each phase (later comparisons between P and S corner frequencies will jointly consider

the data).

Selected S wave results are plotted in Figure 3.5a. Each binned source spectra

is the result of averaging between 1 and 86 earthquake spectra (each of which is itself a

stack of spectra from different stations recording the earthquake). The resulting binned

source spectra are much smoother than the individual spectra that go into the stacks.

There are generally many more earthquakes in the bins at smaller moments because of

the much larger number of smaller earthquakes in the data set. The relative moments

among the bins can be seen in the low frequency limit of the spectra (i.e., at about
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Figure 3.5: Relative source spectral shapes for some selected bins. In Figure 3.5a the
shapes are relative to the average spectra, which was forced to have a constant log am-
plitude of 1; numbers to the left of each spectra indicate the number of earthquakes in
that particular bin. Figure 3.5b shows the corrected source shapes, after applying the
smallest magnitude bin as an empirical Green’s function (EGF). To avoid passing un-
wanted line components present in the smallest bin, we smoothed the reference spectrum
with a 20 point moving average before subtracting it from the data.

1 Hz). These moments are not evenly spaced in Figure 3.5 because the moments of

the earthquakes within each bin are not always evenly distributed. We use a bootstrap

technique that randomly resamples the earthquakes within each source spectral bin in

order to estimate uncertainties on the binned spectra, and later to estimate uncertainties

on properties, such as corner frequency and energy, that we compute from these spectra.

As in the case of the path-site terms, the absolute shape of the spectra plotted

in Figure 3.5a is unconstrained (owing to the intrinsic tradeoff between the average

source spectrum and the average path-site response function). We resolve this tradeoff

in our iterative method by forcing the average source spectrum to unity. This is why the

spectra for the small earthquake bins curve upward at high-frequency. This indicates

that, as expected, these earthquakes have a shallower falloff at high frequencies compared
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to larger earthquakes. To obtain an estimate of the true spectral shapes of the sources,

we use the smallest moment bin as an empirical Green’s function (EGF) for all the other

bins.

Figure 3.5b shows the results of subtracting the log spectra of the smallest bin

from the others. These EGF corrected spectra have the features expected for source

spectra—a flat response out to a corner frequency that increases with decreasing earth-

quake size, and a rapid falloff beyond the corner frequency. As we will discuss later this

falloff closely agrees with the Brune ω−2 source model (Brune, 1970). We plot all of

the EGF corrected spectra in Figure 3.5, but our later analyses will focus only on those

bins at least one order of magnitude larger in moment than the EGF reference bin. For

comparison, Mori et al. (2003) used a M ∼ 1.5 smaller EGF and Frankel et al. (1986)

used earthquakes with M ≤ 2.1 as EGF of M ∼ 3 earthquakes. As previously noted, due

to signal-to-noise limitations, we do not use P -wave data from the smallest earthquakes

so the smallest P -wave EGF bin represents the same bin as the third smallest S-wave

EGF bin.

3.3 Implications of Self-Similarity

Before further analysis, it is instructive to consider the predicted effects of

earthquake self-similarity on recorded spectra (e.g., Aki, 1967). Figure 3.6 illustrates

the expected change in the pulse shape and spectrum for an earthquake rupture that is

increased in size by a factor b. Assuming the dimensions of the larger rupture are scaled

proportionally, then the fault area, A, will increase by a factor b2, the displacement,

D, will increase by b, and the moment, M0 = µDA, will increase by a factor of b3.

Figure 3.6b shows the resulting change in a displacement pulse, u(t), recorded in the far

field, assuming identical source and receiver locations and no attenuation. The exact

form of the shape of this pulse depends upon details of the source, but, assuming simple

scaling between the two earthquakes, the pulse shape will change in a predictable way. In

particular, assuming the rupture speed is constant between the earthquakes (as simple

self-similarity predicts), the pulse length will increase by a factor of b and the pulse

height will increase by a factor of b2. This is necessary in order for the moment, which
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is proportional to the integrated area under the pulse, to increase by b3.

It follows that the displacement pulse, u∗, recorded by the second earthquake

can be expressed as

u∗(t) = b2u(t/b) (3.3)

where u(t) is the recorded displacement pulse of the first earthquake. The seismic energy,

Es, in the recorded pulse will be proportional to
∫

u̇2(t) dt (the integrated square of the

slope of the pulse), so the second pulse will contain a factor b3 more energy than the

first pulse. Thus the energy density (Es/M0) remains constant.

Using the similarity theorem for the Fourier transform, it follows that the spec-

trum of the second earthquake is given by

u∗(ω) = b3u(bω) (3.4)

where u(ω) is the spectrum of the first earthquake. This relationship predicts that the

shape of all spectra on a log-log plot will be identical, but offset along a line of ω−3

(Figure 3.6c).

This provides a possible test of self-similarity that does not depend upon any

assumptions regarding which source model is most appropriate (ω−2, ω−3, etc.). We

perform this test (Figure 3.7) by shifting the EGF corrected spectra along an ω−3 line and

find that the shapes are in agreement within their estimated uncertainties. Furthermore,

there is no systematic dependence with moment exhibited in the alignment of the binned

spectra (Figures 3.7c and 3.7d). The P -wave spectra do not align as closely as the S-wave

spectra at low frequencies (≤ 1 Hz) because the individual P -wave stacks are not flat at

low frequencies (Figure 3.7a). Although we do not fully understand the reason for this

behavior, the shapes of the P spectra are nonetheless similar within their uncertainties.

It is likely that this anomaly in the P -wave spectra is related to decreasing signal-to-noise

ratios at low frequencies, which could bias the EGF reference stack because it is derived

from the smallest earthquakes.

The S-wave spectra are noticeably smoother and provide our most reliable

constraints on the similarity of the spectra as a function of moment. This is the most

fundamental result in our study and suggests the self-similarity hypothesis is valid for

our data set. The great advantage of this analysis is that we can check if spectral shapes
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Figure 3.6: An illustration of the effects of self-similarity when an earthquake is in-
creased in size by a factor of b. (a) The rupture area increases by b2, the displacement
by b and the moment and energy by b3. (b) A recorded far-field displacement pulse will
increase in length by b and in height by b2. (c) Log-log plots of the spectra will have
identical shapes, but shifted along an ω−3 line.
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are self-similar or if there are systematic differences in the shapes as magnitude increases,

without assuming a particular model of corner frequency and high-frequency falloff. In

contrast, conventional methods for making inferences about source scaling are heavily

focused on parametric data derived from the spectra rather than the spectra themselves.

These parameters do, however, provide further insight regarding source properties.

Implicit in our spectral comparisons is that the focal mechanisms and rupture

directions do not vary systematically between smaller and larger earthquakes because

this could bias the results obtained at particular stations. We have not examined the

focal mechanisms for our earthquakes but have no evidence that this is the case. Such

problems are likely to be minimized in our analysis because we are averaging results from

many stations at different azimuths and distances from the earthquakes. Furthermore

it seems unlikely that these possible biases would have the effect of producing appar-

ent self-similarity in our measured spectra without self-similarity being present in the

earthquakes themselves.

3.4 Source Parameter Modeling

The source parameters seismic moment (M0), corner frequency (fc) and radi-

ated energy (Es) can be estimated from the source spectra and are important in the

understanding of the physics of the earthquake source, as well as for computing appar-

ent stress (σa), defined as µEs/M0, where µ is the rigidity. If self-similarity holds, as

tested in the previous section, this ratio should remain constant over the same range of

magnitudes.

We initially fit our P and S displacement spectral stacks with a general source

model (e.g., Abercrombie, 1995):

u(f) =
Ω0[

1 +
( f

fc

)γn
]1/γ

(3.5)

where Ω0 is the long-period amplitude (relative seismic moment), f is the frequency,

fc is the corner frequency, n is the high-frequency falloff rate and γ is a constant. We

allowed the values of n to vary while using γ=1 as well as γ=2, that is we experimented

with both the Brune (1970) and Boatwright (1980) models, allowing the falloff term to
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Figure 3.7: EGF corrected stacked spectra for bins of different source moment, showing
the self-similarity of the spectra when shifted along an ω−3 line. (a) P -wave spectra and
(b) S-wave spectra, with 1-σ error bars estimated using a bootstrap resampling method.
The spectra shifted along an ω−3 line (dashed lines at left) for (c) P -waves and (d)
S-waves. The spectra agree in shape within their estimated errors, consistent with the
earthquake self-similarity hypothesis.
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vary as well as corner frequency and relative seismic moment. We used a grid search

technique to find the best-fitting set parameters (Ω0, fc, n, and γ). We restricted this

procedure to those size bins that have relative moments ten times larger than that of

the EGF bin (see Figure 3.5).

In general we found that a simple ω−n model (i.e., γ = 1) worked reasonably

well with values of n ranging from 1.8 to 2.2 (i.e., very close to the Brune ω−2 model), and

that allowing additional free parameters did not significantly improve the fit. Predictions

obtained using γ = 2 yielded spectra with sharper corners than are seen in our stacked

spectra. It is possible that individual events have spectra with these sharp corners, but,

given some variability in the positions of the corners, the corner is smoothed and widened

in the stacks over many events so that the Brune model gives the best fit. We therefore

used the model

u(f) =
Ω0

1 + (f/fc)
n (3.6)

and solved for the best-fitting Ω0, fc and n for the results presented here (see Figure 3.8

for examples of the resulting fits to the stacked spectra).

The radiated seismic energy is proportional to
∫

u̇2(t) dt, the integrated square

of the measured velocity. We perform this calculation in the frequency domain by con-

verting the displacement spectra to velocity, squaring and integrating (e.g., following Ide

and Beroza, 2001), being careful to extrapolate to very high frequencies using the model

falloff rate. In this study we compute energy from the best fitting model rather than

directly from the data, i.e., we use

I =

∞∫
0

[
2πfΩ0

1 + (f/fc)
n

]2

df (3.7)

where I is the relative seismic energy. Because we are integrating the model predicted

spectrum rather than the data, we can extend the upper integration limit to a sufficiently

high frequency to avoid any underestimation of the energy.

3.5 Calibration to absolute moment and energy

Our results described so far involve only relative estimates of moment and

seismic energy. To obtain absolute measures of these parameters directly from our data,
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Figure 3.8: EGF corrected stacked spectra and best-fitting source models for (a) P -
waves and (b) S-waves. For clarity only some of the moment bins are plotted.

we would need to apply corrections for geometrical spreading, radiation pattern, free-

surface, and source-receiver impedance contrast effects. Because these corrections are

often difficult to estimate precisely, this will introduce considerable uncertainty into

our results. However, because our earthquakes are in a single compact region, these

correction factors are likely to be highly correlated, implying that relative measures of

moment and energy among our earthquakes are determined more accurately than their

absolute level. Thus, our most precise results involve relative measurements among

our earthquakes. However, for comparisons to other studies it is useful to have some

measure of absolute moment and energy. Our approach to this problem is to exploit

the fact that these earthquakes were also recorded by the Southern California Seismic

Network (SCSN), which provides well-calibrated local magnitude estimates (moment is

not routinely computed for earthquakes this small).

Assuming that ML ≈ MW , we can estimate moment M0 using the Kanamori

(1977) relation

MW = (2/3) log10 M0 − 10.7 (3.8)

In this way, we can compute a scaling factor to relate our relative moment estimates Ω0

to local magnitude and to true moment M0. A comparison between SCSN mean catalog

ML versus our estimated ML (Figure 3.9) shows a linear relationship with a slope close

to unity, as expected if the 2/3 factor in (3.8) is accurate. Previous studies have shown
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Figure 3.9: A comparison between ML as measured by the southern California Seismic
Network (SCSN) and ML as estimated from our relative moment measures using an
empirical scaling factor.

that in the magnitude range of our data set, a linear relation between log(M0) and MW

fits the data in Southern California, although with some variations on the 2/3 factor (see

Hanks and Boore, 1984; Abercrombie, 1996, for more detailed discussion). A change in

the scaling factor would change the absolute moment magnitude after calibration, but

the relative moment between the different earthquake bins should remain constant.

Now consider the theoretical relationships for M0 and Es for a double-couple

source in the far field in a uniform wholespace. The standard formula (e.g., Aki and

Richards, 1980; Kanamori and Rivera, 2004) for the moment in this case is

M0 = 4πρc3r cU
−1
φθ Ω0 (3.9)

where ρ is the density, c is the seismic velocity (either α for P wave or β for S wave),

r is the source-receiver distance, cUφθ is the radiation pattern, and Ω0 is the observed

long-period amplitude. Now assume that we know M0, ρ and c independently. We can

then rewrite (3.9) as
cUφθ

r
= 4πρc3 Ω0

M0
(3.10)

Note that 1/r represents a geometrical spreading term that could be generalized to a

more complicated model.



59

For the same whole-space double-couple model, the radiated seismic energy

may be expressed as (e.g., Boatwright and Fletcher, 1984)

Ec
s = 4πρcr2 〈cUφθ

2〉
cUφθ

2 I (3.11)

where 〈cUφθ
2〉 is the mean over the focal sphere of (cUφθ)2 (= 4/15 for P waves and 2/5

for S waves) and I is the measured relative energy (i.e., the integrated velocity squared).

Because this equation involves the ratio of cUφθ and r we can use (3.10) to obtain

Ec
s =

〈cUθφ
2〉

4πρc5
M2

0

I

Ω2
0

(3.12)

which is independent of the geometrical spreading and radiation pattern terms. This

equation remains accurate if free-surface corrections are applied or if the instrument

gain is incorrectly known, provided M0 is determined independently. In the case where

ρ and c vary between source and receiver, carrying through the impedance correction

terms shows that (3.12) is still valid provided ρ and c are taken at the source.

Because the estimated energy varies inversely as c5, the results are very sensitive

to errors in velocity at the source. A 15% error in c will produce about a factor of two

error in Es. In this study we use α = 6.0 km/s, β = α/
√

3, and ρ = 2.7 kg/m3, which

leads to the value µ = 3.24×1010 Pa. The values of velocity are very close to those from

a 3-D seismic velocity inversion (Scott et al., 1994) for the source region. We estimate

the uncertainty in our source velocity estimates to be less than 5%.

The total radiated seismic energy is obtained by adding the energy for P and

S waves

Es = EP
s + ES

s (3.13)

Finally it is important to recognize that absolute energy estimates are also very sensi-

tive to attenuation corrections. We assume here that the EGF approach has correctly

removed attenuation effects, but this remains another possible source of uncertainty in

our results.

3.6 Results for corner frequency and apparent stress

To compare P and S corner frequencies, we performed a separate analysis in

which the relative moment of each earthquake was estimated from both the P and S
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spectra so that the same earthquakes would be contained in each moment bin. As

discussed in the previous section, this relative moment will later be calibrated with esti-

mates of moment from local magnitude determinations. We find that the P wave corner

frequencies determined here are systematically higher than those estimated for S waves

from the same earthquakes (Figure 3.10). The ratio fc(P )/fc(S) is about 1.6 (individual

measurements range from 1.3 to 2.0), consistent with the model of Madariaga (1976) and

very close to values determined using borehole recordings at 2.5-km depth in the Cajon

Pass, California by Abercrombie (1995). This ratio is likely to correspond principally to

source effects since attenuation and other path-site effects have been removed.

As analyzed by Abercrombie (1995) the ratio of S to P wave energy (known as

q) is also very important. From Boatwright and Fletcher (1984) we have

q =
3
2

(
α

β

)5( fc(S)
fc(P )

)3

(3.14)

where fc(S) and fc(P ) are the corner frequencies for S and P (which are assumed to

have the same falloff rate at high frequencies). Note that q = 23.4 for a Poisson solid if

the corner frequencies are identical. In our study, fc(P ) is about 1.6 times larger than

fc(S), reducing the predicted value of q to about 6.

Our estimated P and S energies (Figure 3.11), calculated using equation (3.12)

for the different moment bins, which yield q = 9± 1.5, the difference from the predicted

value (q = 6) resulting from the fact that our models permit the falloff exponent to vary

slightly between P and S waves. Previous studies have found considerable variation in q

estimates, as they are highly dependent upon corner frequency shifts, but our results are

in reasonable agreement with, for example, Boatwright and Fletcher (1984) (q = 13.7

± 7.3) and Abercrombie (1995) (q = 14.31 with values from 4.43 to 46.26). We did not

directly obtain P -wave energy for the two smallest spectral bins because their relative

moment was not ten times larger than the P -wave EGF. To obtain P energy for these

bins, we divided the S-wave energy by the q = 9 scaling parameter estimated from the

other bins.

Another commonly applied test of self-similarity (e.g., Abercrombie, 1995; Ide

et al., 2003; Kanamori and Rivera, 2004) is to plot corner frequency versus seismic

moment. As previously discussed, self-similarity predicts that M0 ∝ f−3
c . We determined
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the relative seismic moment and corner frequencies for P and S waves independently

(see Figure 3.12). The relative moment is scaled to obtain an approximation of the

absolute seismic moment (see section 3.5). Corner frequencies follow the cube root scaling

expected from self-similarity, as previously observed by Ide et al. (2003). Of course this is

not surprising, given that the spectra themselves obey self-similarity scaling (see Figure

3.7 and prior discussion). Due to the corner frequency shift for P and S waves, we plot

this relationship independently. It is possible that the 40 Hz and higher corner frequencies

for the smaller moment bins are constrained less accurately than the corner frequencies

for the larger earthquakes because our analysis extends only to 80 Hz. However, there are

more earthquakes in the smaller moment bins, resulting in smoother stacked spectra (see

Figure 3.7 and 3.8), which likely improves the reliability of the corner frequency estimates

even when less of the spectrum is available. It is clear from Figures 3.7 and 3.12 that

the available part of the spectra are consistent with the self-similarity hypothesis.

The relationship between seismic moment and radiated seismic energy is also

important and has been a focus of many previous studies. This relationship is commonly

expressed in terms of apparent stress, defined as σa = µEs/M0. Figure 3.13 shows

apparent stress plotted as a function of moment for our spectral stacks. The Es/M0
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ratio is approximately constant as moment increases, as predicted if self-similarity is

obeyed and apparent stress is constant as a function of earthquake size. Given the

scatter in our data, a small degree of scaling is possible. A weighted least squares fit to

the points in Figure 3.13 results in Es/M0 ∝ M0.08±0.10
0 , providing relatively tight error

bounds that include the zero exponent result expected from self-similarity.

The average apparent stress is about 1 MPa, but for the reasons discussed above,

this value is less well constrained than the relative σa between our different earthquake

bins. The two largest sources of error in our absolute σa estimate are likely to be: (1) our

calibration factor between relative moment and MW , and (2) the assumed S velocity at

the source. Any calibration factor error will scale directly as M0. From (3.8) we see that

if, for example, our MW estimates (assumed equal to the SCSN ML values) are 0.2 units

too large, this will result in σa estimates that are about two times too large. A 5% error

in our assumed source S velocity will yield about 30% uncertainty in σa. Given these

uncertainties and the scatter shown in Figure 3.13, a reasonable range for the possible

values of the average apparent stress is 0.3 to 3.0 MPa.

3.7 Discussion

Our study indicates that self-similarity of the earthquake source is consistent

with data from over 400 small earthquakes in our study region, as shown by the scaling of
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source parameters such as corner frequencies and apparent stress as well as the similar-

ity in the shapes of the source spectra themselves, independent of any particular source

model. This conclusion is based on stacks of earthquake spectra in bins of similar seismic

moment, a process that averages the properties of earthquakes in these bins. Spectra

of individual earthquakes may also be obtained using our technique; these show much

greater variability in corner frequency and apparent stress but their average properties

are consistent with the results presented here. Although we do not take into account

possible biasing effects, such as systematic changes in focal mechanism or rupture direc-

tivity, it is likely that these effects are minimized by averaging over stations at different

distances and azimuths from the source region.

Our study supports models in which the average apparent stress is constant as a

function of earthquake size, as suggested by Ide et al. (2003) and others. Our results are

limited by the small magnitude range spanned by our earthquakes (1.8 ≤ M ≤ 3.4 for

the EGF corrected data), but have sufficiently low scatter that fairly tight constraints

can be placed on any possible moment dependence of apparent stress. Mayeda and

Walter (1996) proposed that Es/M0 is proportional to M
1/4
0 over the magnitude range

3.3 ≤ M ≤ 7.3, consistent with the suggestion of Abercrombie (1995) that apparent

stress appears to increase gradually with moment over a magnitude range from 0 to 7.

Such a strong dependence on M0 is not supported by our results over the limited size

range of our data (our best fitting scaling is M0.08±0.10
0 ). Comparisons with other studies

can extend the applicability of our results. Our estimated average apparent stress of 1

MPa is above most of the estimates of Abercrombie (1995) for similar size earthquakes

(i.e., MW = 1.8 to 3.4) and is consistent with the suggestion of Ide and Beroza (2001)

that apparent stress has a nearly constant value of 1 MPa over the entire observed range

of earthquake sizes.

A large number of studies have suggested that the source spectra might have

more complex behavior than that estimated from simple corner frequency models (e.g.,

Singh and Ordaz, 1994; Mayeda and Walter, 1996) and should include intermediate

falloffs. Differences in the results obtained in different studies might be due to model

assumptions that depend upon parametric data derived from the spectra rather than

the spectra themselves. An advantage of our approach is that we can directly use the
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shapes of the spectra to test for self-similarity without any source model assumptions.

A source of concern for our parametric analysis is whether the maximum frequency of 80

Hz that we use in our study is affecting our results, especially for estimates of the corner

frequency for the smallest earthquakes. This does not appear to be a problem because

we observe no saturation of the corner frequencies for the small events (see Figure 3.12).

The values of apparent stress that we obtain have much less scatter than those

seen in most previous studies, probably because of the averaging that we perform within

each moment bin. Thus, although our study spans a quite limited magnitude range, our

nearly constant values of apparent stress place fairly tight constraints on the amount

of any scaling with moment that could be present within our data. Recently Mayeda

et al. (2004) have argued that a potential problem exists in comparing apparent stress

for events over a broad region because the regional scatter of the estimates could make

resolving scaling variations problematic. Also, some of the trends of previous studies

might be masking (or exposing) the true trend, because of the large range of apparent

stress uncertainties. Our study has the advantage of being restricted to a specific source

region and of averaging over a large number of earthquakes, reducing the scatter and

likely biases in our apparent stress estimates.

Our results are limited to the cluster of earthquakes in our study region but

the spectral stacking method should readily be applicable to other data sets. In par-

ticular, it would be useful to study clusters or aftershock sequences that contain larger

earthquakes to extend the magnitude range. There are a number of possible candidates

in southern California for such an analysis, including the Northridge and Landers after-

shock sequences. In addition, studies of large numbers of distributed earthquakes, as

recorded by local and regional seismic networks, might reveal spatial patterns in source

properties. In this case, corrections for attenuation effects will be more complicated than

when the earthquakes are restricted to a single cluster, but in principle attenuation and

source effects can be still be separated using a spectral stacking approach.
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Uncertainties in earthquake

source spectrum estimation using

empirical Green functions

We analyze the problem of reliably estimating uncertainties of the earthquake

source spectrum and related source parameters using Empirical Green Functions (EGF).

We take advantage of the large dataset available from 10 seismic stations at hypocentral

distances (10 km < d < 50 km) to average spectral ratios of the 2001 M5.1 Anza earth-

quake and 160 nearby aftershocks. We estimate the uncertainty of the average source

spectrum of the M5.1 target earthquake by performing propagation of errors, which, due

to the large number of EGFs used, is significantly smaller than that obtained using a

single EGF. Our approach provides estimates of both the earthquake source spectrum

and its uncertainties, plus confidence intervals on related source parameters such as radi-

ated seismic energy or apparent stress, allowing the assessment of statistical significance.

This is of paramount importance when comparing different sized earthquakes and ana-

lyzing source scaling of the earthquake rupture process. Our best estimate of radiated

energy for the target earthquake is 1.24 × 1011 Joules with 95% confidence intervals

(0.73 × 1011, 2.28 × 1011). The estimated apparent stress of 0.33 (0.19, 0.59) MPa is

relatively low compared to previous estimates from smaller earthquakes (1MPa) in the

same region.
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4.1 Introduction

A fundamental problem in seismology is accurate estimation of the radiated

seismic energy of an earthquake. When an earthquake occurs, some fraction of the

total energy is radiated as seismic waves, providing important information about the

earthquake rupture process. Determining the amount of radiated seismic energy can

be difficult and large differences in these estimates have been found among different

techniques and groups (Pérez-Campos et al., 2003).

Partly the difficulty lies in the need to estimate radiated seismic energy over

a large dynamic range and a wide frequency band, from the low frequencies needed

to define the seismic moment to well beyond the corner frequency. Another difficulty

comes from the need for path and site corrections; these corrections have much larger

uncertainties at higher frequencies. Finally, the earthquake source might have more

complicated features than first expected, including directivity effects that need to be

taken into account in order to avoid biasing the estimation.

Over the last 15 years there have been many studies of the radiated seismic

energy of different sized earthquakes in different regions of the Earth (e.g., Kanamori

et al., 1993; Abercrombie, 1995; Choy and Boatwright, 1995; Mayeda and Walter, 1996;

Ide and Beroza, 2001; Venkataraman et al., 2002; Mori et al., 2003; Prieto et al., 2004,

and many others). What is often missing in these studies is a measure of the uncertainty

of each individual estimate. The question of the uncertainty of estimates is of key

importance for describing the significance of one measurement compared to another.

In particular, how do the errors in the assumed attenuation model propagate into the

uncertainty of the source spectrum?

The major unknown in the system is the transfer function between source and

receiver. We will focus in this paper on developing a technique to use Empirical Green

Functions and estimating and reducing the uncertainties by averaging over a set of suit-

able aftershocks. By using many EGFs we effectively are randomly sampling the errors

in the path effects and averaging over the propagation space. As an example we will

present results for the October 31 2001 M5.1 Anza earthquake, using data from local

stations.



69

DEV

BOR

PLM

DGR

DNR

PFO AGA

PLC MGE

JCS
33.0

33.5

34.0

-117.0 -116.5 -116.0

0� 25�12.5�

km�

-116.6 -116.5 -116.4
33.4

33.5

33.6

Target EQ
M5.1

0� 5�2.5�

km�

Figure 4.1: Maps of the study area. The left map covers the entire study region,
showing the seismic stations (black triangles), the M5.1 target Anza earthquake (black
circle) and aftershocks M2.9 and lower (gray circles). The inset shows the location of
the study area and the state of California. A close-up region (dashed box) is shown in
the right hand map. The target earthquake is shown as an open gray circle of radius
proportional to a 1MPa stress drop event. Aftershocks used in this study (black circles)
and general aftershock seismicity of the region (gray circles) are shown.

4.2 Data Processing

A ML 5.1 earthquake occurred on 31 October 2001 in the Anza region in south-

ern California (hypocenter 33.5081◦N, 116.5143◦W, depth 15.2km, MW 4.7) The earth-

quake exhibited thrust motion on a vertical fault striking N35◦E (Hauksson et al., 2002).

The data comes from Anza broadband velocity sensors and IDA strong motion sensors

at station PFO and both broadband and strong motion sensors from TriNet.

All stations are within 10 to 50 km from the source region. The choice of using

local stations to obtain the source spectrum is motivated by the need to obtain reliable

estimates of the spectrum at high frequencies and also the need to have good signal-to-

noise ratios for the smaller aftershocks. The epicentral distance between the mainshock

and all the aftershocks used is less than 2 km (see map in Figure 4.1)

Since S-P times for the closer stations are small, we take a 12 second win-

dow that includes both P and S waves, starting 1 second before the P wave pick (e.g.,

Venkataraman et al., 2002). We also select a noise window of the same length, immedi-
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ately preceding the signal window. A signal-to-noise ratio (SNR) is obtained by the ratio

of the signal and noise spectra. The spectra of the waveforms are estimated using the

multitaper technique (Thomson, 1982), which not only allows a variance reduction of the

spectra within a certain bandwidth, but also provides an estimate of the uncertainties

at each frequency bin using a jackknife approach (Vernon, 1989; Thomson and Chave,

1991). For each waveform at each station we obtain the spectrum and the 5 − 95%

confidence interval.

Since we are interested in the source spectrum of the M5.1 earthquake, we

perform spectral division between the mainshock and all the aftershocks recorded at

each station. Following the theory of propagation of errors (Taylor, 1997), dividing two

random variables results in a new random variable Ri(f) (the spectral ratio), where the

i term represents the ith aftershock used for deconvolution, with uncertainties being a

function of the uncertainties of the spectra of the mainshock and aftershock. As shown in

Figure 4.2, the relative uncertainties in R(f) are larger than the individual components

in X(f) and Y (f), due to the instability of the deconvolution process, or simply because

we are dividing two noisy spectra. The gray shaded area is larger in Figure 4.2 for the

spectral ratio.

As noted by Aki and Richards (1980) (Volume II, Chapter 11.5.5) simple spec-

tral density estimates have only two degrees of freedom and are distributed as χ2
2; con-

sequently, their ratio is distributed statistically as F2,2, a distribution so broad it has

infinite variance. We improve on this situation by making use of multitapers: each spec-

tral estimate is made by weighted average over 7 tapers (and time-bandwidth product

4). Then the number of degrees of freedom increases to about 10 (less than the expected

14 because of the weighting).

We take the log of the spectral ratios and stack our data in 15 bins divided by the

magnitude of the EGF used (∆ML = 0.2). Given that variations in spectra are generally

observed to be log-normally distributed, throughout the paper we will average and stack

spectra in the log domain, which is equivalent to using a geometric average rather than

the arithmetic mean. This also ensures that low amplitude spectra contribute equally to

average spectral shapes compared to high amplitude spectra. Figure 4.3 shows a set of

typical spectral ratios Ri(f) for EGFs with a range of earthquake magnitudes. Note the
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Figure 4.2: Estimates of the spectrum for ground motion associated with the M5.1
earthquake Y (f) at station AGA and the spectrum of the largest aftershock M2.9 X(f)
at the same station and corresponding spectral ratio R(f) = Y (f)/X(f) (offset for
comparison purposes). The gray area represents the 95% confidence interval estimated
using the jackknife approach and propagation of errors. Note how uncertainties grow on
R(f) after spectral division.

effect of the corner frequency of the larger aftershocks and the effect of the low SNR at

low frequencies for the smaller aftershocks. The uncertainties (not shown in Figure 4.3)

for each particular bin are again estimated using the method of propagation of errors

(Taylor, 1997). For each station a scaling factor for the spectral ratios is determined

over a narrow band where the shapes are consistent (gray area in Figure 4.3).

4.3 The Combined Empirical Green Function

In order to take advantage of the large wealth of data available from the local

stations, including very small aftershocks (M 0–0.5), we will average together the dif-
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Figure 4.3: Selected bins of spectral ratios (∆ML = 0.2) at station AGA. The effect of
the corner frequency of the 2.8 < M < 3.0 earthquakes (lower line) flattens the spectral
ratio at high frequencies, while the low SNR affects lower frequencies of the smaller
EGF s, but gives reasonable spectral fall-off at high frequencies. The gray shaded area
shows the band used to estimate a scaling factor for combining the spectral ratios.

ferent estimates of spectral ratios. This will enable us to bring down the variance or

uncertainties of the source spectrum.

The spectral ratio R(f) contains two sources of error, (a) the variance due to the

intrinsic spectral estimation process, which we take from the multitaper algorithm and

(b) systematic errors (which we will call bias) due to the effect of the corner frequency of

the EGF. As described by Ide et al. (2003), the spectral ratio R(f) of two earthquakes

located close to each other, assuming the same focal mechanisms and path effects, can

be expressed as

R(f) =
Y (f)
X(f)

=
S(f)
G(f)

(4.1)

where Y (f), X(f) represent the spectrum of the ground motions of the mainshock and

aftershock and S(f), G(f) represent the source spectrum of the mainshock and the
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aftershock respectively.

An approximate form of the source spectrum (Brune, 1970) is

G(f) =
M0

1 + (f/fc)
2 (4.2)

where M0 is the seismic moment and fc is the corner frequency of the EGF. An ideal

case for an EGF would be to use an earthquake whose corner frequency fc was very

large, giving then in the log domain

log R(f) = log S(f)− log M0 (4.3)

resulting in a scaled version of the source spectrum, without changing its shape.

The bias of the log spectrum that is created by a finite corner frequency is then

b(f) = log(1 + (f/fc)
2) (4.4)

which clearly shows that as the frequency f grows and approaches the corner frequency

of the EGF, the bias of the source spectrum increases.

We do not know the true corner frequency of the EGF and the relatively low

sampling rate of the stations in the network (100 sps) is not enough to estimate it from

spectral ratios (as in Hough, 1997; Ide et al., 2003). Instead, we use a simple scaling

relation to get an approximate corner frequency. We assume that fc can be approximated

(Venkataraman et al., 2002) from fc = 0.49β(∆τ/M0)1/3 where ∆τ is stress drop, and

we use a value of 1 MPa. This choice of stress drop is rather arbitrary but certainly

within the average in southern California and the study region (Vernon, 1989; Shearer

et al., 2006). We chose a rather low stress drop, as a conservative value to obtain small

fc’s for the EGFs and limit the potential bias at high frequencies. We estimate the

seismic moment following the procedure from Prieto et al. (2004), that is, we assume

local magnitude ML = Mw for the small earthquakes and use the Kanamori (1977)

relation to obtain M0. One could argue that this approximation is not accurate, but

as it turns out, even allowing the corner frequency of the EGF to change by 20 − 30%

does not substantially affect the results, changing the radiated energy estimate of the

mainshock by less than 3% in our example.

A common technique for dealing with estimates that contain variance and bias

as sources of error is the mean-square error (MSE) (Rice, 1995). At a given station we
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construct the source spectrum of the target earthquake S(f) from a linear combination

of the spectral ratios

log S(f) =
N∑

i=1

wi(f) log Ri(f) (4.5)

where the index i in the sum runs over the events, wi are the weights for each spectral

ratio, and N is the number of EGF available at a particular station. As explained earlier,

the idea is to create a weighted average of the spectral ratios.

The MSE is the sum of the variance and the bias squared of the estimate.

Applying this idea to our linear combination of spectra

mse2 =
N∑

i=1

w2
i σ

2
i +

(
N∑

i=1

wibi

)2

− λ

N∑
i=1

wi (4.6)

where the first term represents the variance (σ2
i ), the second term is the bias squared

and we added a normalization constraint as a Lagrange multiplier λ.

Taking the derivative of (4.6) with respect to the unknowns wi and λ and

minimizing, we obtain two sets of linear equations

N∑
j=1

[
σ2

i δij + bibj

]
wj − λ = 0 (4.7)

N∑
j=1

wj = 1 (4.8)

We solve the linear set of equations for each individual frequency f with a non-

negative least squares approach (see Lawson and Hanson, 1974), to obtain only positive

weights. We find that requiring a SNR of 5 or larger for a particular Ri(f) leads to

better results. This approach will discard most of the spectra below 0.8 Hz due to low

SNR for the smaller magnitude EGFs, and will only use the set of larger EGFs. At

higher frequencies more spectral ratios have good SNR, but the larger earthquakes have

either larger bias terms or the variance is much larger than for the smaller EGF (since

the network records many small aftershocks, thus the variance of a particular spectral

ratio bin is decreased), so that the weights prefer the smaller EGF. This means we keep

the part of each spectrum that has good SNR and discard only the frequency points with

low SNR.
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Figure 4.3 shows Ri(f) for a range of EGF earthquake magnitudes at station

AGA. We scale the spectral ratios before combining the estimates in (4.5), since the

absolute amplitudes depend on the seismic moment of the EGF used. The scaling factor

is obtained from a narrow band (shaded area in Figure 4.3) where the spectral ratios are

consistent. We tested the effect of the scaling factor by changing the band width used for

shifting the spectra. Because the resultant energy estimate does not vary significantly,

we choose to ignore this effect.

Solving for the weights in (4.6) and applying the result in (4.5) we obtain a

relative source spectrum for each station in the network. Following Prieto et al. (2004)

we calibrate the relative source spectrum at each station to the seismic moment of the

target earthquake. We express the mean source spectrum by averaging over the different

seismic stations.

log S(f) =
1
K

K∑
k=1

log Sk(f) (4.9)

where K are the number of stations and Sk is the outcome of (4.5) for station k. The

processing and averaging is done one frequency at a time, at individual stations, and the

mean source spectrum S represents a station average.

Figure 4.4 shows the source spectrum S(f) for our target event, with 5− 95%

confidence intervals at each frequency point. Note how for the lower frequencies the

uncertainties are larger, since the weights are non-zero only for the larger aftershocks,

while at higher frequencies many events are available, an average over many independent

estimates, increasing the number of degrees of freedom and decreasing the variance.

4.4 Results for radiated seismic energy

From the mean source spectrum S(f) and the uncertainties, it is possible now

to obtain an estimate of the radiated seismic energy (Vossiliou and Kanamori, 1982) and

its uncertainties for our target earthquake:

ER =
4π

5ρ

[
1

3α5
+

1
2β5

] ∞∫
0

f2|S(f)|2df (4.10)

where ρ is the density, and α and β are the P and S wave velocity at the source. We

set ρ = 2700 kg/m3, and the velocities are taken from Scott et al. (1994), with α = 6000
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Figure 4.4: Mean source spectrum over 8 stations with 95% confidence intervals (gray
area) for the M5.1 target earthquake. Compared to Figure 2, the uncertainties have been
decreased due to averaging over different stations and by the combined EGF, especially at
high frequencies where many small aftershocks can be used to perform spectral division.

m/s and β = 3465 m/s. The apparent stress is

τa = µER/M0 (4.11)

where we use µ = 3.24× 104 MPa.

Since the S wave contains more than 90% of the energy we only use the second

term of (4.10). The radiated energy is calculated by integrating (numerically) the mean

source spectrum up to the highest frequency possible (30 Hz). We also extrapolate at the

higher frequencies assuming a fall-off rate of ω−1 in velocity, which contains less than 5%

of the total energy. The 95% bounds are integrated to obtain energy uncertainties. The

value of radiated energy obtained is 1.24×1011 (0.73×1011, 2.28×1011) Joules, with the

95% confidence interval in parenthesis. We also compute a value of the apparent stress

(proportional to ER/M0) and obtain 0.33 (0.19, 0.59) MPa, with the 95% confidence

interval.

The apparent stress obtained is within the values of previous results for similar
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sized earthquakes, and a little lower than smaller events in the same region (Prieto

et al., 2004). But note in this case we have not only obtained the measure of radiated

energy, but also the uncertainties, which because we have used over 100 EGFs, have

been reduced significantly compared to what one would obtain using just one EGF (i.e.,

compare Figures 4.2 and 4.4). Our analysis focuses on random variations in our input

data (spectral ratios) rather than uncertainties in model parameters. Therefore we do not

attempt to propagate errors associated with parameters such as wave speed or density,

even though these errors might be important. From equation (4.10) it would be straight

forward to propagate such errors, if known, following Taylor (1997).

4.5 Discussion

As explained before, using spectral ratios will increase the variance and a larger

number of source models (corner frequencies, fall-off rates) are to be allowed within the

uncertainties. Since stress drop varies as f3
c , the uncertainties of the stress drop as esti-

mated from fc will grow considerably, making the inference of scaling features between

different earthquakes more difficult. Our goal is to show a consistent way of estimating

the uncertainties of the earthquake source spectrum and some source parameters using

the method of propagation of errors and the variance of the spectrum estimation pro-

cedure. A source spectrum is then constructed from a weighted set of spectral ratios in

order to reduce the variance.

As pointed out by Sonley and Abercrombie (2006) it is good practice to check

whether a realistic source pulse is obtained after deconvolution, by inverse FFT of the

multitaper eigencomponents. We compute source pulses for our target M5.1 earthquake

and obtain results similar to those of McGuire [pers. com., 2005] for the same event.

However it is not possible to check all our EGFs since SNR limitations at low frequencies

affect the very small EGFs and it is not always possible to recover source pulses.

In our data set we find that there is no single EGF with good SNR and appro-

priate bias reduction on the entire frequency band of interest (about 0.1 - 30 Hz) and

it is necessary to use multiple EGFs. Even if an ideal EGF is found, the uncertainties

of the radiated energy estimate would be considerably larger than presented here and
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should be taken into account when comparing different results or looking for scaling of

energy with earthquake magnitude.

A possible major source of bias is if many EGFs used in this study (especially

the small ones) have consistently different focal mechanisms that are not accounted for.

We believe that by using many EGFs we are sampling a wide variety of focal mechanisms.

For the target event we obtain realistic source pulses, suggesting similar mechanisms. The

aim of this study is to show a way of estimating and reducing uncertainties of source

spectra based on the target and EGF spectra. It is not intended to completely remove

all possible biases associated with the choice of events and model parameterization.

Acknowledgments

We thank Glen Offield for field operations and the Anza group at UCSD who

picked and archived the seismograms. We thank M. Hellweg, V. Oye and R. Abercrombie

(editor) for thoughtful comments. Funding for this research was provided by NSF Grant

number EAR0417983. This research was also supported by the Southern California

Earthquake Center. SCEC is funded by NSF Cooperative Agreement EAR-0106924

and USGS Cooperative Agreement 02HQAG0008. The SCEC contribution number for

this paper is 933. This chapter is a reformatted version of G.A. Prieto, R.L. Parker,

F.L. Vernon, P.M. Shearer and D.J. Thomson., 2006, Uncertainties in earthquake source

spectrum estimation using empirical Green functions., In Earthquakes: Radiated Energy

and the Physics of Faulting. Abercrombie, McGarr, Kanamori, and di Toro eds. AGU

Geophys. Monograph 170. pp 69–74 and is reprinted with permission of the American

Geophysical Union.



5

Quadratic Multitaper Spectrum

The power spectral density of geophysical signals provides relevant information

about the processes that generated these particular signals. We present a new method

to optimally use the multitaper spectral analysis method. The method is an extension

of the algorithm by Thomson (1982) with a reduction of bias due to the curvature close

to the frequency of interest. A comparison of the original and the new Quadratic mul-

titaper with the same resolution bandwidth demonstrates the reduction of bias in areas

where the signal has significant quadratic structure without the introduction of addi-

tional sidelobe leakage. In addition, the methodology provides independent estimation

of the derivatives of the spectrum (e.g., the slope of the spectrum). The extra information

can be implemented for parameter estimation or in comparing different signals.
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5.1 Introduction

There are many applications in geophysics where relevant information contained

in a given signal may be extracted from the frequency content of the spectrum. In

some cases, the scientist may be interested in periodic components usually immersed

in some background noise (e.g., normal mode seismology (Gilbert, 1970), climate-time

series (Chappellaz et al., 1990), etc.), in a general continuous spectrum to be estimated

from a short time series (e.g., earthquake source spectra (Brune, 1970), bathymetry data

(Goff and Jordan, 1988), etc.) or in comparing two signals and investigating where the

similarities or differences are (in seismology for example (Vernon, 1989; Hough and Field,

1996); transfer functions in electromagnetism (Constable and Constable, 2004), elastic

thickness of the lithosphere (Daly et al., 2004), etc.). In each of these cases, it is desirable

to be able to obtain a reasonable spectrum, with little or no bias and small uncertainties.

In Thomson (1982) the multitaper spectral analysis method was introduced.

The original algorithm has been widely used in geophysical applications and has been

shown in multiple cases to outperform the single-tapered, smoothed periodogram (Park

et al., 1987b; Bronez, 1992; Riedel et al., 1993). In the latter, a multitaper estimate that

is subsequently smoothed is preferred.

Single taper estimates have a major limitation, in the sense that by using one

taper a significant portion of the signal is discarded. The data points at the extremes

are down-weighted, causing the variance of the direct spectral estimate to be greater

than that of the periodogram. In the multitaper algorithm, the statistical information

discarded by one taper is partially recovered by the others. The tapers are constructed to

optimize resistance to spectral leakage and only a few of them are computed. The multi-

taper spectrum is constructed by a weighted sum of these single tapered periodograms.

The weighting function is defined to generate a smooth estimate with less variance than

single taper methods and at the same time to have reduced bias from spectral leakage.

The weighting proposed (Thomson, 1982) is ideal for spectral leakage but suffers

from local bias. What we mean by local bias is that by averaging over a number of

tapered spectra, the estimate will have a broad response around the center frequency,

whose width is that of the frequency resolution chosen to reduce spectral leakage.
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Riedel and Sidorenko (1995) suggested a different weighting function to mini-

mize the local bias. They take a different set of orthogonal tapers and, assuming qua-

dratic structure of the spectrum, reduce the bias introduced by the curvature of the

spectrum. Because the chosen tapers minimize local bias, there is little spectral leak-

age reduction and this method does not perform as well with very high dynamic range

signals.

In this paper we present an improved multitaper spectral estimate using Thom-

son’s algorithm modified to reduce curvature bias. The second derivative of the spectrum

is estimated by means of an expansion of the spectrum via the Chebyshev Polynomials.

Because we use the Slepian tapers and the original weighting functions, the estimate is

resistant to spectral leakage, yet reduces bias due to spectral curvature. In addition,

we can estimate the derivative of the spectrum (slope), which can be used in parameter

estimation or as a discriminant for comparing different signals.

This paper is organized as follows. In the next section, we outline the problem

associated with the estimation of the power spectral density (PSD). After this, we provide

a brief review of the multitaper spectrum estimation algorithm and discuss some of its

properties. Then, we introduce the Quadratic multitaper, first explaining in section

5.4 the methodology to estimate the derivatives of the spectrum and in section 5.5

the estimation of the unbiased spectral estimate. Finally, there is a fairly extensive

section in which we give a number of examples to compare Thomson’s multitaper and

the new algorithm. There is an application to bathymetric data and the application of

the derivatives of the spectrum for comparing signals.

5.2 Spectrum Estimation

In time-series analysis it is often useful to describe the power spectral density

(PSD) of the signal, given that it may have information of the background noise, periodic

components, and transients. These pieces of information are fundamental in geophysics

(Thomson, 1990).

To start, we need to consider a stationary stochastic process x(t), a zero mean

discrete time series consisting of N contiguous samples and assume that the sampling
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rate is always unity, so that t = 0, 1, 2, . . . , N − 1. Define the Fourier transform of the

observations

Y (f) =
N−1∑
t=0

x(t) e−2πift, −1
2

6 f 6
1
2
. (5.1)

We assume the signal is a harmonizable process, thus has a Cramér spectral representa-

tion (Cramér, 1940)

x(t) =

1
2∫

− 1
2

e2πift dZ(f) (5.2)

for all t, where dZ(·) is an orthogonal incremental process (Doob, 1952).

The random orthogonal measure dZ(f) has its first moment

E [dZ(f)] = 0 (5.3)

and second moment (of relevance for our purposes)

E
[
|dZ(f)|2

]
= S(f)df (5.4)

where S(f) is defined as the power spectral density function of the process and E[·] is

the expected value. Note here that the frequency variable f is continuous and so we are

in fact trying to find a function S(f) from the finite series x(t).

Plugging the Cramér spectral representation (5.2) into the discrete Fourier

transform (5.1), we arrive at the basic integral equation (Thomson, 1982, 1990)

Y (f) =

1
2∫

− 1
2

sinNπ(f − v)
sinπ(f − v)

dZ(v) =

1
2∫

− 1
2

D(f, v)dZ(v) (5.5)

where D(f, v) is the Dirichlet kernel. The basic integral equation is a convolution that

can be interpreted as the smearing of the true dZ(f) projected into Y (f), due to the

finite duration of the time series x(t).

This paper is about obtaining an approximate solution to this equation and

based on that solution (via Equation 5.4) obtaining reliable estimates of the power spec-

tral density of the signal.
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5.3 Multitaper Spectrum estimates

We give a brief review of the standard theory for multitapers. Proof of various

assertions can be found in (Thomson, 1982, 1990; Park et al., 1987b; Percival and Walden,

1993). Note that given the properties of (5.5) and the smoothing of the Dirichlet kernel

there is no unique solution to this problem. The multitaper spectrum estimate is an

approximate least-squares solution to equation (5.5) using an eigenfunction expansion.

The choice of this type of solution will be explained next.

The most obvious first guess for the spectrum is the squared Fourier transform.

Slightly rewriting the discrete Fourier transform (5.1) and squaring

Ŝ(f) = |Y (f)|2 =

∣∣∣∣∣
N−1∑
t=0

x(t)a(t) e−2πift

∣∣∣∣∣
2

(5.6)

where the sequence a(t) is called a taper. In the case of (5.1) the taper a(t) = 1 is a

boxcar function. To maintain total power correctly a(t) needs to be normalized:

N−1∑
t=0

|a(t)|2 = 1 (5.7)

In the frequency domain, the properties of the taper are deduced from its Fourier trans-

form

A(f) =
N−1∑
t=0

a(t) e−2πift (5.8)

We call the function A(f) the spectral window associated with a. For conventional

tapers, |A(f)| has a broad main lobe and a succession of smaller sidelobes (see Figure

5.1).

The choice of the taper can have a significant effect on the resultant spectrum

estimate. One can observe this by expressing equation (5.6) as a convolution of the taper

transform (5.8) and the true spectrum

E
[
Ŝ(f)

]
=

1
2∫

− 1
2

|A(f ′)|2 S(f − f ′)df ′ (5.9)

Here, as in (5.5), there is smearing or smoothing of the true spectrum. This means

that the choice of window is important. A good taper will have a spectral window with

low amplitudes whenever |f − f ′| is large, leading to an estimate Ŝ(f) based primarily
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on information close to the frequency f of interest. The objective of the taper a(t) is

to prevent energy at distant frequencies from biasing the estimate at the frequency of

interest. This bias is known as spectral leakage. We wish to minimize the leakage at

frequency f from frequencies f ′ 6= f .

In practice, it is not sensible to be concerned about |f ′ − f | 6 1/N , since this

is the lowest frequency accessible from a record of length N . A bandwidth W is chosen,

where 1/N < W ≤ 1/2, and the fraction of energy of A in the interval (−W,W ) is given

by:

λ(N,W ) =

W∫
−W

|A(f)|2df

1
2∫

− 1
2

|A(f)|2df

(5.10)

where λ is a measure of spectral concentration. It is clear that no choice of W can make

λ greater than unity. Our task is to maximize λ.

To maximize λ substitute (5.8) in (5.10), take the gradient of λ with respect to

the vector a = [a(0), a(1), . . . , a(N − 1)] and set to zero to obtain a matrix eigenvalue

problem:

D · a− λa = 0 (5.11)

where the matrix D has components

Dt,t′ =
sin2πW (t− t′)

π(t− t′)
, t, t′ = 0, 1, . . . , N − 1 (5.12)

and is symmetric.

The solution of (5.11) has (dropping dependence on N and W ) eigenvalues

1 > λ0 > λ1 > · · · > λN−1 > 0 and associated eigenvectors vk(t), called the Slepian

sequences (Slepian, 1978). The first eigenvalue λ0 is extraordinarily close to unity, thus

making the choice a(t) = v0(t) the taper with the best possible suppression of spectral

leakage for the particular choice of bandwidth W . In fact, the first 2NW −1 eigenvalues

are also very close to one, leading to a family of very good tapers for bias reduction.

The multitaper algorithm exploits the fact that a number of tapers have good spectral

leakage reduction, and uses all of them rather than only one.
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Figure 5.1: Selected Slepian sequences and corresponding Slepian functions for N = 100
samples and a choice of NW = 4. Sometimes called 4π Slepian sequences.

5.3.1 Properties of Slepian sequences and functions

The Slepian sequences are solutions of the symmetric matrix eigenvalue problem

(5.11) - (5.12). The eigenvectors with associated eigenvalues λk are real and orthogonal

as usual
N−1∑
t=0

vj(t)vk(t) = δjk (5.13)

These vectors will be used as tapers in (5.6). We define the Slepian functions as the

spectral windows, the Fourier transforms of the sequences

Vk(f) =
N−1∑
t=0

vk(t)e−2πift (5.14)

Note that the Vk’s are complex functions of frequency. Figure (5.1) shows three Slepian

sequences and their corresponding Slepian functions.

Orthogonality conditions also hold in the frequency domain, making the choice
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Figure 5.2: Orthonormal version of the Slepian functions in Figure 5.1, Vk(f) in the
inner domain. Only three functions are shown in the example with their real and imagi-
nary amplitudes normalized. Number and thin lines show the index of the corresponding
Slepian function plotted. The symmetry and amplitude of the functions are of interest.

of the Slepian sequences so interesting:

1
2∫

− 1
2

Vj(f)V ∗
k (f)df = δjk (5.15)

W∫
−W

Vj(f)V ∗
k (f)df = λkδjk (5.16)

It is convenient to define an orthonormal version of the Vk’s on the inner domain (−W,W )

Vk(f) =
Vk(f)√

λk
(5.17)

with the obvious property
W∫

−W

Vj(f)V∗k(f)df = δjk (5.18)

This last property will be exploited in the sections to come. Figure (5.2) shows a selection

of the Vk(f) functions in the inner interval. Note how the real part of the functions is

always even and the imaginary part is odd. See also how the amplitude of the functions

increases outward as the Slepian function index increases and are more sensitive to

structure further from the center frequency.
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5.3.2 The multitaper algorithm

The objective of this algorithm is to estimate the spectrum S(f) by using K of

the Slepian sequences to obtain the k eigencomponents:

Yk(f) =
N−1∑
t=0

x(t)vk(t)e−2πift (5.19)

and a set of K eigenspectra as in (5.6):

Ŝk(f) = |Yk(f)|2 (5.20)

from which we can form the mean spectrum

S̄(f) =
1
K

K∑
k=1

Ŝk(f) (5.21)

The idea of taking an average is to reduce the variance in the spectral estimate. As will be

shown below, the mean spectrum is not an ideal estimate and we prefer a weighted aver-

age instead, one that minimizes some measure of discrepancy. While the spectral leakage

properties of the Ŝ0 eigenspectrum are very good, since the eigenvalues are close to unity

when K < 2NW − 1, the leakage characteristics of the succesive estimates degrade. It

is clear that by using Ŝ = |Y0|2, the least amount of spectral leakage is achieved. Never-

theless, including the other eigencomponents (Y1, Y2, . . . , YK), while increasing spectral

leakage, reduces the variance of the spectral estimate and is thus preferred.

In order to estimate the discrepancy of the different eigencomponents Yk, we

combine (5.19) with (5.2)

Yk(f) =
N−1∑
t=0

x(t)vk(t)e−2πift

=
N−1∑
t=0

1
2∫

− 1
2

dZ(f ′)e2πif ′tvk(t)e−2πift

=

1
2∫

− 1
2

N−1∑
t=0

vk(t)e−2πi(f−f ′)tdZ(f ′)

and using the definition of the Fourier transform of the taper (5.14) we obtain:

Yk(f) =

1
2∫

− 1
2

Vk(f − f ′) dZ(f ′) (5.22)
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containing information from the whole interval (− 1
2
, 1

2
).

If the sequence x(t) were passed by a perfect bandpass filter from f − W to

f + W before truncation to the sample size with N data points, we would obtain the

idealized eigencomponents Yk(f) that, though unobservable, would be represented by:

Yk(f) =

W∫
−W

Vk(f ′)√
λk

dZ(f − f ′) =

W∫
−W

Vk(f ′)dZ(f − f ′) (5.23)

Note that here we adopt the orthonormal functions Vk, in order to maintain the correct

normalization. The Yk takes only information over the inner interval (−W,W ).

In order to estimate Ŝ(f), we find a set of frequency dependent weights dk(f),

as proposed by (Thomson, 1982, 1990):

dk(f) =
√

λkS(f)
λkS(f) + (1− λk)σ2

(5.24)

where σ2 is the variance of the signal x(t). The multitaper spectrum is then obtained

Ŝ(f) =

K−1∑
k=0

d2
k |Yk(f)|2

K−1∑
k=0

d2
k

(5.25)

Since we don’t know the spectrum S(f) in (5.24), we are required to assume an initial

estimate of the spectrum (averaging the first two k eigenspectra S0 + S1 for example)

and find the weights dk iteratively. A complete derivation of the weights in (5.24) can

be found in Thomson (1982) or Percival and Walden (1993).

5.4 Estimating the derivatives of the spectrum

More information about the spectrum can be obtained by looking at the co-

variance matrix of the K components:

Cjk(f) = E [djYj dkY
∗
k ] = E [Yj Y∗

k ] (5.26)

with j, k = 1, . . . ,K. We use the orthogonal increment property (5.4) and substituting

(5.23):

Cjk(f) =

W∫
−W

Gjk(f ′) S(f − f ′)df ′ (5.27)
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where Gjk(f) = Vj(f)V∗k(f). If the spectrum does not vary in the interval (−W,W ) then

the covariance matrix is diagonal

C(f) = S(f) I (5.28)

where I is the K × K identity matrix. Note that the multitaper spectrum in (5.25) is

equivalent to taking the trace of C(f) and normalizing by the weights.

When the spectrum is constant in the interval (−W,W ), Thomson’s multitaper

is unbiased and provides an appropriate estimate of the spectrum. If, however, the

spectrum varies within the interval, the matrix C(f) will not be diagonal and (5.25)

may be biased. Clearly, we rarely obtain perfectly diagonal covariance matrices and the

spectrum is not perfectly resolved.

Like (5.5) equation (5.27) is a Fredholm integral of the first kind and suffers

from similar non-uniqueness and smearing features, except in this case we have reduced

spectral leakage and are only concerned about the interval (−W,W ).

Thomson (1990) suggested taking a set of orthogonal eigenfunctions to expand

the spectrum to solve (5.27). Here we propose to employ the Chebyshev polynomials

for estimating the derivatives of the spectrum and using these derivatives to obtain an

improved solution of the spectrum S(f). We prefer the Chebyshev polinomials (Mason

and Handscomb, 2003) because, as can be seen from Figure (5.3), these polynomials are

sensitive to structure at the edges of the interval, where the eigenfunctions proposed by

Thomson (1990) have very little energy.

We write the spectrum in the inner interval as:

S(f − f ′) = α0T0(
f ′

W
) + α1T1(

f ′

W
) + α2T2(

f ′

W
), (5.29)

−W 6 f ′ 6 W

where Tn(x) is the Chebyshev polinomial of degree n (see Mason and Handscomb, 2003).

We show only the first three polynomials, since these are applied throughout the study,

and express the quadratic terms of the signal.

Returning to the inverse problem (5.27) in spectrum estimation and inserting

(5.29):

Cjk(f) = α0H
(0)
jk + α1H

(1)
jk + α2H

(2)
jk + O(f − f ′)3 (5.30)
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Figure 5.3: Comparison between first 3 basis functions used in Thomson (1990) (A)
and Chebyshev polynomials (B) used in this study. Note that in (A), the basis functions
always tend to zero when getting close to either −W or W and are not sensitive to
structure at the boundaries. The Chebyshev polynomials in (B) are also very simple
approximations of a constant, slope, and quadratic terms.

where the matrices

H
(0)
jk =

W∫
−W

Gjk(f ′) T0(f ′) df ′ = δjk

H
(1)
jk =

W∫
−W

Gjk(f ′) T1(f ′) df ′

H
(2)
jk =

W∫
−W

Gjk(f ′) T2(f ′) df ′

describe the zero, first, and second derivative basis matrices. We can then obtain the

Chebyshev coefficients, α0, α1, α2, by solving the least squares problem where we use the

observed values of djdkYjY
∗
k to approximate the left side.

The Chebyshev coefficients are estimates of the derivatives of the spectrum

α0 ≈ S(f)

α1 ≈ S′(f)

α2 ≈ S′′(f)

around the center frequency on the interval (f −W, f + W ).
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dle), and second (right) order coefficients. The absolute values are shown for simplicity.
Note that the completely white matrices show that the real part of the covariance ma-
trix is insensitive to slopes, while the imaginary part is insensitive to a constant and
quadratic structure of the spectrum.

In practice, the calculation of the integrals in H
(1)
jk and H

(2)
jk is done numerically

using a trapezoidal quadrature. In Figure (5.4) we plot the case of the three matrices in

(5.30). The absolute values are plotted. Note that both the zero and second order terms

are only present in the real part of the covariance matrix, while the first order term is

present only in the imaginary part of the covariance matrix.

It is clear that the constant term will result in a diagonal covariance matrix,

while the effects of the first and second order terms are quite different. H
(1)
jk has no effect

on the diagonal terms, suggesting that this term does not bias the spectrum estimate

(5.25). In contrast, H
(2)
jk has an important contribution to the diagonal but is also

present in the off-diagonal terms, showing the dependence of the eigencomponents in

spectra that are highly variable. A slight correlation between the estimates of α0 and

α2 is present.

5.5 Quadratic Multitaper

Up to now, the literature (e.g., Thomson (1982); Park (1992); Percival and

Walden (1993), and many others) has assumed the spectrum varies slowly in this interval
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and can be taken out of the integral in equation (5.27). Now, within (−W,W ) we can try

to find further information on the structure of the spectrum and relax the assumption

of a constant spectrum inside the interval.

Assume the spectrum has a Taylor series expansion on the interval (f −W, f +

W ) of the form:

S(f) = S(f ′) + (f − f ′)S′(f ′) + 1
2
(f − f ′)2S′′(f ′) + O(f − f ′)3

We know that the estimate of the spectrum Ŝ(f) at any frequency f is an average over

the interval (f −W, f + W ):

E[Ŝ(f)] =
1

2W

W∫
−W

[
S(f ′) + 1

2
(f − f ′)2S′′(f ′)

]
df ′

= S(f) +
1
6
W 2S′′(f)

where the term associated with the first derivative does not contribute to the integral

due to symmetry. Note that in Figure 5.4 the matrix H(1), associated with the slope, is

zero in the main diagonal and does not bias E[Ŝ(f)].

We can obtain the Quadratic multitaper estimate of the spectrum S̃(f) at

frequency f by applying the correction:

S̃(f) = Ŝ(f)− 1
6
W 2α̂2 (5.31)

where we assume α̂2 ≈ S′′(f) obtained by solving (5.30). Note that we apply the

correction to the multitaper estimate Ŝ(f) in (5.25).

Applying the quadratic correction in (5.31) will increase the variance of the

overall estimate, because α̂2 is also uncertain. We propose to implement a mean-square

error criteria instead of directly applying (5.31) to avoid exacerbating the uncertainties

of the Quadratic multitaper:

S̃(f) = Ŝ(f)− µ
1
6
W 2α̂2 (5.32)

where µ is a weight:

µ =
α2

2

(α2
2 + var{α2})

(5.33)
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In Appendix B the derivation of the weight µ in (5.33) is explained as well as the

approximate estimation of the variance of α2.

The Quadratic multitaper is an approximately unbiased estimate of the PSD of

the signal analyzed. As will be demonstrated in the next section with different examples,

the Quadratic multitaper provides a reduction of curvature bias while at the same time

generating smooth estimates.

5.6 Examples

As a demonstration of the benefits of the Quadratic spectrum algorithm (QMT)

we show a number of synthetic examples. The main features we would like to concentrate

on are the resolution close to significant structure in the spectrum, smoothness of the

resultant estimates and the overall spectral leakage properties.

5.6.1 Random signal

The first signal to be analyzed is a simple pseudo-random number r(t) with a

normal distribution and standard deviation σ=1. The number of data points for this

example is N=1000, For all plots in this paper we compute 6 tapers (K=6) with 3.5 as

the time-bandwidth product.

A visual inspection of the results of the two different methods in Figure 5.5

shows that the algorithm presented here generates a smoother spectrum than the original

Thomson method (TMT). A more quantitative comparison is provided in Table 5.2,

where 10 random realizations of a 1000 sample long random time series were analyzed

and two different measures were used to assess the smoothness of the resultant spectrum:

the norm of the second (numerical) derivative of the spectrum and a count of the number

of maxima in each spectra.

Results of these measures of smoothness in Table 5.2 demonstrate that the QMT

generates smoother estimates of the spectrum. In all 10 realizations, both measures of

smoothness where lower when using the Quadratic algorithm.
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Table 5.2: Comparison of smoothness for the multitaper methods

Thomson Quadratic
Number of realizations 10 10
Second derivative norm 216.8 49.9
Standard deviation 22.2 5.99
Count of maxima 123.3 67.3
Standard deviation 5.07 3.62
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Figure 5.5: Spectrum estimation of pseudo-random number signal. The signal is a
normally distributed random vector, with N=1000 samples. The top panel shows the
time-series random signal. The middle panels show the TMT (left) and the QMT (right)
estimates of the spectrum. Bottom panels show a detailed view of the estimates between
0.01 and 0.1 Hz and the 2W bandwidth for reference. The QMT generates a smoother
spectral estimate.
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and K=6 . The linear scale spectrum (top panel) shows the improved performance
of the QMT in describing the periodic components, while the logarithmic scale (lower
panel) shows the similar spectral leakage properties of both algorithms.

5.6.2 Periodic Components

We test the effectiveness of the new algorithm with two signals; we examine a

random signal r(t) with σ=1.0 and a pair of periodic components. The number of data

points is reduced to N=100 in order to have a comparison of spectral leakage around

the linear components.

Our first test is to see whether this algorithm represents the periodic compo-

nents in the signal better, without introducing additional spectral leakage. For this, we

take the signal:

x(t) = A0 sin(2πf1t) + A0 sin(2πf2t) + r(t) (5.34)

where f1 = 0.05, f2 = 0.3, and the amplification factor A0 = 105. Two questions arise

here. How well can we describe the periodic components; effectively, line features in the

spectrum, and is there any spectral leakage introduced due to the Quadratic algorithm?

Figure 5.6 shows the results of spectral analysis from both TMT (gray) and QMT, on

linear and log axes. The linear plot clearly shows the more accurate description of the

periodic components provided by the QMT, the logarithmic plot shows that no additional

spectral leakage is introduced. Note how both methods overlap at very low amplitudes.

The signal has 8 to 10 orders of magnitude dynamic range and both methods behave

similarly in terms of spectral leakage.
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The second test signal has a much smaller signal-to-noise ratio. In this case we

let the amplification factor be A0 = 1.0 and the standard deviation σ of r(t) remains

fixed. Figure 5.7 shows the result of spectral analysis on this signal. We would like

to stress two important features that can be seen from these results. First, the linear

components are better described by the QMT. Second, the information outside the range

of the periodic components is smoother, as shown in the random signal example (Table

5.2).

Additionally, we have also obtained extra information about the spectrum.

Figure (5.7) shows the estimate of the first and second derivatives of the spectral contents

of the signal. As expected, the first derivative should be very close to zero, when getting

close to the periodic component. Similarly, the second derivative of the spectrum should

have a large negative value, showing that the line represents a local maxima of the

spectrum.. These two features are clearly present in the estimates of the derivatives.

Given the randomness of the signal and also uncertainties due to the non-uniqueness

of the problem in our example, the second derivative around the 0.3Hz component is

not exactly the largest negative value, but is rather off by a frequency bin. This shows

that still some uncertainties remain in all estimates, including the spectrum and its

derivatives. Nevertheless, the extra information that is gained from the derivatives could

certainly be relevant.

Note that the estimates of the derivatives are not computed by a numerical

differentiation of the spectrum estimate Ŝ(f), but rather by the steps described in the

previous sections.

A method for the detection of periodic components using the multitaper algo-

rithm was developed by Thomson (1982), known as the F-test for spectral lines. For a

complete description of the methodology the reader is refered to Thomson (1982) and

Percival and Walden (1993). The method can be applied for reshaping the spectrum near

spectral lines (e.g., Park et al., 1987a; Thomson, 1990; Denison et al., 1999) or even for

removal of these periodic signals embedded in a colored spectrum (Lees, 1995; Percival

and Walden, 1993, Chapter 10). For high signal-to-noise ratios as in Figure 5.6, F-test

or other line detection algorithms are preferred for harmonic analysis.

The general idea of spectral reshaping is to subtract the effect of the statistically
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significant lines from the eigencomponents Yk (see equation 5.22). This subtraction is

done before the adaptive weighting in equations (5.24) and (5.25), meaning that it is

possible to perform either TMT or the QMT estimates on the remaining stochastic part

of the spectrum (without the deterministic periodic components, just removed), with

similar improvements as presented in the examples above, if the Quadratic algorithm is

applied.

5.6.3 Resolution test and the choice of multitaper parameters

One important question that remains unanswered in spectral analysis using

multitaper methods is, what is the optimal choice of the time-bandwidth product NW

(the averaging bandwidth) and the number of tapers K (the more tapers, the smoother

the estimate)? Or, having a chosen bandwidth W , what is the ideal number of tapers

that should be used?. Riedel and Sidorenko (1995) invented the sine multitaper method

to get around this problem by choosing an optimal number of tapers iteratively at each

frequency.

In the multitaper literature, it has been proposed that K = 2NW − 1 as
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an appropriate choice, since the eigenvalues λk are all close to unity. This choice is

essentially based on the leakage properties of the tapers, but does not take into account

the particular shape of the spectrum of the signal under analysis. In this subsection,

we present a comparison of the effect of the choices of NW and K on the resolution of

the spectra around a periodic component. We show how the QMT is less dependent on

these choices compared with TMT.

In Figure 5.8 and Table 5.3 we compare the resolution of TMT and the Qua-

dratic multitaper. A useful criterion is that of the width of the half-power points, also

known as the 3-dB bandwidth. This criterion reflects the fact that two equal-strength

periodic components separated by less than the 3-dB bandwidth will show in the spec-

trum as a single peak instead of two (Harris, 1978). We use the signal in the previous

section (Figure 5.6) and plot the spectrum centered on one of the periodic components

on a dB scale defined as:

dB = 10 log10 (S(f)/S(f0)) (5.35)

where f0 is the frequency of the periodic component. We vary the time-bandwidth NW

and the number of tapers K to investigate the effect of these choices. We also present

in Table 5.3 the result of the 3-dB and 9-dB ( 1
8
th power) bandwidths for the different

choices of NW and K by applying a linear interpolation.

The QMT always outperforms Thomson’s algorithm given the same parameters

as shown in Table 5.3. Note that at the 9-dB line in Figure 5.8 (see Table 5.3 as well)

both methods provide similar results, with the method introduced here being slightly

better.

An important result obtained by conducting this test is the fact that the 3-dB

bandwidth is less sensitive to the choice of NW for the QMT (see Figure 5.8A). Once

we reach the 9-dB bandwidth, a larger value of NW decreases the resolving power. On

the other hand the choice of K is directly proportional to the resolution bandwidth for

both algorithms (this is also evident from Figure 5.2), with the Quadratic algorithm

having narrower 3-dB and 9-dB bandwidths in all cases. A final observation from Table

5.3 indicates that a comparatively better resolution is achieved with the QMT even if

one more taper K is used compared to TMT (compare also red and gray lines in Figure

5.8B), leading to smoother estimates due to the increased degrees of freedom.
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5.6.4 Synthetic earthquake signal

In geophysical applications many signals have spectral shapes with large dy-

namic range (red spectra) but rarely with deterministic components (periodic signals).

The spectra are continuous, for example the Earth’s background seismic noise (Berger

et al., 2004), medium and small sized earthquake sources (e.g., Abercrombie, 1995; Prieto

et al., 2004), the crustal magnetic field (Korte et al., 2002), and many others.

Consider the spectrum of an earthquake, which follows the Brune (1970) model:

u̇(f) =
2πfM0

1 + (f/fc)2
(5.36)

where u̇(f) is the velocity amplitude source spectrum associated with the earthquake,

M0 is the seismic moment (related to the size of the earthquake) and fc is the corner

frequency. The corner frequency represents the predominant frequency content of the

radiated seismic energy from the earthquake rupture. The spectrum from this model has

a triangular shape if plotted in log-log axes with a slope of two in power.

In this synthetic example, we generate a pseudo-random time series with 1000

samples whose spectra follow the source model in Equation (5.36). Even though TMT

possesses good spectral leakage reduction, the spectrum may be biased due to the quadra-

tic effects we discussed previously. This is especially true when the corner frequency gets

extremely close to the sampling frequency, so that the curvature around fc is described

by a small number of spectral points.

Figure (5.9) shows the spectral estimates from a realization of a synthetic source

model with fc = 0.005Hz using TMT and the QMT. The triangular shape that is ex-

pected from source spectra is better constraint using the new algorithm.

In addition to the standard spectrum, it is also possible to obtain an estimate

of the derivative of the spectrum. The derivative estimate of two different source mod-

els are shown in Figure (5.10), taken from an average of 100 random realizations and

corresponding standard errors. The two cases presented have corner frequencies close

to the Rayleigh frequency fR. Whenever the corner frequency is close to the sampling

frequency, its curvature is represented by few spectrum bins.

The uncertainties of the derivative estimate are, similar to the uncertainties of

the PSD, proportional to the amplitude of the spectrum. Using the derivative provides
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additional degrees of freedom for estimating parameters from the spectrum.

5.6.5 Bathymetry profiles

A simple, isotropic, three-parameter model for the power spectrum of marine

topography has been proposed of the form (Goff and Jordan, 1988):

S(k) =
a4

(1 + (k/kc)2)
µ (5.37)

where a is the amplitude of the total root-mean-square roughness of the topography,

k = |k| is the wavenumber, µ > 1 is the slope in the roll-off in the short wavelength part

of the spectrum, and kc is the corner wavenumber. We decided to use bathymetry data,

given their more closely isotropic behavior (stationarity in terms of time series) and the

availability of very high quality data sets.

We used bathymetry data obtained in the Central Pacific region (See Figure

5.11), drawn from ship multibeam data (Macdonald et al., 1992, see also Marine Geo-

science Data System, http://www.marine-geo.org). From the available data we chose 5

profiles (east-west directions), four of them crossing the mid-ocean ridge, the other along

the transform fault.

The idea of this example is to show what extra information can be extracted

via the QMT. The bathymetry profiles have a sampling rate of 500 samples per deg and

a total of 1251 samples per profile. The location of the profiles is shown in Figure (5.11).

Figure (5.12) shows the QMT analysis of the selected profiles. The spectrum

is shown to have a large dynamic range (about 7 orders of magnitude) over the entire

frequency range. We focus our attention at the lower frequency range, where the corner

wavenumber is expected from the model in Equation (5.37). The spectral shapes are very

similar for all profiles and the different k0’s are hardly distinguishable. An independent

observation of the different behavior between profiles can be drawn from the derivative

estimates. See Figure (5.12) and caption for discussion.

From the methods described above, we can obtain estimates of the derivative

of the spectrum, and by normalizing by the spectrum,

S′(f)
S(f)

=
d

df
{log S(f)} (5.38)
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Figure 5.11: Location of the study area, where the profiles were taken from. Four of
these profiles run across the mid-ocean ridge, and one is paralel to the transform fault.
Location of the profiles is shown as thick black lines.

we have an estimate of the derivative of the log spectrum (Thomson, 1994). The deriva-

tives also provide the means for comparing the different profiles, and clearly show the

presence of two groups with particular spectral characteristics. This suggests that the

profiles sampling the transform fault posses a lower corner frequency than the profiles

sampling the mid-ocean ridge structure.

5.7 Conclusions

Multitaper spectral analysis can be obtained by multiplying the data by a set of

orthogonal (in time and frequency) sequences, all having good spectral leakage properties.

The sequences have the property to concentrate within a band 2W the frequency content

of the spectral estimate. A simple average of the eigenspectra Ŝk is not ideal, given the

large dynamic ranges of some signals, and an adaptive weighting function is necessary,

especially in regions where the spectrum has low amplitudes, and thus is prone to leakage

from frequencies that have much larger amplitudes.

As noted by Riedel and Sidorenko (1995) and confirmed in this study, in regions

where spectral leakage is not expected, corresponding to the regions of the spectrum with

large amplitudes, the local or quadratic bias can have an important effect on the shape
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of the spectrum.

We introduce the Quadratic multitaper method, which estimates the derivatives

of the spectrum, that is, the slope and curvature of the spectrum on the interval (−W,W ),

by solving a parameter estimation problem relating the derivatives of the spectrum and

the K eigencomponents.

With the estimation of the second derivative (the curvature of the spectrum)

we can apply a correction to the spectrum to obtain a new estimate that is unbiased to

quadratic structure. This algorithm reduces to the original Thomson (1982) multitaper

when the spectrum is locally flat in the interval (−W,W ).

We present a variety of examples that indicate that the Quadratic multitaper

provides a smoother, less biased spectral estimate of the data, in addition to independent

estimates of the derivatives of the spectrum. When the dynamic range of the signal is

very large, the improvements are not as striking, but the information contained in the

slope estimates can readily be applied in parameter estimation, or as an additional

discriminant to compare two signals. No additional spectral leakage was introduced in

the examples shown in this study.

We also discuss the effect of chosen multitaper parameters such as the time-

bandwidth product and the number of tapers to compute. Even though it is still a

user-defined set of parameters, we show that the Quadratic multitaper leads to increased

resolution compared to TMT and it is less dependent on the choice of the time-bandwidth

in the inner interval. It allows the use of more tapers without the loss of resolution power

compared to Thomson’s algorithm.

Finally, model parameters can be found by analysing the goodness-of-fit be-

tween a Quadratic spectral estimate plus the slope of the spectrum of a data set with

a theoretical model of the spectrum and its derivative. Another approach would be to

generate from the theoretical model a covariance matrix Cjk (as in Equation 5.27) and

find the model that best fits the data. In the later case, the information is not restricted

to curvature; rather all information from the theoretical models is used.
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6

Conclusions

6.1 Main Results

This thesis presents new methods to estimate and reduce the uncertainties and

biases that are unavoidable in the analysis of the earthquake rupture process. The meth-

ods include spectral stacking (Prieto et al., 2004, Chapter 3), empirical Green function

(EGF) analysis (Prieto et al., 2006, Chapter 4), source spectral fitting and uncertainty

estimation (Prieto et al., 2007a, Chapter 2), and improving analysis tools to reduce bias

and variance in spectrum estimates (Prieto et al., 2007b, Chapter 5). We have presented

three basic results:

1. Measuring the uncertainties in earthquake source parameter estimation.

2. Reducing these uncertainties by stacking or averaging spectral estimates.

3. Generating a multitaper spectral estimate with significant bias reduction, with

extra independent information from the slope of the PSD.

As discussed in the introduction (see Figure 1.6), in order to compare different

studies of the earthquake rupture it is useful to have a measure of some static and

dynamic source parameters, as well as their associated uncertainties. The error analysis

is necessary if issues regarding scaling relations and source parameter size dependence

are to be discussed.

In Chapter 2 we use a multitaper spectrum algorithm combined with jackknife

statistical analysis to obtain, from the seismic spectrum, the source parameters and their
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confidence intervals. Analysis of the Cajon Pass Borehole finds a slight increase in stress

drop with earthquake magnitude, deviating from the constant stress drop expected if

earthquake ruptures are self-similar.

Two additional observations from the results are relevant. First, stations close

to each other (i.e., two borehole stations at 2.9 km and 1.5 km depths) may produce

very different estimates of the source parameters, indicating the need to address the

significance of individual estimates when comparing results. Second, given the assump-

tions used in the analysis (radiation pattern, earthquake locations, velocity model, etc.),

it is likely that the confidence intervals presented here represent a lower bound. This

suggests we need to find ways of reducing uncertainties, and the subsequent chapters

seek to address this point.

In Chapter 3, we study the scaling relationships of source parameters and

the self-similarity seen in 400 small earthquakes located in a compact region near the

Anza Seismic Network in southern California. By iteratively stacking P and S spectra,

we are able to separate source and receiver contributions and, after an EGF correction,

obtain a relative earthquake source spectrum. Due to the large number of events and

multiple stations, the stacked source spectra are smooth compared to individual earth-

quake estimates. We show using standard scaling relationships that for the magnitude

range ML = 1.8 to 3.4 the earthquake rupture is self-similar. The static scaling relation

between the size of the earthquake – given by the seismic moment M0 – and the length

scale of the rupture measured from the corner frequency fc is M0 ∝ f−3
c . The dynamic

parameter apparent stress σa shows an average value of 1MPa and is constant as a func-

tion of M0. This is confirmed by directly testing for self-similarity with the spectral

shapes at various seismic moments. We applied a similar methodology to a comprehen-

sive analysis of over 60,000 earthquakes in southern California in Shearer, Prieto, and

Hauksson (2006).

The empirical Green function, where a small earthquake is taken as an approx-

imate impulse response between a source and a receiver, has been shown in multiple

cases to be a very useful method. It has a number of drawbacks, however, with one of

them being that the uncertainties after performing the EGF deconvolution (in time or

frequency domains) tend to be very large.
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In Chapter 4 we take advantage of the large data set available in southern

California to average spectral ratios of the 2001 M5.1 Anza earthquake and 160 after-

shocks. Due to the large number of EGFs used, we can use a weighted averaging of the

spectral ratios and are able to control the trade-off between the variance reduction and

the bias inherent in the EGF approximation by using a mean-square error criteria. Using

propagation of errors, we also obtain the confidence intervals of the source spectrum and

dynamic source parameters (radiated seismic energy ES and apparent stress σa).

The results of this study show that in order to reduce uncertainties, it is nec-

essary to use multiple EGFs; otherwise, even if an ideal EGF is available, the large

uncertainties would make the result less significant. Note in Figure 1.6 that the error

bars of the σa estimate for this particular study are almost invisible in the given scale,

while this is not so for the majority of the other data points in the same plot.

In Chapter 5 we present an improvement to the multitaper spectral analysis

(TMT) tools introduced by Thomson (1982), which we have used throughout this thesis.

As discussed in this chapter, the TMT algorithm suffers from local bias, i.e., at frequencies

close to spectral lines the spectrum estimate is approximately constant. The Quadratic

multitaper (QMT) introduced can be used to estimate the derivatives of the spectrum

as a function of frequency. The estimate of the second derivative is used to apply a

correction and obtain a spectrum that is unbiased with respect to quadratic structure.

In addition, we present the use of the first derivative – the slope – of the spectrum for

comparing signals from marine topography profiles.

In order to use the multitaper algorithm (either TMT or QMT), it is necessary

to define two basic parameters: a frequency bandwidth (W ) over which the user wishes to

average the spectrum and the number (K) of tapers to compute. If the user chooses a very

narrow bandwidth or very few tapers, the spectral estimate will have large uncertainties

and will not be smooth. A considerable advantage of the QMT presented in Chapter 5

is that for the same choice of parameters (W and K), the spectrum has higher resolution

and is smoother than TMT estimates. We also show that the user may choose to compute

one more taper without reducing the resolution of the estimate compared to TMT and

since one more taper is used, an even smoother estimate is expected.
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6.2 Future Research Directions

The methodologies developed during this research should provide considerable

advantages in studying the physics of earthquake rupture from seismic recordings. They

provide improved estimation of some earthquake source parameters such as stress drop

and radiated seismic energy. The methods proposed to reduce uncertainties can easily

be applied to different data sets in which either lots of earthquakes or lots of stations are

available. In the applications we presented mainly small and medium sized earthquakes

(M < 6.0) analyzed at either local or regional distances.

The stacking or averaging methods are not useful for large teleseismic earth-

quakes, given that at teleseismic distances it is rare to record many small earthquakes

near a large one. Another difficulty at teleseismic distances is that large earthquakes rup-

ture over tens of kilometers, requiring different EGFs for different patches of the fault,

and complicating any averaging between these patches. Nevertheless, EGF method-

ologies have been adapted for prediction or simulation of ground motion from large

earthquakes using small earthquakes as EGFs (e.g., Wössner et al., 2002).

One particularly interesting approach is the analysis of earthquake data recor-

ded by small aperture arrays. The idea is to look at the consistency of spectral analysis

across the array. If two earthquakes – one large and one small that can be used as an

EGF – are recorded by the stations of the small aperture array, we can test the stability

of the EGF deconvolution. It is assumed that all stations are sampling an identical region

of the focal sphere and that the EGF is removing the effects of attenuation, near-site

effects, scattering, etc., so the result should be identical for every station. We can then

test the uncertainties and resolving power of the stations in the array, given that the

Quadratic multitaper (QMT) will provide the least variable, least biased estimate, which

will then be used in the spectral division.

With the advent of high-quality borehole seismic networks, it is now possible to

investigate the rupture properties of smaller earthquakes. The increasingly available data

from the Japanese Hi-net and F-net networks (with over 700 stations), the EarthScope

PBO Borehole Strainmeter and Seismometer network with 7 stations near the Anza

Seismic Gap, and the SAFOD array, with seismic sensors along the borehole and some
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sensors a few hundred meters from known seismic sources in the San Andreas Fault can

be exploited using the methodologies described in this thesis.

Using EGF methods, McGuire (2004) showed that it was possible to investigate

the fault plane, rupture length, and directivity of M5 earthquakes by using a network

of surface stations. Having the borehole data described above, which are expected to

have better signal-to-noise ratios and record signals at higher frequencies than surface

instruments, we have the opportunity to investigate the rupture properties of even smaller

earthquakes (M2 - M4). The network of stations is needed to analyze the variability of

source properties as a function of the take-off angle (as a function of the focal sphere

sampled at a given station), helpful in solving the fault plane ambiguity for a double-

couple source and providing information about directivity of small earthquakes.

Another important application is the use of the methodologies described here

for the analysis of attenuation structure, which we have in part neglected. From the

stacking procedures or from EGF analysis, one can potentially obtain information about

the properties of the medium through which the seismic waves have traveled, i.e., Q

structure (attenuation) or near-site effects (see for example Warren and Shearer, 2000;

Tsuda et al., 2006; Hauksson and Shearer, 2006). Variations in Q structure may be

caused by cracks, chemical composition and temperature variations, which can then be

modeled from the spectral analysis.

There are some limitations to using the Quadratic multitaper. As explained

in Chapter 5, QMT provides an estimate of the power spectrum and we lose the phase

information. This clearly limits our ability to investigate the source time function (STF)

and the behavior of the radiated seismic energy in time. For example Mori et al. (2003)

use the STF to investigate the dynamic stress drops or average frictional stress ave{σf}

(see Figure 1.2) by looking at the initial slope of the deconvolved source time functions.

Nevertheless, estimation of radiated seismic energy in the spectral domain might be

better constrained by using multitaper methods, where uncertainties are easily quanti-

fied, and even STF can potentially be extracted if Thomson’s multitaper is used (for an

example deconvolution applied to receiver functions see: Park and Levin, 2000).
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Propagation of errors

Some rules of propagation of errors (Taylor, 1997) are listed here. Assume u, v

are random variables with associated variance σ2
u, σ2

v , and covariance σ2
uv. Constants a, b

do not contribute to uncertainties. Then we have:

x = au± bv σ2
x = a2σ2

u + b2σ2
v + 2abσ2

uv

x = auv
σ2

x

x2
=

σ2
u

u2
+

σ2
v

v2
+ 2

σ2
uv

uv

x =
au

v

σ2
x

x2
=

σ2
u

u2
+

σ2
v

v2
− 2

σ2
uv

uv

x = au±b σx

x
= b

σu

u

x = ae±bu σx

x
= bσu

x = a ln(±bu) σx = a
σu

u
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Quadratic mean-square error

In Equation (5.32), a correction for the curvature or quadratic bias is applied

to the multitaper estimate. In section 5.5, we defined the expected value of the spectrum

as an average over the inner interval (−W,W ):

E
[
Ŝ(f)

]
= S(f) +

1
6
W 2S′′(f) (B.1)

and by applying the correction in 5.32, we have the expected value of the Quadratic

multitaper

E
[
S̃(f)

]
= S(f) +

1
6
W 2S′′(f)− µ

1
6
W 2S′′(f) (B.2)

where we assume that E[α̂2] = S′′(f).

The bias of the Quadratic multitaper is then

E [β] = E
[
S̃(f)

]
− S(f) =

1
6
W 2S′′(f)(1− µ) (B.3)

and the variance, using the rules of propagation of errors (Taylor, 1997) in Equation

5.32,

var{S̃} = var{Ŝ}+ µ2 W 4

36
var{S′′} (B.4)

and we can now define the mean square error (bias2 + variance):

L =
[
(1− µ)

W 2

6
S′′
]2

+ var{Ŝ}+ µ2 W 4

36
var{S′′} (B.5)

where the first term is the bias squared and the two on the right represent the variance.

It is assumed that the covariance is insignificant. Taking the derivative with respect to
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µ and setting to zero
∂L

∂µ
= (1− µ)

[
S′′]2 + µ var{S′′} = 0 (B.6)

and rearranging yields

µ =
[S′′]2

([S′′]2 + var{S′′})
(B.7)

which is the solution shown in 5.33, using α2 as estimates of S′′.

To obtain the variance of the estimates α̂0, α̂1, and α̂2 in the least squares

problem (5.30), we compute the covariance matrix of the coefficients, following Lawson

and Hanson (1974).
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