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Abstract 
 
This paper establishes the relatively weak conditions under which causal inferences from a 
regression-discontinuity (RD) analysis can be as credible as those from a randomized experiment, 
and hence under which the validity of the RD design can be tested by examining whether or not 
there is a discontinuity in any pre-determined (or “baseline”) variables at the RD threshold. 
Specifically, consider a standard treatment evaluation problem in which treatment is assigned to 
an individual if and only if V > v0, but where v0 is a known threshold, and V is observable. V can 
depend on the individual’s characteristics and choices, but there is also a random chance element: 
for each individual, there exists a well-defined probability distribution for V. The density function 
– allowed to differ arbitrarily across the population – is assumed to be continuous. It is formally 
established that treatment status here is as good as randomized in a local neighborhood of V = v0. 
These ideas are illustrated in an analysis of U.S. House elections, where the inherent uncertainty 
in the final vote count is plausible, which would imply that the party that wins is essentially 
randomized among elections decided by a narrow margin. The evidence is consistent with this 
prediction, which is then used to generate “near-experimental” causal estimates of the electoral 
advantage to incumbency. 
 

                                             
* An earlier draft of this paper, “The Electoral Advantage to Incumbency and Voters’ Valuation of 
Politicians’ Experience: A Regression Discontinuity Analysis of Elections to the U.S. House”, is available 
online as NBER working paper #8441. Matthew Butler provided outstanding research assistance. I thank 
John DiNardo and David Card for numerous invaluable discussions, and Josh Angrist, Jeff Kling, Jack 
Porter, Larry Katz, Ted Miguel, and Ed Glaeser for detailed comments on an earlier draft. I also thank 
seminar participants at Harvard, Brown, UIUC, UW-Madison and Berkeley, and Jim Robinson for their 
additional useful suggestions. 
+ Department of Economics, 549 Evans Hall, #3880, Berkeley, CA 94720-3880. dslee@econ.berkeley.edu 



1 Introduction

There is a recent renewed interest in the identi�cation issues involved in (Hahn, Todd, and van der

Klaauw, 2001), the estimation of (Porter, 2003), and the application of (Angrist and Lavy, 1999; van der

Klaauw 2002) Thistlethwaite and Campbell's (1960) regression-discontinuity design (RDD). RD designs

involve a dichotomous treatment that is a deterministic function of an single, observed, continuous covariate

(henceforth, �score�). Treatment is assigned to those individuals whose score crosses a known threshold.

Hahn, Todd, and van der Klaauw (2001) formally establish minimal continuity assumptions for identifying

treatment effects in the RDD: essentially, the average outcome for individuals marginally below the thresh-

old must represent a valid counterfactual for the treated group just above the threshold. For the applied

researcher, there are two limitations to invoking this assumption: 1) in many contexts, individuals have

some in�uence over their score, in which case it is unclear whether or not such an assumption is plausible,

and 2) it is a fundamentally untestable assumption.

This paper describes a very general treatment assignment selection model that 1) allows individuals

to in�uence their own score in a very unrestrictive way, and 2) generates strong testable predictions that can

be used to assess the validity of the RDD. In particular, it is shown below that causal inferences from RD

designs can sometimes be as credible as those drawn from a randomized experiment.

Consider the following general mechanism for treatment assignment. Each individual is assigned

a score V , which is in�uenced partially by 1) the individual's attributes and actions, and 2) by random

chance. Suppose that conditional on the individual's choices and characteristics, the probability density of

V is continuous. Treatment is given to the individual if and only if V is greater than a known threshold

v0. Note that there is unrestricted heterogeneity in the density function for V across individuals, so that

each individual will in general have a different (and unobserved to the analyst) probability of treatment

assignment.

Below it is formally established that this mechanism not only satis�es the minimal assumptions

for RD designs outlined in Hahn, Todd, and van der Klaauw (2001); it additionally generates variation in
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treatment status that is as good as randomized by an experiment � in a neighborhood of V = v0. Close to

this threshold, all variables determined prior to assignment will be independent of treatment status. Thus

� as in a randomized experiment � differences in post-assignment outcomes will not be confounded by

omitted variables, whether observable or unobservable.

This alternative formulation of a valid RD design and the local independence result are useful

for three different reasons. First, it illustrates that natural randomized experiments can be isolated even

when treatment status is driven by non-random self-selection. For example, the vote share V obtained

by a political candidate could be dependent on her political experience and campaigning effort, so that

on average, those who receive the treatment of winning the election (V > 1
2 ) are systematically more

experienced and more ambitious. Even in this situation, provided that there is a random chance error

component to V that has continuous pdf, treatment status in a neighborhood of V = 1
2 is statistically

randomized.

Second, in any given applied context, it is arguably easy to judge whether or not the key condition

(continuous density of V for each individual) holds. This is because the condition is directly related to

individuals' incentives and ability to sort around the threshold v0. As discussed below, if individuals have

exact control over their own value of V , the density for each individual is likely to be discontinuous. When

this is the case, the RDD is likely to yield biased impact estimates.

Finally, and perhaps most importantly, the local independence result implies a strong empirical test

of the internal validity of the RDD. In a neighborhood of v0, treated and control groups should possess

the same distribution of baseline characteristics. The applied researcher can therefore verify � as in a ran-

domized controlled trial � whether or not the randomization �worked�, by examining whether there are

treatment-control differences in baseline covariates.1 These speci�cation tests are not based on additional

assumptions; rather, they are auxiliary predictions � consequences of the assignment mechanism described

above. The local random assignment result also gives a theoretical justi�cation for expecting impact esti-

1 Such speci�cation checks have been used recently, for example, in Lee, Moretti, and Butler (2004), Linden (2004), Martorell
(2004), Clark (2004), Matsudaira (2004), DiNardo and Lee (2004).
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mates to be insensitive to the inclusion of any combination of baseline covariates in the analysis.2

The result is applied to an analysis of the incumbency advantage in elections to the United States

House of Representatives. It is plausible that the exact vote count in large elections, while in�uenced by

political actors in a non-random way, is also partially determined by chance beyond any actor's control.

Even on the day of an election, there is inherent uncertainty about the precise and �nal vote count. In light

of this uncertainty, the local independence result predicts that the districts where a party's candidate just

barely won an election � and hence barely became the incumbent � are likely to be comparable in all other

ways to districts where the party's candidate just barely lost the election. Differences in the electoral success

between these two groups in the next election thus identi�es the causal party incumbency advantage.

Results from data on elections to the United States House of Representatives (1946-1998) yields

the following �ndings. First, the evidence is consistent with the strong predictions of local random as-

signment of incumbency status around the 50 percent vote share threshold. Among close electoral races,

the districts where a party wins or loses are similar along ex ante, pre-determined characteristics. Second,

party incumbency is found to have a signi�cant causal effect on the probability that a political party will

retain the district's seat in the next Congress; it increases the probability on the order of 0.40 to 0.45.3 The

magnitude of the effect on the vote share is about 0.08. Second, losing an election reduces the probability

of a candidate running again for of�ce by about 0.43, consistent with an enormous deterrence effect.

Section 2 provides a brief background on regression-discontinuity designs, reviews the key statisti-

cal properties and implications of truly randomized experiments, and formally establishes how the treatment

assignment mechanism described above can share those properties. Section 3 describes the inference prob-

lem, data issues, and the empirical results of an RDD analysis of the incumbency advantage in the U.S.

House. Section 4 concludes.

2 Hahn, Todd, and van der Klauww (2001) do state that the �advantage of the method is that it bypasses many of the ques-
tions concerning model speci�cation: both the question of which variables to include in the model for outcomes,� but provide no
justi�cation for why the treatment effect estimates should be insensitive to the inclusion of baseline characteristics.
3 As discussed below, the causal effect for the individual that I consider is the effect on the probability of both becoming a
candidate and winning the subsequent election. Below I discuss the inherent dif�culty in isolating the causal effect conditional on
running for re-election.
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2 Random assignment from non-random selection

In a regression-discontinuity design (RDD) the researcher knows that treatment is given to individ-

uals if and only if an observed covariate V crosses a known threshold v0.4 In Thistlethwaite and Campbell's

(1960) original application of the RDD, an award was given to students who obtained a minimum score on

a scholarship examination. OLS was used to estimate differences in future academic outcomes between the

students who scored just above and below the passing threshold. This discontinuity gap was attributed to

the effect of the test-based award.

Hahn, Todd, and van der Klaauw (2001) was the �rst to link the RDD to the treatment effects

literature, and to formally explore the sources of identi�cation that underlie the research design. There, it

is established that the mere treatment assignment rule itself is insuf�cient to identify any average treatment

effect. Identi�cation relies on the assumption that

E [Y0jV = v] and E [Y1jV = v] are continuous in v at v0 (1)

where Y1 and Y0 denote the potential outcomes under the treatment and control states, and V is the score that

determines treatment.5 This makes clear that the credibility of RDD impact estimates depends on whether

or not the mean outcome for individuals marginally below the threshold identi�es the true counterfactual

for those marginally above the threshold v0.

For empirical researchers, however, there are two practical limitations to the assumption in (1).

First, in many real-world contexts, it is dif�cult to determine whether the assumption is plausible. This is

because (1) is not a description of a treatment-assigning process; instead, it is a statement of what must be

mathematically true if the RD gap indeed identi�es a causal parameter. For example, in Thistlethwaite and

Campbell's (1960) example, if the RD gap represents a causal effect, then the outcomes for students who

barely fail must represent what would have happened to the marginal winners had they not received the

scholarship. But at �rst glance, there appears to be nothing about this context would lead us to believe � or

4 More generally, there are two types of designs: the so-called �sharp� and �fuzzy� designs, as described in Hahn, Todd, and van
der Klaauw (2001). This paper focuses on the sharp RD.
5 This is a simpli�ed re-statement of Assumptions (A1) and (A2) in Hahn, Todd, and van der Klaauw (2001).
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disbelieve � that (1) actually holds. Second � perhaps more importantly � assumption (1) is fundamentally

untestable; there is no way for a researcher to empirically assess its plausibility.

The discussion below attempts to address these two limitations. It is shown that a somewhat un-

restrictive treatment-assignment mechanism not only satis�es 1, but the variation in the treatment � in a

neighborhood of v0 � shares the same statistical properties as a classical randomized experiment. As dis-

cussed in Section 2.4, the key condition for this result is intuitive and its plausibility is arguably easier to

assess than (1) in an applied setting. The plausibility of the key condition is directly linked to how much

control individuals have over the determination of the score V . Indeed, it becomes clear how economic

behavior can sometimes invalidate RDD inferences. Furthermore, as shown in Section (2.2) the �local ran-

domization� result implies that these key conditions generate strong testable restrictions that are analogous

to those implied by a true randomized experiment.

2.1 Review of Classical Randomized Experiments

In order to introduce notation and provide a simple basis for comparison, this section formally reviews the

statistical properties and implications of classical randomized experiments. The next section will describe a

general non-experimental (and non-randomized) treatment assignment mechanism that nevertheless shares

these properties and implications � among individuals with realized scores close to the RD threshold.

Consider the following stochastic mechanism: 1) randomly draw an individual from a population of

individuals, 2) assign treatment to the individual with constant probability p0, and 3) measure all variables,

including the outcome of interest. Formally, let (Y;X;D) be observable random variables generated by

this process, where Y is the outcome variable of interest, X is any �pre-determined� variable (one whose

value has already been determined prior to treatment assignment), andD an indicator variable for treatment

status.

Adopting the potential outcomes framework, we imagine that the assignment mechansim above

actually generates (Y1; Y0; X;D)where Y1 and Y0 are the outcomes that will occur if the individual receives

or is denied treatment, respectively. For any one individual, we cannot observe Y1 and Y0 simultaneously.
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Instead, we observe Y = DY1 + (1�D)Y0.

To emphasize the distinction between the random process that draws an individual from the popu-

lation and that which assigns treatment � and to help describe the results in a later section � it is helpful to

provide an equivalent description of the data generating process.

Condition 1a. Let (W;D) be a pair of random variables (with W unobservable), and let Y1 �

y1 (W ), Y0 � y0 (W ), X � x (W ), where y1 (�), y0 (�), and x (�) are real-valued functions.6

One can think of W as either the �type� or �identity� of the randomly drawn individual. There

is no loss of generality in assuming that it is a one-dimensional random variable; the appendix provides

statements of all propositions and their proofs within a measure-theoretic framework. By de�nition, D is

not an argument of either y1 or y0, and sinceX has already been determined prior to treatment assignment,

D is also not an argument of the function x.

Under random assignment, every individual has the same probability of receiving the treatment, so

that we have

Condition 2a. Pr [D = 1jW = w] = p0 for all w in the support ofW

As a result, we obtain three well-known and useful implications of a randomized experiment, sum-

marized as follows:

Proposition 1 If Conditions 1a and 2a hold, then:
a)
Pr [W � wjD = 1] = Pr [W � wjD = 0] = Pr [W � w] ; 8w in the support ofW

b)
E [Y jD = 1]� E [Y jD = 0] = E [Y1 � Y0] = ATE

c)
Pr [X � x0jD = 1] = Pr [X � x0jD = 0] , 8x0

It is easy to see that a) simply follows from Condition 1a and Bayes' rule. Since the distribution
6 The functions must be measurableR1, the class of linear Borel sets.
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ofW is identical irrespective of treatment status and Y1; Y0, and X are functions ofW , b) and c) naturally

follow.

b) is simply a formal statement of the known fact that in a classical randomized experiment, the

difference in the conditional means of Y will identify the average treatment effect (ATE). c) is a formal

statement of another important consequence of random assignment. It states that any variable that is de-

termined prior to the random assignment will have the same distribution in either the treatment or control

state. This formalizes why analysts expect predetermined (or �baseline�) characteristics to be similar in the

treatment and control groups (apart from sampling variability).

Indeed, in practice, analyses of randomized experiments typically begin with an assessment of

the comparability of treated and control groups in the baseline characteristics X . Thus, Condition 2a

generates many testable restrictions, and applied researchers �nd those tests useful for empirically assessing

the validity of the assumption.

2.2 Random Assignment from a Regression Discontinuity Design

In most applied contexts, researchers know that assignment to treatment is not randomized as in an exper-

iment. Instead, they believe in non-random self-selection into treatment status. It is shown here that even

when this is the case, the RDD can nevertheless sometimes identify impact estimates that share the same

validity as those available from a randomized experiment.

Consider the following data generating process: 1) randomly draw an individual from a popula-

tion of individuals, after they have made their optimizing decisions, 2) assign a score V , drawn from a

non-degenerate, suf�ciently �smooth� individual-speci�c probability distribution, 3) assign treatment sta-

tus based on the rule D = 1 [V � 0] where 1 [�] is an indicator function, and 4) measure all variables,

including the outcome of interest.

More formally, we have

Condition 1b. Let (W;V ) be a pair of random variables (with W unobservable, V observable),
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and let Y1 � y1 (W ), Y0 � y0 (W ), X � x (W ), where y1 (�), y0 (�), and x (�) are real-valued functions.

Also, let D = 1 [V � 0]. Let G(�) be the marginal cdf of W.

Condition 2b. F (vjw), the cdf of V conditional on W , is such that 0 < F (vjw) < 1, and is

continuously differentiable in v at v = 0, for each w in the support of W . Let f (�) and f (�j�) be the

marginal density of V and the density of V conditional onW , respectively.

Note that by allowing the distribution of V conditional on W to depend on w in a very general

way, individuals can take action to in�uence their probability of treatment. But V has some random chance

element to it, so that each individual's probability of receiving treatment is somewhere between 0 and 1. In

addition, Condition 2b implies that for each individual, the probability of obtaining a V just below and just

above 0 are the same. Note that Condition 2b still allows arbitrary correlation � in the overall population �

between V and any one of Y1; Y0, or X .

The main result is a proposition analogous to Proposition 1:

Proposition 2 If Conditions 1b and 2b hold, then:
a)

Pr [W � wjV = v] , is continuous in v at v = 0; 8w
b)

E [Y jV = 0]� lim
�!0�

E [Y jV = �] = E [Y1 � Y0jV = 0]

=

Z 1

�1
(y1 (w)� y0 (w))

f (0jw)
f (0)

dG (w)

= ATE�

c)
Pr [X � x0jV = v] , is continuous in v at v = 0, 8x0

a), b), and c) are analogous to a), b), and c) in Proposition 1. a) states that the probability distri-

bution of the identity or �type� of individuals is the same just above and below v = 0. b) states that the

discontinuity in the conditional expectation function identi�es an average treatment effect, and c) states that

all pre-determined characteristics should have the same distribution just below and above the threshold. c)
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implies that empirical researchers can empirically assess the validity of their RDD, by examining whether

or not, for example, the mean of any pre-determined X conditional on V changes discontinuously around

0. If it does, either Condition 1b or 2b must not hold.

It is important to note that ATE� is a particular kind of average treatment effect. It is clearly

not the average treatment effect for the entire population. Instead, b) states that it can be interpreted as

a weighted average treatment effect: those individuals who are more likely to obtain a draw of V near 0

receive more weight than those who are unlikely to obtain such a draw. Thus, with this treatment-assignment

mechanism, it is misleading to state that the discontinuity gap identi�es an average treatment effect �only

for the subpopulation for whom V = 0�, which is, after all, a measure zero event. It is more accurate to say

that it is a weighted average treatment effect for the entire population, where the weights are the probability

that the individual draws a V �near� 0.

2.3 Allowing for the Impact of V

There are two shortcomings to the treatment-assignment mechanism described by Conditions 1b and 2b.

First, it may be too restrictive for some applied contexts. In particular, it assumes that the random draw of V

does not itself have an impact on the outcome � except through its impact on treatment status. That is, while

V is allowed to be correlated with Y1 or Y0 in the population, V is not permitted to have an independent

causal impact on Y for a given individual. In a non-experimental setting, this may be unjusti�able. For

example, a student's score on a scholarship examination might itself have an impact on later-life outcomes,

quite independently of the receipt of the scholarship.

Second, the counterfactuals Y1 and Y0 may not even be well-de�ned for certain values of V . For

example, suppose a merit-based scholarship is awarded to a student solely on the basis of scoring 70 percent

or higher on a particular examination. What would it mean to receive a test-based scholarship even while

scoring 50 on the test, or to be denied the scholarship even after scoring a 90? In such cases, Y1 is simply

not de�ned for those with V < 0, and Y0 is not de�ned for those with Vi � 0. It may nevertheless be of

interest to know the direct impact of winning a test-based scholarship on future academic outcomes.
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As another example, suppose we are interested in the causal impact of a Democratic electoral

victory in a U.S. Congressional District race on the probability of future Democratic electoral success.

We know that a Democratic electoral victory is a deterministic function of the vote share. Again, the

counterfactual notation is awkward, since it makes little sense to conceive of the potential outcome of a

Democrat who lost the election with 90 percent of the vote.

To address the limitations above consider the alternative assumption:

Condition 1c. Let (W;V ) be a pair of random variables (with W unobservable, V observable),

and let Y � y (W;V ), and X � x (W ), where for each w, y (�; �) is continuous in the second argument

except at V = 0, where the function is only continuous from the right. De�ne the function y� (w) =

lim"!0+ y (w; ") and y+ (w) = y (w; 0).

y (�; �) is a response function relating the outcome to a realization of V . For individual w with

realization v of the score V , the outcome would be y (w; v). The function y (�; �) is simply an analogue

to the potential outcomes �function� utilized in Conditions 1a and 1b, except that the second argument

is a continuous rather than a discrete variable. For each individual w, there exists an impact of interest,

y+ (w)� y� (w), and the RD analysis identi�es an average of these impacts.

This leads to:

Proposition 3 If Conditions 1c and 2b hold, then a) and c) of Proposition 2 holds, and:
b)

E [Y jV = 0]� lim
�!0�

E [Y jV = �]

=

Z 1

�1

�
y+ (w)� y� (w)

� f (0jw)
f (0)

dG (w)

= ATE��

So ATE�� is a weighted average of individual-speci�c discontinuity gaps y+ (�) � y� (�) where

the weights are the same as in Proposition 2.

2.4 Self-selection and Random Chance

The continuity Condition 2b is crucial to the local random assignment results of Proposition 2 and 3. It is
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easy to see that if, for a nontrivial fraction of the population, the density of V is discontinuous at the cutoff

point, then a), b), and c) of Propositions 2 and 3 will generally not be true. Condition 2b is also somewhat

intuitive and its plausibility is arguably easier to assess than 1. Indeed, there is a link between Condition

2b and the ability of agents to manipulate V , particularly around the discontinuity threshold. When agents

can precisely manipulate their own value of V , it is possible that Condition 2b will not hold, and the RDD

could then lead to biased impact estimates.

For example, suppose a nontrivial fraction of students taking the examination knew with certainty,

for each question, whether or not their answer was correct � even while taking the exam. If these students

cared only about winning the scholarship per se, and if spending time taking the exam is costly, they would

choose to answer the minimum number of questions correctly (e.g. 70) to obtain the scholarship. In this

scenario, clearly the density of V would be discontinuous at the cutoff point, and thus the use of the RDD

would be inappropriate.

Alternatively, suppose for each student, there is an element of chance that determines the score.

The student may not know the answers to all potential questions, so that at the outset of the examination,

which of those questions will appear has a random component to it. The student may feel exceptionally

sharp that day or instead may have a bad �test� day, both of which are beyond the control of the student.

If this is a more believable description of the treatment assignment process, then Condition 2b would seem

plausible.

One way to formalize the difference between these two different scenarios is to consider that V is

the sum of two components: V = Z + e. Z denotes the systematic, or predictable component of V that can

depend on the individuals' attributes and/or actions (e.g. students' efforts in studying for the exam), and e

is an exogenous, random chance component (e.g. whether the �right� questions appear on the exam, having

a good �testing� day), with a continuous density. In the �rst scenario, there was no stochastic component e,

since the student knew exactly whether each of his answers was correct. In the second scenario, however

minimally, the component e � random chance � does in�uence the �nal score V .

In summary, Propositions 2 and 3 show that localized random assignment can occur even in the

11



presence of endogenous sorting, as long as agents do not have the ability to sort precisely around the

threshold. If they can, the density of V is likely to be discontinuous, especially if there are bene�ts to

receiving the treatment. If they cannot � perhaps because there is ultimately some unpredictable, and

uncontrollable (from the point of view of the individual) component to V � the continuity of the density

may be justi�able.

2.5 Relation to Selection Models

The treatment-assignment mechanism described by Conditions 1b (or 1c) and 2bhas some generality. The

conditions are implicitly met in typical econometric models for evaluation studies (except for the observabil-

ity of V ). For example, consider the reduced-form formulation of Heckman's (1978) dummy endogenous-

variable model:

y1 = x1�1 + d� + u1 (2)

y�2 = x2�2 + u2

d = 1 if y�2 � 0

= 0 if y�2 < 0

where y1 is the outcome of interest, d is the treatment indicator, x1 and x2 are exogenous variables and

(u1; u2) are error terms that are typically assumed to be bivariate normal and jointly independent of x1 and

x2. An exclusion restriction typically dictates that x2 contains some variables that do not appear in x1.

Letting V = y�2 , and Y1 = x1�1+�+u, Y0 = x1�1+u, andD = d, it is clear that this conventional

selection model satis�es Conditions 1b and 2b, except that y�2 here is unobservable. In this setting, it

is crucial that the speci�cation (e.g. the choice of variables x1 and x2, the independence assumption,

the exclusion restriction) of the model is correct. Any mis-speci�cation (e.g. missing some variables,

correlation between the errors and x1 and x2, violation of exclusion restriction) will lead to biased estimates

of �1, �2, and �.

When, on the other hand, the researcher is fortunate enough to directly observe y�2 � as in the RDD
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� none of the variables in x1 or x2 are needed for the estimation of �. And it is also unnecessary to assume

independence of the errors u1; u2. If x1 and x2 are available to the researcher (and insofar as they are

known to have been determined prior to the assignment of d), they can be used to check the validity of the

continuity Condition 2b, which drives the local random assignment result. Propositions 2 and 3 imply that

this can be done, for example, by examining the differenceE [x1jy�2 = 0]� lim�!0� E [x1jy�2 = �]. If the

local random assignment result holds, this difference should be zero. The variables x1 and x2 serve another

purpose in this situation. They can be included in a regression analysis to reduce sampling variability in the

impact estimates. Local independence implies that the inclusion of those covariates will lead to alternative,

consistent estimates, with generally smaller sampling variability. This is analogous to including baseline

characteristics in the analysis of randomized experiments.

It should be noted that this connection between RDD and selection models is not speci�c to the

well-known parametric version of Equation 2. The arguments can easily be extended for a more generalized

selection model that does not assume, for example, the linearity of the indices x1�1 or x2�2, the joint

normality of the errors, or the implied constant treatment effect assumption. Indeed, Condition 1b (or 1c) is

perhaps the least restrictive description possible for a selection model for the treatment evaluation problem.

3 RDD analysis of the Incumbency Advantage in the U.S. House

This section applies the ideas developed above to the problem of measuring the electoral advantage

of incumbency in the United States House of Representatives. In the discussion that follows, the �incum-

bency advantage� is de�ned as the overall causal impact of being the current incumbent party in a district

on the votes obtained in the district's election. Therefore, the unit of observation is the Congressional dis-

trict. The relation between this de�nition and others commonly used in the political science literature is

discussed brie�y in Section 3.5 and in more detail in Appendix B.

3.1 The Inference Problem in Measuring the Incumbency Advantage

One of the most striking facts of congressional politics in the United States is the consistently high rate

of electoral success of incumbents, and the electoral advantage of incumbency is one of the most studied
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aspects of research on elections to the U.S. House [Gelman and King, 1990]. For the U.S. House of

Representatives, in any given election year, the incumbent party in a given congressional district will likely

win. The solid line in Figure I shows that this re-election rate is about 90 percent and has been fairly stable

over the past 50 years.7 Well-known in the political science literature, the electoral success of the incumbent

party is also re�ected in the two-party vote share, which is about 60 to 70 percent during the same period.8

As might be expected, incumbent candidates also enjoy a high electoral success rate. Figure I

shows that the winning candidate has typically had an 80 percent chance of both running for re-election and

ultimately winning. This is slightly lower, because the probability that an incumbent will be a candidate

in the next election is about 88 percent, and the probability of winning, conditional on running for election

is about 90 percent. By contrast, the runner-up candidate typically had a 3 percent chance of becoming a

candidate and winning the next election. The probability that the runner-up even becomes a candidate in

the next election is about 20 percent during this period.

The overwhelming success of House incumbents draws public attention whenever concerns arise

that Representatives are using the privileges and resources of of�ce to gain an �unfair� advantage over

potential challengers. Indeed, the casual observer is tempted to interpret Figure I as evidence that there

is an electoral advantage to incumbency � that winning has a causal in�uence on the probability that the

candidate will run for of�ce again and eventually win the next election. It is well-known, however, that

the simple comparison of incumbent and non-incumbent electoral outcomes does not necessarily represent

anything about a true electoral advantage of being an incumbent.

As is well-articulated in Erikson [1971], the inference problem involves the possibility of a �recip-

rocal causal relationship�. Some � potentially all � of the difference is due to a simple selection effect:

incumbents are, by de�nition, those politicians who were successful in the previous election. If what makes

them successful is somewhat persistent over time, they should be expected to be somewhat more successful

when running for re-election.

7 Calculated from data on historical election returns from ICPSR study 7757. See Data Appendix for details. Note that the
�incumbent party� is unde�ned for years that end with `2' due to decennial congressional re-districting.
8 See, for example, the overview in Jacobson [1997].
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3.2 Model

The ideal thought experiment for measuring the incumbency advantage would exogenously change the

incumbent party in a district from, for example, Republican to Democrat, while keeping all other factors

constant. The corresponding increase in Democratic electoral success in the next election would represent

the overall electoral bene�t due to being the incumbent party in the district.

There is an RDD inherent in the U.S. Congressional electoral system. Whether or not the Democrats

are the incumbent party in a Congressional district is a deterministic function of their vote share in the prior

election.

Assuming that there are two parties, consider the following model of Congressional elections:

vi2 = �wi1 + �vi1 + di2 + ei2 (3)

di2 = 1

�
vi1 �

1

2

�
fi1 (vjw) � density of vi1 conditional on wi1 � is continuous in v

E [ei2jwi1; vi1] = 0

where vit is the vote share for the Democratic candidate in Congressional district i in election year t. di2 is

the indicator variable for whether the Democrats are the incumbent party during the electoral race in year

2. It is a deterministic function of whether the Democrats won election 1. wi1 is a vector of variables that

re�ect all characteristics determined or agents' choices as of election day in year 1.

The �rst line in (3) is a standard regression model describing the causal impacts of wi1; vi1, and di2

on vi2. wi1 could represent the partisan make-up of the district, party resources, or the quality of potential

nominees. vi1 is also permitted to impact vi2. For example, a higher vote share may attract more campaign

donors, which in turn, could boost the vote share in election year 2. The potentially discontinuous jump in

how vi1 impacts vi2 is captured by the coef�cient , and is the parameter of interest � the electoral advantage

to incumbency.

The main problem is that elements of wi1 may be unobservable to the researcher, so OLS will
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suffer from an omitted variables bias, since wi1 might be correlated with vi1, and hence with di2. That is,

the inherent advantages the Democrats have in a congressional district (e.g. the degree of liberalness of the

constituency, party resources allocated to the district) will naturally be correlated with their electoral success

in year 1, and hence will be correlated with whether they are the incumbent party during the electoral race

in year 2. This is why a simple comparison of electoral success in year 2, between those districts where the

Democrats won and lost in year 1, is likely to be biased.

But an RDD can plausibly be used here. Letting W = wi1, V = vi1, and Y = y (W;V ) =

�W + �V +  � 1
�
V � 1

2

�
, we have  = y

�
w; 12

�
� lim"!0+ y

�
w; 12 � "

�
. Conditions 1c and 2b hold,

and so Proposition 3 applies.9 Intuitively, conditional on agents' actions and characteristics as of election

day, if there exists a random chance element (that has a continuous density) to the �nal vote share vi1, then

whether the Democrats win in a closely-contested election is would determined as if by a �ip of a coin. As a

consequence, we can obtain credible estimates of the electoral advantage to incumbency by comparing the

average Democratic vote shares in year 2 between districts in which Democrats narrowly won and narrowly

lost elections in year 1.

The crucial assumption here is that � even if agents can in�uence the vote � there is nonetheless a

non-trivial random chance component to the ultimate vote share, and that conditional on the agents' choices

and characteristics, the vote share vi1 has a continuous density. It is plausible that there is at least some

random chance element to the precise vote share. For example, the weather on election day can in�uence

turnout among voters.

Assuming a continuous density requires that certain kinds of electoral fraud are negligible or nonex-

istent. For example, suppose a non-trivial fraction of Democrats (but no Republicans) had the ability to 1)

selectively invalidate ballots cast for their opponents and 2) perfectly predict what the true vote share would

be without interfering with the vote counting process. In this scenario, suppose the Democrats followed the

following rule: a) if the �true� vote count would lead to a Republican win, dispute ballots to raise the De-

9 With the trivial modi�cation that vi2 actually is equal to Y + ei2, but ei2 has mean zero conditional on V and W , so that
E [vi2jvi1] = E [Y jvi1].
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mocratic vote share, but b) if the �true� vote count leads to a Democratic win, do nothing. It is easy to see

that in repeated elections, this rule would lead to a discontinuous density in vi1 right at the 12 threshold.
10

If this kind of fraudulent behavior is important feature of the data, the RDD will lead to invalid

inferences; but if it is not, then the RDD is an appropriate design. The important point here is that Proposi-

tion 3 (c) implies that the validity of the RDD is empirically testable. That is, if this form of electoral fraud

is empirically important, then all pre-determined (prior to year 1) characteristics (X) should be different

between the two sides of the discontinuity threshold; if it is unimportant, then X should have the same

distribution on either side of the threshold.

3.3 Data Issues

Data on U.S. Congressional election returns from 1946-1998 are used in the analysis. In order to use all

pairs of consecutive elections for the analysis, the dependent variable vi2 is effectively dated from 1948 to

1998, and the independent (score) variable vi1 runs from 1946 to 1996. Due to redistricting every 10 years,

and since both lags and leads of the vote share will be used, all cases where the independent variable is

from a year ending in `0' and `2' are excluded. Because of possible dependence over time, standard errors

are clustered at the decade-district level.

In virtually all Congressional elections, the strongest two parties will be the Republicans and the

Democrats, but third parties do obtain some small share of the vote. As a result, the cutoff that determines

the winner will not be exactly 50 percent. To address this, the main vote share variable is the Democratic

vote share minus the vote share of the strongest opponent, which in most cases is a Republican nominee.

The Democrat wins the election when this variable �Democratic vote share margin of victory� crosses the

0 threshold, and loses the election otherwise.

Incumbency advantage estimates are reported for the Democratic party only. In a strictly two-party

system, estimates for the Republican party would be an exact mirror image, with numerically identical

10 Note that other �rules� describing fraudulent behavior would nevertheless lead to a continuous density in vi1. For example,
suppose all Democrats had the ability to invalidate ballots during the actual vote counting process. Even if this behavior is rampant,
if this ability stops when 90 percent of the vote is counted, there is still unpredictability in the vote share tally for the remaining 10
percent of the ballots. It is plausible that the probability density for the vote share in the remaining votes is continuous.
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results, since Democratic victories and vote shares would have one-to-one correspondences with Republican

losses and vote shares.

The incumbency advantage is analyzed at the level of the party at the district level. That is, the

analysis focuses on the advantage to the party from holding the seat, irrespective of the identity of the

nominee for the party. Estimation of the analogous effect for the individual candidate is complicated by

selective �drop-out�. That is, candidates, whether they win or lose an election, are not compelled to run for

(re-)election in the subsequent period. Thus, even a true randomized experiment would be corrupted by this

selective attrition.11 Since the goal is to highlight the parallels between RDD and a randomized experiment,

to circumvent the candidate drop-out problem, the estimates are constructed at the district level; when a

candidate runs uncontested, the opposing party is given a vote share of 0.

Four measures of the success of the party in the subsequent election are used: 1) the probability

that the party's candidate will both become the party's nominee and win the election, 2) the probability that

the party's candidate will become the nominee in the election, 3) the party's vote share (irrespective of who

is the nominee), and 4) the probability that the party wins the seat (irrespective of who is the nominee).

The �rst two outcomes measure the causal impact of a Democratic victory on the political future of the

candidate, and the latter two outcomes measure the causal impact of a Democratic victory on the party's

hold on the district seat.

Further details on the construction of the data set is provided in Appendix A.

3.4 RDD Estimates

Figure IIa illustrates the regression discontinuity estimate of the incumbency advantage. It plots the esti-

mated probability of a Democrat both running in and winning election t+1 as a function of the Democratic

vote share margin of victory in election t. The horizontal axis measures the Democratic vote share minus

the vote share of the Democrats' strongest opponent (virtually always a Republican). Each point is an aver-

11 An earlier draft (Lee 2000) explores what restrictions on strategic interactions between the candidates can be placed to pin
down the incumbency advantage for the candidate for the subpopulation of candidates who would run again whether or not they
lose the initial election. A bounding analysis suggests that most of the incumbency advantage may be due to a �quality of candidate�
selection effect, whereby the effect on drop-out leads to, on average, weaker nominees for the party in the next election.
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age of the indicator variable for running in and winning election t+1 for each interval, which is 0.005 wide.

To the left of the dashed vertical line, the Democratic candidate lost election t; to the right, the Democrat

won.

As apparent from the �gure, there is a striking discontinuous jump, right at the 0 point. Democrats

who barely win an election are much more likely to run for of�ce and succeed in the next election, compared

to Democrats who barely lose. The causal effect is enormous: about 0.45 in probability. Nowhere else is

a jump apparent, as there is a well-behaved, smooth relationship between the two variables, except at the

threshold that determines victory or defeat.

Figures IIIa, IVa, and Va present analogous pictures for the three other electoral outcomes: whether

or not the Democrat remains the nominee for the party in election t+ 1, the vote share for the Democratic

party in the district in election t + 1, and whether or not the Democratic party wins the seat in election

t+ 1. All �gures exhibit signi�cant jumps at the threshold. They imply that for the individual Democratic

candidate, the causal effect of winning an election on remaining the party's nominee in the next election

is about 0.40 in probability. The incumbency advantage for the Democratic party appears to be about 7 or

8 percent of the vote share. In terms of the probability that the Democratic party wins the seat in the next

election, the effect is about 0.35.

In all four �gures, there is a positive relationship between the margin of victory and the electoral

outcome. For example, as in Figure IVa, the Democratic vote shares in election t and t + 1 are positively

correlated, both on the left and right side of the �gure. This indicates selection bias; a simple comparison of

means of Democratic winners and losers would yield biased measures of the incumbency advantage. Note

also that Figures IIa, IIIa, and Va exhibit important nonlinearities: a linear regression speci�cation would

hence lead to misleading inferences.

Table I presents evidence consistent with the main implication of Proposition 3: in the limit, there

is randomized variation in treatment status. The third to eighth rows of Table I are averages of variables that

are determined before t, and for elections decided by narrower and narrower margins. For example, in the

third row, among the districts where Democrats won in election t, the average vote share for the Democrats
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in election t� 1 was about 68 percent; about 89 percent of the t� 1 elections had been won by Democrats,

as the fourth row shows. The �fth and seventh rows report the average number of terms the Democratic

candidate served, and the average number of elections in which the individual was a nominee for the party,

as of election t. Again, these characteristics are already determined at the time of the election. The sixth and

eighth rows report the number of terms and number of elections for the Democratic candidates' strongest

opponent. These rows indicate that where Democrats win in election t, the Democrat appears to be a

relatively stronger candidate, and the opposing candidate weaker, compared to districts where the Democrat

eventually loses election t. For each of these rows, the differences become smaller as one examines closer

and closer elections � as c) of Proposition 3 would predict.

These differences persist when the margin of victory is less than 5 percent of the vote. This is,

however, to be expected: the sample average in a narrow neighborhood of a margin of victory of 5 percent

is in general a biased estimate of the true conditional expectation function at the 0 threshold when that

function has a nonzero slope. To address this problem, polynomial approximations are used to generate

simple estimates of the discontinuity gap. In particular, the dependent variable is regressed on a fourth-

order polynomial in the Democratic vote share margin of victory, separately for each side of the threshold.

The �nal set of columns report the parametric estimates of the expectation function on either side of the

discontinuity. Several non-parametric and semi-parametric procedures are also available to estimate the

conditional expectation function at 0. For example, Hahn, Todd, and van der Klaauw (2001) suggest local

linear regression, and Porter (2003) suggests adapting Robinson's (1988) estimator to the RDD.

The �nal columns in Table I show that when the parametric approximation is used, all remaining

differences between Democratic winners and losers vanish. No differences in the third to eighth rows

are statistically signi�cant. These data are consistent with implication c) of Proposition 3, that all pre-

determined characteristics are balanced in a neighborhood of the discontinuity threshold. Figures IIb, IIIb,

IVb, and Vb, also corroborate this �nding. These lower panels examine variables that have already been

determined as of election t: the average number of terms the candidate has served in Congress, the average

number of times he has been a nominee, as well as electoral outcomes for the party in election t � 1. The
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�gures, which also suggest that the fourth order polynomial approximations are adequate, show a smooth

relation between each variable and the Democratic vote share margin at t, as implied by c) of Proposition

3.

The only differences in Table I that do not vanish completely as one examines closer and closer

elections, are the variables in the �rst two rows of Table I. Of course, the Democratic vote share or the

probability of a Democratic victory in election t+1 is determined after the election t. Thus the discontinuity

gap in the �nal set of columns represents the RDD estimate of the causal effect of incumbency on those

outcomes.

In the analysis of randomized experiments, analysts often include baseline covariates in a regres-

sion analysis to reduce sampling variability in the impact estimates. Because the baseline covariates are

independent of treatment status, impact estimates are expected to be somewhat insensitive to the inclusion

of these covariates. Table II shows this to be true for these data: the results are quite robust to various

speci�cations. Column (1) reports the estimated incumbency effect when the vote share is regressed on the

victory (in election t) indicator, the quartic in the margin of victory, and their interactions. The estimate

should and does exactly match the differences in the �rst row of the last set of columns in Table I. Column

(2) adds to that regression the Democratic vote share in t�1 and whether they won in t�1. The coef�cient

on the Democratic share in t� 1 is statistically signi�cant. Note that the coef�cient on victory in t does not

change very much. The coef�cient also does not change when the Democrat and opposition political and

electoral experience variables are included in Columns (3)-(5).

The estimated effect also remains stable when a completely different method of controlling for

pre-determined characteristics is utilized. In Column (6), the Democratic vote share t + 1 is regressed

on all pre-determined characteristics (variables in rows three through eight), and the discontinuity jump is

estimated using the residuals of this initial regression as the outcome variable. The estimated incumbency

advantage remains at about 8 percent of the vote share. This should be expected if treatment is locally

independent of all pre-determined characteristics. Since the average of those variables are smooth through

the threshold, so should be a linear function of those variables. This principle is demonstrated in Column
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(7), where the vote share in t � 1 is subtracted from the vote share in t + 1 and the discontinuity jump in

that difference is examined. Again, the coef�cient remains at about 8 percent.

Column (8) reports a �nal speci�cation check of the regression discontinuity design and estimation

procedure. I attempt to estimate the �causal effect� of winning in election t on the vote share in t�1. Since

we know that the outcome of election t cannot possibly causally effect the electoral vote share in t � 1,

the estimated impact should be zero. If it signi�cantly departs from zero, this calls into question, some

aspect of the identi�cation strategy and/or estimation procedure. The estimated effect is essentially 0, with

a fairly small estimated standard error of 0.011. All speci�cations in Table II were repeated for the indicator

variable for a Democrat victory in t+ 1 as the dependent variable, and the estimated coef�cient was stable

across speci�cations at about 0.38 and it passed the speci�cation check of Column (8) with a coef�cient of

-0.005 with a standard error of 0.033.

In summary, the econometric model of election returns outlined in the previous section allows

for a great deal of non-random selection. The seemingly mild continuity assumption on the distribution

of vi1 results in the strong prediction of local independence of treatment status (Democratic victory) that

itself has an �in�nite� number of testable predictions. The distribution of any variable determined prior to

assignment must be virtually identical on either side of the discontinuity threshold. The empirical evidence

is consistent with these predictions, suggesting that even though U.S. House elections are non-random

selection mechanisms � where outcomes are in�uenced by political actors � they also contain randomized

experiments that can be exploited by RD analysis.12

3.5 Comparison to Existing estimates of the Incumbency Advantage

It is dif�cult to make a direct comparison between the above RDD estimates and existing estimates of

the incumbency advantage in the political science literature. This is because the RDD estimates identify

a different, but related concept. The existing literature generally focuses on the concept of an incumbent

legislator advantage, while the RDD approach identi�es an overall incumbent party advantage.

12 This notion of using �as good as randomized� variation in treatment from close elections has been utilized in Miguel and Zaidi
(2003), Clark (2004), Linden (2004), Lee, Moretti, and Butler (2004), DiNardo and Lee (2004).
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Measuring the incumbent legislator advantage answers the following question: From the party's

perspective, what is the electoral gain to having the incumbent legislator run for re-election, relative to

having a new candidate of the same party run in the same district?13 This incumbency advantage is the

electoral success that an incumbent party enjoys if the incumbent runs for re-election, over and above the

electoral outcome that would have occurred if a new nominee for the party had run in the same district.14

By contrast, measuring the incumbent party advantage answers the following question: From the

party's perspective, what is the electoral gain to being the incumbent party in a district, relative to not being

the incumbent party? In other words, while the incumbent party's vote share typically exceeds 50 percent,

some of the votes would have been gained by the party even if it had not been in control of the seat.

The electoral advantage to being the incumbent party potentially works through a number of dif-

ferent mechanisms, and includes as a possible mechanism the incumbent legislator advantage. That is,

when the Democratic nominee barely wins an election, it raises the probability that the nominee will run

for re-election as an incumbent legislator. Insofar as there are advantages to being an incumbent legislator

as opposed to a new nominee, this will contribute to the overall incumbent party advantage identi�ed by

the RDD. In addition, the incumbent party advantage includes the gain that would have occurred even if the

victorious candidate in the �rst election did not run for re-election.

The interested reader is referred to Appendix B, which explains the difference between the RDD

estimate of the incumbency advantage and estimates typically found in the political science literature.

4 Conclusion

In one sense, the RDD is no different from all other research designs: causal inferences are only
13 The most precise statement of the counterfactual can be found in Gelman and King [1990], who use �potential outcomes�
notation, to de�ne the �incumbency advantage�. They de�ne the incumbency advantage in a district as a the difference between
�the proportion of the vote received by the incumbent legislator in his or her district...� and the �proportion of the vote received by
the incumbent party in that district, if the incumbent legislator does not run...�
14 This notion is also expressed in Alford and Brady [1993], who note that incumbents can incidentally bene�t from the party
holding the seat, and that the personal incumbency advantage should be differentiated from the party advantage, and that �[i]t is
this concept of personal incumbency advantage that most of the incumbency literature, and the related work in the congressional
literature, implicitly turns on.� Examples of typical incumbency studies that utilize this concept of incumbency include: Payne
[1980], Alford and Hibbing [1981], Collie [1981], and Garand and Gross [1984]. More recently, work by Ansolabehere and Snyder
[2001, 2002], and Ansolabehere, Snyder, and Stewart [2000] implicitly examine this concept by examining the coef�cient on the
same incumbency variable de�ned in Gelman and King [1990]: 1 if a Democrat incumbent seeks re-election, 0 if it is an open seat,
and -1 if a Republican seeks re-election.
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possible as a direct result of key statistical assumptions about how treatment is assigned to individuals. The

key assumption examined in this paper is the continuity of the density of V for each individual. What makes

the treatment assignment mechanism described in this paper somewhat distinctive is that what appears to

be a weak continuity assumption directly leads to very restrictive statistical properties for treatment status.

Randomized variation in treatment � independence (local to the threshold) � is perhaps the most restrictive

property possible, with potentially an in�nite number of testable restrictions, corresponding to the number

of pre-determined characteristics and the number of available moments for each variable. These testable

restrictions are an advantage when seeking to subject the research design to a battery of over-identifying

tests.15

Although the continuity assumption appears to be a weak restriction � particularly since it is im-

plicitly made in most selection models in econometrics � there are reasons to believe they might be violated

when agents have direct and exact control over the score V . If there are bene�ts to receiving the treatment,

it is natural to expect those who gain the most to choose their value of V to be above � and potentially just

marginally above � the relevant threshold. Ruling out this kind of behavior appears to be an important part

of theoretically justifying the application of the RDD in any particular context.

15 In addition to testing whether baseline characteristics are similar in the marginal treated and control groups, one can examine
if there is a discontinuity in the marginal distribution of V . See McCrary [2004]
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Appendix A. Description of Data

The data used for this analysis is based on the candidate-level Congressional election returns for the U.S.,

from ICPSR study 7757, �Candidate and Constituency Statistics of Elections in the United States, 1788-

1990�.

The data were initially checked for internal consistencies (e.g. candidates' vote totals not equalling

reported total vote cast), and corrected using published and of�cial sources (Congressional Quarterly [1997]

and the United States House of Representatives Of�ce of the Clerk's Web Page). Election returns from

1992-1998 were taken from the United States House of Representatives Of�ce of the Clerk's Web Page,

and appended to these data. Various states (e.g. Arkansas, Louisiana, Florida, and Oklahoma) have laws

that do not require the reporting of candidate vote totals if the candidate ran unopposed. If they are the only

candidate in the district, they were assigned a vote share of 1. Other individual missing vote totals were

replaced with valid totals from published and of�cial sources. Individuals with more than one observation

in a district year (e.g. separate Liberal and Democrat vote totals for the same person in New York and

Connecticut) were given the total of the votes, and were assigned to the party that gave the candidate the

most votes. The name of the candidate was parsed into last name, �rst name, and middle names, and suf�xes

such as �Jr., Sr., II, III, etc.�

Since the exact spelling of the name differs across years, the following algorithm was used to

create a unique identi�er for an individual that could match the person over time. Individuals were �rst

matched on state, �rst 5 characters of the last name, and �rst initial of the �rst name. The second layer

of the matching process isolates those with a suf�x such as Jr. or Sr., and small number of cases were

hand-modi�ed using published and of�cial sources. This algorithm was checked by drawing a random

sample of 100 election-year-candidate observations from the original sample, tracking down every separate

election the individual ran in (using published and of�cial sources; this expanded the random sample to

517 election-year-candidate observations), and asking how well the automatic algorithm performed. The

fraction of observations from this �truth� sample that matched with the processed data was 0.982. The
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fraction of the processed data for which there was a �true� match was 0.992. Many different algorithms

were tried, but the algorithm above performed best based on the random sample.

Throughout the sample period (1946-1998), in about 3 percent of the total possible number of

elections (based on the number of seats in the House in each year), no candidate was reported for the

election. I impute the missing values using the following algorithm. Assign the state-year average electoral

outcome; if still missing, assign the state-decade average electoral outcome.

Two main data sets are constructed for the analysis. For all analysis at the Congressional level,

I keep all years that do not end in `0' or `2'. This is because, strictly speaking, Congressional districts

cannot be matched between those years, due to decennial redistricting, and so in those years, the previous

or next electoral outcome is unde�ned. The �nal data set has 6558 observations. For the analysis at the

individual candidate level, one can use more years, because, despite redistricting, it is still possible to

know if a candidate ran in some election, as well as the outcome. This larger dataset has 9674 Democrat

observations.

For the sake of conciseness, the empirical analysis in the paper focuses on observations for De-

mocrats only. This is done to avoid the �double-counting� of observations, since in a largely two-party

context, a winning Democrat will, by construction, produce a losing Republican in that district and vice

versa. (It is unattractive to compare a close winner to the closer loser in the same district) In reality, there

are third-party candidates, so a parallel analysis done by focusing on Republican candidates will not give

a literal mirror image of the results. However, since third-party candidates tend not to be important in the

U.S. context, it turns out that all of the results are qualitatively the same, and are available from the author

upon request.
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Appendix B. Comparison of Regression Discontinuity Design and other
estimates of the Incumbency Advantage

Reviews of the existing methodological literature in Gelman and King [1990], Alford and Brady [1993], and

Jacobson [1997] suggest that most of the research on incumbency are variants of three general approaches

� the �sophomore surge�, the �retirement slump�, and the Gelman-King index [1990].16 Appendix Figures

Ia and Ib illustrate the differences between these three approaches and the regression discontinuity strategy

employed in this paper. They also clearly show that the three commonly-used approaches to measuring

the �incumbency advantage� are estimating an incumbent legislator advantage as opposed to an incumbent

party advantage. The regression discontinuity design is ideally suited for estimating the latter incumbency

advantage.

Appendix Figure Ia illustrates the idea behind the �sophomore surge�. The solid line shows a

hypothetical relationship between the average two-party Democratic vote share in period 2 � V2 � as a

function of the Democratic vote share in period 1, V1. In addition, the dotted line just below the solid line

on the right side of the graph represents the average V2 as a function of V1, for the sub-sample of elections

that were won by �rst-time Democrats in period 1.17 The idea behind the sophomore surge is to subtract

from the average V2 for all Democratic �rst-time incumbents (V 2), an amount that represents the strength of

the party in those districts apart from any incumbent legislator advantage. The �sophomore surge� approach

subtracts off V 1, the average V1 for those same Democratic �rst-time incumbents.

Appendix Figure Ib illustrates how the �retirement slump� is a parallel measure to the �sophomore

surge�. In this �gure, the dashed line below the solid line represents the average V2 as a function of V1;

for those districts that will have open seats as of period 2. In other words, it is the relationship for those

districts in which the Democratic incumbent retires and does not seek re-election in period 2. Here, the idea

is to subtract from the average vote share gained by the retiring Democratic incumbents (V 1), an amount

16 See Gelman and King [1990] for a concise review of existing methods as of 1990. More recently, Levitt and Wolfram [1997]
use a �modi�ed sophomore surge� approach and Cox and Katz [1996] use a speci�cation �adapted from Gelman and King [1990]�.
17 In principle, a �mirror-image� line exists for the Republican �rst-time incumbents. But I omit the line to make the graph clearer.
Also, note that in this graph, to simplify exposition, I am assuming that all �rst-time incumbents seek re-election. The basic ideas
hold when relaxing this assumption, but the notation is slightly more cumbersome.
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that re�ects the strength of the party. The �retirement slump� approach subtracts off V 2, the average V2 for

the incoming Democratic candidate in those districts.

Appendix Figure Ib also illustrates Gelman and King's approach to measuring incumbency advan-

tage. The dotted line above the solid line is the average V2, as a function of V1, for those districts in

which the Democratic incumbent is seeking re-election. The idea behind their approach is to subtract from

the average vote share V2 gained by incumbents seeking re-election, an amount that re�ects how the party

would perform if a new candidate ran for the party, while controlling for the lagged vote share V1. Thus, the

gap between the parallel dashed and dotted lines in Appendix Figure Ib represent the incumbent legislator

advantage measured by the Gelman-King index ( ).18

Finally, Appendix Figures Ia and Ib illustrate that the approach of the regression discontinuity

design isolates a different aspect of the incumbency advantage � the incumbent party advantage. The idea

is to make a comparison of the electoral performance in period 2 of the Democratic party between districts

that were barely won (say, by 0.1 percent of the vote) and districts that were barely lost by the Democratic

party in period 1. Thus the regression discontinuity estimate (�) is depicted by the discontinuous jumps in

the solid lines at the 0.50 threshold in Appendix Figures Ia and Ib.19

The �gures show that the discontinuity gap directly addresses the counterfactual question that is at

the heart of measuring the incumbent party advantage: How would the Democratic party have performed in

period 2, had they not held the seat (i.e. had the Democrats lost the election in period 1)? The best way to

estimate that quantity is to examine elections where the Democrats just barely missed being the incumbent

party for the election in period 2 � the point on the solid line just to the left of the 0.50 threshold.

It is important to recognize that the incumbent party advantage includes in part the incumbent

legislator advantage, since a Democrat close win, for example, raises the probability that the Democratic

nominee runs for re-election as an incumbent legislator in the next election. It also includes the vote share

gain (or loss) that occurs because the party per se holds the seat.

18 Again, the mirror-image dotted and dashed lines for Republicans are ignored to make the exposition clearer in the graph.
19 While it is tempting to equate � here to �2 in equation 6 of Gelman and King [1990], this would be incorrect, because Gelman
and King include their key variable, I2, in the sepeci�cation. (If they did not include I2, their key variable, then �2 would equal �
here). Thus, the regression discontinuity estimates presented in this paper cannot be recovered from a Gelman-King-type analysis.
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Nevertheless, it is also important to recognize that in principle, there is no necessary connection

between the RD estimates and the other estiamtes. It is possible that the regression discontinuity estimate

could be zero (no break in the solid lines at 0.50), while at the same time the sophomore surge, retirement

slump, and Gelman-King index could be signi�cant. Alternatively, in principle, there could be a large

estimate of �, while at the same time the other measures could be zero.

A �nal important point is that the sophomore surge relies upon situations where either an incumbent

is defeated or a seat is thrown open, and the retirement slump, and Gelman-King index relies upon situations

where seats are thrown open by an incumbent that does not seek re-election. In principle, for any year in

which every incumbent becomes the nominee in a re-election bid (and ignoring redistricting years) it would

be impossible to estimate any of those three measures; the dotted and dashed lines in Appendix Figures Ia

and Ib would not exist. In this case, the only incumbency advantage concept that could be measured would

be the incumbent party advantage identi�ed by the RDD.
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Appendix C. Proofs

Condition A1. Random draw from population. Let � be a probability measure on (
;F). Each ! 2 


represents an individual. (
;F ; �) describes the probabilities of drawing individuals from a (possibly

in�nite) population.

Condition A2. Stochastic treatment assignment. For each ! 2 
, let v! be a probability measure

on (�;D). (�;D; v!) describes the probabilities associated with receiving the treatment (or, in the RDD,

the score V ), for each individual !. Assume that for any B 2D, v! (B) as a function of ! is measurable

F . Let G be the �-�eld consisting of all sets 
�A, where A 2D.

Condition A3. Probabilities for the overall experiment. De�ne P as follows: 8E 2F�D,

P (E) =
R

 v! [� : (!; �) 2 E]� (d!). It can be shown thatP is a probability measure on (
� f0; 1g ;F �D).

Condition A4. Pre-determined characteristics. Let X = x (!) be a real-valued function that is

measurable F�D. It follows that it is also measurable F .

Condition A5. Finite �rst moments. EP and E� denote expectations with respect to probability

measures P and �, respectively. Where appropriate, Y , Y1, Y0, f!(0)f(0) Y ,
f!(0)
f(0) Y1, and

f!(0)
f(0) Y0 are each

assumed to be integrable P and integrable �.

Condition B1. Binary treatment assignmentmodel. Let� = f0; 1g andD= f?; f0g; f1g; f0; 1gg.

De�ne the random variable D as D = �, � 2 �, which is measurable F�D.

Condition B2. Regression discontinuity design. Let � = R, and D=R1 be the class of linear

Borel sets. De�ne the random variable V � measurable on F�D � as V (�) = �, � 2 �, and let D =

1 [V � 0].

Condition C1. Potential outcomes. Let Y1 = y1 (!) ; Y0 = y0 (!), be real-valued functions that

are measurable F�D (and hence measurable F). Let Y = DY1 + (1�D)Y0.

Condition C2. Potential outcome function. Let Y = y (!; �) be a real-valued function that is

measurable F�D. Let y (�; �) be continuous in the second argument except at � = 0, where the function is

only continuous from the right. De�ne the function Y + = y (!; 0) and Y � = lim"!0+ y (!;�").
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Condition D1. Treatment randomization. v! is identical for all ! 2 


Condition D2. Continuous density of score. Let F! (�) = v!(�1; �], and f! (�) its derivative

with respect to �. Let f (�) =
R

 f! (�)� (d!). Assume that 0 < f! (�), and f! (�) is continuous in � on

R. (Note that if v! is measurable F , one can show that in this set-up, so too are F! and f!).

Proposition 1. If Conditions A1-A5, B1, C1, and D1 hold, then:

a) 8F 2F , P [F ��jD = 1] = P [F ��jD = 0] = P [F ��] = � [F ]

b) EP [Y jD = 1]� EP [Y jD = 0] = E� [Y1 � Y0] � ATE

c) 8x0 2 R, P [X � x0jD = 1] = P [X � x0jD = 0] = P [X � x0] = � [! : X � x0]

Proof. a)P [F ��jD = 1] = P [(F ��) \ (
� f1g)] =P [
� f1g]. Numerator is
R
F�f1g P (d (!; �)) :

This is equal to
R
F

hR
f1g v! (d�)

i
� (d!) = v! (f1g) � � [F ] by 18.20.c of Billingsley (1995) and by D1.

Similarly, denominator is v! (f1g). Similar argument holds for P [F ��jD = 0]. b) Need to show that

conditional expectation of Y1 given G, evaluated at D = 1 is equal to E� [Y1]. It can be shown that

the conditional expectation of Y given G can be written as � (�0) � 1
P [
�f�0g]

R

�f�0g Y�0P (d (!; �)),

for �0 = 0 and 1. Consider the case when �0 = 1. We then have 1
P [
�f1g]

R

�f1g Y1P (d (!; �)) =

1
P [
�f1g]

R



hR
f1g Y1v! (d�)

i
� (d!) by 18.20.c of Billingsley (1995). Because Y1 is only a function of !,

and by D1, this becomes v!(f1g)
P [
�f1g]

R

 Y1� (d!) which is equal to

R

 Y1� (d!) = E� [Y1]; a similar argu-

ment shows that � (0) = E� [Y0]. c) By A4, for every x0 2 R, F � [! : X (!) � x0] is in F , and thus c)

follows from a).

Proposition 2 If Conditions A1-A5, B2, C1, and D2 hold, then:

a) 8F 2F , P [F ��jV = v] is continuous in v at v = 0

b) EP [Y jV = 0] � lim"!0+ EP [Y jV = �"] = EP [Y1 � Y0jV = 0] = E�

h
f!(0)
f(0) (Y1 � Y0)

i
�

ATE�

c) 8x0 2 R, P [X � x0jV = v] is continuous in v at v = 0

Proof. a) Fix F 2 F , and consider the function � : 
 � � ! R, � (z; �) �
R
F
f!(�)�(d!)

f(�) . It

suf�ces to show 1) that � (z; �) is a version of the conditional probability of F � � given G, and 2) that

� (z; �) is continuous in � on R. First, for each 
 � A we have � by 18.20.c and 18.20.d of Billingsley
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(1995) �
R

�A � (z; �)P (d (z; �)) =

R
A

R
F
f!(�)�(d!)

f(�) v (d�), where v is a probability measure de�ned by

v (B) =
R

 v! (B)� (d!), for all B 2D. v has density f with respect to Lebesgue measure because

for all B 2D,
R
B f (�) d� =

R
B[
R

 f! (�)� (d!)]d� =

R

[
R
B f! (�) d�]� (d!) =

R

 v! (B)� (d!), by

Fubini's theorem, and because f! (�) is a density of v!. Thus, by theorem 16.11 of Billingsley (1995),R
A

R
F
f!(�)�(d!)

f(�) v (d�) =
R
A[
R
F f! (�)� (d!)]d�, which equals

R
F [
R
A f! (�) d�]� (d!), by Fubini's theo-

rem. This equals
R
F v! (A)� (d!) = P [F �A], because f! is a density and by 18.20.c of Billingsley

(1995).

Second, to show continuity of � (z; �), it suf�ces to show that for any F 2F and any sequence

�n ! 0,
R
F f! (�n)� (d!) !

R
F f! (0)� (d!). This follows from dominated convergence, noting that

f! (�n) � g!, if g! � supn f! (�n), which is �nite for each !, because f! (�n) converges to f! (0), by D2.

b) Consider the function � : 
 � � ! R; � (z; �) =
R

 Y

f!(�)
f(�) � (d!). It suf�ces to show that

1) � (z; �) is a version of the conditional expectation of Y given G, and 2) � (z; 0) = EP [Y1jV = 0] =

E�

h
f!(�)
f(�) Y1

i
and lim"!0+ � (z;�") = EP [Y0jV = 0] = E�

h
f!(�)
f(�) Y0

i
. First, for all 
� A 2 G; we haveR


�A � (z; �)P (d (z; �)) =
R
A[
R

 Y

f!(�)
f(�) � (d!)]v (d�) by 18.20.c and 18.20.d of Billingsley (1995). This

is equal to
R

[
R
A Y

f!(�)
f(�) v (d�)]� (d!) =

R

[
R
A Y f! (�) d�]� (d!) because v has density f (see above).

This is equal to
R

[
R
A Y v! (d�)]� (d!) =

R

�A Y P (d (!; �)), because v! has density f!, and by 18.20.c

of Billingsley (1995). Second, let � = 0.
R

 Y

f!(0)
f(0) � (d!) =

R

 Y1

f!(0)
f(0) � (d!) = EP [Y1jV = 0], by the

de�nition of Y , and the same argument above. Also,
R

 Y1

f!(0)
f(0) � (d!) =E�

h
f!(0)
f(0) Y1

i
. Finally, let �n < 0,

�n ! 0. f!(�n)f(�n)
! f!(0)

f(0) , by D2. Need to show limn
R

 Y0

f!(�n)
f(�n)

� (d!) =
R

 Y0

f!(0)
f(0) � (d!). This follows

from dominated convergence with jY0 f!(�n)f(�n)
j dominated by jY0 g!

infn f(�n)
j (same g! as above):By the same

argument as above,
R

 Y0

f!(0)
f(0) � (d!) = EP [Y0jV = 0] = E�

h
f!(0)
f(0) Y0

i
.

c) By A4, for every x0 2 R, F � [! : X (!) � x0] is in F , and thus c) follows from a).

Proposition 3

If Conditions A1-A5, B2, C2, and D2 hold, then:

a) and c) of Proposition 2 are true, and

32



b) EP [Y jV = 0] � lim"!0+ EP [Y jV = �"] = E�

h
f!(0)
f(0) (Y

+ � Y �)
i
� ATE��

Proof. For a) and c), see the proof to Proposition 2. b) First, following the argument the proof

to Proposition 2, � (z; �) is a version of the conditional expectation of Y given G. Second, let � = 0.R

 Y

f!(0)
f(0) � (d!) =

R

 Y

+ f!(0)
f(0) � (d!) = E�

h
f!(0)
f(0) Y

+
i
. Finally, let �n < 0, �n ! 0. f!(�n)f(�n)

! f!(0)
f(0) , by

D2. Need to show limn
R

 Y

f!(�n)
f(�n)

� (d!) =
R

 Y

� f!(0)
f(0) � (d!). This follows from dominated convergence

with jY f!(�n)
f(�n)

j dominated by jh! g!
infn f(�n)

j (same g! as above) where h! � supn jy (!; �n) j, which is �nite

for each !, because y (!; �n)! Y �, by C2:It follows that
R

 Y

� f!(0)
f(0) � (d!) = E�

h
f!(0)
f(0) Y

�
i
.
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Appendix Figure Ia: Identification of Incumbency Advantage: 
Sophomore Surge vs. Regression Discontinuity

Appendix Figure Ib: Identification of Incumbency Advantage: 
Gelman-King and Retirement Slump vs. Regression Discontinuity
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FIGURE I: Electoral Success of U.S. House Incumbents: 
1948-1998
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in the preceding election in that congressional district. Due to re-districting on years that end with "2", there are no
points on those years. Other series are the fraction of individual candidates in that year, who win an election in the
following period, for both winners and runner-up candidates of that year.
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Figure IIa: Candidate's Probability of Winning Election t+1, by 
Margin of Victory in Election t: local averages and parametric fit
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Figure IIb: Candidate's Accumulated Number of Past Election 
Victories, by Margin of Victory in Election t: local averages and 
parametric fit
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Figure IIIa: Candidate's Probability of Candidacy in Election t+1, 
by Margin of Victory in Election t: local averages and parametric fit
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Figure IIIb: Candidate's Accumulated Number of Past Election 
Attempts, by Margin of Victory in Election t: local averages and 
parametric fit
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Figure IVa: Democrat Party's Vote Share in Election t+1, by 
Margin of Victory in Election t: local averages and parametric fit
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Figure IVb: Democratic Party Vote Share in Election t-1, by Margin
of Victory in Election t: local averages and parametric fit
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Figure Va: Democratic Party Probability Victory in Election t+1, by 
Margin of Victory in Election t: local averages and parametric fit
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Figure Vb: Democratic Probability of Victory in Election t-1, by 
Margin of Victory in Election t: local averages and parametric fit
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