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Modeling Sources of Uncertainty in Spoken Word Learning
Matthias Hofer (mhofer@mit.edu), Roger Levy (rplevy@mit.edu)

Department of Brain and Cognitive Sciences, 43 Vassar St
Cambridge, MA 02139 USA

Abstract

In order to successfully learn the meaning of words such as
bin or pin, language learners must not only perceive relevant
differences in the speech signal but also learn mappings from
words to referents. Prior work in native (Stager & Werker,
1997) and second (Pajak, Creel, & Levy, 2016) language ac-
quisition has found that the ability to perceptually discrimi-
nate between words does not guarantee successful word learn-
ing. Learners fail to utilize knowledge that they can otherwise
use in speech perception. To explore possible mechanisms ac-
counting for this phenomenon, we developed a probabilistic
model that infers both a word’s phonetic form and its asso-
ciated referent. By analyzing different versions of the model
fitted to experimental results from Pajak et al. (2016), we ar-
gue that a mechanism for spoken word learning needs to incor-
porate both perceptual uncertainty as well as additional, task-
specific sources of uncertainty.

Keywords: word learning, rational model, probabilistic infer-
ence, phonological similarity, speech representations

Introduction
From the perspective of a learner of English, successfully
learning the meaning of novel words such as bin or pin
requires the ability to perceptually discriminate between
similar-sounding words. Creating distinct, non-overlapping
representations of the input is necessary because the words
need to be mapped onto different classes of referents. This
requires perceptual sensitivities to the phonological contrasts
critical for the discrimination (Pater, Stager, & Werker, 2004).
In the case of bin and pin this contrast is along the voicing di-
mension (phonemes b and p differ in voice onset time). Stud-
ies in infant native-language (L1) acquisition have shown that
while these perceptual abilities are present in 14 month old in-
fants, they do not guarantee successful word learning (Stager
& Werker, 1997; Pater et al., 2004). In a series of experi-
ments conducted by Stager and Werker (1997), infants that
were able to perceptually discriminate between two similar-
sounding words, such as dih and bih, failed to utilize this
knowledge during word learning (experiment 4). When first
habituated to label/object pairings, infants did not reliably de-
tect when the assignment of words to objects switched (exper-
iment 1) and they failed to notice mispronunciations when an
object that had before been introduced as dih was later re-
ferred to as bih (experiment 2). The authors interpreted their
findings as infants being unable to attend to fine phonetic de-
tail during word learning and argued that it constitutes a fea-
ture of linguistic development.

The same pattern of results has more recently been demon-
strated for second-language (L2) learners. A study by Pajak et
al. (2016) compared the performance of subjects of two dif-
ferent linguistic backgrounds in a perceptual discrimination
and a word learning task. To create a situation paralleling

that of L1 acquisition in infants, the researchers used a minia-
ture language with word pairs at three levels of phonological
similarity whose phonology, modeled after Polish, was novel
and unfamiliar to all participants: Dissimilar words differed
in multiple phonemes (e.g., tala / kenna); similar word pairs
differed in one phoneme (e.g., tala / taja); and highly-similar
words differed only along a single phonetic dimension, ei-
ther in length (short vs. long, e.g., tala / talla) or place of
articulation (alveolopalatal vs. retroflex, e.g., gotCa / gotùa).
In order to examine the role of L1-specific differences in task
performance, Pajak and Levy (2014) collected data from both
Korean speakers, who are sensitive to length contrasts but not
to the alveolopalatal vs. retroflex distinction, and from Man-
darin speakers, who show the opposite pattern. To ensure that
subjects were naive to the stimuli used in the experiment, the
researchers tested separate groups of subjects on the percep-
tual discrimination and the word learning task.

Similarly to results from Stager and Werker (1997), the
study found that the ability to perceptually discriminate
similar-sounding words in the perceptual task did not suc-
cessfully translate to the word learning task on a group level,
nor did subjects’ L1-specific perceptual advantages. Taken
together, these findings suggest that the difficulty in learn-
ing similar-sounding words, especially during early lexical
acquisition, is a general property of learning rather than a
developmental stage (Pajak et al., 2016; Perfors & Dunbar,
2010). At present, little is known about the learning mech-
anisms that give rise to these difficulties. Here we seek to
provide an account of such a mechanism in the form of a
probabilistic model developed with the goal of reproducing
the results from Pajak et al. (2016)’s original study. While
we are not aware of any computational modeling work, the
exists prior work addressing these issues on a conceptual
level. The failure to utilize perceptual knowledge during
word learning has previously been attributed to increased
cognitive load (Werker, Fennell, Corcoran, & Stager, 2002;
Stager & Werker, 1997). While discrimination only requires
storage and comparison of perceptual input in phonological
short-term memory, word learners must additionally attend
to the referent stimulus and integrate label/referent informa-
tion over the course of learning to infer probable associations.
This lowers the resolution of auditory processing (Mattys &
Palmer, 2015), which contributes to the failure of distinctly
representing similar-sounding input. We will explore these
verbal theories by analyzing which of the proposed compo-
nents are necessary to account for the observed effects in the
study by Pajak et al. (2016), which we will briefly describe in
the next section.
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Pajak et al. (2016)’s experiment
In a between-subjects design, ninety subjects, approximately
equally split into speakers of Korean and Mandarin, partici-
pated in either a perceptual discrimination or a word learn-
ing task. Stimuli consisted of 16 bisyllabic consonant-vowel-
consonant-vowel (CVCV) nonce words, split into similarity
classes as described above.1 Perceptual discrimination was
tested in an ABX task. Subjects listened to three consecutive
words, e.g., talla[A], taja[B], and talla[X ], and had to decide
which of the first two words sounded more similar to the last
one. In the word learning task, each of the 16 labels was asso-
ciated with a single referent in the form of a visual image and
participants’ goal was to learn which words were associated
with which referents. The experiment consisted of four train-
ing blocks (each with 128 trials) and four interleaved testing
blocks (each with 64 trials). In each trial, two pictures were
presented side by side, corresponding to the referents for la-
bels A and B. Similarly to the ABX task, subjects then heard
a label X and had to decide which referent it belonged to.
Error feedback was provided to the subjects during the train-
ing phase but not during the test phase. The stimulus triplets
used in the discrimination task and in the test phase of the
word learning task were identical, which made it possible to
compare accuracy for triplets across the two tasks.

Computational Model
A computational analysis of spoken word learning must take
into account the goal of the computation, the information
available to the learner, and show how this information maps
onto appropriate behavioral responses (Anderson, 1990). We
suggest that learning novel words requires the learner to
perform statistical inference on at least two distinct levels.
While the ultimate goal of learning is to infer concepts, or la-
bel/referent associations, from a stream of observations, the
learner must concurrently infer the label’s phonetic form from
the acoustic input, since it is not explicit in the speech sig-
nal. These two layers of inference give rise to a hierarchical
probabilistic model, visually depicted in Figure 1, which we
used to model spoken word learning and, using a variation
of the generative process, model results from the perceptual
discrimination tasks. Model behavior is influenced by three
distinct factors: perceptual noise, which affects both discrimi-
nation and word learning when processing speech input, task-
specific factors that lower the resolution of auditory repre-
sentations of speech sounds during word learning (Mattys &
Palmer, 2015), and overall memory capacity.

Formal characterization of the model
Each word and its corresponding referent define a concept,
denoted c. To simplify our analysis, we assume that the ref-
erent stimulus is observed unambiguously. In our model, ob-
serving the referent stimulus is therefore identical to observ-

1The constraint that words always have four CVCV segments is
a simplification for convenience. In principle, our model should be
applicable to any set of phonemes and syllable structures. See Pajak
et al. (2016) for the complete list of phonemes and stimuli used.

ing the concept directly, because of the one-to-one relation
between referents and concepts. The a priori probability of
choosing any concept is uniform. Corresponding labels are
then sampled from the conditional probability p(l|c), whose
probability mass is uniform across all possible labels in the
language L and zero otherwise.

Pr(l|c) =
{ 1

N if l ∈ L
0 otherwise

(1)

Label l is a sequence of phonemes of the form p1 p2 p3 p4
composed of pre-specified consonant and vowel primitives.
Phonemes are represented mathematically as multivariate
Gaussian distributions in one of two separate (phonetic) fea-
ture spaces, one for consonants and one for vowels. Follow-
ing prior approaches to the representation of speech sounds
(Richter, Feldman, Salgado, & Jansen, 2016; Bailey & Hahn,
2005), the feature dimensions of these phonetic spaces corre-
spond to subsegmental features such as manner, place, length,
and voicing, or to the first two vowel formants. Distributions
are centered around a fixed category mean µ[pi], a vector of
means indexed by the corresponding phoneme. Covariance
matrices Σw[i], one shared across vowels and one across con-
sonants, are indexed by i only (corresponding to whether the
phoneme is of type C or V).

Conditioned on a choice for label l, we can generate a se-
quence of phones s1s2s3s4, which can be seen as its discrete
and noisy realizations of the label’s phonemes:

Pr(si|pi) = N
(
µ[pi],Σw[i]

)
(2)

Pr(s|l) = Pr(s1s2s3s4|p1 p2 p3 p4) (3)
= Pr(s1|p1)Pr(s2|p2)Pr(s3|p3)Pr(s4|p4)

The covariance matrix that determines variability in the re-
alization of speech sounds is specified through the following
scalar-matrix-vector multiplication:

Σtask[i] = αtaskIν[i]population (4)

The scalar αtask allows us to reflect task-specific sources
of uncertainty (word learning vs. discrimination). We note
that the parameter for word learning, αw can be written as
the product of a perceptual ’baseline’ acuity parameter for
the discrimination task times a constant factor: αw = cαd .
Assuming pairwise independence across all feature dimen-
sions, the covariance matrix is fully specified by its diagonal
elements, encoded in the population-specific diagonal vector
ν[i]population. Phonetic acuity along those feature dimensions
is inversely proportional to variance: the higher phonetic acu-
ity, the lower the variance. This allows us to model differ-
ences in L1 background (Korean vs. Mandarin) with respect
to perceptual sensitivities along these feature dimensions. For
example, for Korean speakers:
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L

ct

lt Σw

st

t ∈ 1, . . . ,T

Figure 1: Graphical representation of the word learning
model. Circles indicate random variables (variables shaded
in gray are observed during learning); squares indicate fixed
model parameters. To simplify our representation, the model
does not include a referent node, which is deterministically
generated by sampling from the concept.

ν[1]Korean = ν[3]Korean =
(
τF1K

−1
τF2K

−1)T

ν[2]Korean = ν[4]Korean =(
τlengthK

−1
τplaceK

−1
τvoicingK

−1
τmannerK

−1)T

The vowel feature space consists of the first two formants
F1 and F2. Consonant space consists of the dimensions
voicing, place, manner, and length (Bailey & Hahn, 2005).
All acuity parameters are set to 1 (corresponding to a unit
Gaussian variance), except for τlength and τplace, which are
population-specific free parameters in the model. As a sim-
ple approximation, means in µ[pi] are evenly spaced across
perceptual space. Along each phonetic dimension, we de-
fined a number of subsegmental features (e.g., ’voiced’ and
’unvoiced’ along the voicing dimension). Phonetic category
means can then be written as the vectors composed of these
features (the mean of phoneme f, for instance, is represented
as [unvoiced, labial, fricative, short]). Although not fully ac-
curate in its details, the coarse grained nature of this setup is
sufficient with respect to the word pairs used in Pajak et al.
(2016)’s experiment.2

Word learning model In word learning, subjects engage
in consecutive training and test blocks. Each training trial t
consist of an observed label/referent pair {st ,ct}. For sim-
plicity we assume that learners discard the negative, second

2In particular, the distance between dissimilar phonemes in fea-
ture space is large because their means differ in multiple units
across multiple dimensions. The distance between highly-similar
phonemes on the other hand is small since they are only one unit
apart along a single dimension.

exemplar presented to them and only learn from the positive
pairing. The learner’s goal is to infer probable associations
between referents c and labels l, in other words, compute the
posterior probability over labels given the observed stimulus
and referent Pr(lt |st ,ct) according to:

Pr(l|s,c,Σw) =
Pr(s|l,Σw)Pr(l|c)

∑l Pr(s|l,Σw)Pr(l|c)
(5)

The output of this computation is then used as a prior for
the next trial. To model the difficulty of integrating multiple
memory traces over time, one simple approach is to assume
an upper bound on the number of memory traces that can be
integrated, denoted mc. We formalized this intuition by dis-
carding samples from trials t ≥ mc (no further updating of
probabilistic representations occurs).

After computing Pr(l|s1, ...,sT ,c1, ...,cT ,Σw) for the train-
ing block, in the test phase, the learner compares two alter-
native tuples {cA,sX} and {cB,sX} to assess which referent
is more probable under sX . This is achieved by computing
Pr(cA|sX ,Σw) and Pr(cB|sX ,Σw) by integrating over l:

Pr(c|s,Σw) =
∑l Pr(s|l,Σw)Pr(l|c)Pr(c)

∑c ∑l Pr(s|l,Σw)Pr(l|c)Pr(c)
(6)

Discrimination model In the discrimination task, subjects
perceive a stimulus triplet {sA,sB,sX} and decide whether X
is more similar to A or to B. We hypothesize that subjects
use the generative process outlined above to judge similarity,
where they independently determine the likelihood that the
stimuli were sampled from two alternative generative models
(Tenenbaum & Griffiths, 2001), described in the following:

Pr(sA,sB,sX |l1, l2) = (7)

∑
l1

[
Pr(sA|l1)Pr(sX |l1)Pr(l1)

]
∑
l2

[
Pr(sB|l2)Pr(l2)

]
(8)

Pr(sA,sB,sX |l1, l2) =

∑
l1

[
Pr(sA|l1)Pr(l1)

]
∑
l2

[
Pr(sB|l2)Pr(sX |l2)Pr(l2)

]
The likelihood Pr(s|l) is the same as in Equation 3 but with

covariance matrix Σd [i] specific to the perceptual discrimina-
tion task.

Response probability Both experimental paradigms use a
two-alternative forced choice task (2-AFC) to assess subjects’
knowledge. Subject either compare two posterior probabili-
ties over concepts given labels (word learning task) or the
likelihoods that the stimulus triple was generated by one of
two alternative generative models (discrimination task). In
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Figure 2: Comparison of the M+A+ model to experimental results for the L1 Korean population (top) and for the L1 Mandarin
population (bottom). Error bars are standard errors. Accuracy scores are percentage correct in the discrimination task and
during the test phase of the word learning task.

both cases, choices are modeled using a Bernoulli distribu-
tion and the probability of choosing one alternative over the
other is computed using Luce’s choice rule (Luce, 1959). Re-
sponse parameter β controls the stochasticity of responses.

Results
We fitted the model to aggregate subject data from Pajak
et al. (2016)’s word learning and perceptual discrimination
tasks. Free model parameters included task-specific phonetic
acuity for word learning (αw) and for discrimination (αd),
four population-specific acuity parameters (τlengthK , τlengthM ,
τplaceK , τplaceM ), the response parameter (β), as well as the
memory capacity parameter (mc).

Table 1: Results from fitting four versions of our model to
the experimental data. Fits are quantified using the product of
RMSEs to the word learning and discrimination data across
the two speaker populations.

Model n.p. w.l. w.l.b. disc. all
M−A− 6 0.089 0.138 0.179 0.407
M−A+ 7 0.029 0.140 0.017 0.186
M+A− 7 0.076 0.098 0.172 0.347
M+A+ 8 0.025 0.099 0.018 0.142

To assess which model components are necessary to ac-
count for the experimental data, we fitted four alternative ver-

sions of the model that were composed out of two binary fac-
tors: the presence (+) or absence (−) of memory constraints
mc (M) and the presence of task-specific, non-perceptual un-
certainty in the form of separate (+) or shared (−) percep-
tual acuity parameters across tasks (A), where in the case of
shared parameters: αw = αd . We also considered separate
response rule parameters β for word learning and discrimina-
tion but found that the improvements were only minimal.

The models were fitted to the data by minimizing the prod-
uct of six separate error terms. For each group of L1 speakers
(Mandarin vs. Korean), we calculated the root mean squared
error (RMSE) between model predictions and experimental
results, resulting in three separate error terms for (i) overall
discrimination accuracy across trial types [disc.], (ii) overall
word learning accuracy across trial types [w.l.], and (iii) word
learning accuracy across blocks and trial types [w.l.b.]. For
each of the four models, Table 1 shows the RMSE for these
three scores (averaged across Korean and Mandarin speak-
ers) and their sums [all]. Column [n.p.] indicates the fitted
model’s number of free parameters.

The necessity of separate acuity parameters

Pajak et al. (2016)’s main finding was that the difference in
accuracy between tasks was mediated by similarity. In other
words, performance takes a greater hit from increased per-
ceptual similarity in the word learning task compared to dis-
crimination. The study also found that L1-specific perceptual
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Figure 3: Figure (a) shows how the M−A+ model fails to account for the time course of learning. Figure (b) and (c) show
comparisons of the M+A+ model to L1 Korean speakers and L1 Mandarin speakers. Error bars indicate standard errors.
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Figure 4: Results for the M−A− model (top) and for the
M−A+ model (bottom; both Korean only; results are quali-
tatively similar for Mandarin speakers)

advantages that are manifest in the discrimination task can-
not be utilized in word learning. Model variants M−A− and
M+A−, missing the additional acuity parameter αw, were not
able to account for these observations. Figure 4 (top) illus-
trates this point by showing overall results for Korean speak-
ers. One key observation for the M−A− model is that, when
sharing a single perceptual acuity parameter between the two
tasks, the original pattern of findings reverses and the dis-
crimination model performs worse than the word learning
model.3 The reasons for this are twofold. All other things
being equal, there is more uncertainty in the generative pro-
cess for discrimination (see Equation 7 and 8) than there is
in word learning. In discrimination, subjects need to infer
the phonetic form of three auditory stimuli, compared to a

3Depending on how model fits are quantified it may also be pos-
sible to fit the discrimination results very well but overestimate accu-
racy on the word learning task. Critically, however, discrimination
accuracy will always be lower than word learning accuracy in the
M−A− model.

single stimulus in word learning. Moreover, the word learn-
ing model can profit from additional information in the form
of label/referent representations, gradually sharpening over
the course of learning. The fact that perceptual uncertainty
alone (in the form of a shared acuity parameter across mod-
els) cannot account for the superiority of discrimination per-
formance over word learning suggests that word learning is
influenced by additional sources of uncertainty. The bottom
of Figure 4, which depicts results for the M−A− model, illus-
trates that adding an additional phonological acuity parame-
ter that is specific to word learning is sufficient to account for
both discrimination as well as word learning results.

Accounting for the time course of word learning

In Pajak et al. (2016), word learning performance only im-
proved over a certain number of trials, resulting in learning
curves to asymptote after roughly the second learning block.
Reproducing this pattern while simultaneously accounting for
the results presented above was an important aspect of our
modeling efforts. While model M−A+ provides an almost
ideal fit to aggregate results from discrimination and word
learning (see Figure 4), underlining the importance of incor-
porating acuity factor A into the model, it fails to capture the
time course of learning (see Figure 3a).

The only model that fit the entire range of empirical find-
ings was the M+A+ model. Figure 2 shows that the model
is a good fit, both qualitatively as well as quantitatively, to
aggregate accuracy scores for both Korean and Mandarin L1
speakers. In particular, simulated data successfully reproduce
the lack of L1-specific advantages in word learning compared
to discrimination. Figures 3b and 3c show that the added
memory constraint allows the model to better account for the
shape of the learning curve. Models without this component
are not able to reproduce this pattern. Table 1 further shows
that adding such memory constraints also slightly improves
fits to the aggregate word learning data [w.l.] compared to
the same model where they are absent.
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Discussion
Recent work by Pajak et al. (2016) suggests that the difficulty
of learning label/referent associations for similar-sounding
words is a general feature of learning rather than a develop-
mental stage unique to infancy. In working towards a com-
putational theory that could account for this phenomenon,
we developed a probabilistic model capable of learning la-
bel/referent pairs while at the same time inferring the label’s
phonetic form. We fitted and compared four versions of the
model to data from Pajak et al. (2016), contrasting different
factors that are thought to influence performance.

We found that, besides structural differences in the way the
generative models for word learning and for discrimination
are set up, a single multiplicative factor operating on percep-
tual uncertainty was sufficient to account for the major differ-
ences between perceptual discrimination and word learning.
A second additional factor, representing long-term memory
constraints, was only necessary to account for the time course
of learning.

Task-related sources of uncertainty
Conceptually, the acuity factor combines sources of uncer-
tainty unique to the word learning task, such as attention to
the referent stimulus and the encoding of label/referent exem-
plars over the course of learning. An interpretation broadly
consistent with our model and with previous work (Stager
& Werker, 1997; Mattys & Palmer, 2015) is that, although
originating from post-perceptual sources, the locus of this
added uncertainty is perception itself, operating through low-
ering attention to phonetic detail. On this view, the model’s
discrimination acuity parameter can be interpreted as rep-
resenting various sources of perceptual uncertainty, ranging
from the transduction of the speech signal at the periphery
to phoneme recognition. Word learning-specific sources of
uncertainty can be interpreted as a multiplicative factor on
perceptual uncertainty, which, multiplied together, constitute
the model’s word learning acuity parameter. This added fac-
tor also accounts for the finding that L1-specific perceptual
advantages cannot be utilized in word learning. The overlap
of highly-similar word pairs in perceptual feature space is so
large that potential advantages along the length and place fea-
ture dimensions are washed out.

Another important insight comes from models that lack
this separate acuity parameter, which suggest that the dis-
crimination is actually harder than word learning. This makes
sense when considering that the generative model for the dis-
crimination task must infer the phonetic form of three stimuli
instead of a single stimulus. As a consequence, perceptual
uncertainty affects the discrimination task more severely. In
the absence of other factors that independently operate on the
generative model for word learning, this leads to relative per-
formance benefits in the word learning task.

Memory constraints
While distinguishing between two major sources of uncer-
tainty might alone be sufficient to account for time-averaged

results, it is not enough to account for the time course of
learning in Pajak et al. (2016), which showed that learning
stagnates after the second training block. The fact that these
performance deficits are specific to word learning suggests
that they are due to memory-related processes. We found
that incorporating capacity constraints in the form of an up-
per bound on memory was necessary to fully account for the
observed effects.

Conclusion
Our model is a first step in addressing the question of what are
the factors that make the learning of similar-sounding words
hard. In particular, the model is consistent with the original
explanation given by Stager and Werker (1997); Werker et al.
(2002). According to this view, word learning is an inherently
hard information processing problem and the difficulties of
learning similar-sounding words are a consequence of opti-
mally distributing limited resources across the perceptual and
memory-related processes involved in learning.
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