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1.  INTRODUCTION 

Global climate change is perturbing marine ecosys-
tems through unprecedented rates of warming, inten-
sification of marine heatwaves, changes to ocean 
chemistry, and altering the timing, availability, and 
quality of prey resources (Gattuso et al. 2015, IPCC 

2021, 2022). Understanding the cumulative impact of 
these changes at the scales of marine organisms, pop-
ulations, communities, and coupled socio-ecological 
systems remains an important goal for science and 
management (Charles 2012, Doney et al. 2012, Hol-
lowed et al. 2013, 2020, Poloczanska et al. 2016, 
Barange et al. 2018, Karp et al. 2019). Interactions 
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ABSTRACT: Climate change has rapidly altered marine ecosystems and is expected to continue to 
push systems and species beyond historical baselines into novel conditions. Projecting responses of 
organisms and populations to these novel environmental conditions often requires extrapolations 
beyond observed conditions, challenging the predictive limits of statistical modeling capabilities. 
Bioenergetics modeling provides the mechanistic basis for projecting climate change effects on mar-
ine living resources in novel conditions, has a long history of development, and has been applied 
widely to fish and other taxa. We provide our perspective on 4 opportunities that will advance the 
ability of bioenergetics-based models to depict changes in the productivity and distribution of fishes 
and other marine organisms, leading to more robust projections of climate impacts. These are (1) im-
proved depiction of bioenergetics processes to derive realistic individual-level response(s) to com-
plex changes in environmental conditions, (2) innovations in scaling individual-level bioenergetics 
to project responses at the population and food web levels, (3) more realistic coupling between 
spatial dynamics and bioenergetics to better represent the local- to regional-scale differences in the 
effects of climate change on the spatial distributions of organisms, and (4) innovations in model val-
idation to ensure that the next generation of bioenergetics-based models can be used with known 
and sufficient confidence. Our focus on specific opportunities will enable critical advancements in 
bioenergetics modeling and position the modeling community to make more accurate and robust 
projections of the effects of climate change on individuals, populations, food webs, and ecosystems.  
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among multiple abiotic and biotic factors, with either 
reinforcing (i.e. synergistic) or counteracting (i.e. 
antagonistic) effects, can lead to non-linear and non-
intuitive ecological responses (Pörtner et al. 2014, 
Côté et al. 2016, Hewitt et al. 2016, Glibert et al. 2022, 
IPCC 2022). Projecting marine ecosystem dynamics 
remains challenging (Planque 2016, Baag & Mandal 
2022), and we contend that projections of marine (and 
freshwater) species abundances and distributions 
generated by models that explicitly depict the 
impacts of climate change drivers on biological pro-
cesses and trophic interactions are warranted to 
advance our understanding of future shifts (Hollowed 
et al. 2009, Mouquet et al. 2015). The challenge is en -
suring that the models generate projections under 
unprecedented and novel environmental regimes that 
are sufficiently accurate and precise. 

A variety of different modeling approaches are now 
being used (e.g. Plagányi et al. 2011, 2014, Lotze et al. 
2019) to project species responses to climate change. 
A common approach is species distribution modeling 
(and related habitat suitability and bioclimate envel-
ope modeling), which relates a species’ abundance 
(or presence–absence) to the local observed or mod-
eled environmental conditions (e.g. Fernandes et al. 
2013, Jones & Cheung 2015, Morley et al. 2018, Melo-
Merino et al. 2020). While habitat-based approaches 
such as species distribution models provide useful 
first-order predictors of habitat suitability for a spe-
cies in a future climate, they often do not consider the 
growth, mortality, reproduction, and movement or 
migration processes underlying population dynamics 
(Planque 2016, Peck et al. 2018). Rather, such habitat-
based modeling approaches use purely statistical 
relationships between historically observed species 
presence or abundance and environmental variables, 
representing a theory that is assumed rather than 
tested (Bar-Yam 2016) to make projections of popu -
lation-level impacts on habitat. Increasingly, the 
models being used to project climate impacts on mar-
ine species and ecosystems, including species distri-
bution models, attempt to resolve at least some of the 
ecological mechanisms known to be influenced by 
climate change by integrating abiotic and biotic fac-
tors into the models (Kearney & Porter 2009, Fer-
nandes et al. 2013, Gamliel et al. 2020). 

Projected environmental conditions under climate 
change often fall outside the historical range of obser-
vations (Williams & Jackson 2007, Kwiatkowski et al. 
2020). Predictions of how such non-analog (i.e. un -
precedented environmental and ecological) conditions 
will affect individuals necessitate more mechanistic 
approaches than habitat-based and other methods 

grounded in historical conditions (Jørgen sen et al. 
2012, Russell et al. 2012, Urban et al. 2016, Johnston et 
al. 2019, Dahlke et al. 2020, Little et al. 2020). Statistical 
models often perform well with historical data but are 
sensitive to misspecification when used to extrapolate 
outside the range of observed data. Bioenergetics 
modeling provides a more mechanistic framework 
based on first principles for making climate change 
projections because it is based on the physiological 
and behavioral responses of an individual to its envi-
ronment in response to ecological interactions (Baltar 
et al. 2019, Lefevre et al. 2021, Kroeker & Sanford 2022). 

In this paper, we provide our perspective on op -
portunities that would advance the ability of bioener-
getics-based models to support robust projections of 
climate impacts on organisms, populations, and food 
webs. Future directions for modeling bioenergetics of 
fish have been periodically reviewed (e.g. Brandt & 
Hartman 1993, Hartman & Kitchell 2008) but there 
have been important advances in data collection and 
developments in numerical modeling since then, and 
climate change presents new challenges. 

In this forward-looking review, we identify 4 cate-
gories of opportunities (Table 1) for advancing the 
field of bioenergetics modeling to understand marine 
organismal- to system-level responses to climate 
change: (1) improved depiction of bioenergetics pro-
cesses to derive realistic individual-level re sponse(s) 
to complex changes in environmental vari ability; (2) 
innovations in scaling organismal-level bioenergetics 
to improve the skill in projecting responses at the pop-
ulation and food web levels; (3) more realistic coupling 
between spatial dyna mics (movement) and bioener-
getics to better represent the local- to regional-scale 
differences in the effects of climate change on the spa-
tial distributions of organisms; and (4) new ideas about 
model validation to ensure that the next generation of 
bioenergetics-based models can be used with known 
and sufficient confidence. As with all ecological mod-
eling, the complexity and detail in a model depend on 
the questions being asked (Collie et al. 2016, Planque 
et al. 2022). Our suggestions for advancing bioener-
getics modeling to project the responses of marine or-
ganisms to climate change are an inclusive list from 
which only a few may apply to a specific situation. 

2.  CONTEMPORARY BIOENERGETICS 
 MODELING 

Although there are many versions of bioenergetics 
models, all relate to the basic, balanced energy 
budget of an individual (Fig. 1): 
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  EC = (Esom + Egon) + (ES + ESDA + EA) + EE + EF   (1) 

where the rate of energy (E, J ind.–1 time–1) gained by 
food consumption EC equals the sum of the growth of 

somatic tissue Esom and/or gonadal tissue Egon, meta -
bo lism terms ES, ESDA, EA and losses due to excretion 
(EE) of nitrogenous wastes and egestion (EF); total 
aerobic metabolism includes the costs of standard 
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Table 1. The specific approaches discussed in the paper for advancing bioenergetics modeling, listed according to their general  
opportunity category and the issue they address

General 
opportunity

Issues                   Specific approaches (discussed within the text)
1 2 3 4

Individual 
responses  
to a chang- 
ing environ-
ment

Formulation of 
temperature  

effects 
 
 

Temperature  
and tolerance

Revisit common  
formulations and use  

of thermal  
windows 

 
Derivation of thermal  

thresholds indicative of  
tolerance

Subprocess effects 
combine to an 
 overall effect 

 
 

Incorporation of abiotic 
factors into ecological 

performance versus 
aerobic scope

Mean and other 
aspects of 

temperature (e.g. 
variance, 

extremes) as 
drivers

Inter- 
individual 
variability

Multiple  
stressors

Bioenergetics formulations 
capable of novel temperatures  

and various combinations  
of multiple stressors

Role of field and  
lab data

Intrinsic and  
extrinsic factors 

affecting  
tolerance

Influence of life stage,  
exposure, body size,  

and environmental condi - 
tions on thermal tolerance

Local adaptation and 
acclimation

Phenotypic 
 plasticity

Innovations 
in scaling 
from indi -
viduals to 
populations 
and food 
webs

Population  
dynamics  

models 
 
 
 

Multi- 
generational

Interactions among individ -
uals affected by bioenergetics  
and that affect bioenergetics  

(e.g. disease, foraging, predator 
avoidance, schooling) 

 
Density dependence

 
 
 
 
 
 

Inheritable traits that 
determine phenotypic 

plasticity
Multi-species 
interactions  
(food webs)

Climate change indirectly  
affecting populations  
through its effects on  

other species in the food web

Number of parameters 
with multiple species

Combining 
movement 
ecology and 
bioenergetics

Two-way  
coupling

Decisions of movement  
behavior can be determined by 
bioenergetics considerations;  

realized movement trajectories  
influence bioenergetics

Assessing 
realism  
via model 
validation

Validation  
with new  

data streams

Incorporation of fine-scale data 
and new types of data on the 

health and behavior of individ-
uals related to energetics

Revisiting  
validation  
strategies

New strategies to ensure 
validation shows quality of model 

predictions with new formula-
tions under climate change

Uncertainty  
and model  
complexity

Assessment of new formulations 
to show their added value to 
model performance and to 

confirm the added complexity 
is needed
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(maintenance) respiration (ES), digestion via specific 
dynamic action (ESDA), and activity (EA). EA includes 
different levels of activity, from longer-term ‘routine’ 
swimming to shorter-term intense physical activity, 
which often is considered ‘maximum aerobic metabo-
lism’ and denoted Emax. Note that ES and Emax are also 
often expressed in units of mg (or ml) of O2 per mass 
of the individual per unit time (RS and Rmax) and used 
as part of the oxygen budget of an individual (Holt & 
Jørgensen 2015) and to derive aerobic scope (Clark et 
al. 2013). 

All of the rate processes in Eq. (1) are influenced by 
various intrinsic and extrinsic factors that integrate 
into a measure of ecological performance (Fig. 2). A 
wide range of metrics have been proposed as ecologi-
cal performance indicators (Rezende & Bozinovic 
2019, Desforges et al. 2023), including behavior, 
swimming speed, metabolism, fecundity, and growth; 
our focus is on growth and reproduction and their role 
in bioenergetics. To date, bioenergetics models have 
mostly focused on the intrinsic factors of develop-
mental stage and body mass and the extrinsic factors 
of temperature and food availability. Once derived 
(often from laboratory experiments), these relation-
ships are used to estimate the growth, food consump-
tion, and/or reproduction responses of individuals 
and can estimate the physiological (fundamental 
niche; as opposed to observed or realized niche) tol-

erable thermal window of individuals characterized 
by empirical estimates of the preferred and critical 
minima and maxima temperatures (Tpref, CTmin, and 
CTmax, respectively). 

Three commonly used bioenergetics models for 
aquatic organisms are the Wisconsin energy budget 
(WEB) model, which has been extensively used for 
fish (Kitchell et al. 1977, Hanson et al. 1997, Des-
lauriers et al. 2017), the dynamic energy budget 
(DEB) model, which has been used for a wide diver-
sity of organisms (van der Meer 2006, Kooijman 
2009, Nisbet et al. 2010, 2012, Kooijman 2020), and 
the physiological energy budget model (Sibly et al. 
2013, Boyd et al. 2020). All 3 approaches capture 
the physiological processes represented in Eq. (1) 
(e.g. consumption, growth, metabolism, and eges-
tion), with parameters that depend on life stage or 
age and are able to simulate daily to seasonal 
growth physiology (e.g. losses, gains) of individuals 
(Brownscombe et al. 2022). We focus on bioener-
getics used in agent-based (also known as individ-
ual-based) modeling in this review because of their 
accelerating use (An et al. 2021) and because they 
simulate processes at the individual level (Martin 
et  al. 2012, DeAngelis & Diaz 2019, Railsback & 
Grimm 2019). While the details depend on the 
model approach and the specific formulations used 
within the model, the issues and opportunities dis-

196

Fig. 1. Basic energy budget of an individual fish, showing the major subprocesses that comprise any bioenergetics model. Also  
shown are the components of the oxygen budget related to the energy budget terms that determine aerobic scope
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cussed below apply across many types of models 
besides agent-based (e.g. age-structured) that incor-
porate bioenergetics formulations (Fig. 3). 

3.  OPPORTUNITY 1: INDIVIDUAL RESPONSES 
TO A CHANGING ENVIRONMENT 

Physical and biogeochemical models for depicting 
climate-driven changes in environmental features 
that are often used to force higher trophic level mo -
dels continue to increase in skill and spatial resolu-
tion (Bonan & Doney 2018, Swearer et al. 2019, Hewitt 
et al. 2020, Hood et al. 2021, Justic et al. 2022). This 
increased temporal and spatial accuracy and resolu-
tion of temperature, as well as other abiotic variables, 
provides an opportunity to better formulate how 
these variables impact the bioenergetics processes of 
individuals. We expand below on 4 pressing issues 
with using bioenergetics models for predicting how 
individuals will respond to climate change: (1) formu-
lation of temperature effects; (2) temperature as a 
foundation of environmental tolerance; (3) multiple 
stressors and their interaction with temperature; and 
(4) intrinsic and extrinsic factors impacting environ-
mental tolerance. 

3.1.  Formulation of temperature effects 

The effect of temperature is often explicitly in -
cluded in the multiple sub-processes (e.g. consump-
tion, respiration; see Eq. 1) of bioenergetics models. 
When combined, these can lead to complicated re -
sponses in terms of organism growth in response to 
projected warming, particularly concerning energy 
utilization and allocation of energy between growth 
and reproduction. 

Common formulations for temperature effects on 
physiological processes are the Q10 coefficient and 
the Arrhenius relationship (Brown et al. 2004, Clarke 
2017). Both Q10 and Arrhenius represent the effect as 
a non-linear monotonic increase in bioenergetics 
rates (e.g. consumption, metabolism) with increasing 
temperature. Some have argued that complex physio-
logical changes with temperature interact with eco-
logical constraints to produce outcomes that are 
unlikely to be predicted from the Arrhenius equation 
or metabolic theory alone (Rall et al. 2012, Dell et al. 
2014, Neubauer & Andersen 2019). An example of an 
ecological constraint is the foraging parameters (e.g. 
attack rates) inherent in a species that determine the 
functional response and therefore its consumption 
(Rall et al. 2012). To address some of the limitations of 
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Fig. 2. Some of the major intrinsic and extrinsic factors that affect the physiological and ecological performance of individual fish. 
The extrinsic factors are shown as stressors expected from climate change. The left example shows possible body size effects on 
the response to the multiple stressors and the right example depicts how phenotypic variation could influence responses. The 
focus to date in bioenergetics models includes the intrinsic factor of size and the extrinsic factors of temperature and food
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the Arrhenius formulation, laboratory experiments 
have been used to increase its realism by specifying 
limits directly on growth in models (e.g. Akimova et 
al. 2016) or specifying limits to feeding that deter-
mine growth such as the maximum consumption rate 
(e.g. Peck & Daewel 2007, Mesa et al. 2013). 

Many biological processes in organisms, particu-
larly those related to growth and/or performance, are 
better described by a thermal window or optimum 
curve (Brown et al. 2004, Clarke 2017). DeLong et al. 
(2017) proposed a formulation based on enzyme-pool 
kinetics that generates dome-shaped relationships, 
and both the WEB (Deslauriers et al. 2017) and DEB 
(www.bio.vu.nl/thb/deb/, www.debtox.info/debkiss
_appl.html) have libraries of formulations including 
various dome-shaped functions for temperature 
effects on maximum rates of consumption. A wide 
variety of shapes of the temperature response func-
tion(s) has been proposed (Padfield et al. 2021), and 
the selected formulation should be carefully corrobo-
rated with observations at high temperatures, as both 
gradual warming and extreme marine heat waves will 
push organisms into a region of the relationship likely 
not often tested under present-day conditions. 

For all formulations, assessing the effects of warming 
on individual-level bioenergetics necessitates consid-
ering 3 critical issues. First, temperature has different, 
non-linear effects on each of the sub-processes of bio-
energetics (Eq. 1). Thus, the shape of the temperature 
effect on consumption differs from that for metabolism. 
This is especially important for warming, which can 
have accelerating or even opposite effects (below or 
above the peak) depending on the sub-process. How 
these non-linear effects of warming on the bioener-
getics sub-processes then combine to generate the re-
sultant growth and reproduction re sponses should be 
carefully evaluated and verified. 

The second consideration relates to what aspects of 
warming are important in determining bioenergetics 
responses. Bioenergetics models to date have largely 
focused on predicting the responses to changes in the 
mean temperature and other averaged environmental 
conditions that are experienced at each time step. 
Daily thermal fluctuations, more than mean daily 
temperature, are thought to contribute to salmonid 
growth and survival (Boughton et al. 2007, Wehrly et 
al. 2007, Geist et al. 2010, Holsman & Danner 2016). 
Also, responses often depend on not just the tempera-
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ture experienced in the present but also the lagged 
effect of the advective (environmental) history that 
determines the exposure of an individual (Holsman & 
Danner 2016). Lagrangian ap proaches that follow the 
trajectories of individuals are increasingly being used 
to study the behavior, energetics, and exposure of 
individuals moving within complex environmental 
fields (Joo et al. 2022). Expanding and refining bioen-
ergetics models to depict the effect of variability and 
past exposure to temperature will become important 
as climate change affects not only the averages but 
also the variability and the extremes of temperature 
(IPCC 2021). 

The third issue is the long-standing approach of 
 ignoring inter-individual variability in the simulation 
of bioenergetics responses. Physiological variability 
among individuals is not well understood (see Tyler & 
Bolduc 2008) and, despite bioenergetics models being 
based on individuals, most bioenergetics-based ap-
proaches assume that temperature changes will im-
pact all individuals within a stage or size grouping in 
the same way (Peck et al. 2018). This representation of 
the response of the average individual can distort the 
population responses to climate change by missing in-
dividual adaptation due to, for example, phenotypic 
variation or adaptation scope at the extremes of the 
distribution of responses such as growth rate (Fig. 2). 

3.2.  Temperature as the foundation of 
 environmental tolerance 

Formulating the subprocesses of the bioenergetics 
model to ensure realistic responses of growth and res-
piration to warming is important for determining 
whether critical temperature thresholds will be ex -
ceeded. Aerobic scope is a measure of the amount of 
oxygen available above maintenance costs (i.e. Scope 
= Rmax – RS) to support feeding, growth, and other 
processes and has been offered as a general frame-
work for defining thermal habitats suitable for (and 
tolerated by) organisms such as fishes (Deutsch et al. 
2015). With warming, RS is typically assumed to 
increase exponentially or with a peak, and Rmax (e.g. 
during strenuous exercise) will likely change in a dif-
ferent, non-linear fashion that can reduce aerobic 
scope. Although the relationship between perform-
ance and aerobic scope versus temperature is species-
specific (e.g. Jutfelt et al. 2018), the result is often a 
right-shifted, dome-shaped curve (Kroeker & Sanford 
2022). This curve can be related to measures of ther-
mal performance made using standard protocols 
applied at the organismal level (i.e. CTmin, Tpref, and 

CTmax; Moyano et al. 2017, Volkoff & Rønnestad 
2020). This window of positive aerobic scope is sensi-
tive to the components of bioenergetics and how they 
combine into growth or other measures of ecological  
performance. Also relevant to climate change is how 
bioenergetics can be extended to multiple dimen-
sions by including other abiotic factors and stressors, 
such as dissolved oxygen, pH, and salinity, that either 
increase or decrease RS or Rmax (Pörtner & Peck 2010, 
Deutsch et al. 2015, Kroeker & Sanford 2022). 

Performance curves, thermal windows, and pre-
ferred and critical temperatures have been widely 
applied to model the temperature tolerance of larval 
(Moyano et al. 2017, Quinn 2017), juvenile, and adult 
fish (Pörtner & Peck 2010, McBryan et al. 2013, 
Vinagre et al. 2015, Ern et al. 2016). Many of these 
were estimated and derived from the sub- processes 
represented in the energy-based and oxygen-based 
bioenergetics modeling. The species- and life-stage-
specific relationship between the aerobic scope of 
individuals and temperature has been used in models 
projecting changes in the distribution and productiv-
ity of specific populations (e.g. Cucco et al. 2012, Holt 
& Jørgensen 2014) or across many populations 
(Cheung et al. 2009). Physiologists have taken note of 
the broad-scale global modeling and have suggested 
improvements based on more recent bioenergetics 
measurements (Lefevre et al. 2017, 2021, Alfonso et al. 
2021) such as the capacity of fish species to maintain 
large aerobic scopes (with a high metabolic rate) at 
warm temperatures across a range in body sizes 
(Lefevre et al. 2017). Aerobic scope can help define 
the thermal window of many aquatic poikilothermic 
organisms (those that cannot regulate body tem-
perature) (Peck et al. 2018, Teal et al. 2018), and their 
performance and tolerance can be used to compare 
responses to anticipated temperatures under a future 
climate (Neuheimer et al. 2011, Pörtner 2021). 

There is considerable debate about the physiologi-
cal mechanisms that create an optimum temperature 
and that set limits to growth and performance of fish 
at colder and warmer temperatures. The gill-oxygen 
limitation theory (GOLT) can be derived from the von 
Bertalanffy growth function and has been used to 
describe various growth traits of fish based on oxygen 
demand and oxygen supply to fish tissues via gill sur-
face area (Pauly 2021). The oxygen and capacity-lim-
ited thermal tolerance (OCLTT) theory provides a 
framework for explaining critical thermal limits 
based on reductions in aerobic scope (Pörtner 2010). 
Finally, the maintain aerobic scope and regulate oxy -
gen supply (MASROS) framework suggests that the 
growth trajectories of fish have been evolutionarily 
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adapted to avoid oxygen limitation at warm tempera-
tures (Lefevre et al. 2021). One implication of these 
alternatives relevant to global climate change is 
whether aerobic scope starts to decrease slowly or 
sharply after temperatures exceed optimal tempera-
tures. If measurements of aerobic scope are available 
for the same species across large ranges in body sizes 
and temperatures, then the oxygen-based metabo-
lism relationships can be formulated and the em -
pirical information used to evaluate these alternative 
views of how oxygen poses limits to thermal per-
formance curves. In cases when the available data 
are insufficient to distinguish among the frameworks, 
models will need to state assumptions on the physio-
logical mechanism limiting the growth or perform-
ance of target species at warm and cold tempera-
tures. Thermal thresholds and preferences will play a 
major role in assessing climate change effects, and 
the bioenergetics and metabolic rates must therefore 
be carefully tested for use under anticipated future 
conditions. 

3.3.  Multiple stressors and their interaction 
with temperature 

Climate change is amplifying the multi-stressor ex -
posure by requiring models to account for simulta-
neous and asynchronous events of not only warming 
but also ocean acidification, deoxygenation, sea level 
rise, habitat fragmentation, and other stressors (Sam-
paio & Rosa 2020, Glibert et al. 2022). The multi-
stressor effects on the sub-processes represented in 
bioenergetics and on the resultant projection of 
growth can be additive, synergistic, or antagonistic 
(Côté et al. 2016). We suggest that a critical explora-
tion of multi-stressor effects in bioenergetics models 
is overdue, especially considering the widespread use 
of thermal thresholds, their incorporation into pop-
ulation and food web models, and the recent critiques 
of their formulations (Jutfelt et al. 2018, Audzijonyte 
et al. 2019b). 

Some progress has been made in expanding bioen-
ergetics modeling beyond temperature to account for 
additional environmental factors. For example, DEB 
model parameter sets have been created based on the 
effects of multiple drivers (e.g. temperature, pollu-
tants, feeding level) on freshwater invertebrates 
(Goussen et al. 2020), sublethal effects of stressors 
(Watson et al. 2020), hypoxia effects (Thomas et al. 
2019), and migration costs from river blockages and 
reduced ocean food (Chaparro-Pedraza & de Roos 
2021). Jørgensen et al. (2012) documented how aero-

bic scope could be used with bioenergetics models to 
examine the impacts of interacting factors (e.g. hyp-
oxia, ocean acidification, heatwaves, cold snaps) on 
the fitness and performance of fish. Holt & Jørgensen 
(2014, 2015) used maximization of expected lifetime 
reproductive success with a bioenergetics model to 
find the optimal foraging behavior and energy alloca-
tion between growth and reproduction. They demon-
strated that estimated optimal temperatures for 
growth and fitness in Atlantic cod Gadus morhua were 
lower than when only aerobic scope was considered; 
optimal behavior needed to further fulfill the require-
ments of foraging, avoiding predation, and reproduc-
tion. Neubauer & Andersen (2019) used behavioral 
optimization (by adjusting activity to maximize fit-
ness) with an ecophysiological model to separately 
simulate the response of individuals to temperature 
and oxygen limits, indicating that various perform-
ance measures (e.g. growth, efficiency) depended on 
species traits, ontogenetic stage, and stressors. 

The critical and most-pressing limitation to pro-
gress in treating multiple stressors is the availability 
and practicality of obtaining empirical information. 
There are few laboratory experiments specifically de -
signed to measure organismal-level performance 
across the species’ thermal window while also eval-
uating intraspecific variability in performance under 
interacting factors such as low pH, reduced dissolved 
oxygen, and salinity (Catalán et al. 2019, Cominassi et 
al. 2020). The number of studies examining the syner-
gistic impacts of ocean acidification and warming 
(e.g. Walther et al. 2009, Di Santo 2015, Gobler et 
al. 2018) and dissolved oxygen and temperature (e.g. 
He et al. 2015, Tremblay & Abele 2016, Li et al. 2019b) 
is increasing. Many of these studies focus on in -
tegrative measures of performance (e.g. growth), and 
further resolving re sponses into the sub-processes of 
bioenergetics will enable robust formulations. Studies 
are also continuing to add realism into experimental 
design, such as in situ light levels and food, and more 
complex representations of short-term diel and sea-
sonal changes in stressors (e.g. Wehrly et al. 2007, 
Geist et al. 2010, Miller et al. 2016, Lifavi et al. 2017) as 
well as combinations of different stressors (e.g. Reum 
et al. 2014, Lifavi et al. 2017, Baumann 2019). Multiple 
responses and realistic designs will yield valuable 
ecophysiological data for formulating how simulta-
neous variation in environmental stressors in nature 
can affect the sub-processes of bioenergetics (Hols-
man & Danner 2016, Catalán et al. 2019). For example, 
diel variability in pH in combination with tempera-
ture impacts marine shellfish differently compared to 
mean conditions (Gazeau et al. 2013). Additionally, 
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studies should focus on assessing the responses to 
highly dynamic conditions found in shallow waters 
of estuarine and coastal habitats relative to different 
magnitudes, durations, frequencies, variance, and 
predictability of conditions (Baumann et al. 2015, 
Bednaršek et al. 2022a). 

Field studies from across the environmental gra-
dients and natural analogs can additionally comple-
ment and expand our understanding obtained from 
multi-stressor laboratory experiments. While estab-
lishing cause-and-effect relationships from field 
studies is very challenging (Eberhardt & Thomas 
1991) due to multicollinearity, they are valuable for 
documenting realistic (i.e. in situ) exposures for use in 
modeling and laboratory experiments and for defin-
ing realistic bounds on organismal responses. Exam-
ples include comparisons across fish populations ex -
periencing different combinations of stressors within 
European river systems (Schinegger et al. 2016) and 
changes in macrozoobenthic assemblages along gra-
dients in temperature, dissolved oxygen, and pH 
(pCO2) at continental margins (Sperling et al. 2016). 
Natural in situ gradients offer an opportunity to study 
biological responses in situ, but it is essential to 
develop and apply as many different biomarkers (i.e. 
genetics, cellular, sub-cellular) that would allow for 
stress detection in the field. Spatially extensive mar-
ine heat waves or El Niño events can be used as ana-
logs for future thermal conditions that are ex pected to 
occur more frequently in the near future (Hobday et 
al. 2016, Oliver et al. 2018). When marine heat waves 
or other extremes overlap with covarying in situ 
drivers (e.g. low pH), the combination can provide 
unique multifaceted settings that include interactive 
effects on organisms (Bednaršek et al. 2018), often 
driving rapid population-level responses (e.g. Bedna-
ršek et al. 2022b). 

Representing the many possibilities needed to esti-
mate robust relationships with multifactor experi-
ments might always have limitations due to collinear-
ity, preventing determination of how specific stressors 
affect bioenergetics. This means that a strategic ap -
proach is needed that cleverly combines or synthe-
sizes across temporal and spatial scales to advance 
beyond the bounds of collinearity limitations. Ulti-
mately, field-based empirical responses (e.g. an in -
dividual’s biomarkers of performance) should be 
combined with ex perimentally driven mechanistic 
laboratory re sponses and bioenergetics-based model-
ing to maximize our understanding of intra- and inter-
specific ecophysiological responses to the changes in 
the mean, variance, and extreme values of multiple 
factors (Glibert et al. 2022). 

3.4.  Intrinsic and extrinsic factors impacting 
environmental tolerance 

Evidence from laboratory and field studies suggests 
that thermal windows are not merely species-specific 
but can also shift with life stage (Dahlke et al. 2020), 
duration of exposure, body size, food availability, and 
other environmental conditions (Peck et al. 2012). For 
example, field and laboratory evidence for European 
sprat Sprattus sprattus in the Baltic Sea suggest differ-
ent optimal and tolerable temperatures for embryos, 
young larvae, young-of-year juveniles, and adults 
that pose constraints on life history scheduling (Peck 
et al. 2012). Decreases in tolerable and optimal tem-
peratures with increasing fish size in laboratory and 
field studies are also well-documented (Paul et al. 
1988, Farley et al. 2016, Hurst et al. 2018), and specific 
life stages of fish and invertebrates may have nar-
rower ranges in tolerable temperatures than other 
stages (Rijnsdorp et al. 2009, Dahlke et al. 2020). 

While these intrinsic and extrinsic factors are an 
important aspect of developing bioenergetics-based 
models, a larger challenge is incorporating the intrin-
sic factors of acclimation and adaptation to local and 
regional conditions (Munch & Conover 2002, Somero 
2010). Adaptation and acclimation are critical be -
cause they are key to generating accurate growth and 
reproduction responses to climate change and are 
especially limited by empirical information and being 
poorly represented in models (Stitt et al. 2014, Neu-
bauer & Andersen 2019). Acclimation involves indi-
vidual phenotypic plasticity that can help an individ-
ual maintain fitness under novel conditions, whereas 
adaptation involves selection for genetic variation 
that results in a shift in the average phenotype of a 
population towards a peak in fitness (Munday 2014). 
Within adaptation, 2 possibilities are distinguished: 
(1) local adaptation, whereby fixed genetic differ-
ences be tween populations can account for variation 
in traits, such as heat tolerance, that can result in the 
movement of individuals from locally adapted pop-
ulations into surrounding areas, and (2) adaptation 
arising from genetic polymorphism that leads to indi-
viduals within the local population having different 
phenotypes with different environmental tolerances 
(Somero 2010). 

How acclimation and adaptation would modulate 
responses to changes in temperature, along with the 
interactive stressors, is typically not represented in 
current bioenergetics modeling frameworks. There 
are a few examples that use simple representations 
(Huse & Ellingsen 2008, Fulton & Gorton 2014) and 
the exploration of more detailed approaches within 
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the context of evolutionary dynamics is underway 
(e.g. predation and fishing; Forestier et al. 2020). 

Bioenergetics models have great potential to 
explain regional variation in traits by disentangling 
adaptation and plasticity effects. Models allow multi-
ple drivers to be tested and can also be used to simu-
late virtual transplant experiments. For example, by 
forcing a European anchovy Engraulis encrasicolus 
bioenergetics model with regional food and tempera-
ture across European waters, Huret et al. (2019) ex -
plained part of the variability in size-at-age observed 
in field data, with the remaining unexplained part 
being attributed to genetic adaptation. Similarly, an 
energy allocation model fitted to size-at-age data for 8 
populations of common sole Solea solea across a 
broad range of latitudes quantified the variation in 
some physiological processes and explained differen-
tial growth and reproductive traits among distinct 
populations (Mollet et al. 2013). 

Using a combination of laboratory experiments and 
bioenergetics modeling provides the best opportu-
nity to quantify and separate the contributions of 
adaptation versus plasticity (Merilä & Hendry 2014, 
Donelson et al. 2018). Increasing the knowledge base 
of within-species variation in thermal tolerance is crit-
ical. The effect of acclimation and adaptation has only 
been explored under realistic conditions in a few 
laboratory experiments (Anttila et al. 2014, Huey & 
Buckley 2022). Generally, counter-gradient variation 
is observed in individual growth in the field as a result 
of the genetic adaptation counteracting the effect of 
decreasing temperature or the shortened length of 
the growing season (Conover et al. 2009). In combina-
tion with temperature, recent bioenergetics studies 
highlight the importance of prey quality (Huret et al. 
2019) as well as daylight hours and prey size (Ljung-
ström et al. 2024) to explain the tendency of small 
pelagic fish to be larger with increasing latitude. Most 
studies analyzing this pattern either use populations 
from different latitudes in common garden experi-
ments or field transplants in reciprocal environments 
(e.g. Munch & Conover 2002). However, many fish 
species are unsuitable for selection experiments due 
to their complex reproduction and long generation 
times. Recently, the adaptive potential of unsuitable 
species for selection experiments has been deter-
mined by incorporating tolerance to past environ-
ments and evaluating individual performance rather 
than averaged performance (Paula et al. 2019). Ulti-
mately, bioenergetics models could allow the study 
and understanding of the selection processes that 
lead to regional phenotypic and genetic differences 
to advance our capability to make robust projections 

of individual-level re sponses to future climate-driven 
changes. 

4.  OPPORTUNITY 2: INNOVATIONS IN SCALING 
FROM INDIVIDUALS TO POPULATIONS 

Understanding climate change impacts on marine 
ecosystems requires translating effects on individual 
organisms to responses at the population, community, 
and food web levels (Fig. 4). Multiple demographic 
characteristics of populations are integrated outcomes 
of bioenergetics tradeoffs at the individual level. Bio-
energetics represents the feeding, growth, and repro-
duction of an individual, which are all potentially in-
fluenced by movement and mortality risk. Scaling 
from the bioenergetics of a single individual to many 
individuals uses individual-level outcomes of bioener-
getics (e.g. size) that influence  population-level pro-
cesses (Persson et al. 2014). The advantages and chal-
lenges of representing the bioenergetics of an 
individual described above continue to apply here, 
with the addition of new opportunities as part of the 
‘scaling-up’ process when used in population and 
food web models. We categorize opportunities for ad-
vancing bioenergetics for scaling up into 3 interde-
pendent issues: (1) embedding bioenergetics into 
population dynamics models; (2) multi-generational 
considerations; and (3) multi-species interactions in 
food webs. For discussion purposes, we distinguish 
between population and food-web level models that 
predict responses for single years (e.g. present-day 
versus 2100 conditions), using either user-specific re-
production or recruitment inputs to start each year 
(e.g. Hollowed et al. 2009, Xu et al. 2015, Koenigstein 
et al. 2016, Adamack et al. 2017), and the models that 
generate multi-generational predictions with the sur-
vivors of each year producing the young in the model 
for the next year (e.g. Aarflot et al. 2022). 

4.1.  Embedding bioenergetics in population 
dynamics models 

With multiple individuals, individual differences in 
bioenergetics can also influence interactions among 
these individuals that, in turn, can affect bioener-
getics. When accumulated at the population level, 
the growth and reproduction rates of the individuals 
(i.e. bioenergetics) affect the biomass and reproduc-
tive output of the population. Activity, movement, 
foraging behavior, predator avoidance, and exposure 
to environmental conditions experienced by an indi-
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vidual can all be affected by the presence of interac-
tions with other individuals. Some examples include 
mortality from disease that depends on the presence 
of other individuals (transmission) and also the bioen-
ergetic condition of the individual (Chapman et al. 
2021), density-dependent growth and mortality due 
to crowding (Rose et al. 2001), and mating success in 
some crustacean species that is size-based (Jinbo et 
al. 2017, Sørdalen et al. 2018). A challenge in scaling 
up from individuals to the population involves ade -
quately considering how inter-individual variation 
and interactions among individuals can affect bioen-
ergetics. While the list of possibilities is long, likely 
only a few apply in any specific situation. 

Full life-cycle agent-based models emulate how 
bioenergetics at the individual level can be scaled up 
to population dynamics by embedding bioenergetics 
and by being forced by physical–biogeochemical 
models. These have been developed and corroborated 
with extensive observations made on various compo-
nents of individuals (e.g. growth, feeding, reproduc-
tion, movement) and lower trophic level prey field 
characteristics (Kishi et al. 2011, Hjøllo et al. 2012, 
Utne et al. 2012, Aarflot et al. 2022). These models 
have the capacity to investigate detailed individual- 

and population-level mechanistic processes leading 
to variability in the abundance and productivity of 
populations and can receive global climate model out-
puts as inputs (e.g. Bueno-Pardo et al. 2020). However, 
the representation of inter-individual effects outside 
of experiences and size, age, and stage (e.g. genetic; 
Chambers 1993) is currently limited and simplified 
(Semeniuk et al. 2011) but provides a good starting 
point to further delve into how to represent bioener-
getics with interacting individuals, especially under 
possible future climate conditions. 

4.2.  Multi-generational considerations 

Multi-generational simulations are fundamental to 
assessing the long-term dynamics of populations and 
food webs. Multi-generational simulations differ from 
a sequence of 1 yr simulations in that in multi-genera-
tion simulations, the reproductive output in one year 
becomes the young for the next year. One year simula-
tions have the advantage of focusing on specific life 
stages (e.g. egg to recruitment) without requiring the 
representation of the rest of the life cycle, which adds 
further uncertainties. For some questions or some life 
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histories that use many distinct habitats, predicting 
larval or recruitment dynamics (e.g. Daewel et al. 
2008, Xu et al. 2015) or predicting adult dynamics 
given an assumed level of recruitment (e.g. Adamack 
et al. 2017) is well-suited for comparing future con-
ditions to present-day conditions. However, the in -
herent limitation with 1 yr simulations is that there is 
no carry-over; each year restarts from the specified 
initial conditions. Many species of interest are long-
lived (multiple years) and have complex life cycles 
with life stages that use different habitats (Pihl et al. 
2002, Whitfield 2020). Long-term dynamics that result 
from multi-generational simulations allow the full 
manifestation of the response to climate change at the 
biological levels relevant to management (e.g. equilib-
rium endpoints) and the generation of cumulative re-
sponses to specific temporal patterns of environmental 
conditions (sequence of year-types) and management 
actions. While we have advanced in the bookkeeping 
aspects of biomass and even agent-based food web 
models that run in a multi-generation mode (Rose et 
al. 2015, Aarflot et al. 2022), there remain unresolved 
opportunities for representing density dependence 
and linking phenotypic variation to parents. 

Compensatory density dependence at the single-
species level is a negative feedback on population 
dynamics and operates as increasing abundance or 
density reduces growth, survival, or reproduction, 
and/or also affects movement (Rose et al. 2001). 
Depensatory density dependence is a positive feed-
back and destabilizes populations when they are at 
low abundance levels (Liermann & Hilborn 2001). 
Mortality and reproduction affect population abun-
dance, while growth affects size, which influences 
mortality and reproduction. Movement can also 
affect growth, mortality, and reproductive success by 
determining the habitats used by individuals. 

Representing density dependence involves specify-
ing compensatory and depensatory processes (e.g. 
growth, mortality, reproduction) that can occur in 
multiple life stages (Brooks & Powers 2007, Lorenzen 
2008, Grossman & Simon 2020). For example, young-
of-year sprat can be much more abundant than older 
age classes, and these younger fish can have a com-
petitive advantage for limited prey resources due to 
their increased weight-specific foraging and meta-
bolic rates compared to larger conspecifics, thereby 
potentially exerting density-dependent control (via 
depletion of prey resources) on spawning stock bio-
mass (Peck et al. 2012). In general, bioenergetics for-
mulations that directly determine growth, reproduc-
tion, predation risk, and often movement behavior 
must have the capability to play their critical role in 

generating density-dependent feedback in multiple 
life stages. 

A wide range of traits related to bioenergetics are 
potentially subject to the genetic makeup and experi-
ences of the parents and, in some situations, should 
be accommodated in the next generation’s bioener-
getics. Munday (2014) documented transgenerational 
plasticity whereby the experiences of parents shape 
the reaction norm of their offspring. The number of 
studies reporting how the environment experienced 
by parents affects the physiological tolerance and bio-
energetics of offspring via transgenerational plasti-
city is growing (Donelson et al. 2012, Salinas & 
Munch 2012, Bell & Hellmann 2019, Harmon & Pfen-
nig 2021). In one example, Miller et al. (2012) demon-
strated that transgenerational acclimation could help 
to overcome behavioral impairment (poor escape 
responses) observed in juvenile anemone fish Amphi-
prion melanopus exposed to high CO2. For practical 
reasons, there are limitations to laboratory explora-
tion of transgenerational phenomena (Donelson et al. 
2018). Most of the studies revealing this type of trans-
generational acclimation on the performance (and 
bioenergetics) of offspring have been performed on 
relatively small-bodied, short-lived organisms under 
simplified environmental conditions. A recent study 
used long-term (multi-generational) temperature and 
pH exposure experiments on the relatively long-lived 
European sea bass Dicentrarchus labrax (Howald et 
al. 2022). Inter-generational temperature effects are 
better documented (e.g. Burt et al. 2011) but most 
studies have examined only eggs or embryos. 

Although such plasticity and genetic effects have 
the potential to attenuate the impacts of changes in 
the environment over the long term, the inheritability 
and transferability from parent to offspring of traits, 
leading to phenotypic variation (plasticity and gene -
tic effects) in responses at the individual level, is 
rarely incorporated into multi-generational bioener-
getics-based models (e.g. Holt & Jørgensen 2014, 
Huse et al. 2018, Aarflot et al. 2022). As the evidence 
base grows, multi-generational models need to be 
ready to incorporate variation, as it may be key to 
revealing the adaptive capacity of populations to 
changes in abiotic factors (e.g. temperature, pH, 
oxygen) and biotic factors (e.g. prey detection) and 
therefore to adequately project ecological responses 
to climate change. Alternatively, exploring the impli-
cations of different levels of plasticity allows for tar-
geted research to determine if those dynamics are 
observed in nature. This is similar to how advances 
have been made in extending our understanding of 
the effects of fishing by beginning to incorporate 
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multi-generational impacts of commercial fishing 
gear and fisheries-induced evolution, including 
reductions in size-at-maturity and increased growth 
rate (e.g. Kuparinen & Hutchings 2012, Marty et al. 
2015), into models of fished stocks and communities. 
Thus, regularly combining diverse approaches that 
examine the multi-generational impacts of both fish-
ing and climate on individuals would represent a 
step-change in our ability to use models to disentan-
gle the multiple drivers of climate change in marine 
populations. 

4.3.  Multi-species interactions in food webs 

Predicting the responses of populations to climate 
change often involves incorporating how other pop-
ulations (e.g. predators and prey) will respond to cli-
mate change and to the response of the population of 
focus (Pörtner & Peck 2010). This, then, can render 
the simplifications (e.g. constant predation mortality 
rate) inherent in a purely population approach ques-
tionable. In a simple example, Akimova et al. (2016) 
used an individual-based model (IBM) of larval and 
juvenile cod encountering predator fields con-
structed from survey data in the North Sea and con-
cluded that while warming led to faster growth of cod, 
it also led to higher rates of mortality since predator 
appetites (gut evacuation rates) increased faster with 
temperature than cod growth rates. 

Inter-specific interactions that determine bioener-
getics will be affected by climate change due to individ-
uals showing different species-specific physio logical, 
behavioral, and kinematic responses to temperature 
(warming), ocean acidification, and increasing hyp-
oxia. These interactions underlie predator–prey inter-
actions and competition that, in turn, influence the 
consumption and metabolism terms in bioenergetics. 
While the idea of altered competition is considered 
conceptually (Baag & Mandal 2022), the evidence for 
competition from empirical studies remains elusive 
due to general issues with quantifying competition 
(Wootton & Emmerson 2005). 

In contrast to competition, there is extensive infor-
mation from experimental approaches on how cli-
mate change would affect encounters (attacks) by the 
predator and escape by the prey (Nagelkerken & 
Munday 2016, Allan et al. 2017, Draper & Weissburg 
2019). Dell et al. (2014) provided a general 2-species 
population modeling framework for consumer–
resource species interactions that focused on how 
asymmetries in thermal sensitivities and the relative 
body velocities of consumer and resource (catego-

rized as grazer, sit-and-wait, or active-capture preda-
tion) greatly affected the equilibrium biomasses of 
the predator and prey populations. Domenici et al. 
(2019) used empirical evidence with coral reef fish 
and a generalized conceptual model and concluded 
that there will be an overall increase in predator–prey 
interactions under warming due to more attacks and 
reduced escape capabilities. When the multiple 
stressors of climate change are combined with the 
many detailed steps and events of predator–prey 
interactions, there emerges a long list of possible 
ways climate change can differentially affect the spe-
cies involved, which translates into altered bioener-
getics of the focal species and its prey and predators. 
The implication is that all of these effects (mech-
anisms of predator–prey interactions, competition) 
are mediated through and affect bioenergetics and 
can lead not only to altered growth and population 
dynamics of the focal species but also to restructuring 
of communities and the energetics of food webs (Tun-
ney et al. 2014, Nagelkerken & Munday 2016). 

Climate change will also differentially affect the 
spatial distributions and phenology of species that 
then affect bioenergetics and can also translate into 
population- and higher-level responses. Durant et al. 
(2007) examined the timing of predators and their 
prey on seasonal time scales and adapted the classic 
match–mismatch hypothesis to show how compo-
nents of the food chain will shift their phenology at 
different rates and how this becomes a driver of in -
creasing asynchrony. This will have concomitant ef -
fects on consumption, bioenergetics, growth of pred-
ators, and mortality of prey.  

Climate change affecting the distribution and con-
nectivity of habitats will also affect predator–prey 
interactions and competition. Selden et al. (2018) 
used habitat modeling of long-term monitoring data 
for the Northeast US shelf to show how the historical 
overlap of key fish predators with their prey species 
will be differentially affected by climate change. For 
example, Atlantic cod Gadus morhua would show 
decreased overlap relative to historical conditions, 
while spiny dogfish Squalus acanthias would show 
increased overlap. In terms of potential competition, 
Milazzo et al. (2013) assessed the interactions be -
tween 2 sympatric fish species: the cool-water species 
Coris julis and the warm-water species Thalassoma 
pavo. These wrasses are widespread and co-occur in 
Mediterranean nearshore waters. They used correl-
ative and experimental ap proaches and showed that 
warmer temperatures and high relative dominance of 
the warm-water species (3× higher) acted synergisti-
cally and caused the cool-water species to relocate to 

205



Mar Ecol Prog Ser 732: 193–221, 2024

less preferred habitat (apparently to reduce competi-
tion) and to alter its behavioral activity, which would 
affect its foraging and metabolism. 

When interspecific interactions need to be ex -
plicitly accounted for, model developers typically 
either expand the formulations of processes in the bio-
energetics model of the focal species to account for 
other species or move to a food web approach that ex-
plicitly simulates multiple interacting species. Agent-
based models have progressed to representing multi-
ple (2–10) species as individuals, with object-oriented 
simulator of marine ecosystems (OSMOSE) following 
schools as individual units in a full food web with up to 
dozens of species and functional groups (Moullec et 
al. 2019, 2023, Morell et al. 2023). 

More commonly, Eulerian approaches, such as Eco-
path with Ecosim (EwE), are used for simulating the 
many species in complex food webs (Colléter et al. 
2015, Stock et al. 2023). Eulerian approaches simulate 
the rates of change of biomass or abundances as a sin-
gle state variable for the total population or for state 
variables corresponding to the population divided 
into subclasses such as age, stage, or size (Carlotti & 
Poggiale 2010, Galic et al. 2010). Atlantis, another 
ecosystem modeling approach, takes an intermediate 
ap proach, representing the re sponses of an average 
individual (or a small number of morphs) and scaling 
to the entire population from that basis (Audzijonyte 
et al. 2019a, Hansen et al. 2019). Mizer, a size and trait-
based approach to food-web modeling, takes a some-
what similar approach (Scott et al. 2014). 

Regardless of the exact form of the representations, 
the shift to many species requires simplification of the 
representation of the population dynamics of each 
species (e.g. Thompson et al. 2012, Collie et al. 2016). 
However, making sure the simplification still accurately 
predicts responses is an increasing concern, as there 
is increasing focus on food web dynamics under cli-
mate change and the importance of representing both 
species- and community-scale processes. For example, 
many food-web modeling analyses have shown the 
potential importance of predation and inter-specific 
competition on responses to climate change (e.g. Busch 
et al. 2013, Bossier et al. 2020, Chagaris et al. 2020). 

Opportunities for scaling bioenergetics from the 
organism level to the population level were discussed 
above and they continue to apply here. In addition, 
scaling to multiple interacting populations raises sev-
eral new pressing challenges. First, a practical issue 
with scaling from organismal-level bioenergetics to 
the food web is simply the substantial increase in the 
number of parameters needed to represent each ad -
ditional species. Food web models require the repre-

sentation of multiple (sometimes many) species and 
must realistically represent how each of these species 
will respond to climate change. Because physiologi-
cal processes and predator–prey interactions scale 
strongly with individual body size, size-based models 
have been promoted as an information-efficient tool 
to scale-up individual-level energetics to the commu-
nity and ecosystem level (Blanchard et al. 2017, 
Andersen 2019). Second, many of the processes as -
sumed to be fixed or static in a population modeling 
analysis (e.g. natural mortality rate, diets) must now 
be formulated to deal with how other species (e.g. 
prey, predators) dynamically determine these rates and 
are themselves affected by climate change. Negative 
feedback on populations can arise from interspecific 
interactions, such as community-level competition for 
food and predators shifting their pressure to species 
when those species are abundant (Dingsør et al. 2007, 
De Santis et al. 2021). Robust representation of bioen-
ergetics is needed so that all of the represented pop-
ulations can adequately respond to the direct effects 
of climate change as well as to the indirect effects that 
arise from interacting with other populations. 

5.  OPPORTUNITY 3: TWOWAY COUPLING OF 
MOVEMENT AND BIOENERGETICS 

Rapid and large-scale redistribution of species in 
response to climate-driven change in marine environ-
ments is increasingly being reported (Pecl et al. 2017, 
Li et al. 2019a, Stevenson & Lauth 2019, Pinsky et al. 
2020). Observed spatial distributions are the result of 
geographic differences in population productivity, as 
well as direct movement either through passive trans-
port, behaviorally driven movement of individuals, or 
both. The distributions of early life stages for many 
species (e.g. pelagic larvae) are determined by physi-
cal transport, and additionally impacted by vertical 
migration and navigational behaviors (Staaterman & 
Paris 2014, Cresci et al. 2021). Older life stages, such 
as juvenile and adult fish, move based on behavioral 
responses to cues. Many species exhibit complex life 
cycles, whereby each life stage may use unique hab-
itat (e.g. offshore feeding areas separated from spawn-
ing areas separated from shallow coastal nursery 
areas), resulting in a complex mix of impacts of cli-
mate change over the life cycle (Petitgas et al. 2013). 

Most movement algorithms used to date in popula-
tion and food web models are rigid and use limited 
cues that are predicated on spatial patterns observed 
under current conditions (Huse et al. 2004, Lehodey 
et al. 2008, Utne et al. 2012, Rose et al. 2015). The use 
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of forced movement cues creates challenges for how 
to couple movement and bioenergetics because be -
haviorally mediated or physiologically based re -
sponses are not employed and the previous in situ 
spatial patterns that were used to create movement 
rules may be maladaptive in a future climate. 

A key aspect of simulating realistic movement 
under changing climate conditions is that the repre-
sentation of movement is behaviorally adaptive 
(Beever et al. 2017, Railsback & Harvey 2020). This is 
conceptualized and implemented in models by using 
bioenergetics to provide ecological valuation and tra-
deoffs for different movement decisions (DeAngelis & 
Diaz 2019, Malishev & Kramer-Schadt 2021). Bioener-
getics is the calculator that combines factors and 
stressors into the integrated currency of growth and 
reproduction so that options can be compared in a for-
mal or informal optimization evaluation of movement 
options (e.g. fish move towards high-growth areas). 
Thus, bioenergetics must include factors typically in-
cluded as cues (e.g. temperature), likely at unprece-
dented levels, as well as new factors and stressors (e.g. 
low dissolved oxygen, different food types) that gain 
importance under climate change. Once the move-
ment decisions are made, bioenergetics must also be 
capable of then using the experienced values of fac-
tors and stressors to simulate the growth and repro-
duction of the individual so its state can be updated. 

Physiological and ecological benefits of movement 
to organisms can be relatively short-term, such as 
when organisms move to avoid unfavorable tempera-
tures (Kotwicki et al. 2005, Dulvy et al. 2008, Nye et 
al. 2011) and stressful pH (Bednaršek & Ohman 2015), 
or to search for more productive feeding grounds to 
optimize their energy intake (Trenkel et al. 2014, 
Aoki et al. 2017). In contrast, long-distance migra-
tions be tween foraging and reproductive areas (i.e. 
connectivity) can be energetically costly, with the 
net benefit or cost to offspring survival and fitness 
not becoming apparent for months or years (Corkeron 
& Connor 1999). There may be a trade-off between 
en ergy reserves, fecundity, and migration distances, 
such that the largest individuals migrate the farthest 
in order to reach the most distant but most favorable 
reproductive areas (Slotte & Fiksen 2000). Under-
standing how climate change will impact these costs 
and benefits of short-term and migratory movements 
at the individual level requires consideration and 
modeling of bioenergetics over a range of time lags 
and multiple life stages (e.g. juvenile growth affect-
ing later migration and reproduction). 

Movements and migrations can be initiated by a 
wide variety of cues, including local in situ environ-

mental conditions (e.g. temperature, photoperiod), 
developmental state, accumulation of sufficient en -
ergy reserves, genetically determined internal cues, 
and social learning (Bauer et al. 2011, Winkler et al. 
2014, Cooke et al. 2022). Whereas movements are pri-
marily driven by animals following real-time changes 
in suitable thermal or foraging habitats as cues (Nøt-
testad et al. 1999, Bauer et al. 2011), energy costs and 
benefits are more easily represented using bioener-
getics models. This type of adaptive behavior may 
also confer better resilience to long-term shifts in 
environmental gradients due to climate change. 
Alternatively, migrations may be genetically hard-
wired to follow evolutionarily favorable routes, with 
higher bioenergetics costs and reduced adaptive 
capacity, and thus higher vulnerability to climate 
change. This strategy may involve a period of energy 
gain, in which an animal builds up body stores before 
migrating, and then a period of energy loss, during 
which the accumulated condition is expended during 
migration and reproduction (van Ginneken et al. 
2005, Wallace et al. 2006, Golet et al. 2007). As a re -
sult, environmentally determined bioenergetic costs 
and benefits for long-distance migrators are less im -
pactful in near real-time but are important over the 
reproductive cycle, presenting a challenge for effec-
tive bioenergetics modeling that attempts to account 
for the costs and benefits of movement. 

While agent-based models are computationally 
expensive for simulations of large spatial domains or 
multiple trophic levels, they have the advantage of 
being better able to simulate the complex movement 
patterns of higher trophic level animals for in silico 
experiments (Rose et al. 2010). In addition, the bio -
energetics history of each individual or group can be 
retained, allowing the calculation of growth, con-
dition, maturity, and energy reserves through time. 
Mechanisms of movement of marine species are still 
unclear, but it is possible to couple and dynamically 
link bioenergetics with marine species movement 
models. Some considerations include defining cues 
for movement and migration decisions, understand-
ing the pathways in which a species responds to cli-
mate change, as well as ensuring that the resulting 
behavior can be linked to the organism’s bioener-
getics regarding distance traveled, swimming speed, 
environmental conditions experienced, and energy 
consumption. Examples that illustrate the 2-way cou-
pling of bioenergetics and movement with IBMs 
(albeit very simplified) include the simulation of the 
feeding migration of Japanese sardine Sardinops 
melanostictus (Okunishi et al. 2009, 2012) and the 
examination of the role of zooplankton and tempera-
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ture in the spawning migration of European anchovy 
in the Bay of Biscay (Politikos et al. 2015). 

6.  OPPORTUNITY 4: ASSESSING THE REALISM 
OF MODEL PREDICTIONS 

A major challenge with the use of all ecological 
models, especially to inform management, has been 
the effective assessment of model skill through model 
validation and sensitivity analyses (Rykiel 1996, Eker 
et al. 2018, An et al. 2021). Validation often involves a 
comparison of model output to empirical data to 
determine model skill and confidence with respect to 
model projections (Bennett et al. 2013, Augusiak et al. 
2014). However, not just numerical models but also 
observations are imperfect and, thus, agreement of 
model–data comparisons informs us about agree-
ment between 2 models; the resemblance of these 
models to reality requires further evaluation (Lynch 
et al. 2009). Therefore, when comparing field and 
model estimates, variance and uncertainty need to be 
assessed for both observation data and predicted 
model data (Skogen et al. 2021). On the other hand, as 
models are built from published information, they 
also represent a framework for knowledge validation 
(Aarflot et al. 2022), where a misfit model with obser-
vations also can be regarded as a test of possible 
inconsistencies between independent studies and 
observational data sets. 

Multiple impacts of climate change pose further 
challenges to model validation because of the impor-
tance of disentangling direct drivers (e.g. abiotic envi-
ronmental factors such as temperature) and indirect 
drivers (e.g. predator abundance) of organismal per-
formance under novel conditions. When models are 
linked or coupled to hydrodynamics and biogeochemi-
cal (water quality) models, a critical aspect of all val-
idation exercises is the evaluation of hydrodynamics 
and biogeochemistry, especially for how its predic-
tions are being used in the biological component. The 
hydrodynamics and biogeochemical predictions used 
as forcing often play a major role in determining the 
performance of coupled physical–biological models 
(Skogen & Moll 2005, Friedrichs et al. 2006). 

Troost et al. (2023) recently proposed a general set 
of protocols for performing and reporting validation 
of agent-based models. A key aspect of validation is 
comparing model predictions to independent field-
based survey data sets not used for model develop-
ment or calibration (Schmolke et al. 2010). The data 
for validation (as well as calibration) include values of 
state variables (e.g. biomass), process rates (e.g. pri-

mary production, growth via weight-at-age data of 
fish), spatial distributions, and emergent system-level 
properties (e.g. food web structure, shape of the 
spawner–recruit relationship). While sufficient data 
for validation is always challenging for models of 
lower trophic levels, rigorous validation is especially 
challenging for models that include upper trophic 
levels, as most of the data are from annual or sea-
sonal-scale surveys that use sampling locations de -
signed to derive broad indices of abundance. Many 
highly resolved, upper trophic level models employ 
‘pattern matching’ (Grimm et al. 2005), which can be 
a semi-quantitative technique and often uses all avail-
able data, reducing opportunities for independent 
validation (Fulton et al. 2011, Peck et al. 2018). 

We discuss 3 issues as part of assessing the realism 
of model predictions. These are (1) validation of bioen-
ergetics-based models with new data streams, (2) re-
visiting the traditional strategy for model validation, 
and (3) uncertainty and model complexity. The first 2 
directly relate to model validation, while the third fo-
cuses on model structure and quantifying uncertainty; 
all of which enable assessment of model realism. 

6.1.  Validation of bioenergetics-based models  
with new data streams 

Measurement capabilities related to bioenergetics 
are rapidly expanding (Cooke et al. 2016) and these 
offer an opportunity for collaborative efforts to en sure 
the data can be also leveraged for the calibration, and 
especially validation, of the next generation of bioen-
ergetics models. These emerging data technologies 
include molecular approaches (e.g. metabarcoding, 
metatranscriptomics, ultra-performance  liquid chro-
matography) applied to various types of samples (e.g. 
eDNA, gut contents, lipids), remote sensing, optical 
and acoustic sampling, biosensors, bio-logging and 
autonomous underwater vehicles (Danovaro et al. 
2016, Moustahfid et a. 2020). Ac celero meters on ar-
chival tags can provide estimates of energy dissipation 
from swimming and can detect specific behaviors 
such as feeding (e.g. Whitlock et al. 2015, Horie et al. 
2017). The temporal and spatial scales of results from 
these different data sources vary and they include 
qualitative, presence–absence, and quantitative in-
formation. Furthermore, many remain limited by cost 
and therefore generate information that is represen-
tative of limited conditions observed during measure-
ments, and thus difficult to extrapolate, and highly 
uncertain due to small sample size. How the availability 
of subsets of these data for a specific application can 
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be combined into a model validation that enables state-
ments about overall model confidence is challenging. 

Furthermore, growth is a primary predictor of bio-
energetics, and growth histories for model evaluation 
can be reconstructed from otolith daily microstruc-
ture analysis. When used in conjunction with bioen-
ergetics and movement modeling, otolith analysis 
can reconstruct the food and temperature history of 
individuals (e.g. Pecquerie et al. 2012) and move-
ment patterns (e.g. Ito et al. 2018, Higuchi et al. 
2019). Chung et al. (2019a,b) determined that the 
carbon isotope ratio precipitated in otolith daily 
rings has the potential to provide metabolic rate 
information for teleost fishes, and stable nitrogen 
isotope ratio of phenylalanine in vertebral centra of 
teleost may be able to provide organism diet infor-
mation (Matsubayashi et al. 2017). Direct and rapid 
measurement of fat content or energy density repre-
sents a proxy to capture the variability in the con-
dition of organisms that represent an integrative 
measure of growth (Peig & Green 2010, Clancey & 
Byers 2014) and is directly comparable to predictions 
from the DEB model (Gatti et al. 2017). Even when 
these new technologies do not monitor the focal 
organisms of interest, they can provide an em pirical 
foundation for processes (e.g. transport, generation 
of prey fields) important for bioenergetics modeling. 

6.2.  Revisiting the traditional strategy for  
model validation 

We suggest developing new validation strategies 
for bioenergetics-based models that incorporate the 
traditional survey data on monthly to annual scales 
with the finer-scale measurements (e.g. tracks of indi-
viduals) emerging from new monitoring and teleme-
try technologies (e.g. Chimienti et al. 2020). A key to 
advancing bioenergetics models will be how well the 
sampling and analysis of the observations can be used 
to inform the mechanistic representations, and ulti-
mately the validation of the assumptions and per-
formance, of the bioenergetics modeling. Monitoring 
is typically motivated and designed for purposes 
other than informing bioenergetics modeling, and 
effective use will require collaborative efforts of field 
scientists and modelers in the planning of monitoring 
programs. Often, with some moderate modifications 
or additions, monitoring can fulfill its needed objec-
tives and also simultaneously provide valuable data to 
the modeling. 

We illustrate this idea of creative validation stra -
tegies by describing a ‘divide and conquer strategy’ 

and the idea of using comparisons tailored to climate 
change questions. The ‘divide and conquer’ idea uses 
designed simulation experiments that evaluate the 
performance of individual modules and then perform 
additional simulation experiments that allow assess-
ment of the behavior of the fully coupled system (Lor-
scheid & Meyer 2016). Rose et al. (2013a,b) used a 
simple version of this approach and calibrated an 
agent-based population model of delta smelt Hypo -
mesus transpacificus to available data. Separate simu-
lation experiments were used to calibrate the growth 
(and diets) of an individual over its lifetime under aver-
aged food and then daily movement in response to 
fixed salinity fields to confirm movement behavior, 
and then the calibrated modules were used together 
under artificially increasing spawning to determine 
density-dependent mortality that resulted in a realistic 
spawner–recruit relationship. The full model was then 
run for a 21 yr historical period and compared to long-
term monitoring data. Following the lead of Chimienti 
et al. (2020), one can envision how reconstructed 
growth histories from otolith data, telemetry informa-
tion, and condition (fat content) could be added to 
these simulation experiments. 

Part of a new validation strategy can also make use 
of observed extreme conditions (Tommasi et al. 2017, 
Becker et al. 2018, Harris et al. 2018). Rather than the 
traditional mindset of focusing on the model skill for 
long-term average conditions or how the model fits 
many of the years of the observations, the historical 
data can be partitioned to allow testing for extreme 
conditions that may push model evaluation closer to 
the anticipated novel conditions expected under cli-
mate change. For example, exceptionally warm years 
can be simulated in sequence, or years with extended 
heatwaves (Smith et al. 2023) can provide data for 
model testing of possible responses to warming. Per-
haps this can be combined with the approach pro-
posed by Dietze et al. (2018), who discussed how val-
idation using more readily available short-term 
predictions can be used to provide additional cred-
ibility to longer-term forecasts. 

6.3.  Uncertainty and model complexity 

Computing power and efficient Monte Carlo me -
thods are enabling formal uncertainty analyses of in-
creasingly complex models (Pianosi et al. 2016); 
quantifying uncertainty in model predictions greatly 
helps the interpretation. Using different carbon emis-
sion scenarios with an ensemble of projections from 
different physical climate models (Hermann et al. 
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2019, Hollowed et al. 2020) can also enable bounding 
of the bioenergetics-based model projections (Hols-
man et al. 2020). Ensemble modeling and comparing 
the outputs of multiple models is another approach for 
assessing the trade-offs of more detailed representa-
tions (Gårdmark et al. 2013, Spence et al. 2018). The 
FISH-MIP project provides a template for using multi-
ple ecosystem models to predict responses to climate 
change (Tittensor et al. 2021). 

Finally, many of the ideas presented in this paper 
involve adding complexity to existing bioenergetics 
models or developing relatively complex new models. 
While only a few issues apply to any specific situ-
ation, this raises the long-standing and well-reviewed 
question of what the most parsimonious approach is 
(i.e. optimal level of complexity) for ecological 
models (Fulton et al. 2003, Plagányi et al. 2011, Collie 
et al. 2016). As part of a new strategy for model valida-
tion, a procedure to formally assess new model formu-
lations for their added value is needed. This can 
involve better documentation of model development 
and validation performance (e.g. Grimm et al. 2014, 
Planque et al. 2022) and analytical methods. For ex -
ample, Getz et al. (2018) proposed that coarse grain-
ing, commonly used in chemistry and biophysics, 
could be useful for simplifying ecological models to 
determine simplified formulations that capture the 
benefits of added process detail and complexity with-
out actually needing to represent all of the details. In 
addition, increasing model complexity and diversity 
elevates the importance of conducting open science. 
Where communities of practice collaborate to move 
projects forward by sharing data, code, and model 
validation practices, more rapid progress can be 
made (Wolkovich et al. 2012, Hampton et al. 2015, 
Lowndes et al. 2017). 

7.  APPLICABILITY TO EULERIAN MODELS 

The opportunities we described above using agent-
based modeling as the context also apply to Eulerian 
models that include biomass, structured (e.g. age, 
stage, size), and trait-based approaches (Nisbet et al. 
2000, Koenigstein et al. 2016, Blanchard et al. 2017, 
Smallegange et al. 2017). As one adds species — from 
population to multiple species to food web to end-to-
end models — the representation tends to move from 
agent-based to Eulerian in order to accommodate sim-
ulating many species. Commonly used Eulerian or hy-
brid (some representation of individual-level dyna -
mics) food web models are EwE and Atlantis; many of 
these models include a bioenergetics formulation im-

plemented for classes of individuals (e.g. ages, average 
individual). Our ability to configure and validate 
models with many species (i.e. community, food web) 
using agent-based approaches is progressing, but spa-
tially explicit, agent-based, full food web models re-
main a challenge (Fulton et al. 2011, Grimm et al. 
2017); Eulerian approaches will play a critical role in 
assessing responses to climate change at the food web 
and ecosystem levels (Heymans et al. 2020). 

While there are differences in the details and solu-
tions, Eulerian-oriented models are challenged with 
the same conceptual opportunities that were de -
scribed above using agent-based models. For example, 
introducing movement into spatially explicit bioener-
getics models of individuals (Lagrangian) is concep-
tually straightforward: imposing movement algorithms 
(e.g. swim speed, direction) on each individual. Algo-
rithms can use environmental gradients, recent history 
of exposure, or nearby individuals as cues (Watkins & 
Rose 2013, Calovi et al. 2014).  

With climate change, Eulerian approaches also must 
ad dress the challenges of simulating movement and 
migration in novel environmental conditions and con-
sider acclimation, adaptation, 2-way linking of move-
ment with bioenergetics, and adaptive behavior. How -
ever, Eulerian approaches generally treat movement 
as flows or fluxes of organisms among spatial cells 
(e.g. advection–diffusion–reaction equations) with 
stronger behavioral movements towards suitable hab-
itats (e.g. Dueri et al. 2014). The representation of 
these fluxes is often simple and mostly habitat-based 
(Lehodey et al. 2008, Walters et al. 2010, Audzijonyte 
et al. 2019a, Coll et al. 2020), and retaining information 
on conditions experienced by individuals and repre-
senting adaptive behavior is difficult. Encouragingly, 
Scutt Phillips et al. (2018) demonstrated that Eulerian 
and agent-based models can generate similar patterns 
of migration of skipjack tuna Katsuwonus pelamis.  

Similarly to movement, the opportunities related to 
representing temperature effects, multiple stressors, 
and validation also apply to the Eulerian approaches. 
Advances in modeling that allow for hybrid models 
that seamlessly shift from Eulerian to Lagrangian (and, 
more recently, purely statistical and artificial-intelli-
gence-based) as needed at specific times during a sin-
gle simulation mean that the behavior dynamics and 
information content of an agent-based approach can 
be married with the computational savings of Eulerian 
representations (Gray & Wotherspoon 2012, 2015). 
This may also prove a fruitful way forward for gaining 
the power of bioenergetics representations and cou-
pling without relying on increasing computing power 
alone to make it feasible. 
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Advancing bioenergetics and addressing these 
opportunities in Eulerian models is possible. Like 
agent-based models, Eulerian models will continue to 
evolve (Coll et al. 2020, Perryman et al. 2021, Stock et 
al. 2023), and the opportunities presented here offer 
specific areas to ready the models for assessing living 
resource responses to climate change. Further incor-
poration of bioenergetics into these Eulerian models, 
along with consideration of the opportunities de -
scribed above, would enable a more realistic and 
robust simulation of responses of populations, and 
especially communities and food webs, to new cli-
mate-driven conditions. 

8.  CONCLUDING REMARKS 

There are many challenges in the field of bioener-
getics, and we consider the ideas outlined here as op-
portunities because, with focused efforts, significant 
advances in our understanding of climate change im-
pacts on marine ecology can be achieved. These op-
portunities will move the relatively established field 
of bioenergetics into a modern era of advanced ex-
perimentation and monitoring and assessment of cli-
mate change responses. The advent of new techno -
logies such as tagging, autonomous underwater 
vehicles and gliders, and molecular and biochemical 
biomarkers and techniques provide new and invalu-
able covariant data streams and contextualize organ-
ism behavior in situ. There have been many recent ad-
vancements in modeling and the computational 
capacity and efficiency of computers that make it pos-
sible (if needed) to add complexity to models. 

We described 4 categories of opportunities to ad -
vance bioenergetics modeling. A refined quantitative 
understanding of temperature effects, alone and in 
combination with other stressors, on physiological 
processes (Opportunity 1) will elucidate many eco-
logical processes and provide robust projections of 
species distributions, population abundances, and 
productivity in response to climate change. In ad -
dition, focused efforts are needed to develop a mech-
anistic understanding of how multiple stressors com-
bine to affect physiological to population- and 
ecosystem-level processes. Scaling from the individ-
ual- to population- and ecosystem-level processes 
(Opportunity 2) has always been a grand challenge in 
marine ecology, but advances in population and eco-
system modeling and more computing power now 
make this challenge achievable. Local adaptations, 
plasticity, and acclimation are also important areas of 
continued research under multiple stressors. Ad -

vances in tagging, particle tracking modeling, and an 
exponential increase in monitoring of the oceans 
have opened a tremendous opportunity to combine 
the well-established principles of bioenergetics with 
environmental conditions and movement ecology 
(Opportunity 3) at a much higher spatial and tempo-
ral resolution than was possible even a decade ago. 
Finally, model validation (Opportunity 4) remains a 
challenge to fields beyond bioenergetics, but new 
innovative data and data analysis techniques and 
greater reliance on scenario-testing and model com-
parison in addition to the goodness of fit tests will in -
crease our confidence in bioenergetics-based models 
and associated projections. 

The time is ripe for a renewed focus on bioener-
getics modeling as we face global climate change. 
The opportunities are many and important. We pre-
sented specific opportunities that offer critical ad -
vance ment of bioenergetics modeling and its use in 
projecting the effects of climate change on individ-
uals to ecosystems. Addressing the subset of these 
opportunities appropriate for a given situation as part 
of the development, formulation, and testing of bioen-
ergetics models, used alone or with population and 
food web modeling, will increase confidence in pre-
dictions and provide robust science-based advice for 
climate adaptation and mitigation. Progress is only 
possible with a coordinated effort that combines field 
data collection, laboratory experiments, and model-
ing innovations and testing. The data aspects are pro-
gressing rapidly and now the modeling needs to be 
updated and, if necessary, expanded to ensure maxi-
mum use of the data to inform the next generation of 
bioenergetics models. 
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