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ABSTRACT

Exploring Generalization Inductive Biases in the Brain and Deep Neural

Networks: Experimental and Computational Approaches

Maryam Zolfaghar

What enables humans to e↵ortlessly learn and generalize across diverse tasks, an exceptional

ability that even advanced deep neural networks struggle to replicate? This thesis explores

this question, crucial in both neuroscience and computer science. Despite deep neural net-

works’ achievements, they require vast data to learn, sometimes even surpassing human

lifetimes’ worth of experience. In contrast, humans adapt existing knowledge to novel chal-

lenges, indicating the presence of cognitive mechanisms facilitating adaptive out-of-domain

generalization. This thesis comprehensively explores some of these mechanisms, including

how humans learn in a way that supports the development of representations applicable

across diverse contexts, adjust and deploy them based on contextual demands, and form

such representations over di↵erent time scales, especially when rapid learning is required,

and how it achieves such learning without forgetting the past knowledge.

The human brain has a remarkable ability to predict what will happen next and subse-

quently compares these predictions to what actually happens. The di↵erences form predic-

tion errors. These errors serve as self-generated teaching signals that guide us in adjusting

our understanding and mental models to better match reality. This process, known as deep

predictive learning, helps us adapt and refine our internal representations, fostering adapt-

able abstract representations that capture patterns within sensory inputs, which are central

for out-of-domain generalization. Additionally, our brain forms abstract map-like represen-

tations (i.e., cognitive maps) that empower advanced reasoning skills and bridge learned

knowledge with novel challenges, facilitating successful problem-solving. Cognitive control

mechanism within the prefrontal cortex, known for systematic generalization, dynamically

interacts with these representations to meet multiple objectives. This capability is instru-

ii



mental in navigating complex tasks, generalizing to unfamiliar situations, and embracing

new challenges. Constructing such abstract representations demands gradual experience in-

tegration. However, according to the CLS framework, the brain also possesses mechanisms

for when rapid learning is required in new environments without catastrophically forgetting

the prior knowledge.

Generalization is a cornerstone of human intelligence, enabling us to tackle daily and novel

challenges. This thesis enriches our understanding through a multidisciplinary approach and

highlights the integration of experimental and computational techniques. It combines neural

EEG and behavioral data with machine learning models to explore the predictive learning

process. Additionally, it builds deep neural networks to replicate fMRI findings, with a par-

ticular emphasis on cognitive control processes associated with the generation of map-like

representations. The study quantifies generalization in these networks, introduces cognitive-

inspired inductive biases to these models, and develops models consistent with the CLS

framework for tasks requiring generalization across various time scales. By merging compu-

tational and experimental methods, this research o↵ers insights into scenarios challenging

to replicate with human participants, in addition to inspiring the development of advanced

models and contributing to the ongoing evolution of future AI systems.
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Chapter 1

Introduction

What are the underlying mechanisms that result in the ability to generalize out of domain?

Answering this central question has been of great importance in many lines of research in

neuroscience and computer science. Although deep neural networks have recently received

tremendous success on challenging machine learning tasks, these models can only achieve high

performance when trained on a vast amount of training data identically and independently

distributed (i.i.d.). However, these models struggle to solve novel problems that are drawn

from a di↵erent distribution (out-of-distribution, o.o.d generalization) (Lake et al., 2017),

which also lines up with the data ine�ciency of large neural networks. These networks

can encounter much more information than humans experience in a lifetime. For instance,

GPT-2’s training is based on data (⇠8 billion tokens of internet text (Radford et al., 2019))

that is comparable to the content of 10 human lifetimes. In comparison, the training of its

successor, GPT-3, utilizes a dataset (⇠114 billion words broken into ⇠500 billion subword

tokens (Brown et al., 2020)) equivalent to the knowledge from 100 human lifetimes (Wilcox

et al., 2022). Unlike these models, humans can generalize to perform novel tasks that they

have never encountered before, even if they are only given a few external teaching signals,

suggesting that the brain contains mechanisms that support such generalization.

In summary, this research makes a contribution to our understanding of the mechanisms

underlying predictive learning, a fundamental learning process underlying the development

of high-level abstract representations that support generalization. Additionally, our findings
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highlight the role of specific biological properties of the neocortex in generating abstract

and shared representations, supporting the formation of the structural basis for systematic

generalization. This process is closely intertwined with cognitive control mechanisms that

support the dynamical and flexible modulation of the shared neocortical representation ac-

cording to the objective of the given task, which is essential in resolving potential conflicts

and preventing catastrophic interference. Furthermore, in situations when rapid learning in

a new environment is necessary, another brain region, the hippocampus, becomes involved.

According to the CLS framework, rapid learning within the hippocampus is attributed to

its pattern-separated and sparse representations. This mechanism complements the neocor-

tical processes and o↵ers insights into how the brain e�ciently and rapidly adapts to new

environments.

In our study, we employed a comprehensive approach involving experiments, EEG neural

signals, and machine learning models to delve deeply into the brain patterns associated

with predictive learning. Furthermore, we integrated human functional magnetic resonance

imaging (fMRI) with deep neural networks to explore abstract representations that exhibit

map-like characteristics, particularly in tasks necessitating generalization beyond familiar

domains. Our research also delved into the role of cognitive control in leveraging such map-

like abstractions to enhance generalization and address interferences. Expanding upon these

findings, we then introduced a deep neural network incorporating explicit cognitive control

processes. This network’s capacity for continual learning was assessed in both blocked and

interleaved learning schemes. Finally, we delved into two complementary systems—slow

learning and fast learning—that synergistically promote generalization through the neocortex

and hippocampus. We developed consistent deep neural networks guided by insights derived

from the complementary learning systems (CLS) framework. The subsequent sections delve

into more details of each of these mechanisms.

In the brain, the ability to generalize appears to rely on constructing high-level abstract

representations of the environment that can later be used while solving novel tasks (Park

2



et al., 2020; Whittington et al., 2020; Behrens et al., 2018). Recent studies in neuroscience

explored the mechanisms by which the brain forms abstract representations that can cap-

ture the underlying structure of the environment (i.e., cognitive maps), and this map-like

representation is thought to be utilized to generalize to a novel sample (Park et al., 2020;

Whittington et al., 2020; Behrens et al., 2018). Like geographic maps showing the actual

distance between places (accounting for scale), cognitive maps capture the latent structure

and relations of the task, and therefore, distances in the latent representational space of

these maps reflect the distances in the feature space.

The development of such representations occurs slowly over a long time and requires

a wide range of experience across various tasks (McClelland et al., 1995; O’Reilly et al.,

2011). However, the formation of such representations might not require a massive amount

of external teaching signals to train the brain at any given time in a supervised manner.

More recent research (O’Reilly et al., 2021b, 2014, 2013; Wyatte, 2014) suggested that

the brain develops high-level abstract representations while learning from nothing but pre-

dicting the subsequent inputs (i.e., predictive learning). Specifically, the brain is constantly

predicting the following sensory input, and the discrepancies between its predictions and

the actual input (referred to as prediction error) drive learning, which improves predictions

over time (O’Reilly et al., 2021b; Bullier, 2001; Friston, 2005). Therefore, through internal

predictions, the brain teaches itself even in the absence of external teaching signals. Based

on the di↵erent phases involved in predictive learning, which encompass prediction and sub-

sequent outcome, there must be a mechanism by which the brain switches between these two

states, which is represented over separate time scales. One prominent theory (O’Reilly et al.,

2021b, 2017) suggests that this separation occurs temporally in 100 ms intervals: the brain

generates its prediction during the first 75 ms, and then in the last 25 ms, when it experi-

ences the actual sensory input, the brain updates its internal representation as a function of

the prediction errors. It has been shown that through this process of predicting the follow-

ing sensory inputs and without any additional external teaching information, abstract and

3



high-level representations emerge from an ongoing stream of perceptual experience (O’Reilly

et al., 2017, 2021b).

Recent studies suggest that the brain constructs cognitive maps both in spatial tasks

(e.g., navigation) and non-spatial reasoning tasks where people have to reason about novel

relationships between the inputs (Behrens et al., 2018; O’Reilly et al., 2021a; Summerfield

et al., 2020; Whittington et al., 2020). Most of these studies include tasks in which the

decision must be made within a single context or goal. However, humans are often involved

in tasks that require decisions to be made by selecting relevant stimulus features that sat-

isfy multiple possible objectives. These scenarios may introduce conflict or interference that

requires a mechanism to satisfy one objective while resolving conflicts from other objectives.

Despite a recent impressive performance in deep neural networks, these models perform

poorly when multiple goals should be met at each moment, and they overwrite the infor-

mation of the previously learned task (i.e., catastrophic forgetting). In other words, these

models catastrophically forget the knowledge from the prior tasks while learning to perform

in a novel environment.

The brain’s capacity to dynamically and flexibly select and attend to task-relevant fea-

tures to avoid interference and facilitate learning a new task without catastrophic forgetting

is known as cognitive control (Miller & Cohen, 2001; Herd et al., 2006; Rougier et al., 2005).

Classical theoretical work (Miller & Cohen, 2001) suggests that cognitive control is imple-

mented as a top-down attentional signal that modulates information in other brain areas.

More specifically, it has been proposed that the prefrontal cortex dynamically modulates pro-

cessing in more posterior regions. These signals suppress task-irrelevant processes and excite

task-relevant ones (Aben et al., 2020). However, less is known about how cognitive control

might influence map-like representations, such as those observed in the medial temporal lobe

(MTL) or parietal cortex during abstract relational reasoning tasks.

Previous work illustrated that the mechanisms involved in generalization depend on the

nature of the task environment (O’Reilly et al., 2011). As we mentioned earlier, the develop-
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ment of map-like representations occurs slowly and integrates across many experiences and,

therefore, can be leveraged to make novel inferences. For example, in a familiar and well-

learned environment like one’s hometown, it is easy to navigate to a new place by reasoning

over past experiences. Also, when visiting a new city, it is still possible to navigate to a novel

location by reasoning over recent experiences, even those that integrated on the same day.

Therefore, there might be two learning systems in the brain underlying relational reasoning

and generalization abilities.

The well-supported complementary learning systems (CLS) framework introduces two

qualitatively di↵erent neural mechanisms underlying generalization abilities in familiar and

novel environments (McClelland et al., 1995; O’Reilly et al., 2011). The CLS framework sug-

gests two learning mechanisms unfolding over two di↵erent timescales, which involve separate

brain regions. This framework explains how the brain can support learning representations

without catastrophically forgetting previous ones. In this framework, the neocortex learns

slowly, creating more abstract representations that accumulate over many experiences and

can be utilized to make novel decisions. However, this type of learning may not be possible in

a new environment when there are not enough experiences and where samples are not inter-

leaved to allow for e�cient adaptation. From the CLS perspective, in a novel environment,

fast learning occurs in the hippocampus due to its sparse and pattern-separated representa-

tions. Having little to no overlap across the representations allows the hippocampus to learn

novel samples without catastrophic interference.

In summary, developing more abstract and shared representations in the neocortex, which

builds up structural representations, provides the foundation for systematic generalization.

Furthermore, cognitive control can dynamically and flexibly modulate this representation

to meet the demands of the current goal (Miller & Cohen, 2001; Herd et al., 2006; Rougier

et al., 2005) and in a way that solves conflicts and avoids catastrophic interference. Addi-

tionally, another complementary mechanism that supports generalization in a more unfa-

miliar environment where rapid learning is required is storing sparse representations in the
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hippocampus, which has also been shown previously to play a role in rapid generalization

(Eichenbaum, 2004; Zeithamova et al., 2012).

The work presented in the following chapters utilizes experimental and computational

approaches to explore the brain’s underlying mechanisms and inductive biases that support

systemic out-of-domain generalization. Specifically, chapter 2 explores the mechanisms of

predictive learning by using a combination of behavioral experiments, neural EEG signals,

and machine learning models. Subsequently, chapter 3 and chapter 4 combine human func-

tional magnetic resonance imaging (fMRI) with deep neural network models to study the

formation of map-like representations and cognitive control mechanisms. Within chapter 3,

we investigate the interplay between cognitive control and the geometry of map-like rep-

resentations. Building upon this foundation, chapter 4 introduces a neural network model

equipped with an explicit control mechanism, providing insights into empirical findings of

continual learning over blocks vs. interleaved learning. Finally, chapter 5 investigates the

synergy between the gradual neocortical and rapid hippocampal generalization with insights

from the complementary learning system framework. In the following sections, we will go

over each of these chapters with more details.

First, chapter 2 (Zolfaghar et al., In-prep) explores the learning mechanism (i.e., pre-

dictive learning) supporting the formation of high-level abstract representation and subse-

quently systematic generalization. In this chapter, two behavioral and neurophysiological

experiments and their results are presented to assess the underlying mechanisms associated

with predictive learning. In this work, I carefully designed the experiments to isolate pure

perceptual learning (Coomans et al., 2012; Foerde & Poldrack, 2016; Clegg et al., 1998; Will-

ingham, 1999; Willingham et al., 1989; Dennis et al., 2006; Deroost & Soetens, 2006) and

facilitate implicit learning (Cleeremans & McClelland, 1991; Berry & Dienes, 1993; Shanks,

2005; Daltrozzo & Conway, 2014) among participants using statistical-sequential learning

paradigms (Summerfield & de Lange, 2014). The brain EEG signals were recorded in col-

laboration with Steve Luck’s lab at UC Davis.
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I employed multifaceted approaches and combined both experimental and computational

tools to explore the proposed research question. While di↵erent techniques were available, I

opted for more straightforward methods that o↵ered the most relevant insights into the data.

One such technique is decoding, which can directly utilize neural information even from the

brain’s surface (Bae & Luck, 2018; Luck, 2022). Even though decoding has been used using

various types of neural data (Serences et al., 2009; Harrison & Tong, 2009; Ester et al., 2013;

Wol↵ et al., 2017; Bae & Luck, 2018; Rihs et al., 2007; LaRocque et al., 2013; Rose et al., 2016;

Foster et al., 2017; van Ede et al., 2017; Bae & Luck, 2018), to preserve optimal temporal

resolution, we chose to use ERP signals for our decoding analysis (de Cheveigné & Nelken,

2019). Furthermore, alongside decoding, we applied a more generalized approach known as

temporal generalization (King & Dehaene, 2014; King et al., 2014). It is an extension of the

decoding over time approach and generates cross-temporal matrices as a result that shows

the evolution of decoding patterns over time and can better make a connection between the

information of the pre-and post-stimulus time windows. The representation of the decoded

information is further explored by using representational similarity analysis (RSA) (Nili

et al., 2014). RSA is a method used in neuroscience to compare and analyze the patterns

of brain activity evoked by di↵erent experimental conditions or trial types. In our study,

we employed RSA to determine whether the representation of a trial is more similar to the

representation of the current location on the screen, or if it aligns more closely with the

representation of the previous or next locations.

Consistent in both experiments, participants showed pure perceptual implicit learning,

both a general speed-up in task acquisition and a specific sequence learning. Decoding

analyses consistently demonstrated high decoding accuracy for future locations throughout

the duration of our epoch. Employing a generalized decoding approach that formed a cross-

temporal matrix, further supported this finding and made a connection between the past and

future time points. We observed that our decoder, trained on the pre-stimulus time window,

can accurately predict the next locations when tested on the post-stimulus time points. These
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results collectively suggest the utilization of the predictive information present in our task

even though the participants were not explicitly informed about such predictive relationships.

In our RSA approach, this was further supported by a sustained similarity activity with the

current location that persisted until the presentation of the next trial. This persistence was

essential for successfully predicting the next locations, due to the second-order characteristic

of our sequences. This characteristic requires the retention of the second-order information

(from two previous locations) to e↵ectively predict the upcoming location. This observation

further validates the e↵ective utilization of predictive relationships within our second-order

sequences to anticipate future locations.

Subsequently, in chapters 3 and 4 (Zolfaghar et al., 2022; Park A. et al., In-prep; Russin

et al., 2022), a combination of a human fMRI study with a deep neural network presented

to assess the constructed high-level representations (i.e., cognitive maps). In this context,

both humans and the neural network model learned the same task, which required making

transitive inferences. This work has been done in collaboration with Erie Boorman’s fMRI

lab at UC Davis. The findings showed that even though the model and participants were

not explicitly told about the latent 4⇥4 structure of the task, representations in the hidden

layers of the model and brain regions, including the hippocampus (HC), entorhinal cortex

(EC), and orbitofrontal cortex (OFC) captured this basic structure. Furthermore, the rela-

tionship between cognitive control and map-like representations is explored. The task used

here was designed to facilitate the learning of map-like representations while simultaneously

requiring the use of cognitive control as a function of the current task context. Our results

showed that in addition to the 2D map-like representations found in our previous results,

these representations’ geometry was warped along the congruent context due to the demand

for cognitive control when there was interference. In other words, the pattern similarity

between incongruent pairs was greater than that of congruent pairs. Moreover, we observed

such warped representations in the hidden representations of the model and in HC, medial

prefrontal cortex (mPFC), and amygdala. Furthermore, these representations were dynam-
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ically modulated by cognitive control to resolve the conflict caused by incongruence in the

task, which might be another way to avoid interference. In so doing, the irrelevant context of

the representational space was suppressed according to the current context. We found such

1D representations in the model and in brain regions, including the posteromedial cortex

(PMC) and dorsomedial frontal cortex (dmFC).

Chapter 3 (Zolfaghar et al., 2022) studies the connections between control processes

and the geometry of cognitive maps learned by neural networks. Building upon this work,

chapter 4 (Russin et al., 2022) introduces a neural network model that incorporates an

explicit control mechanism. This model e↵ectively explains empirical findings related to

blocked versus interleaved learning (Flesch et al., 2018).

Developing map-like representations requires integrating information across many expe-

riences over a long period. For example, in the fMRI study, participants were trained on

the task for three consecutive days to be able to perform well. However, this slow learning

is not possible in environments where learning occurs too quickly, or sequences of events are

not su�ciently interleaved. For example, participants in the fMRI study performed the last

part of the training on the third day and also had to make transitive inferences on the same

day. Therefore, the brain might have multiple mechanisms that support generalization in

di↵erent situations. Additionally, a repetition suppression analysis found a retrieval of par-

ticular faces (i.e., hubs) in the hippocampus. These hubs were necessary to find the correct

answer on the third day at the time of inference. These results suggest that complementary

to the map-like representations found in the neocortex, the hippocampus is involved when

learning occurs too quickly.

Finally, in chapter 5 (Russin et al., 2021), we investigate the interplay between slow

generalization in the neocortex and rapid generalization in the hippocampus by applying the

principles of the CLS framework. We then built deep neural networks to capture the basic

properties of this framework. Finally, we evaluated our models of the cortical and episodic

memory systems using the transitive inference task introduced in the previous chapters,

9



which involved learning over two di↵erent time scales. Participants were trained over multiple

days, and also they were trained on samples given on the same day as the transitive inference

test. We found that both models are capable of solving the transitive inference task and

reproduced key findings from the fMRI experiment (Park et al., 2020).
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Chapter 2

From Past to Future: Exploring predictive learning in the Brain
Using Computational and Experimental Approaches1

Maryam Zolfaghar2 3, Chaodan Luo3, Aaron Simmons4, Tim Curren5, Steven J. Luck4,
Randall C. O’Reilly3

2.1 Abstract

How does the brain create complex abstract knowledge from continuous sensory information,

even without explicit teaching cues? The brain has the remarkable capacity to learn pas-

sively by observing continuous inputs and actively generating predictions about upcoming

information. It then refines its internal models by minimizing the discrepancies between

these predictions and real-world experiences (i.e., prediction errors), referred to as predictive

learning. This mechanism enables the brain to use its prediction errors as an internal source

of teaching signals. In this study, we hypothesize that the two phases involved in predictive

learning (prediction and actual outcomes) consist of a rapid sequence of prediction-outcome

cycles that unfold across distinct temporal windows. The brain first generates predictions,

and after encountering the actual outcome, it refines its predictions to reduce its errors. To

explore this learning process, our study employs a combination of behavioral experiments

and electroencephalography recordings. Participants exhibit learning not only in terms of

1* A version of this article is going to be submitted for publication.
2 Department of Computer Science, University of California, Davis
3 Center for Neuroscience, University of California, Davis
4 Center for Mind and Brain, University of California, Davis
5 Department of Psychology and Neuroscience, University of Colorado, Boulder

11



general task enhancement but also in the context of sequence-based learning. Notably, this

learning is purely perceptual and occurs without participants’ awareness, implying implicit

learning. EEG decoding methods revealed the presence of significant decodable information

about future locations in our sequences. A cross-temporal analysis further supports the exis-

tence of predictive learning by demonstrating significant decoding accuracy when a machine

learning model is trained on pre-stimulus time points and tested on post-stimulus ones. Ad-

ditionally, representational similarity analysis demonstrated the retention of the necessary

information for predicting the next location until the presentation of that location—a further

hallmark of predictive learning.

2.2 Introduction

Understanding how the human brain can transform continuous streams of sensory informa-

tion into complex abstract knowledge without relying on explicit external teaching signals

remains a fundamental question. This inquiry has motivated research that aims to under-

stand how the brain can acquire such knowledge naturally and passively, solely through its

interaction with sensory stimuli. An emerging hypothesis suggests the existence of an un-

derlying mechanism within this passive learning process: an active network that generates

predictions about upcoming sensory inputs, a learning process known as predictive learning

(O’Reilly et al., 2021b). These predictions often deviate from reality, leading to what re-

searchers term “prediction errors”. It is these errors that drive the learning process (Bullier,

2001; Friston, 2005; O’Reilly et al., 2021b). Over time, as the brain works to minimize these

prediction errors through an iterative process, it continually refines its internal models and

representations of the surrounding environment.

This predictive learning mechanism not only enables the brain to comprehend its sur-

roundings but also plays a crucial role in the formation of abstract representations. These

representations are characterized by their ability to capture the underlying structure and
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regularities of sensory inputs. As a consequence, they provide a foundation that equips the

brain to e↵ectively adapt to novel and unseen situations (O’Reilly et al., 2021b, 2017).

Unlike earlier deep neural networks, which often require numerous labeled training sam-

ples to address specific tasks and still struggle to generalize that learning to new tasks (Lake

& Baroni, 2018; Lake et al., 2019), there is a noticeable shift towards employing learning

mechanisms more consistent with predictive learning in these models (Devlin et al., 2019;

Radford et al., 2019; Peters et al., 2018). This entails adopting approaches that rely less on

external teaching signals. Large language models (LLMs) exemplify this shift, being trained

through predictive learning rather than conventional reliance on labeled data (Radford et al.,

2019; Brown et al., 2020; Wilcox et al., 2022). This demonstrates how the incorporation of

predictive capabilities can transform the potential of advanced deep neural networks, which

already have been evolved in the brain, albeit with some di↵erences. While LLMs are trained

with an emphasis on parallel processing, the brain engages in sequential learning through

prediction-outcome sequences that unfold across di↵erent temporal windows (O’Reilly et al.,

2021b). Despite disparities, the core principle is shared — these models fundamentally

predict what is coming next, aligning them computationally with predictive learning. This

brings forth the question: How does this influential form of predictive learning operate within

the brain?

Predictive learning has emerged as a robust framework for deciphering how the brain

learns from its environment and processes sensory information (Friston, 2005; Mumford,

1992; Rao, 1999; O’Reilly et al., 2014) through intrinsic and ongoing predictions and its

continuous e↵ort to minimize the mismatches between these predictions and real-world ex-

periences. This framework implies that predictive learning could serve as a potent source

of essential learning signals for human intelligence (Bullier, 2001; Friston, 2005; Miall &

Wolpert, 1996). However, less is known about how predictive learning works in the brain.

Since this learning dynamic is based on di↵erent phases (predictions and actual outcome),

there should be a mechanism in the brain to switch between these two states (Friston, 2005;

13



Bullier, 2001; O’Reilly et al., 2021b, 2017). One prominent theory suggests that these two

states occur separately in bottom-up and top-down connections of the brain (Friston, 2005).

In this hypothesis, the prediction error is explicitly constructed by comparing the prediction

(conveyed by top-down connections) with actual neural activities (transmitted by bottom-up

pathway). Contrary to what Friston (2005) suggested, we have hypothesized that prediction

error is implicitly represented as a temporal di↵erence (O’Reilly et al., 2021b, 2014). First,

the brain generates its predictions. Then later, when the brain experiences the actual sensory

stimulus, the temporal di↵erence between the predictions versus the ground-truth sensory

signal (i.e., prediction error) updates the internal representation to reduce the prediction

error. This theory suggests that, based on the biological evidence (Andersen & Andersson,

1968; Hughes et al., 2004), the brain’s predictions are generated at 100 ms (i.e., alpha

frequency, 10 Hz) intervals (O’Reilly et al., 2021b, 2014, 2013; Wyatte, 2014). Specifically,

within the first 75 ms of the overall 100 ms, the brain generates its predictions. Then, when

the actual sensory inputs are experienced over the last 25 ms of the 100 ms, any discrepancies

between this ground-truth outcome and the previous prediction state are the teaching signals

that propagate throughout the brain to shape its representations.

Our study puts the alternative hypothesis to the test through two experiments where

participants implicitly and perceptually learn to predict upcoming stimuli. We used a com-

bination of the pure perceptual learning (Coomans et al., 2012) and statistical-sequential

learning (Summerfield & de Lange, 2014) paradigms. In these paradigms, unbeknown to

participants, there is an underlying statistical structure to the task. Therefore, throughout

learning, participants may implicitly learn the hidden structural rule leading to faster and

more accurate responses. To measure the extent to which such learning is due to learning

the underlying sequence rather than a general learning trend in our behavioral study, we

replaced the underlying pattern with another sequence after participants learned to perform

the task well. Therefore, if participants learn the underlying pattern, replacing the sequence

with another one should increase their reaction times in response to the stimulus. Alterna-

14



tively, with no such sequential learning, we may expect to see a decrease in reaction times

throughout the whole experiment, solely due to an enhancement in familiarity with the task

and an improved understanding of the overall paradigm.

Our findings revealed that participants learned to respond faster and more accurately

throughout the test session in both experiments. In addition to this generic form of learn-

ing, we also discovered evidence that this learning is attributed to acquiring knowledge of

the underlying sequence. This was apparent from the observed increase in participants’

reaction times when the underlying sequential pattern was violated. More specifically, we

observed that participants’ reaction times increased when we transitioned from a more fre-

quent sequence (i.e., primary sequence) to a less frequent one (i.e., alternative sequence).

Conversely, when we reverted to the primary sequence, their reaction times decreased once

again. Statistical analysis confirmed the significance of this observed pattern.

Moreover, to measure the extent to which this sequence-based learning occurred implic-

itly, we included supplementary tasks at the end of both experiments. The results from

these tasks provided further evidence that this learning occurred without participants being

consciously aware of the underlying sequences, even though their brains implicitly exhibited

signs of sequence learning.

The consistency in behavioral findings across both experiments underscores that partici-

pants implicitly gained knowledge of the underlying statistical sequence solely through pure

perceptual learning. Therefore, to more precisely examine the brain signatures underlying

predictive learning, we employed electroencephalography (EEG) recordings of brain signals

in the second experiment. EEG is particularly suitable for tracking time-sensitive changes in

the brain. Our primary objective was to uncover the specific brain patterns associated with

its capacity to predict future occurrences based on preceding events. Initially, we employed

decoding analysis with the main goal of exploring the patterns linked to the brain’s ability

to predict subsequent locations.

To accomplish this, we organized our trials into four distinct groups according to the trial
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location at time = 0 ms. Within each group, the preceding and subsequent trials had two

potential locations each (i.e., two distinct bins within each group), due to the second-order

feature of our sequences (Coomans et al., 2012). This grouping strategy makes the chance of

predicting the next location 50% within each bin. Throughout our analysis, we referred to

the trials presented immediately before time = 0 ms as ‘previous trials,’ those after as ‘next

trials,’ and the trial at time = 0 ms as the ‘current trial.’

We used standard second-order sequences that are widely-used in the sequence-learning

literature (42132431 and 13423124), which make it impossible to predict the next stimulus in

the sequence based only on the current stimulus. Instead, two prior stimuli (“second-order

information”) are required to accurately predict the next stimulus. While this is critical for

making it more di�cult to learn the sequences, and ensure that something beyond simple

pairwise associative learning is required, it also means that it is more di�cult to distinguish

a representation of the previous stimulus from that of the next stimulus, because these are

always linked (despite being di↵erent locations). For example, for a current trial of location

1, the second-order sequence contains either ‘2 -> 1 -> 3’ or ‘3 -> 1 -> 4’, such that

the 2 and 3 as previous and next are linked, as are 3 and 4. Thus, while our analyses identify

a clear ability to predict the next stimulus in a sequence, it is not possible to distinguish this

from the ability to remember the previous item, which is logically required for prediction in

the first place.

Our findings revealed a significant decoding accuracy that persisted throughout the epoch

time, showing that the brain had significant decodable information regarding the previous

and next locations. To further examine these decoding results, we used a cross-temporal

matrix that tested whether the decoding model is capable of using past information to

predict future events. In other words, if we train the model on the information from the

past, the model should be able to decode the information from the future. Indeed, we found

that our model was able to decode the next stimuli when trained during the pre-stimulus time

window and tested during the post-stimulus period, consistent with the predictive learning
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hypothesis.

Building on the encouraging decoding and cross-temporal findings, which revealed the

presence of decodable information associated with predictive learning, we delved deeper into

the nature of this decoded information using representational similarity analysis (RSA) that

examines the similarity structure of the representations over time (Nili et al., 2014). Inter-

estingly, our RSA results showed a gradual shift in similarity, transitioning from previous-

related information to current-related information, and then to next-related information as

time progressed. This temporal progression of similarity closely aligned with the timing of

our task. Furthermore, the RSA results also revealed a sustained similarity representation

of the current trial, which is consistent with the demand for resolving the ambiguity present

in the second-order sequences that we used, which requires the retention of information from

the two previous locations for the successful prediction of the next location.

In the upcoming sections, we outline the methods employed in our study, provide ex-

planations of the experimental paradigms, and delve into the behavioral findings. Next, we

present the EEG results, beginning with our decoding analysis, which are further supported

by the outcomes of the cross-temporal analysis, and then the RSA analyses. Finally, we will

summarize our findings, discuss their relationship with other experiments and theoretical

frameworks, and propose future work to address the limitations of the present study. Our

overall goal is to contribute to a deeper understanding of the neural mechanisms driving pre-

dictive learning—a crucial cognitive process that facilitates the creation of adaptable internal

models of our world and enables the capacity to generalize beyond specific domains.

2.3 Material and Methods

2.3.0.1 Participants

Experiment 1. A total of 31 volunteers took part in our first experiment (19 female, 12

male, mean age = 19). All participants were a�liated with the University of Colorado at
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Boulder, and they either got credits for their introductory psychology course or received

payment for their participation. They all were right-handed and reported to have normal or

corrected-to-normal vision. Additionally, they were devoid of any psychiatric or neurological

disorders and provided informed consent in accordance with the human subjects policy at

CU Boulder. The Institutional Review Board granted approval for the study.

Experiment 2. A total of 40 volunteers took part in the experiment (33 female, 6 male, 1

non-binary, mean age = 20.48). One subject was removed from the analysis due to technical

issues during EEG recording. Another subject was removed due to not having enough good

trials after our artifact rejection. In addition, data from three subjects were collected during

the pilot phase of the study that were not used for the analysis. All participants were from the

University of California, Davis, and they all got paid for their participation. All participants

were right-handed and indicated having either normal vision or vision corrected to a normal

state. Moreover, every individual enrolled in the study was devoid of any psychiatric or

neurological disorders and provided informed consent prior to the experiment in alignment

with the human subjects policy at UC Davis. The study was approved by the Institutional

Review Board.

2.3.0.2 Stimuli and apparatus

Participants executed all parts of the experiments in a semi-darkened cubicle of the psy-

chological laboratory of the Colorado Boulder University for the first experiment and of the

Center for Mind and Brain at UC Davis for the second experiment. Stimuli were paired

letters, surrounded a fixation point. These pairs were either a target (“XO” or “OX”) or

a distractor (“YQ” or “QY”). Each trial was composed of one target and three distractors.

The identities of targets and distractors always varied randomly with an equal probability.

In the initial experiment, stimuli were arranged in a diamond shape, positioned at the clock

locations of 3, 6, 9, and 12 o’clock (Figure 2.1A). A 17-inch LCD monitor displayed images
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with a spatial resolution of 1280 ⇥ 1024 pixels and a refresh rate of 60 Hz. For the subse-

quent experiment, the letters were arranged in a square pattern, and we used a 24-inch LCD

monitor (HP ZR2440W) with a spatial resolution of 1920 ⇥ 1200 pixels and a refresh rate

of 60 Hz to present the trials. Under this configuration, in both experiments, the stimuli

centered approximately .63� of visual angle from the center of the screen, and a chin rest was

installed to maintain a fixed viewing distance and head position. In both experiments, stim-

uli were generated with MATLAB and presented with PsychToolbox package (Pelli, 1997;

Brainard, 1997).
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(a) (b)

(c) (d)

Figure 2.1: Experimental paradigm of the first experiment. (a) Each trial contains four

pairs of letters: one target (“XO”/“OX”) and three distractors (“YQ”/“QY”). Participants

have to respond to the target’s identity: “XO” requires a left response, and “OX” requires

a right response. Each trial displays for 100 ms, after which only the fixation point remains

on the screen until a response is given or the maximum time of 3000 ms elapses. The next

trial starts 100 ms after a response is given. Therefore, the response stimulus interval (RSI)

is 100 ms. (b) There are four possible locations for the target, with 1 referring to the left

of the fixation point (9 o’clock) and the remaining numbers to the locations in a clockwise

manner (12, 3, and 6 o’clock). We use two second-order sequences: S1 and S2. Arrows in

this figure are only demonstrating the trajectory of the sequence S1 as an example and are

not used in the experiment. (c) The task contains a total of nineteenth blocks. The first two

practice blocks use random patterns to present the targets, and the remaining blocks, except

for the transition blocks (blocks 9 and 18), are organized according to the primary pattern

(i.e., the more frequent pattern). In the transition blocks, the primary sequence (S1 or S2)

is replaced by the alternative, which is the less frequent sequence (S2 or S1, respectively).

(d) During the generation tasks, participants have to choose between four possible locations

on the screen with the corresponding four arrow keys on the keyboard. After 400 ms blank,

the trial is presented for 600 ms with a target showing in the chosen location.
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2.3.0.3 Behavioral paradigm

Experiment 1 The experimental design was developed using the pure perceptual learning

(Coomans et al., 2012) and statistical-sequential learning (Summerfield & de Lange, 2014)

paradigms. Each trial started with a 1000 ms presentation of a black fixation dot followed

by a 100 ms presentation of a stimulus that was centered on the fixation dot. Participants

were instructed to respond to the identity of the target (“XO” or “OX”) as quickly and

as accurately as possible over a delay period with a maximum response time of 3 seconds.

During this delay period, only the fixation dot was visible. The target “XO” (where the

letter “X” appears on the left of the letter “O”) required pressing the button “C” on the

keyboard with the left index finger, and the target “OX” (where the letter “X” appears on the

right of the letter “O”) required pressing the button “N” with the right index finger. Once

participants responded, the next trial was started after a 100 ms response-stimulus interval

(RSI; see Figure 2.1a). To hinder the oculomotor movements, first, we urged participants

to focus on the fixation dot without making eye movements, and second, we used a small

visual angle to display the letter pairs (< 1�). Each trial was composed of one target and

three distractors. The identities of targets and distractors always varied randomly with an

equal probability.

The task started with two practice blocks, each consisting of 54 trials, aimed at famil-

iarizing the participants with the experimental procedure. During these practice blocks, the

target’s locations underwent pseudorandom changes, with the consideration that the same

location never appeared consecutively or more than once in succession. Following the first

two practice blocks, participants received feedback regarding their error rates. Subsequently,

a self-paced break lasting between 0.5 and 5 minutes was provided.

After this initial phase, participants proceeded to complete seventeen experimental blocks,

each comprising 104 trials. Following the completion of each block, participants were granted

a self-paced break lasting at least 0.5 minutes, with a maximum duration of 5 minutes.

Unbeknownst to the participants, the targets’ locations within these blocks were orga-
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nized according to a second-order 8-element sequence. Specifically, two sequences (S1 and

S2) adopted from Coomans et al. (2012) were utilized, each consisting of the following re-

spective order of the target locations: 42132431 and 13423124 (refer to Figure 2.1b). Each

sequence was repeated 13 times in each block. For each participant, one of the sequences

was selected to organize the majority of the paired letters’ locations, which we refer to as the

primary sequence. To evaluate the extent to which learning occurred from acquiring knowl-

edge of the underlying sequence versus familiarity with the task, we introduced blocks in

which the paired letters were presented in accordance with the alternative sequence. These

blocks, referred to as the alternative blocks, were presented in block 9 and 18. Having two

transition blocks in the first experiment helped us compare the learning trend between the

first and second halves of the blocks. This comparison aided us in determining the optimal

placement of the transition block for our subsequent experiment.
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(a) (b)

(c)

Figure 2.2: Experimental paradigm of the second experiment. (a) Illustrating the sequence

of events in each trial, including the presentation of a stimulus for 100 ms, a response time

window of up to 3 sec for trials requiring responses, and a subsequent response-stimulus

interval (RSI) of 400 ms. (b) The task utilized two second-order featured sequences (S1

and S2). The arrangement of paired letters is based on a square shape. The numbers

represent the locations of the paired letters within the square configuration. with location

1 corresponding to the top-left position, and the remaining locations progressing clockwise

from that point. The arrows in the figure are only for illustration purposes to show the

transition between locations and were not used in the actual experiment. (c) A sequence

of trials is provided as an example. In each trial, one of the paired letters is highlighted in

red. The locations of these red paired letters follow the arrangement of S1 in this example.

Participants are prompted to respond to a trial only when the target (“OX” or “XO”) is

presented in red. In the example provided, a response is required for the third and fifth

stimuli. Specifically, a right response is required for “OX”, and a left response is needed for

“XO”. Each stimulus includes three distractors (YQ” or QY”), with no response necessary

when a distractor is presented in red.

Experiment 2 The task in this experiment was designed to address some of the issues we

had in the first experiment. In the second experiment, participants performed the task with
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similar main logistics used in the first experiment. Similarly, in this experiment, participants

were required to do a binary classification task to distinguish between “XO” (left response)

and “OX” (right response) by pressing two di↵erent buttons on the keyboard. In this itera-

tion, we recorded EEG signals throughout the duration of the experiment, as our focus was

to investigate the neural signatures associated with sequential predictive learning.

An initial concern we aimed to address from the first experiment was the arrangement

of the paired letters. Initially, we presented our stimuli in a diamond shape in each trial.

However, due to the di↵erence between the left and right brain hemispheres, we presented

the stimuli in a square shape in the current experiment to reduce any potential confound

of the targets’ spatial locations. By organizing paired letters in a square shape instead of a

diamond shape, half of the letters were on the left and the other half on the right side of the

screen. Therefore, we arranged paired letters based on a square shape (Figure 2.2b), where

location 1 referred to the top-left corner of the square and the remaining numbers to the

locations in a clockwise manner. We used the same two second-order sequences as in the

first experiment (Figure 2.2b). Each participant completed 19 blocks after the four practice

blocks (23 blocks in total), with blocks 20 and 21 as the transition blocks. According to

our findings from the first experiment, we decided to include the alternative blocks in the

second half of the blocks. This allowed su�cient learning of the primary sequence before

transitioning to the alternative sequence. Additionally, the use of two alternative blocks,

rather than one, was implemented to increase the number of trials utilizing the alternative

sequence.

Another concern that arose was the potential interruptions due to the need to make many

motor responses. Given our focus on achieving pure perceptual learning, the necessity of

responding to each trial introduced an extra layer of interruption. Therefore, to reduce these

interruptions in experiment 2, the number of trials in which participants were required to

respond was reduced to 30%, with the target presented in the color red as the response cue

(Figure 2.2c). Participants had to engage sustained attention to all trials in order to detect
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the target trials, thus enabling learning on all trials even while only responding on 30% of

them.

Furthermore, the response stimulus interval (RSI) was increased from 100 ms to 400 ms

(Figure 2.2a) to provide a longer pre-stimulus time window for our EEG processing. Given

the increased task complexity, the experimental procedure began with four practice blocks,

each consisting of 54 trials to familiarize participants with the task. During the initial

two practice blocks, the target’s location with the color red changed pseudorandomly, with

the condition that the same location never appeared consecutively or twice in succession.

All trials during these blocks required a response from the participants to facilitate their

familiarity with the task. In contrast, the last two practice blocks were designed to mimic

the main experiment, wherein participants were required to respond only 30% of the total

trials where the target appeared in red. Following the completion of the four practice blocks,

the participants received feedback on their error rates. Only participants who achieved

performance above 70% during the four practice blocks were selected to participate in the

main experiment.

The main experiment comprised 19 blocks, in addition to the four practice blocks, totaling

23 blocks. Each participant completed a total of 2192 trials throughout the experiment,

consisting of 54 trials for each of the four practice blocks and 104 trials for each of the 19

blocks in the main experiment. A self-paced break of at least 0.5 minutes, up to a maximum

of 5 minutes, was provided to participants following the completion of each block.

2.3.0.4 Implicit learning

After the completion of the behavioral experiment, a series of post-experimental tasks were

conducted to evaluate the extent of participants’ implicit learning of the underlying sequence.

First, participants were asked to write down their understanding of the task’s goal on a

designated sheet of paper. Following that, on the same sheet, participants were asked a set of

15 multiple-choice questions specifically designed to assess their awareness of the underlying
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sequence. Once the questionnaire was completed, participants were informed that the target

locations followed a regular pattern that was repeated throughout the task.

Subsequently, a generation task consisting of inclusion and exclusion versions, as well

as a recognition task, were conducted (Destrebecqz & Cleeremans, 2001). In the inclusion

generation task, participants were asked to generate 54 series of the target’s locations that

resembled the primary sequence in the main experiment as much as possible, while ignoring

the distinction between “XO” and “OX”. Participants were instructed not to generate the

same location twice or more in succession and to rely on their intuition when they could not

recollect the target’s location. In each trial, four possible locations surrounded a fixation

point with Arial font size 10, and participants had to choose the target’s location by pressing

one of the four spatial compatible keys on the keyboard: four arrow keys for the first ex-

periment (Figure 2.1d), and “G”, “H”, “V”, and “N” keys for the second experiment. After

participants selected the location, a trial akin to the main experiment was presented on the

screen. In this trial, a target (highlighted in red in the second experiment) was positioned

at the chosen location, while three distractors were placed in the remaining locations. This

generated stimulus was presented for 600 ms, followed by a 400 ms blank period. In the

exclusion generation task, participants were instructed to avoid reproducing the sequential

regularities of the target’s locations with the constraint of not repeating immediate locations.

Participants had to generate 54 trials using the same keys as the inclusion task.

Lastly, participants performed a recognition task where a series of 3-length sequences

were presented on the screen. Each trial in these sequences was presented for 800 ms, and

participants had to determine whether the underlying pattern of the target’s locations in the

presented 3-length sequence was “familiar” or “unfamiliar” to them. If they believed that

the sequence of the target’s locations was part of the primary sequence, they had to choose

“familiar” by pressing “C” on the keyboard using their left index finger. Otherwise, they

had to select “unfamiliar” by pressing “N” on the keyboard using their right index finger.

In total, participants responded to 66 questions.
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Indeed, all the post-experimental complementary tasks were designed to assess partici-

pants’ implicit learning of the structural sequence of the target’s locations. Specifically, the

generation tasks evaluated the level of control participants had over their acquired knowl-

edge, enabling them to generate sequences that either resembled or did not resemble the

primary sequence. On the other hand, the recognition task assessed their capacity to recog-

nize any familiar patterns, even if they might not have been able to regenerate the sequence

themselves.

Figure 2.3: Illustration of how the trials were organized into groups based on the cur-

rent target’s location within the sequence (S1 or S2). Group 1 denotes the current stimulus

occupying position 1, and the same logic is applicable to the remaining three groups. The

experimental sequence exhibited a second-order property, signifying that each current loca-

tion had two potential subsequent locations. For instance, in Group 1, the current target

placed at location 1, and the prospective upcoming locations in S1 were 3 or 4, while in

S2, they were 2 or 3. Consequently, we established four distinct groups for each sequence,

encompassing the combination of current and next locations. This grouping methodology

enabled us to explore the influence of predictability regarding the upcoming location with

an anticipated chance level of 50%.

2.3.0.5 EEG recording and preprocessing

The Brain Products actiCHamp recording system (Brain Products GmbH) was used to

continuously record EEG signals. The recordings were obtained from a wide range of scalp

electrodes: FP1, FP2, F3, F4, F7, F8, C3, C4, P3, P4, P5, P6, P7, P8, P9, P10, PO3,

PO4, PO7, PO8, O1, O2, Fz, Cz, Pz, POz, and Oz. The electrodes placed on the left and
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right mastoids were utilized as reference sites. Horizontal eye movements were detected by

placing electrodes laterally to the external canthi, while the vertical EOG was recorded from

an electrode below the right eye to detect eye blinks and vertical eye movements. Electrodes’

impedance was kept below 50K⌦. All signals were recorded single-ended and then referenced

o✏ine. The EEG signals were filtered online using a cascaded integrator-comb antialiasing

filter with a half-power cuto↵ at 130 Hz, and the signals were digitized at 500 Hz.

The EEG signals were processed and analyzed in MATLAB 2021a using the EEGLAB

2021.0 (Delorme & Makeig, 2004) and ERPLAB 8.30 toolbox (Lopez-Calderon & Luck,

2014). Initially, the scalp EEG was referenced o✏ine to P9. Next, all signals were bandpass

filtered using a noncausal Butterworth impulse response function, with half-amplitude cuto↵s

at 0.1 and 80 Hz and 12 dB/oct roll-o↵, and were resampled at 250 Hz. We also shifted the

data 27 ms to account for the monitor delay. To remove the power line noise, a notch filter

at 60 Hz was also applied.

A bipolar horizontal EOG derivation was calculated as the di↵erence between the two

horizontal EOG electrodes (left HEOG � right HEOG), and a vertical EOG derivation was

computed as the di↵erence between Fp2 and the electrode below the right eye (FP2 �

VEOG). The data was then visually inspected to identify and remove the components of

the common ocular, cardiac, muscular artifacts, or extreme voltage o↵sets. We then used

independent component analysis (ICA) on the scalp EEG for each participant to identify and

remove the components that were associated with blinks and eye movements (Jung et al.,

2000; Drisdelle et al., 2017).

After the ICA correction, channel P9 was added, the EEG data was referenced o↵-line

to the average of all electrodes and then re-referenced to the left and right mastoids, and

segmented into epochs of -400 ms to 1000 ms relative to the stimulus onset of the current

location. Additionally, to remove the epochs and channels containing artifacts, we used the

Commonly Recorded Artifactual Potentials (C.R.A.P.) algorithm (Luck, 2022). We then

excluded trials from analyses using the simple voltage threshold, with the voltage threshold
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equal to 150 µV over the whole epoch for all the channels. We then performed step-like

artifact detection using the step function on the vertical EOG derivation (FP2 � VEOG)

with the blink threshold of 70 µV over the whole epoch. Next, we applied step-like artifact

detection on the horizontal EOG derivation (left HEOG � right HEOG) with the blink

threshold equals 32 µV over the whole epoch.

2.3.0.6 Grouping and data preparation

To prepare the data for our analysis, a unique grouping method was employed (Figure 2.3),

leveraging the second-order feature of our sequences.

To make the terminology clear in this paper, we used the words ‘previous’, ‘current,’ and

‘next’ to describe the order of the stimuli within the epochs (see Figure 2.3). It can refer to

both the trials and the locations of the targets within a trial. For example, ‘current trial’

refers to the trial presented at the current time (i.e., onset time of 0 ms), and the ‘current

location’ refers to the location that was used to present the target in that specific trial.

Similarly, previous trials signify the trials preceding the current trial, and ‘next trials’ are

those following it (columns in Figure 2.3).

As an example, consider sequence 1: if location 1 was chosen to display the target,

owing to the second-order nature, two potential locations existed for both the preceding and

succeeding targets. Consequently, locations 2 and 3 are considered ‘previous locations’, and

locations 3 and 4 are considered ‘next locations’.

In addition to the usage of ‘previous’, ‘current’, and ‘next,’ we further categorized the

trials into four groups based on the location of the ‘current’ trial on the screen (rows in Figure

2.3). Specifically, when the current location was location 1, the corresponding group of trials

was labeled as ‘group 1’. In this group, we observed two distinct bins: bin 1 represented the

chunk ‘2 -> 1 -> 3’, while bin 2 represented the chunk ‘3 -> 1 -> 4’ of the sequence.

Likewise, when the current location was location 2, the group was identified as ‘group 2’,

and so forth, resulting in a total of eight groups across the two sequences and therefore eight
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unique trial types for each sequence (refer to Figure 2.3).

2.3.0.7 Decoding

To measure the extent of decodable information associated with the generation of predictions

about future events, we employed a direct and systematic EEG decoding approach (Bae &

Luck, 2018; Lopez-Calderon & Luck, 2014; Luck, 2022). This technique aimed to extract

and analyze any decodable patterns in the neural EEG signals that could be linked to pre-

dictions of upcoming locations within our experimental paradigm. This decoding approach

contrasts with the widely used forward encoding methods (Serences et al., 2009; Brouwer &

Heeger, 2011; Fahrenfort et al., 2017), which can introduce assumptions about the nature of

underlying representation that might not align with specific feature dimensions and are not

directly pertinent to the research questions posed in our current study.

Moreover, as part of our exploratory analysis, we conducted a time-frequency analysis

to investigate whether di↵erent frequency bands carried decodable information pertaining

to upcoming stimulus locations. To capture a comprehensive range of neural activity, we

considered various frequency bands including alpha, theta, beta, and gamma, covering fre-

quencies spanning from 4 to 48 Hz. We noted comparatively lower decoding accuracy (for

additional details, see supplementary figures in Section 2.7).

However, it is important to note that time-frequency analysis has the potential to in-

troduce temporal smearing due to the application of filters to extract distinct frequency

components (de Cheveigné & Nelken, 2019). This smearing e↵ect can complicate the preser-

vation of finer temporal details within the analysis. To ensure that we maintained optimal

temporal resolution for our investigation, the present study will primarily focus on the de-

coding results obtained from the ERP analysis.

To focus our analysis on the visual areas that are hypothesized to be associated with

predictive learning, we chose 17 channels that were relevant to our study. These channels

were P3, P4, P5, P6, P7, P8, P9, P10, PO3, PO4, PO7, PO8, O1, O2, Pz, POz, and Oz. By
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analyzing these channels, we were able to gain a more focused and targeted understanding

of the neural activity underlying predictive learning in the visual system.

As detailed in section 2.3.0.6, we implemented a grouping strategy by organizing trials

according to the current location on the screen. This arrangement led to the creation of

two distinct bins, each containing two possible locations for the previous and subsequent

trials. This approach enabled us to explore the brain’s capacity to predict the upcoming

locations throughout the entire epoch, with a chance level of 50% – that is, we used a 2-class

classification task using a decoder to extract information pertaining to the prediction of the

next locations.

The decoding procedure was performed for each time point independently and for each

participant ranging from -400 ms to 1000 ms. To classify the upcoming stimulus location,

we used a support vector machine (SVM) with the default kernel of the Matlab fitcsvm()

function. The decoding procedure comprised two distinct phases: training and testing.

During the training phase, a separate SVM was trained to di↵erentiate between the locations

of the upcoming stimuli, and in the testing phase, the trained SVM was used to classify new

data that was held out for testing.

To allocate trials for the decoding of each time point, we used a 3-fold cross-validation

procedure. First, we divided the trials into three folds, with each fold consisting of equal

numbers of trials for each of the two upcoming locations. For each fold, we averaged the

trials to produce a scalp distribution for the analyzed time point, which resulted in a matrix

of 3 folds ⇥ 2 locations (bins) ⇥ 17 visual electrodes. Two of the three folds were used to

train the SVM model with known location labels. Next, the trained SVM model was used

to predict the location of the upcoming stimuli for each of the unlabeled locations in the

held-out fold that was reserved for testing, using the predict() function in MATLAB. The

function assigns a location label for each trial in the held-out fold as the test data, and then

the decoding accuracy was calculated by comparing the ground-truth location labels with

the predicted labels from the model.
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To ensure the stability and reliability of the decoding performance, we repeated the 3-fold

cross-validation three times for each analyzed time point, and after all three iterations, all the

folds were considered as held-out test data. This helped to minimize the risk of overfitting

and increase the generalizability of the results. To further reduce inconsistencies associated

with the assignment of trials to folds, we repeated the entire cross-validation procedure 10

times with new random assignments of trials to the three folds. The decoding accuracy was

then averaged across the two bins, the three cross-validations, and the 10 iterations, resulting

in a decoding percentage for each time point that was based on 60 decoding attempts (2 bins

⇥ 3 cross-validations ⇥ 10 iterations). To minimize noise, the averaged decoding accuracy

values were smoothed across time points using a five-point moving window, equivalent to a

time window of ±40 ms, which produced a more stable and reliable decoding estimate for

each time point.

The precision of the temporal resolution obtained from the entire EEG processing and

decoding pipeline was estimated to be approximately ±50 ms. This was determined by using

a 400 ms boxcar function through the components of the pipeline that generated low-pass

filtering. In this analysis, a substantial value was manually added to the EEG signals of one

of the two bins between 150 to 550 ms. This deliberate manipulation aimed to simulate a

distinctive pattern with the expectation that the decoding process should accurately identify

and classify this pattern, leading to a decoding accuracy of 100%. The decoding pipeline

was then applied, and the decoding analysis achieved an accuracy rate of 100% within the

time period from 200 to 500 ms, confirming an approximate di↵erence of 50 ms.

To correct for multiple comparisons, we employed the false discovery rate (FDR) cor-

rection method (Benjamini & Hochberg, 1995). The FDR correction method controls the

expected proportion of false positives among all significant results. To perform FDR cor-

rection, we used the fdr bh function in MATLAB, which employs the Benjamini-Hochberg

procedure with a dependency assumption (‘dep’ method) to adjust the p-values. This method

is commonly used in neuroimaging studies and has been shown to provide a good balance be-
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tween false-positive and false-negative errors while controlling for the overall false discovery

rate.

2.3.0.8 Cross temporal decoding

As an extension of the decoding over time, we utilized cross temporal decoding (King &

Dehaene, 2014; King et al., 2014) by assessing the model’s ability to accurately predict brain

activity patterns at di↵erent time points. The primary goal here is to see whether training our

model mainly within the pre-stimulus time window achieves substantial decoding accuracies

when evaluated on future time points. Hence, our underlying assumption is that if the brain

leverages information about pre-stimulus activity patterns and predictive learning, we could

potentially observe a substantial decoding accuracy when training on the pre-stimulus time

window and subsequently testing on future time points.

To implement cross temporal decoding, we divided our data into distinct time bins (every

20 time samples). We then trained a linear classifier (i.e., SVM) on data from a particular

time point to predict the location of the upcoming stimuli. Following training, we tested

the model’s predictive performance by evaluating its ability to generalize to di↵erent time

points. Similar to our decoding procedure, we used 3-fold cross-validation. We divided the

data at each time point into three folds and used two folds for training at one time point

and one fold for test at a di↵erent time point. We then repeated that 3 times so all the folds

at the other time point would be chosen as a test fold. We performed the whole process for

10 iterations.

By repeating this process across various combinations of training and testing time points,

we constructed a cross temporal matrix of size 70⇥70. Within this matrix, each cell con-

tains the decoding accuracy associated with the specific pairing of training and testing time

instants. The visualization of this matrix enabled us to discern the temporal progression of

decodable information within our data. To assess the statistical significance of our findings,

we performed right-tailed t-tests using MATLAB ‘ttest’ function. Subsequently, we applied
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FDR correction to account for multiple comparisons, identifying data points that showed

statistically significant accuracy above the chance level.

Cross-temporal analysis provides a straightforward method to analyze the signatures

and patterns linked to predictive learning. Additionally, it enables the investigation of

information transferability across diverse temporal contexts.
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(a) (b)

(c) (d)

Figure 2.4: Hypothetical RSA matrices for sequence 1. (a) Depicts spatial grouping based

on the current location. (b) Illustrates hypothetical RSA for trials at time t = 0 ms. The

ordering is based on each group’s current location. For example, G1 corresponds to group

1, where both bins within that group have location 1 as the current location. (c) Presents

hypothetical RSA for preceding trials. The ordering on the top and left side of the matrix

is based on the previous locations of the two bins for each group. For instance, group 1

denoted by G1 has locations 2 and 3 as its previous locations. (d) Shows hypothetical RSA

for succeeding trials. Similar to the previous hypothetical RSA, but here the ordering is

based on the next locations within each group for two bins. For example, G1 for group 1 has

locations 3 and 4 as the next locations. All RSAs are symmetric; therefore, we only included

the lower triangle for our analysis. The diagonal, denoted by the color red, represents the

highest similarity, and it was also excluded from our analysis. Pink-shaded cells within each

hypothetical RSA indicate cells expected to have higher similarity.
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2.3.0.9 Representational similarity analysis

Decoding techniques have a limitation in that they cannot provide specific information about

the decoded data. Therefore, we examined the representation of the decoded information

to determine the type of information being processed. To accomplish this, we utilized rep-

resentational similarity analysis (RSA) (Nili et al., 2014; He et al., 2022), a method that

compares the structure of brain activity elicited by di↵erent types of trials. In our study,

we were interested to know whether the representation of a trial is more similar to the rep-

resentation of the current trial on the screen or is more similar to the representation of the

previous or next locations.

We used our grouping strategy, which organized our trials into four groups, with each

group containing two bins (Figure 2.3), with each bin representing the same current location,

while di↵ering in their previous or next locations (Figure 2.4a). If the neural response is

more similar to the current trial, it suggests that the two bins ‘within’ each group should

exhibit more similar neural responses. However, if there is a higher similarity to the previous

or next trial, then the similarity within the group decreases, and there is greater similarity

‘across’ groups for bins with the same previous or next location.

We utilized RSA to investigate the neural responses induced by the di↵erent bins, both

within and across groups. Each comparison of these responses is represented by a single

cell in our RSA matrix. We then calculated the similarity of the brain activity for each

possible pair of cells in this matrix. The term neural response refers to the distribution of

voltage values across scalp electrodes. We used the standard Pearson’s correlation coe�cient

to compute the similarity between the voltage distributions on the scalp elicited by di↵erent

bins. More specifically, we collected the ERP scalp distribution for each bin, whether within

or across groups, at each time point. Then, we calculated the correlation between the voltage

distributions triggered by all bin pairs.

To generate the representational matrix for each sequence, we used the recorded brain

activity over all vision channels for each participant. Each sequence consisted of four groups
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with two bins per group (as shown in Figure 2.4a for sequence 1). This gave us a total of eight

di↵erent cell types, resulting in a final matrix size of 8⇥8 (see Figure 2.4b) for each sequence

and for each subject at each time point. Each cell of the matrix represents the similarity

between the neural responses elicited by a given pair. For example, cell (1,3) compares the

pattern of brain activity elicited by ‘group 1 - bin 1’ and ‘group 2 - bin 1’. To explore

the similarities between di↵erent trial types, we compared all pairs of cells. Given that the

upper and lower triangles of these matrices mirror each other and that the diagonal values

are always 1, we excluded the diagonal and the upper triangle when comparing matrices. To

examine whether the information being decoded was more strongly related to the current

trial, or the previous/next trial, we built hypothetical RSA matrices for each.

The di↵erence between the hypothetical RSAs lies in the ordering we used, which is

indicated on the top and left side of the matrix. In the current hypothetical RSA (Figure

2.4b), we used the current location within each group (e.g., location 1 for both bins in group

1 denoted as G1). While, in the previous hypothetical RSA (Figure 2.4c), the ordering

shifted to include the previous locations corresponding to each bin within each group (e.g.,

locations 2 and 3 in group 1). Similarly, for the next hypothetical RSA (Figure 2.4d), we

incorporated the next locations (e.g., locations 3 and 4 in group 1). The anticipated outcome

is the highest similarity across groups with the same previous or next location, respectively,

for the previous and next hypothetical RSAs. Additionally, the higher similarity is expected

within each group that shares the same location for the current hypothetical RSA.

Note that the hypothetical RSA for previous and next trials were the same (i.e., Figure

2.4c and 2.4d have the same cross-group similarity structure), which is a consequence of the

second-order nature of the sequences. Thus, we refer to both matrices as the previous/next

hypothetical RSA, which can be distinguished from the current hypothetical RSA, but not

from each other.

Once we had established the RSA for each participant at every time point and for each

sequence, we compared the resulting RSAs with our hypothetical RSAs, using Kendall’s ⌧A
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rank correlation coe�cient. This choice was made based on the nature of our hypothetical

RSAs, where the models we considered are categorical one-hot vectors that could result in

tied values. Kendall’s ⌧A is a classical rank correlation measure that accounts for ties (Nili

et al., 2014).

Additionally, for our statistical test, we utilized the nonparametric Wilcoxon signed-rank

to evaluate whether the median correlation coe�cient significantly di↵ered from zero. This

test is particularly suitable for non-normally distributed data, such as correlation coe�cients.

We set our alpha level, which determines the threshold for statistical significance, at .05,

ensuring a stringent criterion for our statistical analyses. We performed FDR correction to

account for multiple comparisons.

Furthermore, to estimate the upper bound of the noise ceiling, we calculated the correla-

tions between individual correlation matrices and the grand average correlation matrix. By

taking into account the overall trends observed across participants, this approach allowed

us to establish an upper limit for the correlation values within our data. Additionally, to

obtain the lower bound of the noise ceiling, we generated separate grand average correlation

matrices for each participant, with each matrix excluding the data of the respective partici-

pant. This process enabled us to capture the unique contributions of each individual while

assessing the lower boundary of the noise ceiling.

Using the RSA approach enables us to compare the similarities between di↵erent trial

types, allowing us to identify the specific type of information being decoded. This provides

valuable insights into the underlying mechanisms of neural processing related to predictive

learning and our research questions.
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2.4 Results

2.4.1 Behavioral results in experiment 1

To analyze our behavioral data, we first labeled the trials based on the target’s locations:

“left” (location 1), “top” (location 2), “right” (location 3), and “bottom” (location 4).

Subsequently, we segmented blocks 3 to 7 and 11 to 16 into two separate groups and computed

the mean reaction times for each (Figure 2.5) to increase the statistical power. However,

we treated the block immediately preceding and following the transition blocks individually,

enabling us to analyze the changes in reaction times as the more frequent sequence (i.e.,

primary sequence) shifted to the less frequent sequence (i.e., alternative sequence) in these

blocks.
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Figure 2.5: Overall performance in terms of speed across blocks in the first experiment.

Reaction times are calculated separately for each target’s location (left, top, right, and

bottom). Reaction times of the training blocks are excluded, so the x-axis starts from the

test blocks. Blocks were grouped to enhance the statistical power by increasing the number

of trials used for calculating the average reaction times (RTs) within each group. However,

blocks before and after the transition blocks, as well as the transition blocks themselves,

are considered separately (blocks 8, 9, and 10; and blocks 17, 18, and 19). This approach

allows for capturing the change in RTs after transitioning from the consistently repeated

primary pattern to the alternative pattern used only in the transition blocks. Stars indicate

a significant sequence learning e↵ect, and error bars represent the standard error (SE) of the

RTs.

In this experiment, we incorporated two transition blocks with two primary objectives:

1) to compare whether perceptual sequence-based learning occurred early or later in the

learning process, and 2) to determine the optimal location for the transition block in the

subsequent experiment. Our statistical analyses revealed a consistent decrease in reaction

times throughout the learning process for all target locations (p < 0.05; refer to Figure 2.5).

Interestingly, during the first transition block (i.e., block 9), a continuous decrease in reac-

tion time was observed, despite the shift in the underlying sequence to the alternative one.
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Notably, participants responded faster to the trials in comparison to block 8. While a gen-

eral learning trend was evident from blocks 8 to 10 (characterized by quicker responses over

time), this learning might not have solely arisen from sequence-based learning, suggesting

that participants might not have fully acquired the underlying sequence at this point.

In contrast, in the second transition block (i.e., block 18), participants’ reaction times

were influenced by the violation of the underlying statistical pattern, leading to slower re-

action times compared to blocks 17 and 19. This observed pattern – an increase in reaction

times during the transition from block 17 to 18, followed by a subsequent decrease as the

pattern reverted to the primary sequence from block 18 to 19 – provides compelling evi-

dence for sequential learning that occurred in the later blocks. Also, the fact that significant

sequence-specific learning was only evident in the left and right locations motivated the

use of a square-shaped display in experiment 2 instead of the diamond-shaped one in this

experiment.
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Figure 2.6: Box plot illustrating participants’ scores in the implicit learning task of the first

experiment. This includes the inclusion and exclusion tasks in the generation phase, along

with recognition tasks for the primary, alternative, and random sequences. The outcomes

suggest that participants were unable to regenerate the primary sequence in the genera-

tion task, yet they exhibited recognition of these sequences, as evidenced by their scores in

generation inclusion and recognition of the primary sequence. Additionally, although the

recognition of random patterns outperforms the alternative pattern, the di↵erence between

these two is not statistically significant.

2.4.1.1 Implicit learning results

Initially, we analyzed the written responses obtained from participants filling out the ques-

tionnaires. The results revealed that none of the participants reported being aware of the

presence of any underlying sequence within the task.

We then conducted a further analysis of the results from our additional post-experimental

tasks. Figure 2.6 displays the outcomes of the two generation tasks: inclusion and exclusion,

alongside the recognition tasks: recognizing the primary, alternative, and random sequences.

The rationale behind this analysis was based on the idea that if sequential knowledge had

been implicitly absorbed during the task, it should naturally impact recognition performance.

In other words, The brain’s ability to recognize a familiar pattern even without consciously
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being able to regenerate it suggests the presence of implicit learning. As shown in Figure

2.6, participants exhibited notably higher accuracy in recognizing the primary sequences in

comparison to the alternative and random sequences. Moreover, the recognition performance

surpassed the generation performance significantly.

This finding served as an additional confirmation, further reinforcing the notion that

participants had indeed acquired the underlying statistical structure of the sequence through

implicit learning.

2.4.2 Behavioral results in experiment 2

Our behavioral analysis included a total of 39 participants, of whom 25 participants demon-

strated proficient learning in the task (Figure 2.7a). Specifically, these participants achieved

an average performance of 70% or higher during the test session. Consequently, the analysis

of reaction times (Figure 2.7b) focused exclusively on these 25 subjects.
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(a) (b)

Figure 2.7: (a) Scatter plot showing the performance of each subject in both the train and

test sessions. The x-axis represents the subjects, while the y-axis represents the performance.

The red horizontal dashed line indicates the performance threshold (70%) used to select

participants for further analysis. Only 25 subjects who achieved a test performance above

this threshold were included. (b) Line plot depicting the reaction times (RTs) of the selected

subjects across blocks. Participants showed improvement in responding to the target over

time, as evidenced by faster RTs and a decrease in overall reaction time across blocks.

Notably, during blocks 20 and 21, when the underlying primary sequence transitioned to

the alternative sequence, there was a significant increase in RTs. This finding suggests that

participants were engaging in sequential learning of the primary sequence. The asterisks

indicate the statistical significance of the quadratic pattern from blocks 18 to 23.

In our behavioral analysis, we focused on response trials. Subsequently, we employed

mixed linear regression to explore the connection between the reaction times of these trials

and the progression of blocks. We incorporated subject variability in all our models. For

this analysis, we used “mixedlm” class from the “statsmodels.formula.api” module in the

Statsmodels library (Seabold & Perktold, 2010). The outcome of our analysis revealed

a significant and negative relationship between RTs and blocks 5-19 (� = �20.351, p <

0.001), signifying a substantial reduction in RTs as participants advanced through the blocks

(depicted in Figure 2.7b). We termed this observed trend as general learning, as it seemed

to be linked with generalized enhanced task performance rather than explicit acquisition of

the underlying sequential pattern.
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Furthermore, when encompassing all test blocks (blocks 5 to 23) in our consideration,

our analysis yielded results consistent with those observed when including test blocks 5-19.

A significant negative correlation between RTs and blocks (� = �9.863, p < 0.001) emerged,

emphasizing a consistent tendency for RTs to decrease as the experiment unfolded. This

consistent pattern further supports the idea of progressive performance improvement and

learning across the entire experiment.

Next, we quantify the degree to which this learning is attributable to acquiring knowl-

edge of the underlying sequence by comparing the RTs for trials presented according to the

primary sequence, which predominated during the majority of the blocks, with those orga-

nized according to the alternative sequence introduced in blocks 20 and 21. If the learning

trend were solely due to task improvement, we would expect RTs to continue decreasing even

when the sequence changed in blocks 20 and 21. However, the results demonstrated that

participants exhibited an increase in RTs during these transition blocks, indicating a dis-

ruption in performance (Figure 2.7b). Interestingly, when the sequence reverted back to the

primary sequence in blocks 22 and 23, RTs decreased again. This fluctuation of increasing

and decreasing RTs in blocks 18 to 23 provided compelling evidence for sequential learning

(Deroost & Soetens, 2006).

To conduct a statistical analysis on this observation, we focused our analysis on blocks

18 to 23. Within this subset of blocks, we discovered a more intricate relationship between

blocks and RTs. In addition to the linear e↵ect of blocks (� = 97.044, p = 0.044), we

incorporated a quadratic term (time squared) into the model. The quadratic term exhibited a

significant negative coe�cient (� = �10.312, p = 0.032), indicating a curvilinear relationship.

This suggests a significant pattern characterized by an initial increase in RTs followed by a

subsequent decrease as the blocks progress.
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2.4.2.1 Implicit learning results

As described in the section 2.3.0.4, participants engaged in additional tasks at the end of the

experiment to assess the degree to which they acquired the underlying sequences implicitly.

First, we analyzed the written form of the implicit learning test. Our analysis revealed

that none of the participants reported the presence of any underlying sequence in the task.

This finding confirms that the subjects acquired the statistical structure of the sequence

without conscious awareness.

Figure 2.8: Box plots illustrating the implicit learning scores for the two generation tasks

conducted in the second experiment—exclusion and inclusion—as well as the recognition

of various sequences: primary, alternative, and random sequences. The findings indicate a

higher level of proficiency in recognizing the primary sequence compared to the alternative

and random sequences. Furthermore, participants displayed a lack of control over their

knowledge to regenerate the underlying pattern, as evidenced by their generation inclusion

performance. Although the recognition of random patterns outperforms the alternative

pattern, the di↵erence between the two is not statistically significant.

Furthermore, we examined the results of the generation and recognition tasks to further

explore the participants’ implicit learning of the sequential pattern. Figure 2.8 presents the

outcomes of the two generation tasks: inclusion (Gen. Inc.) and exclusion (Gen. Exc.),

as well as the recognition task for our sequences: primary (Rec. Prim.), alternative (Rec.
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Alt.), and random sequence (Rec. Rnd.). The analysis revealed that participants performed

significantly better than chance in the exclusion task (p < 0.001) and there was a significant

decrease in the number of correctly generated chunks from the exclusion to the inclusion in-

structions (p < 0.001). These findings suggest a lack of conscious control over the knowledge

of the sequence necessary to regenerate the underlying pattern, which provides support for

the presence of implicit learning.

Additionally, we explored whether participants would exhibit recognition of the sequence

even if they were unable to explicitly generate it. The aim of this analysis was to determine

if the acquired sequential knowledge would automatically influence performance during the

recognition task. To investigate recognition performance, we quantified the number of cor-

rectly recognized chunks in the primary, alternative, and random sequences. The results,

shown in Figure 2.8, indicate that participants significantly recognized the primary sequences

above 50% (p < 0.05). Furthermore, performance in recognizing the primary sequence was

significantly better than recognizing the alternative sequence (p < 0.05) and the random

sequence (p < 0.05). These findings provide additional support for the participants’ implicit

acquisition of the underlying sequential knowledge. It is also important to note that even

though the performance in recognizing the random sequences appears to be greater than

that of recognizing the alternative sequences, the di↵erence is not statistically significant

(p > 0.1).

In conclusion, the participants’ lack of awareness regarding the underlying sequence, as

evident from their responses to the questionnaire, coupled with their inability to consciously

control the sequence knowledge required for regenerating the pattern, and their proficiency

in recognizing the familiar sequence pattern, strongly indicates the prevalence of implicit

learning among the participants.

In summary, our findings indicate that participants e↵ectively learned the task, and

this learning can be attributed to acquiring knowledge of the underlying sequence through

perceptual observation. Notably, this learning occurred implicitly, without participants being
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consciously aware of the underlying pattern while learning the sequence. Building upon these

promising results, our next step is to delve deeper into the implications of these findings by

focusing primarily on analyzing the neural EEG signals.

2.4.3 EEG results in experiment 2

2.4.3.1 Decoding results

To investigate the presence of predictive learning used for predicting upcoming locations,

we tested whether a decoder trained on ERP signals across a time window centered on

the current trial could accurately predict the identity of the next upcoming location. As

detailed in the methods, this was done using a cross-validation method with 3 random train

/ test folds across trials within each subject over 10 iterations, with the False Discovery Rate

(FDR) correction method applied to all p values to account for multiple comparisons.
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Figure 2.9: The ERP decoding accuracies, with a baseline period of [0:100] ms, consistently

remained above chance levels throughout the entire 1400 ms epoch. The shaded region

indicates time points that are statistically significant, determined using FDR correction.

The vertical dashed lines correspond to key temporal events: the onset time (time = 0 ms),

the time interval 50:150 ms during the processing of the current trial, considering a potential

50 ms delay for information propagation to reach the cortex, and the time intervals between

550 ms and 650 ms correspond to the processing of the next locations, accounting for the 50

ms shift.

The results, as illustrated in Figure 2.9, displayed a notable increase starting from the

beginning of the epoch (time = -400 ms), surpassing the chance level with a highly significant

p-value of p < 10�4. Furthermore, these accuracies consistently remained above chance (Fig-

ure 2.9, shaded region), as confirmed by the mean of significant t-values and adjusted p-values

for our subjects across four groups (t(95) = 8.9532, p = 0.00001; one� sample, t� test).

Considering the systematic grouping of trials during data preparation for the decoder,

it’s important to note that there exist two potential previous locations (e.g., loc 2 and 3 in

group 1) and two potential next locations (e.g., loc 3 and 4 in group 1) presented within

the time intervals of [-500:-400] ms and [500:600] ms across the two bins, alongside the same

location being shared across both bins (e.g., loc 1 for group 1). In our analysis, as previously

mentioned, we consistently account for a 50 ms time delay to accommodate the propagation
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of information.

Our analysis revealed significantly high decoding accuracies during the time intervals of

[-400:50] ms and [650:1000] ms, along with two prominent accuracy peaks. One possible

explanation for the heightened decoding accuracy observed during the [-400:50] ms interval

is that the brain retained information from the previous trials prior to processing the current

trial. Essentially, the decoding algorithm e↵ectively captured the distinct neural patterns

associated with the two potential previous locations, leading to decoding accuracy signifi-

cantly surpassing chance levels. Notably, a peak accuracy was observed at time = -220 ms,

demonstrating an accuracy of 69.04% and a highly significant p-value of p < 10�4.

It is important to mention that even though our decoder showed high decoding accuracy

in predicting the next locations in our sequences, it is impossible to di↵erentiate this ability

from decoding (remembering) the previous locations. The presence of the second-order

characteristic in our sequences means that predicting the next location cannot be successfully

achieved using solely information from the previous locations; instead, it requires information

from two prior locations (second-order information) to successfully predict the next location.

This also implies that distinguishing the representation of the previous trial from that of the

next trial is impossible, as they are always connected despite being di↵erent locations.

As a kind of sanity check on our decoding method, we consistently observed significant

decoding accuracy above chance within the [650:1000] ms interval, with a specific peak at

time = 820 ms, exhibiting an accuracy of 69.79% and a highly significant p-value of p < 10�4.

This time window corresponds to when the actual next location is presented on the screen,

and thus one would expect to be able to decode these locations with high accuracy. During

both of these time intervals, the high decoding accuracy highlights the brain’s capacity to

distinguish and capture the unique neural patterns linked to the preceding or subsequent

locations.

Critically, we observed significant decoding accuracy during the time interval [50:150] ms,

when the same current location was present (Figure 2.9). This suggests that the brain has
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implicitly learned the underlying sequence and is carrying this predictive knowledge across

the ambiguous current stimulus, to be able to e↵ectively predict the next location.
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Figure 2.10: Decoding accuracies of ERP signals using di↵erent baseline correction ap-

proaches. Subfigure (a) illustrates the decoding accuracies without any baseline correction,

while subfigure (b) displays the results after applying baseline correction with the [-700:-500]

ms interval as our chosen baseline. Both plots demonstrate the robustness of our findings.

They clearly depict the presence of decodable information throughout our epoch, suggesting

that the choice of baseline correction method does not significantly impact the reliability of

our results.

To ensure the reliability of our findings, we did some extra analyses to account for con-

founding factors that could influence our findings. Specifically, we performed the same

decoding analysis using di↵erent baseline correction approaches: one without any baseline

and another with a baseline set for the time interval [-700:-500] ms. It is important to clarify

that the goal of these supplementary analyses was solely to confirm the presence of decod-

able information and to verify that our choice of baseline was not the primary factor driving

the observed results. However, due to the potential for increased noise in the signals, we

refrained from conducting an in-depth analysis of these supplementary results.

In the first analysis, we performed the decoding analysis without applying any baseline

correction. Surprisingly, even without baseline correction, the decoding accuracy remained

significantly above the chance level (refer to Figure 2.10a). When we calculated the mean
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of significant t-values and adjusted p-values (after FDR correction) for our subjects across

the four groups, the decoding accuracy continued to be statistically significant (t(95) =

7.5571, p = 0.00132; one� sample, t� test). And, it reached its peak at 67.19% with an

adjusted p-value of p < 10�4. This outcome supports the robustness of our findings and

suggests that the presence of decodable information is not solely attributed to our choice of

baseline correction.

Additionally, we introduced an alternative baseline timeframe [-700:-500] ms, which cor-

responds to the blank period before the presentation of the preceding trial. This interval

was selected because the locations of the trials presented immediately before the preceding

trials (at times -1000 ms to -900 ms) were consistent across the two bins in each group. This

provided us with an alternative baseline option during which the trial’s location remained

the same across the two bins.

For instance, consider S1 group 1, where at time = 0ms, the trial on the screen was

presented at location 1. In this case, the two bins for this group are as follows: bin 1: ‘2 -> 1

-> 3’ and bin 2: ‘3 -> 1 -> 4’. Now, if we include one more location, corresponding to the

trials immediately before the preceding trials (2 and 3), the sequences for each bin transform

as follows: bin 1: ‘4 -> 2 -> 1 -> 3’ and bin 2: ‘4 -> 3 -> 1 -> 4’. Notably, location

4 is identical in both bins.

The outcome of adopting this baseline is shown in Figure 2.10b. The results demonstrate

that even when selecting a baseline considerably distant from our onset, which introduces

more noise compared to our original [0:100] ms baseline, we achieved a notably significant

decoding accuracy (t(95) = 8.4058, p = 0.00234; one� sample, t� test). And, it reached its

peak at 70.28% with an adjusted p-value of p < 10�4.

Both of these outcomes provide strong confirmation of the reliability of our findings, and

they collectively emphasize that the choice of baseline did not exert a significant impact on

the final results. As a result, we proceeded to perform additional analyses with signals after

baseline correction, utilizing the [0:100] ms as the time interval for our baseline.
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In summary, our decoding analysis revealed a significant presence of decodable infor-

mation related to both previous and next locations. Notably, the consistent above-chance

decoding accuracy even during the processing of the current trial with the same location

across the two bins suggests that the brain has learned the second-order pattern within the

sequence to accurately predict subsequent locations, consistent with the behavioral results

showing sensitivity to the learned sequences. This demonstrates the brain’s capability to

capture the predictive relationships embedded within the sequence.

In our subsequent analysis, we delved deeper into the connections between pre- and post-

stimulus information, exploring whether past information holds meaningful insights about

the information of future time points.
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(a) (b)

Figure 2.11: Cross temporal results across the entire epoch time. (a) The cross-temporal

matrix, sized 70⇥70, presents the decoding accuracy for various combinations of training

and testing time points. Each cell displays the accuracy attained on the held-out test data

for the corresponding training and testing time points. Dashed horizontal and vertical lines

show event transitions in our epoch. The onset (at time = 0 ms) is when the current location

was on the screen. Additionally, we considered a 50 ms time span to account for potential

delays in information reaching the cortex. The highlighted red dashed square includes the

time window of interest. Within this window, the machine learning model was trained on

the pre-stimulus time frame and tested on the post-stimulus time frame. As indicated by the

results, many cells showed high decoding accuracy. To establish the statistical significance

of these outcomes, a t-test was subsequently conducted, followed by FDR correction for

multiple comparisons. (b) Illustrates the outcome of the statistical analysis. Time points

other than those included in the selected time frame are shaded in gray, as they were excluded

from the statistical analysis. The red data points indicate time points where the decoding

accuracy was significantly above the chance level after FDR correction.

2.4.3.2 Cross temporal analysis results

To provide further tests for the existence of predictive learning, an additional analysis was

conducted utilizing decoding techniques, where training and testing were performed at dif-

ferent time points. The outcome is a cross-temporal matrix of dimensions 70⇥70, with each

cell representing the resulting decoding accuracy for a given training and test time pairing.

The findings for the baseline [0:100] ms are depicted in Figure 2.11a. The x-axis indicates

the training time, while the y-axis illustrates the test time points.
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Within this matrix, a specific time window of interest, associated with predictive learning,

is identified by a red dashed rectangle. In this case, the model was trained on the pre-stimulus

time window [-400:0] ms and subsequently tested on the post-stimulus [150:550] ms. The

reason for choosing this time window is based on the idea that predictive learning might

show up when a model uses information from before the current trial to make predictions

about the future, particularly the prediction of the subsequent trial, consistent with the

second-order structure.

From Figure 2.11a, it is evident that within this chosen time window, there is consider-

able decoding accuracy. After performing statistical analysis with adjustments for the false

discovery rate (FDR), as shown in Figure 2.11b, we found that the high decoding accuracy

during this time window is mostly significant (p < 10�4). This finding provides additional

support for the presence of a predictive learning pattern.

In summary, the results obtained from our cross-temporal matrix analysis further sup-

port the hypothesis that the brain has learned the predictive information present in our

sequences, even when not explicitly required for task performance. This suggests that the

brain has automatic predictive learning mechanisms in the perceptual system, consistent

with the predictive learning theories reviewed earlier. In the subsequent analysis, we focused

on the representations underlying the significant decoding found here, to achieve a clearer

understanding of the overall mechanisms associated with predictive learning.
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Figure 2.12: Results of the RSA analysis. (a) The comparison between the RSA of each

subject and two hypothetical RSAs. Shaded gray areas represent noise ceiling bounds, and

horizontal lines on the top indicate significant time points after FDR correction. Subfig-

ures (b) and (d) show comparisons during the pre-stimulus time window [-200:0] ms with

previous/next and current hypothetical RSAs, respectively. These zoomed-in versions of

the results illustrate an enhancement in similarity to the current trial as we approach the

presentation of the current trial. Conversely, there is a decrease in similarity with the rep-

resentations of the previous/next trials. Subfigures (c) and (e) display comparisons before

the presentation of the next trial during the time interval [300:500] ms, with previous/next

and current hypothetical RSAs, respectively. This observation shows that as we approach

the presentation of the upcoming locations, there is a recovery in the information related

to previous/next trials, while the similarity to the current trial decreases. The dashed line

indicates the fitted line. Notably, all decreases and increases shown in subfigures (b) to (e)

are statistically significant. 56



2.4.3.3 Representational similarity analysis results

Our decoding results have unveiled a significant amount of decodable information associated

with predictive learning of the second-order sequences. To gain a deeper understanding of

the nature of this information, we conducted further analyses using the representational

similarity analysis (RSA) approach. We constructed representational similarity matrices for

each individual subject to compare them against our hypothetical RSAs for current-trial

representations (Figure 2.4b) versus previous and next trial representations (Figure 2.4c),

2.4d). This comparative analysis was conducted at each time point and was performed

separately for each subject. The aggregated results across all subjects are presented in

Figure 2.12a.

Within this plot, each line corresponds to the values of Kendall’s ⌧A rank correlation

coe�cient, which indicates the degree of similarity between the subjects’ RSA and each of

the hypothetical RSAs. More specifically, the blue line shows the comparison with the pre-

vious/next RSAs, while the red line represents the comparison with the current hypothetical

RSAs. The shaded gray areas highlight the range of the noise ceiling, and statistically signif-

icant time points are denoted by horizontal lines positioned above the plot. These significant

time points have been identified using FDR correction to account for multiple comparisons.

Furthermore, for a closer examination, we have extracted and presented specific segments

within Figure 2.12a. These segments are represented in subfigures 2.12b to 2.12e, and they

have been highlighted with bold markings in the Figure 2.12a.

The findings indicate an interesting pattern: initially, before presenting the current trial

at time=0ms, we observed a significant similarity with the previous/next RSA. This simi-

larity persisted throughout the blank period until after the current trial’s presentation. As

we approached the presentation of the current trial, the similarity with the previous/next

RSA gradually decreased, while the similarity with the current RSA increased. This trend is

particularly evident in the zoomed-in view of the [-200:0] ms time window shown in Figure

2.12b and 2.12d, respectively, where the fitted line demonstrates a significant slope decrease
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(p� value < 10�4).

Subsequent to the time it takes for the information of the current trial to potentially

reach the cortex (typically around 50 ms), we observed a noticeable rise in similarity with

the current RSA. As we approached the presentation of the subsequent stimulus at time=500

ms, we noted a decline in similarity with the current RSA, as displayed in Figure 2.12e.

Simultaneously, there was a significant increase in similarity with the previous/next RSA,

as evidenced in Figure 2.12c, with the fitted line showing a substantial slope increase (p �

value < 10�4). These changes in representational similarity anticipated the onset of the

next stimuli in the sequence, consistent with the hypothesis that the brain has learned the

sequences.

As the information from the next trial potentially reached higher-level brain areas, we

observed an increase in the similarity with the previous/next RSA. However, it is important

to highlight that a high similarity with the current RSA persisted for an extended period of

time. This finding aligns with our behavioral results (Figure 2.7), which showed the presence

of sequential learning in our data. It is noteworthy that e↵ective utilization of predictive

relationships embedded within the sequence to predict the location of the upcoming trial

requires the knowledge of the two preceding locations. This observation aligns with the pat-

tern we observe in this result, potentially explaining the prolonged retention of information

from the current trial.

Another notable finding is the substantial negative correlation evident between the two

types of comparison, depicted by the blue and red lines (pearson correlation coe�cient

R = �0.85, p < 10�4). This interesting result may be relevant to an earlier study that

emphasized the retention of orthogonal information within distinct subspaces, specific to

various cognitive processes like working memory and attention (Panichello & Buschman,

2021). In our context, the brain requires both previous and current location information

to successfully predict the subsequent location, but presumably, this information must also

be kept distinct. Furthermore, the current stimulus naturally will tend to dominate the
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representational similarity structure. Thus, the negative correlation likely arises due to the

orthogonal representation of current vs. previous / next locations within di↵erent subspaces.

While this notion might require further research and experimentation for confirmation, it

o↵ers a novel perspective for interpreting these results.

2.5 Discussion

The ability to generalize to novel situations is considered a hallmark of human intelligence.

This capacity relies on the emergence of high-level abstract knowledge from lower-level repre-

sentations, serving as a strong foundation for e↵ectively tackling previously unseen challenges

(Behrens et al., 2018; Vikbladh et al., 2019).

In our study, we employed perceptual and statistical learning paradigms across a series of

experiments and recorded EEG neural signals to explore the underlying learning mechanisms

leading to the formation of such abstract representations, known as predictive learning.

To analyze the EEG data, we employed a variety of analytical tools, including advanced

machine learning techniques. Our initial analysis focused on decoding the EEG signals (Bae

& Luck, 2018; Luck, 2022) to identify any decodable information relevant to our sequences.

Subsequently, we expanded this decoding approach to create a cross-temporal matrix (King

& Dehaene, 2014; King et al., 2014). Furthermore, we delved into the representations formed

using the representational similarity analysis (RSA) technique (Nili et al., 2014).

In summary, our comprehensive analysis of behavioral data and neural EEG signals re-

vealed multiple significant signatures of successful predictive learning, based on the second-

order structure of the sequences used. Our behavioral findings demonstrated that partic-

ipants exhibited both a general speed-up in learning the task and a specific speed-up for

the particular sequence they learned. Importantly, this learning occurred implicitly in both

of our experiments. The initial decoding findings showed there was significant decodable

information about the next, upcoming stimulus location in the sequence. To establish a
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stronger connection between past and future information, we then employed a generalized

form of the decoding analysis to construct a cross-temporal matrix containing decoding ac-

curacy information for all pairs of training and test time points. The results showed that

when we tested a decoder during the post-stimulus time window, which was initially trained

on pre-stimulus data, we observed a notably high decoding accuracy. Both decoding-based

findings demonstrated that the brain e↵ectively learned to predict the reliable sequences

of locations, even though participants were not explicitly instructed to do so. The RSA

results further validated that the representational similarity of previous, current, and next

information evolved over time with an indication of predictive transitions of representational

similarity in anticipation of the upcoming stimulus.

In our decoding analysis, we employed a separate decoder at each time point, consistent

with previous research (Bae & Luck, 2018). It focused solely on whether there was decod-

able information related to upcoming locations, without considering potential connections

between past and future information. This analysis primarily served as an exploratory tool

rather than a method to precisely determine timing and also the interaction between the

previous and future time points. Thus, we used the additional cross-temporal matrix to ex-

amine the temporal connection information between the past and future (King & Dehaene,

2014). Interestingly, the cross-temporal results highlighted that within our selected time

frame, higher decoding accuracy emerged around 200 ms (i.e., two alpha cycles) before the

onset presentation.

In predictive learning, two distinct states are involved: predictions followed by outcomes.

It has been suggested that these two states unfold across approximately 100 ms—a timespan

often associated with the alpha frequency of 10 Hz (O’Reilly et al., 2021b, 2014). This

alpha cycle comprises a 75 ms prediction phase and a subsequent 25 ms for processing real-

world input and reducing prediction errors. While previous research has explored di↵erent

frequency bands, including alpha and theta, in tasks related to attention and predictive

processing (VanRullen & Koch, 2003; Mathewson et al., 2009; Min & Park, 2010; Samaha
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et al., 2015; Toosi et al., 2017; Fiebelkorn & Kastner, 2019). However, many of these studies

include both attention and prediction factors, posing a challenge in isolating the precise

contribution of the alpha frequency to predictive processing. Additionally, investigating

whether predictions are generated within the initial 75 ms following the 25 ms period in the

predictive learning cycle is a complex task. This short and precise temporal window poses a

challenge for precise determination that remains unanswered in these studies, as well as in

our own, leaving it as an interesting question for future research.

An additional limitation when employing time-frequency analysis and applying filters

to extract frequency bands pertains to the potential risk of information leakage over time

(de Cheveigné & Nelken, 2019). Such leakage could result in the presence of information

from the future in the past time frame that could erroneously be associated with predictive

learning. To reduce potential risks involved in EEG processing, having long time windows is

recommended, as seen in tasks involving working memory and decoding (Bae & Luck, 2018;

Luck, 2022). However, our experimental design presented challenges in this regard. Our

hypothetical assumption that learning occurs rapidly through a chain of predictions followed

by outcomes every 100 ms influenced our choice of a 100 ms interstimulus interval (ISI)

in our initial experiments. This interval aimed to align with the internal alpha frequency,

yet proved too short for reliable EEG analysis. Consequently, in our second experiment,

we extended the ISI to 400 ms. However, this adjustment introduced potential trade-o↵s

(Frensch et al., 1998; Frensch & Miner, 1994; Willingham et al., 1997), as a longer timeframe

might impact participants’ performance in our challenging task with rapid event occurrences

that required the learning to be pure perceptual and implicit.

In our paradigm along with all the analysis, we took into account the potential time

frame suggested for predictive learning. Stimuli in the sequence presented synchronized with

alpha frequency (100 ms), which has been suggested that this may entrain the internal alpha

rhythm with the stimuli (Calderone et al., 2014; Mathewson et al., 2009; Nobre et al., 2007).

In addition to maintaining consistent timing in our experimental design, we aligned our
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analysis with the hypothetical timeline associated with predictive learning. More specifically,

our cross-temporal results showed higher decoding accuracy starting 200 ms (equivalent to

two alpha cycles) before the onset in the selected time window. Consistently, in RSA, we

observed changes within a 200 ms time window that revealed an enhancement of relevant

information for the upcoming interval and a decrease in similarity with the other less relevant

source of information, but still with a negative correlation suggesting a potential interplay

between the two. Future research can take a look into this interplay by utilizing methods with

more spatial resolution to explore how such information is stored and interacts maybe even in

orthogonal subspaces (Panichello & Buschman, 2021). Overall, even with this consideration

about the timing in our paradigm, precisely assessing the timing of this 100 ms cycle requires

further investigation, making it an interesting question for future research.

An additional challenge in EEG processing pertains to the selection of a baseline, which

can impact the final results (Alday, 2019; Widmann et al., 2015; Tanner et al., 2015, 2016;

Zhang et al., 2021). Conventionally, researchers often prefer to use the time period preceding

stimulus presentation as the baseline (Luck, 2022; Zhang et al., 2021). In our specific case,

the logical choice would have been the 400 ms blank pre-stimulus time window [-400:0] ms.

However, this time window coincides with the period of our interest. Consequently, we chose

not to use this time window as our baseline, allowing us to capture the information processing

dynamics during this period, rather than treating it as a reference point for comparison.

Even though we finally used the time frame during which the sensory information was on

the screen, it is consistent with the baseline-selection assumption that there are no systematic

di↵erences between conditions in the baseline interval (Widmann et al., 2015; Tanner et al.,

2015, 2016; Luck, 2022; Zhang et al., 2021). Additionally, we performed additional analysis

(no-baseline and baseline [-700:-500] ms) to ensure the reliability of our results with [0:100]

ms baseline correction. The results from both options showed consistently high decoding

accuracy, confirming that the selection of our baseline was not the primary factor influencing

our decoding results.
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In the RSA analysis, it is worth noting that the hypothetical RSA for previous locations

was identical to the next hypothetical RSA. This could potentially create a challenge in

determining whether the information similarity pertains to the past or the future. However,

this challenge is mitigated when employing the cross-temporal analysis. In this approach, the

model is trained on the pre-stimulus time window and then tested on the post-stimulus time

window, which establishes a more cohesive link between the representation and information

of the previous and next trials.

Furthermore, it is important to clarify that the ability to distinctly separate information

related to the previous and next location is not an essential prerequisite to linking these

findings to predictive learning. However, designing analyses to more thoroughly distinguish

these two sources of information could be an interesting avenue for future research. Therefore,

while each of these analyses in isolation may not be su�cient, collectively, they o↵er evidence

supporting the involvement of predictive learning.

Taken together, our study employs a comprehensive combination of experimental and

computational approaches to explore mechanisms associated with predictive learning in the

brain. This research contributes to expanding our understanding of this crucial learning pro-

cess, which has been suggested to be instrumental in the development of high-level abstract

representations, which in turn enable the process of generalization to novel tasks.
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2.7 Supplementary materials

ERP results The following section presents the results of our event-related potential (ERP)

analysis. Our study focused on two conditions: one with a baseline correction applied, where

the baseline period was set from 0 to 100 ms (Figure 2.13a), and another condition without

baseline correction (Figure 2.13b). Furthermore, we provide results for each group separately,

comparing the e↵ects of baseline correction on the recorded data in Figure 2.13.

In general, applying baseline correction from 0 to 100 ms led to more reliable and inter-

pretable ERP results. This correction procedure e↵ectively reduced unwanted fluctuations,

allowing for a focused analysis of the neural activity specifically related to our study.

To select the most suitable baseline option, we considered factors such as proximity to

the stimulus onset and the avoidance of confounding information. We evaluated alternative

baseline periods of [-400:0] and [100:500] ms. However, the [-400:0] ms option included con-

founding information from the previous locations, which was not desirable. Additionally,

the [100:500] ms period occurred before the next locations were presented and potentially

contained information related to predictive learning, which was the focus of our study. As a

result, we opted for the [0:100] ms baseline period based on these considerations. Although

the [0:100] ms baseline period included the current stimulus on the screen, it provided the

most appropriate baseline given that both bin1 and bin2 shared the same source of informa-

tion for each location (e.g., loc 1 in group 1 for both bin 1 and bin 2). Therefore, considering

the aforementioned reasoning, the [0:100] ms baseline period was the best option.

The inclusion of baseline correction significantly improved the quality of our ERP analy-

sis. By minimizing confounding factors, this procedure enhanced the validity of our findings.

Therefore, our analysis is based on the results obtained with the baseline correction applied.
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Figure 2.13: Comparison of ERP signals with and without baseline correction. (a)

Presents the ERP signals with baseline correction [0:100] ms, and (b) Illustrates the ERP

signals without any baseline correction.
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Figure 2.14: Comparison of ERP signals with and without baseline correction across each

group. (a) Shows the ERP signals with baseline correction [0:100] ms. (b) Includes the ERP

signals without any baseline correction.

ERP-based decoding results In addition to the analysis for all the groups with baseline

0:100ms, separate analyses were conducted for each group which further strengthened our

observations (Figure 2.15a). This result provided compelling evidence of above-chance loca-

tion decoding across most of the epoch period for ERP-based decoding across four groups
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for 24 subjects and all used one-sample t-tests (group 1 : t(23) = 6.0021, p = 0.00368;

group 2 : t(23) = 5.2500, p = 0.00604; group 3 : t(23) = 4.9151, p = 0.00984; group 4 :

t(23) = 4.0777, p = 0.01174). Therefore, consistent with our previous analyses, the location

of the target could be decoded across all four groups, as indicated by sustained ERP-based

decoding accuracy. Similarly, when we did not have any baseline correction, the result

for each group reached a significant above-chance decoding accuracy as illustrated in Fig-

ure 2.15b (group 1 : t(23) = 5.0275, p = 0.00756; group 2 : t(23) = 5.4937, p = 0.00475;

group 3 : t(23) = 4.3036, p = 0.00787; group 4 : t(23) = 4.3087, p = 0.00937). It is im-

portant to note that the decoding accuracies across di↵erent groups exhibited slightly lower

accuracy compared to the aggregated decoding accuracies over all groups, which is due to

losing some power.

Further investigations into separated locations (Figure 2.15a) provided compelling ev-

idence of above-chance location decoding across most of the epoch period for ERP-based

decoding across all four groups for 24 subjects (group 1 : t(23) = 6.0021, p = 0.00368;

group 2 : t(23) = 5.2500, p = 0.00604; group 3 : t(23) = 4.9151, p = 0.00984; group 4 :

t(23) = 4.0777, p = 0.01174). Therefore, consistent with our previous analyses, the lo-

cation of the target could be decoded across all four groups, as indicated by sustained

ERP-based decoding accuracy. Similarly, when we did not have any baseline correction the

result for each group reached significant above-chance decoding accuracy as illustrated in

Figure 2.15b (group 1 : t(23) = 5.0275, p = 0.00756; group 2 : t(23) = 5.4937, p = 0.00475;

group 3 : t(23) = 4.3036, p = 0.00787; group 4 : t(23) = 4.3087, p = 0.00937).

It is important to note that the decoding accuracies across di↵erent groups exhibited

slightly lower accuracy compared to the aggregated decoding accuracies over all groups

which is due to losing some power.

Decoding results for di↵erent baseline options across each group The result is presented

in Figure 2.15 to show our findings with and without baseline correction for each of the four
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Figure 2.15: Comparison of ERP decoding accuracies with and without baseline correction

across each group. (a) Shows the ERP decoding accuracies with baseline [0:100] ms. (b)

Presents the ERP decoding accuracies without baseline correction.

Decoding results for di↵erent frequency bands The results are presented in Figure 2.16

and Figure 2.17.
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Figure 2.16: Decoding accuracies for theta and alpha frequencies with baseline correction

[0:100] ms. Panels (a) and (b) show decoding accuracies of theta and alpha frequencies across

four groups, respectively. Panels (c) and (d) present the aggregated decoding accuracies for

theta and alpha frequencies, respectively.
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Figure 2.17: Decoding accuracies for beta and gamma frequencies with baseline correction

[0:100] ms. Panels (a) and (b) display decoding accuracies across four groups for beta and

gamma bands, respectively. Panels (c) and (d) present the aggregated decoding accuracies

over four groups for beta and gamma frequencies, respectively.

Topographic plots Topographic plots for signals with baseline [0:100] ms are presented in

Figure 2.18 and the topographic plots for signals without baseline correction are illustrated

in Figure 2.19.
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Figure 2.18: Topographic plots for signals with baseline correction [0:100] ms (the to-

pographic maps for the time interval [0:100] ms have not been included since the activities

during the baseline are close to zero). The plots display topographic maps for four groups,

each containing two bins. For instance, the two top left topographic maps represent group

1, with location 3 corresponding to bin 1 and location 4 corresponding to bin 2. Subfigure

(a) shows the topographic maps for the time interval [-400:0] ms, subfigure (b) displays the

topographic maps for the time interval [150:550] ms, subfigure (c) exhibits the topographic

maps for the time interval [550:650] ms, and subfigure (d) presents the topographic maps for

the time interval [650:996] ms.
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Figure 2.19: Topographic plots for signals without baseline correction. The plots display

topographic maps for five time intervals, considering the 50 ms shift required for the infor-

mation to reach the cortex: (a) [-400:0] ms, (b) [0:100] ms, (c) [150:550] ms, (d) [550:650] ms,

and (e) [650:996] ms. The two top left topographic maps represent group 1, with location 3

corresponding to bin 1 and location 4 corresponding to bin 2.
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Chapter 3

The Geometry of Map-Like Representations under Dynamic
Cognitive Control1

Maryam Zolfaghar⇤2, Jacob Russin⇤2, Seongmin A. Park⇤3, Erie Boorman3, Randall C.
O’Reilly2 (⇤ denotes equal contribution)

3.1 Abstract

Recent work has shown that the brain organizes abstract, non-spatial relationships between

entities into map-like representations. However, an animal’s objectives often depend on only

a subset of the features of the environment. Under these circumstances, cognitive control –

the capacity to flexibly select the features most relevant in the current context – becomes

paramount. Here, we explore the relationship between cognitive control and the geometry

of map-like representations by combining fMRI with neural network modeling. We find that

brain areas including hippocampus and entorhinal cortex spontaneously organize pairwise

relationships into 2D map-like representations, and that this 2D structure was controlled

by compressing task-irrelevant dimensions in areas of prefrontal and parietal cortex. Our

neural network model reproduced these findings and additionally predicted warping in the

geometry along a context-invariant axis. This prediction was confirmed with fMRI, which

1* This chapter was originally accepted for publication in the Proceedings of the 44th Annual Meeting of
the Cognitive Science Society (CogSci 2022) (Zolfaghar et al., 2022). The opinions expressed here are solely
those of the author and do not necessarily reflect the o�cial views of the conference, workshop, or publisher.
The original version can be accessed online at: https://escholarship.org/uc/item/28j425kf.

2 Center for Neuroscience, University of California, Davis
3 Center for Mind and Brain, University of California, Davis
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showed that the degree of warping was correlated with individual di↵erences in cognitive

control.

3.2 Introduction

Substantial evidence suggests the brain organizes incoming relational information into cog-

nitive maps (O’Keefe & Nadel, 1978; Moser et al., 2008) – even when relations are abstract

or non-spatial (Behrens et al., 2018; Bernardi et al., 2020; Garvert et al., 2017; Knudsen &

Wallis, 2021; Park et al., 2020; Stachenfeld et al., 2017). For example, when humans are

trained on stimulus features that vary systematically (e.g., the lengths of a bird’s neck or

the competence and popularity of people in a social hierarchy), brain areas such as the me-

dial temporal lobe and medial parietal cortex e�ciently encode these features with map-like

representations (Constantinescu et al., 2021; Park et al., 2021, 2020). Just as geographic

maps depict true distances between locations in the world, the geometry of these “map-like”

representations reflects the latent structure of their underlying feature spaces, such that dis-

tances in the representational space are consistent with distances in the feature space. This

map-like quality is thought to facilitate relational reasoning behavior, allowing animals to

generalize to novel or unseen stimuli (Behrens et al., 2018; O’Reilly et al., 2021a; Summerfield

et al., 2020; Whittington et al., 2020).

Most models of cognitive map formation consider cases where animals must navigate

or reason within a single context or goal. However, animals are often faced with scenarios

where multiple possible objectives can determine the subset of stimulus features that are

important at any given time. These scenarios require cognitive control, or the capacity to

flexibly select or attend the features of the environment that are most relevant to the current

context or goal. Classic theories of cognitive control hypothesize that top-down attention

mechanisms in the prefrontal cortex can dynamically modulate the processing in posterior

brain regions in order to meet the demands of a current goal (Miller & Cohen, 2001; Herd
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et al., 2006; Rougier et al., 2005). Computational models of these processes have been used

to successfully explain cognitive and neural phenomena and have emphasized their functional

benefits for managing the interference caused by conflict or incongruence (Miller & Cohen,

2001; Musslick et al., 2017; Shenhav et al., 2013). These studies have focused on classic

cognitive control tasks such as the Stroop task (Stroop, 1935) that use discrete exogenous

stimulus features such as color or orthographic features (Cohen et al., 1990; Herd et al., 2006;

Rougier et al., 2005). However, less is known about how such processes might be used to

control endogenous map-like representations retrieved from memory, such as those observed

in the medial temporal lobe (MTL) or parietal cortex during abstract relational reasoning

tasks.

Here, we combined fMRI with a neural network model to investigate the relationship

between cognitive control and endogenous map-like representations. We tested human par-

ticipants and the neural network on the same task, which was designed to facilitate the

learning of map-like representations while simultaneously requiring the use of cognitive con-

trol as a function of the current task context. Using parallel analyses of the neural network

and human fMRI data, we observed three key phenomena related to cognitive maps, cognitive

control, and their relationship:

1. Learning in both the human brain and neural network models sculpted unitary map-

like representations that integrated information across multiple contexts to capture the

latent relational structure of the task space.

2. To e↵ectively resolve the interference caused by incongruence in the task, these map-

like representations were dynamically modulated by cognitive control processes such

that irrelevant dimensions of the representational space were compressed according to

the current context.

3. This interference, and the resultant demand on cognitive control, was related to con-

gruence e↵ects in the map-like representations learned over the course of the task, as
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measured by the degree of warping in their geometry: pattern dissimilarity between

congruent stimulus pairs was greater than that of incongruent stimulus pairs.

3.3 Methods

3.3.1 Experimental Task

Participants learned about the relative ranks of 16 hypothetical people on two social hierarchy

dimensions: “competence” and “popularity.” Unknown to the participants, these 16 people

were arranged in a 4x4 grid along these two axes (see Figure 3.1). On each trial, a cue

indicating the axis was presented, followed by two images showing the faces of two of the

people in the hierarchy. The stimuli consisted of 16 grayscale photographic images of faces

(Strohminger et al., 2016) and two colored cues (red and blue squares). Participants were

instructed to select which of the two people ranked higher on the indicated axis. During

training, participants only saw pairs of faces that di↵ered by one rank along the appropriate

axis (and were instructed that this was the case). Participants were then tested in the

scanner on pairs with rank di↵erences greater than or equal to one, requiring them to make

novel transitive inferences.
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Figure 3.1: Experimental task design. Participants made decisions about which of two

people ranked higher on one of two social hierarchy dimensions. The dimension (“Axis”)

was cued at the start of each trial. Unknown to the participants, the 16 hypothetical people

in the hierarchy were arranged in a 4x4 grid along these two dimensions. Some pairs were

congruent (example shown with green arrow), in the sense that the correct face ranked higher

on both dimensions, and some pairs were incongruent (example shown with orange arrow),

in the sense that each of the two faces ranked higher on one of the two dimensions, thereby

requiring the “Axis” cue to disambiguate the higher-ranking face.

It was hypothesized that over the course of training, participants would learn the latent

4x4 grid structure of the hierarchy. However, participants could only learn this structure

through pairwise comparisons, allowing us to investigate how the brain learns to encode

stimuli into map-like representations.

In addition to facilitating an examination of cognitive maps, the task probed the inter-

action between these map-like representations and cognitive control processes. Cognitive

control is required to selectively attend to goal-relevant features in the presence of inter-

ference (Miller & Cohen, 2001). In this task, the relevant axis of the social hierarchy is

cued, but the irrelevant axis may cause interference when the pair of faces is incongruent,

i.e., when each of the two faces being compared ranks higher on one of the two axes, such

that the correct answer depends on which axis was cued (see Figure 3.1). This is analogous

to classic cognitive control tasks such as Stroop (Stroop, 1935), where control demands are
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increased when the stimulus features (e.g., ink color and color word) conflict.

3.3.2 Participants

A total of 33 participants (16 female, age range: 19–23, normal or corrected to normal

vision) were recruited for this study via an online recruitment system. Six participants were

excluded due to strong head movements larger than the voxel size of 3mm. In total, 27

participants entered the analysis (mean age: 19.37 ± 0.26, standard error mean (SEM)).

The study was approved by the local ethics committee, all relevant ethical regulations were

followed, and participants gave written consent before the experiment.

3.4 Neural Network Model

The model was trained and tested on the same task used in the fMRI experiment, including

its 4x4 grid structure and transitive inference test. On each trial, the model was presented

with two 64x64 grayscale images of faces (x1 and x2), along with the context indicating the

axis along which they should be compared (xa - represented as a 1-hot vector). The model

was trained to select which of the two faces ranked higher on the appropriate axis through

supervised feedback on the correct answers during training. As in the fMRI experiment, the

model did not have access to these rankings or to the latent structure of the 4x4 grid and

had to learn these through trial-and-error on pairwise comparisons.

Our goal was to explore the e↵ects of dynamic cognitive control on the geometry of map-

like representations, so we developed a recurrent neural network model in order to capture

the dynamics of representations unfolding over the course of each trial.
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Figure 3.2: Neural network model architecture. The model used a convolutional neural

network (CNN) to process images and a long short-term memory (LSTM) to process the

sequence of inputs over time.

3.4.1 Model Architecture

The neural network model (see Figure 3.2) was composed of standard building blocks in-

cluding a convolutional neural network (CNN) and a long short-term memory (LSTM). The

CNN processed the images of faces, and a linear embedding layer processed the axis. The

same CNN was used to process both faces on each trial. The result of these initial operations

was a single vector encoding each of the axis (ea), Face 1 (e1), and Face 2 (e2), each with

the same dimension:

ea = Waxa e1 = CNN(x1) e2 = CNN(x2) (3.1)

where xa is a 2-dimensional (one for each context) one-hot vector indicating the current con-

text, and x1 and x2 are the Face 1 and Face 2 images. The LSTM processed the embeddings
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(ea, e1, e2) in sequence:

h(t) = LSTM(e(t), h(t�1)) (3.2)

ŷ = Woh
(3) (3.3)

where h(t) is the hidden state of the LSTM at time-step t, e(t) is the input embedding at

time step t (ea, e1, or e2), and Wo is a linear output layer that produces a prediction ŷ about

the answer from the final (third) hidden state of the LSTM (h(3)).

3.4.2 Implementation Details

All modeling experiments were implemented using PyTorch. The model was trained using

standard optimization techniques, including the backpropagation algorithm. The model was

optimized using Adam (Kingma & Ba, 2015) with a learning rate of 0.001 and a batch size

of 32 for 1000 gradient steps. For each simulation, 20 runs were performed with di↵erent

random initializations.

The CNN included two convolutional layers with kernel sizes (3, 3), strides (2, 2) and

number of channels (4, 8). Max pooling followed each convolutional layer with kernel sizes

(2, 2) and strides (2, 2). The CNN also included a final linear layer to map the output of

the last pooling operation to a single vector with 32 dimensions. The axis embedding ea was

also 32-dimensional, and the LSTM had a hidden layer size of 128.

3.5 Results

Participants performed well on the unseen pairs of faces tested in the scanner (93.6% mean

accuracy), indicating good transitive inference performance. To test our main hypotheses,

we conducted representational similarity analyses (RSA) Kriegeskorte et al. (2008) to charac-

terize the representations in the brain, and performed analogous tests on the representations
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gathered from the model throughout training (see Figure 3.3). In the following, we describe

the results of the analyses pertaining to each of our main hypotheses, with particular em-

phasis on the warped representational geometry, as this was the most novel aspect of our

investigation.
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Figure 3.3: Results of analyses testing three main hypotheses. Top panels show results

of analyses on the neural network model, which are given by statistics calculated on its

representations over the course of training. Box plots show the variance in these statistics

over 20 runs. Bottom panels show results of fMRI analyses, along with diagrams depicting

idealized representations of the grid used as regressors in the RSA. A) Evidence of map-like

representations was found in both the model and the brain. In the model, this is shown

by a significant relationship (p< 0.05) between distances between representations and their

corresponding distances in the underlying grid. In the fMRI analysis, map-like represen-

tations were found in hippocampus (HC), entorhinal cortex (EC) and orbitofrontal cortex

(OFC). pTFCE: threshold-free cluster enhancement. B) Evidence of dynamic selection of the

task-relevant dimension was found in both the model and the brain. Representations were

expanded along the task-relevant axis (or equivalently, compressed along the task-irrelevant

axis). This e↵ect emerged early in the model’s training and was significant in posterior

and medial parietal cortex (PMC) and dorsomedial frontal cortex (dmFC). C) Evidence of

warped representational geometry was observed in both the model and the brain. Distances

between representations of congruent pairs of faces (along the green diagonal) were larger

than those of incongruent pairs (along the orange diagonal), causing a consistent warping

of the space along the context-invariant axis (i.e., along the congruent diagonal). In the

model, this is visualized with the ratio of average Euclidean distances between congruent

pairs of faces to average Euclidean distances between incongruent pairs of faces, which is

consistently larger than 1 throughout training. This was associated with the corresponding

accuracy ratio (black line in the same plot). Warping was observed on a group-level in HC,

and warping in the medial prefrontal cortex (mPFC) and posterior cingulate cortex (PCC,

not labeled in figure) was correlated with individual di↵erences in cognitive control (as mea-

sured by di↵erences in reaction times between congruent and incongruent trials.)
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3.5.1 Map-Like Representations

Although neither the model nor the human participants were explicitly instructed on the

underlying structure of the 4x4 grid, representations in hippocampus (HC), entorhinal cor-

tex (EC), orbitofrontal cortex (OFC), and in hidden layers of the model captured this basic

structure (see Figure 3.3A). In both the model and these brain regions, similarity between

representations was correlated with 2D Euclidean distances between faces’ position in the 4x4

social hierarchy. In the fMRI data, this was shown with both whole-brain searchlight-based

and anatomically-defined ROI-based RSA. Importantly, ROI analyses revealed that ideal-

ized 2D representations explained pattern similarity significantly better than the alternative

hypothesis of two separate one-dimensional maps in HC, EC, and OFC. In the model, a simi-

lar analysis revealed a significant correlation between representational distances and pairwise

Euclidean distances between faces in the 4x4 grid (p < 0.05). This relationship emerged early

and was maintained throughout training. These results are consistent with the hypothesis

that the human brain spontaneously organizes incoming relational information into map-like

representations (Behrens et al., 2018; Park et al., 2020), and show that these emerge in a

neural network model without any specialized components that were explicitly designed to

do so.

3.5.2 Dynamic Selection of Task-Relevant Dimension

This basic 2D representational geometry was dynamically modified by the current context:

in both the neural network model and in brain regions including dorsomedial frontal cor-

tex (dmFC) and posterior and medial parietal cortex (PMC) distances along the irrelevant

axis were compressed (see Figure 3.3B). In the fMRI data, this was again shown using a

searchlight-based multiple regression RSA that included the representational dissimilarity

matrix (RDM) capturing 2D Euclidean distances between face pairs and a RDM captur-

ing task-relevant 1D distances that assumed the currently irrelevant dimension of the grid

was compressed (see Figures 3.3A and 3.3B, respectively). In the model, a regression re-
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vealed a significant relationship between the pairwise 1D rank-di↵erences between faces in

the task-relevant dimension and the distances between corresponding representations (over

and above their 2D structure, which was also included as an independent variable in the

regression). These findings indicate that the task-irrelevant features of the map-like repre-

sentations stored in memory were compressed relative to the task-relevant features. This

relationship emerged early in training and was maintained throughout the entire training

period. These findings are consistent with previous experiments in tasks with exogenous sen-

sory features in these regions (Mante et al., 2013; Takagi et al., 2021; Flesch et al., 2022a),

and suggests how cognitive control can operate on 2D map-like representations from memory

by accentuating the task-relevant dimensions of a learned representational space.

Figure 3.4: Results of additional analyses addressing the causal relationship between

warping and cognitive control. A) The model improved its accuracy on congruent trials

before incongruent trials. This di↵erence coincided with the emergence of warping in its

representations (see accuracy ratio vs. warping in previous figure), suggesting that warping

is associated with a decreased reliance on contextual information and cognitive control.

Error bars show standard error of the mean (SEM). The dotted horizontal line indicates

chance performance (50% accuracy). B) To directly investigate the relationship between

the strength of contextual information and the degree of warping, we performed simulated

ablations of the axis embedding in the model by multiplying (ea) by values (w) ranging from

0 to 1. C) Results of this ablation experiment showed increases in warping (again measured

by the ratio of congruent distances to incongruent distances) when context information was

inhibited. The dotted horizontal line indicates a ratio of 1 (i.e., no warping). Error bars again

indicate SEM.D)A related fMRI analysis showed stronger reactivation of the current context

on incongruent trials than congruent trials in hippocampus (HC), medial prefrontal cortex

(mPFC) and posterior cingulate cortex (PCC) at decision time (pTFCE< 0.05; p< 0.005

for visualization).
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3.5.3 Warped Representational Geometry

In the fMRI experiment, reaction time (RT) was faster on congruent than incongruent trials

regardless of the distance between locations of faces (p< 0.01), providing a measure of

individual di↵erences in cognitive control. We also tested for an e↵ect of congruence on

the map-like representations in both the model and the human participants by comparing

distances between representations of congruent and incongruent pairs of faces sampled from

di↵erent trials across blocks. Analyses of both the hidden layers and fMRI data consistently

showed warping along the congruent compared to the incongruent axis – i.e., a stronger

relationship between pattern similarity and Euclidean distance in congruent pairs of faces

than incongruent pairs of faces (see Figure 3.3C). In the model, a regression revealed that

distances between representations of congruent pairs of faces were significantly larger than

those of incongruent pairs (p < 0.05, see top panel of Figure 3.3C). Group-level fMRI analyses

revealed the same warped geometry in representations in brain areas including HC (see

bottom panel of Figure 3.3C). Additionally, the levels of warping observed in the amygdala,

medial prefrontal cortex (mPFC), and posterior cingulate cortex (PCC) were correlated with

individual di↵erences in our behavioral measure of cognitive control (i.e., the di↵erence in

RT between congruent and incongruent trials). This result suggests that individuals with

greater representational warping in these brain regions also experienced a greater demand

on cognitive control on incongruent trials (as measured in their behavior).

Finally, we found that the warping in the neural network model was linked to an initial

tendency to ine↵ectively utilize context information that would mitigate the interference on

incongruent trials. On congruent trials, context information does not strictly need to be

maintained because the correct answer does not depend on the current context (see Figure

3.1). However, on incongruent trials context information is required to mitigate the interfer-

ence caused by the fact that each face ranks higher on one of the two axes. We observed that

early in training, the model performed well on congruent trials but poorly on incongruent

trials (see Figure 3.4A), and that this di↵erence emerged simultaneously with the warping
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in its representational geometry (see accuracy ratio in Figure 3.3C). We reasoned that the

warping may be related to the model’s capacity to manage the interference on incongruent

trials by utilizing context (axis) information. We therefore simulated an “ablation” of the

contextual input by down-scaling the embedding vector (ea) by multiplying it by a factor less

than 1 (see Figure 3.4B). Results of this simulated ablation showed that warping increased

when context was inhibited (see Figure 3.4C), confirming the link between the strength of

context information in the model and the degree of warping in its representations. Inspired

by this observation in the model, an fMRI analysis found stronger reactivation of the cur-

rent context on incongruent trials than congruent trials in HC, mPFC and PCC at decision

time (see Figure 3.4D), suggesting greater reinstatement of the behavioral context during

decisions in the presence of incongruence.

3.6 Discussion

It has been suggested that a key to the power of human intelligence is the capacity to integrate

sensory information into cognitive maps or representations that capture the structure of the

environment (Behrens et al., 2018; O’Reilly et al., 2021a). The map-like quality of these

representations is thought to empower deliberative or model-based reasoning capabilities

and to facilitate generalization to unseen stimuli (Behrens et al., 2018; Vikbladh et al.,

2019). However, humans are not only capable of systematically encoding relevant structural

information into map-like representations, but can flexibly deploy them to meet the demands

of multiple contexts or goals (Miller & Cohen, 2001; Musslick et al., 2017). This flexibility is

thought to emerge in part from cognitive control mechanisms in the prefrontal cortex (Herd

et al., 2006; Miller & Cohen, 2001; Rougier et al., 2005), which may endow humans with the

specialized circuitry necessary for systematic generalization (Russin et al., 2020).

In this work we explore the relationship between cognitive control and the geometry

of map-like representations by integrating fMRI with neural network models (Flesch et al.,
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2018, 2022a). Consistent with previous work (Russin et al., 2021), we find that when a neural

network was trained on our task, it developed map-like representations that captured the

latent 2D structure of the task, qualitatively reproducing phenomena observed with fMRI in

HC, EC and OFC. These representations emerged despite the fact that only one of the two

dimensions of the grid was cued at a time and both the model and the human participants

learned from pairwise comparisons alone.

As with all neural network simulations, our model could not be supplied with the wealth

of experience that human participants bring to laboratory tasks such as ours, and therefore

may not capture the breadth of the processes that are likely involved in the formation

of cognitive maps in humans. We expect that prior experience with 2-dimensional spaces

allowed participants to leverage existing knowledge while they learned the task. However,

we emphasize that the latent 4x4 configuration of the faces was completely arbitrary, and

that despite its lack of prior experience, the model captured the map-like qualities observed

in the brain’s representations.

The emergence of map-like representations allowed us to explore their interaction with

cognitive control. In particular, we investigated whether their geometry was dynamically

modulated according to the current context. Parallel analyses revealed dynamic compression

of the irrelevant axis (or equivalently, expansion of the relevant axis) in the representations

of both the neural network and brain regions including PMC and dmFC, consistent with

previous experimental findings using a di↵erent task (Flesch et al., 2022a). This phenomenon

emerged in the dynamics of the model through learning: the model was not explicitly de-

signed with a capacity to scale its representations or implement a specific mechanism for

cognitive control. However, these emergent dynamics are consistent with previous neural

network models of cognitive control, which implement a top-down attention mechanism to

modulate specific stimulus features in posterior representations (Herd et al., 2006; Rougier

et al., 2005). Flesch et al. (2022a) found that a similar compression emerged in neural net-

works in the “rich” regime, where they were initialized with small weights. We did not test

87



our models with di↵erent initialization schemes, but we expect that the defaults we used

would put them in the “rich” regime. Future work will test the extent to which our results

depend on the magnitudes of initial weights.

The model also revealed another way in which cognitive control can a↵ect the geometry

of map-like representations: the 2D structure of the representations in the model was warped

along the context-invariant axis (i.e. the congruent diagonal, see Figure 3.3C). Again, this

phenomenon occurred without any specific modification to the model, suggesting it is an

emergent property of representations learned by neural networks trained on the task. This

prediction of the model was confirmed in the fMRI experiment: group-level analyses revealed

significant warping in HC, and warping in mPFC and PCC was found to be correlated with

individual di↵erences in cognitive control.

One of the strengths of pairing a computational model with any experimental approach

is the ability to simulate experiments that would be di�cult or impossible with real subjects.

Our simulations o↵ered insight into the relationship between warping and the dynamics of

cognitive control. Early in training, the model performed better on congruent than incon-

gruent trials; because congruent trials did not require contextual information to be used, we

reasoned that warping in the model’s 2D map-like representations was related to its capacity

to utilize the current context. When we simulated an ablation of contextual information,

warping increased and was maintained for a longer time period throughout training (see Fig-

ure 3.4). This suggests that warping may be a natural way for the brain to compensate for

a relatively weak capacity for cognitive control to orthogonalize representations according to

the current context. Without strong contextual information, learning may opportunistically

seize on relations between congruent pairs, which do not require context to disambiguate

correct responses.

If no contextual information was available whatsoever, the best an agent could do would

be to collapse the 2D grid into an integrated 1D ranking, resulting in a perfectly “warped”

map projecting each face onto the congruent (bottom-left to top-right) diagonal. Thus, one

88



explanation for our findings is that warping in HC, as well as mPFC and PCC compensated

for imperfect cognitive control in the human participants by shifting their representations to

approximate this idealized 1D ranking. This is consistent with the finding that the degree

of warping found in mPFC and PCC was correlated with individual di↵erences in cognitive

control, as measured by the di↵erence in RT between congruent and incongruent trials.

This explanation is also consistent with a further fMRI analysis that found that the current

task-relevant context was more strongly reinstated in HC, mPFC and PCC on incongruent

trials compared to congruent trials. An alternative way of interpreting our results is that

participants who developed more warping in their representational geometry could not utilize

context information as e↵ectively during learning, which in turn led to greater di�culty in

overcoming interference on incongruent trials. Our results, although they are suggestive,

cannot definitively establish the direction of causality between representational geometry

and individual di↵erences in cognitive control. We leave it to future work to more thoroughly

investigate the causal structure of the link between these phenomena that we establish here.

Taken together, our results reveal an intricate relationship between cognitive control

during cognitive map formation, the resulting representational geometry, and its role on

subsequent control during decisions. We found evidence of complementary representational

geometries for e�ciently encoding abstract relational information and flexibly selecting be-

haviorally relevant attributes from those representations in both neural networks and human

brains. The findings further cast cognitive control in a new light, whereby an individual’s

representational geometry is both sculpted by and used for cognitive control when retrieving

representations with endogenous feature dimensions from memory. Furthermore, our work

demonstrates the virtues of integrating a neural network modeling approach with neuroimag-

ing, and may help to address current limitations of modern neural networks used for artificial

intelligence (Russin et al., 2020).
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Chapter 4

A Neural Network Model of Continual Learning with Cognitive
Control1

Jacob Russin2, Maryam Zolfaghar2, Seongmin A. Park3, Erie Boorman3, Randall C.
O’Reilly2

4.1 Abstract

Neural networks struggle in continual learning settings from catastrophic forgetting: when

trials are blocked, new learning can overwrite the learning from previous blocks. Humans

learn e↵ectively in these settings, in some cases even showing an advantage of blocking,

suggesting the brain contains mechanisms to overcome this problem. Here, we build on

previous work and show that neural networks equipped with a mechanism for cognitive

control do not exhibit catastrophic forgetting when trials are blocked. We further show an

advantage of blocking over interleaving when there is a bias for active maintenance in the

control signal, implying a tradeo↵ between maintenance and the strength of control. Analyses

of map-like representations learned by the networks provided additional insights into these

mechanisms. Our work highlights the potential of cognitive control to aid continual learning

in neural networks, and o↵ers an explanation for the advantage of blocking that has been

observed in humans.

1* This chapter was originally accepted for publication in the Proceedings of the 44th Annual Meeting
of the Cognitive Science Society (CogSci 2022) (Russin et al., 2022). The opinions expressed here are solely
those of the author and do not necessarily reflect the o�cial views of the conference, workshop, or publisher.
The original version can be accessed online at: https://escholarship.org/uc/item/3gn3w58z.

2 Center for Neuroscience, University of California, Davis
3 Center for Mind and Brain, University of California, Davis
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4.2 Introduction

Neural networks have shown impressive performance in many domains in machine learn-

ing (ML), where they are typically trained on batches of data that are independent and

identically distributed (Hadsell et al., 2020). However, agents learning about the world in

real time experience streams of data that are not independent (e.g., a human may spend a

few hours exploring one part of an unfamiliar city). The neural networks that have driven

recent success in artificial intelligence perform poorly in these continual-learning settings

because of the well known phenomenon of catastrophic forgetting/interference (McClelland

et al., 1995; McCloskey & Cohen, 1989). When samples or trials are blocked, learning in

new blocks overwrites the learning that occurred in previous blocks. Humans and other

animals do not exhibit such extreme forgetting (McClelland et al., 1995), and in some cases

even demonstrate an advantage when trials are blocked (Carvalho & Goldstone, 2014; Flesch

et al., 2018; Noh et al., 2016; Wulf & Shea, 2002), suggesting there are mechanisms in the

brain that mitigate catastrophic forgetting and can even reverse it, making learning easier

when experiences are correlated over time.

A number of strategies for overcoming catastrophic forgetting in neural networks have

been proposed in both computational neuroscience (Flesch et al., 2018, 2022b; McClelland

et al., 1995) and ML (Botvinick et al., 2019; Hadsell et al., 2020; Mnih et al., 2013; Velez &

Clune, 2017). Complementary learning systems (CLS) theory emphasizes that catastrophic

forgetting arises when learning occurs too quickly in overlapping representations (McClelland

et al., 1995; O’Reilly et al., 2011), and that the episodic memory system in the hippocampus

plays an important role in learning representations that are sparse or pattern-separated,

allowing rapid learning to take place. However, constraining patterns of activity to be sparse

is not the only way to ensure they will not overlap and interfere with each other. Theories of

cognitive control in the prefrontal cortex (PFC) emphasize that a crucial function of control

is to selectively modulate activity in other brain areas in order to coordinate a response that

aligns with the current context or goal (Herd et al., 2014; Miller & Cohen, 2001; Rougier
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et al., 2005). Cognitive control may therefore play an important role in regulating learning

so that patterns of activity do not overlap across di↵erent contexts or goals (Rougier et al.,

2005; Tsuda et al., 2020).

Here, we build on this work and test neural networks in conditions where trials are

either blocked or interleaved, showing how even in the absence of a hippocampal episodic

memory system, cognitive control can help to mitigate catastrophic forgetting in the blocked

condition. We further hypothesized that in some cases learning across blocked trials is

superior to interleaving because of an internal bias of the PFC to maintain its activity over

time, creating a cost to rapidly switching between contexts or goals (Blackwell et al., 2014;

Herd et al., 2014; O’Reilly & Frank, 2006). This idea fits well with a general framework

where the cost of switching must be traded o↵ against the strength of control: stronger

control results in less catastrophic forgetting, but more di�culty switching (Herd et al.,

2006; Shenhav et al., 2013). We perform our simulations on a task designed to induce

learning of map-like representations (Park et al., 2021, 2020; Russin et al., 2021) so that we

could additionally investigate how cognitive control a↵ected the model’s representations.
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4.2.1 Task

Figure 4.1: Task structure. The model learned the relative ranks of people along two social

hierarchy dimensions: popularity and competence. The model learned through trial and error

to select which of two faces ranked higher along one of the two dimensions (indicated by a

cue). Trials were either interleaved, where cues were randomly shu✏ed, or blocked, where

one dimension was learned at a time.

We trained neural network models on an existing task taken from an fMRI experiment (Park

et al., 2020; Russin et al., 2021). Participants in the experiment learned about the relative

ranks of 16 people in a hypothetical social hierarchy along two separate social dimensions:

“popularity” and “competence” (see Figure 4.1). On each trial, the participants predicted

which of two people ranked higher on one of the two dimensions, indicated by a cue. Unknown

to the participants, these faces were organized into a 4x4 grid along the two dimensions; the

participants were not instructed on the structure of the grid, and had to infer this structure

from trial-and-error learning over pairwise comparisons.

During training, participants only saw pairs of faces that di↵ered by one rank on the given

dimension. Then in the scanner they performed a transitive inference test where comparisons

were made between faces more than one rank apart. Intriguingly, the researchers found

in pilot experiments that participants learned better when trials were blocked (i.e., one
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dimension learned at a time). This is consistent with previous results showing that learning

is improved when trials are blocked (Flesch et al., 2018). This task allowed us to explore the

learning dynamics in our models, but because it was designed to investigate cognitive maps

in the brain, we were also able to make concrete predictions about the representations that

would be learned under di↵erent conditions.

We tested neural networks on the same task structure, including its 4x4 grid and transi-

tive inference test. However, we introduced two training conditions to compare the learning

behavior of models when trials were blocked vs. interleaved (see Figure 4.1). In the in-

terleaved condition, popularity and competence trials were shu✏ed randomly, but in the

blocked condition the models were trained on one of the two dimensions at a time. This al-

lowed us to investigate the potential for cognitive control and gating mechanisms to alleviate

the e↵ects of catastrophic forgetting, as has been observed in humans learning certain tasks

(Carvalho & Goldstone, 2014; Flesch et al., 2018; Noh et al., 2016; Wulf & Shea, 2002).

4.3 Neural Network Model

We designed a neural network that leveraged the principles of cognitive control in the PFC,

including active maintenance and selective modulation according to the current context or

goal. To test our hypotheses, we implemented models 1) with and without PFC gating, 2)

with di↵erent levels of active maintenance, and 3) with di↵erent levels of control strength.

4.3.0.1 Base Model

To start, we built a simple base neural network with a multi-layer perceptron (MLP) for

learning the relationships between the faces in the task (see Figure 4.2). The base model

takes three one-hot vectors representing the context cue (“Axis”, 2 dimensions) and each of

the two faces (“Face1” and “Face2”, 16 dimensions each) as inputs, and returns a prediction

for which face ranked higher on the appropriate dimension. Each of these three inputs were

95



embedded with linear layers, concatenated, and fed into an MLP with one hidden layer:

ea = Waxa + ba e1 = Wfx1 + bf e2 = Wfx2 + bf (4.1)

h = ReLU(Wh[eae1e2] + bh) (4.2)

ŷ = Wyh+ by (4.3)

where xa, x1, x2 and ea, e1, e2 are the one-hot vectors and embeddings representing the

axis cue, face 1, and face 2, respectively, h is the hidden representation of the MLP, and ŷ is

the output. Brackets denote concatenation, and ReLU() is the rectified linear unit activation

function.

4.3.0.2 Prefrontal Cortex for Cognitive Control

In further simulations the base MLP was augmented with a PFC layer that received the

context as input and controlled the units in the hidden layer of the MLP with a gating

mechanism:

g = c� h (4.4)

where c is a control signal vector generated from the axis cue, and � signifies element-wise

multiplication. The output layer of the MLP then acted on the gated hidden layer, rather
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than the hidden layer itself (replacing equation 4.3 above):

ŷ = Wyg + by (4.5)

Note the PFC was responsible for modulating activity according to the current context,

as the MLP no longer received ea as input. This mechanism is largely consistent with classic

neural network models of cognitive control (Cohen et al., 1990; Miller & Cohen, 2001; Rougier

et al., 2005), which emphasize the role of the PFC in modulating and regulating the flow

of activity in posterior areas through top-down attentional control according to the current

goal.

The control signal was determined from the axis cue according to a simple scheme: half

of the units in the hidden layer were gated in response to one of the cues, and the other half

of the units were gated in response to the other cue.

c =

8
>><

>>:

[11...100...0] · � if axis = 0

[00...011...1] · � if axis = 1

(4.6)

where � determines the strength of the control signal’s influence on the hidden units.

Note that there was no learning in the PFC: in this work we were interested in the e↵ects of

cognitive control and gating on learning in the MLP when trials were blocked or interleaved.

Future work will explore methods for introducing learning into the PFC (Flesch et al., 2022b;

Tsuda et al., 2020; Wang et al., 2018).
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Figure 4.2: Model architecture. The model was trained to predict which of two faces

ranked higher on the cued dimension (“Axis”). Inputs were embedded and passed through

an MLP. The units in the hidden layer were modulated by a PFC module, which could

gate them via element-wise multiplication by numbers from 0 to 1 (shown for illustration

purposes as unit-wise probabilities of gating vs. not gating). Additional parameters � and

� determined the strength of the control signal and the active maintenance, respectively.

4.3.0.3 Active Maintenance

We also implemented a parameter � that controlled a default bias in the PFC layer to

maintain its activity over time:

s(t) = �(c(t) + �(s(t�1) � 1 + �)) (4.7)

where t indicates time, � determines the degree to which the previous control signal is added

to the current one on each time step, � is a rectified linear function that returns 0 for inputs

less than 0 and 1 for inputs greater than 1, and now the new variable s integrates the control

signal over time and acts on the hidden state of the MLP (replacing Equation 4.4):

g(t) = s(t) � h(t) (4.8)
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The maintenance parameter (�) allowed us to control the degree to which the control signal

was biased to maintain its activity over time, which introduces a cost when the context

(i.e., the axis cue) was switched from trial to trial due to interference from the previous

control signal (s(t�1)). The bias to actively maintain patterns of activity in PFC is well

established (O’Reilly & Frank, 2006), and is fundamental to the important role the PFC

plays in working memory, executive functioning, and planning. We hypothesized that these

dynamics would be relevant to our setting because when trials are interleaved the switch

cost may have negative e↵ects on learning. We used a particularly simple implementation to

capture this basic dynamic, but future work will investigate whether its e↵ects on learning

play out in more realistic implementations (O’Reilly & Frank, 2006).
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Figure 4.3: Accuracy results. Each plot shows accuracy (y-axis) over the course of training

steps (x-axis) for a configuration of the model, depicted by a diagram next to the associated

plot. In each experiment, trials were split on the test set by the relevant axis cue (popularity

= P, shown in blue, and competence = C, shown in red), and accuracy was measured

separately for each in order to show the e↵ects of blocking. Each simulation included 5

runs where trials were interleaved (dashed lines) and 5 runs where trials were blocked (solid

lines). Solid areas show SEM across runs. A) Catastrophic forgetting occurred in the base

MLP model when it was trained on the blocked condition. B) Catastrophic forgetting was

alleviated by the addition of a control signal from the PFC module (highlighted in cyan).

C) The model’s performance on the interleaved condition su↵ered when a default active

maintenance was introduced in the control signal (shown by self-connection highlighted in

cyan), inducing a cost to switching between contexts. D) This switch cost was eliminated

when the control strength was reduced (shown by � highlighted in cyan), demonstrating the

tradeo↵ between control strength and switch cost.

4.3.0.4 Implementation Details

Models were built in PyTorch, and were supervised on correct responses with a cross entropy

loss function. Models were optimized using backpropagation and Adam (Kingma & Ba, 2015)

with a learning rate of 0.001. Embedding vectors had 32 dimensions, and there were 128

units in the hidden layer. For each simulation, 5 runs with di↵erent random initializations

were performed.
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4.4 Results

All versions of the model were trained on both blocked and interleaved conditions. In par-

ticular, we explored our hypotheses by testing the model with di↵erent configurations of

the parameters described above. Accuracy on the test set was evaluated for each social

dimension separately in order to assess forgetting in the blocked condition.

4.4.1 Catastrophic Forgetting when Trials are Blocked

First, we reproduced catastrophic forgetting in the model by training the base MLP (without

a PFC) on both the blocked and interleaved conditions of the task (see Figure 4.3A). When

trials were interleaved, the base MLP model had no problem learning the task, and quickly

achieved 100% accuracy on the test set. However, when trials were blocked, we observed

catastrophic forgetting: after initially performing well on the first block, over the course of

the second block performance progressively declined, indicating increasing forgetting of the

relationships along the first dimension that were learned in the preceding block. This result

can be understood in the context of CLS theory (McClelland et al., 1995), which suggests

that catastrophic forgetting occurs whenever overlapping patterns interfere with each other.

4.4.2 Cognitive Control Mitigates Forgetting

To establish that gating in the PFC can mitigate interference and reduce catastrophic for-

getting, we trained the model equipped with a PFC on the same set of conditions (see Figure

4.3B). For the purposes of this experiment, we removed the internal dynamics of the PFC,

setting the � parameter to 0 (no maintenance) and the � parameter to 1.0. When this model

was trained on the task, its performance on interleaved trials was una↵ected, and quickly

rose to 100% accuracy. However, when it was trained on blocked trials, the catastrophic

forgetting observed in the previous experiment was alleviated, and the model was capable

of retaining what it had learned in the first block through the subsequent block.
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This finding is consistent with the basic principles of CLS (McClelland et al., 1995):

when the overlap between patterns of activity in the hidden layer is reduced, interference

and forgetting are alleviated. However, CLS theory holds that the hippocampus reduces

overlap in its representations with mechanisms that promote sparsity, whereas here we show

that a PFC equipped with a dynamic gating mechanism can accomplish a similar goal. This

is consistent with the results of previous computational models (Rougier et al., 2005; Tsuda

et al., 2020) showing that adaptive gating can o↵er an alternative mechanism for reducing

the overlap between patterns of activity, thereby reducing interference and forgetting.

4.4.3 Blocking Advantage with a Switch Cost

The results above and the results of previous models (Rougier et al., 2005; Tsuda et al., 2020)

show that catastrophic forgetting can be reduced when learning occurs in non-overlapping

patterns of activity across a layer, thereby explaining the reduced e↵ects of interference

observed in humans and other animals as compared with standard neural network models.

However, in certain cases human performance has been shown to be superior when trials

are blocked compared with when they are interleaved (Carvalho & Goldstone, 2014; Flesch

et al., 2018; Noh et al., 2016). We hypothesized that this reversal of the catastrophic forget-

ting phenomenon may be due to the internal dynamics of cognitive control processes (Flesch

et al., 2022b), and in particular due to the bias in neurons in the PFC to actively maintain

their activity over time (O’Reilly & Frank, 2006). To explore this hypothesis, we imple-

mented a control model with simple recurrent dynamics (see Equation 4.7), keeping the �

parameter at 1.0 but setting the � parameter to 0.9 (i.e., 90% of the previous control signal

is maintained at each time step). The resultant dynamics can be thought of as exhibiting a

switch cost (Blackwell et al., 2014; Hyafil et al., 2009), wherein rapidly switching the context

or goal (in this case the relevant social dimension) introduces interference due to the ongoing

maintenance of the previous context. Note that the cognitive cost of task switching is usually

measured in increased reaction times or errors, but here we study it in the context of its
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e↵ects on learning.

Figure 4.4: E↵ect of maintenance parameter (�) on performance. In the blocked condition

(purple), accuracy on the test set does not depend much on maintenance. However, as

maintenance increases, the cost to switching worsens and performance in the interleaved

condition declines.

When these dynamics were introduced, the model was relatively una↵ected when trials

were blocked, but exhibited a consistent reduction in performance when trials were inter-

leaved (see Figure 4.3C). When trials were interleaved, many switches between contexts

occurred throughout training, thereby introducing interference in the control signal, caus-

ing processing to be ine↵ectively modulated according to the current context. We also

performed simulations where we systematically varied the � parameter (see Figure 4.4),

showing consistent reductions in performance on the interleaved condition with increased

active maintenance.

4.4.4 Tradeo↵ between Control Strength and Switch Cost

Previous work has suggested a natural tradeo↵ between the strength of cognitive control

and the cost incurred when a context or task-set is switched (Herd et al., 2014): stronger

control would be more e↵ective in coordinating activity in other brain regions according to

the current goal, but may make rapid switching between task sets or goals more di�cult.

103



To demonstrate this tradeo↵, we tested a model with the maintenance (�) kept at 0.9, but

reduced the value of � (control strength) to 0.1. In this case, the model still performed well

when trials were blocked, but the reductions in performance when trials were interleaved

disappeared (see Figure 4.3D). This shows that weakening the control signal can reduce the

switch cost, aiding performance when there are many switches. Our results are consistent

with a tradeo↵ between the strength of control and the switch cost: without control, catas-

trophic forgetting is detrimental to performance when trials are blocked, but when control

is too strong, interference hurts performance when trials are interleaved.
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4.4.5 Analysis of Learned Representations

Figure 4.5: Results of analyzing the learned representations of the model. Representations

were analyzed in terms of how well they captured the 2D structure of the 4x4 grid (left) and

how much the irrelevant dimension of the grid was compressed on each trial (right). Ideal-

ized grids depicting these two predictions are shown on the top, where the red grid indicates

idealized spacing between representations extracted during trials on which competence was

cued, and the blue grid indicates the same for popularity trials. Plots show the beta co-

e�cients over training from performing the relevant regressions. These were conducted on

hidden representations either before (left) or after (right) control was applied, on two config-

urations of the model - one with � = 0 (no maintenance) and one with � = 0.9. Regression

results revealed strong 2D map-like structure in the hidden layer before control was applied,

and strong 1D compression of the irrelevant dimension after control was applied. However,

when the active maintenance was too strong (� = 0.9), the compression e↵ect disappeared

in the interleaved condition, indicating a failure to modulate representations according to

the current context. Vertical lines indicate the switch in the blocked condition.

The grid structure of our task allowed us to make concrete predictions about the represen-

tations that would be learned in the hidden layers of the network (Park et al., 2020; Russin

et al., 2021). In particular, we tested whether the model formed 2D map-like representa-

tions that captured the basic structure of the grid (Constantinescu et al., 2021; Park et al.,
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2020, 2021), and whether these 2D map-like representations were modulated by the current

context. Previous work has shown that on a similar task, 2D structure was modulated by

the current context, compressing the irrelevant dimension (Flesch et al., 2022a).

Figure 4.5 shows the results of performing a regression on the representations from the

hidden layer with hypothetical distance matrices (depicted as idealized map-like representa-

tions) as the predictors. We compared the results of this regression throughout training when

the maintenance parameter (�) was set to 0 and 0.9, and when the hidden representations

were extracted before and after the control signal was applied (i.e., g and h in equation 4.8).

� was fixed at 1.0.

The model reliably learned the 2D structure of the grid in its hidden representations

regardless of the maintenance, as can be seen in the results from the hidden representations

before the control signal was applied. This 2D structure was modulated by the current

control signal, which had the e↵ect of compressing the currently irrelevant dimension (or

equivalently, expanding the relevant dimension). This suggests that the e↵ect of the control

signal was to allow the model to generate its response based on the relevant dimension, and

to appropriately facilitate learning in the neurons coding for that dimension. However, when

trials were interleaved and maintenance (�) was set to 0.9, the model did not show this com-

pression pattern after control was applied, indicating a failure to modulate its representations

according to the current context. This confirmed the idea that the poor performance on in-

terleaved trials when the switch cost was high (see Figure 4.3C) was caused by interference

in the control signal.

4.5 Discussion

The neural networks driving current ML research do not perform well in continual-learning

settings where incoming data is blocked or otherwise correlated over time (Hadsell et al.,

2020). Humans do not exhibit the catastrophic forgetting that plagues these neural networks
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in these settings (McClelland et al., 1995), and in some cases even show a learning advantage

when trials are blocked (Carvalho & Goldstone, 2014; Flesch et al., 2018). In this work, we

built on previous computational frameworks (Flesch et al., 2018; Rougier et al., 2005; Tsuda

et al., 2020), and investigated the potential for cognitive control mechanisms in the PFC

to induce non-overlapping patterns of activity in order to mitigate interference. Consistent

with previous studies (Tsuda et al., 2020), our simulations suggest that these mechanisms

can aid learning when trials are blocked over time.

In addition to pattern-separation mechanisms in the hippocampus proposed in CLS (Mc-

Clelland et al., 1995), and the gating mechanism in PFC proposed here and elsewhere

(Rougier et al., 2005; Tsuda et al., 2020) a number of alternative mechanisms for allevi-

ating catastrophic forgetting in neural networks have been explored (Flesch et al., 2018;

Kirkpatrick et al., 2017; Velez & Clune, 2017). In particular, Flesch et al. (2018) show that

forgetting was reduced on a similar task when their network was augmented with a good

inductive prior. However, they did not show an advantage to blocking over interleaving,

although they observed this e↵ect in their human experiments. While our approach is not

incompatible with the idea that good inductive priors can mitigate catastrophic forgetting,

we also show that a bias to maintain activity in the PFC leads to an advantage of blocking

over interleaving, providing an explanation for some of the results observed by Flesch et al.

(2018) and others.

In work developed concurrently with ours, Flesch et al. (2022b) show an advantage of

blocking in a model based on very similar principles. In their framework, a neural network

equipped with a context-gating mechanism was modified to have “sluggish” units that main-

tain information from previous trials, inducing a switch cost that degrades performance when

trials are interleaved. Although there were some slight di↵erences in implementation and in

interpretation, we believe the broad convergence between this work and ours highlights the

potential of these principles for explaining the advantage of blocking observed in humans.

The advantage of blocking can seem to contradict the well-established principles of CLS
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(McClelland et al., 1995). However, we show here that a “cortex-like” neural system equipped

with mechanisms for cognitive control and active maintenance can enter a di↵erent regime

than those typically considered in the CLS framework, wherein a reliance on control ex-

poses the system to interference in the control signal caused by rapid context switches. We

speculate that in the brain, pattern-separation mechanisms in the hippocampus are usually

su�cient to ensure e↵ective learning regardless of whether experiences are correlated over

time, but animals such as humans that rely heavily on cognitive control may in some cases

require learning experiences to be correlated over time due to the bias for active maintenance

in the cognitive controller. In our simulations, we introduced this bias to show how it could

lead to a learning advantage of blocking, but of course there was no real need for active

maintenance in the task (as shown by the good performance of the base MLP when trials

were interleaved). We expect that there are good computational reasons that the PFC would

have a bias to maintain its activity over time (e.g., related to its role in working memory

and planning), and that these may be unrelated to the demands of this particular task. We

leave it to future work to show that a system augmented with cognitive control and active

maintenance is superior in an absolute sense to one without these mechanisms.

Our simulations were also inspired by the idea that active maintenance engenders a cost

to switching between contexts, which must be traded o↵ against the strength with which

control can be applied (Herd et al., 2014). The presence of this tradeo↵ means the cognitive

system as a whole must optimize the strength of its control signal according to constraints

imposed by learning as well as the current need for control (Shenhav et al., 2013). This

optimization may have taken place over the course of evolution (Herd et al., 2014), but it

may also occur in real time according to the task at hand (O’Reilly et al., 2020).

Representational analyses showed that cognitive control can act on 2D map-like rep-

resentations to modulate them according to the current context by compressing irrelevant

dimensions and allowing learning to take place in non-overlapping patterns. However, a

strong bias to maintain activity over time leads to interference in the control signal, reduc-
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ing this e↵ect and leading to poor performance when trials are interleaved. Flesch et al.

(2022a) also showed compression along currently irrelevant dimensions in representations of

a neural network trained on a similar task. In particular, this occurred in a “rich” regime

when their neural network was initialized with small weights. The default random initializa-

tions we used in our model were likely small enough to put them in the “rich” regime, but

future work will assess the extent to which our results depend on initialization.

Intelligent systems should be capable of continually learning in settings where data is not

independently sampled over time. Our simulations demonstrate computational principles

that may underlie human continual learning, and help to explain behavioral phenomena

observed in human experiments.
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Chapter 5

Complementary Structure-Learning Neural Networks for
Relational Reasoning1

Jacob Russin⇤2, Maryam Zolfaghar⇤2, Seongmin A. Park3, Erie Boorman3, Randall C.

O’Reilly2 (⇤ denotes equal contribution)

5.1 Abstract

The neural mechanisms supporting flexible relational inferences, especially in novel situa-

tions, are a major focus of current research. In the complementary learning systems frame-

work, pattern separation in the hippocampus allows rapid learning in novel environments,

while slower learning in neocortex accumulates small weight changes to extract systematic

structure from well-learned environments. In this work, we adapt this framework to a task

from a recent fMRI experiment where novel transitive inferences must be made according

to implicit relational structure. We show that computational models capturing the basic

cognitive properties of these two systems can explain relational transitive inferences in both

familiar and novel environments, and reproduce key phenomena observed in the fMRI ex-

periment.

1* This chapter was originally accepted for publication in the Proceedings of the 43rd Annual Meeting
of the Cognitive Science Society (CogSci 2021) (Russin et al., 2021). The opinions expressed here are solely
those of the author and do not necessarily reflect the o�cial views of the conference, workshop, or publisher.
The original version can be accessed online at: https://arxiv.org/abs/2105.08944.

2 Center for Neuroscience, University of California, Davis
3 Center for Mind and Brain, University of California, Davis
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5.2 Introduction

Humans and non-human animals are capable of navigating e�ciently in both novel and fa-

miliar environments. For example, in a well-learned environment like one’s hometown, it is

easy to navigate to new goal locations and plan novel routes. When traveling in a new city,

it is also possible to navigate to a novel location by reasoning over recent experiences — even

those accumulated on the same day. In both cases, e�ciency requires processes or repre-

sentations that allow generalization beyond previous experience. This kind of generalization

has been a long-standing issue in cognitive science, and was integral to early arguments

against behaviorism, where it was claimed that a simple stimulus-response mapping could

not account for such behaviors (Tolman, 1948).

More recent work has investigated the computational and neural mechanisms underlying

cognitive maps, or representations that capture the structure of the environment and thereby

support generalization (Park et al., 2020; Whittington et al., 2020; Behrens et al., 2018). This

work has emphasized the importance of certain neocortical areas such as the entorhinal cortex

(EC) for spatial reasoning and vector-based navigation (Moser et al., 2008). Furthermore,

it has been argued that these structured spatial representations may be leveraged for other

kinds of abstract relational reasoning in humans (Behrens et al., 2018). Relatedly, although

neural networks have enjoyed massive success on di�cult machine-learning tasks in recent

years these models are known to fail on out-of-distribution or extrapolation problems (Lake

et al., 2017) such as those requiring transitive inferences.

Here, we apply the well-supported complementary learning systems (CLS) framework

(McClelland et al., 1995; O’Reilly et al., 2011) to explore two qualitatively di↵erent neural

mechanisms underlying spatially-grounded relational reasoning abilities in novel and famil-

iar environments. The CLS framework has emphasized the computational justification for

learning mechanisms unfolding on two di↵erent timescales, as supported by separate brain

areas. Slow learning in neocortex allows for the development of more abstract representa-

tions that integrate across many experiences and can be leveraged to make novel inferences.
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However, this kind of learning is not possible in naturalistic environments where sequences

of events are not presented in an interleaved or random order, as when one explores only

one part of an environment at a time. This is due to the well-known catastrophic forgetting

phenomenon, where previous learning is erased by new experiences when learning occurs too

quickly or training is not su�ciently interleaved (McClelland et al., 1995). The CLS frame-

work proposes that fast learning can occur in the hippocampus due to its pattern-separated,

sparse representations. These representations have little overlap across examples, and there-

fore allow fast learning of novel episodes, i.e., episodic memory (Yonelinas et al., 2019), to

occur without catastrophic interference.

In the CLS framework, slow cortical learning is needed to build up structural or relational

representations over time, which provide the foundation for systematic inferences. However,

for more unfamiliar situations, rapid hippocampal learning is required. Previous work has

found evidence suggesting a role for the hippocampus in rapid generalization (Eichenbaum,

2004; Zeithamova et al., 2012), and that a hippocampal model informed by the CLS frame-

work can explain these findings when it is augmented with a recurrent similarity-based

computation, proposed to be supported by “big-loop” recurrence between the hippocampus

and the neocortex and within the hippocampus itself (Kumaran & McClelland, 2012).

Here, we build on this work and investigate the interplay between slow generalization

in neocortex and rapid generalization in the episodic memory system with computational

models based on the principles of the CLS framework. Our model of the episodic memory

system is similar to previous work (Kumaran & McClelland, 2012) in that it allows rapid

generalization in unfamiliar environments, but relies on di↵erent computational mechanisms

to do so (see Discussion). Our models of the cortical system and the episodic memory

system were both tested on a novel non-spatial structure-learning paradigm from a recent

fMRI experiment (Park et al., 2020). Importantly, the task required transitive inferences

based on learning over two di↵erent timescales: training experience over multiple days, and

training examples given on the same day as the inference test. In the following, we briefly
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outline the key findings of the experiment and o↵er a conceptual framework that integrates

them with the CLS perspective. We then describe the computational models that were built

to capture the basic properties of the proposed conceptual framework, and show that these

models are capable of performing transitive inferences in the same task and reproduce other

key findings from Park et al. (2020).

Figure 5.1: Experimental paradigm used in Park et al. (2020). Participants learned the

relative ranks of pairs of faces on an implicit grid with two axes: competence and popularity.

These faces were split into two groups (shown in green and orange). A) Over the first two

days, participants were trained on within-group pairs that di↵ered by a rank of 1 along

each designated axis. Example pairs on the popularity axis are shown with orange lines

(within group 1) and green lines (within group 2). B) On the third day, participants learned

between-group pairs containing exactly one hub linking the two groups. There were a total of

8 hubs, and each was associated with a certain axis (shown by red and blue outlines). Each

hub was paired with the 4 faces from the other group that di↵ered by a rank of 1 along the

designated axis. Examples of such pairs are shown for two hubs with blue lines (indicating the

popularity axis). C) The third day included the fMRI experiment and transitive inference

test. Participants were tested on pairs of faces from di↵erent groups that could be connected

through one of the two hubs on the appropriate axis. Green, orange, and blue lines indicate

the training pairs (2 within-group and 2 between-group, which are shown in A and B) that

could be used to make the transitive inference for the pair indicated by the black dotted line.
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5.2.1 fMRI Experiment

Park et al. (2020) studied the neural mechanisms underlying transitive inference perfor-

mance on the structure-learning task illustrated in Figure 5.1. Participants learned to make

judgments about the “popularity” or “competence” of 16 people through pair-wise compar-

isons along one of these two axes at a time. Unknown to the participants, these 16 faces

were arranged in a 4x4 2D grid, and were implicitly separated into two groups. In the first

two days of training participants only learned about within-group pairs that di↵erent by a

rank of 1 (see Figure 5.1A). On the third day of the experiment, participants learned about

between-group pairs containing certain faces that acted as hubs between the two groups (see

Figure 5.1B). This training provided su�cient evidence to allow participants to integrate

their previously separated cognitive maps, but was conducted on the same day as fMRI

scanning. In the scanner, participants performed a transitive inference test in which unseen

pairs of faces from di↵erent groups were compared (see Figure 5.1C). For each of these test

pairs, one of two corresponding hubs could be used to make the transitive inference. The

results we focused on in our work can be summarized as follows:

1. Participants exhibited good transitive inference performance, achieving 93.6% mean

accuracy on the unseen pairs tested in day 3.

2. Map-like representations were found in several brain areas, including ventromedial

prefrontal cortex (vmPFC) and entorhinal cortex (EC). Patterns of activity in these

areas demonstrated sensitivity to the ground-truth Euclidean distances between faces

in the implicit grid. However, these e↵ects were significantly reduced when the analysis

was restricted to between-group pairs that were not encountered during training.

3. A repetition-suppression analysis in hippocampus suggested that one of the two rele-

vant hubs was retrieved from episodic memory at the time of inference.

Taken together, these findings suggest that cortical learning systems in vmPFC and EC

were able to integrate across the pairs of faces encountered during training to form map-
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like representations that would be useful for making transitive inferences within groups.

However, the e↵ects in these areas were reduced when the analysis was restricted to novel

between-group pairs, and participants seemed to retrieve the relevant hubs from episodic

memory in hippocampus during the transitive inference test. Thus, although the within-

group pairs were well-learned over the first two days of training, these groups may not have

been fully integrated into a single coherent cognitive map at the time of testing. This may

have forced participants to rely instead on hippocampal retrieval of recently-learned between-

group training episodes (which always included a hub) to generalize during the transitive

inference test. Thus, there appear to be two separable cognitive mechanisms that allow for

relational transitive inferences to be made in this task: 1) if given enough training time,

cortical areas such as vmPFC and EC can learn representations that reflect the implicit

relational structure of the grid, and 2) an episodic retrieval mechanism can ensure good

transitive inference performance with pairs that were seen only on the same day as the

test. Below we outline a general framework that integrates these findings, and the apparent

redundancy in these two systems, with the CLS perspective.

5.3 Complementary Structure-Learning Systems

The CLS framework explains how the brain can support integrative representation learning

without su↵ering from catastrophic forgetting (McClelland et al., 1995; O’Reilly et al., 2011).

However, the CLS framework also emphasizes other important reasons for fast learning in

an episodic memory system. In particular, slow cortical learning may be insu�cient to

allow for e�cient adaptation in relatively unfamiliar environments (Kumaran & McClelland,

2012). The findings from Park et al. (2020) suggest that humans are capable of making

novel transitive inferences using experiences acquired on the same day. Furthermore, they

show that these inferences are mediated by hippocampal retrieval of the intermediate states

(i.e., hubs) that would allow such inferences to occur. Taken together, these findings suggest

116



that the dual-process view emphasized in CLS may explain the apparent redundancy in

structure-learning mechanisms studied in neuroscience and psychology (see Table 5.1).

Table 5.1: Complementary structure-learning systems.

System Properties

Cortical learning • Learns slowly through

small, incremental weight

changes

• Inference is fast and less

e↵ortful with map-like repre-

sentations

Episodic memory • Learning can be fast due

to sparse, pattern-separated

representations

• Inference is slower, re-

quiring cognitive control for

deliberate, goal-directed re-

trieval

In the case of spatial navigation, slow cortical learning can integrate across many ex-

periences to form map-like representations. This system is capable of directly utilizing its

integrative representations without further processing, and can thus make inferences rapidly.

However, this system would not be able to make inferences in a newly learned environment if

it did not have time to integrate across particular episodes (Kumaran & McClelland, 2012).

This may have been the case in the transitive inference test conducted on the same day as the

between-group training in the fMRI study (Park et al., 2020). Fast episodic learning, on the

other hand, can immediately store memories of individual experiences, allowing inferences to
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be made in unfamiliar environments based on few such experiences. However, the episodic

nature of its representations do not allow the sort of direct inferences that are available to

the cortical system. Instead, transitive inferences require a slower, more deliberate process

of goal-directed retrieval and further processing of the stored memories (Zeithamova et al.,

2012). An organism equipped with both systems would be capable of making novel inferences

in both familiar and unfamiliar environments. In the following, we provide evidence from

models that capture, on a computational level, the basic properties of the proposed com-

plementary structure-learning systems, and show that these systems reproduce key findings

from Park et al. (2020).

5.4 Modeling Framework

We simulated4 each of our models on the training and testing procedure used in the task,

including its within-group and between-group structure and transitive-inference test. In

particular, each trial consisted of a presentation of two faces and the axis along which the

judgment should be made (i.e., “competence” or “popularity”). The models were required

to make a binary judgment about whether the first face ranked higher or lower than the

second face along the specified axis.

4All data and code used for experiments and analyses are available at
https://github.com/MaryZolfaghar/CSLS
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Figure 5.2: Model architecture. (Left) The episodic memory system stores representations

of individual training trials in a key-value memory. New inferences are made by querying

the memory to retrieve the relevant trials, which are then processed by an MLP to gener-

ate an answer. (Right) The cortical learning system was modeled as a simple feedforward

network with convolutional layers to process the images. This system relies on its learned

representations to perform transitive inferences.

5.4.1 Cortical Map-Building

The cortical representation-learning system should accumulate small updates over many

trials to build map-like representations that can be directly utilized to make transitive

inferences. We modeled this process with a simple feedforward neural network with two

convolutional layers (see right side of Figure 5.2). Face images were taken from the same

database used in the fMRI experiment (Strohminger et al., 2016), and were downsampled

to 64x64 and grayscaled for faster simulation. The within-group and between-group hub

samples were all trained simultaneously (i.e., the pairs that were trained on di↵erent days
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of the fMRI experiment were trained simultaneously in the model). This is because the

purpose of our model of the cortical system was to show that, if given enough training time,

it could perform transitive inferences based on its learned representations, and allow fast

inference in familiar environments. Each face was processed with the same convolutional

neural network, and the axis variable, encoded as a one-hot vector, was embedded with a

linear layer. These three embeddings were then concatenated and passed through a multi-

layer perceptron (MLP) with rectified linear unit (ReLU) activation functions. This network

captures the basic properties of slow cortical learning in that it accumulates small updates

to its synaptic weights over many trials, and makes inferences directly based on its learned

representations of each face.

5.4.2 Goal-Directed Episodic Memory Retrieval

The episodic memory system should learn quickly by storing individual training episodes,

and make inferences by retrieving the previous trials that are relevant to the current one

(McClelland et al., 1995; Kumaran & McClelland, 2012). For this purpose, we used a neural

memory system (see left side of Figure 5.2) with a soft retrieval mechanism (Botvinick et al.,

2019). This memory system immediately stores each trial (xi) seen during training as a key,

value pair: ki = Wkxi, vi = Wvxi, where ki is the key, vi is the value, and xi is the trial, which

is a concatenation of a one-hot encoding of each face, the axis variable (a), and the correct

answer (y) of the ith trial. One-hot encodings were used for faces under the assumption that

what is stored in the episodic memory system should be a highly processed, sparse encoding

(McClelland et al., 1995). To make an inference, the model generates a query according to

the current pair of faces: qj = Wqx
�
j + bq, where x�

j indicates the jth test trial with the

same components but excludes the correct answer (y). This query is then used to retrieve

the memories most relevant to the current trial:

v̄j = softmax
�
qjK

T
�
V (5.1)
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where K and V are matrices containing all of the stored memories. Finally, the retrieved

memories v̄j are passed through an MLP to produce the final answer: ŷj = MLP(v̄j). This

network captures the basic properties of a fast-learning episodic memory system in that each

training episode can be stored in memory immediately upon presentation, and must later be

retrieved in a goal-directed way to make a transitive inference.

An interesting problem in modeling episodic memory concerns the learning mechanisms

involved in goal-directed memory retrieval. We assume that the human participants recruited

for the Park et al. (2020) study had extensive prior experience with goal-directed memory

retrieval and everyday transitive inferences. We therefore adopted a meta-learning strategy

(Santoro et al., 2016) to model this prior experience, and pretrained the episodic memory

system to learn to solve new transitive inference problems sampled from a distribution of such

tasks. This pretraining consisted of slow, incremental changes to the weights responsible for

mapping into and out of the episodic memory itself, and should thus be thought of as occur-

ring in memory-related cortical areas rather than in the hippocampus proper (McClelland

et al., 1995). The system was pretrained on a distribution that was generated by permuting

the positions of each face in the 4x4 grid. For each new task, the memory system stored

training samples in its memory and used them to make transitive inferences in the testing

phase, where it accumulated errors that were then used to update its learnable parameters.

The model was then tested on how well it could generalize with a new configuration of faces

it had never seen before.

This kind of meta-learning strategy was adopted from previous work (Lake, 2019), and

shares with it the limitation that the pretraining tasks are unrealistically similar to the final

test — future work will examine the extent to which the model can generalize when trained

on substantially di↵erent goal-directed retrieval and transitive inference tasks. Additionally,

although the resulting goal-directed retrieval mechanism in this model does not capture the

hypothesized properties of being deliberative and requiring cognitive control (thus making

inferences slower), a more biologically grounded approach involving frontal cortical executive
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function systems, planned for future work, would do so. Our purpose in the current study

was to show that this system was capable of making transitive inferences in a structured

environment.

5.4.3 Implementation Details

Models were built using PyTorch. Models were trained with a cross-entropy loss function

and Adam optimizer (Kingma & Ba, 2015) with a batch size of 32 and a learning rate of

0.001.1 The cortical system was trained for 100 epochs with a batch size of 32. The axis

embedding (ea) had 32 dimensions. Convolutional layers had no padding, a kernel size of

3, a stride of 2, and 4 and 8 channels in the first and second layers, respectively. Each

convolutional layer was followed by a max-pooling layer with a kernel size of 2. The CNN

contained a linear layer to produce flat 72-dimensional vectors e1 and e2, which were passed

to the final MLP, which had 128 hidden units. The episodic memory system was pre-trained

on 10,000 permutations. Queries, keys, and values were all 32-dimensional, and the final

MLP had 64 hidden units.

5.5 Results

Both systems proved to be capable of performing transitive inferences in the task environment

from Park et al. (2020): each system achieved 100% accuracy on the held-out test set in which

unseen between-group pairs were tested. This validates the idea that the two qualitatively

di↵erent kinds of learning system outlined above are capable of reproducing human transitive

inference performance on the task. To investigate how these qualitative di↵erences might

have a↵ected each model’s inference strategy, we performed analogues of key analyses done in

the experiment (Park et al., 2020) to interpret the behavior of each system, and to evaluate

them against empirical results obtained in the fMRI experiment.

1Note that the “learning rate” for the episodic memory refers to the weight updates in the pre-training
phase. During training, it immediately stored experiences upon presentation.
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5.5.1 Cortical Representations Reflect Task Structure

To understand how the cortical system had learned to represent each of the faces, we con-

ducted analyses on the embeddings of each face obtained from the CNN. Visualization of

these embeddings with principal components analysis (PCA; see Figure 5.3) showed that the

cortical system had learned to represent the faces in terms of their structured relationships,

i.e., it had learned map-like representations. These top two principal components explained

95.1 % of the variance in the embeddings, indicating that the model had learned to represent

the faces on a near two-dimensional grid.

Figure 5.3: Visualization of embeddings learned by the cortical system. Embeddings for

each face was projected into two dimensions using PCA, and then rotated by a fixed angle for

illustration purposes. The relative positions of the representations indicate that the model

has learned to represent the faces in terms of their implicit relational structure.

In addition to the PCA, we conducted an analysis similar to those done in the fMRI

experiment (Park et al., 2020), where patterns of activity in vmPFC and EC were found

to be sensitive to Euclidean distances in the ground-truth grid. We measured the Pearson

correlation between ground-truth Euclidean distances in the grid and the observed distances

between each pair of embeddings. A strong correlation was observed (r(118) = .910, p <

0.001), indicating the same sensitivity to structured relationships in the grid.
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5.5.2 Episodic Memory System Retrieves Hubs

In the original fMRI experiment, a repetition-suppression analysis suggested that partici-

pants were retrieving the relevant hubs from hippocampus during the transitive inference

test (see Figure 5.1C). Although the episodic memory model did not have analogous neural

adaptation dynamics that would allow us to model repetition suppression, we conducted an

analysis on the retrieved memories to see how the hubs were being used to make transitive

inferences. The soft episodic retrieval mechanism shown in equation (5.1) uses a softmax

to produce a probability distribution over all of the items in memory. For each test trial,

we directly analyzed the weights applied to the memories for the relevant hub trials and

compared these weights to the irrelevant memories (see Figure 5.4). Memories were counted

as relevant if they included one of the two possible between-group hubs for the given pair

of faces, and connected this hub to one of the two faces from the current trial (see Figure

5.1C). This revealed that the weights applied to the relevant hub memories were usually the

largest (i.e., the hub trials were retrieved more than the irrelevant trials). Furthermore, an

additional analysis found that in every test trial, one of the two possible “paths” connecting

the first face to the second face (e.g., in Figure 5.1C, the path through the blue line and

green line or the path through the blue line and orange line) was in the top 5% of retrieved

memories.
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Figure 5.4: Histograms of relevant and irrelevant trials retrieved from the episodic memory

during testing. Relevant memories, which always contained a hub, made up the majority

of those with the highest weights. This reproduces the fMRI finding that the hubs were

retrieved during the inference test. Note that it was not necessary to retrieve every relevant

memory to get the correct answer, which may be why the relevant memories were not always

retrieved with the highest weights. Counts were normalized to probability densities.

5.6 Discussion

The CLS perspective emphasizes the need for two qualitatively di↵erent learning systems in

the brain: fast learning can occur in the hippocampus due to its pattern-separated represen-

tations, while learning in the neocortex must be slow due to its overlapping representations

(McClelland et al., 1995). Here, we investigate this conceptual framework in the domain of

structure-learning and relational transitive inference (Kumaran & McClelland, 2012), and

propose an analogous distinction. The episodic memory system can learn quickly and gen-

eralize in relatively unfamiliar environments, but requires a more deliberate goal-directed

retrieval process. The cortical system learns slowly but can make fast inferences in familiar

environments from its learned representations. As in the traditional CLS framework, an or-

ganism equipped with both systems would retain the benefits of each, allowing generalization
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in both novel and familiar environments. Our computational models provide evidence that

each of the two proposed systems are able to perform well on a di�cult relational transitive-

inference test under di↵erent circumstances: the cortical system can make these inferences

once extensive experience with an environment has been accumulated, while the episodic

system can do so quickly, as long as it has had su�cient prior exposure to similar tasks.

Our models also reproduce the basic findings from a human fMRI experiment (Park et al.,

2020): the cortical system learns map-like representations that encode the implicit relational

structure of the grid, while the episodic memory system learns to query its memory for the

appropriate hubs connecting the two groups.

Kumaran & McClelland (2012) investigate rapid generalization in a hippocampal model

based on the principles of the CLS framework. The model allows retrieval-based inferences

to be made — despite the nature of its pattern-separated representations — by incorporating

a recurrent similarity computation that can perform associative linking (Eichenbaum, 2004;

O’Reilly & Rudy, 2001). This computation is hypothesized to be supported by “big-loop”

recurrence (Koster et al., 2018). Our model of the episodic memory system is not inconsistent

with hippocampal retrieval-based inferences based on dynamic similarity computation, and

in fact the fMRI experiment showed evidence of the presence of such similarity structure in

the hippocampus (Park et al., 2020). In addition, the strategy used by our model to solve

transitive inference problems appeared consistent with the associative linking exhibited by

the model of Kumaran & McClelland (2012), as shown by the retrieval of hubs linking the

two groups (see Figure 5.4). However, in our model this strategy emerged over the course

of (meta-)learning the structure of transitive inference problems, suggesting a more general

mechanism that could be applied to goal-directed retrieval tasks that are not solvable with

an associative linking strategy. This learning mechanism has been shown to be useful in

the context of one-shot learning (Santoro et al., 2016), and compositional generalization

(Lake, 2019). More work is needed to investigate whether hippocampal involvement in rapid

generalization occurs when such a strategy is not possible, and whether our model would
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benefit from the recurrent computation intrinsic to the model of Kumaran & McClelland

(2012).

Our modeling framework shares important properties with the Tolman-Eichenbaum Ma-

chine (TEM) (Whittington et al., 2020), which also incorporates meta-learning and models

structure-learning in EC. A critical di↵erence between these two models is that in TEM,

structure-learning depends on backpropagating error signals through the hippocampus,

whereas the CLS framework holds that slow cortical learning can operate independent of

the hippocampus to facilitate inferences, consistent with the remarkably intact abilities of

early developmental amnesics (Vargha-Khadem et al., 1997).

Our proposed framework integrates ongoing empirical findings about cognitive maps with

the CLS perspective, but it also shares some similarities to other prominent dual-process

views in cognitive science. For example, prominent theories emphasize a distinction between

habitual and controlled processing (O’Reilly et al., 2020), fast and slow thinking (Kahne-

man, 2011) and model-free and model-based RL (Botvinick et al., 2019). Our conceptual

framework proposes a similar distinction between the deliberative, goal-directed retrieval

that must occur in the episodic memory system to make transitive inferences, and the more

automatic or vector-based generalization that can occur in the cortical system in familiar

environments.

There are some important limitations of our current computational models that must

be addressed in future work. First, although the two proposed cognitive systems are hy-

pothesized to be realized in the hippocampus and cortical areas such as EC, we have not

focused on the interactions that should occur between the two systems. For example, the

representations stored in episodic memory should be directly informed by the slowly chang-

ing representations learned in cortex, reflecting cortical inputs to the hippocampus. The

fMRI study found that map-like representations were also present in the hippocampus (Park

et al., 2020), perhaps due to interactions with nearby cortical areas (Kumaran & McClel-

land, 2012). A more integrated model would show how map-like representations in cortex
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can influence hippocampal processing, and how reliance on the episodic memory early in

learning shifts to reliance on the cortical system later in learning. This shift may occur due

to the cognitive demands imposed on an episodic retrieval mechanism required to reason

over individual past experiences. The current episodic memory system does not capture

the cognitive control hypothesized to be required for inferences to be made; future work

will address this with a more integrated model that deploys an episodic retrieval mechanism

with costly sequential processing. Finally, the neural networks used in our models biologi-

cally implausible in a number of ways, e.g., the use of a slot-based episodic memory and the

standard backpropagation algorithm. Future work will focus on more biologically plausible

learning algorithms and more detailed biology of the neocortex and hippocampus.
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