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Abstract: Research is underway to develop a vaccine to prevent and cure infection from herpes
simplex virus (HSV). It emphasizes the critical need for immunization to address public health
issues and the shortcomings of existing treatment options. Furthermore, studies on the HSV vaccine
advance the field of immunology and vaccine creation, which may help in the battle against other
viral illnesses. The current lack of such a vaccine is, in part, due to herpes viral latency in sensory
ganglions. Current vaccines rely on tissue-resident memory CD8+ T cells, which are known to
provide protection against subsequent HSV reinfection and reactivation without correlating with
other immune subsets. For that reason, there is no effective vaccine that can provide protection against
latent or recurrent herpes infection. This review focuses on conventional methods for evaluating
the efficacy of a herpes vaccine using differential CD8+ T cells and important unaccounted immune
aspects for designing an effective vaccine against herpes.

Keywords: vaccine design; herpes simplex virus (HSV); virus latency; innate immunity; adaptive
immunity; CD8 T cells; memory T cells

1. Introduction

To date, there are no approved vaccines against herpes viral infection. Human herpes
simplex virus type 1 (HSV-1) and type 2 (HSV-2) are highly infectious and cause human
disease. Globally, 3.7 billion individuals are infected with HSV-1 infection, while HSV-
2 infects about 500 million individuals [1,2]. Most HSV-1 infections are oral; however,
between 122 million and 192 million people are estimated to have genital HSV-1 infection [1].
Genital herpes infections are caused by either HSV-1 or HSV-2, whereas ocular herpes
is caused mainly by HSV-1 [3,4]. Close contact with an individual shedding the herpes
simplex virus (HSV), typically through saliva, genital secretions, or a mucosal surface, is
how the virus is transmitted. The virus can infect vulnerable surfaces such as the throat,
cervix, eyes, or minor skin abrasions. Kissing and engaging in sexual activities are typical
methods of HSV transmission [5]. HSV-1 is mainly spread through oral contact, while
HSV-2 is primarily transmitted through sexual contact. Transmission of HSV-1 to the
genital area is possible through oral–genital contact, resulting in the manifestation of
genital herpes [6,7]. After first infecting mucosal sites, the herpesvirus moves through the
peripheral nervous system, settles in the neurons of the sensory ganglia and initiates latent
infection [8]. To minimize the chances of spreading the virus, individuals with herpes can
refrain from close physical contact when experiencing an outbreak [9]. Herpes infection is
associated with life-threatening encephalitis [10], Alzheimer’s disease [11], blindness [12],
and cervical cancer.

The goal of this study is to better understand the immunologic processes underlying
responses to herpes vaccines. This can be achieved by examining the phenotypic and
functional characteristics of memory and tissue-resident T-cell subsets and the ignored
immunological aspects required for a successful vaccine against herpes.
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2. Overview of HSV Route of Infection and Clinical Complications

The family of herpesviruses is composed of more than 100 viruses of which 8 infect
only humans. These are herpes simplex virus types 1 and 2, varicella-zoster virus, human
herpesvirus 6, human herpesvirus 7, human herpesvirus 8, Kaposi’s sarcoma virus, cy-
tomegalovirus, and Epstein–Barr virus. Within specific tissues, all herpesviruses have the
ability to establish latent infection [13].

2.1. Transmission of the HSV Infection

This occurs through intimate contact between the mucosal surfaces of the virus car-
rier and a non-infected person. Upon initial contact, the virus starts to replicate and is
subsequently transported retrogradely by neurons to the dorsal root ganglia, where viral
replication and latency begin (Figure 1). Aggressive viral replication may induce severe
ulcer lesions and may be life-threatening. The factors that promote the reactivation of latent
viruses are still unknown [14,15].
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Figure 1. The ocular route of HSV-1 infection from the mouth and/or eye to viral latency in trigeminal
ganglion. (1) Primary viral infection and replication; (2) retrograde viral transmission to trigeminal
ganglion (TG); (3) viral latency in sensory neurons/trigeminal ganglion; (4) reactivation of latent
viruses; (5) reinfection to oral mucosa and virus shedding.

2.2. Ocular Herpes Infection

Ocular HSV-1 infection leads to complications ranging from blepharitis, retinitis,
corneal ulcers, and blindness [12]. HSV-1 virus usually spreads via airborne droplets
and direct contact. Local and systemic manifestations of herpes infection also include
encephalitis, retinal necrosis, iridocyclitis, conjunctivitis, and genital herpes, all of which
impact quality of life [16,17]. In addition, HSV-1 was found to infect genital organs and
cause genital HSV infection contributing to pharyngitis, gingivostomatitis, keratitis, and
labialis [17–19].

2.3. Genital Herpes Infection

HSV-2 is a sexually transmitted virus and can cause a range of symptoms from
genital ulcers to severe neurodevelopmental disability and mortality [20]. A subset of
HSV-2-positive individuals develop genital herpes with painful genital vesicular lesions
and ulcers [17]. The condition is incurable and recurrent in some individuals. HSV-1 is
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traditionally associated with labial herpes (cold sores), but it can also cause genital herpes
through oral–genital contact. Antiviral drugs may be indicated to treat HSV infections, but
they cannot eradicate the virus within ganglion cells [21].

2.4. Neonatal Herpes Infection

The transmission of the herpes infection from the mother to the fetus/newborn can
result in three types of neonatal infection: intrauterine infection (5% of cases), postnatal
infection (10% of cases), and perinatal infections (85% of cases). Neonatal instances can
appear in a variety of ways. Some infants may only have skin, eye, or mouth disease,
while others may have broad infection dissemination or central nervous system (CNS)
involvement. [22]. Approximately 30% of neonatal herpes cases progress to CNS disease,
while around 25% develop a disseminated disease. The remaining 45% primarily experience
skin, eye, and mucosal disease. Long-term disability is more common among those who
have CNS and disseminated disease [23].

Mucosal membranes line various cavities and surfaces throughout the body and are
classified by their physical barrier properties into permissive, effector permissive, and
restrictive [24]. Permissive tissues support viral replication and are readily accessible by
immune cells, even in the absence of local inflammation or the presence of an antigen,
including the spleen, lung, liver, kidney, and adipose tissue [25,26]. Effector permissive
membranes are accessible by effector immune cells but not memory immune cells. Through
the presence of an antigen or inflammation, effector and memory T cells migrate to these
tissues and colonize them. Once the infection is resolved, these tissues become inaccessible
to circulating memory T cells, and examples are the gut, brain, and peritoneal cavity [27,28].
Restrictive tissues include the skin, vaginal epithelium, salivary glands, lung airways, gan-
glia, cornea, and sensory ganglia. These tissues are inaccessible to effector or memory T cells
in a steady state and are only accessible to effector T cells during local inflammation [27,29].
Beyond protective immune barriers, the main immune cell defense for protecting mucosal
tissues against exogenous antigens and pathogens are resident memory (TRM) and effector
memory (TEM) T cells [30].

3. Mechanism of Viral Latency

During the acute phase (3 to 10 days post-infection), the virus can be readily identified
within the sensory ganglia but rapidly disappears due to the adaptive immune response.
Viral reactivation after latency is usually accompanied by clinical complications of the
disease [31]. Latency of HSV-1 in the sensory neurons is thought to be due to the failure
of the IE gene or VP16 expression and impairment in the initiation of the lytic cycle [32].
In sensory neurons, the reactivation of the latent virus is mainly dependent on efficient
lytic cycle gene expression, which, in turn, relies on the transactivating function of the
VP16-induced complex that is formed by the structural proteins VP16, HCF-1, and Oct-
1 [33]. Studies on wild-type HSVs show many alternative pathways linked to latency that
involve viral DNA delivery into the neuronal cell nucleus. Therefore, latency is achievable
by mechanisms that do not require a complete block of viral gene expression and rely on
viral transcripts [32]. The research suggests that viral latency increases the risk of cancer by
inducing spontaneous mutations that result in chromosomal rearrangements, substitutions,
insertions, or deletions [34–36].

The latency-associated transcript (LAT) of HSV and its associated microRNA play a
role in the accumulation of viral lytic gene transcripts and limit HSV-IE gene expression [37].
Moreover, the post-translational modification of histones associated with HSV promoters
and the LAT intron are strongly associated with the control of latency [38,39]. The lack of
vaccine effect is no doubt secondary to virus latency in neurons where immune cells and
antibodies cannot gain access [40].

One of the HSV characteristics that may lead to failure in finding an appropriate
vaccine is the presence of the outer shell tegument protein, which bears a more disordered
outer shell of the virus. This phenomenon occurs in HIV as well. HSV-2 has a slightly
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more disordered tegument than HSV-1, making it difficult for effector immune cells and
antibodies to discover the virus with acceptable affinity. For that reason, the discovery of a
successful HSV-2 vaccine is a harder challenge [41,42].

4. Immune Reactions against HSV
4.1. Innate Immunity

The innate immune system serves as the initial line of defense in eukaryotic organisms.
The anatomical barrier-forming structural component and the chemical component are
the two primary parts of the innate immune system [43]. Viral infection initiates an innate
immune reaction by viral molecules, like DNA, RNA, and glycoproteins. Innate immune
cells first recognize pathogen-associated molecular patterns (PAMPs). Toll-like receptors
(TLRs) are expressed by innate mononuclear immune cells, including dendritic cells (DCs),
natural killer (NK) cells, and NKT cells, and are increased as part of the innate immune
response [44,45]. The immune cells have TLR ligands that inhibit HSV-2 replication in
genital herpes, indicating the function that TLRs play in immune defense against her-
pesvirus [46]. Type I interferon (IFN) is produced by the IFN-α1 transgenic pathway that
triggers RNA-dependent protein kinase (PKR) in response to viral identification, ultimately
leading to an antiviral state [47]. It has been found that NK cells help lower viral loads
and improve DC stimulatory ability. Activated NK cells can restore deficient CD8+ T cells
generated on their own and make up for the loss of CD4+ T cells [48]. Despite being widely
documented, the interaction between innate immunity and various viral diseases is not
taken into consideration in the design of new vaccines.

4.2. Adaptive Immunity against HSV

Current vaccines target adaptive immunity, specifically T cells and their effector
cytotoxic potential, and long-term memory cells to eliminate HSV or generate neutralizing
antibodies [49]. The innate immune response is the important trigger for the adaptive
immune response. Adaptive immunity consists of cellular and humoral immunity. The
main target of the adaptive immune response is to remove pathogens and generate long-
term memory immune cells.

4.3. Cellular Immunity

The crosstalk between CD4+ and CD8+ T cells is essential for viral clearance and
is required by the HSV-2-specific immune response [50]. CD4+ T cells contribute to the
effectiveness of therapies against HSV-2 [51]. However, CD8+ T cells are the only T cells
that persist at the dermal–epidermal mucosal junction (DEJ) [52]. DEJ tissue-resident
CD8a+ T cells are responsible for immune surveillance and the initial repression of HSV-2
reactivation in human peripheral tissue [53]. HSV antigens affect the IFN-γ production of
various memory T-cell subsets. CD8+ T cells exclusively produce IFN-γ, whereas memory
CD4+ T cells produce both IFN-γ and TNF-α [54].

Regulatory T cells (Tregs) play a role in HSV-2 infection. High levels of interferon were
detected in the draining lymph nodes and decreased at the site of infection in Treg-depleted
mice. Moreover, the absence of Tregs affected T cells, NK cells, and DCs trafficking to the
infection, which was accompanied by elevated levels of pro-inflammatory chemokines.
Thus, Tregs promote immune cell migration into infected tissue and constitute an early
protective response against HSV infection [55].

4.4. Humoral Immunity

B cells are immune cells that contribute to viral clearance by the secretion of antigen-
specific antibodies (IgG and IgA) against HSV [51]. In some situations, vaccines are
ineffective despite stimulating the production of HSV-2-specific antibodies [56]. In contrast,
the HSV vaccine drives B cell antibody production and protects against HSV-1 [56]. B
cells and DCs are synergistically induced via IFN-γ secretion by CD4+ T cells [57]. The
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pre-challenge level of pan-HSV-2 IgG correlates with the decline in HSV-2 viral shedding
and an improved survival rate [58].

A vaccine based on the fusion of the gD2 and IgG Fc fragments showed long-term
effective mucosal and systemic immune protection against HSV-2 [59,60]. HSV-specific IgG
was the primary factor that inhibited viral pathogenesis in cerebrospinal fluid (CSF) [61].
Collectively, B cells and antibodies are important in protecting against HSV infection.
Further preclinical research is required to define the mechanism behind B cell and antibody
participation in humoral defense.

4.5. Cytokines

Cytokines have either positive or negative impacts on immune reactions. For example,
IFN-α and IFN- l support resistance against genital herpes infection [51,62]. Conversely,
IL-15 is essential for NK- and NKT-cell innate immune responses [63] and mediates TLR
responses [64]. The pro-inflammatory cytokine TNF-α is the main cause of death in an
animal model of herpes infection, and a TNF-α antibody reduce death in mice lacking
CXCL10 [65].

Several cytokines and chemokines are secreted from non-immune cells and show a
protective effect on herpes infections. Keratinocytes secret TNF, IL-1, IL-6, IFN-a/b, CCL5,
CXCL9, CXCL10, CCL20, and CCL27, which play a protective role against HSV through
reducing viral spread in the keratinocytes and facilitate the recruitment of CD8+ T cells and
Th17 T cells [66–68].

5. Current Approaches for Design of HSV Vaccines

Out of nine Herpesviruses family members, herpes simplex viruses are the alpha
domain members of this family [69]. The herpes simplex virus (HSV) genome contains
more than 84 proteins that are encoded by over 90 unique genes [70]. The classification of
these proteins is traditionally based on their expression timing, with three classes identified:
immediate-early (α), early (β), and late (γ). The virus prioritizes the encoding of immediate-
early (α) genes, as their products are vital for the expression of the subsequent group of
genes. These genes include ICP0, ICP4, ICP27, ICP22, and ICP47. Early (β) genes encode
proteins that are mainly involved in viral DNA replication. The late (γ) genes produce
proteins that play a role in the assembly and release of virions. HSV possesses glycoprotein
spikes on its envelope, which are partially encoded by both the virus and the host’s nuclear
membrane. The glycoproteins included are gB, gC, gD, gH, and gL [71].

Currently, there is no vaccine available for HSV-1 and HSV-2, but there are multi-
ple vaccine candidates being developed that give some hope. These vaccines are being
created to target both prevention and therapy, and some may have applications for both
purposes [42,72,73]. A trivalent surface antigen vaccine contains HSV-2 glycoproteins C, D,
and E [74]. Protein subunit vaccines are safer than live-attenuated vaccines but provide only
a short-term immune response [42]. The multivalent DNA vaccine SL-V20 was tested on
mice and reduced clinical signs of infection. A nucleoside-modified mRNA vaccine could
be the next step in vaccine development [74]. Adenovirus-based vaccines are recombinant
vaccines, such as rAd-gD2∆UL25 and rAd-gD2 + rAd-∆UL25, and are shown to increase
survival rates and reduce viral replication [60]. Other vaccine candidates include HerpV
and GEN-003/MM2, which are currently in phase I/II clinical trials [75].

The most protective and economical method to overcome herpes infection is to find a
vaccine against infection and/or reactivation [76]. Several factors for rendering an effective
vaccine have been considered, including viral pathogenesis, immune responses to HSV,
formulation of the vaccine, adjuvants, and the route of immunization [77]. Approaches for
designing and testing potential vaccines conducted in preclinical and clinical stages are
listed in Table 1.

A live-attenuated virus is a more potent vaccine approach that is more immunogenic
than subunit vaccines and safer for individuals with immune deficiencies. However, some
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preclinical trials found that live-attenuated viruses, such as ICP0- and gE- HSV-2t, showed
protection in animals but were not effective in preventing viral latency [78–81].

Live-attenuated bacteria, like Salmonella typhimurium, are useful carriers for the expres-
sion of foreign antigens, including glycoprotein D (gD) and the immediate-early protein
ICP27 of HSV-1 [82]. Such vaccines have demonstrated efficacy in eliciting both CD8+

and CD4+ T-cell-mediated immune responses in models of infectious diseases and can-
cer [83–86], as well as controlling autoimmune diseases [87].

Protein-based subunit vaccines are a combination of glycoprotein and viral proteins
that can stimulate an immune response. This type of vaccine is safe and effective for some
viruses, such as the human papillomavirus, and may inhibit viral entry and shedding,
immune-evasive responses, and cell-to-cell transmission [88–92]. Peptide-based vaccines
work by targeting immune responses against specific antigens through single or multiple
peptide T-cell or B-cell epitopes. This demonstrates better results when combined with
bacterial or viral adjuvants and is protective [93,94]. The development of peptide-based
vaccines is hindered by the variation in immune responses to peptides among individu-
als [91,92].

DNA- and mRNA-based vaccines demonstrate moderate efficacy, which is greater
than that of subunit vaccines but less than that of live-attenuated vaccines [76,95,96].
Additionally, these vaccines have a higher effectiveness in stimulating the development of
neutralizing antibodies [97]. In comparison, adenovirus vector-based vaccines and DNA
exhibit a better stability profile, synthesis characteristics, and purification protocol than
mRNA vaccines. DNA vaccines are superior in limiting influenza, measles, flavivirus, HIV,
and malaria [76,95,98]. This vaccine design approach has been used to treat SARS-CoV2
and HSV [96,99].

There has been a recent development in herpes vaccination, where the activation of
tissue-resident memory (TRM) T cells was utilized [100]. This strategy induces systemic T-
cell responses, followed by activated T-cell recruitment via chemokines to infected mucosal
tissues [100–102]. This model, named the “prime/pull mucosal vaccine” concept, was
similarly implemented for other infectious diseases [103,104]. This approach is powerful in
controlling HSV-2 spread into the sensory neurons and has the ability to recruit more naïve
and central memory cells to enhance TEM and tissue TRM cell numbers [100,105]. However,
there is no evidence of this type of vaccine providing long-term protection, and there are
no data about the interaction of innate immune cells with this approach.

A recent approach has been adopted for a potentially curative therapy for herpes based
on gene editing technology, using CRISPR/Cas9 to modify the viral transcript (such as
meganucleases or a latent promotor or IL-15) and a delivery system of adenovirus vectors.
The benefit of this technology is that it provides unprecedented efficiency in eliminating
90% or more of latent HSV-1 virus DNA and up to 97% of latent HSV-2 DNA in animal
models, in addition to decreased viral shedding from infected ganglions. Although this
technology shows a promising trend for vaccines and therapy, dose optimization is still
required to avoid hepatotoxicity and histological neuronal injuries [106–109].
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Table 1. Current HSV-1 and HSV-2 vaccine approaches: different up-to-date strategies and clinical stages.

Classification Vaccine Design Year Stage Study Model Benefits Disadvantages References

Replication-
defective

Deletion of HSV-1
gH coding sequences

(SC16∆gH)
Deletion of HSV-2
UL5 gene or UL4

ORF (dl5) or UL29
gene or UL5 and

UL29 genes (dl5-29)
or ICP10∆PK

1994–2019 Preclinical and
clinical

Mice
Guinea pigs Human

Establishes a self-limiting infection.
Protects against acute infection, local viral

replication, primary disease, and
recurrence and shortens disease episodes.

Long-lasting immune responses over 6
months. Better potency for complete
protection. Induces defective viral
replication and latent infection by

reducing viral titer and shedding. Safe for
immunocompromised individuals.
Induces memory T cells by eliciting

HSV-specific T-helper type 1 and
increases IL-12 production by DCs.

Promotes increased T-cell responses and
anti-HSV neutralizing antibody

production. Effective against a wide
range of HSV strains.

No improvements in
duration of viral

shedding, frequency and
severity of recurrences,
and lesion healing time.

Non-efficient during first
recurrence of genital

HSV. Induces
delayed-type

hypersensitivity
responses. Some of the
antigens only induce

CD4+ T cells in
HSV-seropositive

individuals.

[110,111]

Replication-
defective

HSV-2 ICP8− with
B7 co-stimulation

molecules
Deletion of HSV-2

glycoprotein D

2007–2020 Preclinical Mice

Boosts FcγR-activating responses and
increases IgG2 antibodies. Increases
effector T-cell production of IFN–γ.

Decreases viral replication and spreading
in mucosa and to the sacral ganglia.

Improved overall survival.

Patients still show signs
of genital and

neurological disease.
Not applicable for

measuring reactivation
of latent virus.

[112,113]

Live-
attenuated

Live rHSV (R7017,
R7020, RAV9395,

VC2 with mutations
in gK, membrane

protein, R2)
HSV-1 0∆NLS,

HSV-2 0gD∆NLS

1998–2020 Preclinical Mice
Guinea pigs Rabbits

Reduces viral shedding and recurrent
disease in ocular and vaginal herpes, TG,
and brain neurons. gB induces expression

and release of IFN-γ, granzyme B, and
CD107a and decreases T-cell exhaustion

(LAG-3, PD-1, and TIM-3). Protects
against severe infections and lethal IV

antigen challenge.

Option as a prophylactic
vaccine, not as a

therapeutic vaccine.
Not sufficient to provide
broad protection against

HSV infection.

[72,76,78,
114,115]
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Table 1. Cont.

Classification Vaccine Design Year Stage Study Model Benefits Disadvantages References

Protein-based
subunit

gD2t, gD, gB, gE2
(mixed with
adjuvants)

2002–2020 Preclinical and
clinical

Mice
Guinea pigs Human

Protects against acute and recurrent
HSV-2. Induces antigen-specific CD8+ T

cells and high antibody levels and
reduces viral shedding. Induces

mobilization of DCs. Sustained durability
of response for up to 21 months.

[79,116,117]

Peptide-based

Neutralizing epitope
of CD8, CTL, and T

helper
HLA-A2 epitopes,
HSP + 32-35 mer

peptides

2011–2021 Preclinical
clinical Mice

Reduces vaginal lesions. Generates high
levels of mucosal antibodies (IgA). Able

to block viral infection.

Toxicological studies are
absent and not tested

against latent infections.
[91,92,118]

Naked DNA
vaccine

pDNA encoding
several genes 1995–2020 Preclinical and

clinical
Mice

Guinea pigs Human

Decreases viral shedding. Prevents
pathological progression after infection,

improves survival, and increases
infiltration of leukocytes. Induces specific

cytotoxic T cells and is safe and well
tolerated. Reduces latent viral load.

Limited protection
against lethal dose in the

animal model.
[76,119,120]

mRNA-based
HSV vaccine

Tri-HSV mRNA
encoding the

ectodomains of gC1,
gD1, and gE1

proteins

2023 Preclinical and
clinical

Mice
Human

Stimulates robust CD4+ T-helper cells and
germinal center B-cell responses and
produces high levels of antibodies.

BNT163 (BioNtTech, Mainz, Germany)
(ClinicalTrials.gov Identifier,

NCT05432583), mRNA-1608 vaccine
(Moderna Inc., Cambridge, MA, USA).

[121–123]

Prime-pull
vaccine

Adv viral peptides
+ T-cell chemokines

(CXCL-x)
2018 Preclinical

clinical

Mice
Guinea pigs

Rabbit
Human

Mobilizes tissue-resident and effector
T-cell subsets to the site of infection. Can

prime with different peptides or
adenoviral vectors. Shows humoral and

cellular immune activation against active
and latent infection.

Toxicological studies are
absent. [118]

CXCL: The chemokine (C-X-C motif) ligand; g: glycoprotein; ICP8: viral single-strand DNA-binding protein; LAG-3: lymphocyte-activation gene; ORF: open-reading frame;
PD-1: programmed death-1; pDNA:(plasmid DNA); rHSV: recombinant Herpes simplex virus; TG: trigeminal ganglion; TIM-3: T-cell immunoglobulin domain and mucin domain-3.

ClinicalTrials.gov
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6. T-Cell Epitope Vaccines

Sub-populations of diverse clones of memory CD8+ T cells can be categorized based
on differences in their phenotypes [114], effector function, proliferative capacity, anatomical
locations, and long-term fate [124,125]. After resolving a viral infection, around 90% of
effector CD8+ T cells are cleared, leaving 10% behind to transform into memory CD8+ T
cells [124,125]. The heterogeneity of memory CD8+ T cells is important in tracking the
developmental lineage of CD8+ T-cell subsets [126–129].

6.1. Identification of T-Cell Immunophenotypes to Evaluate T-Cell Vaccines

This analysis is crucial to identify the diverse subsets and functionality of memory
CD8+ T cells, including CD62L, CD44, IL-7R (CD127), CD69, CD11a, CCR5, CCR7, CD103,
and α4β7; IL-2/IFN-γ/TNF- α, perforin, granzymes A/B/C/K, and programmed death-1
(PD-1) for effector functions and/or dysfunction; and Bcl-2, CD122, CD28, CD57, CD27,
KLRG1, CXCR3, and CD43 for survival and/or proliferative capacity [130,131]. The expres-
sion of these markers mainly relies on (i) the type and duration of infection, (ii) inflamma-
tory cytokines, (iii) Ag-specificity, (iv) naïve T-cell precursor frequency, and (v) location
within the body [132–134]. CD8+ T-cell subsets may exhibit a range of differentiated pheno-
types, such as spanning short-lived effector CD8+ T cells (SLECs, IL7Rlow and KLRG1high),
memory precursor effector CD8+ T cells (MPECs, IL7Rhigh and KLRG1low) [135,136], central
memory T cells (TCM) (CD45RA−, CD62L+, and CCR7+), TEM (CD45RA−, CD62L−/dim,
and CCR7−), and TRM (CD45RO+, CCR7−, CD62Llow, CD69+, and CD103+) [137,138].

The non-functional and functional epitope stimulations are supplemental major factors
affecting the expression of phenotype markers of memory CD8+ T cells and hence define the
fate of antigen-specific memory CD8+ T cells. There are two theories advanced to explain
intravaginal infection with HSV-2. First, functional epitopes appear to preferentially induce
TEM that are destined to survive and become long-lived CD8+ T cells that reside within
the vaginal mucosal tissues (local site) (Figure 2). In contrast, non-functional epitopes
appear to induce central memory non-functional CD8+ T cells (systemic) (Figure 2). Second,
cytotoxicity hindrance occurs by viral-induced immune exhaustion to effector T cells or
immunosuppression induced by Tregs [139,140]. Memory CD8+ T-cell heterogeneity in
mucosa-cutaneous tissues depends on adhesion molecule expression patterns [141]. For
example, in mucosal tissue-resident cells, CD103 (α4β7 integrins), which binds to epithelial
cadherin (E-Cadherin), is highly expressed in the memory CD8+ T cells of HSV-seropositive
asymptomatic patients (Figure 2). This upregulation of CD103 on memory CD8+ T cells
mediated by TGF-β plays a critical role in the differentiation of memory T cells and rapid
infection control in mucosal tissues [142,143].

6.2. Functional Assays to Evaluate T-Cell Vaccines

These tests identify the capacity and the subsets of CD8+ T cells. Assays, like intracellu-
lar secreted cytokines, and some functional markers, like IL7R and KLRG1, assist in subset
differentiation. IL-6 is a potent inflammatory cytokine that works with IL-7R to support
the functionality of memory CD8+ T cells [144]. Polyfunctional CD8+ T cells are potential
surviving cells for the creation of MPECs because of their increased capacity to secrete
different cytokines. Some SLECs can give rise to a terminally differentiated population
of TEM cells [145,146]. Polyfunctional CD8+ T cells are responsible for protection against
ocular and genital herpes [147].

The inflammatory cytokine repertoire (IL-6, IL-8, and IL-12) during T-cell priming
controls the fate of effector CD8+ T-cell development [148], while IL-15 and other accessory
factors are necessary for cell survival [128,149]. The expansion and activation of CD8+

T cells primarily depend on the balance between inflammatory cytokines, like IL-2, and
anti-inflammatory cytokines, like TGF-β [149,150]. It remains unclear as to the mechanisms
by which the cytokine/chemokines milieu influences the selection of a heterogeneity model
of non-functional and functional epitope-specific memory CD8+ T-cell subsets.
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affinity recognized antigen, long-lived effector memory T cells are generated from these functional 
epitopes of the antigen with high frequency compared to central memory or naïve T cells and char-
acterized by higher expression of activity and tissue residency markers (CD103high, CD69high, 
CD11ahigh, CD49ahigh, CCR5high, and IFN-γhigh). 
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Figure 2. Kinetics of CD8 T cells in relation to functional versus non-functional epitopes. Functional
epitopes (on the left) appear to induce long-lived effector memory and tissue-resident CD8+ T cells
that reside within the mucosal tissues and related ganglions compared to non-functional epitopes of
herpes antigens, which induce short-lived effector memory T cells (on the right). Upon reactivation
of functional epitopes, naïve CD8 T cells are matured to central memory by the induction of pro-
inflammatory cytokines. EM/RM CD8 T cells show unique phenotypic characteristics that support
the function of viral clearance and long-term precursor of effector and memory CD8 T cells (on
the left). On contrast, non-functional epitopes generated short-lived memory T cells with a major
phenotype of central memory more than EM/RM CD8 T cells (on the right). Based on the high-affinity
recognized antigen, long-lived effector memory T cells are generated from these functional epitopes
of the antigen with high frequency compared to central memory or naïve T cells and characterized
by higher expression of activity and tissue residency markers (CD103high, CD69high, CD11ahigh,
CD49ahigh, CCR5high, and IFN-γhigh).

6.3. Transcriptome Analysis for T-Cell Vaccines

Several mRNA transcripts participate in the maturation of TEM cells [149,151]. Exam-
ples include Bcl2, Blimp1, Id2, Id3, Eomes, Tcf1, and T-bet [152]. Particularly, T-bet is a key
lineage-determining factor that promotes maturation toward SLECs or MPECs [127,148].
T-bet levels during inflammation change the fate of CD8 T cells, where high T-bet promotes
SLECs and low T-bet promotes MPECs [148,153]. The majority of functional CD8+ T cells
have a phenotype that is tissue-resident. Memory T cells are found in the infection site of
mucosal tissues, respond favorably to antigens or homeostatic cytokines (IL-15 and IL-7),
and have a reduced ability to migrate to lymphoid tissues [149]. Non-functional CD8+ T
cells are primarily central memory phenotype cells and lack the appropriate expression for
homing to inflammatory sites, such as lymph nodes, migratory molecule L-selectin, and
chemokine receptors (CCR7 and CCR5) [154,155].
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7. Conventional Method for Evaluating Efficacy of Herpes Vaccine by Differential CD8+

T-Cell Interactions against HSV

Conventionally, in viral vaccines, T cells are acknowledged for their importance in the
immune system by establishing a memory immune response using chemokines and their
protection capacity at mucosal surfaces and in viral infections, supporting the importance
of TRM cells in the control of mucosal herpesvirus infections [119,156]. Hence, T-cell
maturation subsets are used to evaluate the effectiveness of designed vaccines [157].

7.1. Resident Functional Memory CD8+ T-Cell Epitopes

HSV-2 is a sexually transmitted virus infecting vaginal mucosal (VM) tissues [100]. At
a steady state, effector and memory CD8+ T cells are inaccessible to restrictive VM tissues,
and cells can gain access only under the local inflammation of primary or recurrent herpes
infection [100]. A small subset of CD8+ T cells reside in the DEJ of the VM tissue where latent
HSV is released during reactivation from infected neurons of the sensory ganglia [53]. These
resident CD8a+ T cells in the DEJ tissue are responsible for the early containment of HSV-2
reactivation in the infected tissue [53]. The generation of protective VM-resident memory
CD8+ T-cell immunity against sexually transmitted HSV depends on the development of
long-lasting functional CD8+ TEM cells [127,149]. One of the unique benefits of mucosal
immunization is that it induces systemic and mucosal immune protection [158]. Studies
show the prime/boost VM vaccine (Lipo/rAdv5) induced robust long-lived HSV-specific
functional CD8+ T cells that protected against recurrent infection [159]. Compared to other
mucosal surfaces, VM tissues have more complicated intrinsic characteristics that support
the growth, survival, and retention of functional CD8+ TEM cells [100].

7.2. Types of Memory CD8+ T Cells

Memory CD8+ T cells are categorized into three major subtypes: TCM, TEM, and TRM
cells [160,161]. TCM cells are mainly located in the periphery and lymphoid tissues [143,162].
They are high in proliferation, secret IL-2 upon re-stimulation [163–165], and display
CD62Lhigh, CD44high, IL-7Rhigh, and CD103low [143,154,166]. Upon activation with viral
antigens, they undergo terminal differentiation for cytotoxic effector functions [143]. TRM
cells are mainly located in retained tissues within the portal entry sites of potential invading
pathogens that provide rapid long-term protection against tissue re-infection [143,162].
TEM cells are recognized by the downregulation of T-cell homing molecules (CD103high,
CD62Llow, and CCR7low) and upregulation of nonlymphoid homing adhesion molecules
and chemokine receptors [167,168]. A skin-resident HSV-specific CD8+ TEM/TRM cell
subset persisted up to 8 months after viral infection [141]. In contrast to TCM, TRM cells
express CD62Llow, CCR7low, CD11ahigh, CD69high, CD103high, and CD49ahigh [160,165].
Furthermore, TRM cells constitutively express high levels of granzyme B and eliminate
infected target cells with secreted perforin [138,163]. The similarities between both TEM
and TRM cells are that they differentiate and reside in extra-lymphoid tissues and have
an immediate effector function [169]. TRM cells are remarkable as they produce pro-
inflammatory antiviral cytokines, like IFN-γ, TNF- α, IL-22, and IL-17, and chemokines,
such as MIP-1 [170].

8. Important Perspectives of Immune Aspects for Designing a Successful Vaccine
against Herpes

Scientists are suffering from ineffective herpes vaccinations. Current herpes simplex
vaccines focus on T cells and B cells for developing cellular and humoral immune responses,
respectively [171]. Additional immune cell subsets should be considered when designing
an effective herpes vaccine. An intersection of innate immune pathways with the latent
HSV genome was documented [172]. The absence of overlap between innate and adaptive
responses is one of the weaknesses of the herpes vaccine research. Monocytes, macrophages,
and B cells are considered as viral reservoirs for viruses. Rather than serving as a vehicle
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for viral antigens to reach effector cells, they are tricked and turn into a target for the virus
to hide and spread [173,174].

Mononuclear phagocyte cells, including CD11b+, Ly-6C+, and Ly-6Glow monocytes,
CD68+ macrophages, and CD11c+, CD1c+, and MHC-II+ DCs, participate in cellular defense
against HSV. Immature and mature DCs are permissive in viral replication, while lytic
HSV infection is encouraged by immature DCs [175,176]. DCs and macrophages have the
capacity to trap and retain viruses. This capacity raises the question of whether DCs can
be infected by cell-to-cell contact with other adjacent cell types [175]. HSV-1 and HSV-2
induce DC paralysis by interfering with adhesion molecule expression, such as LFA-1 and
CD83 [177]. Monocytes carrying engineered HSV were tested in cancer models [176]. Mice
implanted with melanoma and infected with HSV showed Treg depletion, while patients
treated with depleting CD25 cells showed changes in T-cell dynamics [178]. However,
in transgenic mice with ocular HSV-1 infection, the infiltration of CD4 T cells resulted
in homeostatic expansion and worsening of the disease [179]. CD4 T-cell migration to
the site of infection and the subsequent phenotypic changes alter cell functionality via
MALAT1-mediated immunosuppression [180] or activation by granzyme B [181].

Monocytes and macrophages are the main sources of IL-1β during infection or stress
expressed and released throughout the body upon inflammation [182]. IL-1 receptor-type
1 (IL-1R1) activation typically leads to an inflammatory response or antiviral reactions in
most cell types. Monocytes and macrophages are known to be viral targets and vessels for
dissemination. Long-term viral latency and viral genome persistence within tissues are
intricately connected to the lineage of monocytes and macrophages. In response to herpes
infection, monocytes display heightened levels of proinflammatory signaling molecules
and initiate antiviral responses [174]. Latency is achieved through the combined effect
of immune suppression mechanisms and herpesvirus infections. In order to evade the
host’s innate immune system, HSV-1 has evolved multiple mechanisms that suppress host
antiviral elements, enabling efficient infection [183].

NK cells and plasmacytoid DCs (pDCs) are involved in the innate immune response
against HSV. Toll-like receptor 9 on pDCs allows them to recognize the herpesvirus DNA
found in endosomes. In response, they release large amounts of type I interferon, which
prevents the infection from spreading throughout the body. Interferon binds to NK cell
receptors, activating cells and allowing them to eradicate virus-infected cells [184–186].

Bortezomib, a proteasome inhibitor, impacts the lytic cycle of herpesviruses and
influences latent HSV-1 genomes to increase reactivation. This occurs independently
of any effects on the immune response. Nevertheless, a reduction in CD11b+, Ly-6C+,
and Ly-6Ghigh systemic neutrophils might increase the risk of adverse outcomes. This
emphasizes the relevance of neutrophils in controlling HSV-1 infection. IL-36γ released
by the epithelial mucosa recruits neutrophils to herpes-infected reproductive tissues and
protects neurons [187].

In mucosal tissues, mast cells (MCs) are involved in allergic reactions as well as
pathogen protection and monitoring [188]. MCs promote inflammation in ocular aller-
gies. They regulate the influx of polymorph mononuclear leukocytes, which inhibits viral
replication and reduces inflammation. They act as a reservoir for supplemental viral
replication [189]. MCs can increase leukocyte adhesion molecule expression and vessel
permeability [190,191]. During viral infection, they produce type I interferon and degrade
inflammatory mediators by MC protease 4 [192,193].

Brain microglia constantly survey their microenvironment for pathogens and, using
pattern recognition receptors, coordinate the innate immune response. Microglia in the
choroid plexus employ STING and interferon against HSV-1 [194]. IFNs are produced in
response to retinal necrosis, triggering the activation of the innate immune response. With
a loss of IFNs, the virus can spread to nearby and distant tissues faster [195]. Type 1 IFN
boosts the function of NK cells and regulates IFN-γ, CD4+, and CD8+ T cells. Nonetheless,
the type 1 response can be affected by pre-existing or concurrent type 2/Th2 immune
responses [196].
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Type 2 innate lymphoid cells (ILC2s) express MHCII, CD80, CD86, and OX40L and
function as APCs for T cells. Interaction between ILC2s and T cells is facilitated by HSV-IL-2
and increases T-cell autoreactivity. Nevertheless, the lack of ILC2s lessens the impact of
HSV-IL-2 on neurons, possibly by increasing chemokines. Neurons release chemokines
to attract protective T cells. On the other hand, HSV-IL-2 can suppress the production of
chemokines and thus limit T-cell activation. Such altered T cells may be involved in the
demyelination of infected neurons [197].

Finally, different immune cells and markers play a beneficial role in the design of
herpes vaccines, such as T cells, NK cells, NKT cells, and B cells. Other immune cells
are deceived by viruses and shelter inside these immune cells, including neutrophils,
monocytes, microglia, macrophages, DCs, MCs, and ILC2s. Both types of cells must be
considered when evaluating future vaccines.

9. Conclusions

The development of an efficient herpes vaccine requires a deeper understanding of the
relationship between immune response and the disease process. Current vaccines cannot
overcome herpes hiding and latency in neurons. Adding to this are innate and adaptive
immunity imbalance, abnormal levels of specific cell types, and the activation, exhaustion,
and proliferation markers and cytokines. The aforementioned factors figure into the success
of any vaccine. In this regard, the crosstalk between tissue-resident and humoral immune
cells may prove a fruitful line of inquiry. Collectively, these factors have to be considered in
immunological mathematical modeling to assess a successful vaccine, which has not been
achieved yet. Ignoring one immune subset while assessing vaccination efficacy will result
in failure and ineffective vaccines.
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