Lawrence Berkeley National Laboratory

Recent Work

Title NUCLEAR REACTION Q-VALUES

Permalink

https://escholarship.org/uc/item/6nq5b714

Authors

Maples, C. Goth, G.W. Cerny, J.

Publication Date

1966-07-01

a ma' Na manya ami wa manya na ka manya

DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.

Research and Development

1)

1 1

UCRL-16964 grata UC-34 Physics TID-4500 (48th Ed.) see errata at back of report

UNIVERSITY OF CALIFORNIA

Lawrence Radiation Laboratory Berkeley, California

AEC Contract No. W-7405-eng-48

NUCLEAR REACTION Q-VALUES

C. Maples, G. W. Goth and J. Cerny

July 1966

Printed in USA. Price \$7.00. Available from the Clearinghouse for Federal Scientific and Technical Information, National Bureau of Standards, U.S. Department of Commerce, Springfield, Virginia. ₹ *i*

1 '___

() } '

\$

5

1

1 1

NUCLEAR REACTION Q-VALUES

C. Maples, G. W. Goth and J. Cerny

Lawrence Radiation Laboratory and Department of Chemistry University of California Berkeley, California

July 1966

ABSTRACT

Tables of Q-values for nuclear reactions have been calculated from the currently available mass data on the nuclides. The calculations were carried out on all stable and naturally occurring radioactive isotopes from a Z of 2 to 92, as well as on a few common long-lived isotopes. The tabulated reactions involve the following:

Outgoing Particles

and B¹¹

He⁶, Li⁶, Li⁷, Li⁸, Li⁹,

Be⁷, Be⁹, Be¹⁰, B⁸, B¹⁰

Incoming Particles Isotope γ , n, p, d, t, He³, He⁴, γ , n, p, d, t, He³, He⁴, 5< Z< 22 Li^{6} , Li^{7} and C^{12}

0

 γ , n, p, d, t, He³, He⁴, γ , n, p, d, t, He³, He⁴, 2< Z< 4 and Li^{6} , Li^{7} and c^{12} He⁶ and Li⁶ 23< Z< 92

The computations were carried out using the FORTRAN IV program SHADRACH on an IBM-7094 computer. This program, which will be made available on request, contains all the stored mass information and permits the calculation of Q-value matrices for any set of incident and exit particles.

NUCLEAR REACTION Q-VALUES

C. Maples, G. W. Goth and J. Cerny

Lawrence Radiation Laboratory and Department of Chemistry University of California Berkeley, California

July 1966

I. INTRODUCTION

With the current advances in particle detection equipment and the advent of modern accelerators, some experimental nuclear physicists are expanding their research to include more complex nuclear reactions. The purpose of this report is to provide nuclear reaction Q-value information that includes some of these complex multi-nucleon transfer reactions and which utilizes the improved atomic mass information that has become available in the past few years.

In compiling the mass data for this report we relied largely on recent compilations by other authors 1,2,3, although eighty-six of these mass assignments have been revised in accordance with new experimental measurements and twenty-three new isotopes have been added. These additions and revisions are listed in Table I and discussed in Section II.

The choice of targets and the size of the Q-value matrices have been somewhat limited by space considerations. Matrices have therefore been calculated for all stable and naturally occurring radioactive isotopes (according to the Chart of the Nuclides, General Electric, 1966) and for a few common long-lived isotopes of $Z \leq 20$; the Table of Contents gives a full list of the target nuclides. The two-body reactions chosen and their inherent Q-values and errors are given in Table II. A more detailed description of the Q-value tables on pages 1 to 3^{hh} is given in Section III.

.]

٢

It was realized that our selection of both targets and reactions would be inadequate to cover the needs of many experimenters. For this reason the FORTRAN IV program SHADRACH will be made available on request. With this code it is possible to calculate any desired set of nuclear reactions on any series of targets. Furthermore the program includes a convenient means of maintaining an up-to-date mass table. A more complete discussion is given in Section IV.

II. ATOMIC MASSES

Three compilations formed the basis for the atomic mass data used in this report. That of Lauritsen and Ajzenberg-Selove ¹⁾ was used from mass 5 to 10. The 1964 Atomic Mass Table of Mattauch, Thiele and Wapstra ²⁾ was used for masses 1 through ⁴ and 11 through 205. For the masses over 205 we used a recent revision of the 1964 Mass Table ³⁾. This revision includes the recent experimental data in that mass region and corrects the masses of all the nuclides decaying by an α - β decay chain into Bi²¹³. The previously reported mass excesses of these nuclides have been found to be in error ³⁾. This new information from Wapstra is derived in the same manner as in the earlier mass table ²⁾.

An attempt was made in the mass 1 to 205 region to include more recent experimental information than was available in the above compilations. Table I gives a list of changes or additions to references 1 and 2. Those mass excesses listed as estimates are based on indirect experimental measurements. With these exceptions only direct experimental determinations of masses were used. It should be noted that while Table I includes no mass predictions, references 2 and 3 do include mass values derived from estimated α or β -decay energies, and these values are contained in the following tables. Token errors of 1 MeV have been assigned to such values ²⁾. Q-values listed in the matrices as having errors of 1 MeV or

2

-vi-

Table I. Additions and revisions to mass data.

 \sim

1 3

 \cap

 \sim

1.1

}

<u>___</u>

100

Z	ISOTOPE	MASS EXCESS (MeV)	ERROR (MeV)	REF. NO.	Z	ISOTOPE	MASS EXCESS (MeV)	ERROR (MeV)	REF. NO.
0	H_8	31 650	0 120	11	31	6.67	-66,862	0.010	23
~	12	31.000	0.120	· •	1	Ga ⁷⁵	-68.530	0.200	31 .
4	· * Be	25.100	1.000	2	32	Ge ⁷¹	-69.8992	0.0046	23
6	C ⁹	28,990	0.070	6		Ge ⁷⁸	-71.760	0.200	32
7	N ¹² 18	17.349	0.009	7		As ⁸¹	-72,600	0.200	- 31
	NTO	13.100	0.400	8	55	a 75		0.0007	00
8	. 0 ¹³	23.110	0.070	6	34	se ¹⁷	- 12.1664	0.200	23
9	F ¹⁶	10.686	0.040	9 · .		- 75	-17.440	0.200	
	F ²²	4.500	0.060	10	35	Br 12 86	-69.159	0.020	34
10	Ne^{17}	16.510	0.200	11		Br ⁸⁷	-74.600	0.500	35
11	Na ²⁰	6,980	0,080	12	26	74	(1, 23.0	1 000	
10	¥ Ma ²⁰	16 100	1 500	12 (No ²⁰)	30	Kr ¹ Kr ⁷ 5	-61.310	1.000	30 (Br ⁷⁵)
16	* Mg ²¹	10.900	. 0.200	то, (Na)		Kr ⁹⁰	-74.806	0.100	(Sr^{90})
	Mg ²²	- 0.380	0.050	4		_{Ph} 83	70, 160	1 000	37
12	AJ ²⁴	0.070	0.060	70	31	- R0 	- 19,100	0.007	50
12	25	- 0.010	0.000	12		Rb ⁹⁰	-79.366	0.100	(Sr ⁹⁰)
1.4	* Si	4.000	0.200	14	28	83	-76 050	1 000	38 (BD 83)
	. 28	-24.090	0.001	15	50	5r90	-85.956	0.005	$20.(19^{90})$
15	P	- 7.120	0.060	79	1 · · ·	Sr ⁹¹	-83.678	0.012	(Y ⁹¹)
16	* s ²⁹	- 2.900	0.200	16		sr ⁹³	-79.420	0.100	(Zr ⁹³)
	s 30	-13.957	0.025	17	39	y ⁹⁰	-86.502	0.004	39,40,20
18	Ar^{33}	- 9.600	0.200	27,18		y ⁹¹	-86.348	0.007	40
19	к ³⁷	-24.7996	0.0031	19		⁹³ کو	-84,223	0.021	(Zr ⁹³)
	к ⁴²	-35.016	0.012	20	40	Zr ⁹³	-87.113	0.006	41
	к44	-36.210	0.200	21		Zr ⁹⁸	-82.010	1.000	(100 ⁹⁸)
20	Ca ³⁷	-13.240	0.050	22	41	ND ⁹²	-86.455	0.010	42
	Ca ⁴¹	-35.125	0.004	23		Nb 98	-83.510	0.200	43
	* Ca ⁵⁰	- ¹ +1.100	1.000	24	42	M0 ⁹⁰	-80.173	0.013	44
21	Se ⁴⁰	-20.380	0.060	25		101		0.002	հե
	Sc ⁴¹	-28.630	0.011	(Ca ⁴¹)	46	Pa -	-07.404	0.023	47
	Sc ⁴²	-32.109	0.004	26	48	Cd ¹⁰⁹	-88.549	0.008	46
22	* Ti ⁴¹	-15.830	0,100	27,(Ca ⁴¹)	49	In ¹⁰⁸	-84.730	0.050	47
23	v ⁴⁶	-37.069	0.003	26		In ¹⁰⁹	~ -86.530	0.013	(Cd. 109)
	v ⁴⁹	-47.9565	0.0022	- 23		- In ¹¹¹ _ 120	-88,585	0.008	39,20 1.8
	v ⁵³	-51.780	0.050	28		In	-05.500	0.600	40
25	Mn ⁵⁰	-42.618	0.005	26	52	Te	-82.500	0.700	49
	Mn ⁵³	-54.6828	0.0034	23	53	1 ¹¹⁸	-80.700	1.100	50
26	Fe ⁵⁵	-57.4728	0.0034	23		I ₁₃₀	-86.890	0.011	51
27	Co ⁵⁷	-59,3389	0.0046	23	54	Xe ¹²⁷	-88.441	0.023	52
~ '		£1,3500	0.0000		55	Cs ¹²⁷	-86.341	0.060	(Xe ¹²⁷)
20	N1	-01.1999	0.0039	20		Cs ¹³⁸	-83.660	0.077	53
30	Zn ⁷²	-68.144	0.009	30	57	La^{135}	-86.820	0.220	54

* Estimated value

Table I. (cont.)

-82.9 -39 -85.0 -84.7	30 0.054 +8 0.054	55		71	, 170			
-85.0 -85.0 -84.7	+8 0.054	-1		1 -	שע	-57.120	0.060	68
-84.7		56	· · · · ·		Lu ¹⁷⁹	-48.920	0.090	53
47	35 0.025	57		72	Hr ¹⁷⁵	-54-700	0.060	69
	30 0.200 30 0.400	58 58		73	Ta ¹⁷⁷	-51.562	0.070	, 53
40 81 11		(1-140)			Ta ¹⁰²	-46.344	0.038	70
-78.1	78 0.017	. 78 .		75	Re ¹⁸⁹	-37.825	0.080	71
-81.3	35 0.056	. 60		76	0s ¹⁹⁴	-32-375	0.023	72
-75.6	60 0.030	59		77	Ir ¹⁹² 194	-34.733	0.060	73
-69.4	19 0.035	61			Ir/ 196	-32.472	0.023	74
-59 -66.0	16 0.050	62	· ·		Ir	-29.233	0.024	75
-60 -67.8	+6 0.019	63.64		79	Au ¹⁹⁵	-32.548	0.017	76
65 65					Au ¹⁹⁸	-29.594	0.006	77
-62.8	70 0.035	65			Au ¹⁹⁹	-29.085	0.007	77
-61.8	76 0.034	66						•
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$							

l

greater have in general relied on at least one of these estimates. All values are atomic mass excesses in MeV on the C^{12} scale.

In compiling Table I we have chosen to use the experimental data of the reference cited. Where there are multiple references to an isotope, the first is to be considered the prime reference used in determining the listed mass excess. No attempt was made to average experimental measurements. In cases where an isotope is listed as a reference, a change in the mass of the reference isotope has affected the mass of the reported nuclide. This occurs when masses are related through β -decay chains. The error on the mass excesses shown in Table I is either the experimental error or - primarily for β -decay chain data - the rms value obtained using the experimental error of the decay energy and the error in the mass of the daughter nuclide. Often the β -decay this is indicated by reporting the mass excess of the parent to more significant figures than the error placed on it would warrant.

III. DESCRIPTION AND USE OF TABLES

A matrix of the tabulated reactions is shown in Table II together with the inherent mass difference and error for each. The (X,γ) row of this Table provides the mass excess and error of the incident particles while the (γ, X) column (with a sign change) gives the mass excess and error of the outgoing particles.

On pages 1 through 344 the Q-values for the various reactions on 293 isotopes are tabulated in matrix form. The general notation for the reaction is:

Target (incoming, outgoing) Product.

The ten incoming particles are the same on all targets:

 γ , n, p, d, t, He³, He⁴, Li⁶, Li⁷ and C¹².

Nine outgoing particles are also common to all targets:

 γ , n, p, d, t, He³, He⁴, He⁶ and Li⁶.

In addition for targets of $5 \le 2 \le 22$, reactions involving the following outgoing particles are also tabulated:

 Li^7 , Li^8 , Li^9 , Be^7 , Be^9 , Be^{10} , B^8 , B^{10} and B^{11} .

Across the top of each matrix is written the symbol and mass number of the target nucleus, its mass excess and error. Beneath the target information is a list of the incoming particles. The outgoing particles are listed along the left hand margin. In the box corresponding to the intersection of the "incoming" column and the "outgoing" row there are, in general, four pieces of information pertaining to that reaction as follows:

Q-value of the reaction (MeV)

Error in Q-value (MeV)

Symbol and mass number of product nucleus Mass excess of product nucleus (MeV).

The following special cases are, however, somewhat different:

- In elastic scattering reactions only the symbol and mass number of the target appears.
- (2) Some capture reactions in the light elements are redundant when the composite nucleus is also a tabulated "outgoing" particle (e.g. He³(n,α)γ). In this case the word GAMMA appears in place of the product nucleus and no mass excess is given.
- (3) In a reaction which does not conserve nucleons or <u>when the product nucleus</u> <u>consists solely of multiple protons or neutrons</u>, the words NO REACTION appear.
- (4) In reactions where the mass of the product nucleus is not known, the words MASS XX UNKNOWN are written, where XX stands for the symbol and mass number of the nuclide in question.

In the very light elements we also suppress entirely those rows of the matrix in which the exit particle corresponds identically with the target nucleus, a case which reduces to simple elastic scattering.

Table II. Atomic mass differences and uncertainties (all in MeV).

IN OUT	GAMMA	N	Р	D .	T	He ³	He ⁴	Li ⁶	Li ⁷	c ¹²
GAMMA		8.0714 <u>+</u> .0001	7.2890 +.0001	13.1359 <u>+</u> .0001	14.9499 +.0002	14.9313 ±.0002	2.4248 +.0004	14.0884 +.0011	14.9073 <u>+</u> .0011	0.0000 <u>+</u> .0000
N	- 8.0714		- 0.7824	5.0645	6.8785	6.8599	- 5.6467	6.0170	6.8359	- 8.0714
	+.0001		+.0001	+.0001	<u>+</u> .0002	+.0002	+.0004	+.0011	+.0011	+.0001
Ρ	- 7.2890	0.7824		5.8469	7.6610	7.6423	- 4.8642	6.7994	7.6183	- 7.2890
	+.0001	+.0001		+.0001	+.0002	+.0002	+.0004	+.0011	+.0011	+.0001
D	-13.1359 +.0001	- 5.0645 +.0001	- 5.8469 +.0001		1.8140 +.0002	1.7954 +.0002	-10.7112 +.0004	0.9525 +.0011	1.7714 <u>+</u> .0011	-13.1359 +.0001
Т	-14.9499 +.0002	- 6.8785 +.0002	- 7.6610 +.0002	- 1.8140 +.0002	· · ·	- 0.0186 +.0003	-12.5252 +.0004	- 0.8615 +.0011	- 0.0426 +.0011	-14.9499 +.0002
He ³	-14.9313	- 6.8599	- 7.6423	- 1.7954	0.0186		-12.5066	- 0.8429	- 0.0240	-14.9313
	+.0002	±.0002	+.0002	<u>+</u> .0002	<u>+</u> .0003		+.0004	+.0011	+.0011	<u>+</u> .0002
He ⁴	- 2.4248	5.6467	4.8642	10.7112	12,5252	12.5066	·	11.6636	12.4825	- 2.4248
	+.0004	+.0004	+.0004	±.0004	±.0004	<u>+</u> .0004		<u>+</u> .0012	<u>+</u> .0012	<u>+</u> .0004
He ⁶	-17.5982	- 9.5268	-10.3092	- 4.4623	- 2.6483	- 2.6669	-15.1734	- 3.5098	- 2.6909	-17.5982
	+.0040	+.0040	+.0040	+.0040	+.0040	<u>+</u> .0040	<u>+</u> .0040	+.0041	+.0041	+.0040
Li ⁶	-14.0884 +.0011	- 6.0170 +.0011	- 6.7994 +.0011	- 0.9525 +.0011	0.8615 <u>+</u> .0011	0.8429 <u>+</u> .0011	-11.6636 +.0012	- <u></u> -	0.8189 <u>+</u> .0016	-14.0884 +.0011
Li ⁷	-14.9073	- 6.8359	- 7.6183	- 1.7714	0.0426	0.0240	-12.4825	- 0.8189	. ·	-14.9073
	<u>+</u> .0011	+.0011	+.0011	+.0011	+.0011	+.0011	+.0012	+.0016		<u>+</u> .0011
Li ⁸	-20.9462	-12.8748	-13.6572	- 7.8103	- 5.9962	- 6.0149	-18.5214	- 6.8578	- 6.0389	-20.9462
	+.0015	+.0015	+.0015	+.0015	<u>+</u> .0015	<u>+</u> .0015	+.0016	+.0019	+.0019	<u>+</u> .0015
Li ⁹	-24.9650	-16.8936	-17.6760	-11.8291	-10.0150	-10.0337	-22.5402	-10.8766	-10.0577	-24.9650
	<u>+</u> .0200	+.0200	<u>+</u> .0200	+.0200	+.0200	+.0200	+.0200	+.0200	+.0200	+.0200
Be ⁷	-15.7689	- 7.6975	- 8.4799	- 2.6330	- 0.8190	- 0.8376	-13.3441	- 1.6805	- 0.8616	-15.7689
	+.0011	+.0011	+.0011	+.0011	+.0011	+.0011	+.0012	+.0016	+.0016	<u>+</u> .0011
Be ⁹	-11.3505	- 3.2791	- 4.0615	1.7854	3.5994	3.5808	- 8.9257	2.7379	3.5568	-11.3505
	+.0009	+.0009	+.0009	<u>+</u> .0009	<u>+</u> .0009	+.0009	+.0010	+.0014	+.0014	+.0009
Be ¹⁰	-12.6070	- 4.5356	- 5.3180	0.5289	2.3429	2.3243	-10.1822	1.4814	2.3003	-12.6070
	<u>+</u> .0022	<u>+</u> .0022	+.0022	±.0022	+.0022	<u>+</u> .0022	+.0022	+.0025	<u>+</u> .0025	<u>+</u> .0022
в	-22.9231	-14.8517	-15.6341	- 9.7872	- 7.9732	- 7.9918	-20.4983	- 8.8347	- 8.0158	-22.9231
	+.0015	+.0015	+.0015	+.0015	+.0015	<u>+</u> .0015	+.0016	+.0019	+.0019	+.0015
. B ¹⁰	-12.0522	- 3.9808	- 4.7632	1.0837	2.8978	2.8791	- 9.6274	2.0362	2.8551	-12.0522
	+.0005	+.0005	+.0005	+.0005	+.0005	+.0005	+.0006	+.0012	+.0012	+.0005
B	- 8.6677	- 0.5962	- 1.3787	4.4682	6.2823	6.2637	- 6.2429	5.4207	6.2396	- 8.6677
	<u>+</u> .0003	<u>+</u> .0003	<u>+</u> .0003	±.0003	<u>+</u> .0004	<u>+</u> .0004	<u>+</u> .0005	<u>+</u> .0011	<u>+</u> .0011	+.0003

ł

REFERENCES

~ l.	T. Lauritsen and F. Ajzenberg-Selove, Nucl. Phys. 78, 1 (1966).
2.	J. H. E. Mattauch, W. Thiele and A. H. Wapstra, Nucl. Phys. <u>67</u> , 1 (1965).
3.	A. H. Wapstra, private communication. A. H. Wapstra, Z. Naturforsch. <u>21a</u> , 68 (1966).
4.	J. Cerny, S. W. Cosper, G. W. Butler, R. H. Pehl, F. S. Goulding, D. A. Landis and C. Detraz, Phys. Rev. Letters <u>16</u> , 469 (1966).
5.	A. M. Poskanzer, P. L. Reeder and I. Dostrovsky, Phys. Rev. <u>138</u> , B18 (1965).
6.	J. Cerny, R. H. Pehl, G. Butler, D. G. Fleming, C. Maples and C. Detraz, Phys. Letters <u>20</u> , 35 (1966).
7.	R. W. Kavanagh, Phys. Rev. <u>133</u> , B1504 (1964).
8.	L. F. Chase, Jr., H. A. Grench, R. E. McDonald and F. J. Vaughn, Phys. Rev. Letters <u>13</u> , 665 (1964).
9.	C. D. Zafiratos, F. Ajzenberg-Selove and F. S. Dietrich, Phys. Rev. <u>137</u> , B1479 (1965).
10.	F. J. Vaughn, R. A. Chalmers, L. F. Chase, Jr. and S. R. Salisbury, Phys. Rev. Letters <u>15</u> , 555 (1965).
11 .	R. A. Esterlund, R. McPherson, A. M. Poskanzer and P. L. Reeder, submitted for publication in The Physical Review. R. McPherson, J. C. Hardy and R. E. Bell, Phys. Letters <u>11</u> , 65 (1964).
12.	R. H. Pehl and J. Cerny, Phys. Letters <u>14</u> , 137 (1965).
13.	R. D. MacFarlane and A. Siivola, Nucl. Phys. <u>59</u> , 168 (1964).
14.	R. McPherson and J. C. Hardy, Can. J. Phys. <u>43</u> , 1 (1965).
15.	R. L. Brodzinski, J. R. Finkel and D. C. Conway, J. Inorg. Nucl. Chem. <u>26</u> , 677 (1964).
16.	J. C. Hardy and R. I. Verrall, Phys. Letters 13, 148 (1964).
17.	W. R. McMurray, P. Van der Merwe and I. J. Van Heerden, Phys. Letters <u>18</u> , 319 (1965).
18.	J. C. Hardy and R. I. Verrall, Can. J. Phys. <u>43</u> , 418 (1965).
19.	D. R. Goosman and R. W. Kavanagh, private communication. R. W. Kavanagh and D. R. Goosman, Phys. Letters 12, 229 (1964)

1 .

- H. Daniel, G. Th. Kaschl, H. Schmitt and K. Springer, Phys. Rev. <u>136</u>, B1240 (1964).
- 21. Peter Hille, Oesterr. Akad. Wiss., Math. Maturw. Kl., Anz., No. <u>12</u>, 195 (1961).
- 22. J. Cerny, S. W. Cosper, G. W. Butler and R. L. McGrath, Lawrence Radiation Laboratory Report No. UCRL-16990 (1966)(unpublished).
- 23. C. H. Johnson, C. C. Trail and A. Galonsky, Phys. Rev. <u>136</u>, B1719 (1964).
- 24. Y. Shida, M. Ishihara, K. Miyano and H. Morinaga, Phys. Letters <u>13</u>, 59 (1964).
- 25. M. E. Rickey, P. D. Kune, J. J. Kraushaar and W. G. Anderson, Phys. Letters <u>17</u>, 296 (1965).
- 26. J. M. Freeman, G. Murray and W. E. Burcham, Phys. Letters 17, 317 (1965).
- 27. A. M. Poskanzer, R. McPherson, R. A. Esterlund and P. L. Reeder, submitted for publication in The Physical Review.
 P. L. Reeder, A. M. Poskanzer and R. A. Esterlund, Phys. Rev. Letters <u>13</u>, 767 (1964).
- 28. A. W. Schardt and B. J. Dropesky, Bull. Am. Phys. Soc., Series II, <u>1</u>, 162 (1962).
- 29. J. L. Meason and P. K. Kuroda, Phys. Rev. 138, B1390 (1965).
- 30. T. T. Thaites, Phys. Rev. 129, 1778 (1963).
- 31. Haruhiko Morinaga, Tokihiro Kuroyanagi, Hidehiko Mitsui and Katsufusa Shoda, J. Phys. Soc. Japan 15, 213 (1960).
- 32. E. Kvåle and A. C. Pappas, Nucl. Phys. 74, 27 (1965).
- 33. R. G. Cochran and W. W. Pratt, Phys. Rev. 113, 852 (1959).
- 34. K. A. Baskova, S. S. Vasil'ev, No Seng Ch'ang and L. Va. Shavtvalov, Sov. Phys. JETP (English translation) <u>14</u>, 1060 (1962).
 S. C. Fultz and M. L. Pool, Phys. Rev. <u>86</u>, 347 (1952).
- 35. Evan T. Williams, Ph.D. Thesis, Massachusetts Institute of Technology (1963).
- 36. J. H. Gray III, H. L. Hamester and A. A. Caretto, Jr., Phys. Rev. <u>120</u>, 977 (1960).
- 37. I. Dostrovsky, S. Katcoff and R. W. Stoenner, Phys. Rev. 136, B44 (1964).
- 38. Tokihiro Kuroyanagi, J. Phys. Soc. Japan 16, 2363 (1961).

-xv-

Ì

1

41.	E. P. Steinberg and L. E. Glendenin, private communication to C. M. Lederer.
42.	R. K. Sheline, C. Watson and E. Hamburger, Phys. Letters $\underline{8}$, 121 (1964).
43.	C. J. Orth and R. K. Smith, J. Inorg. Nucl. Chem. <u>15</u> , 4 (1960).
44.	H. Pettersson, G. Bäckström and C. Bergman, private communication to C. M. Lederer.
45.	J. S. Evans, E. Kashy, R. A. Naumann and R. F. Petry, Phys. Rev. <u>138</u> , B9 (1965).
46.	R. B. Moler and R. W. Fink, Phys. Rev. <u>139</u> , B282 (1965).
¥7.	Toshio Kato, Masro Nozawa, Yasukaru Yushizawa and Yujiro Koh, Nucl. Phys. 36, 394 (1962).
48.	J. Kantele and M. Karras, Phys. Rev. 135, B9 (1964).
49.	R. Reising and B. D. Pate, Nucl. Phys. <u>61</u> , 529 (1965).
50.	F. D. S. Butement and S. M. Qaim, J. Inorg. Nucl. Chem. <u>27</u> , 1729 (1965).
51.	H. Daniel, M. Kuntze, B. Martin, P. Schmidlin and H. Schmitt, Nucl. Phys. <u>63</u> , 145 (1965).

Par. S. André and P. Depommier, J. Physique 25, 673 (1964).

L. M. Langer, E. H. Spejewski and D. E. Wortman, Phys. Rev. 135,

39.

40.

B581 (1964).

- 52. M. Bresesti, F. Cappellani and A. M. Del Turco, Nucl. Phys. <u>58</u>, 491 (1964).
- 53. <u>Nuclear Data Sheets</u>, compiled by K. Way, et. al. (Printing and Publishing Office, National Academy of Sciences - National Research Council, Washington 25, D. C.) as of July 1966.
- 54. S. Morinobu, T. Hirose and K. Hisatake, Nucl. Phys. 61, 613 (1965).
- 55. M. Fujioka, K. Hisatake and K. Takahasi, Nucl. Phys. 60, 294 (1964).
- 56. E. I. Biryukov, V. T. Novikov and N. S. Shimanskaya, Bull. Acad. Sci. USSR, Phys. Ser. (English translation) <u>27</u>, 1383 (1963).
- 57. K. Hisatake and Y. Yoshida, Nucl. Phys. 56, 625 (1964).
- 58. D. C. Hoffman and W. R. Daniels, J. Inorg. Nucl. Chem. 26, 1769 (1964).
- 59. R. Messlinger, H. Morinaga and C. Signorini, Phys. Letters <u>19</u>, 133 (1965).
- 60. K. S. Toth, T. H. Handley, E. Newman and I. R. Williams, Phys. Rev. <u>136</u>, Bl235 (1964).

-xvii-

•\$`*.

61.	Yoshijirô Shida, J. Phys. Soc. Japan <u>19</u> , 245 (1964).
62.	T. Iwashita, J. Phys. Soc. Japan <u>20</u> , 2105 (1965).
63.	C. M. Lederer, J. M. Hollander and I. Perlman, <u>Table of Isotopes</u> , 6th Edition, Wiley and Sons, New York, to be published 1966.
64.	G. Bertolni, M. Bettoni and E. Lazzarini, Nuovo Cimento 3, 754 (1956).
65.	Z. Preibisz, W. Kurecwicz, K. Stryczniewics and J. Zylicz, Phys. Letters <u>14</u> , 206 (1965).
66.	E. R. Grigor'ev, K. Ya. Gromev, B. S. Dzhelepov, Zh. T. Zhelev and V. Zrol'ska, Bull. Acad. Sci. USSR, Phys. Ser. (English translation) <u>25</u> , 1227 (1961).
67.	K. Ya. Gromev, B. S. Dzhelepov, Y. Zvol'skii, N. A. Lebedev and Ya. Urbanets, Bull. Acad. Sci. USSR, Phys. Ser. (English translation) 26, 1027 (1962).
68.	P. G. Hansen, N. L. Nielsen, K. Wilsky and J. Treherne, Phys. Letters <u>19</u> , 304 (1965).
69.	L. Funke, H. Graber, K. H. Kaun, H. Sodan and L. Werner, Nucl. Phys. <u>70</u> , 347 (1965).
70.	P. G. Hansen, H. L. Nielsen and K. Wilsky, Nucl. Phys. <u>54</u> , 657 (1964).
71.	P. H. Blichert-Toft, Arkiv. Fys. <u>28</u> , 415 (1965).
72.	David C. Williams, Phys. Rev. <u>143</u> , 855 (1966).
73.	M. W. Johns and M. Kawamura, Nucl. Phys. <u>61</u> , 385 (1965).
74.	J. D. MacArthur and M. W. Johns, Nucl. Phys. <u>61</u> , 394 (1965).
75.	W. N. Bishop, Phys. Rev. 138, B514 (1965).
76.	W. Goedbloed, E. Mastenbroek, A. Kemper and J. Blok, Physica 30, 2041 (1964).
77.	W. J. Keeler and R. D. Connor, Nucl. Phys. <u>61</u> , 513 (1965).
78.	H. Beekhuis, P. Boskma, J. Van Klinken and H. De Ward, Nucl. Phys. <u>79</u> , 220 (1966).
79.	N. Mangelson, M. Reed, C. C. Lu and F. Ajzenberg-Selove, Phys. Letters <u>21</u> , 661 (1966).

-xix-

TABLE OF CONTENTS

Z	ISOTOPE	PAGE	<u>Z</u>	ISOTOPE	PAGE
2	Не ³ Не	1 2	16	s ³² s ³³ s ³⁴	58 60 62
3	Li ₇ Li ⁷	3 4		s ³⁶ ,	64
4	* Be ⁷ Be ₁₀	5	17	cl ³⁵ cl ₃₆ cl ³⁷	66 68 70
5	* Be B ¹⁰ B ¹¹	8 10	18	$\begin{array}{ccc} \operatorname{Ar}_{38}^{36} & \dots & \\ \operatorname{Ar}_{40}^{3} & \dots & \\ \operatorname{Ar} & \dots & \end{array}$	72 74 76
6	$\begin{array}{ccc} c_{13}^{12} & \dots \\ c_{14}^{2} & \dots \\ \star & c^{14} & \dots \end{array}$	12 14 16	19	к ³⁹ * _{К40} к ⁴¹	78 80 82
7	\mathbb{N}_{15}^{14}	18 20	20	$\begin{array}{c} \operatorname{Ca}_{1+0}^{1+0} \\ * \operatorname{Ca}_{1+2}^{1+2} \end{array} \cdots$	84 86
8	${}^{0}{}^{16}_{17}$ ${}^{0}{}^{18}_{0}$	22 24 26	· ·	$\begin{array}{c} ca_{43} \\ ca_{44} \\ ca_{46} \\ ca_{46} \\ ca_{48} \end{array}$	90 92 9 <u>4</u>
9	F ¹⁹	28	21	ca	96
10	Ne ²⁰ Ne ²¹ Ne ²²	30 32 34	22	$146 \\ 147 \\ 147 \\ 148 \\ 148 $	90 100 102
11	* Na ²² Na ²³	36 38		Ti ₄₉ Ti ₅₀ Ti ⁵⁰	104 106 108
12	Mg ²⁴ Mg ₂₅ Mg ₂₆	40 42 44	23	* v ⁵⁰	110 111
13	* A1 ²⁶ A1 ²⁷	46 48	24	Cr_{52}^{50} Cr_{53}^{53} Cr_{54}^{54}	112 113 114
14	si ²⁸ si ²⁹ si ³⁰	50 52 54	25	Mn ⁵⁵	116
15	P ³¹	56	26	Fe ₅₆ Fe ₅₇ Fe ⁵⁷	117 118 119

* Naturally occurring or otherwise available radioactive isotope.

TABLE OF CONTENTS (Cont.)

<u>Z</u>	ISOTOPE		PAGE	<u>Z</u>	ISOTOPE		PAGE
26	Fe ⁵⁸	• • • • •	120	37	Rb 85 * Rb		156 157
27	· Co ⁵⁹	• • • • •	121	28	sr ⁸⁴		158
28	Ni60 Ni61 Ni62	• • • • • •	122 123 124	30	S186 Sr87 Sr88 Sr	· · · · · · · · · · · · · · · · · · ·	159 160 161
	N164 Ni	• • • • • • • • • • •	125 126	39	y ⁸⁹	• • • • •	162
29	Cu63 Cu65	••••	127 128	40	Zr90 Zr91 Zr92	• • • • • • • • • • •	163 164 165
30	Zn64 Zn66 Zn67	••••	129 130		Zr ₉₄ Zr96 Zr96	· · · · · ·	169 166 167
	^{Zn} 68 Zn ₇₀	 	131 132 122	[]] ₄⊥	Nb ⁹³	. 	168
31	211 Ga ⁶⁹ Ga ⁷¹	· · · · · · · · · · · · · · · · · · ·	134 135	42	Mo92 Mo94 Mo95 Mo95	• • • • • •	169 170 171
32	Ge72 Ge73 Ge74 Ge74		136 137 138 139		Mo97 Mo98 Mo100 Mo	• • • • • • • • • • • • • • • • • •	172 173 174 175
	Ge As ⁷⁵	•••••	1/1	44	Ru ₉₈ Ru ₉₉	• • • • • • • • • • •	170 177 178
34	Se ⁷⁴ Se ⁷⁶ Se ⁷⁷ Se ⁷⁸	· · · · · · · · · · · · · · · · · · ·	142 143 144		Ru100 Ru101 Ru102 Ru104 Ru	· · · · · · · · · · · · · · · · · · ·	179 180 181 182
	^{Se} 80 ^{Se} 82	 	145 146	45	Rh^{103}		183
35	Br81 Br	• • • • • • • • • • •	147 148 149	46	Pd102 Pd104 Pd105 Pd105	 	184 185 186
36		• • • • • • • • • • •	150 151 152		Pd108 Pd110 Pd	• • • • • • • • • • • •	187 188 189
	Kr83 Kr84 Kr86 Kr	· · · · · · · · · · · · · · · · · · ·	153 154 155	47	Ag ¹⁰⁷ Ag	• • • • • •	190 191

*Naturally occurring or otherwise available radioactive isotope.

TABLE OF CONTENTS (Cont.)

Z	ISOTOPE	PAGE	<u>Z</u>	ISOTOPE P	AGE
48	Cd ¹⁰⁶	192	55	Cs ¹³³	232
·	$\begin{array}{c} cd_{110} & \dots & cd_{111} \\ cd_{112} & \dots & cd_{112} \\ cd_{113} & \dots & cd_{114} \\ cd_{116} & \dots & cd_{116} \\ cd & \dots & cd \end{array}$	195 194 195 196 197 198 199	56	130 Ba132 Ba134 Ba135 Ba135 Ba136 Ba137 Ba138 Ba138 Ba	233 234 235 236 237 238 238 239
49	* \ln^{113}_{115}	200 201	57	* La ¹³⁸ La ¹³⁹	240 241
50	$\begin{array}{c} \text{Sn}_{114}^{112} & \dots & \\ \text{Sn}_{115}^{115} & \dots & \\ \text{Sn}_{116}^{116} & \dots & \\ \text{Sn}_{117}^{117} & \dots & \\ \text{Sn}_{118}^{118} & \dots & \end{array}$	202 203 204 205 206	58	Ce ¹³⁶ Ce ¹³⁸ Ce ¹⁴⁰ Ce ¹⁴² * Ce	242 243 244 245
	$\begin{array}{c} \operatorname{Sn}_{119}^{\operatorname{Sn}_{119}} \cdots \\ \operatorname{Sn}_{120}^{\operatorname{Sn}_{120}} \cdots \end{array}$	207 208	59	Pr ¹⁴¹	246
	sn_{122} sn_{124} sn	210 211	60	nd_{142}^{142} nd_{143}^{143} * nd_{144}^{144}	247 248 249
, 51 ,	sb_{123}^{121} sb_{23}^{123}	212 213		Nd146 Nd146 Nd148 Nd150	250 251 252
52	Te122 Te123 * Te124 Te125 Te126 Te128 Te128 Te128 Te130 Te130	214 215 216 217 218 219 220 221	62	* Nd * * Sm147 * Sm148 * Sm148 * Sm149 * Sm150 Sm152 Sm154 * Sm154	253 254 255 256 257 258 259 259
53	1 ¹²⁷	222	63	151 Europ	261
54	Xe ¹²⁴ Xe ¹²⁶ Xe ¹²⁸ Xe ¹²⁹ Xe ¹³⁰ Xe ¹³¹ Xe ¹³² Xe ¹³⁴ Xe ¹³⁶	223 224 225 226 227 228 229 230 231	64	Eu ¹²³ * Gd ¹⁵² Gd ¹⁵⁴ Gd ¹⁵⁵ Gd ¹⁵⁶ Gd ¹⁵⁷ Gd ¹⁵⁸ Gd ¹⁶⁰	262 263 264 265 266 267 268 269

* Naturally occurring or otherwise available radioactive isotope.

-xxii-

TABLE OF CONTENTS (Cont.)

<u>Z</u>	ISOTOPE	PA	GE		Z	ISOTOPE		PAGE
65	Tb ¹⁵⁹	2	70		75	Re ¹⁸⁵ * Re ¹⁸⁷		308 309
66	* Dy158 Dy160 Dy161 Dy162 Dy163 Dy164 Dy	2 2 2 2 2 2 2	71 72 73 74 75 76 77		76	184 0s186 0s187 0s188 0s189 0s190 0s192	· · · · · · · · · · · · · · · · · · ·	310 311 312 313 314 315 316
67	Ho ¹⁶⁵	2	78		77	τ _r 191		317
68	162 Er164 Er166 Er167 Er167 Er168 Er170 Er	2 2 2 2 2 2	79 80 81 82 83 84		78	* Pt192 * Pt194 Pt195 Pt196	· · · · · · · · · · · · · · · · · · ·	318 319 320 321 322
69	169	2	85			Pt Pt ¹⁹⁸	••••	323 324
70	168 Yb170 Yb170	2	86 87		79	Au ¹⁹⁷	••••	325
·	Yb172 Yb172 Yb173 Yb174 Yb176 Yb176	2 2 2 2 2	88 89 90 91 92		80	Hg198 Hg198 Hg199 Hg200 Hg201 Hg202 Hg202 Hg204	· · · · · · ·	326 327 328 329 330 331
71	Lu175 * Lu	···· 2 ···· 2	93 94		0-	Hg ²⁰⁴	• • • • •	332
72	* Hf174 Hf176	2	95		81	T1205	• • • • • • • • • • •	333 334
	Hf177 Hf178 Hf179 Hf180 Hf	····· 22 ···· 22 ···· 22 ···· 33	90 197 198 199 199		82	* Pb206 Pb207 Pb207 Pb208 Pb	 	335 336 337 338
73	180 Ta 181	••••• 3	01		83	Bi ²⁰⁹	• • • • •	339
7),	180	····· 3	03		90	* Th ²³²	• • • • •	340
1+	W182 W183	•••••	304 205	-	91	* Pa ²³¹	• • • • •	341
	₩184 ₩186 ₩		06 07		92	* U ²³⁴ * U ²³⁵ * U ²³⁸	• • • • • • • • • • • •	342 343 344

* Naturally occurring or otherwise available radioactive isotope.

Tables of Nuclear Reaction Q-Values