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Abstract

A number of language processing studies indicate that
violations of syntactic constraints are processed dif-
ferently from violations of semantic constraints (Brain
imaging: e.g., Ainsworth-Darnell et al., 1998; Ni et al.,
in press; Speeded grammaticality judgment: McElree
& Gri�th, 1995; Eye-tracking: Ni et al., 1998). Al-
though these results are often taken as support for the
view that the processor employs two separate modules
for enforcing the two classes of constraints, we �nd (in
keeping with Rohde & Plaut, 1999, and Tabor & Tanen-
haus, 1999) that a nonmodular connectionist network
can learn a quantitative distinction between the two
types of constraints. But prior connectionist studies
have been inexplicit about why the distinction arises.
We argue that it stems from the distinct distributional
correlates of the di�erent types of information: syn-
tax involves gross distinctions; semantics involves subtle
ones. We also describe the Bramble Net, an attractor
network which derives grammatical categories and mod-
els an approximation of the syntax/semantics distinc-
tion in qualitative terms. These results support Elman's
(1990) suggestion that grammatical structures may arise
by self-organization, rather than by hardwiring. They
also help clarify what the grammatical structures are in
a self-organizing connectionist network, and emphasize
the usefulness of dynamical systems theory in grammat-
ical explanation.

Introduction

De�nition of syntax vs. semantics

By the distinction between syntax and semantics we
mean the fundamental one that Chomsky (1957) identi-
�ed when he contrasted (1a) with (1b).

(1) a. Colorless green ideas sleep furiously.
b. Furiously sleep ideas green colorless.

The modi�cational relationships between the words in
(1b) are not evident to a native English speaker, and
one cannot identify any coherent phrasal hierarchy. We
thus label (1b) as syntactically anomalous. By contrast,
native speakers have no trouble deciding on a parse tree
for (1a), but the meanings of the complex phrases are
odd and seemingly contradictory. We thus call (1a) se-
mantically anomalous.

By employing some of the basic apparatus of Genera-
tive Grammar, we can make a �ner characterization of
the two types. If we assume that phrases are organized

around grammatical heads which select the semantic at-
tributes of their complements, then (1a) can be diag-
nosed as an amalgam of selection violations. Subcate-

gory errors involve incorrect selection of an argument-
structure constellation, typically of a verb, (e.g., in *Er-
min put the book). Agreement errors involve incon-
sistencies between elements that are required to share
a common feature like number or gender (e.g., *They
eats.) We refer to other mistakes in the sequencing of
categories (e.g. *See dog dog) as category errors. The
last three types are standardly considered syntactic er-
rors.

Evidence for the distinction

Drawing a fundamental distinction between syntax and
semantics has several advantages.

First, it is only by factoring out the variation in sen-
tence quality due to semantic contrast that it is possible
to discern the simple approximation of the range of a
language that its phrase structure rules provide (Chom-
sky, 1957). These rules receive independent justi�cation
from the observation that they permit a compositional
treatment of meaning that largely accords with human
judgment (Frege, 1892).

Second, several recent language processing studies in-
dicate distinct processing responses to syntactic and
semantic anomaly. McElree and Gri�th (1995) used
a speeded grammaticality judgment task to �nd out
how quickly people could detect syntactic and seman-
tic anomalies. They found that detection of syntactic
anomaly (both subcategorization violation and category
violation) rose above the level of chance about 100 ms.
sooner than detection of semantic anomaly (selection vi-
olation). Ni et al. (1998) and Braze et al. (submit-
ted) used an eye-tracker to monitor participants as they
read sentences that were semantically (selection viola-
tion) and syntactically (agreement violation) anomalous.
They found that readers slowed down at both kinds of
anomalies, but for syntactic anomalies the distribution
of their regressive eye movements spiked abruptly on
the anomaly itself or shortly after, while for semantic
anomalies it was strongly skewed toward the end of the
sentence. Ainsworth-Darnell et al (1998), tied together
many previous EEG studies by demonstrating indepen-
dent responses to the two types of anomalies in individ-
ual participants. Ni et al. (in press) showed distinct
regions of brain response to the two types using fMRI.
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Models

The distinction between syntactic and semantic anomaly
seems to be well supported both theoretically and em-
pirically. It is therefore desirable to have a good un-
derstanding of how it is instantiated in mental repre-
sentations. The standard view, coming from Gener-
ative Linguistic Theory, assigns separate modules the
jobs of checking the two types of anomaly. But this
model leaves open the question of how a learner decides
whether to attribute an observed distributional system-
aticity to a syntactic or semantic module. For example,
why is \Dogs moo" classi�ed as a semantic anomaly,
while \Dogs barks" is a syntactic one?
Connectionist models have exhibited an ability to

glean both syntactic and semantic information from text
data. Elman (1990, 1991) trained a Simple Recurrent
Network or \SRN" on the task of predicting each next
word in a simple, English-like corpus. He found that
a hierarchical cluster analysis of the trained-network's
hidden unit space contained clusters corresponding to
both syntactic classes (Noun, Verb, and various transi-
tivity classes of verbs) and semantic classes (Animate,
Large, Edible, etc.). Rohde and Plaut (1999) stud-
ied a similar simulation and found that the inclusion
of semantic-like lexical cooccurrence biases signi�cantly
enhanced the ability of the network to learn complex
phrase structures. Moreover, the average lowest transi-
tion likelihoods in natural grammatical sentences were
higher than the average lowest in grammatical but se-
mantically odd (selection violation) sentences, which in
turn were higher than the average lowest in ungrammat-
ical sentences (including verb subcategorization, agree-
ment, and other category sequencing violations). Allen
& Seidenberg (in press) used a continuously settling re-
current network and included a bidirectional mapping
from form to meaning. The resulting �xed point dy-
namics provided good generalization behavior.
These results indicate that connectionist networks

can derive a distinction between syntactic and seman-
tic structure, while encoding both in a common metric
space. But the results raise many questions about what
syntactic and semantic structure consist of in such self-
organizing models. While, the resemblance of network
cluster structures to linguistic categories is suggestive
and the alignment of graded network properties with
category levels (well-formed, semantically odd, ungram-
matical) are encouraging, the �ndings do not provide
much insight into why the resemblances hold or what
general properties of the networks produce these results.
We performed several additional simulations to better
understand how connectionist networks represent syn-
tactic and semantic structure.

Simulation 1

Following Elman (1991) and Rohde and Plaut (1999),
we employed a SRN with three hidden layers, and re-
current connections only in the middle hidden layer.
The 30 input units were clamped on or o�, one at a
time, with each unit uniquely coding the appearance of
a particular word. The hidden units (10 in layer 2, 20

Table 1: The grammar for simulation 1. All productions

have equal likelihood of being used. The lexical classes

expand to between 1 and 4 individual lexical items.
S ! N[human] V[eat] N[food] p

S ! N[human] V[perceive] N[inanimate] p

S ! N[human] V[destroy] N[breakable] p

S ! N[human] V[cogitate] p

S ! N[human] V[perceive] N[human] p

S ! N[human] V[pursue] N[human] p

S ! N[human] V[move] N[inanimate] p

S ! N[human] V[move] p

S ! N[animate] V[eat] N[food] p

S ! N[animate] V[perceive] N[animate] p

S ! N[animate] V[pursue] N[animate] p

S ! N[animate] V[act-on] N[animate] p

S ! N[animate] V[move] N[inanimate] p

S ! N[animate] V[move] p

S ! N[inanimate] V[move] p

S ! N[aggressive] V[destroy] N[fragile] p

S ! N[aggressive] V[eat] N[human] p

S ! N[aggressive] V[eat] N[animate] p

S ! N[aggressive] V[eat] N[food] p

in 3, 10 in 4) had �xed sigmoid activation functions.
The target at each point in time was an activation of 1
on the output unit corresponding to the next word in
the training sequence. We wanted the outputs to con-
verge on probability distributions over next words, so
the output units as a group had the softmax (normal-
ized exponential) activation function. We thus employed
the multinomial cost function (Rumelhart et al, 1995)
and the delta rule was used to adjust the hidden-to-
output weights. The remaining feedforward units were
trained using additional backpropagation (Rumelhart,
Hinton, & Williams, 1986), and the recurrent connec-
tions were trained on the approximation to backprop-
agation through time (BPTT) in which the gradient is
estimated on the basis of only a single previous time step
of the hidden units (see Pearlmutter, 1995).

We used probabilistic context free rewrite rules to con-
struct a simple grammar similar to the one used by
Elman 1990 for training a syntax network (Table 1).
The grammar generated only nouns, verbs, and end-of-
sentence markers (\periods"). The verbs were either
transitive or intransitive. Both the nouns and verbs
fell into a number of semantic classes (See Table 1).
We de�ned a selectional violation to be a sentence in
which a verb had the right transitivity, but the noun
features were not consistent with the grammar (e.g.,
N[inanimate] V[eat] N[food]). We de�ned a subcatego-
rization violation to be a sequence in which a strictly
intransitive verb took an object, or a strictly transitive
verb did not.

The grammar was used to generate strings of words at
random. These were strung together end to end and pre-
sented to the network one word at a time. The network
was trained with a learning rate of 0.01. Momentum was
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Table 2: Means of the grammaticality measure. All

within-language comparisons are signi�cant (p < .001).

Language Class N Mean SD

SVO Well-formed 662 -1.56 0.35

SVO Sel Viol 2002 -4.18 1.08

SVO Subcat Viol 1098 -5.21 1.27

SOV Well-formed 662 -1.60 0.34

SOV Sel Viol 2002 -5.37 1.66

SOV Subcat Viol 1098 -6.81 0.82

not used.

The grammar was used to compute exact target distri-
butions for every juncture between words in the training
corpus (see Rohde & Plaut, 1999). The Kullback-Leibler
divergence (E) between the network's output and the
correct distribution was computed at each word in the
training corpus (Ew =

P
i
ti ln ti=oi where ti is the tar-

get for unit i and oi is its output on word w). Training
was stopped when the cumulative divergence error over
a large sample of patterns was consistently small enough
that we could conclude that the network was not con-
ating any of the target distributions with one another
(approximately 1 million word presentations).

Rohde & Plaut (1999) studied a measure of sentence
goodness based on the network's output predictions.
They found that the mean goodness (log of the prod-
uct of the two lowest output activation transitions) of
normal grammatical sentences was higher than that of
selection violation sentences, and the selection violation
sentences, in turn, had a higher mean than syntactic
violation sentences. Because our sentences were much
shorter than theirs, we used a simpli�ed version of their
goodness measure (log of the single worst transition) and
tested it on well-formed sentences, selection violations,
and subcategorization violations. We also found a clear
strati�cation (See the \SVO" rows in Table 2).

One of the consequences of de�ning syntactic category
descriptions independently of semantic classi�cations is
that category order is expected to be able to vary inde-
pendently of the contrast between semantic and syntac-
tic violation. Generative theory thus predicts that the
distinction between selection and subcategorization will
persevere across languages with di�erent fundamental
word orders. To see if the network made a similar sepa-
ration, we tested it on the output of a grammar exactly
like Grammar 1 except that the order of constituents
was systematically Subject (Object) Verb (SOV) rather
than Subject Verb (Object) (SVO). Indeed a similar re-
lationship between goodness values obtained in the SOV
case (Table 2).

A disadvantage of Rohde and Plaut's goodness mea-
sure is that it does not explicitly characterize the ef-
fects on processing of making a low-probability transi-
tion. The experiments of Ni et al. (1998) and Braze et al.
(submitted) indicate that people react to the anomaly of
a sentence at or after the anomalous word or words (in
Rohde and Plaut's terms, after they have made a low-

Table 3: Distances to closest grammatical state. All

within-language comparisons are signi�cant (p < .001).

Language Class N Dist SD

SVO Well-formed 662 0.040 0.029

SVO Sel Viol 2002 0.176 0.206

SVO Subcat Viol 1098 0.360 0.266

SOV Well-formed 159 0.020 0.025

SOV Sel Viol 1000 0.288 0.329

SOV Subcat Viol 1000 0.625 0.394

probability transition). We studied the response of the
network to anomalies by examining the hidden unit rep-
resentations. To do this, we presented a long sequence
(2000 words) of grammar-generated words to the net-
work and recorded the hidden unit states associated with
each word. Tabor et al. (1997) called this kind of sam-
ple a Visitation Set. We then tested the network on
ill-formed sentences by �nding the hidden unit location
visited following the transition with the lowest output ac-
tivation over the course of the sentence (the low-point).
Table 3 shows the mean distance in hidden unit space
between the low-point and the nearest point in the Visi-
tation set for samples of selection violation sentences and
subcategorization violation sentences. For comparison,
a new random sample of grammatical sentences was also
tested against the visitation set.

The minimum distance measure parallels Rohde and
Plaut's grammaticality measure, and points to a useful
way of characterizing the e�ect of anomaly on the net-
work: there is a subset of the hidden unit space that the
network sticks to during grammatical processing. This
subset is approximated by the Visitation Set. Selection
violations throw the network o� the track somewhat.
Syntactic violations throw it o� more substantially.

This geometrical contrast between the anomaly types
has a simple explanation in terms of the distribu-
tional distinction between selection and subcategoriza-
tion. Subcategorization refers to more abstract classes
than selection. Thus more instances of training are in-
volved in the development of subcategorization contrasts
than in the development of selection contrasts, and sub-
categorization distinctions produce larger separations in
hidden unit space. Violations are cases where the in-
formation provided by the current word clashes with the
information provided by the preceding context. The net-
work responds to such clashes by averaging the conict-
ing signals. In the case of selection violation, this averag-
ing interpolates between nearby structures. In the case
of syntactic violation, the averaging interpolates between
widely separated, major clusters. As a result, syntactic
violations tend to result in greater displacement from
familiar territory. We hypothesize that the empirical
results of McElree & Gri�th (1995), Ni et al. (1998),
and Braze et al. (1999), which found syntactic viola-
tions more readily detected than semantic, stem from
this contrast: wildly divergent states are easier to distin-
guish from normal states than slightly divergent ones.
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Simulation 2

Samples of geometric relationships in the SRN's hidden
unit space do not make it clear what the network's to-
tal generalization behavior is, nor whether its coverage
of a language can match that of symbolic phrase struc-
ture rules. Nor do relative distance measures alone ex-
plain the eye-tracking and brain-imaging results indicat-
ing qualitatively distinct responses to semantic and syn-
tactic anomaly. Our previous work on sentence process-
ing (Tabor et al, 1997; Tabor & Tanenhaus, 1999) sug-
gests that the study of dynamical settling networks can
clarify the structural principles underlying connectionist
sequence-learning. We designed the Bramble Network
(BRN) to explore this hypothesis. The BRN is similar
to the simple version of the SRN that has one input layer,
one recurrently connected hidden layer, and one output
layer. But the BRN has two sets of recurrent connections
in the hidden layer. One set, the discrete weights, works
like the recurrent connections in the SRN, changing the
hidden activations discretely every time a new word is
read. The other set, the continuous weights, undergoes
continuous settling according to Equation (1).

dvi

dt
= neti � vi (1)

where vi = unit state, neti = bi+
P

j
wij�(vj), bi = unit

bias, wij =weight from j to i, and �(x) = tanh(x).
In the BRN, the input and context units are updated

�rst. Then the input-to-hidden weights and the discrete
hidden-to-hidden weights are used to compute an initial
state of the hidden units. Continuous settling is carried
out via the continuous weights among the hidden units.
Finally, the hidden-to-output weights map the �nal state
of the hidden units to the output.
The discrete weights in the BRN are updated just

as in the SRN. We also assume that settling only oc-
curs for brief periods of time (1 cycle) before the dis-
crete weights are updated. This makes it easier for the
network to discover dependencies across words. The
continuous weights are updated according to a princi-
ple of stability maximization. That is, for continuous
weights, we de�ne the error on unit i as Ei = (dvi=dt)

2

so that dEi=dwij = 2�(vj)(neti � vi). This equation
says: change the weights in the direction that minimizes
the magnitude of recent activation change. Continuous
weight learning is applied only when the network has al-
most converged to a stable state. It thus moves the stable
state in the direction of the initial state, causing bifurca-
tions when widely separated initial states are associated
with a single attractor. The overall e�ect is that the at-
tractors of the continuous weights tend to track the cen-
ters of masses of clusters de�ned by the discrete weights
(cf. Tabor, Juliano, & Tanenhaus, 1997). We found it
most e�ective to train the network with a mixture of fast
(1 cycle) discrete weight training and slow (approximat-
ing convergence) continuous weight training. A similar
result was produced more quickly when we did all the
discrete training �rst and then followed it with the con-
tinuous training. The simulation we report below used
this batch technique.

Figure 1: Principal component projection of the visita-

tion set for the Simulation 2 network.
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As in Simulation 1, the network was trained on output

from Grammar 1. In this case, we trained it directly on
the output of the grammar for 200,000 words of discrete
training (learning rate = 0.002, momentum = 0.9) and
then 120,000 words of continuous training (learning rate
= 0.05, no momentum). At this point, both discrete
and continuous training had successfully distinguished
the states of the grammar.

To gain insight into the organization of the trained
BRN's processing, we saved the trajectories associated
with a random sample of 200 words in sequence from
Grammar 1. We performed Principal Component Anal-
ysis (Jolli�e, 1986) on this set of points in order to make
the structure visible. The trajectories are graphed in
Figure 1. (The two principal components shown account
for 87% of the variance). Note that there are regions cor-
responding the major lexical classes (Noun, Verb, and
Period). There are also discernible subclusters within
the lexical classes. These correspond to both syntactic
(e.g. Subject versus Object, Transitive vs. Intransitive)
and semantic (e.g. Big vs. Small, Edible vs. Inedible)
classes as well as some clusters whose determinants we
have not yet ascertained.

We tested the network on the same sets of good and
anomalous sentences that were used in Simulation 1. We
de�ned convergence times for the network by using Euler
integration to compute trajectories with �t = 0.05, and
stopping a trajectory when the distance between succes-
sive points on the trajectory passed below a threshold
(0.005) or when a maximum of 200 steps was reached.
The number of steps in the trajectory was taken as a
model of reading di�culty. Table 4 shows mean conver-
gence times for several string classes of interest.

When we designed this model, we expected conver-
gence times to provide a good model of human reading
times. This prediction is partially sustained in the con-
trast between normal sentences in their most familiar se-
quence (71.43) and selection violations (84.52), for much
processing evidence supports the claim that readers slow
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Table 4: Mean convergence times (MCT) for Simulation

2. All comparisons signi�cant with p < .001 except be-

tween selection violations and the sample from all well-

formed sentences.
Class N MCT

Well-formed (Ran-

domly generated by

grammar) 265 71.43
Well-formed

(Randomly sampled

from list of all well-

formed strings) 220 83.69

Sel Viol 250 84.52

Subcat Viol 274 122.85

Syntactic Viol 251 155.13

Figure 2: The trajectories the network follows upon pro-

cessing selection violations (solid lines) against a back-

ground of normal processing (dotted lines).
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down when they encounter less familiar sequences (see
Jurafsky, 1996). In a loose sense, the model's very high
reading times for syntactic anomalies are also consistent
with empirical evidence, for Ni et al. (1998) and Braze
et al. (submitted) found readers making substantial re-
gressive eye movements at syntactic anomalies, which
implies that they take quite a long time to read past the
anomalies. However, it is not clear whether the BRN can
predict the McElree and Gri�th results showing fast de-
tection of syntactic anomalies. It needs to be able to tell
quickly when it's not in a familiar attractor basin. We
leave this as a question for future work.
Figures 2{4 show a sample of selection violations, sub-

categorization violations, and category violations (tra-
jectories end on the x's) against the background of nor-
mal processing (end on the o's). The sample of anoma-
lous events was generated by picking the longest trajec-
tory in each sentence. These graphs reveal an interesting
structure around which the computation is organized.
There appears to be a stable connected manifold (con-

Figure 3: The trajectories the network follows upon pro-

cessing subcategorization violations (solid lines).
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Figure 4: Figure 7. The trajectories the network follows

upon processing category violations (solid lines).
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tinuous structure that attracts nearby trajectories) run-
ning from the upper left of the �gure to near the lower
right.
There also appear to be pieces of connected manifolds

extending to the various other regions where normal pro-
cessing trajectories end. Perhaps the combination of
these manifolds is the locus of grammatical processing.
Even semantically anomalous transitions and subcate-
gorization anomalies land by and large on this manifold,
though the anomalous cases tend to land on di�erent
parts from the normal cases. By contrast, the category
violations generally lead to attractors that are separate
from the manifold. This suggests that the highly rela-
tivistic network model does make a qualitative distinc-
tion between types of sentences, and its distinction lines
up approximately with current notions of syntactic vs.
semantic structure. It is true that the dividing line seems
to be di�erent from that of standard linguistic theory,
for it is between subcategorization and category error,
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rather than between selection and subcategorization er-
ror. This di�erence may stem from a di�erence between
our training grammar and natural language: in natural
language, subcategorization constraints are generaliza-
tions over more populous classes of items than they are
in Grammar 1.

Conclusions

These graphical results suggest an interesting possibility:
the skeleton of a language may be a connected manifold
in a dynamical system. Such a �nding would be appeal-
ing because a connected manifold contains an in�nity of
points, more than we could ever observe. Thus, identi-
fying such a skeleton could be a way of characterizing
one aspect of the unbounded nature of linguistic gener-
alization. Such an insight would be similar to the sort of
insight that Generative Theory strives for when it posits
a phrase structure or transformational architecture. The
trouble with current Generative models, however, is that
the steps leading to their creation are very controver-
sial (witness the plethora of current syntactic theories),
the data themselves are controversial (note the disagree-
ment about grammaticality judgments), and much of
the decision-making that goes into building models of
speci�c parses is not made explicit (note the paucity of
implemented parsers that employ modern syntactic the-
ory). The dynamical connectionist approach may be an
e�ective alternative, for it is based on a relatively uncon-
troversial mathematical theory, it uses performance data
rather than competence data and thus does not depend
on grammaticality judgments, and the process of choos-
ing a parse is explicit. Moreover, unlike the natural lan-
guage parsers that have been implemented for practical
application, the connectionist theory makes contact with
fundamental questions about the principles that underlie
linguistic representation.
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