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Abstract of the Dissertation
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by

Guy David

Doctor of Philosophy in Mathematics

University of California, Los Angeles, 2014

Professor Mario Bonk, Chair

In this dissertation we study Lipschitz and bi-Lipschitz mappings on abstract, non-smooth

metric measure spaces. The dissertation consists of two separate parts.

The first part considers a well-known class of questions that ask the following: If X and

Y are metric measure spaces and f : X → Y is a Lipschitz mapping whose image has positive

measure, then must f have large pieces on which it is bi-Lipschitz? Building on methods of

David (who is not the present author) and Semmes, we answer this question in the affirmative

for Lipschitz mappings between certain types of Ahlfors regular topological manifolds. In

general, these manifolds need not admit bi-Lipschitz embeddings into any Euclidean space.

To prove the result, we use some facts on the Gromov-Hausdorff convergence of manifolds

and a topological theorem of Bonk and Kleiner. This also yields a new proof of the uniform

rectifiability of some metric manifolds.

In the second part, we study the class of “Lipschitz differentiability spaces” introduced

by Cheeger. These are spaces on which an appropriate version of Rademacher’s theorem

holds. We show that if an Ahlfors regular Lipschitz differentiability space has a differentiable

structure of maximal dimension, then at almost every point all its tangents are uniformly

rectifiable. In particular, it admits Euclidean tangents at almost every point. Conversely,

we show that if the dimension of the differentiable structure is not extremal, then the space

is strongly unrectifiable, in the sense of Ambrosio-Kirchheim. In proving these results,
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we generalize some results of Cheeger from the setting of doubling spaces with Poincaré

inequalities (PI spaces) to general doubling Lipschitz differentiability spaces. The starting

point is a result of Bate on the local structure of these spaces.
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CHAPTER 1

Introduction

The theory of Lipschitz mappings is ubiquitous in analysis, both for its intrinsic interest

and for its applications to problems in differential equations, geometry, and even computer

science. There are two main reasons for the importance of Lipschitz mappings. First,

their definition is extremely simple and widely applicable, and so they can be found in

abundance on any metric space without any assumptions of smoothness. Second, despite

the the simplicity of their definition, they often possess many rigidity properties and therefore

their study can yield surprising analytic and geometric conclusions.

The focus of this dissertation is on Lipschitz and bi-Lipschitz mappings on abstract

metric measure spaces, and the interactions between analytic properties of these mappings

and geometric properties of the spaces. We will mostly be interested in spaces that, far from

being smooth, may even admit no nice embedding into any Euclidean space. In addition

to their classical appearances as “pathological” subsets of Euclidean space, non-smooth or

fractal metric spaces now arise naturally in a number of settings in mathematics. Just to give

a brief taste, we mention that such spaces appear as limits of Riemannian manifolds with

suitable curvature bounds (see, e.g., [14], [11]), as boundaries of hyperbolic groups or other

negatively curved spaces ([9], [6], [7]), as so-called “sub-Riemannian” manifolds ([12], [44]),

as proper settings for generalizations of (quasi)conformal geometry ([30]), and in embedding

problems related to questions in computer science ([17]).

The dissertation has two main parts. In the first part, Chapter 2, we focus on a type of

rigidity phenomenon for Lipschitz mappings known as “bi-Lipschitz pieces”. This idea, first
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discovered by David1 [18] in Euclidean space, says roughly that if the image of a Lipschitz

mapping between two suitable metric measure spaces is “large”, then the mapping must in

fact be bi-Lipschitz on a set of large measure, in a quantitative way. We prove a theorem of

this type for Lipschitz mappings between classes of abstract metric spaces satisfying some

topological assumptions, and we obtain some corollaries about the geometry of such spaces.

A more substantial introduction to this chapter of the dissertation can be found in Section

1.2.

In the second part of the dissertation, Chapter 3, we study abstract metric spaces that

possess a type of “differentiable structure” for real-valued Lipschitz functions. Recall first

that Rademacher’s theorem says that any Lipschitz function on Euclidean space is differen-

tiable almost everywhere; though classical, this is still a surprising theorem. In 1999, Cheeger

[13] gave a striking generalization of Rademacher’s theorem to a large class of metric measure

spaces, providing these spaces with a way of “differentiating” real-valued Lipschitz functions

defined on them. The relationship between this differentiable structure and the geometry

of the space is rather mysterious in general, but in the second part of the dissertation we

give some connections between this structure and classical geometric notions of tangents and

rectifiability. We introduce these ideas in more detail in Section 1.3.

In the remainder of this introduction, we provide some definitions and background and

then give precise statements of the main results.

1.1 Basic definitions

We denote metric spaces by pairs (X, d) and metric measure spaces by triples (X, d, µ),

although when the metric and measure are clear we call such a space simply X. If X is a

metric space, we may also denote the metric on X by dX . If E and F are subsets of a metric

1The Guy David mentioned here and many other times in this dissertation, including references [18]
through [22], is a professor at Université Paris-Sud and has no relation to the author of this dissertation. I
wish to apologize for any confusion generated by this amusing coincidence. I have adopted the middle initial
“C” and thus only references [23] and [24] in this dissertation are mine.
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space X, then we write

dist(E,F ) = distX(E,F ) = inf{dX(x, y) : x ∈ E, y ∈ F}.

If (X, d) is a metric space, we denote open and closed balls in X by B(x, r) and B(x, r),

respectively, i.e., we have

B(x, r) = {y ∈ X : d(x, y) < r}

and

B(x, r) = {y ∈ X : d(x, y) ≤ r}.

If the space X is not clear from context, we will sometimes clarify by writing a ball in X

as BX(x, r) or BX(x, r). Note that in general B(x, r) need not be the closure of B(x, r).

If B is an open or closed ball of radius r in X and λ > 0, then we will write λB for the

(respectively, open or closed) ball of radius λr with the same center as B.

Definition 1.1.1. A mapping f : X → Y between two metric spaces (X, d) and (Y, ρ) is

called Lipschitz if there is a constant C ≥ 0 such that

ρ(f(x1), f(x2)) ≤ Cd(x1, x2)

for every pair of points x1, x2 ∈ X. We denote the smallest possible Lipschitz constant of f

by

LIP(f) = inf{C : ρ(f(x1), f(x2)) ≤ Cd(x1, x2) for all x1, x2 ∈ X}.

Lipschitz mappings expand distances by no more than a fixed constant factor. If f is

Lipschitz with constant C and we wish to emphasize this particular constant, we will say

that f is C-Lipschitz.

Definition 1.1.2. A mapping f : X → Y is called bi-Lipschitz, or C-bi-Lipschitz to empha-

size the constant, if there is a constant C ≥ 1 such that

C−1d(x1, x2) ≤ ρ(f(x1), f(x2)) ≤ Cd(x1, x2).

A 1-bi-Lipschitz mapping is called an isometry.
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Bi-Lipschitz mappings are precisely those that preserve distances, up to a fixed constant

factor. If there is a bi-Lipschitz mapping from a space X onto a space Y , then we say X

and Y are bi-Lipschitz equivalent. Most properties of interest in analysis on metric spaces

are preserved under bi-Lipschitz equivalence.

We can also define the upper and lower pointwise Lipschitz constants of a Lipschitz

function f : X → R as

Lipf (x) = lim sup
r→0

1

r
sup

y∈B(x,r)

|f(x)− f(y)|, (1.1.1)

lipf (x) = lim inf
r→0

1

r
sup

y∈B(x,r)

|f(x)− f(y)|. (1.1.2)

These functions will not play a significant role in this dissertation, but they will be mentioned

in some of the background material below.

A non-trivial Borel regular measure µ on a metric space (X, d) is called a doubling measure

if there is a constant C such that, for every x ∈ X and r > 0,

µ(B(x, 2r)) ≤ Cµ(B(x, r)).

If a metric space (X, d) supports a doubling measure, then it is a doubling metric space,

which means that there is a constant N ≥ 1, depending only on the doubling constant C

of µ, such that, for every x ∈ X and r > 0, the ball B(x, 2r) can be covered by at most N

balls of radius r. A collection of metric spaces is called uniformly doubling if every space

in the collection is doubling with a uniform upper bound on the constant N . The doubling

condition is a type of finite-dimensionality condition for a metric space; for example, every

Euclidean space Rn is doubling, but no infinite-dimensional Banach space is doubling. See

[28] for more on doubling metric spaces and doubling measures.

We denote the standard s-dimensional Hausdorff measure in a a metric space (X, d) by

Hs (see [28], Section 8.3). If the particular space X is not clear from context, we denote this

by Hs
X .
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Definition 1.1.3. For s > 0, a metric space (X, d) is called Ahlfors s-regular if there is a

constant C0 > 0 such that for all x ∈ X and r ≤ diamX, we have

C−1
0 rs ≤ Hs(B(x, r)) ≤ C0r

s.

As above, we call a collection of metric spaces uniformly Ahlfors s-regular if every space

in the collection is Ahlfors s-regular with the same constant C0.

Ahlfors s-regularity is a strong, scale-invariant version of Hausdorff s-dimensionality.

Note that if X is Ahlfors s-regular, then it is automatically a doubling metric space, and

furthermore the measure Hs is a doubling measure on X.

1.1.1 Dyadic cubes

An important tool in classical analysis on Euclidean spaces is the dyadic cube decomposition

of Rd: for each j ∈ Z we can write Rd as a disjoint union of“half-open” cubes of the form[
n12j, (n1 + 1)2j

)
×
[
n22j, (n2 + 1)2j

)
× · · · ×

[
nd2

j, (nd + 1)2j
)
,

where ni ∈ Z.

These cube decompositions have many nice properties. Informally, the different levels

are nested nicely, and each individual cube in the jth level is approximately a metric ball of

radius 2j.

If X is a complete metric space that is Ahlfors s-regular with constant C0, we can equip

X with a type of “dyadic decomposition” analogous to that of Euclidean space. This was

essentially first discovered by David in [18], but the formulation given by Semmes in [56],

Section 2.3, is the easiest to apply here. It says that there exists j0 ∈ Z ∪ {∞} (with

2j0 ≤ diamX < 2j0+1 if X is bounded) such that for each j < j0, there exists a partition ∆j

of X into measurable subsets Q ∈ ∆j such that

• Q ∩Q′ = ∅ if Q,Q′ ∈ ∆j and Q 6= Q′.

• If j ≤ k < j0 and Q ∈ ∆j, Q
′ ∈ ∆k, then either Q ⊆ Q′ or Q ∩Q′ = ∅.
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• C−1
0 2j ≤ diamQ ≤ C02j and C−1

0 2sj ≤ Hs(Q) ≤ C02sj.

• For every j < j0, Q ∈ ∆j, and τ > 0, we have

Hs({x ∈ Q : dist(x,X \Q) ≤ τ2j}) ≤ C0τ
1/C0Hs(Q)

and

Hs({x ∈ X \Q : dist(x,Q) ≤ τ2j}) ≤ C0τ
1/C0Hs(Q).

Note that these dyadic cubes are not necessarily closed or open, but merely measurable.

The first two properties indicate that the cubes are disjoint and properly nested. The third

and fourth properties indicate that the cubes are “ball-like”. Indeed, it follows from the

third and fourth conditions that for every j < j0 and Q ∈ ∆j, there exists x ∈ Q such that

B(x, c02j) ⊆ Q ⊆ B(x,C02j).

All the constants in the cube decomposition depend only on s and the Ahlfors-regularity

constant of the space, and so we have denoted the larger constant above also by C0, the

constant in the Ahlfors regularity of X.

1.1.2 Tangents and weak tangents

In this subsection we will provide a non-rigorous introduction to the concept of a tangent

of a metric space. The rigorous definitions will have to wait until Sections 2.3.1 and 3.2. In

this subsection we merely introduce some basic principles.

The notion of a tangent of a metric space will be important in both Chapters 2 and 3.

To define it, we will need to introduce the theory of pointed Gromov-Hausdorff convergence.

Perhaps unfortunately, we use two slightly different versions of this theory, one in Chapter

2 and one in Chapter 3. The theory of Gromov-Hausdorff convergence is a generalization to

abstract metric spaces of the notion of Hausdorff convergence for subsets of Euclidean space.

Pointed Gromov-Hausdorff convergence allows one to make sense of the notion of

lim
i→∞

(Xi, di, pi),
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where (Xi, di, pi) are “pointed metric spaces”, i.e., (Xi, di) are metric spaces and the points

pi ∈ Xi are thought of as “base points”. The main utility of this generalization is that here

the spaces Xi are not a priori required to all be subsets of some ambient metric space.

Consider a metric space (X, d) and a point p in X. Fix a sequence λi of positive real

numbers such that λi → 0 as i → ∞. A tangent of X at x is a complete pointed metric

space (X∞, d∞, p∞) such that

(X∞, d∞, p∞) = lim
i→∞

(X,λ−1
i d, p). (1.1.3)

Roughly speaking, a tangent of X at p describes the infinitesimal behavior of the space X

near the point p, along a specific sequence of scales λi. It is obtained by rescaling the

space around p by larger and larger factors and then passing to a limit.

There is no reason that this limit should exist in general, but if X is a doubling metric

space then such a limit will always exist along a subsequence. Thus, if X is doubling then

the collection Tan(X, p) of tangents of X at p is always non-empty. However, Tan(X, p) will

in general contain many non-isometric metric spaces; most metric spaces do not have unique

tangents.

If (X, d) is Rn with its standard metric | · |, then at every point p ∈ X, every tangent

of X at p is isometric to Rn. This is simply because the rescaled spaces (Rn, λ−1
i | · |) are

all isometric to Rn, so from the perspective of Gromov-Hausdorff convergence the limit in

(1.1.3) is simply the limit of a constant sequence. This uses the fact that Rn comes equipped

with dilations around each point p, i.e., the mappings

x 7→ λ−1(x− p) + p.

These mappings fix p and multiply distances by λ−1, and so are isometries between the

pointed metric spaces.

(Rn, | · |, p) and (Rn, λ−1| · |, p).

Other spaces admitting such dilations, such as finite-dimensional Banach spaces or the

Heisenberg group, also have tangents that are isometric to themselves (see [12], [43]).
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It is also true, as one would expect, that at every point of a smooth Riemannian n-

manifold, every tangent is isometric to Rn (see [11], Ex. 8.2.4).

We now describe a way of weakening the notion of a tangent. Consider a metric space

(X, d). Let λi be a sequence of positive real numbers that is bounded above, but that does

not necessarily converge to zero. Let pi be a sequence of points in X. A weak tangent of X

is a pointed Gromov-Hausdorff limit

(X∞, d∞, p∞) = lim
i→∞

(X,λ−1
i d, pi).

Weak tangents generalize the notion of tangents in two ways: the sequence of scales λi need

not approach zero, and the base points pi are allowed to move rather than being fixed at p.

Of course, every tangent of X is also a weak tangent. On the other hand, the pointed metric

space (X, d, p) is itself a weak tangent of X for every p ∈ X (simply by taking λi = 1 and

pi = p for all i), though it need not be a tangent of X.

Similar caveats apply to weak tangents as to tangents: the limit above need not exist,

but if X is doubling then any choice of {λi} and {pi} will yield a sub-sequential limit. For

different choices of λi or pi these (sub-sequential) limits may be completely different.

Suppose (X, d, µ) is a doubling metric space. There are two important general principles

regarding the tangents and weak tangents of X.

• ([21] Lemma 9.12, [43] Proposition 3.1) If p is a point of µ-density of a subset E ⊂ X,

then

Tan(E, p) = Tan(X, p).

In other words, the infinitesimal behavior of E at p is exactly that of X. Again we

emphasize that this does not mean that there is a unique tangent of X or E at p.

• ([21] Lemma 9.5, [43] Theorem 1.1) “(Weak) tangents of (weak) tangents are (weak)

tangents:” If Y is a weak tangent of X, and Z is a weak tangent of Y , then Z is a

weak tangent of X. In addition, for µ-almost every point p ∈ X, if Y is a tangent of

X at p and Z is a tangent of Y at q ∈ Y , then Z is also a tangent of X at p.

8



We will use these two principles at various points throughout this dissertation, and we will

always be explicit about which particular version we use.

1.1.3 Rectifiability and unrectifiability

The notion of rectifiability was originally studied for subsets of Euclidean space, where many

strong theorems about rectifiable sets were proven; standard references for these facts are

Federer’s book [25] or Mattila’s book [47]. All the definitions we give here are valid for

abstract metric spaces, though much less is known about rectifiability in this general setting.

For a non-negative integer n, a metric space X is called n-rectifiable if X can be written

as

X = Z ∪
∞⋃
i=1

fi(Si),

where Hn(Z) = 0, the sets Si are subsets of Rn, and the mappings fi : Si → X are Lipschitz.

(The spaces we have called “n-rectifiable” are sometimes called by the more specific name

“countably Hn-rectifiable”.)

Some of the first general results about rectifiable abstract metric spaces were obtained

by Kirchheim [38]. Here we summarize some immediate consequences of his results, though

much more is proven in [38].

Theorem 1.1.4 ([38] Lemma 4 and Theorem 9). Let (X, d) be an n-rectifiable metric space.

Then the following statements hold:

(i) X can be written as

X = Z ∪
∞⋃
i=1

gi(Ei),

where Hn(Z) = 0, the sets Ei are subsets of Rn, and the mappings gi : Ei → X are

bi-Lipschitz.

(ii) Suppose X supports a doubling measure µ that is absolutely continuous with respect to

Hn. Then for µ-a.e. x ∈ X, there exists a norm ‖ · ‖x on Rn such that every tangent

of X at x is isometric to (Rn, ‖ · ‖x).

9



Part (i) of Theorem 1.1.4 is a consequence of Lemma 4 of [38], which says that Lipschitz

maps from Rn into metric spaces admit decompositions into bi-Lipschitz pieces. We will

discuss different quantitative versions of this type of decomposition extensively in Section

1.2 and Chapter 2, so we say no more about it here.

Part (ii) of Theorem 1.1.4 is a specialization to doubling metric measure spaces of The-

orem 9 of [38]. In Kirchheim’s paper, it is not stated in the language of tangents because a

general non-doubling metric measure space need not admit tangents, but for our purposes

in Chapter 3 (see Corollary 1.3.10) the statement above will suffice.

The following much stronger quantitative form of rectifiability was proposed by David

and Semmes, and is the one we will use more frequently in the rest of this dissertation.

Definition 1.1.5. An Ahlfors d-regular space X is called uniformly rectifiable (in dimension

d) if there exist constants α > 1 and 0 < β ≤ 1 such that for every open ball B in X, there

is a subset E ⊂ B with Hd(E) ≥ βHd(B) and an α-bi-Lipschitz map f : E → Rd.

We will call X locally uniformly rectifiable if for every r > 0, there exist constants α and

β, depending on r, such that for every open ball B in X of radius less than r, there is a

subset E ⊂ B with Hd(E) ≥ βHd(B) and an α-bi-Lipschitz map f : E → Rd.

We emphasize that the notions of uniform d-rectifiability and local uniform d-rectifiability

apply only to Ahlfors d-regular spaces.

We now turn to the notion of unrectifiability; just as for rectifiability, we will introduce

two variants, the second stronger than the first.

A metric space (X, d) is called purely d-unrectifiable if Hd(f(E)) = 0 whenever E ⊆ Rd

and f : E → X is Lipschitz. This is the classical notion of unrectifiability used for subsets

of Euclidean space; see [25] for examples of purely unrectifiable sets.

The notion of unrectifiability we will use in Chapter 3 of the dissertation is stronger than

pure unrectifiability. This definition was introduced by Ambrosio and Kirchheim in [1].

10



Definition 1.1.6. For s > 0, a metric space X is said to be strongly s-unrectifiable if

Hs(f(X)) = 0

for every N ∈ N and every Lipschitz map f : X → RN ,

Note that the parameter s in the definition of strong unrectifiability need not be an

integer.

Remark 1.1.7. By Lemma 5.2 of [1] (or by Theorem 1.2.1 below) if d ∈ N then any strongly

d-unrectifiable space is also purely d-unrectifiable. However, the converse is not true. In-

deed, there are well-known non-trivial examples of purely unrectifiable subsets of Euclidean

space, but clearly no subset of Euclidean space with positive Hs-measure can be strongly

s-unrectifiable.

In [1], Theorem 7.4, Ambrosio and Kirchheim construct, for each s > 0, an example of

a strongly s-unrectifiable metric space with positive Hs-measure. In Theorem 1.3.12 below,

we will show that many interesting known metric spaces are in fact strongly unrectifiable.

1.2 Bi-Lipschitz pieces

In this section, we introduce the main topic and results of Chapter 2 of this dissertation, on

which the author’s preprint [23] is based. The main theorem is Theorem 1.2.2.

There are nowadays many different theorems of the following general form: Let (X, d, µ)

and (Y, ρ, ν) be metric measure spaces (satisfying some assumptions), and let f : X → Y

be a Lipschitz map whose image has positive ν-measure. Then f must be bi-Lipschitz on a

subset of large measure, in a quantitative way.

This class of theorems is not true in general, and later on in Section 2.9 we will mention

some interesting cases where it fails. Perhaps the most basic example is the “snowflaked”

metric space

X = (R, | · |1/2),
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equipped with the measureH2. As we will see in Proposition 2.9.1 below, there is a surjective

Lipschitz map f from X onto [0, 1]2 ⊂ R2, but no Lipschitz mapping from X to R2 can admit

any set of positive measure on which it is bi-Lipschitz.

In spite of this example (and the others in Section 2.9), there are a number of situations

in which results of the type “Lipschitz implies bi-Lipschitz pieces” can be proven.

As mentioned above, this idea started with [18], where David examined the case in which

(X, d, µ) is Ahlfors d-regular and Y is Rd with the standard metric and Lebesgue measure.

David showed that if, in addition to these assumptions, f satisfies a certain technical con-

dition that we will discuss below, then it is quantitatively bi-Lipschitz on a set of large

measure. By verifying his technical condition, David then applied this theorem to show that

if an L-Lipschitz map f from the unit cube [0, 1]d into Rd has an image of Lebesgue measure

at least δ > 0, then f is M -bi-Lipschitz on a set of Lebesgue measure θ in the cube, where

θ and M depend only on L and δ.

Quite different methods were then invented by Jones [33] and David [19] to show the

result in the case X = [0, 1]d and Y = RD equipped with d-dimensional Hausdorff measure,

where D ≥ d. In 2009, Schul [53] showed the result in the case where X = [0, 1]d and Y

is an arbitrary metric space, again equipped with d-dimensional Hausdorff measure. To be

precise, let us state (a somewhat weakened version of) Schul’s result, which generalizes those

we have mentioned above.

Theorem 1.2.1 (Schul). Let (Y, ρ) be any metric space, and let f : [0, 1]d → Y be a 1-

Lipschitz map. Let 0 < α < 1 be given. Then there are sets F1, . . . , Fl ⊂ [0, 1]d such that,

for each 1 ≤ i ≤ l and every x, y ∈ Fi, we have

α|x− y| ≤ ρ(f(x), f(y)) ≤ |x− y|,

and in addition

Hd
(
f([0, 1]d \ ∪li=1Fi)

)
< cα.

The constant l depends only on d and α, and the constant c depends only on d.
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In addition to these results, we also mention that Meyerson [48] used techniques of Jones

and David to show a “Lipschitz implies bi-Lipschitz pieces” result when X and Y are Carnot

groups.

Although Theorem 1.2.1 is quite powerful, in that it allows arbitrary targets, it still (like

the results of Jones and David) requires that the map have a Euclidean domain. (Meyerson’s

generalization to Carnot groups still relies heavily on the rigid algebraic structure of these

objects.) As our snowflake example above shows, one must put some condition on the

domain of the mapping for a suitable theorem to hold. Nonetheless, it is interesting to ask

when bi-Lipschitz pieces results can be proven for mappings between general, non-Euclidean,

non-Carnot metric spaces. Our main theorem, Theorem 1.2.2 below, gives a result in this

vein.

In this result, we do not use the later methods of [33], [19], and [53], but rather the

original method of David [18], which required verifying a certain technical condition on the

Lipschitz map and the spaces in question. Originally, this applied only in the case Y = Rd,

but later Semmes [56] generalized David’s theorem to the case of arbitrary target spaces

Y . We apply this theorem of Semmes and adapt David’s original argument to show the

bi-Lipschitz pieces result for Lipschitz maps between certain types of abstract manifolds:

Theorem 1.2.2. Let X and Y be Ahlfors s-regular, linearly locally contractible, complete,

oriented, topological d-manifolds, for s > 0, d ∈ N. Suppose in addition that Y has d-

manifold weak tangents.

Suppose I0 is a dyadic 0-cube in X and z : I0 → Y is a Lipschitz map. Then for every

ε > 0, there are measurable subsets E1, . . . , El ⊂ I0, such that z|Ei
is M-bi-Lipschitz for each

i, and ∣∣∣∣∣z
(
I0 \

l⋃
i=1

Ei

)∣∣∣∣∣ < ε |I0| .

The constants l and M depend only on ε, the Lipschitz constant of z, the data of X, and

the space Y .

Here | · | simply denotes s-dimensional Hausdorff measure Hs. The definitions of the
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phrases “linearly locally contractible” and “d-manifold weak tangents” will be given below in

Section 2.1; both are conditions that control the topology of a metric space in a quantitative

way. The phrase “the data of X” refers to the collection of constants associated to X:

the dimensions d and s, the constant C0 appearing in the Ahlfors regularity of X, and the

constants L and r0 appearing in the linear local contractibility of X.

To our knowledge, Theorem 1.2.2 is the first “bi-Lipschitz pieces” result in which neither

source nor target are required to have any Euclidean or Carnot group structure.

Note that Theorem 1.2.2 implies in particular the type of result mentioned at the begin-

ning of this section: if the image of z has positive measure in Y , then z is bi-Lipschitz on a set

of definite size in I0. This stronger conclusion, in which the domain of the mapping admits

a decomposition into pieces on which the mapping is bi-Lipschitz and a “garbage” piece of

small image, is typical and appears in the works [33], [19], [56], [53], and [48] mentioned

above.

The main engine in the proof of Theorem 1.2.2 is a theorem of Semmes, Theorem 2.2.2

below, which is a generalization of a result of David. This theorem reduces the problem of

finding bi-Lipschitz pieces to the problem of verifying a certain technical condition of David,

see Definition 2.2.1 below.

Even under the assumptions s = d and Y = Rd, Theorem 1.2.2 appears to be new if X is

not a subset of some Euclidean space. This observation has a consequence for the geometry

of the space X. Namely, we can apply Theorem 1.2.2 and another theorem of Semmes [57]

to show that some abstract manifolds are uniformly rectifiable. Note that in this case we

require that the Ahlfors regularity dimension and the topological dimension of X coincide.

Snowflaked metric spaces such as (Rn, | · |1/2) provide counterexamples in the absence of this

assumption.

Theorem 1.2.3. An Ahlfors d-regular, linearly locally contractible, complete, oriented topo-

logical d-manifold is locally uniformly rectifiable. The local uniform rectifiability constants α

and β depend on the scale r and otherwise only on the data of the space.
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In particular, a compact, Ahlfors d-regular, linearly locally contractible, oriented topo-

logical d-manifold is uniformly rectifiable, with constants depending only on the data of the

space.

If X admits a bi-Lipschitz embedding into some Euclidean space, then Theorem 1.2.3

follows from work of David and Semmes in [22]. (Indeed the techniques in [22] work under

much weaker topological assumptions on X.) However, examples of Semmes [54] and Laakso

[42] show that such an embedding need not always exist.

Other corollaries of Theorems 1.2.2 and 1.2.3 will be given in Section 2.8 below.

1.3 Lipschitz differentiability spaces

We now describe Lipschitz differentiability spaces, the main objects of study in Chapter 3

of this dissertation (on which the author’s preprint [24] is based). We first recall what is

perhaps the most famous classical fact about Lipschitz functions on Euclidean spaces: the

following theorem of Rademacher.

Theorem 1.3.1 (Rademacher). Let f : Rn → R be a Lipschitz function. Then f is differen-

tiable almost everywhere with respect to Lebesgue measure. In other words, for almost every

x ∈ Rn, there is a linear map dfx : Rn → R such that

lim
y→x

|f(y)− f(x)− dfx(y − x)|
|y − x|

= 0.

In 1989, Pansu ([49], Theorem 2) gave a generalization of Rademacher’s theorem to a

certain class of spaces known as Carnot groups. A Carnot group is a type of topological

group equipped with a left-invariant metric and a notion of dilation. This structure allows

one to define difference quotients analogous to those in Theorem 1.3.1. Pansu showed that

Lipschitz maps between Carnot groups are differentiable, in the sense that at almost every

x these difference quotients converge to group homomorphisms.

In 1999, Cheeger [13] generalized Rademacher’s theorem in a different direction. To do
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so, he had to define a notion of differentiation in abstract metric spaces. This is formulated

in terms of measurable charts covering the space.

Definition 1.3.2. A Lipschitz differentiability space is a metric measure space (X, d, µ)

satisfying the following condition: There are positive measure sets (“charts”) Ui partitioning

X, positive integers ni (the “dimensions of the charts”), and Lipschitz maps φi : Ui → Rni

with respect to which any Lipschitz function is differentiable almost everywhere, in the sense

that for almost every x ∈ Ui, there exists a unique dfx ∈ Rni such that

lim
y→x

|f(y)− f(x)− dfx · (φi(y)− φi(x))|
d(x, y)

= 0.

If x is in a chart U and f is differentiable at x, we will sometimes write the derivative dfx of

f at x with respect to U as dUfx.

Remark 1.3.3. The term “Lipschitz differentiability space” was not used by Cheeger but

rather was coined later by Bate [3]. In [35], Keith calls such a space a “metric measure space

supporting a strong measurable differentiable structure”.

Note that if (U, φ : U → Rn) is a chart in a Lipschitz differentiability space X, then we

may without loss of generality assume that φ is a Lipschitz function defined on all of X.

This follows from the well-known McShane extension theorem for Lipschitz maps (see [28],

Theorem 6.2).

The particular choice of chart structure {(Ui, φi : Ui → Rni)} on X is not unique. How-

ever, the following simple lemma shows that the dimension of a chart is invariant under

changes of the chart structure in the following sense.

Lemma 1.3.4. If {(Ui, φi : Ui → Rni)} and {(Vj, ψj : Vj → Rmj)} are two sets of charts for

a Lipschitz differentiability space (X, d, µ), then ni = mj whenever µ(Ui ∩ Vj) > 0.

Proof. Suppose to the contrary that µ(Ui ∩ Vj) > 0 for some i, j ∈ N but n = ni > mj = m.

Writing φi = (φ1
i , . . . , φ

n
i ), we find that for almost every point x ∈ Ui ∩ Vj, the derivatives

(dVjφ1
i )x, . . . , (d

Vjφni )x
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are n vectors in Rm, and so linearly dependent. Thus, there are real numbers a1, . . . , an, not

all zero, such that (
dVj

n∑
k=1

akφ
k
i

)
x

=
n∑
k=1

ak(d
Vjφki )x = 0,

and therefore

lim
y→x

|(a1, . . . , an) · (φi(y)− φi(x))|
d(x, y)

= 0.

It immediately follows that the two different vectors (0, 0, . . . , 0) and (a1, . . . , an) both serve

as dUifx for the constant function f ≡ 0. This violates the uniqueness required in Definition

1.3.2.

It is immediate from Rademacher’s theorem that Rn, equipped with the usual metric and

Lebesgue measure, is a Lipschitz differentiability space consisting of the single n-dimensional

chart

(U = Rn, φ(x) = x).

As noted above, this choice of chart structure is in no way unique. For example, we could

have also replaced φ(x) = x by any Lipschitz function whose (standard Euclidean) derivative

has full rank n almost everywhere. We could also have partitioned U into multiple charts in

an arbitrary measurable way. By Lemma 1.3.4 however, all these charts would necessarily

have dimension n.

In a similar way, Pansu’s theorem can be used to show that any Carnot group, equipped

with its Haar measure and left-invariant Carnot-Carathéodory metric, is a Lipschitz differ-

entiability space (see [13], Remark 4.66.) In the case of Carnot groups, the dimension of the

differentiable structure can be strictly less than the Hausdorff dimension of the space. For

example, the Heisenberg group is topologically 3-dimensional and Ahlfors 4-regular (making

it of Hausdorff dimension 4), but its differentiable structure consists of 2-dimensional charts.

In addition, if a complete n-rectifiable metric space (X, d) admits a doubling measure

µ such that µ is absolutely continuous with respect to Hn, then (X, d,Hn) is a Lipschitz

differentiability space, with charts of dimension n. This follows from part (i) of Kirchheim’s
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Theorem 1.1.4 above. More general statements can be given if one weakens the doubling

assumption, as in [35], Remark 2.1.5.

The previous examples are very rigid, in the sense that they admit nice group structures

(in the case of Euclidean space and Carnot groups) or nice parametrizations by spaces that

do (in the case of rectifiable metric spaces). In [13], Cheeger showed that a large class of

metric measure spaces, many without any such group structure or good parametrizations, are

Lipschitz differentiability spaces. Although this class in particular does not play a significant

role in the remainder of this dissertation, we feel it is necessary to introduce it here for

background purposes. Recall the definition of Lipf from (1.1.1).

Definition 1.3.5. A metric measure space (X, d, µ) is a PI space if µ is a doubling measure

on X and (X, d, µ) satisfies a “(1, p)-Poincaré inequality” for some 1 ≤ p < ∞: There is a

constant C > 0 such that, for every compactly supported Lipschitz function f : X → R and

every ball B in X,

 
B

|f − fB|dµ ≤ C(diamB)

( 
CB

(Lipf )
pdµ

)1/p

.

(Here the notations
ffl
E
gdµ and gE both denote the average value of the function g on the

set E, i.e., 1
µ(E)

´
E
gdµ.)

This type of abstract Poincaré inequality on metric spaces was introduced by Heinonen

and Koskela in [30] in connection with the analysis of quasiconformal mappings. The version

stated above is not quite the same as that of Heinonen-Koskela, but it is equivalent in our

setting (see [34]) and easier to state. The role of the Poincaré inequality is to control

the average fluctuation of f on a given ball simply by integrating its pointwise Lipschitz

constant. If a complete metric measure space is a PI space, then many other properties

follow, including connectedness and “quasiconvexity”: any two points can be joined by

a rectifiable curve whose length is bounded by a fixed constant factor times the distance

between the points (see [13], Theorem 17.1). The main result of [13] is that PI spaces are

Lipschitz differentiability spaces:
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Theorem 1.3.6 ([13], Theorem 4.38). Every PI space X is a Lipschitz differentiability space,

and the dimensions ni of the charts Ui are bounded by a uniform constant depending only on

the constants associated to the doubling property and Poincaré inequality of X.

All Euclidean spaces and Carnot groups are PI spaces, and so in some sense Cheeger’s

theorem generalizes the theorems of Pansu and Rademacher mentioned above. However,

many even stranger examples of PI spaces exist, as in [9], [41], [16]. Unlike Carnot groups,

these examples have no group structure or manifold structure of any kind.

After Cheeger’s work, it became a subject of interest both to find conditions weaker

than the Poincaré inequality that imply Lipschitz differentiability, and also to explore the

consequences of assuming that a space is a Lipschitz differentiability space: see, for example,

[35], [36], [26], [4], [3].

The Poincaré inequality is certainly not necessary for Lipschitz differentiability. Indeed,

Bate and Speight ([4], Theorem 2.4) have shown that any subset of positive measure in

a Lipschitz differentiability space is also a Lipschitz differentiability space. (For doubling

spaces, this is somewhat easier; see [2].) Such a subset may of course be totally disconnected

and thus fail to admit a Poincaré inequality.

In [35], Theorem 2.3.1, Keith gave a condition weaker than the Poincaré inequality that

implies Lipschitz differentiability. We state Keith’s theorem only for doubling spaces, al-

though he proved a stronger result. Recall the definitions of Lipf and lipf from (1.1.1) and

(1.1.2).

Theorem 1.3.7 ([35], Theorem 2.3.1). Let X be a doubling metric measure space that

satisfies the following “Lip-lip condition”: There is a constant K > 0 such that, for every

Lipschitz function f : X → R, the inequality

Lipf (x) ≤ Klipf (x)

holds for µ-almost every x ∈ X. Then X is a Lipschitz differentiability space. The dimen-

sions ni of the charts Ui are bounded by a uniform constant depending only on K and the

doubling constant of the measure µ.
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For conditions that follow from, rather than imply, Lipschitz differentiability, we will

mention only one result of Bate [3], which will play a role later on. This result is a consequence

of Bate’s study of certain measure decompositions known as “Alberti representations” in

metric measure spaces. The following notation, taken from [3], is useful: Let Γ(X) be the

collection of all bi-Lipschitz functions of the form

γ : Dγ → X

where Dγ ⊂ R is a non-empty compact set containing 0. We think of elements of Γ(X) as

“broken curves” in X. Bate’s result gives a local description of Lipschitz differentiability

spaces in terms of these broken curves.

Theorem 1.3.8 ([3], Corollary 6.7). Let (U, φ) be an n-dimensional chart in a complete Lip-

schitz differentiability space (X, d, µ). Then for almost every x ∈ U , there exist γx1 , . . . , γ
x
n ∈

Γ(X) such that each (γxi )(0) = x, 0 is a density point of (γxi )−1(U), and the derivatives

(φ ◦ γxi )′(0) exist and are linearly independent.

Theorem 1.3.8 is the starting point for the results in Chapter 3 of this dissertation,

in which we investigate the consequences of the Lipschitz differentiability property for the

tangents and rectifiability of Ahlfors regular spaces. We now state these results.

Theorem 1.3.9. Let X be a complete, Ahlfors n-regular Lipschitz differentiability space

containing a chart U of dimension n. Then for Hn-almost every point x ∈ U , every tangent

of X at x is uniformly rectifiable. In particular, at almost every point of U , there is a tangent

of X that is bi-Lipschitz equivalent to Rn.

The constants in the uniform rectifiability depend on the point x, but not on the particular

sequence of scales defining the tangent.

If one applies Kirchheim’s theorem, Theorem 1.1.4 above, to this fact, one immediately

obtains the following corollary:

20



Corollary 1.3.10. Let X be a complete, Ahlfors n-regular Lipschitz differentiability space

containing a chart U of dimension n. Then at Hn-almost every point x ∈ U , there is a

tangent of X that is isometric to Rn equipped with a metric induced by a norm.

Remark 1.3.11. If X is an Ahlfors n-regular Lipschitz differentiability space, then the di-

mension k of any chart (U, φ : U → Rk) satisfies k ≤ n (see Corollary 3.8.5), although this

inequality may be strict. Thus, Theorem 1.3.9 and Corollary 1.3.10 are about the case in

which the dimension is extremal.

In contrast to Theorem 1.3.9, one may ask whether a differentiable structure of dimension

strictly less than the Ahlfors regularity dimension implies a type of unrectifiability of the

space. This is in fact the case. Recall the definition of strong unrectifiability given in

Definition 1.1.6.

Theorem 1.3.12. Suppose that s > 0 and that X is an Ahlfors s-regular Lipschitz dif-

ferentiability space containing a chart U of dimension k, with k < s. Then U is strongly

s-unrectifiable in the sense of Ambrosio-Kirchheim.

Remark 1.3.13. Theorem 1.3.12 shows that Ahlfors s-regular Lipschitz differentiability spaces

with charts of dimension less than s provide additional examples of strongly unrectifiable

spaces. (Note that, by Remark 1.3.11, any Ahlfors s-regular Lipschitz differentiability space

with non-integer s satisfies the condition automatically.) In addition to all non-abelian

Carnot groups, there are now numerous other interesting constructions of such spaces, in-

cluding those of Bourdon-Pajot [9], Laakso [41], and Cheeger-Kleiner [16].

1.4 Outline of the dissertation

We now give a detailed outline of the dissertation.

Chapter 2 is about the “bi-Lipschitz pieces” phenomenon described in Section 1.2 above;

its main result is Theorem 1.2.2. The chapter begins with some additional background and

describes the underlying method of David and Semmes that is the foundation for the proof.
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In Section 2.3, we define a form of pointed Gromov-Hausdorff convergence and prove some

results about the Gromov-Hausdorff limits of manifolds needed in the proof of Theorem 1.2.2.

Section 2.4 is devoted to Proposition 2.4.2, which is weaker than than Theorem 1.2.2 but

whose proof uses similar ideas in a simpler context and thus serves as a “warm-up” for the

proof of the main theorem. Sections 2.5 and 2.6 contain the proof of the main Theorem 1.2.2,

and Section 2.7 gives the proof of Theorem 1.2.3 on uniform rectifiability. We conclude the

chapter with Section 2.8, which discusses two embedding results which follow from Theorem

1.2.2 and results of Semmes, and Section 2.9, which summarizes various examples in which

“bi-Lipschitz pieces” results fail; these are due to various authors.

Chapter 3 is about Lipschitz differentiability spaces. Most of the chapter is devoted

to the proof of Theorem 1.3.9. This requires another type of pointed Gromov-Hausdorff

convergence (defined in Section 3.2) and a generalization of a result about tangent spaces

due to Le Donne [43] (Section 3.3). Sections 3.4 and 3.5 contain some general results about

tangents of doubling Lipschitz differentiability spaces. Sections 3.6 and 3.7 contain the proofs

of Theorems 1.3.9 and 1.3.12, respectively. Finally, in Section 3.8 we present some further

corollaries. These include generalizations to Lipschitz differentiability spaces of some results

of Cheeger [13] related to non-embedding for PI spaces — Corollaries 3.8.1, 3.8.2, 3.8.4,

and 3.8.5 — as well as a rigidity result, Corollary 3.8.8, for Lipschitz differentiability spaces

admitting quasi-Möbius symmetries, in the spirit of Bonk-Kleiner [6].

Chapters 2 and 3 are almost entirely independent of each other, although Chapter 3 uses

a result of David and Semmes introduced in Section 2.2 of Chapter 2.
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CHAPTER 2

Bi-Lipschitz pieces between manifolds

In this chapter we will prove a “bi-Lipschitz pieces” type result, Theorem 1.2.2, of the general

form described in Section 1.2. A number of consequences will be deduced, namely Theorem

1.2.3 and Corollaries 2.8.1 and 2.8.4. The author’s preprint [23] is based on the material in

this chapter.

2.1 Additional definitions

In this chapter, whenever we speak of a measure we will mean s-dimensional Hausdorff

measure in an Ahlfors s-regular space. To simplify notation, we therefore always write |A|

or, to avoid confusion, |A|X for the s-dimensional Hausdorff measure of a set A in a space

X. We now give some more specialized definitions that will be needed in this chapter.

The following condition gives a quantitative bound on the local topology of a metric

space.

Definition 2.1.1. A metric space (X, d) is called linearly locally contractible if there are

constants L, r0 > 0 such that every open ball B ⊂ X of radius r < r0 is contractible inside

a ball with the same center of radius Lr. We may abbreviate the condition as LLC or

(L, r0)-LLC to emphasize the constants.

Remark 2.1.2. In some contexts, the abbreviation LLC refers to the weaker condition of

“linear local connectivity”. We do not use this condition in this dissertation.

The class of source and target spaces we consider in this chapter are complete, oriented

topological d-manifolds that are Ahlfors s-regular and LLC. If X is such a space, the phrase
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“the data of X” refers to the collection of constants associated to X: the dimensions d and

s, the constant C0 appearing in the Ahlfors regularity of X, and the constants L and r0

appearing in the LLC property of X.

There is also an additional constraint on the class of target spaces for which our theorem

applies. This requires the notion of convergence of a sequence of pointed metric spaces,

which we introduce in Definition 2.3.3 below.

Definition 2.1.3. We say a complete metric space (Y, ρ) has d-manifold weak tangents if the

following holds: Whenever ri is a sequence of positive real numbers that is bounded above,

pi are points in Y , and (Y, 1
ri
ρ, pi) converges (as in Definition 2.3.3) to a space (Y∞, ρ∞, p∞),

then Y∞ is a topological d-manifold.

Remark 2.1.4. Note that Definition 2.1.3 includes the assumption that Y itself is a topological

d-manifold, by taking ri = 1 and pi = p for all i.

Remark 2.1.5. While Definition 2.1.1 is rather standard, Definition 2.1.3 is more unusual,

and somewhat restrictive. Here are some examples of spaces that satisfy it:

• The simplest example is Rd for d ≥ 1. Indeed, if Y = Rd, then all the pointed metric

spaces (Y, 1
ri
ρ, pi) are isometric to (Rd, | · |, 0) by rescaling and translating. Therefore,

the limiting space of this sequence is also Rd, which is a topological d-manifold.

• For the same reasons, every Carnot group G, equipped with its Carnot-Carathéodory

metric, has d-manifold weak tangents, where d is the topological dimension of G. For

the definition of Carnot groups, see [12], Chapter 2.

• If X is a compact, doubling metric space with d-manifold weak tangents, and Y is

quasisymmetric to X, then Y has d-manifold weak tangents. This follows, e.g., from

[37], Lemmas 2.4.3 and 2.4.7. For the definition and properties of quasisymmetric

mappings, see [28].

• Similarly, if G is a topologically d-dimensional Carnot group, and Y is quasisymmetric

to G, then Y has d-manifold weak tangents (even if Y has larger Hausdorff dimension
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than G). This includes all “snowflaked” Carnot groups, i.e., metric spaces of the form

(G, ρα), where 0 < α ≤ 1 and (G, ρ) is a Carnot group.

• The Cartesian product of two spaces (X, dX) and (Y, dY ) with n- and m-manifold weak

tangents, respectively, (equipped, e.g., with the metric d((x, y), (x′, y′)) = dX(x, x′) +

dY (y, y′)) has (n+m)-manifold weak tangents.

• Any complete, doubling, linearly locally contractible topological 2-manifold has 2-

manifold weak tangents. Indeed, by Proposition 2.3.19 below, every weak tangent of

such a space is a homology 2-manifold (see Definition 2.3.18), and the only homology

2-manifolds are topological 2-manifolds (see [10], Theorem V.16.32).

• Suppose a compact metric space Z has the property that every triple of points can

be blown up to a uniformly separated triple by a uniformly quasi-Möbius map. (This

condition was studied by Bonk and Kleiner in [6] and is satisfied by boundaries of

hyperbolic groups equipped with their visual metrics.) Then Z has d-manifold weak

tangents if and only if Z is itself a topological d-manifold. This follows from [6], Lemma

5.3. (Note that the definition of a weak tangent given in [6] is different than ours, in

that it requires the sequence of scales 1/ri tend to infinity. However, the proof of

Lemma 5.3 in [6] works the same way without this restriction.)

2.2 Background

In [18], condition (9), David introduced the following condition for a Lipschitz map defined

on a dyadic cube in an Ahlfors-regular space. Though David gave the condition for maps

into Rd, in [56], Condition 9.1, Semmes re-formulated David’s condition for arbitrary target

spaces. This is the formulation we give here. Recall that | · | denotes s-dimensional Hausdorff

measure.

Definition 2.2.1. Let (X, d) be an Ahlfors s-regular metric space with a system of dyadic

cubes as in Subsection 1.1.1. Let (Y, ρ) be a metric space. Let I0 be a 0-cube in X, and
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z : I0 → Y be a Lipschitz map. We will say that z satisfies David’s condition on I0 if the

following holds:

For every λ, γ > 0, there exist Λ, η > 0 such that, for every x ∈ I0 and j < j0, if T is the

union of all j-cubes intersecting B(x,Λ2j), and if T ⊆ I0 and |z(T )| ≥ γ|T |, then either:

(i) z(T ) ⊇ B(z(x), λ2j), or

(ii) there is a j-cube R ⊂ T such that

|z(R)|/|R| ≥ (1 + 2η)|z(T )|/|T |.

As in Theorem 1.2.2, it is convenient to phrase David’s condition for 0-cubes because

that is how we will use it, although it makes sense for cubes of all sizes. Note that, given

the definition of our cubes in Subsection 1.1.1, a space may contain no 0-cubes at all, but

one can always create some by rescaling the space and relabeling the levels of the cubes.

In essence, David’s condition says the following: At every location and scale within I0,

if the map z does not collapse the measure of a ball too much, then one of two things must

happen: either (i) the image of this ball contains a ball of comparable size (centered at the

image of its center), or (ii) some sub-cube of this ball is expanded by a larger factor than

the ball itself. The upshot of (i) is that the map z does not “fold” at this location and scale.

To take a concrete example, suppose I0 = [0, 1]2 ⊂ R2 and z is the map

z(x, y) =

(∣∣∣∣x− 1

2

∣∣∣∣ , y) : I0 → R2,

which folds the square in half along its central vertical axis. If T is well away from the

folding line {x = 1
2
}, then z essentially acts isometrically on T and so condition (i) of David’s

condition holds. If T is centered on the folding line, then |z(T )|/|T | = 1/2 and (i) fails, but

some sub-square R of T to the left or right of the folding line satisfies |z(R)|/|R| = 1, so (ii)

holds. (Of course, this was just a heuristic explanation; to truly verify David’s condition we

would have to keep careful track of the constants involved.)

Theorem 10.1 of [56], which is a generalization of Theorem 1 of [18], says the following.
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Theorem 2.2.2 ([56], Theorem 10.1). Let (X, d) be an Ahlfors s-regular metric space with

a system of dyadic cubes as above. Let (Y, ρ) be an arbitrary metric space. Let I0 be a 0-cube

in X, and z : I0 → Y be a Lipschitz map. Suppose that z satisfies David’s condition on I0.

Then for every ε > 0, there are measurable subsets E1, . . . , El ⊂ I0, such that z|Ei
is

M-bi-Lipschitz, and ∣∣∣∣∣z
(
I0 \

l⋃
i=1

Ei

)∣∣∣∣∣ < ε |I0| .

The constants l and M depend only on ε, the constants associated to the Ahlfors-regularity

of the space X, the Lipschitz constant of z, and the numbers Λ and η from David’s condition

(for λ = 1 and γ depending only on ε and the Lipschitz constant of z.)

We will apply Theorem 2.2.2 and a modification of the proof of Theorem 2 of [18] to

prove Theorem 1.2.2. It is worth noting that, in Theorem 1.2.2, the condition that Y is

Ahlfors s-regular can be relaxed to the condition that Y is doubling and satisfies the upper

mass bound

Hs(BY (x, r)) ≤ C0r
s.

It is only this half of the Ahlfors regularity of Y that is used in the proof.

On the other hand, the fact that X and Y are have the same topological dimension

d is crucial in the setting of Theorem 1.2.2. In Proposition 2.9.1 below, we will give a

counterexample to Theorem 1.2.2 in which X and Y satisfy all the assumptions of the

theorem, except that they are manifolds of different topological dimensions.

A few further remarks on the statement of Theorem 1.2.2 are in order.

Remark 2.2.3. That Theorem 1.2.2 gives dependence of constants on the space Y (and

not just its data) is a consequence of our compactness style of proof. However, the proof

of Theorem 1.2.2 can be modified slightly to reduce the dependence on Y in the following

manner. Let Y be a complete, oriented d-manifold that is LLC, Ahlfors s-regular, and has d-

manifold weak tangents. Suppose that Y ′ is LLC, Ahlfors s-regular, and is η-quasisymmetric

to Y , by a quasisymmetry that maps balls in Y ′ of radius 1 to sets of uniformly bounded
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diameter. Then Theorem 1.2.2 holds for maps z : X → Y ′ with constants depending only

on the space Y , the data of Y ′, and the quasisymmetry function η (as well as the data of z

and X).

In particular, if ξ ≥ ξ0 > 0, then the theorem holds for target space Y ′ = (Y, ξρ) with

l,M depending only on Y and ξ0 (as well as on ε and the data of X and z), and not on ξ

itself. That is because this rescaling is quasisymmetric (with η(t) = t) and does not alter

the data of Y , other than changing the contractibility radius r0 to r0/ξ0.

Remark 2.2.4. We have phrased Theorem 1.2.2 for 0-cubes to parallel Theorem 2 of [18].

However, it is easy to see that the following statement also holds:

Suppose j1 < j0, Q0 is a dyadic j-cube in X, j ≤ j1, and z : Q0 → Y is Lipschitz. Then

the conclusion of Theorem 1.2.2 holds for z on Q0, i.e., for every ε > 0, there are measurable

subsets E1, . . . , El ⊂ Q0, such that z|Ei
is M -bi-Lipschitz, and∣∣∣∣∣z

(
I0 \

l⋃
i=1

Ei

)∣∣∣∣∣ < ε |I0|

Here l and M depend only on ε, the Lipschitz constant of z, j1, the space Y , and the data

of X.

Indeed, if Q0 is an j-cube for j ≤ j1, one need only apply Theorem 1.2.2 to the rescaled

spaces (X, 2−jd) and (Y, 2−jρ), and the same Lipschitz map z, relabeling the cubes so that

Q0 is a 0-cube. The rescaled spaces (X, 2−jd) and (Y, 2−jρ) have the same data as X and Y ,

except that their LLC radii r0 must be replaced by 2−j1r0. So we can apply Theorem 1.2.2

and Remark 2.2.3 to obtain this result.

David proved Theorem 1.2.2 in the case X = Y = Rd (see [18], Theorem 2). In doing so,

he used a compactness argument to verify a modified version of what we have called David’s

condition. The general idea is the following: Consider a sequence of counterexample maps

zk, which in the case of Rd may all be defined on the unit cube, that fail both conditions of

Definition 2.2.1 with increasingly worse constants as k →∞. Extract a sub-limit z, and by

a careful argument show that z has constant Jacobian. Because z is in addition Lipschitz, it
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is a quasi-regular mapping, and a theorem of Reshetnyak implies that it is an open mapping.

A degree argument then shows that, for k large, the image of the maps zk must contain a

fixed size ball around zk(0), with radius independent of k. For k large, this contradicts the

assumption that the maps zk fail the first condition of Definition 2.2.1.

In our setting, we follow a similar approach. The compactness argument of [18] is mod-

ified to be a Gromov-Hausdorff compactness argument; to make the degree theory work in

this setting we require some results on the Gromov-Hausdorff limits of locally contractible

manifolds: see Section 2.3 below. In addition, the theory of quasi-regular mappings and the

result of Reshetnyak are not available to us. They are replaced by a topological theorem of

Bonk and Kleiner (Theorem 2.3.29 below) on mappings of bounded multiplicity.

A completely different method for verifying David’s condition in some situations is a

type of detailed homotopy argument, as in [22], Chapter 9. This approach allows for much

weaker topological assumptions on X, but it seems to rely on having s = d, Y = Rd, and X

embedded in some Euclidean space.

If X admits a bi-Lipschitz embedding into some Euclidean space, then Theorem 1.2.3

follows from work of David and Semmes in [22]. However, examples of Semmes [54] and

Laakso [42] show that such an embedding need not always exist.

2.3 The main tools

In this section, we introduce the main concepts and results used in the proof of Theorem

1.2.2.

2.3.1 Convergence of metric spaces

We will use the notion of convergence of “mapping packages”, a version of Gromov-Hausdorff

convergence, that is described in Chapter 8 of [21]. All material in this subsection is from

that source. A brief exposition of this material is also given in [35].
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While the notation in this set-up is a bit more cumbersome than for other definitions

of Gromov-Hausdorff convergence (for example the one we use in Section 3.2), the detailed

results of [21] make it very flexible for discussing simultaneous convergence of metric spaces

and mappings.

Definition 2.3.1. We say that a sequence {Fj} of non-empty closed subsets of some Eu-

clidean space RN converges to a non-empty closed set F ⊆ RN if

lim
j→∞

sup
x∈Fj∩B(0,R)

dist(x, F ) = 0

and

lim
j→∞

sup
y∈F∩B(0,R)

dist(y, Fj) = 0

for all R > 0.

This convergence is stable under taking products, in the sense that if {Fj} converges to

F in RN and {Gj} converges to G in RM , then {Fj ×Gj} converges to F ×G in RN+M .

Definition 2.3.2. Suppose {Fj} is a sequence of closed sets converging to a closed set F

in RN as in the previous definition. Let Y be a metric space and φj : Fj → Y , φ : F → Y

be mappings. We say that {φj} converges to φ if for each sequence {xj} in RN such that

xj ∈ Fj for all j and xj → x ∈ F , we have that

lim
j→∞

φj(xj) = φ(x).

A pointed metric space is a triple (X, d, p), where (X, d) is a metric space and p is a point

in X. All metric spaces that we consider are complete and doubling.

Definition 2.3.3. A sequence of pointed metric spaces {(Xj, dj, pj)} converges to a pointed

metric space (X, d, p) if the following conditions hold. There exists α ∈ (0, 1], N ∈ N, and

L-bi-Lipschitz embeddings fj : (Xj, d
α
j )→ RN , f : (X, dα)→ RN with fj(pj) = f(p) = 0 for

all j. Furthermore, we require that fj(Xj) converge to f(X) in the sense of Definition 2.3.1,

and that the real-valued functions (x, y) 7→ dj(f
−1
j (x), f−1

j (y)) defined on fj(Xj) × fj(Xj)

converge to the function (x, y) 7→ d(f−1(x), f−1(y)) on f(X)×f(X), in the sense of Definition

2.3.2.
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We only use Definition 2.3.3 when the metric spaces {(Xj, dj)} and (X, d) are uniformly

doubling. In that case, embeddings fj and f as in Definition 2.3.3 can always be found, by

Assouad’s embedding theorem (see [28], Theorem 12.2).

Definition 2.3.4. A mapping package consists of a pair of pointed metric spaces (M,dM , p)

and (N, dN , q) as well as a mapping g : M → N such that g(p) = q.

Definition 2.3.5. A sequence of mapping packages {((Xj, dj, pj), (Yj, ρj, qj), hj)} is said to

converge to another mapping package ((X, d, p), (Y, ρ, q), h) if the following conditions hold.

The sequences {(Xj, dj, pj)} and {(Yj, ρj, qj} converge to (X, d, p) and (Y, ρ, q), respectively,

in the sense of Definition 2.3.3. Furthermore, the maps gj ◦ hj ◦ f−1
j converge to g ◦ h ◦ f−1

in the sense of Definition 2.3.2, where fj, gj, f, g are the embeddings of Definition 2.3.3.

The following proposition is a special case of Lemma 8.22 of [21].

Proposition 2.3.6. Let {((Xj, dj, pj), (Yj, ρj, qj), hj)} be a sequence of mapping packages,

in which all the metric spaces are complete and uniformly doubling, and in which the maps

hj are uniformly Lipschitz and satisfy hj(pj) = qj. Then there exists a mapping package

((X, d, p), (Y, ρ, q), h) that is the limit of a subsequence of {((Xj, dj, pj), (Yj, ρj, qj), hj)}.

We will now describe some consequences of the convergence of a sequence of mapping

packages, which are Lemmas 8.11 and 8.19 of [21].

Proposition 2.3.7. Suppose a sequence of pointed metric spaces {(Xk, dk, pk)} converges to

the pointed metric space (X, d, p), in the sense of Definition 2.3.3.

Then there exist (not necessarily continuous) mappings φk : X → Xk and ψk : Xk → X

such that:

• For all k, φk(p) = pk and ψk(pk) = p.

• For all R > 0,

lim
k→∞

sup{dX(ψk(φk(x), x)) : x ∈ BX(p,R)} = 0
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and

lim
k→∞

sup{dXk
(φk(ψk(x), x)) : x ∈ BXk

(pk, R)} = 0.

• For all R > 0,

lim
k→∞

sup{|dXk
(φk(x), φk(y))− dX(x, y)| : x, y ∈ BX(p,R)} = 0

and

lim
k→∞

sup{|dX(ψk(x), ψk(y))− dXk
(x, y)| : x, y ∈ BXk

(p,R)} = 0.

Proposition 2.3.8. Suppose a sequence of mapping packages {((Xk, dk, pk), (Yk, ρk, qk), hk)}

converges to a mapping package ((X, d, p), (Y, ρ, q), h), where the mappings hk are uniformly

Lipschitz and satisfy hk(pk) = qk. Then there exist (not necessarily continuous) mappings

φk : X → Xk and ψk : Xk → X satisfying exactly the conditions of Proposition 2.3.7, and

mappings σk : Y → Yk and τk : Yk → Y satisfying the analogous properties of Proposition

2.3.7, such that in addition we have the following:

For all x ∈ X,

lim
k→∞

τk(hk(φk(x))) = h(x)

and this convergence is uniform on bounded subsets of X.

We will be interested in mapping packages in which the mappings hk are defined only on

subsets of the source spaces Xk. For this, we need the following fact, which is Lemma 8.32

of [21].

Lemma 2.3.9. Suppose that {(Xk, dk, pk)} is a sequence of pointed metric spaces that con-

verges to the pointed metric space {(X, d, p)} in the sense of Definition 2.3.3. Let {Fk} be a

sequence of nonempty closed sets with Fk ⊂ Xk for each k. Suppose that

sup
k

distXk
(Fk, pk) <∞.

Then we can pass to a subsequence to get convergence to a nonempty closed subset F of X.

We make one final remark in this Subsection, which is Lemma 8.29 of [21].
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Lemma 2.3.10. Let the pointed metric spaces (Xj, dj, pj) converge to (X, d, p) in the sense of

Definition 2.3.3. Suppose that (Xj, dj) are Ahlfors s-regular, with Ahlfors regularity constant

uniformly bounded (see Definition 1.1.3). Then (X, d) is Ahlfors s-regular, with constant

controlled by the Ahlfors regularity constants of the spaces (Xj, dj).

2.3.2 Convergence of LLC spaces

Here we state some results that apply to the convergence of metric spaces (in the sense of the

previous section) when those metric spaces also happen to be linearly locally contractible.

The main goals are to show that a convergent sequence of uniformly LLC spaces has an LLC

limit (essentially a result of Borsuk [8]), and to describe a result that improves Proposition

2.3.8 in this context.

The following basic fact about LLC spaces will be used a number of times.

Lemma 2.3.11. Let X be a (L, r0)-LLC space. Fix x ∈ X and r ∈ (0, r0). Then there is a

connected open set U satisfying

B(x, r/(2L)) ⊂ U ⊂ B(x, r).

Proof. Consider a point y ∈ X and a radius r ∈ (0, r0). Let H : B(y, r/(2L)) × [0, 1] →

B(x, r/2) be a homotopy contracting B(y, r/(2L)) to a point. Define

E(y, r) = H(B(y, r/(2L))× [0, 1]).

Then E(y, r) is a connected subset of B(y, r/2) containing B(y, r/(2L)).

Let E0 = E(x, r). For i ∈ N, inductively define sets

Ei =
⋃

y∈Ei−1

E(y, 2−ir).

By induction, each set Ei is connected. In addition, for each i we have the relation

Ei ⊂ intEi+1. (2.3.1)
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Now let

U =
∞⋃
i=1

Ei.

Then, as the union of connected sets that all contain the point x, the set U is connected. In

addition, by (2.3.1) U is open: if x ∈ U , then, for some i,

x ∈ Ei ⊂ intEi+1 ⊂ intU.

Finally, if y ∈ Ei ⊂ U , then

d(x, y) ≤
(
2−(i+1) + 2−i + · · ·+ 2−1

)
r < r.

Thus, U is a connected open set, U ⊂ B(x, r), and U ⊇ E0 ⊇ B(x, r/(2L)).

The following is our main lemma about convergence of uniformly LLC sets.

Lemma 2.3.12. Let Fk be a sequence of closed sets in some Euclidean space RN that are each

(L, r0)-LLC (as spaces equipped with the induced Euclidean metric). Suppose that Fk → F

in the sense of Definition 2.3.1. Then F is LLC, with constants depending only on L and

r0.

In the case of compact sets converging in the usual Hausdorff metric, Lemma 2.3.12 is

due to Borsuk [8]. A similar localized version of the result was noted in [29]. Here we provide

a proof, following the method of Borsuk.

The proof is somewhat technical, though the main idea is not difficult: For subsets of

Euclidean space, the LLC property for a set E implies the existence of a retraction to E,

from an open neighborhood of E of fixed size, that moves points by an amount proportional

to their distance from E. We use the existence of these retractions on the limiting sets Fk

to construct a retraction onto the limit F . This retraction can then be used to show that F

is LLC. Because the convergence is local, there are some minor technical complications.

Proof of Lemma 2.3.12. For a set E ⊆ RN , let Uε(E) denote the open ε-neighborhood of E.

Let BR = B(0, R) ⊂ RN .
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We note first that the LLC property implies that there exist constants 0 < c < 1 and

C = c−1 > 1 such that each Fk admits a continuous retraction rk : Uc(Fk)→ Fk satisfying

|rk(x)− x| ≤ C dist(x, Fk) (2.3.2)

for x ∈ Uc(Fk). The proof of this can be found in Section 13 of [8] (and does not require

compactness of the sets).

Fix a ball B = B(p, r)∩F for p ∈ F and r < r0/4. Fix R > max{4Lr, 12C} large enough

so that B ⊂ BR.

By passing to a subsequence, we may without loss of generality assume that, for all k,

sup{dist(x, Fk) : x ∈ F ∩B10R} < c/4,

sup{dist(x, F ) : x ∈ Fk ∩B10R} < c/4.

It follows that

U :=
∞⋂
k=1

Uc(Fk)

contains a c/2-neighborhood of B9R ∩ F as well as of
∞⋃
k=1

(B9R ∩ Fk).

For k ∈ N, fix decreasing sequences

ηk = c24−k, (2.3.3)

η′k = c24−k/3. (2.3.4)

We may now pass to a further subsequence of our sets on which we assume that

sup{dist(x, Fk) : x ∈ F ∩B9R} < η′k/8, (2.3.5)

sup{dist(x, F ) : x ∈ Fk ∩B9R} < η′k/8. (2.3.6)

Let Uk = Uηk(Fk) and Vk = Uη′k(Fk). Then, if x ∈ Uk+1∩B7R, we have, by (2.3.3), (2.3.4),

(2.3.5), and (2.3.6), that

dist(x, Fk ∩B8R) < η′k.
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Therefore, for every 0 < R′ ≤ 7R,

(Uk+1 ∩BR′) ⊂ (Vk ∩BR′) ⊂ (V k ∩BR′) ⊂ (Uk ∩BR′) ⊂ (U ∩BR′). (2.3.7)

We will now inductively construct a new sequence of retractions sk : U ∩ B5R → Fk by

modifying the maps rk.

Let s1 = r1. Suppose that sk has already been defined and in addition satisfies sk = rk

on Vk ∩ B5R. Let f : U → R be a continuous function that is 0 on U \ Uk+1 and 1 on Vk+1.

For x ∈ U ∩B5R, define

sk+1(x) = rk+1((1− f(x))sk(x) + f(x)x).

We first check that sk+1 is well-defined, i.e., that for x ∈ U ∩ B5R, the point (1 −

f(x))sk(x) + f(x)x is in U . If x ∈ U \Uk+1, then (1− f(x))sk(x) + f(x)x = sk(x) ∈ Fk ⊂ U ,

so sk+1 is well-defined. In the case x ∈ Uk+1, we have by (2.3.7) that x ∈ Vk. By our

inductive assumption that sk = rk on Vk ∩B5r, we get

|x− sk(x)| = |x− rk(x)| ≤ Cη′k < c.

Thus, every point on the line segment from x to sk(x) is in the c-neighborhood of Fk and so

is in U .

By the definition of the function f , it is clear that sk+1 = rk+1 on Vk+1 ∩B5R. Similarly,

that sk+1 is the identity on points of Fk+1 ∩ B5R follows from the fact that, by definition,

sk+1 = rk+1 on Fk+1.

We now make the following claim: If x ∈ U ∩B5R and sk(x) ∈ B6R, then

|sk+1(x)− sk(x)| < 3C4−k. (2.3.8)

To prove this, we consider three cases.

(i) The case x ∈ Vk+1:

In this case, using (2.3.2) and the definitions of sk and sk+1, we get

|sk+1(x)−sk(x)| = |rk+1(x)−rk(x)| ≤ |rk+1(x)−x|+|x−rk(x)| ≤ C(η′k+1+η′k) < 3C4−k.

36



(ii) The case x ∈ U \ Uk+1:

In this case, sk+1(x) = rk+1(sk(x)). By assumption, sk(x) ∈ Fk ∩ B6R and therefore

dist(sk(x), Fk+1) < η′k/4 by (2.3.6). Therefore, by (2.3.2),

|sk+1(x)− sk(x)| = |rk+1(sk(x))− sk(x)| ≤ Cη′k/4 < 3C4−k.

(iii) The case x ∈ Uk+1 \ Vk+1:

Note that x ∈ Uk+1 ∩B5R ⊂ Vk ∩B5R, so sk(x) = rk(x). Let

y = (1− f(x))sk(x) + f(x)x,

which is on the line segment L joining x to sk(x) = rk(x). The diameter of L is therefore

|x− rk(x)| ≤ Cη′k, by (2.3.2) and the fact that x ∈ Vk.

In addition, because x ∈ Uk+1, we have dist(x, Fk+1) < ηk.

From these calculations, it follows that

dist(y, Fk+1) ≤ dist(x, Fk+1) + diam(L) ≤ ηk + Cη′k,

and therefore, by (2.3.2), that

|sk+1(x)− x| = |rk+1(y)− x| ≤ |rk+1(y)− y|+ |y − x| ≤ C(ηk + Cη′k) + Cη′k ≤ 2C4−k.

From this, we see that

|sk+1(x)− sk(x)| ≤ |sk+1(x)− x|+ |x− rk(x)| < 2C4−k + ηk < 3C4−k.

This concludes the proof of the claim that |sk+1(x)− sk(x)| < 3C4−k if x ∈ U ∩B5R and

sk(x) ∈ B6R.

Now note that

|s1(x)− x| = |r1(x)− x| ≤ Cc = 1.

Therefore s1(x) ∈ B5.5R. Because
∞∑
k=0

(3C4−k) ≤ 6C < R/2, it follows from the above claim

that sk(x) ∈ B6R for all k, and therefore that

|sk+1(x)− sk(x)| < 3C4−k
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for all x ∈ U ∩B5R and k ∈ N.

It follows immediately from this and from (2.3.6) that the maps sk|U∩B5R
converge uni-

formly to a map

s : U ∩B5R → F ∩B6R.

The map s is the identity on F ∩B5R: if x ∈ F ∩B5R, then by (2.3.5) and the definition of

sk we see that sk(x) = rk(x). It follows that

|s(x)− x| = lim
k→∞
|sk(x)− x| = lim

k→∞
|rk(x)− x| ≤ C lim

k→∞
dist(x, Fk) = 0.

To finish the proof of the lemma, recall our fixed ball B = B(p, r) ∩ F in F ∩ BR. The

map s, when restricted to F ∩ B4R, is the identity. Therefore, for every positive number

η < r sufficiently small, there is a neighborhood V ⊂ (U ∩B5R) of F ∩B4R such that

x ∈ V ⇒ |s(x)− x| < η.

We may now choose k large so that |sk(x) − s(x)| < η for all x ∈ U ∩ B5R (by uniform

convergence) and in addition so that

Fk ∩B3R ⊂ V.

Now we contract B in the following manner. First, consider the homotopy

h(x, t) = (1− t)x+ tsk(x)

for x ∈ B and t ∈ [0, 1]. Because |sk(x)−x| = |sk(x)−s(x)| < η, we have h(B×[0, 1]) ⊂ B3R.

In addition, h deforms B onto a set E ⊂ Fk ∩ B3R of diameter no more than 2r + 2η. By

our choices of r and η, 2r + 2η < 4r < r0, and therefore E is contractible inside a set

E ′ ⊂ Fk ∩B3R of diameter L(2r + 2η).

Let g : B × [0, 1] → E ′ ⊂ (Fk ∩ B3R) denote the homotopy of B onto a point that first

deforms by h and then by the contraction in Fk. Then s ◦ g is a contraction of B to a point

within the set s(E ′) ⊂ F , which has diameter no more than L(2r + 2η) + 2η.
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In summary, if we recall that η < r, we have shown that the ball B = B(p, r) ∩ F is

contractible within the ball B′ = B(p, (4L + 2)r) ∩ F whenever r < r0/4. This completes

the proof.

Lemma 2.3.13. Suppose the pointed metric spaces (Xk, dk, vk) are (L, r0)-LLC and converge

to the pointed metric space (X, d, v) in the sense of Definition 2.3.3. Then (X, d) is LLC,

with constants depending only on L and r0.

Proof. This follows immediately from Lemma 2.3.12 and Definition 2.3.3, as the “snowflake”

transformations of Definition 2.3.3 distort the LLC constants in a quantitative way.

To conclude this section, we give two lemmas which improve Propositions 2.3.7 and 2.3.8

in the setting of LLC spaces. They say that if a sequence of mapping packages converges,

then the “almost-isometries” φk and ψk between the limiting spaces and the limit space can

be taken to be continuous.

Definition 2.3.14. For η > 0, we say that continuous maps f, g : M → N between metric

spaces are η-homotopic if they are homotopic by a homotopy H : M × [0, 1]→ N such that,

for all x ∈M and t ∈ [0, 1], we have

dN(f(x), H(x, t)) < η.

Note in particular that if f and g are η-homotopic, then dN(f(x), g(x)) < η for all x.

Our next fact, Lemma 2.3.15 below, is an immediate consequence of Proposition 2.3.8

above, combined with Propositions 5.4 and 5.8 of [57]. (See also [50], Section 3, for a cleaner

statement in the compact case.) Note that all our spaces are Ahlfors s-regular and thus have

topological dimension bounded above by s, so those results apply.

Propositions 5.4 and 5.8 of [57], on which the proof of Lemma 2.3.15 is based, are im-

portant consequences of the linear local contractibility of the spaces X and {Xk}. Roughly

speaking, they say that if a mapping into an LLC space is “roughly continuous” (as the maps

φk and ψk from Proposition 2.3.7 are), then it is close to a continuous mapping, and if two
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continuous mappings into an LLC space are close, then they are η-homotopic for small η.

The proofs of these facts use polyhedral approximations of the source space and an induction

on the skeleta of the polyhedra. We encourage the reader to look at Semmes’s paper [57] or

Petersen’s work [50] for the details.

Lemma 2.3.15. Suppose the pointed metric spaces (Xk, dk, vk) are (L, r0)-LLC, uniformly

Ahlfors s-regular, and converge to the pointed metric space (X, d, v) in the sense of Definition

2.3.3.

Fix a point x ∈ X and a radius R > 0. Then there exist continuous mappings

fk : BX(x,R)→ Xk and gk : BXk
(fk(x), R)→ X satisfying the following conditions:

(i) They almost preserve distances, in the sense that

lim
k→∞

sup{|dXk
(fk(p), fk(q))− dX(p, q)| : p, q ∈ BX(x,R)} = 0

and

lim
k→∞

sup{|dX(gk(p), gk(q))− dXk
(p, q)| : p, q ∈ BXk

(fk(x), R)} = 0.

(ii) For every 0 < r < R, we have

lim
k→∞

inf{η : gk ◦ fk|B(x,r) is η-homotopic to the inclusion map B(x, r)→ B(x,R)} = 0

and

lim
k→∞

inf{η : fk◦gk|B(fk(x),r) is η-homotopic to the inclusion map B(fk(x), r)→ B(fk(x), R)} = 0

(iii) If x is the basepoint v ∈ X, then in addition we have

lim
k→∞

dk(fk(v), vk) = 0.

Proof. Take η > 0, which without loss of generality satisfies r+2η < R for the radii r < R as

in (ii). We will find, for all k sufficiently large, continuous mappings fk and gk as above that

preserve distances up to additive error η and such that fk ◦ gk and gk ◦ fk are η-homotopic

to the appropriate inclusion maps.
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We will choose η′′, η′ small, with 0 < η′′ < η′ < η, depending only on η and the (uniform)

data of the space X and the sequence of spaces {Xk}. The precise way in which we choose

η′ and η′′ will be described below.

By Proposition 2.3.7, there is an index k0 ∈ N such that, for all k ≥ k0, the maps φk : X →

Xk and ψk : Xk → X preserve distances up to additive error η′′ on B(x,R) and B(fk(x), R),

respectively. By [57], Proposition 5.4, if η′′ was chosen sufficiently small compared to η′,

then there exist continuous maps fk : B(x,R)→ Xk and gk : B(fk(x), R)→ X such that

dk(fk(z), φk(z)) < η′ and d(gk(y), ψk(y)) < η′ (2.3.9)

for all points z, y in their respective domains. Part (i) of the lemma follows immediately

from this by taking η′ < η/10. Part (iii) also follows, because φk(v) = vk.

Now fix 0 < r < R. By Proposition 2.3.7 we may also assume that, for all k ≥ k0, we

have

d(φk(ψk(x)), x) < η′ and d(ψk(φk(x)), x) < η′,

in addition to the properties above.

As r + 2η′ < r + 2η < R, we see that fk(B(x, r)) ⊂ B(fk(x), R), and so the composition

gk ◦ fk is defined on B(x, r). Similarly, the composition fk ◦ gk is defined on B(fk(x), r). By

choosing η′′ < η′/10 and using equation (2.3.9) and the properties of φk and ψk, we also see

that

d(fk(gk(x)), x) < 2η′ and d(gk(fk(x)), x) < 2η′.

Therefore, if η′ was chosen sufficiently small, depending on η and the data of the spaces X,

{Xk}, Proposition 5.8 of [57] implies that

gk ◦ fk|B(x,r) and fk ◦ gk|B(fk(x),r)

are η-homotopic to the inclusions

B(x, r)→ B(x,R) and B(fk(x), r)→ B(fk(x), R).

This proves part (ii) of the lemma.
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The following additional fact is an immediate consequence of Lemma 2.3.8 and equation

(2.3.9) above.

Lemma 2.3.16. Suppose we have convergence of a sequence of mapping packages

((Xk, dk, pk), (Yk, ρk, qk), hk)→ ((X, d, p), (Y, ρ, q), h)

in the sense of Definition 2.3.5. Suppose that all the spaces involved are uniformly Ahlfors

s-regular and uniformly LLC, and that the mappings {hk} and h are uniformly C-Lipschitz

and satisfy hk(pk) = qk and h(p) = q. Then for all R > 0, there exist continuous mappings

fk : BX(p,R)→ Xk and gk : BXk
(pk, R)→ X

satisfying exactly the conditions of Lemma 2.3.15, and continuous mappings

f̃k : BY (q, R)→ Yk and g̃k : BYk(qk, R)→ Y

satisfying the analogous properties of Lemma 2.3.15, such that in addition we have that

lim
k→∞

g̃k(hk(fk(x))) = h(x)

uniformly for x ∈ BX(p,R/2C).

2.3.3 Convergence of manifolds

Here we state some facts on the convergence of metric spaces that are LLC topological

manifolds. Our main goal is to give a proof of Proposition 2.3.19 below, which says that

the limit of a sequence of uniformly Ahlfors regular, uniformly LLC, topological d-manifolds

is a homology d-manifold (see Definition 2.3.18). This result essentially goes back to Begle

[5] (see also [27]) and appears to be well-known, but we did not find a modern proof in the

literature in the generality necessary here.

Below, H∗ denotes singular homology with integer coefficients.

Lemma 2.3.17. Let M be an (L, r0)-LLC oriented topological d-manifold. Let v ∈ M and

let K1 ⊂ K2 be compact sets satisfying v ∈ K1 ⊂ B(v, r) ⊂ B(v, 2Lr) ⊂ K2 ⊂ B(v, r0).

Then the following facts hold.
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(i) The map j∗ : Hp(M,M \K2)→ Hp(M,M \K1), induced by inclusion, is trivial if p 6= d.

(ii) The map i∗ : Hd(M,M \K2)→ Hd(M,M \{v}) ∼= Z, induced by inclusion, is surjective.

(iii) With this notation, we also have ker i∗ ⊆ ker j∗ in the top degree p = d.

Proof. By use of the natural duality isomorphisms ([58], Theorem 6.2.17) we obtain the

following commutative diagram. Here H denotes Čech cohomology, and all maps in the

diagram are the natural maps induced by inclusion.

Hp(M,M \K2)
j∗−−−→ Hp(M,M \K1)

k∗−−−→ Hp(M,M \ {v})
∼=
y ∼=

y ∼=
y

H
d−p

(K2)
j∗−−−→ H

d−p
(K1)

k∗−−−→ H
d−p

({v})

(2.3.10)

If p 6= d, then j∗ is trivial because K1 is contractible in K2, which proves (i).

Now let p = d. The map i∗ = k∗j∗ : H
0
(K2) → H

0
({v}) is surjective, as v ∈ K2, which

proves (ii).

Finally, by Lemma 2.3.11, K1 is entirely contained in a connected component E of K2.

Therefore, every connected component E ′ of K2 that does not contain {v} is in fact disjoint

from K1. It follows that if i∗φ = k∗j∗φ is trivial in H
0
({v}) for some φ ∈ H0

(K2), then j∗φ

is already trivial in H
0
(K1). This proves claim (iii).

We now set up some definitions for the main result of this sub-section. A Euclidean

Neighborhood Retract (ENR) is a locally compact space X which, for every N ∈ N and

every topological embedding e : X → RN , has the property that e(X) is a retract of some

open neighborhood of e(X) in RN . Every locally compact LLC space with finite topological

dimension is a Euclidean Neighborhood Retract (see [32], Theorem V.7.1).

Definition 2.3.18. A space M that is an ENR and that satisfies the condition

H∗(M,M \ {x}) = H∗(Rd,Rd \ {0}),

for all x ∈M , is called a homology d-manifold.
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Proposition 2.3.19. Suppose {(Xk, dk)} is a sequence of uniformly Ahlfors s-regular,

(L, r0)-LLC oriented topological d-manifolds, vk ∈ Xk, and the sequence of pointed metric

spaces (Xk, dk, vk) converges to (X, d, v) in the sense of Definition 2.3.3. Then (X, d) is an

LLC homology d-manifold.

Proof. The fact that (X, d) is LLC is Lemma 2.3.13 above. As this statement is quantitative,

we will denote the LLC constants of (X, d) also by (L, r0).

The fact that X is a homology d-manifold can be proven by the methods of Begle [5],

again as remarked in [29]. For convenience, we provide a proof using the tools introduced in

this section.

We know that X is Ahlfors s-regular, and therefore it has finite Hausdorff dimension and

thus finite topological dimension. Because X is also LLC, it is an ENR, as noted above.

It now suffices to show that for every x ∈ X, the local integer (singular) homology groups

Hp(X,X \ {x}) are isomorphic to Z if p = d and trivial otherwise.

To set up the proof we need some notation.

Let L′ = 4L. Fix an integer p ≥ 0, a point x ∈ X, and a radius R > 0. In addition, for

each k ∈ N, fix continuous maps

fk : BX(x,R)→ Xk

gk : BXk
(fk(x), R)→ X

as in Lemma 2.3.15. These maps have the property that, up to arbitrarily small additive

error (decreasing to zero with k), they preserve distances and are inverses of each other.

For n ∈ N, let

Fn = Hp(X,X \B(x, (L′)−nr0))

and

Gk
n = Hp(Xk, Xk \B(fk(x), (L′)−nr0))

(Of course these groups depend on p, but we will make it clear from the context which value

of p we take.)
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Note that for m ≥ n there are natural maps (in,m)∗ : Fn → Fm and (jkn,m)∗ : G
k
n → Gk

m

induced by inclusion.

Claim 2.3.20. We have the direct limits

F∞ := lim−→Fn ∼= Hp(X,X \ {x})

and

Gk
∞ := lim−→Gk

n
∼= Hp(Xk, Xk \ {fk(x)}) ∼=


Z if p = d,

0 if p 6= d.

Proof of Claim 2.3.20. We will show the first direct limit; the proof of the second is identical.

The proof follows from standard properties of direct limits and singular homology. There

are natural maps φn : Fn → Hp(X,X \ {x}) induced by inclusion. To show that F∞ ∼=

Hp(X,X \ {x}), we must show two statements (see, e.g., [46], Proposition A.4):

1. For every a ∈ Hp(X,X \ {x}), there exists n ∈ N and b ∈ Fn such that φn(b) = a.

2. If b ∈ Fn and φn(b) = 0, then (in,m)∗(b) = 0 for some m ≥ n.

To show (1), consider a ∈ Hp(X,X\{x}). By excision and the fact that singular homology

has compact support (see [58], 4.8.11), a = j∗(c), where c ∈ Hp(X,X \U) for some open set

U containing x, and

j∗ : Hp(X,X \ U)→ Hp(X,X \ {x})

is the mapping induced by inclusion.

We now choose n ∈ N large enough so that B(x, (L′)−nr0) ⊂ U . There is a mapping

k∗ : Hp(X,X \ U)→ Hp(X,X \B(x, (L′)−nr0))

induced by inclusion.

Because all mappings are induced by inclusion, we have φnk∗ = j∗. Thus, if we let

b = k∗(c) ∈ Hp(X,X \B(x, (L′)−nr0)), we see that φn(b) = φnk∗(c) = j∗(c) = a. This proves

part (1) of Claim 2.3.20.
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To show part (2), suppose that b ∈ Fn is such that φn(b) = 0 ∈ Hp(X,X \ {x}). As

before, using the fact that singular homology has compact support, we can write b = l∗(c),

where c ∈ Hp(X,X \ U) for some open set U containing B(x, (L′)−n) and

l∗ : Hp(X,X \ U)→ Fn

is the mapping induced by inclusion.

By excision and [58], Theorem 4.8.13, we see that i∗(c) = 0 ∈ Hp(X,X\V ), where V ⊂ U

is an open set containing x and

i∗ : Hp(X,X \ U)→ Hp(X,X \ V )

is the mapping induced by inclusion.

We now choose m ∈ N large enough so that B(x, (L′)−mr0) ⊂ V . Let

h∗ : Hp(X,X \ V )→ Fm

be induced by inclusion. Again because all mappings are compatible, we have

(in,m)∗(b) = (in,m)∗l∗(c) = h∗i∗(c) = h∗(0) = 0 ∈ Fm.

This completes the proof of Claim 2.3.20.

Let (in)∗ : Fn → F∞ and (jkn)∗ : G
k
n → Gk

∞ denote the natural inclusion maps.

The excision property of homology and the properties of fk and gk allow us to conclude

the following: For all n0 ∈ N, there exists k0 ∈ N such that for all n ≤ n0 and k ≥ k0,

there are group homomorphisms akn : Fn → Gk
n+1 and bkn : Gk

n → Fn+1 that commute with the

inclusion maps above, and that satisfy

bkn+1a
k
n = in,n+2 and akn+1b

k
n = jkn,n+2.

Indeed, akn and bkn are simply the maps on homology induced by fk and gk, and so these

properties follow from Lemma 2.3.15. The fact that akn maps into Gk
n+1 if n ≤ n0 and k
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is sufficiently large follows from the fact that fk preserves distances up to a small additive

error, by Lemma 2.3.15.

In summary, for each n0 there exists a k so that we have the following commutative

diagram, in which the diagonal arrows do not exist past column n0:

F1 F2 F3 . . . Fn0 . . . F∞

Gk
1 Gk

2 Gk
3 . . . Gk

n0
. . . Gk

∞

i1,2

ak1

i2,3

ak2

i3,4

ak3

in0−1,n0

akn0−1

in0,n0+1

jk1,2

bk1

jk2,3

bk2

jk3,4

bk3 bkn0−1

jkn0−1,n0
jkn0,n0+1

(2.3.11)

Note that Lemma 2.3.17 translates to the following information in this setting:

(i) If p 6= d, then for all k and for all m > n, the map jkn,m : Gk
n → Gk

m is trivial.

(ii) If p = d, then for all k and n the map jkn : Gk
n → Gk

∞ is surjective.

(iii) If p = d, then for all k and n, we have ker jkn ⊆ ker jkn,n+1.

We wish to show that F∞ is isomorphic to Z if p = d and is trivial if p 6= d, just as each

of the spaces Gk
∞ are.

Consider first the case p 6= d. By (i), we have that for all k and for all m > n, the maps

jkn,m are trivial. It follows by the diagram that the maps in,n+3 are all trivial (as they factor

through jkn,n+1 for some k) and therefore that F∞ is trivial when p 6= d.

Now we consider the case p = d.

Claim 2.3.21. In degree p = d, i2 : F2 → F∞ is surjective.

Proof of Claim 2.3.21. This is just diagram-chasing. We will freely use the three properties

of the diagram (2.3.11) described above, and we encourage the reader to simply trace the

proof in that diagram.
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Fix x ∈ F∞. Then x = im(xm) for some m ∈ N, by the definition of the direct limit. Fix

k large so that diagram (2.3.11) has diagonal arrows al := akl and bl := bkl up to l = m + 3.

(We will suppress all superscripts k in the proof of this claim.)

Let ym+1 = am(xm) ∈ Gm+1. Then some y1 ∈ G1 satisfies j1(y1) = jm+1(ym+1), by (ii),

and so

jm+1(ym+1) = jm+1j1,m+1(y1).

It follows, by (iii), that

jm+1,m+2(ym+1) = j1,m+2(y1).

Denote this element by ym+2 ∈ Gm+2.

Let xm+3 = bm+2(ym+2) ∈ Fm+3. We have

i2,m+3b1(y1) = bm+2j1,m+2(y1) = bm+2(ym+2) = xm+3.

In addition,

xm+3 = bm+2(ym+2)

= bm+2jm+1,m+2(ym+1)

= bm+2jm+1,m+2am(xm)

= im,m+3(xm).

It follows that im+3(xm+3) = im(xm) = x, and so

i2b1(y1) = im+3i2,m+3b1(y1) = im+3(xm+3) = x.

Thus, i2 is surjective.

The following claim is also proven by a similar diagram chase.

Claim 2.3.22. In dimension p = d, ker in ⊂ ker in,n+3.
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Proof of Claim 2.3.22. Suppose that in(xn) = 0 for some xn ∈ Fn. Then for some m ≥ n,

in,m(xn) = 0. As in the previous claim, we now fix k large so that diagram (2.3.11) has

diagonal arrows al := akl and bl := bkl up to column l = m. We then see that

jn+1,m+1an(xn) = amin,m(xn) = am(0) = 0.

By (iii) above, it follows that jn+1,n+2an(xn) = 0. Thus,

in,n+3(xn) = bn+2jn+1,n+2an(xn) = bn+2(0) = 0.

This completes the proof of Claim 2.3.22.

Now fix k so that the diagonal arrows in diagram (2.3.11) exist up to n = 10. Let

G∞ = Gk
∞
∼= Z. (Now that k is fixed we will again suppress the superscripts k.) We now

define homomorphisms ψn : Fn → G∞ ∼= Z by

ψn(xn) = j3a2i
−1
2 in(xn).

Note that i2 is surjective but not necessarily injective; nonetheless we have the following

fact:

Claim 2.3.23. The maps ψn are well-defined homomorphisms (i.e., independent of the choice

of i−1
2 in(xn)) and are compatible, in the sense that ψmin,m(xn) = ψn(xn) for m ≥ n.

Proof of Claim 2.3.23. Suppose first that i2(x2) = i2(x′2) for some x2, x
′
2 ∈ F2. To show that

ψn is well-defined we must show that

j3a2(x2) = j3a2(x′2).

By Claim 2.3.22, i2,3(x2) = i2,3(x′2). Thus,

j3a2(x2) = j4j3,4(x2) = j4a3i2,3(x2) = j4a3i2,3(x′2) = j3a2(x′2).

This shows that ψn is well-defined. That ψn is a homomorphism is clear.
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To see that ψm(in,m(xn)) = ψn(xn), we note that if i2(x2) = in(xn), then i2(x2) =

imin,m(xm). Thus,

ψm(in,m(xn)) = j3a2(x2) = ψn(xn).

It follows that the maps ψn induce a homomorphism h : F∞ → G∞ ∼= Z satisfying

h ◦ in = ψn for all n. We will show that h is injective and surjective.

Suppose h(x) = 0 for x ∈ F∞. By Claim 2.3.21, we can write x = i2x2, for x2 ∈ F2.

Therefore,

0 = hi2(x2) = ψ2(x2) = j3a2(x2).

Because ker j3 ⊆ ker j3,4, we have

j3,4a2(x2) = 0 ∈ G4.

It follows that

i2,5(x2) = b4j3,4a2(x2) = 0 ∈ F5

and therefore that x = i5i2,5(x2) = 0 ∈ F∞. This shows that h is injective.

To show that h is surjective, it suffices to show that ψ2 = j3a2 is surjective. Consider

y ∈ G∞. Because j1 is surjective, y = j1(y1) for some y1 ∈ G1. Letting x2 = b1(y1), we see

that

ψ2(x2) = j3a2(x2) = j3a2b1(y1) = j1(y1) = y.

This shows that h is surjective and is therefore an isomorphism F∞ → G∞.

We have therefore shown that F∞ ∼= Hp(X,X \ {x}) is isomorphic to G∞ ∼= Hp(Xk, Xk \

{xk}), which completes the proof of Proposition 2.3.19.

2.3.4 Some basic degree theory

In this section, we give a degree-type lemma for close mapping packages. The idea here

is quite simple, though the notation is cumbersome: If the limit of a suitable sequence of
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mappings is a homeomorphism, then sufficiently close limiting mappings should have images

which contain a ball of fixed radius.

We now fix a set-up and some notation.

Let {(Xk, pk)} and {(Yk, qk)} be two sequences of pointed metric spaces converging to

(X, p) and (Y, q), respectively. Suppose that all the spaces are uniformly Ahlfors s-regular,

(L, r0)-LLC, homology d-manifolds, and furthermore that {Yk} are oriented topological d-

manifolds and Y is a topological d-manifold.

For some fixed R > 0, let Fk = B(pk, R) and assume also that the sequence of pointed

metric spaces {(Fk, pk)} converges to the pointed metric space (F, p), where F ⊂ X and

F ⊃ B(p,R) in X.

Finally, assume that the maps wk : Fk → Yk are uniformly C-Lipschitz and that we have

convergence of the sequence of mapping packages:

{(Fk, pk), (Yk, qk), wk} → {(F, p), (Y, q), w}

By Lemma 2.3.15, there are continuous mappings

fk : F → Xk,

gk : Fk → X,

f̃k : BY (q, 3CR)→ Yk,

g̃k : BYk(qk, 3CR)→ Y,

that almost preserve distances and are almost inverses, up to additive error that decreases

to zero with k.

Fix an open set A ⊆ F such that the set w(A) lies within a single chart of Y homeomor-

phic to an open subset of Rd.

Lemma 2.3.24. Suppose that, for some r, r′ ∈ (0, r0), the ball BX(z, 4Lr) is contained in

A, the map w|A is a homeomorphism, and w(BX(z, r)) ⊇ BY (w(z), r′). Then for all k

sufficiently large, wk(BXk
(fk(z), 2r)) ⊇ BYk(wk(fk(z)), r′/2).
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Proof. First of all, it is clear that in the proof we may assume without loss of generality that

Y is an orientable d-manifold, because all arguments can be carried out in the orientable

chart of Y containing w(A). This will allow us to apply Lemma 2.3.17 to subsets of w(A).

Now let 0 < η < r′/(100L). For all k sufficiently large, the maps fk, gk, f̃k, g̃k preserve

distances up to additive error η. In addition, again by Lemma 2.3.15, we may assume that,

for all k large and for all r < 2CR, the map

g̃k ◦ f̃k|B(p,r)

is η-homotopic to the inclusion map of B(p, r) into B(p,R).

Fix k ∈ N large enough for this to hold; from now on, this k will be fixed, so we drop the

subscript and denote the above maps by f , g, f̃ , g̃. By Lemma 2.3.16 and [57], Proposition

5.8, we can also arrange that the maps f̃ ◦w and wk◦f , when restricted to A, are η-homotopic

on F .

Let B = BX(z, r). Fix y ∈ BYk(wk(fk(z)), r′/2).

First, because w is a homeomorphism on A, the induced mapping on relative homology,

w∗ : Hd(A,A \B)→ Hd(Y, Y \ w(B))

is an isomorphism. (Here we use excision for singular homology, see [58], Corollary 4.6.5.)

Note that Hd(Y, Y \ w(B)) is non-trivial, by duality (e.g. [58], Theorem 6.2.17).

Let V = BY (q, 2CR). The map f̃ induces a non-trivial map

f̃∗ : Hd(V, V \ w(B))→ Hd(Yk, Yk \B′′)

where B′′ = B(y, r′′), r′′ = r′/(10L). Indeed, if this map were trivial, then the map

g̃∗f̃∗ : Hd(V, V \ w(B))→ Hd(Y, Y \ {a}),

factoring as it does through the previous map, would be trivial for some a ∈ w(B). But this

map on homology is the same as that induced by inclusion, so this cannot be the case by

the duality argument of Lemma 2.3.17 (ii).
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It follows that the map

(f̃ ◦ w)∗ = f̃∗w∗ : Hd(A,A \B)→ Hd(Yk, Yk \B′′)

is non-trivial.

Because f̃ ◦ w and wk ◦ f are η-homotopic, the map

(wk ◦ f)∗ : Hd(A,A \B)→ Hd(Yk, Yk \B′′)

is non-trivial.

This implies that

(wk ◦ f)∗ : Hd(A,A \B)→ Hd(Yk, Yk \ {y})

is non-trivial. Indeed, if not, then by Lemma 2.3.17 (iii),

(wk ◦ f)∗ : Hd(A,A \B)→ Hd(Yk, Yk \B′′)

would be trivial, but we just showed that it is not.

So we have shown that

(wk ◦ f)∗ : Hd(A,A \B)→ Hd(Yk, Yk \ {y})

is non-trivial. It follows from this that y ∈ (wk ◦ f)(B), otherwise this map would factor

through the trivial Hd(Yk \ {y}, Yk \ {y}).

Because f(B) ⊂ B(fk(z), 2r), we get that

y ∈ wk(f(B)) ⊂ wk(B(fk(z), 2r)).

Later on, it will be convenient to work with a cohomological notion of local degree, which

we introduce now. The following material is taken from [31]. For proofs, see [51], Chapter

II.2.
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Let H∗c denote the Alexander-Spanier cohomology groups with compact supports and

coefficients in Z. (For the definition and properties of Alexander-Spanier cohomology, see

[46].) The following definition is taken from [31], I.1.

Definition 2.3.25. A locally compact, connected, and locally connected Hausdorff space

M is called a generalized d-manifold if:

• Hp
c (U) = 0 whenever U ⊆M is open and p ≥ d+ 1.

• For every x ∈ M and every open neighborhood U of x, there is another open neigh-

borhood V of x contained in U such that

Hp
c (V ) =


Z if p = d,

0 if p = d− 1,

and the standard homomorphism Hn
c (W ) → Hn

c (V ) is surjective whenever W is an

open neighborhood of x contained in V .

• X has finite topological dimension.

Remark 2.3.26. Any homology d-manifold is a generalized d-manifold, as noted in [31],

Example 1.4 (c).

A generalized d-manifold X is said to be oriented if Hd
c (X) = Z. In this case we can

simultaneously orient all connected open subsets U of X via the isomorphism between Hd
c (U)

and Hd
c (X).

We will not use any sophisticated facts about cohomology below, but only the following

object and its basic properties: Let X and Y be oriented generalized d-manifolds, and

let f : X → Y be continuous. For any relatively compact domain D in X, and for every

y ∈ Y \f(∂D), we can associate an integer called the local degree µ(y,D, f). In the following

lemma, we collect the only properties of µ we will need.

Lemma 2.3.27. For continuous maps f and g between oriented generalized d-manifolds

X and Y , and a relatively compact domain D ⊆ X, the local degree µ has the following

properties:
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• The function y → µ(y,D, f) is constant on each connected component of Y \ f(∂D).

• If y /∈ f(D), then µ(y,D, f) = 0.

• If f : D → f(D) is a homeomorphism, then µ(y,D, f) = ±1 for each y ∈ f(D).

• If y ∈ Y \ f(∂D) and if f−1(y) ⊂ D′, where D′ is a domain contained in D such that

y ∈ Y \ f(∂D′), then

µ(y,D, f) = µ(y,D′, f)

Proof. These facts can all be found in [31], 2.3 or [51], II.2.

2.3.5 The Bonk-Kleiner theorem on mappings of bounded multiplicity

This material is taken from [6].

Definition 2.3.28. A map f between spaces X and Y is of bounded multiplicity if there is

a constant N ∈ N such that #f−1(y) ≤ N for all y ∈ Y .

The following result of Bonk and Kleiner provides a partial substitute, in our setting, for

Reshetnyak’s theorem on quasi-regular mappings. (See the discussion of David’s proof in

Subsection 2.2.)

Theorem 2.3.29 ([6], Theorem 3.4). Suppose X is a compact metric space, every non-empty

open subset of X has topological dimension at least d, and f : X → Rd is a continuous map

of bounded multiplicity. Then there is an open subset V ⊆ f(X) with V = f(X) such that

U = f−1(V ) is dense in X and f |U : U → V is a covering map.

2.4 Warm-up: Getting bi-Lipschitz weak tangents

In this section, we prove a result that is much weaker than Theorem 1.2.2, but whose proof

illustrates some of the techniques used in the proof of Theorem 1.2.2. Nothing in this section
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is needed in the proof of Theorem 1.2.2, so a reader who is solely interested in that proof

can skip this section without missing anything needed later in the chapter.

Let (X, d) and (Y, ρ) be metric spaces and f : X → Y be Lipschitz. Define a weak tangent

of f to be a mapping package

((X∞, d∞, x∞), (Y∞, ρ∞, y∞), f∞)

for which there is a sequence of positive real numbers λn, bounded above, and a sequence

xn ∈ X such that, in the sense of Definition 2.3.5, we have

((X,λ−1
n d, xn), (Y, λ−1

n ρ, f(xn)), f)→ ((X∞, d∞, x∞), (Y∞, ρ∞, y∞), f∞)

as n→∞.

Note that the spaces X∞ and Y∞ here are weak tangents of the spaces X and Y , as in

Definition 2.1.3 or Subsection 1.1.2.

We will say that f has a bi-Lipschitz weak tangent at x if, for one of its weak tangent

mapping packages, the mapping f∞ which arises is bi-Lipschitz.

Suppose that f is Lipschitz and that X and Y are doubling metric spaces. Suppose also

that X is equipped with a doubling measure, and that x is a point of density of a set E ⊂ X

such that f |E is bi-Lipschitz. Consider any sequence λn → 0. Then every weak tangent of

f along the sequence of scales {λn} and the sequence of points {xn = x} yields a mapping

f∞ that is bi-Lipschitz. This is a standard fact, and its proof is very similar to that given in

Proposition 2.9.1 below.

Thus, a mapping having a positive-measure set on which it is bi-Lipschitz is a much

stronger condition than a map merely having a bi-Lipschitz weak tangent.

In the setting of Theorem 1.2.2, one can give a simpler argument which shows that the

mapping has a bi-Lipschitz weak tangent. This argument is really contained in [6], though

our context is slightly different.

In the proof, we will need one definition that we have not yet introduced, coming from

Chapter 12 of [21]. (This will not be used in the proof of the main Theorem 1.2.2.)
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Definition 2.4.1. A Lipschitz mapping f : M → N between two metric spaces is said to

be David-Semmes regular if there is a constant C > 0 such that, for every ball B ⊆ N of

radius r, the set f−1(B) can be covered by at most C balls of radius Cr.

In particular, David-Semmes regular maps always have bounded multiplicity.

Proposition 2.4.2. Let X and Y be Ahlfors s-regular, linearly locally contractible, complete,

oriented, topological d-manifolds, for s, d ≥ 1. Suppose in addition that Y has d-manifold

weak tangents.

Suppose that f : X → Y is Lipschitz and has |f(X)| > 0. Then f has a bi-Lipschitz weak

tangent.

Proof. The first step is to examine the spaces X∞ and Y∞. By Proposition 2.3.19 and the

assumption that Y has d-manifold weak tangents, we see that X∞ is a homology d-manifold

and Y∞ is a topological d-manifold. We also have, by Proposition 2.3.13, that Y∞ is (L, r0)-

LLC, for some constants L and r0.

The next step is to apply Proposition 12.8 of [21]. This says that we can find a weak

tangent

((X∞, d∞, x∞), (Y∞, ρ∞, y∞), f∞)

of f such that f∞ is a David-Semmes regular map. In particular, this means that f∞ is a

mapping of bounded multiplicity, in the sense of Definition 2.3.28.

We would now like to apply Theorem 2.3.29 to f∞. Fix a small open ball B ⊂ X∞. We

can choose B so small that f∞(B) lies in a set V ⊂ Y∞ which is homeomorphic to an open

set in Rd, and which has diameter less than the contractibility radius r0 of Y∞.

Let K = B. Then every open subset of K contains an open subset of the homology

d-manifold X∞ and thus has topological dimension at least d. Because we also know that

f∞ has bounded multiplicity on K, we can apply Theorem 2.3.29.

In particular, we obtain an open set U ⊂ K ⊂ X such that f∞, when restricted to U , is
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a homeomorphism. Let V ′ ⊂ f∞(U) be a small open set such that

dist(V ′, Y∞ \ f∞(U)) > L diamV ′

and let U ′ = f−1
∞ (V ′) ∩ U .

We claim that f∞ is in fact bi-Lipschitz on U ′. We already know it to be Lipschitz, so it

suffices to establish the other bound. Fix x, y ∈ U ′ and consider f(x), f(y) ∈ V ′ ⊂ Y∞. Let

r = ρ∞(f(x), f(y)); note that r < r0 by our assumptions.

First of all, there is a compact connected set S ⊂ B(f∞(x), Lr) ⊂ f∞(U) containing

f∞(x) and f∞(y). Indeed, by our assumptions, the compact set B(f(x), r) is contractible

within B(f∞(x), Lr). If H is the homotopy realizing this contractibility, then

S = H(B(f∞(x), r)× [0, 1])

contains f∞(x) and f∞(y) and is compact, connected, and contained in B(f∞(x), Lr) ⊂

f∞(U).

Now consider E = f−1
∞ (S)∩U . Because f∞ is a homeomorphism on U , we have that E is

a compact, connected set in U that contains x and y. Because f∞ is David-Semmes regular

with constant C > 0, E is contained in the union of at most C balls of radius CLr in X∞.

It follows that diamE ≤ 2C2Lr.

Thus,

d∞(x, y) ≤ diamE ≤ 2C2Lr = 2C2Lρ∞(f∞(x), f∞(y)),

and so f∞ is bi-Lipschitz on U ′.

To complete the proof of the Proposition, we take another weak tangent of f∞ along a

sequence of scales {λn} tending to zero and a fixed base-point sequence {xn = x ∈ U ′}. This

yields a weak tangent of f∞ which is globally bi-Lipschitz. That this is also a weak tangent

of f itself is a standard fact (see [21], Lemma 9.22).
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2.5 Setting up the proof of Theorem 1.2.2

Recall that if a complete metric space X is Ahlfors s-regular with constant C0, then we equip

X with a type of dyadic cube decomposition ∆n for each n < j0, where j0 is a fixed top scale

in Z∪{∞}. This was introduced in Subsection 1.1.1. Associated to these cubes are another

constant c0, which depends only on s and C0. We will heavily use the four properties of this

cube decomposition presented in Subsection 1.1.1.

We now introduce the following notation:

B̃n(x, r) =
⋃
{Q ∈ ∆n : Q ∩B(x, r) 6= ∅}

By Theorem 2.2.2, to prove Theorem 1.2.2 it suffices to show the following proposition,

which is just a restatement of David’s condition, formulated in Definition 2.2.1.

Proposition 2.5.1. Let d ∈ N and s > 0. Suppose (Y, ρ) is LLC, Ahlfors s-regular, and

has d-manifold weak tangents. For all C0, L, r0, M and for all λ, γ ≥ 0, there exist Λ, η > 0

such that the following holds:

Let X be a complete, oriented, topological d-manifold that is Ahlfors s-regular with con-

stant C0 and (L, r0)-LLC. Let I0 be a 0-cube and z : I0 → Y an M-Lipschitz map. If x ∈ X,

n ∈ Z, and T = B̃n(x,Λ2n) ⊆ I0 satisfies |z(T )|/|T | ≥ γ, then one of the following holds:

(i) z(T ) ⊇ B(z(x), λ2n), or

(ii) there is an n-cube R ⊂ T such that

|z(R)|/|R| ≥ (1 + 2η)|z(T )|/|T |

We emphasize that in Proposition 2.5.1 the constants Λ and η depend only on the “input”

constants λ and γ, as well as the “data” d, s, C0, L, r0,M , and the space Y .

We will actually prove the following similar statement, which implies Proposition 2.5.1.

(This is analogous to Lemma 4 of [18].)
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For r > 0, define nr to be the largest integer n such that

10C02n ≤ r. (2.5.1)

Proposition 2.5.2. Let d ∈ N and s > 0. Suppose (Y, ρ) is LLC, Ahlfors s-regular, and has

d-manifold weak tangents. For all C0, L, r0 and for all γ > 0, there exist τ, σ > 0 such that

the following holds:

Let X be a complete, oriented, topological d-manifold that is Ahlfors s-regular with con-

stant C0 and (L, r0)-LLC. If v ∈ X, 0 < r ≤ C0, T = B̃nr(v, r), and z : T → Y is 1-Lipschitz

satisfying |z(T )|/|T | ≥ γ, then one of the following holds:

(i) z(T ) ⊇ B(z(v), τr), or

(ii) there is a dyadic cube R ⊂ T of diameter at least τr such that

|z(R)|/|R| ≥ (1 + σ)|z(T )|/|T |

As before, the constants τ and σ in Proposition 2.5.2 depend only on d, s, C0, L, r0, and

γ, as well as the space Y .

Lemma 2.5.3. Proposition 2.5.2 implies Proposition 2.5.1.

Proof. Suppose that Proposition 2.5.2 is true but that Proposition 2.5.1 fails. The failure of

Proposition 2.5.1, first of all, implies the existence of dimensions d ∈ N, s > 0, and a space

(Y, ρ). It also implies that for some data C0, L, r0,M , some constants λ, γ > 0 and every

Λ, η > 0, there exists an Ahlfors s-regular, LLC, complete oriented topological d-manifold

X (with data given by C0, L, r0), a 0-cube I0 ⊂ X, and

T = B̃n(x,Λ2n) ⊂ I0,

as well as an M -Lipschitz z : T → Y with |z(T )|/|T | ≥ γ such that

• z(T ) 6⊃ B(z(x), λ2n), and
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• for every n-cube R ⊂ T ,

|z(R)|/|R| ≤ (1 + 2η)|z(T )|/|T |.

In the proof, our goal is to choose Λ large enough and η small enough to reach a contradiction.

We now reduce to the 1-Lipschitz case by letting z̃ : T → (Y, 1
M
ρ). Then z̃ : T → (Y, 1

M
ρ)

satisfies

• |z̃(T )|/|T | ≥ γ̃ = γ/M s

• z̃(T ) 6⊃ B 1
M
Y (z(x), λ2n/M), and

• for every n-cube R ⊂ T ,

|z̃(R)|/|R| ≤ (1 + 2η)|z̃(T )|/|T |.

Let T ′ = B̃nr(x, r) for r = Λ2n/10. Note that, as T ⊂ I0, we have diamT ≤ diam I0 and

so r ≤ C0.

Note also that T ′ ⊆ T , by a simple triangle inequality argument. On the other hand, as

we may choose Λ > C0, we have

B(x,Λ2n/10) ⊂ T ′ ⊂ T ⊂ B(x, (Λ + C0)2n) ⊂ B(x, 2Λ2n),

and so the relative measure |T ′|/|T | is bounded below by a constant depending only on s

and C0.

If Λ > 200C0, then T ′, and therefore also T \ T ′, is a disjoint union of n-cubes. Indeed,

in this case nr ≥ n, and T is a disjoint union of nr-cubes, each of which is a disjoint union

of n-cubes.

It follows from the second property of z̃ above that

|z̃(T ′)|
|T ′|

≤ (1 + 2η)
|z̃(T )|
|T |

and
|z̃(T \ T ′)|
|T \ T ′|

≤ (1 + 2η)
|z̃(T )|
|T |

.
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Therefore

|z̃(T ′)| ≥ |z̃(T )| − |z̃(T \ T ′)|

≥ |z̃(T )| − (1 + 2η)
|z̃(T )|
|T |
|T \ T ′|

= (|T | − (1 + 2η)|T \ T ′|) |z̃(T )|
|T |

= ((1 + 2η)|T ′| − 2η|T |) |z̃(T )|
|T |

≥ ((1 + 2η)|T ′| − 2ηC|T ′|) |z̃(T )|
|T |

≥ (1− C ′η)|T ′| |z̃(T )|
|T |

≥ γ̃

3
|T ′|

if η is small depending on γ. (Here C and C ′ depend only on the Ahlfors regularity constants

s and C0.)

Now, apply Proposition 2.5.2 to z̃ : T ′ → (Y, 1
M
ρ) with γ as γ̃/3. We obtain τ and σ.

Note that τ and σ depend only on the data d, s, C0, L, r0,M , the space Y , and the constant

γ.

If Λ > max{ 10λ
Mτ
, 10C0

τ
} and η is sufficiently small relative to σ, we get that either

• z̃(T ) ⊇ z̃(T ′) ⊇ B 1
M
Y (z̃(x), τΛ2n/10) ⊃ B 1

M
Y (z̃(x), λ2n/M), or

• there is a dyadic cube R ⊂ T ′ of diameter at least τΛ2n such that

|z̃(R)|/|R| ≥ (1 + σ)|z̃(T ′)|/|T ′| ≥ (1 + σ)(1− C ′η)|z̃(T )|/|T | ≥ (1 + 3η)|z̃(T )|/|T |.

In the first case we contradict the assumption that the first conclusion in Proposition 2.5.1

fails. In the second case, note that R is a cube at scale larger than n (because τΛ2n > C02n)

and therefore a disjoint union of n-cubes. At least one of those n-cubes R′ must then also

satisfy

|z̃(R′)|/|R′| ≥ (1 + 3η)|z̃(T )|/|T |,

which contradicts the assumption that the second conclusion of Proposition 2.5.1 fails.
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2.6 Proof of Proposition 2.5.2

We will use the notation of the previous section; recall especially the definition of nr from

(2.5.1).

Suppose now that Proposition 2.5.2 is false. Then there exists constants d, s, C0, L, r0, γ,

and a space (Y, ρ) that is LLC, Ahlfors s-regular and has d-manifold weak tangents, such

that the following holds:

For each k ∈ N, there is a space Zk that is Ahlfors s-regular with constant C0 and that

is a (L, r0)-LLC, complete oriented topological d-manifold. In addition, for each k, there is

a radius 0 < rk ≤ C0, a subset Tk = B̃nrk
(vk, rk) ⊂ Zk and a 1-Lipschitz map zk : Zk → Y

satisfying |zk(Tk)|Y ≥ γ|Tk|Zk
and such that:

(i) zk(Tk) 6⊇ B(zk(vk),
1
k
rk), and

(ii) for every dyadic cube R ⊆ Tk of diameter at least rk/k, we have

|zk(R)|
|R|

≤
(

1 +
1

k

)
|zk(Tk)|
|Tk|

.

Let Xk be the metric space (
Zk,

1

rk
dZk

)
Let Sk ⊂ Xk denote the corresponding rescaled version of Tk. (Of course Sk and Tk are

the same set, but we consider them as subsets of different spaces.) Then

B(vk, 1) ⊆ Sk ⊆ B(vk, 2).

and

C0 ≤ |Sk|Xk
≤ 2sC0

Note that Sk has a dyadic cube decomposition given by the rescaled versions of cubes

in Tk. The following additional technical fact about this decomposition of Sk is obvious but

useful.
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Lemma 2.6.1. For every 0 < r < 1/20 and every k ∈ N, the set Sk can be written as a

disjoint union of measurable sets Rj satisfying

• (2C2
0)−1r ≤ diamRj ≤ r, and

• (2C2
0)−srs ≤ |Rj|Xk

≤ rs

Proof. Choose n such that

C02n ≤ rrk ≤ 2C02n

If r < 1/20, then

2C02n ≤ 2rrk < rk/10 ≤ 2C02nrk

and so n ≤ nrk .

Therefore, we can write Tk as a disjoint union of dyadic cubes in ∆n. The rescaled versions

of these cubes in Sk are now immediately seen to satisfy the required properties.

For each k, we also consider the rescaled target spaces

Yk = (Y, ρk) =

(
Y,

(
γ|Tk|
|zk(Tk)|

)1/s
1

rk
ρ

)
.

Let wk : Sk → Yk be the map zk (making the natural identification between points of Zk

and points of Xk). Then each wk is Lipschitz with constant(
γ|Tk|
|zk(Tk)|

)1/s

≤ 1.

In addition, the maps wk satisfy

|wk(Sk)| = γ|Sk|

for all k. (The extra rescaling factor
(

γ|Tk|
|zk(Tk)|

)1/s

in the target Y is to ensure this last

convenient fact.)

Finally, the two important properties of zk pass to wk in the following way:

wk(Sk) 6⊇ B(wk(vk),
1

k
) (2.6.1)
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and for every dyadic cube R ⊆ Sk of diameter at least 1/k, we have

|wk(R)|
|R|

≤
(

1 +
1

k

)
|wk(Sk)|
|Sk|

=

(
1 +

1

k

)
γ (2.6.2)

Let Fk = B(vk, 1/2) ⊂ Sk ⊂ Xk. We may now consider the following sequence of mapping

packages (see Definition 2.3.4):

{((Fk, dXk
, vk), (Yk, ρk, wk(vk)), wk)} .

Note that all the spaces in the above mapping packages are complete and uniformly

doubling, and the mappings wk are uniformly 1-Lipschitz. By applying Proposition 2.3.6,

we obtain a subsequence of this mapping package that converges to a limit

{(F, d, v), (M,d′, q)), w)} .

In addition, by Lemma 2.3.9 we may assume that along this subsequence we also have the

convergence of the sequence of ambient source spaces (Xk, dXk
, vk) to a space (X, d, v) that

contains F as a subset. (We continue to index this sequence by the original parameter k.)

The following diagram may be useful for keeping track of this convergence. The dotted

arrows represent convergence of spaces in the sense of Definition 2.3.3.

Xk ⊃ Sk ⊃ Fk Yk

X ⊃ F M

wk

w

(2.6.3)

We now know, by Proposition 2.3.19, that the space X is an LLC, Ahlfors s-regular,

homology d-manifold. In addition, by Lemmas 2.3.10 and 2.3.13 and the assumption that

Y has d-manifold weak tangents, the space M is an Ahlfors s-regular, LLC, topological

d-manifold. Finally, it is clear that the set F ⊂ X contains the open ball B(v, 1/2).

The space X is a generalized d-manifold (see Definition 2.3.25), so we may now fix an open

subset of B(v, 1/2) ⊂ F which has Hd
c isomorphic to Z, i.e., is itself an oriented generalized

d-manifold. We will only work in this oriented subset of X from now on.
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Let A be a small open ball in X (of diameter smaller than half the contractibility radius

of X) centered at v and compactly contained in this oriented open subset. Because M is a

manifold and w is Lipschitz, by making A small enough, we may assume that w(A) lies in a

single chart of M . Let K = A, which is compact.

We now investigate the limit map w.

Lemma 2.6.2. The map w|K is of bounded multiplicity on K. In other words, there exists

N ∈ N such that for every x ∈M , there are at most N points in w−1(x) ∩K.

Proof. We will show that there exists N such that for all r < 1/20 and every y ∈ M ,

w−1(B(y, r)) ∩K is contained in the union of N balls of radius r in X. This clearly suffices

to prove the lemma. (This essentially shows the stronger statement that w is a David-Semmes

regular mapping, as in Definition 2.4.1, but we do not need this here.)

Recall from Propositions 2.3.7 and 2.3.8 that there are “almost-isometries” φk : F →

Fk ⊂ Xk and σk : Y → Yk, which, on some fixed ball, preserve distances up to an additive

error that tends to zero as k approaches infinity. In addition, it follows immediately from

those propositions that

lim
k→∞

ρk (wk(φk(x)), σk(w(x))) = 0

locally uniformly on F ⊂ X.

Fix a ball B(y, r) in M . Let E = w−1(B(y, r)) ∩K. Let Ek = φk(E) ⊆ Xk. Note that

if k is sufficiently large, we have both that Ek ⊂ Sk and wk(Ek) ⊂ B(σk(y), 2r). By Lemma

2.6.1 we may write Sk as a disjoint union of cubes Q, each satisfying

(2C2
0)−1r ≤ diamQ ≤ r

and

(2C2
0)−drs ≤ |Q| ≤ rs.

We will call these cubes “r-sized”.
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Let Q denote the collection of r-sized cubes in Sk that intersect Ek, and let Nk = #{Q ∈

Q}. Because wk is 1-Lipschitz on Sk,

wk(Q) ⊂ B(σk(y), (2 + 2C0)r) ⊂ Yk

for all Q ∈ Q.

Therefore, dividing Sk into those r-sized cubes that are in Q and those that are not (and

taking all Hausdorff measures with respect to Xk and Yk) we see that

γ|Sk| = |wk(Sk)| ≤

∣∣∣∣∣ ⋃
Q∈Q

wk(Q)

∣∣∣∣∣+

∣∣∣∣∣∣
⋃
Q/∈Q

wk(Q)

∣∣∣∣∣∣
≤ |B(σk(y), (2 + 2C0)r)|+ γ(1 + 1/k)

∑
Q⊂Sk,Q∈∆nr\Q

|Q|

= |B(σk(y), (2 + 2C0)r)|+ γ(1 + 1/k)

(
|Sk| −

∑
Q∈Q

|Q|

)

≤ C1r
s + γ(1 + 1/k) (|Sk| −NkC2r

s)

where C1 depends only on C0 and the Ahlfors-regularity constant of M , and C2 = (2C2
0)−s.

Rearranging this inequality yields

Nk ≤
C1r

s + 1
k
|Sk|

γ(1 + 1
k
)C2rs

.

Because the measures |Sk| are uniformly bounded, we see that for all k sufficiently large

(depending on r, but that is fine), we have

Nk ≤
2C1

C2γ
.

Since each cube in Q is contained in a ball of radius 2C0r in Xk, and each Xk is doubling

with constant depending only on C0 and d, we get that Ek is contained in a union of N balls

of radius r, where N depends only on s, C0 and γ. (This holds for all k sufficiently large.)

It immediately follows that the same holds for E (with a possibly larger N) by using

the distance-preserving properties of ψk and φk for k large, and the fact that X is doubling.

This proves the lemma.

67



Remark 2.6.3. In the proof of Lemma 2.6.2, we used the fact that w is a limit of mappings

wk, each of which does not multiply the measure of cubes of size at least 1/k by much more

than the factor γ. The proof would be somewhat simpler if we knew that w itself does not

expand the measure of any cube by more than a factor γ, because then the computations

above could all be carried out in the limit w : X → M , rather than in the limiting objects

wk : Xk → Yk. Unfortunately, it is not clear that this “non-expanding” property of the maps

wk passes directly to the limit map w. The same issue arises in Lemma 2.6.4 below.

Note now that the set K is a compact set that is the closure of an open set in the

homology d-manifold X. It follows that every relatively open subset of K contains an open

subset of X and thus has topological dimension at least d (see [31], Remark 1.3(b)). Recall

our assumption that w(K) lies in a single chart of M . As w has bounded multiplicity

on K, we can apply Theorem 2.3.29 to obtain a dense open subset V in w(K) such that

U = w−1(V ) ∩K is dense in K and w|U is a covering map.

Lemma 2.6.4. Every point in V has exactly one preimage in K under w.

Proof. In other words, what we must show is that if x ∈ U and x′ ∈ K with x′ 6= x, then

w(x) 6= w(x′). Suppose to the contrary that w(x) = w(x′) = y ∈ V . As x ∈ U and w is

a covering map when restricted to U , we obtain a ball B(x, r) ⊂ U such that w|B(x,r) is a

homeomorphism and w(B(x, r)) contains a ball B(y, r′) ⊂ M . Without loss of generality,

we may take r < d(x, x′)/10C0 and r < 1/20.

Recall the the continuous “almost isometries” fk : K → X from Lemma 2.3.15. By

Lemma 2.3.24, for all k sufficiently large, we obtain xk = fk(x) ∈ Sk such that wk(B(xk, 2r))

contains the ball B(yk, r
′/2) ⊂ Yk, where yk = wk(xk). Also let x′k = fk(x

′). For all k large,

we have ρk(wk(xk), wk(x
′
k)) < r/10, because w(x) = w(x′).

Let r1 = min{r, r′}. By Lemma 2.6.1, we may write Sk as the disjoint union of sets Q

such that

(2C2
0)−1r1/10 ≤ diamQ ≤ r1/10
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and

(2C2
0)−d(r1/10)s ≤ |Q| ≤ (r1/10)s.

One of these sets Q contains the point x′k; let Q0 denote that set. In addition, let T be the

union of all these sets Q that intersect B(xk, 2r). Note that Q0 is not in T by our choice of

r and r1. Then

wk(Q0) ⊂ B(yk, r
′/2) ⊂ wk(T ).

We now sum over all the sets Q in Sk as above that are not Q0. Because wk(Q0) ⊆⋃
Q 6=Q0

wk(Q), we have that

γ|Sk| = |wk(Sk)| ≤
∑
Q 6=Q0

|wk(Q)|

≤ γ(1 + 1/k)
∑
Q 6=Q0

|Q|

≤ γ(1 + 1/k)(|Sk| − C3r
s
1)

where C3 = (2C2
0)−s.

Rearranging and recalling that |Sk| ≤ C02s = C4, we get

γC3r
s
1 ≤

γ

k
(C4 − C3r

s
1),

which is a contradiction for k large.

Lemma 2.6.5. The map w|A : A→M is an open mapping.

Proof. We use the notion of local degree defined in Subsection 2.3.4, which we may apply to

the oriented generalized d-manifold containing A.

Suppose w is not an open mapping on A. Then there is a point x ∈ A and an open

set G ⊆ A containing x such that y = w(x) is not an interior point of w(G). Since w has

bounded multiplicity, we can find a closed ball in G containing x and no other pre-images of

y. Let B be a connected open subset of this ball containing x. Then B ∩ w−1(y) = {x}.

We now claim that the local degree µ(y,B,w) is 0. Suppose to the contrary that

µ(y,B,w) 6= 0. Choose a small connected neighborhood N of y that does not intersect
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the compact set w(∂B). Then µ(y′, B, w) 6= 0 for all y′ ∈ N . It follows (by Lemma 2.3.27)

that N ⊆ w(B), which contradicts our assumption that y /∈ int(w(G)). So µ(y,B,w) = 0.

On the other hand, we can choose x′ ∈ B ∩ U so that y′ = w(x′) ∈ V is arbitrarily close

to y. By Lemma 2.6.4, x′ is the only pre-image of y′. As before, choose a small connected

neighborhood B′ ⊂ B around x′ so that w|B′ is a homeomorphism and ∂B′ avoids the

(finitely many) pre-images of y. Remember that B′ contains the only pre-image x′ of y′ in

B. It follows from Lemma 2.3.27 that

µ(y′, B, w) = µ(y′, B′, w) = ±1.

Now, if y′ is sufficiently close to y, then y′ is in the same connected component of M \

w(∂B) as y. Because the local degree is locally constant (Lemma 2.3.27), we see that

µ(y,B,w) = µ(y′, B, w).

But the left-hand side is 0 while the right-hand side is not. This completes the proof that w

is an open mapping.

From the previous two lemmas it immediately follows that w is a homeomorphism on A.

Indeed, we only need show it is injective. Suppose w(x) = w(x′). Choose small disjoint balls

B and B′ containing x and x′, respectively. Then w(B) ∩ w(B′) is an open set in w(A) and

therefore contains a point of V . This contradicts Lemma 2.6.4.

Because w is a homeomorphism, there are radii r, r′ > 0 such that

w(B(v, r)) ⊇ B(w(v), r′).

It follows by Lemma 2.3.24 and Lemma 2.3.15 that for all k sufficiently large,

wk(Sk) ⊇ wk(B(fk(v), 2r)) ⊇ B(wk(fk(v)), r′/2) ⊇ B(wk(vk), r
′/3).

This contradicts property (2.6.1) of wk if k is large enough.

This completes the proof of Proposition 2.5.2 and thus of Theorem 1.2.2.
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2.7 Proof of Theorem 1.2.3

Let X be an Ahlfors d-regular, LLC, oriented topological d-manifold. (We re-emphasize the

fact that here the Ahlfors regularity dimension and the topological dimension of X must

coincide.) We will apply Theorem 1.2.2 (in the case Y = Rd) to a class of maps on X

provided by a theorem of Semmes. These are given in the following result, which is a slightly

weakened version of Theorem 1.29(a) of [57].

Theorem 2.7.1 ([57], Theorem 1.29(a)). Let B be an open ball in X of radius r > 0. Then

there is a surjective Lipschitz map f from X onto the standard d-dimensional unit sphere Sd

with Lipschitz constant ≤ Cr−1 that is constant on X \B. The constant C depends only on

the data of X.

Remark 2.7.2. In Theorem 2.7.1, it makes no difference whether one endows Sd with the

standard Riemannian metric of diameter π or with the “chordal” metric arising from writing

Sd = {x ∈ Rd+1 : |x| = 1} and letting d(x, y) = |x − y|. These metrics are bi-Lipschitz

equivalent. For convenience, we will use the latter.

Proof of Theorem 1.2.3. As above, write Sd = {x ∈ Rd+1 : |x| = 1}. Consider the projection

p from Sd onto the first d coordinates in Rd+1. Then p is 1-Lipschitz and |p(Sd)| = σd, the

d-dimensional Hausdorff measure of the unit ball in Rd.

Therefore, by post-composing the maps of Theorem 2.7.1 with p, we see that for every

ball B(x, r) ⊆ X there is a Cr−1-Lipschitz map gB : B → Rd with |gB(B)| = σd.

To show X is locally uniformly rectifiable, we must show that for all R > 0 there exists

constants α, β such that for every ball B of radius at most R, there is a set E ⊆ B and a

map f : E → Rd such that |E| ≥ β|B| and f is α-bi-Lipschitz.

Fix a ball B = B(x, r), where r < R. Let n be such that C02n < r ≤ C02n+1. Then B

contains a dyadic cube Q ∈ ∆n.

As c02n ≥ c0
2C0

r, Q contains a ball B′ of radius c0
2C0

r. Let g = gB′ be a map as above

associated to B′. Then g is Lipschitz with Lipschitz constant bounded by 2CC0

c0r
.
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Therefore, the map h = c0r
2CC0

g is 1-Lipschitz and |h(B′)| ≥ c5r
d, for c5 = σd(c0/2CC0)d.

Thus, |h(Q)| ≥ δ|Q| for some constant δ depending only on the data of X. By choosing

ε > 0 sufficiently small in Theorem 1.2.2 (see Remark 2.2.4) we get that h is α-bi-Lipschitz

on a set E ⊂ Q ⊂ B of measure at least θ|Q| ≥ β|B|, where α and β depend only on R and

the data of X. This proves Theorem 1.2.3.

2.8 Consequences of Theorem 1.2.3

It is now possible to derive many corollaries which result immediately from applying deep

theorems of David and Semmes on uniformly rectifiable sets to the conclusion of Theorem

1.2.3. We state two geometric examples below.

First of all, Theorem 1.2.3, in combination with a result of Semmes in [55], provides a

quasisymmetric embedding result for suitable compact metric manifolds. For the definition

and basic properties of quasisymmetric homeomorphisms, see [28].

Corollary 2.8.1. Let X be an Ahlfors d-regular, LLC, compact, oriented topological d-

manifold. Then X is quasisymmetrically equivalent to a space X ′ that is also an Ahlfors

d-regular, LLC, compact, oriented topological d-manifold and that is a subset of some RN .

Proof. By Theorem 1.2.3, the space X is uniformly rectifiable. Proposition 2.10 of [55],

combined with equation (3.27) in that paper, shows that X can be quasisymmetrically

deformed by a weight so that the resulting space admits a bi-Lipschitz embedding into some

RN .

Both the deformation and the bi-Lipschitz embedding preserve the Ahlfors s-regularity

of X. For the former, this is explained in the discussion following the proof of Lemma 4.4

in [55]; the latter is a general fact about bi-Lipschitz mappings.

Thus, if we let X ′ be the image of the deformed X under the bi-Lipschitz embedding,

then X ′ is Ahlfors s-regular. Because it is quasisymmetrically homeomorphic to X, it is also

a compact, LLC, oriented topological d-manifold.
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Remark 2.8.2. Every doubling metric space quasisymmetrically embeds in some Euclidean

space by Assouad’s theorem (see [28], Theorem 12.2), but in general this embedding first

“snowflakes” the metric, increasing the Hausdorff dimension and destroying the rectifiability

properties of the space. Corollary 2.8.1 is false if one replaces “quasisymmetrically” by

“bi-Lipschitz”, as examples of Semmes [54] and Laakso [42] show.

Once there is a nice embedding of the abstract metric space X as a uniformly rectifiable

subset of Euclidean space, all the theory of these sets developed by David and Semmes can

be applied. Here we merely mention one further example, which says that the image of the

embedding in Corollary 2.8.1 can be taken to lie in a particularly nice subset of RN .

Recall the definition of David-Semmes regular maps, introduced in Definition 2.4.1. We

define the following class of subsets of Euclidean space.

Definition 2.8.3. Let E be an Ahlfors d-regular subset of Rn. We say that E is quasisym-

metrically d-regular if E = g(f(Rd)), where f : Rd → Y is a quasisymmetric homeomorphism

of Rd onto an Ahlfors d-regular space Y , and g : Y → RN is a David-Semmes regular map-

ping.

Quasisymmetrically d-regular sets admit bounded-multiplicity parametrizations by Rd in

a controlled way.

The following corollary follows from a weakened version of the implication (C6)⇒(C7)

in the main result of [20]. (The full version of the result should discuss deformations by

A1-weights, which we have not mentioned.)

Corollary 2.8.4. Let X be an Ahlfors d-regular, LLC, compact, oriented topological d-

manifold. Let X ′ be a quasisymmetrically equivalent subset of RN provided by Corollary

2.8.1. Assume N ≥ 2d. Then X ′ is a contained in a quasisymmetrically d-regular set

E ⊂ RN .

Proof. This follows from Corollary 2.8.1, Theorem 1.2.3, and the main result of [20] (specif-

ically, the implication (C6)⇒(C7)).
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In general, it is not possible to find good (quasisymmetric or bi-Lipschitz) parametriza-

tions of metric spaces such as those in Corollary 2.8.4 by standard spaces such as Sd or Rd.

Corollary 2.8.4 provides a weaker form of “parametrization”, in that it yields a mapping

onto but not into the space, and that is bounded-multiplicity rather than injective.

2.9 Counterexamples

To conclude, we wish to briefly describe some counterexamples regarding the class of “Lip-

schitz implies bi-Lipschitz” theorems discussed in Section 1.2 of this thesis. By this we

mean the class of theorems that say that if f : X → Y is a Lipschitz mapping with positive-

measure image, then f is bi-Lipschitz on a set of positive measure, quantitatively. None

of these counterexamples are new, but they are scattered in a few different places in the

literature and it may be convenient to collect them in one place. The first two can be found

in Meyerson’s paper [48], the third is due to David and Semmes [21], and the fourth is an

example of Laakso [40].

The first counterexample shows that, in the setting of Theorem 1.2.2, the requirement

that the two spaces have the same topological dimension is necessary. This proposition is

proven by Meyerson in [48], Theorem 4.1. Here we give a slightly different argument.

Proposition 2.9.1. There is an Ahlfors 2-regular, linearly locally contractible, complete

oriented topological 1-manifold X and a Lipschitz map f : X → R2 with positive measure

image that is not bi-Lipschitz on any subset of positive measure.

Proof. The metric space X will be the “snowflaked” space (R, | · |1/2), equipped with two-

dimensional Hausdorff measure (which is the same as one-dimensional Hausdorff measure on

(R, | · |)). It is clear that X satisfies all the required properties.

It is well-known (see, e.g., [59], Theorem 7.3.1) that there is a space-filling curve f : (R, | ·

|) → R2 that is Hölder continuous with exponent 1/2 and whose image contains the unit

square in R2. Therefore, when considered as a mappping f : X → R2, f is Lipschitz, and it
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has positive-measure image.

However, no Lipschitz map from X to R2 can be bi-Lipschitz on a set of positive measure.

Indeed, suppose that f is bi-Lipschitz on a set of positive measure E in X, with f(0) = 0.

Let E ′ = f(E) ⊆ R2. Without loss of generality, we may assume that E is compact, that

0 ∈ R is a point of density of E in X, and that f(0) = 0 ∈ R2 is a point of density of E ′ in

R2. (We can always find such points.)

We now consider the sequences of mapping packages{(
(E,

1

n
dX , 0), (E ′,

1

n
| · |, 0), f)

)}
. (2.9.1)

Because 0 ∈ X is a point of density of E and 0 ∈ R2 is a point of density of E ′, we have

by [21], Lemmas 9.12 and 9.13, that, in the sense of pointed metric spaces,(
E,

1

n
dX , 0

)
→ (X, dX , 0)

and (
E ′,

1

n
| · |, 0

)
→
(
R2, | · |, 0

)
.

Therefore, some subsequence of the sequence of mapping packages in (2.9.1) converges

to a mapping package (
(X, dX , 0), (R2, | · |, 0), g

)
.

The mapping g is bi-Lipschitz, because f |E is bi-Lipschitz. In addition, the map g is

surjective. We may see this by passing to another subsequence along which the sequence of

inverse mapping packages{(
(E ′,

1

n
| · |, 0), (E,

1

n
dX , 0), (f |E)−1

)}
converges to a mapping package(

(R2, | · |, 0), (X, dX , 0), h
)
.

It is then easy to see that g(h(y)) = y for all y ∈ R2 and therefore that g is surjective.

So g is a bi-Lipschitz homeomorphism of X onto R2. But this is impossible, as X is

homeomorphic to R.
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The two spaces in Proposition 2.9.1 satisfy all the conditions of Theorem 1.2.2, except

that they are manifolds of different topological dimensions.

For the remaining three counterexamples that we mention here, we merely indicate the

statements and refer the reader to the original sources for the proofs.

The second example is Theorem 4.2 of Meyerson’s paper [48]. Let us first note that, as a

consequence of Theorem 1.2.2, we know the following: Let X and Y be spaces as in Theorem

1.2.2. Let U ⊂ X be an open set, and let f : U → Y be Lipschitz and satisfy |f(U)| > 0.

Then there is a countable collection of measurable sets Ei ⊂ U such that f |Ei
is bi-Lipschitz

for each i and |f(U \∪Ei)| = 0. (Here the sets Ei are not necessarily disjoint.) On the other

hand, we have the following fact:

Proposition 2.9.2 ([48], Theorem 4.2). There is a doubling, LLC, complete, oriented topo-

logical 2-manifold X of Hausdorff dimension 2, an open set U ⊂ X, and a Lipschitz map

f : U → R2 that cannot be represented in the above manner. In other words, there is no

countable collection of measurable sets Ei ⊂ U such that f |Ei
is bi-Lipschitz for each i and

|f(U \ ∪Ei)| = 0.

In particular, the conclusion of Theorem 1.2.2 does not hold for this choice of X and

Y = R2. In this result, the space X can be chosen to be the sub-Riemannian manifold

known as the Grushin plane. The source and target spaces in Proposition 2.9.2 satisfy all

the conditions of Theorem 1.2.2, except that the source X is not Ahlfors 2-regular. The

idea behind Proposition 2.9.2 is to reduce to Proposition 2.9.1, because the Grushin plane X

contains a bi-Lipschitz equivalent copy of the snowflaked line (R, |·|1/2) as a positive-measure

subset.

If one completely relaxes the strong topological conditions imposed in Theorem 1.2.2,

then one can find Lipschitz mappings between metric spaces with large images but no bi-

Lipschitz pieces, even in the presence of very strong analytic assumptions on the spaces and

mappings.

Proposition 2.9.3 ([21], Proposition 14.5). There is a compact, Ahlfors regular metric space
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X and a Lipschitz mapping f : X → X which is not bi-Lipschitz on any positive-measure

subset. Furthermore, the mapping f can be taken to be a homeomorphism which is in addition

David-Semmes regular and preserves measure, in the sense that |f(K)| = |K| for all compact

K ⊆ X.

The space X in Proposition 2.9.3 is a totally disconnected Cantor set. See Chapter 14

of [21] for the proof and some other related constructions.

In both the positive result Theorem 1.2.2 and the counterexample Propositions 2.9.1 and

2.9.3, the spaces in question may have no “good calculus”, i.e., they may have no rectifiable

curves and therefore no Poincaré inequality. (For the definition of Poincaré inequalities on

metric measure spaces, see [28].) It is not known to what extent this type of calculus is

helpful in proving “Lipschitz implies bi-Lipschitz” theorems, but in closing we wish to note

the following theorem of Laakso [40], which shows that Ahlfors regular spaces with Poincaré

inequalities may still fail to have such results.

Proposition 2.9.4 ([40]). There exists an Ahlfors regular space X admitting a Poincaré

inequality and a Lipschitz map f : X → X with positive-measure image such that there is no

positive-measure subset of X on which f is bi-Lipschitz.

In fact, in Laakso’s example the mapping f does not even have any bi-Lipschitz weak

tangents, in the sense of Section 2.4.
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CHAPTER 3

Lipschitz differentiability spaces

As discussed in Section 1.3, the two main results in this chapter are Theorems 1.3.9 and

1.3.12. They present some consequences of the relationship between the Ahlfors regularity

dimension of a Lipschitz differentiability space and the dimensions of the charts in its dif-

ferentiable structure. If these coincide, the chart has uniformly rectifiable tangents, and if

they differ, the chart is strongly unrectifiable.

Along the way, we will prove some general results about doubling Lipschitz differentia-

bility spaces. The author’s preprint [23] is based on the material in this chapter.

3.1 Outline of the proof of Theorem 1.3.9

Here we give a brief summary of the proof of Theorem 1.3.9. The starting point is a result

of Bate, Theorem 1.3.8, that says that in a Lipschitz differentiability space, a generic point

of a chart (U, φ : U → Rn) admits n distinct “broken curves” through it, along which φ is

differentiable with derivatives pointing in n independent directions.

By modifying an idea of [43] — that a tangent remains a tangent after a change of base

point — we upgrade this to a special property of the tangents (Y, y) of (X, x). Namely, such

a tangent admits a Lipschitz map G : Y → Rn (which comes from blowing up φ) such that

every z ∈ Y admits n bi-Lipschitz lines through it, pointing in “independent” directions,

on which G is linear. (This is weaker than but similar to Cheeger’s notion of a “generalized

linear” function; see [13], Section 8.)

By a simple argument, such a map must be a Lipschitz quotient map, i.e., G(B(x, r)) ⊇
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B(G(x), cr) for some constant c > 0 and every ball B(x, r). We can then appeal to Semmes’

Theorem 2.2.2 (or David’s theorem from [18]), which implies that such a map from an Ahlfors

n-regular metric space to Rn must be bi-Lipschitz on a large subset of every ball. This yields

uniform rectifiability of the tangent.

To obtain a single tangent that is bi-Lipschitz equivalent to Rn, we can take a further

tangent at a point of density of such a subset. As tangents of tangents are tangents (see the

principles introduced in 1.1.2), this yields a bi-Lipschitz map from a tangent of X onto Rn.

Remark 3.1.1. We do not know, though it is a natural conjecture, whether Theorem 1.3.9

can be strengthened to show that an n-dimensional chart U in an Ahlfors n-regular Lipschitz

differentiability space is itself n-rectifiable. It is possible to show that U is n-rectifiable if it

admits a bi-Lipschitz embedding into some Euclidean space (see Corollary 3.8.1 below).

We now present the details. In Section 3.2 we define the version of Gromov-Hausdorff

convergence used in this chapter, along with a variant which includes converging Lipschitz

functions as well as spaces. In Section 3.3 we extend a result of Le Donne about tangent

spaces to this setting. Sections 3.4 and 3.5 contain the proof that, in doubling Lipschitz

differentiability spaces, blow-ups of the coordinate mappings are Lipschitz quotient maps.

Sections 3.6 and 3.7 contain the proofs of Theorem 1.3.9 and Theorem 1.3.12, respectively.

Finally, in Section 3.8 we present some further corollaries: non-embedding results analogous

to those for PI spaces, a sharp dimension bound for differentiable structures, and a rigidity

result for Lipschitz differentiability spaces admitting quasi-Möbius symmetries, in the spirit

of Bonk-Kleiner [6].

3.2 Gromov-Hausdorff convergence of space-functions

We will denote metric spaces by pairs (X, d) and metric measure spaces by triples (X, d, µ).

When the metric (and measure) are understood from context we will denote such a space

simply by X. Our metric spaces are not necessarily assumed to be complete unless explicitly

specified. Our measures µ will always be Borel regular measures, but they also are not
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necessarily assumed to be complete measures.

We will now define another type Gromov-Hausdorff convergence, first for sequences of

metric spaces and then for pairs consisting of a metric space and a Lipschitz function. This

version does not differ materially from that used Chapter 2 or in, for example, [11] or [39],

but it is more convenient for our present purposes. The following preliminary definition will

be useful.

Definition 3.2.1. A map φ : (X, d, x) → (Y, d′, y) between pointed metric spaces is called

an ε-isometry if

(i) For all a, b ∈ BX(x, 1/ε), we have |d′(φ(a), φ(b))− d(a, b)| < ε, and

(ii) for all ε ≤ r ≤ 1/ε, we have Nε(φ(BX(x, r))) ⊇ BY (y, r − ε).

Here Nε(E) denotes the open ε-neighborhood of a subset E in a metric space Y . Note that

we do not ask that φ(x) = y, although it follows from the definition that d′(φ(x), y) ≤ 2ε.

A sequence {(Xi, xi)}, i ∈ N, of pointed metric spaces converges to a metric space (X, x)

in the pointed Gromov-Hausdorff sense if for all ε > 0 there exists i0 ∈ N such that, for all

i > i0, there are ε-isometries

φi : (Xi, xi)→ (X, x) and ψi : (X, x)→ (Xi, xi).

If a sequence of pointed metric spaces is uniformly doubling, then it has a subsequence

that converges in the pointed Gromov-Hausdorff sense (see, e.g., [11], Theorem 8.1.0). This

notion of convergence can be associated to a distance function, as we indicate below.

Slightly modifying a definition of Keith [35], we will call a (X, x, f) a space-function if

(X, x) is a pointed metric space and f : X → Rn is a Lipschitz function, for some n ∈ N that

will be clear from context. Note that, unlike in [35], the functions f in our space-functions

are always Lipschitz, and they are allowed to map into Rn rather than R. As an abuse of

notation, we will call a space-function “doubling”, “complete”, etc. if the underlying space

is doubling or complete, and we will call it L-Lipschitz if the function f is L-Lipschitz.
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The notion of Gromov-Hausdorff convergence can be extended to space-functions as, for

example, in [35] and [39]. We present a version of this here.

Definition 3.2.2. If (X, x, f : X → Rn) and (Y, y, g : Y → Rn) are space-functions, we

define

D̃((X, d, x, f), (Y, d′, y, g)) = inf

{
ε > 0 : there exist φ : (X, d, x)→ (Y, d′, y) and

ψ : (Y, d′, y)→ (X, d, x)

that are ε-isometries, and such that

sup
B(x,1/ε)

|f − g ◦ φ| < ε and sup
B(y,1/ε)

|g − f ◦ ψ| < ε

}
Lemma 3.2.3. If we define D = min{D̃, 1/2}, then D̃ is a “pseudo-quasi-metric”, by which

we mean the following:

(i) D is finite, non-negative, and symmetric.

(ii) The D-distance between two doubling space-functions (X, x, f) and (Y, y, g) is zero if

and only if there is a surjective isometry i : X → Y such that g ◦ i = f , where g and f

are identified with their extensions to the completions X and Y .

(iii) D satisfies the quasi-triangle inequality

D ((X, x, f), (Z, z, h)) ≤ 2 (D ((X, x, f), (Y, y, g)) +D ((Y, y, g), (Z, z, h))) .

Proof. It is clear from the definition that D̃, and therefore D, is finite, non-negative, and

symmetric, and so (i) holds.

If D((X, x, f), (Y, y, g)) = 0 then there 1/i-isometries φi : (X, x)→ (Y, y) such that

sup
B(y,i)

|g − f ◦ φi| < 1/i.

We can extend φi to a map from X to Y as a 2/i-isometry. Because X and Y are doubling, X

and Y are proper: closed balls are compact. Therefore the maps φi sub-converge uniformly

on compact sets to an isometry from X to Y satisfying the conditions of the lemma.
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Conversely, if such an isometry exists, then it is clear that D((X, x, f), (Y, y, g)) = 0.

Therefore (ii) holds.

The quasi-triangle inequality (iii) for D follows from the fact that

(2(ε+ δ))−1 ≤ min{ε−1 − 2δ, δ−1 − 2ε}

if 0 < ε, δ < 1/2. Indeed, this is inequality exactly what is needed to show that the

composition of an ε-isometry and a δ-isometry is a 2(ε+ δ)-isometry.

Although the function D is not a metric, the previous lemma says that it is similar enough

for our application. We will therefore say that a sequence of space-functions (Xn, xn, fn)

“converges in D” to a space-function (X, x, f) if

D((Xn, xn, fn), (X, x, f))→ 0 as n→∞.

The convergence in D of a sequence of space-functions implies that the pointed metric spaces

converge in the pointed Gromov-Hausdorff sense (as defined above). Conversely, by a stan-

dard Arzéla-Ascoli type argument, if (Xn, xn, fn) are C-doubling, L-Lipschitz space functions

with {fn(xn)} bounded, and if (Xn, dn, xn) → (X, d, x) in the pointed Gromov-Hausdorff

sense, then there is a subsequence {(Xnk
, xnk

, fnk
)} and a Lipschitz function f : X → R such

that

(Xnk
, xnk

, fnk
)→ (X, x, f)

in D.

If (X, x) is a pointed metric space, and f : X → Rn is Lipschitz, then we denote by

Tan(X, x, f) the collection of space functions (Y, y, g) such that Y is complete and(
1

λi
X, x,

1

λi
(f − f(x))

)
→ (Y, y, g)

for some sequence of positive real numbers λi converging to zero. This is the collection

of tangents of X at x. If X is doubling and f is Lipschitz, then Tan(X, x, f) is always

non-empty, by the above standard facts about Gromov-Hausdorff convergence.
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Lemma 3.2.4. The following properties are preserved under Gromov-Hausdorff convergence

of a sequence of space functions {(Xi, xi, fi)} → (X, x, f):

• If the functions fi are all L-Lipschitz, then so is f .

• If the functions fi are all L-bi-Lipschitz, then so is f .

• If the spaces Xi are uniformly doubling metric spaces, then X is doubling.

• If the spaces Xi are uniformly Ahlfors n-regular, then X is Ahlfors n-regular.

Proof. The first three of these properties are easy to check, and the fourth can be found in,

e.g., Lemma 8.29 of [21].

The following lemma about convergence of space-functions will be useful.

Lemma 3.2.5. Suppose that (X, x, f) and (Y, y, g) are Lipschitz space-functions (mapping

into Euclidean space of the same dimension). Suppose that φ : X → Y is an ε-isometry such

that φ(x) = y and

sup
B(x,1/ε)

|f − g ◦ φ| < ε < 1.

Then

D ((X, x, f), (Y, y, g)) < Cε,

where C depends only on the Lipschitz constants of f and g.

Proof. For simplicity, we denote the metrics on X and Y both by d. Let N ⊂ B(x, 1/ε) be

a maximal separated ε-net. In other words,

d(y, z) ≥ ε

if y, z ∈ N and y 6= z, and

dist(z,N) < ε

for all z ∈ B(x, 1/ε). We can also arrange that x ∈ N .
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The fact that φ is an ε-isometry implies that φ|N is injective. Let N ′ = φ(N) ⊂ Y .

Because φ is an ε-isometry, we know that every point of B(y, 1/2ε) is within 3ε of a point in

N ′.

Let π : Y → N ′ denote any choice of closest-point projection, i.e., π(Y ) ⊂ N ′ and

d(y, π(y)) = dist(y,N ′). Then π preserves distances up to an additive error of 6ε for points

in B(y, 1/2ε). Let

ψ = (φ|N)−1 ◦ π : Y → X.

We first claim that ψ is a 7ε-isometry. Fix y1, y2 ∈ B(y, 1/7ε). We have

|d(ψ(y1), ψ(y2))− d(y1, y2)| ≤ |d(φ−1(π(y1)), φ−1(π(y2)))− d(π(y1), π(y2))|

+ |d(π(y1), π(y2))− d(y1, y2)|

≤ ε+ 6ε

= 7ε.

In addition, for r ≤ 1/(7ε),

ψ(B(y, r)) ⊇ N ∩B(x, r − ε)

and therefore

N7ε(ψ(B(y, r))) ⊇ B(x, r − 7ε).

We now claim that

sup
B(y,1/7ε)

|g − f ◦ ψ| < Cε,

where C depends only on the Lipschitz constant of g. For z ∈ B(y, 1/7ε), we have

|g(z)− f(ψ(z))| = |g(z)− f((φ|N)−1(π(z)))|

≤ |g(z)− g(π(z))|+ |g(π(z))− f((φ|N)−1(π(z)))|

≤ 6εLIP(g) + ε.

This completes the proof.
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At this point, we remark that all spaces in this chapter are doubling and therefore sep-

arable, so they admit isometric embeddings into the Banach space `∞(N). Thus “the set of

all doubling metric spaces up to isometry” can be identified with a subset of the power set

of `∞(N), and so there are no set-theoretic difficulties with this object.

Though D is not a metric, we nonetheless let the D-diameter of a collection C of space

functions be

diamD C = sup{D((X, x, f), (Y, y, g)) : (X, x, f), (Y, y, g) ∈ C}.

Lemma 3.2.6. LetM be a collection of doubling, L-Lipschitz space-functions (mapping into

the same Rn). Then for any η > 0, M is contained in a countable union of sets Bl, l ∈ N,

of D-diameter at most η.

Proof. We consider the countable collection of all space-functions (X, x, f) such that

• X is finite and all distances between points of X are rational, and

• f takes values in Qn ⊂ Rn.

Given (Y, y, g) ∈ M, we will show that it is within D-distance η/4 of such a space-

function. The quasi-triangle inequality for D (Lemma 3.2.3) then concludes the proof.

Let δ > 0 be a small constant to be chosen later, depending only on η and L. Let N

denote a finite maximal δ-net in B(y, 1/η) ⊆ Y , which we assume contains y. The set N is

finite because Y is doubling. We consider N as a metric space equipped with the restriction

of the metric from Y .

By Kuratowski’s theorem ([28], p. 99), N isometrically embeds into (Rm, || · ||`∞) for some

m ∈ N. Here (Rm, || · ||`∞) denotes Rm equipped with the metric induced by the norm

||x||`∞ = max{|xi| : i = 1, . . . ,m}

for x = (x1, . . . , xm) ∈ Rm.
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We form a new metric space (N ′, d′) in the following way: For each a ∈ N ⊂ Rm, choose

a′ ∈ Qm ⊂ Rm within δ/8 of a. Let (N ′, d′) denote the metric space on the set of all these

new points a′ equipped with the restriction of the `∞ metric from Qm. Note that all distances

in (N ′, d′) are rational.

Let ψ : N ′ → N ⊂ Y be the obvious bijection between points of N ′ and points of N , and

let y′ = ψ−1(y). It is clear that ψ is an (η/2)-isometry if δ is sufficiently small depending on

η. Let f : N ′ → R be defined so that f(x) is a rational number within η/2 of g(ψ(x)). Thus,

g ◦ ψ is within η/2 of f by definition.

By Lemma 3.2.5,

D((Y, y, g), (N ′, y′, f)) ≤ Cδ ≤ η/2,

where C depends only on L, and δ is chosen in addition to be less than η/(2C). This proves

the lemma.

3.3 Moving the base points of tangents

This section is devoted to the proof of the following result, which is an extension of a result

of Le Donne [43].

Proposition 3.3.1. Suppose (X, d, µ) is a doubling metric measure space and f : X → Rn

is Lipschitz. Then, for µ-almost every x ∈ X, for all (Y, y, g) ∈ Tan(X, x, f), and for all

y′ ∈ Y , we have (Y, y′, g − g(y′)) ∈ Tan(X, x, f).

As we have not assumed that the measure µ is complete, the exceptional set in Proposition

3.3.1 need not be measurable. We define the outer measure µ∗ by

µ∗(A) = inf{µ(B) : B Borel, B ⊇ A}.

Proposition 3.3.1 says that the exceptional set on which the conclusion fails has outer measure

zero. Such a set is contained in a Borel set of measure zero.
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The point a is a point of outer density of a set A if a ∈ A and

lim
r→0

µ∗(A ∩B(x, r))

µ(B(x, r))
= 1.

Every subset of X with positive outer measure has a point of outer density. Indeed, for

any such set A ⊆ X there exists a Borel set B ⊃ A with µ(B) = µ∗(A) > 0. We have that

µ∗(A ∩ E) = µ(B ∩ E)

for any Borel set E ⊆ X, from which it follows that any point of density of B is a point of

outer density of A.

Lemma 3.3.2. Let (X, d, µ) be a doubling metric measure space, f : X → Rn be Lipschitz,

and let A ⊂ X be a subset with a point of outer density at a ∈ A. Then Tan(A, a, f) =

Tan(X, a, f).

Proof. The proof of this is an easy modification of the proof of Proposition 3.1 in [43], which

we omit.

Proof of Proposition 3.3.1. We closely follow the argument in [43]. Our goal is to show that

the set

{
x ∈ X : there exists (Y, y, g) ∈ Tan(X, x, f) and y′ ∈ Y

such that (Y, y′, g − g(y′)) /∈ Tan(X, x, f)
}

has outer measure zero.

Consider the collection M consisting of (X, x, f) and all its rescalings and tangents.

Note that M is a collection of uniformly doubling, uniformly Lipschitz space-functions.

Using Lemma 3.2.6, we see that for each k ∈ N, there exist countably many collections Bl,

of space-functions such that, for all l ∈ N,

diamD(Bl) < 1/4k

and M⊆ ∪Bl.
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It therefore suffices to show that, for all k, l,m ∈ N, the set{
x ∈ X : there exists (Y, y, g) ∈ Tan(X, x, f) and y′ ∈ Y such that

(Y, y′, g − g(y′)) ∈ Bl and D

(
(Y, y′, g − g(y′)) ,

(
1

t
X, x,

1

t
(f − f(x))

))
>

1

k

for all t ∈ (0, 1/m)

}
has outer measure zero.

Suppose that, for some k, l,m ∈ N, the set above has positive outer measure, and call it

A ⊆ X. Let a be a point of outer density of A. Then there exists (Y, y, g) ∈ Tan(X, a, f)

and y′ ∈ Y such that

(Y, y′, g − g(y′)) ∈ Bl

and

D

(
(Y, y′, g − g(y′)) ,

(
1

t
X, a,

1

t
(f − f(x))

))
>

1

k
,

for all t ∈ (0, 1/m) .

Because (Y, y, g) ∈ Tan(a, f) = Tan(A, a, f), there are sequences λn → 0 and εn → 0, as

well as εn-isometries φn : (Y, y)→ ( 1
λn
X, a) taking values in A and satisfying

sup
B(y,ε−1

n )

∣∣∣∣g − 1

λn
(f ◦ φn − f(x))

∣∣∣∣ ≤ εn.

Let an = φn(y′) ∈ A ⊆ X. Note that

dX(an, a) = O(λn)→ 0 (3.3.1)

as n→∞.

Consider the space-functions(
1

λn
X, an,

1

λn
(f − f(an))

)
.

We now make the following claim:
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Claim 3.3.3. In the distance D, we have the convergence(
1

λn
X, an,

1

λn
(f − f(an))

)
→ (Y, y′, g − g(y′))

Proof of Claim 3.3.3. Consider the same mappings φn as before, now considered as mappings

φn : (Y, y′)→
(

1

λn
X, an

)
.

We will first show that if n is sufficiently large, φn is a 2εn-isometry with these base points.

By (3.3.1), if n is sufficiently large, then

BY (y′, (2εn)−1) ⊂ BY (y, ε−1
n )

and so φn satisfies property (i) of a 2εn-isometry.

In addition, if r ≤ (2εn)−1 and n is sufficiently large, then

Bλ−1
n X(an, r − 2εn) ⊂ Bλ−1

n X(x, 1/εn − εn).

Therefore, if z ∈ Bλ−1
n X(an, r − 2εn) then z is within λ−1

n X-distance εn of a point φn(w),

where w ∈ BY (y′, 1/εn). A simple application of the triangle inequality and the properties

of φn shows that w must be in BY (y′, r). Therefore,

Bλ−1
n X(an, r − 2εn) ⊂ N2εn (BY (φn(y′), r))

which verifies property (ii) of a 2εn-isometry.

Thus, for n large, each mapping φn is a 2εn-isometry from (Y, y′) to ( 1
λn
X, an). In addition,

we have, for z ∈ B(y′, (2εn)−1),∣∣∣∣(g(z)− g(y′))− 1

λn
(f(φn(z))− f(an))

∣∣∣∣ ≤ ∣∣∣∣g(z)− 1

λn
(f(φn(z))− f(a))

∣∣∣∣
+

∣∣∣∣g(y′)− 1

λn
(f(an)− f(a))

∣∣∣∣
=

∣∣∣∣g(z)− 1

λn
(f(φn(z))− f(a))

∣∣∣∣
+

∣∣∣∣g(y′)− 1

λn
(f(φn(y′))− f(a))

∣∣∣∣
≤ εn + εn

= 2εn
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Thus, the mappings φn : (Y, y′)→ ( 1
λn
X, an) each satisfy the conditions of Lemma 3.2.5, and

so we see that, for some C > 0 independent of n,

D

(
(Y, y′, g − g(y′)) ,

(
1

λn
X, an,

1

λn
(f − f(an))

))
≤ Cεn → 0.

Therefore, for n sufficiently large, we have

D

((
1

λn
X, an,

1

λn
(f − f(an))

)
, (Y, y′, g − g(y′))

)
<

1

4k
. (3.3.2)

Now, since an ∈ A, there are space-functions (Yn, yn, gn) ∈ Tan(X, an, f) and points

y′n ∈ Yn such that

(Yn, y
′
n, gn − gn(y′n)) ∈ Bl,

and

D

((
1

t
X, an,

1

t
(f − f(an))

)
, (Yn, y

′
n, gn − gn(y′n))

)
> 1/k,

for all t ∈ (0, 1/m).

We then have, for n large,

1

k
< D

(
(Yn, y

′
n, gn − gn(y′n)) ,

(
1

λn
X, an,

1

λn
(f − f(an))

))
≤ 2

(
D ((Yn, y

′
n, gn − gn(y′n)) , (Y, y′, g − g(y′)))

+D

(
(Y, y′, g − g(y′)) ,

(
1

λn
X, an,

1

λn
(f − f(an))

)))
< 2

(
1

4k
+

1

4k

)
,

where the first 1
4k

term arises because both spaces are in Bl and the second comes from

(3.3.2). This is a contradiction.

3.4 Relationship to Lipschitz differentiability

We now investigate Lipschitz differentiability spaces. From now on, all metric measure spaces

are assumed to be doubling and complete (but not necessarily Ahlfors regular until the proof
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of Theorem 1.3.9).

Recall the following notation, taken from [3] and introduced earlier in Section 1.3. We

write Γ(X) be the collection of all bi-Lipschitz functions of the form

γ : Dγ → X

where Dγ ⊂ R is a compact set containing 0.

We now bring in Theorem 1.3.8, the result of Bate [3] referenced in the introduction.

This result provides, at almost every point x in a complete Lipschitz differentiability space

X, elements of Γ(X) passing through x in n “independent” directions (see Theorem 1.3.8

for the precise statement.)

The property given in the conclusion of Theorem 1.3.8 admits an improvement if one

passes to tangents. An L-bi-Lipschitz line in a metric space X is an L-bi-Lipschitz map

l : R→ X.

Proposition 3.4.1. Let (X, d, µ) be a complete doubling metric measure space and let

f : X → Rn be a Lipschitz function. Suppose that there is a set A of positive measure

such that for every x ∈ A, there exists γx ∈ Γ(X) with γx(0) = x, 0 a density point of Dγx,

and such that vx = (f ◦ γx)′(0) exists and is non-zero.

Then for almost every x ∈ A, every (Y, y, g) ∈ Tan(X, x, f) has the following property:

There is L ≥ 1 such that for every z ∈ Y , there exists an L-bi-Lipschitz line l : R → Y

with l(0) = z that satisfies

g(l(t)) = g(z) + tvx

for all t ∈ R.

The constant L depends on the point x but not on the sequence of scales defining the

tangent.

Proof. Because the conclusion is supposed to hold for almost every x ∈ A, we may assume

that x is among the full-measure set of points for which the conclusion of Proposition 3.3.1

holds.
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Consider any (Y, y, g) ∈ Tan(X, x, f). There is a sequence {λn} tending to zero such that

(
λ−1
n X, x, λ−1

n (f − f(x))
)
→ (Y, y, g).

Fix εn-isometries φn : (Y, y)→ (λ−1
n X, x) and ψn : (λ−1

n X, x)→ (Y, y) such that

sup
B(x,1/εn)

|λ−1
n (f − f(x))− g ◦ φ| < εn and sup

B(y,1/ε)

|g − λ−1
n (f ◦ ψ − f(x))| < εn,

where εn → 0 as n→∞.

We first claim the following: there is an L-bi-Lipschitz line l : R→ Y such that l(0) = y

and g(l(t)) = tvx for t ∈ R. In other words, we first claim that the conclusion of the

proposition holds when z is actually the base point y of the tangent.

To find the line l, we blow up the curve γx at t = 0 ∈ R, along the same sequence of scales

{λn}. Although in this chapter we have not defined the Gromov-Hausdorff convergence of

functions mapping into metric spaces other than Rn, for this one can use the theory developed

in [21], Chapter 8, which was introduced in Section 2.3.1 of this dissertation.

Passing to a subsequence and using again standard facts about blowups at points of

density (see [21], Lemmas 9.12 and 9.13), this gives a bi-Lipschitz line l in Y through y.

By Proposition 2.3.8 (i.e., [21], Lemma 8.19) this line l has the following property: There

are maps σn : R→ Dγ such that

lim
n→∞

λ−1
n |σn(t)− λnt| = 0

and

l(t) = lim
n→∞

ψn(γ(σn(t)))

uniformly in t on bounded subsets of R.

Recall also that g is given by the limit

g(z) = lim
n→∞

1

λn
(f(φn(z))− f(x))

uniformly on bounded subsets of Y .
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Therefore, using the uniformity of the convergence and the Lipschitz property of f and

γx, we have that

g(l(t)) = lim
n→∞

1

λn
(f(φn(l(t)))− f(x))

= lim
n→∞

1

λn
(f(φn(ψn(γx(σn(t)))))− f(x))

= lim
n→∞

1

λn
(f(γx(σn(t)))− f(x))

= lim
n→∞

1

λn
(f(γx(λnt))− f(x))

= t(f ◦ γx)′(0)

= tvx

for all t ∈ R. Thus, we see that (g ◦ l)(t) = tvx.

This gives the conclusion of the proposition at the base point y ∈ Y . Now consider

any point z ∈ Y . By Proposition 3.3.1, (Y, z, g − g(z)) ∈ Tan(X, x, f). Therefore, by

the preceding argument, we get the conclusion of the proposition at the arbitrary point

z ∈ Y .

Proposition 3.4.2. Let (U, φ : U → Rn) be an n-dimensional chart in a complete doubling

Lipschitz differentiability space. When they exist, let γx1 , . . . , γ
x
n be the n “broken curves”

through x provided by Theorem 1.3.8, and let vxi = (φ ◦ γxi )′(0), which are n linearly inde-

pendent vectors in Rn.

Then for almost every x ∈ U , every (Y, y,G) ∈ Tan(X, x, φ) has the following property:

There exists L ≥ 1 such that, for every z ∈ Y , there are n L-bi-Lipschitz lines l1, . . . , ln with

li(0) = z that satisfy

G(li(t)) = G(z) + tvxi

for all t ∈ R.

The constant L depends on the point x but not on the sequence of scales defining the

tangent.

Proof. This follows immediately from the previous two results.
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3.5 Obtaining Lipschitz quotient maps

Recall that a Lipschitz quotient map f : X → Y between metric spaces is a Lipschitz map

for which there exists c > 0 such that

f(B(x, r)) ⊇ B(f(x), cr)

for any ball B(x, r) in X. The constant c is called the co-Lipschitz constant of the map.

A simple reformulation of the Lipschitz quotient property is the following. A Lipschitz

map f : X → Y is a Lipschitz quotient map with co-Lipschitz constant c if and only if

distX(x, f−1(y)) ≤ c−1dY (f(x), y)

for every x ∈ X and y ∈ Y .

Corollary 3.5.1. Let (U, φ : U → Rn) be an n-dimensional chart in a complete doubling Lip-

schitz differentiability space X. Then for almost every x ∈ U , every (Y, y, F ) ∈ Tan(X, x, φ)

has the property that F is a Lipschitz quotient map onto Rn.

The Lipschitz and co-Lipschitz constants associated to the Lipschitz quotient map F de-

pend on the point x, but not on the sequence of scales defining the tangent.

Proof. We may assume that x lies in the full measure set provided by Proposition 3.4.2. As

in Proposition 3.4.2, we have n “broken curves” γxi through x, from Theorem 1.3.8. Let

vi = (φ ◦ γxi )′(0), which are n linearly independent vectors in Rn. To simplify the proof, we

first fix a linear map A : Rn → Rn that sends each vi to ei, the ith standard basis vector of

Rn. Note that A is invertible, because {vi} is a linearly independent set.

Now let ψ = A ◦ φ. It is clear that (U, ψ) is still an n-dimensional chart, so we can apply

Proposition 3.4.2 to obtain L ≥ 1 and (Y, y,G) ∈ Tan(X, x, ψ) with the property that for

every z ∈ Y , there are n L-bi-Lipschitz lines lz1, . . . , l
z
n with lzi (0) = z that satisfy

G(lzi (t)) = G(z) + tei

for all t ∈ R.
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We now show that G is a Lipschitz quotient map. As a tangent of a Lipschitz map, it

is automatically Lipschitz. To establish the co-Lipschitz bound, it suffices (by the remark

above) to show that there is a constant C > 0 such that, whenever z ∈ Y and p ∈ Rn,

dist(z,G−1(p)) ≤ C|G(z)− p|. (3.5.1)

Fix z ∈ Y and p ∈ Rn. Let q = G(z) ∈ Rn. Write p = (p1, p2, . . . , pn) ∈ Rn and

q = (q1, q2, . . . , qn) ∈ Rn.

Let z1 = lz1(p1 − q1). Then

G(z1) = q + (p1 − q1)e1 = (p1, q2, . . . , qn).

Let z2 = lz12 (p2 − q2). Then

G(z2) = G(z1) + (p2 − q2)e2 = (p1, p2, q3, . . . , qn).

Repeating this n times, we obtain zn such that G(zn) = p. In addition,

dY (zn, z) ≤ d(z, z1) + d(z1, z2) + · · ·+ d(zn−1, zn)

≤ L|p1 − q1|+ L|p2 − q2|+ · · ·+ L|pn − qn|

≤ Ln1/2|G(z)− p|.

Because zn ∈ G−1(p), this proves (3.5.1) and so concludes the proof that G is a Lipschitz

quotient map with co-Lipschitz constant c = (Ln1/2)−1. Now consider the space-function

(Y, y, F ) ∈ Tan(X, x, φ) associated to the same sequence of scales as (Y, y,G) ∈ Tan(X, x, ψ).

As A ◦ φ = ψ and taking tangents is a linear operation on functions, we see that A ◦F = G.

Therefore F = A−1 ◦G, and since A is bi-Lipschitz, F is also a Lipschitz quotient map.

The bi-Lipschitz constant of A depends only on the vectors {vi} and not on the sequence

of scales defining the tangent. Therefore, the Lipschitz and co-Lipschitz constants of F also

do not depend on the sequence of scales defining the tangent.

The following corollary summarizes two simple immediate consequences.
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Corollary 3.5.2. Let (U, φ : U → Rn) be an n-dimensional chart in a complete doubling

Lipschitz differentiability space X. Then the following two facts hold:

(i) At almost every point of U , any tangent of φ maps onto Rn.

(ii) For almost every point x ∈ U , there is a constant c0 > 0 such that any tangent (Y, y) ∈

Tan(X, x) satisfies the lower mass bound

Hn(B(z, r)) ≥ c0r
n

for all z ∈ Y and r > 0.

Corollary 3.5.2 is an analog of Theorem 13.4 of [13] from the setting of PI spaces.

3.6 Uniformly rectifiable tangents

The proof of Theorem 1.3.9 will be an immediate application of Corollary 3.5.1 and Semmes’

Theorem 2.2.2 stated in Chapter 2.

3.6.1 Bi-Lipschitz pieces for Lipschitz quotient maps

Recall David’s condition 2.2.1 and the associated Theorem 2.2.2 of Semmes. (Actually, for

this application we could equally well use the original result of David from [18].) Although

in Chapter 2 we stated these only for 0-cubes, they apply to dyadic cubes of any scale by a

simple rescaling (see also [56], Condition 9.1 and Theorem 10.1).

We now note that if (X, d) is Ahlfors n-regular and z : X → Rn is a Lipschitz quotient

map, then z trivially satisfies David’s condition on any cube. Indeed, suppose z is a Lipschitz

quotient map, so that z(B(x, r)) ⊇ B(z(x), cr) for all x ∈ X and r > 0. Fix a cube I0 ⊆ X

and constants λ, γ > 0. Set Λ = λ/c and η arbitrary. Let T be the union of all j-cubes in X

touching B = B(x,Λ2j), where x ∈ I0. If T ⊆ I0, then B ⊆ T ⊆ I0. We therefore see that

z(T ) ⊇ z(B) ⊇ B(z(x), cΛ2j) = B(z(x), λ2j).
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Thus the first branch of David’s condition is always satisfied.

The following is therefore an immediate consequence of Theorem 2.2.2, which we record

so that we can reference it later.

Corollary 3.6.1. Let (Y, d) be Ahlfors n-regular and let f : Y → Rn be a Lipschitz quotient

map. Then there exist constants α ≥ 1 and β > 0 such that, for every ball B ⊂ Y , f is

α-bi-Lipschitz on some subset of B of measure at least βHn(B). Here α, β > 0 depend only

on the Ahlfors regularity constant of the space Y and the Lipschitz and co-Lipschitz constants

of f .

In particular, Y is uniformly rectifiable, with constants α and β.

3.6.2 Proof of Theorem 1.3.9 and Corollary 1.3.10

We now apply Corollaries 3.5.1 and 3.6.1 to prove Theorem 1.3.9. Let X be an Ahlfors

n-regular Lipschitz differentiability space containing a chart (U, φ : U → Rn) of dimension

n. Note that, as mentioned above, any tangent Y of X is Ahlfors n-regular.

By Corollary 3.5.1, for almost every point x of U , there exists (Y, y) ∈ Tan(X, x) and a

Lipschitz quotient map G : Y → Rn. It follows immediately from Corollary 3.6.1 that Y is

uniformly rectifiable.

For the second part of the theorem, take a positive measure subset E of Y on which

G is a bi-Lipschitz map. Fix a point of density y′ of E such that G(y′) is a point of Hn-

density of G(E) ⊂ Rn. Take a further tangent (Z, z,H) ∈ Tan(Y, y′, G). Note that (Z, z) ∈

Tan(Y, y′) ⊂ Tan(X, x) (see [43], Theorem 1.1). In addition, it follows from Lemma 3.3.2

and a standard argument (which appears in the proofs of Proposition 2.9.1 and Corollary

3.8.1) that H is a bi-Lipschitz map from Z onto Rn. This completes the proof of Theorem

1.3.9.

Corollary 1.3.10 is an immediate consequence of Theorem 1.3.9 and Theorem 9 of [38],

again using the fact [43] that, at almost every point of X, tangents of tangents are tangents.
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3.7 Proof of Theorem 1.3.12

We now consider an Ahlfors s-regular Lipschitz differentiability space X with a k-dimensional

chart U , where k < s.

Fix any N ∈ N and any Lipschitz function f : U → RN . We will show thatHs(f(U)) = 0.

Without loss of generality, we may assume that f is 1-Lipschitz, N ≥ s, and U is bounded.

Write f = (f1, . . . , fN), where fi : X → R for 1 ≤ i ≤ N . We say that f is differentiable at

x ∈ U if each fi is differentiable at x. In this case, we write Dfx for the N × k matrix whose

ith row is d(fi)x ∈ Rk.

Note that the subset of U on which f is non-differentiable has Hs-measure zero, and thus

so does its image under f . It therefore suffices to show that Hs(f(V )) = 0, where V ⊆ U

is the subset on which f is differentiable. To do so, it suffices to show that the Hausdorff

content Hs
∞ of f(V ) is zero (see [28], p. 61).

Fix δ > 0. For each x ∈ V , choose rx ∈ (0, 1) small so that

y ∈ B(x, 6rx)⇒ |f(y)− f(x)−Dfx · (φ(y)− φ(x))| < δrx

where Dfx = (d(f1)x, d(f2)x, . . . , d(fn)x).

By a basic covering theorem, (see [28], Theorem 1.2), we may acquire a collection of balls

{Bj = B(xj, rj)}, with xj ∈ V and rj = 5rxj , covering V such that the collection {1
5
Bj}

consists of pairwise disjoint sets.

Let Pj denote the k-dimensional affine space f(xj) +Dfxj [Rk] ⊂ RN . Then

f(Bj) ⊂ Nδrj(B(f(xj), rj) ∩ Pj).

Thus, f(Bj) can be covered by Cδ−k balls of radius 2δrj, where C depends only on k

(cover the k-dimensional Euclidean ball B(f(xj), rj) ∩ Pj by balls of radius δrj and then

double the radii of these balls).
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Note that because V is bounded and the balls B(xj,
1
5
rj) are disjoint, we have that∑

j

rsj = 5s
∑
j

(rj/5)s ≤ C05sHs(N1(V )) <∞, (3.7.1)

where the first inequality is because the collection {B(xj, rj/5)} consists of disjoint subsets

of N1(V ), and the second inequality is because V is bounded and X is Ahlfors s-regular with

constant C0.

Thus,

Hs
∞(f(V )) ≤ C

∑
j

δ−k(2δrj)
s

≤ 2sCδs−k
∑
j

rsj

≤ 10sCC0Hs(N1(V ))δs−k,

using (3.7.1).

Because s− k > 0 and Hs(N1(V )) <∞, sending δ → 0 completes the proof of Theorem

1.3.12.

Remark 3.7.1. In [57], Semmes shows that a linearly locally contractible, Ahlfors n-regular

n-manifold M admits a Poincaré inequality, and is therefore a Lipschitz differentiability

space. Using Theorem 1.3.12 above, combined with the deep Theorem 1.29 of [57], one can

give a straightforward proof that the differentiable structure of M consists of n-dimensional

charts. This is done in the following way:

The fact that the charts in M have dimension at most n follows from Theorem 13.8 of

[13], or alternatively from Corollary 3.8.5 below.

If a chart U in M had dimension k < n, then U would be strongly unrectifiable by

Theorem 1.3.12. Fixing a point of density x of U , Theorem 1.29 of [57] provides, for all

j ∈ N, mappings fj : B(x, j−1)→ Sn that are Cj-Lipschitz, for some constant C, and whose

images have full measure in the standard unit sphere Sn. In other words, we have

Hn(fj(B(x, j−1))) = Hn(Sn)
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independent of j ∈ N. On the other hand, by the strong unrectifiability of U we have

Hn(fj(B(x, j−1) ∩ U)) = 0.

Letting j tend to infinity, one easily obtains a contradiction to the assumption that x is a

point of density of U .

Remark 3.7.2. In fact, as was shown in Theorem 1.2.3 of this dissertation (and in the publica-

tion [23]), the spaces described in Remark 3.7.1 are locally uniformly rectifiable in dimension

n, which is much stronger than having an n-dimensional differentiable structure.

3.8 Additional corollaries

This section contains some further results that follow from Corollary 3.5.2 and Theorem

1.3.9.

3.8.1 Embedding and rectifiability

The fact that blowups of the coordinate functions are surjective (statement (i) in Corollary

3.5.2) appears to be new for Lipschitz differentiability spaces (as opposed to PI spaces, where

it appears in Theorem 13.4 of [13]). In this section, we give some consequences of this fact.

(While this dissertation was in preparation, we learned of Schioppa’s paper [52], in Section

5 of which he also proves that the blowups of the coordinate functions are surjective in a

Lipschitz differentiability space. The results in this subsection, which are all corollaries of

that fact, can thus also be derived from Schioppa’s work.)

Exactly as for PI spaces (see [13], Theorems 14.1 and 14.2), surjectivity of blowups gives

the following consequences.

Corollary 3.8.1. Let (X, d, µ) be a complete Lipschitz differentiability space with an n-

dimensional chart (U, φ). Suppose that F : X → RN is a bi-Lipschitz embedding. Then for

almost every x ∈ U , the set F (X) has a unique tangent at F (x) that is an n-dimensional

linear subspace of RN .
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If in addition Hn(U) < ∞ and Hn is absolutely continuous with respect to µ, then it

follows that F (U), and therefore U , is n-rectifiable.

Proof. The proof proceeds as for PI spaces. Consider any point of density x of U at which

F is differentiable; we may also assume that F (x) is a point of F∗(µ)-density of F (U). Note

that the push-forward measure F∗(µ) is doubling on F (X) as F is bi-Lipschitz.

Take a tangent Z ⊂ RN of F (U) at F (x) along some sequence of scales. Note that this

tangent Z can be realized as a subset of RN , as in [21], Lemma 8.2.

Simultaneously blow up X and the maps φ and F at x to obtain a tangent Y of X at x,

a Lipschitz map φ̃ : Y → Rn, and a bi-Lipschitz map F̃ : Y → Z ⊂ RN . To summarize, we

obtain, along some fixed sequence of scales,

(Z, z) ∈ Tan(F (U), F (x)) = Tan(F (X), F (x)),

(Y, y, F̃ ) ∈ Tan(X, x, F ), and

(Y, y, φ̃) ∈ Tan(X, x, φ),

where F̃ is a bi-Lipschitz map of Y into Z. (The fact noted above that Tan(F (U), F (x)) =

Tan(F (X), F (x)) follows from Lemma 3.3.2 and the fact that F∗(µ) is doubling.)

In fact, by a similar argument as in Proposition 2.9.1, F̃ maps Y onto Z. To see this,

we may use the type of convergence discussed in Subsection 2.3.1 to simultaneously blow up

F−1 : F (U) → U at F (x), yielding a bi-Lipschitz map G : Z → Y such that F̃ (G(w)) = w

for all w ∈ Z. This shows that F̃ is surjective.

Now, because F is differentiable at x, its blowup F̃ can be written as

F̃ = DFx ◦ φ̃,

where DFx is a linear map Rn → RN and φ̃ is the blowup of φ. Note that DFx must have

full rank n, because F̃ is a bi-Lipschitz map.

Because φ̃ is surjective (see Corollary 3.5.2), we have

Z = F (Y ) = DFx(φ̃(Y )) = DFx(Rn),
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which is a fixed n-dimensional linear subspace of RN independent of the choice of scales

defining the tangent Z. This shows that for µ-almost every x ∈ U , F (U) has a unique

tangent at F (x) that is an n-dimensional linear subspace of RN .

The second part of the corollary, about the rectifiability of U , now follows from a well-

known characterization of rectifiable sets in Euclidean space (see [47], Theorem 15.19).

Note that the proof of Corollary 3.8.1 shows that, if X is a Lipschitz differentiability

space with an n-dimensional chart (U, φ), and if F : X → RN is bi-Lipschitz, then at almost

every point x ∈ U , every tangent of X at x is bi-Lipschitz equivalent to Rn. The following

non-embedding result is therefore an immediate consequence.

Corollary 3.8.2. Let X be a complete Lipschitz differentiability space with an n-dimensional

chart (U, φ). Suppose there exists a set A ⊆ U of positive measure such that for every a ∈ A,

there exists (Y, y) ∈ Tan(X, a) that is not bi-Lipschitz equivalent to Rn. Then X does not

admit a bi-Lipschitz embedding into any Euclidean space.

Remark 3.8.3. In the second part of Corollary 3.8.1, note that if Hn(U) = 0 then the n-

rectifiability of U holds for trivial reasons. However, if one appeals to a result recently

announced by Csörnyei and Jones, it is possible to show that an n-dimensional chart U

always has Hn(U) > 0 (see [3], Remark 6.11).

The previous two results greatly restrict the subsets of Euclidean space that can admit

differentiable structures. For example, we obtain the following non-existence result. Here | · |

refers to the standard Euclidean metric.

Corollary 3.8.4. Let E be a closed subset of some RN that is Ahlfors s-regular, where

0 < s ≤ N . If s is not an integer, then (E, | · |,Hs) is not a Lipschitz differentiability space.

Proof. Suppose that s is not an integer but that (E, | · |,Hs) is in fact a Lipschitz differen-

tiability space. Because E is Ahlfors s-regular, so are all its tangents. On the other hand,

by Corollary 3.8.1, some tangent of E must be a linear subspace of RN , and so must have

integer Hausdorff dimension. This is a contradiction.
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In particular, many self-similar fractals like the standard Sierpiński carpet and Sierpiński

gasket cannot be Lipschitz differentiability spaces when equipped with their canonical mea-

sures. In general, Ahlfors regular spaces with non-integer Hausdorff dimension can be Lip-

schitz differentiability spaces and can even admit Poincaré inequalities (see [9], [41], [16]).

Such spaces can never admit bi-Lipschitz embeddings into any Euclidean space. Indeed, in

the case of PI spaces, stronger non-embedding results hold (see [15]).

Surjectivity of the blowups also implies a sharp bound on the dimension of a differentiable

structure on a doubling space. This uses the notion of the Assouad dimension dimAX of a

metric space X; a definition can be found in [28], Definition 10.15.

Corollary 3.8.5. Let X be a doubling Lipschitz differentiability space with an n-dimensional

chart (U, φ). Then n ≤ dimAX.

Proof. This follows from two facts about Assouad dimension. First, the Assouad dimension

of a space X is always at least the Hausdorff dimension dimH X of X (see [45], Section 1.4.4).

Second, the Assouad dimension of a tangent space is always at most the Assouad dimension

of the original space ([45], Proposition 6.1.5).

Because in addition the blowups of the coordinates yield a Lipschitz map from a tangent

Y of X onto Rn, we have that

dimAX ≥ dimA Y ≥ dimH Y ≥ n.

Note that, for example, the Assouad dimension of Rn is the same as the dimension of

its differentiability charts, so Corollary 3.8.5 is sharp. Corollary 3.8.5 was first noted by

Schioppa in [52], Section 5.

3.8.2 Spaces with quasi-Möbius symmetries

In [6], Bonk and Kleiner consider compact metric spaces that admit the following type of

symmetries. For the definition of quasi-Möbius maps, see [6].
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Definition 3.8.6. A compact metric space X admits quasi-Möbius symmetries if the follow-

ing holds: every triple of points in X can be blown up to a uniformly separated triple by a

uniformly quasi-Möbius map. In other words, there is a homeomorphism η : [0,∞)→ [0,∞)

and a constant δ > 0 such that for every triple of points x, y, z ∈ X, there is a η-quasi-Möbius

map g : X → X such that the points g(x), g(y), g(z) have mutual distance at least δ.

This condition is satisfied, for example, by the boundaries of hyperbolic groups equipped

with their visual metrics.

Bonk and Kleiner show the following theorem.

Theorem 3.8.7 ([6], Theorem 6.1). If a compact Ahlfors n-regular metric space X admits

quasi-Möbius symmetries and in addition has topological dimension n, then X is quasi-

Möbius equivalent to the standard sphere Sn.

In other words, if a space admits quasi-Möbius symmetries and has extremal topological

dimension, then it must be the standard sphere.

An immediate consequence of Theorem 1.3.9 and the methods of [6] is the following al-

ternate version of Bonk and Kleiner’s result, in which the assumption of extremal topological

dimension is replaced by the assumption of extremal “differentiability dimension”:

Corollary 3.8.8. Let X be a compact Ahlfors n-regular Lipschitz differentiability space

containing a chart U of dimension n. Suppose that X admits quasi-Möbius symmetries, as

in Definition 3.8.6. Then X is quasi-Möbius equivalent to Sn.

Proof. By Theorem 1.3.9, X admits a tangent Y that is bi-Lipschitz equivalent to Rn. It

follows from Lemma 5.8 of [6] (see also the remark in the proof of Theorem 6.1 of that paper)

that X is quasi-Möbius equivalent to Sn.

The assumption that X is a Lipschitz differentiability space is strong, but it is somewhat

natural in this context: In [7], Bonk and Kleiner show that if an Ahlfors regular space

admits quasi-Möbius symmetries with no common fixed point and in addition is extremal
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for conformal dimension, then it supports a Poincaré inequality and is therefore a Lipschitz

differentiability space.
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