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Abstract—This work evaluates performance variability in the
Cray Aries dragonfly network and characterizes its impact on
MPI Allreduce. The execution time of Allreduce is limited by
the performance of the slowest participating process, which can
vary by more than an order of magnitude. We utilize counters
from the network routers to provide a better understanding of
how competing workloads can influence performance. Specifically,
we examine the relationships between message size, process
counts, Aries counters and the Allreduce communication-time.
Our results suggest that competing traffic from other jobs can
significantly impact performance on the Aries Dragonfly Network.
Furthermore, we show that Aries network counters are a valuable
tool, explaining up to 70% of the performance variability for our
experiments on a large-scale production system.

I. INTRODUCTION

This work provides a preliminary characterization of perfor-
mance variability in the Cray Aries Network [2] and examines
how this variability impacts the communication time of collec-
tive operations. Aries is a high performance dragonfly network
that is found in 17 of the 50 fastest supercomputers [21]. In an
Aries network, traffic from competing workloads often share
routes over a limited number of intra and inter-group paths,
resulting in performance variability. To study the impact of this
network-variability, we use the MPI_Allreduce collective.
Blocking-collectives (like Allreduce) serve as an implicit syn-
chronization point such that the overall performance is limited
by the slowest process in the communicator. Furthermore,
Allreduce is one of the commonly utilized collectives and
represents a significant portion of execution time for many
HPC applications and benchmarks.

Collectives performance may vary widely due to a num-
ber of factors including OS noise, network congestion, or
computational load imbalance. While collective performance
and system noise has been well studied [13], [14], [10],
[22], [16], [12], [8], [20], [9], [15], [5], [4], [17], it is clear
that the mechanisms and magnitude of interference varies
across systems. Different design decisions, such as tapering of
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network links, communication offloading can greatly impact
how noise propagates through a system. For example, the
BlueGene/Q network supports hardware assisted collectives and
BlueGene/P provided separate collective and barrier networks,
which create a layer of isolation from interference on the
general interconnect. These differences across systems and
architectures require us to explore performance at a level of
detail that general purpose models (such as LogP [7]) cannot
readily provide. This work provides a preliminary examination
of the correlation between message size, process count, Aries
router counters and Allreduce performance.

II. BACKGROUND

a) Allreduce: Allreduce is a widely used collective
operation in which a reduction is performed with the result
distributed among all processes in the communicator. Allreduce
is widely utilized by HPC applications and its performance
correlates with significant deviations in application runtime as
it is susceptible to noise [4], [17], [9]. In a blocking Allreduce
every process in the communicator must synchronize before
continuing with local computation. Non-blocking Allreduce
has the potential to mask some of the bottlenecks seen in
traditional Allreduce, but this is dependent on the amount of
communication and computational overlap at the application’s
disposal. Allreduce Message sizes commonly range between 8
Bytes and 8KiB in the APEX benchmark [18] collection, for
this reason we focus on these message sizes in our analysis.

b) Cray Aries Network: The Cray Aries Network [2]
is a modern dragonfly network used by many of the world’s
fastest supercomputers. Aries is designed by dividing a number
of nodes into logical partitions called groups. These groups
are fully connected to each other by optical network links
with multiple links per arc. Each group is further divided
into six chassis with each chassis representing 16 blades. A
blade consists of four compute nodes which share a Aries
Router (Fig 1). Each Aries Router contains 40 network tiles
that provide buffering and routing throughout the network.

When traversing the network, each packet must cross
between one and six of these tiles (for minimal routing) to
reach its destination. Each tile contains a finite buffer and the
potential for the packet to experience congestion (stalls) if
a tile downstream does not have the resources to facilitate a
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Fig. 1: Illustration of Aries router and tiles. For a more complete
description of the Aries network see [2].

transfer. In the event that stalls reach a predefined threshold,
Aries adapts a packet’s route to an indirect location to more
evenly distribute the traffic.

c) Aries Performance Monitoring: Aries provides a large
amount of performance data via counters. While there are
more than 1,000 counters per Aries router, many of these differ
in only router tile and virtual channel. In practice, there are
two ways to access these counters. The first method is to go
directly through Cray’s Gemini Performance Counter Daemon
as done by Brandt et al. [6]. This is efficient and provides
access to all of the network’s routers but must be configured
by a system administrator. The second approach is to indirectly
access this information through PAPI. This approach only
allows for the collection of counters for nodes and routers
which you have been allocated through resource management
system such as SLURM. In this work we are limited to the
second method (PAPI). When measuring the counters for tiles
in the router, there is the potential to measure an unrelated tile
(not utilized by our Allreduce). This presents a false positive
and potentially hurts the accuracy of any correlation between
Allreduce latency and the measured counter. The only way to
remove these false positives with absolute certainty is to access
routing tables and remove the tiles not in any of the Allreduce
paths. Another statistical approach would be to use machine
learning to determine which tiles were significant. In this work
we do not make any attempts to distinguish between related
and unrelated tiles, however given 512 processes split across
two Aries groups, we expect high utilization of intra-group
(black and green) tiles.

III. METHODOLOGY

In order to evaluate the variability of Allreduce, our experi-
ments utilize the OSU-benchmarks [19] to measure average,
minimum and maximum latency of processes participating in
an Allreduce operation. We vary message size of the Allreduce
between 8 Bytes and 8KiBs and we vary the number of
processes in the MPI communicator between 32 and 512

processes. For each combination of message size and process
counts, we perform 30 iterations. We map one process per
node and use the same SLURM allocation of hosts for each
communicator. For this initial study no effort is made to confine
processes to particular routers and frequently multiple nodes
reside on the same Aries blade-router. The largest runs of 512
nodes cover two Aries groups (341 processes in one group and
171 in the second).

We record 25 counters and calculate 1 derived counter for
each network tile on the router (40 tiles in total), and for each
MPI process. These counters primarily measure flits and stalls
across row and column buffers, buses, input queues and virtual
channels. These counters do not represent a global view of the
system, as we are only able to capture information for routers
we have been allocated in SLURM. We utilize ariesncl [3] (a
third party library which parses counters and bins them into
rank and tile combinations) to make analysis more convenient.
For this initial study we focus on network tiles exclusively.
For later studies we will examine both network and processor
tiles.

IV. ANALYSIS AND RESULTS

In our analysis we perform simple linear regression of
single independent variables, e.g. message size, process count,
Aries counter, and a dependent variable (latency of the
slowest process in the Allreduce). We report the coefficient
of determination (R2) which represents the proportion of the
variance explained by the independent variable.

A. Impact of Message Size on Allreduce

Message size is one of the common parameters used to model
Allreduce performance. Message size divided by bandwidth
determines the gap, or the amount of time needed to place all
of the message on the wire. In an ideal environment, message
size, together with latency would be the dominant factors in
determining performance.

In Figs. 2-3 we show the impact that message size has on
for a real Aries system. Fig. 2 shows, given 32-nodes, the
latency of the slowest (red circles) and fastest processes (blue
triangles) for 30 iterations of each message size. The variation
of latency (even among the same processes and physical
topology) ranges from 100 to 1400 µs. The fastest processes
(blue triangles) represent close to idealized performance of
Allreduce. The simple linear regression of the fastest process is
fairly predictable (R2 = 0.77). However, modeling the variation
among the slowest process is much more difficult (R2 = 0.08).
As we increase the number of processes to 512 in Fig. 3,
the accuracy of the simple linear regression falls even lower
(R2 = 0.001, R2 = 0.44 for slowest and fastest processes,
respectively). These results suggest that the message size of
the Allreduce for workloads common on the Cori system can
help shape best-case (minimal) latencies, but fail to provide
much information about the observed latency of the slowest
process. The importance of message size decreases as the
number of processes increases in scale.
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Fig. 2: 30 iterations of minimum and maximum Allreduce
latency for a fixed number of processes (32) and varying
message size (8B-8KiB). One MPI rank per node. Simple
linear regression of the slowest processes has an R2 = 0.08,
while the fastest processes has R2 = 0.77.
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Fig. 3: 30 iterations of minimum and maximum Allreduce
latency for a fixed number of processes (512) and varying
message size (8b-8KiB). one MPI rank per node. Simple linear
regression of the slowest processes has an R2 = 0.001, while
the fastest processes has R2 = 0.44.

B. Impact of Communicator Size on Allreduce

In this section we plot the impact of communicator size
(number of processes) on the performance of Allreduce. We
keep message size fixed at 512 Bytes and increase the scale of
the communicator. Fig. 4 shows that as we scale up the number
of processes the variability of Allreduce latency increases. This
behavior is true for all message sizes, but for brevity we limit
the results shown to message sizes of 512B. Once we exceed
128 processes the collective spans two Aries groups and there
is a corresponding jump in variability at 256 processes.

C. Correlating Fabric Counters with Allreduce Performance

In the previous two subsections we demonstrated that the
traditional measure of message size and process count are fairly
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Fig. 4: 30 iterations of minimum and maximum Allreduce
latency for a fixed message size (512) and varying number of
processes (32-512).

R2

Aries Counter Latency > 0% > 90% > 95%

INQ PRF INCOMING FLIT VC0 0.32 0.19 0.65
INQ PRF INCOMING FLIT VC1 0.44 0.63 0.69
INQ PRF INCOMING FLIT VC2 0.23 0.25 0.58
INQ PRF INCOMING FLIT VC3 0.02 0.01 0.25
INQ PRF INCOMING FLIT VC4 0.21 0.09 0.09
INQ PRF INCOMING FLIT VC5 0.26 0.10 0.07
INQ PRF INCOMING PKT VC2. 0.21 0.70 0.68
INQ PRF INCOMING PKT VC4. 0.20 0.26 0.25
INQ PRF ROWBUS 2X USAGE CNT 0.06 0.00 0.21
INQ PRF INCOMING FLIT TOT 0.19 0.19 0.71
INQ PRF ROWBUS STALL CNT 0.22 0.48 0.71

TABLE I: Subset of recorded network counters and coefficient
of determination (R2) when used to model Allreduce latency
(greater than 0, 90th and 95th percentiles, respectively). For a
more complete description of counters see [1].

limited in their importance in determining Allreduce perfor-
mance on the Aries network. There are many potential reasons
this could be, including OS-noise or network congestion. In
order to try to determine the root cause of the performance
variability we have recorded 25 Aries counters for each router
assigned to an allocated node.

If we were trying to examine every counter for every network
tile over 30 iterations we would have to evaluate approximately
150 million counter measurements for the 512 node runs.1

Because we are trying to correlate performance of the slowest
process with Aries counters, we extracted the maximum value
of each counter for all tiles in each iteration. By extracting the
maximum value, we reduce the number of measured counters
(to 7500) and make our first evaluations significantly easier.
We then iterated through each counter’s maximum value and
performed simple linear regression between the counter and
several percentiles of Allreduce latency.

In this section, we examined the 512 node runs across all
message sizes. Typically we would differentiate by message
size, but given the results in Fig. 3, we have shown message

130 iterations * 25 counters * 512 nodes * 40 tiles * 10 message sizes.
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Fig. 5: 30 iterations of maximum Allreduce latency for a
fixed communicator (512) and all message sizes (8-8KiB) with
R2=0.71.

size is not correlated to performance at high process count on
our Aries network. Furthermore, we selected 512 process runs,
since they experience the highest variability. We performed
three simple linear regressions for each performance counter
and full set of latency results, the 90th and the 95th percentile.
In Table I, we show the results. For brevity we limit the table
to counters who had an R2 of 0.2 or higher.

The counters INQ_PRF_INCOMING_FLIT_VC* record
the flits that traversed a tile over a virtual channel (VC).
If the system did not have competing workloads, we might
expect that this value would remain constant across identical
Allreduce operations. However, because we are on a shared
system, competing workloads may result in additional traffic
on shared routes. Request (put) flits travel through VC0-
VC3, while VC4-VC7 transmit response (get) flits. Table I
shows stronger correlation between Allreduce latency and
request traffic. Additionally, at the 90th and 95th percentile
the significance of request traffic increases while response
traffic decreases. INQ_PRF_INCOMING_FLIT_TOT is the
sum of flits across all VCs, and has a R2 of 0.71 for the 95th
percentile.
INQ_PRF_INCOMING_PKT_VC* reports the rowbus stalls

on a particular VC. Stalls on the request channel VC2 had
an R2 of 0.68, but stalls in the response channel VC4 were
also related to a lesser degree (R2 = 0.25). The counter
INQ_PRF_ROWBUS_STALL_CNT is the sum of rowbus stalls
across all VCs and had a R2 of 0.71. The flit counters and
rowbus stall counters both suggest that competing workloads
do contribute to performance degradation on Aries networks.

In Fig. 5 we can see that there is a reasonable correlation but
a counter does not explain all of the variability. In particular,
there is one data point that has a latency of 35ms, but does
not report a high number of stalls. Our hypothesis is that a
high latency Allreduce could be the result of multiple stalls of
lesser degree across several tiles in the route, rather than the
tile with the maximum row-bus stalls. This is something we

would like to explore further in future work.

V. RELATED WORK

Much of the work studying the impact of system noise on
collective operations takes place in simulation, which provides
a controlled environment for evaluation [12], [14], [8], [22],
[16], [5], [15]. While simulation is important and does provide
valuable insights, large-scale simulators are most frequently
built on top of general purpose models (such as LogP).
HPC simulators are frequently generalized for several reasons:
1) to explore design decisions in future systems for which
architectural details are undecided, 2) simplifications allow for
faster simulations at larger scales and 3) vendor implementation
details are often trade-secret and not shared with the wider
academic community. The downside of simulation is that
these generalizations are unable to perfectly represent to all
scenarios of real-world performance. For example no existing
simulator perfectly matches the real adaptive routing strategies
implemented by Cray, which are kept secret.

Other related work involves benchmarking and understanding
performance on real systems [6], [20], [4], [10], [13], [11].
Our own work falls into this category, measuring Allreduce
performance on a production system (NERSC’s Cori). Our work
is most similar to work by Grant, Pedretti and Gentile [11]
the major difference being that they examined a Cray Gemini
system while we focus on the Aries network. Similarly, in work
by Brandt et al. [6] they demonstrate the collection and analysis
of Aries performance counters. Our work differs from this by
presenting additional analysis focused on the performance of
MPI_Allreduce.

VI. CONCLUSIONS AND FUTURE WORK

This work takes a simplified approach to exploring the
relationship between Aries counters and Allreduce performance.
Our results show that:

1) Traditional models of Allreduce performance (based
on message size and process count) fail to capture
performance variability of the Aries network,

2) Collective traffic on the Aries network does have sub-
stantial variability that increases with process count and
Aries group count (Fig 4),

3) While there is no ”silver bullet” among the counters
investigated, changes in network traffic and stalls account
for a 70% of the variability in the slowest 10% of
Allreduce communication.

In future work we would like to see how our results using
simple benchmarks maps to more complex applications. In
order to provide greater accuracy, we will explore the use of
more sophisticated techniques combining a wider range of
network and communication features. Additionally it would be
interesting to examine how we might reduce the noise in the
collected data. For example by 1) removing unrelated network
tiles and 2) examining all network tiles utilized by a workload
(rather than the tile with maximal recorded counter). Given
the complexity of routing and cross-job traffic, this presents
an interesting challenge for future research.
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