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Abstract

We have developed a realistic wave optics simulation method to study how wavefront

distortions originated by heat load deformations can be corrected using adaptive X-

ray optics. Several planned soft X-ray and tender X-ray insertion-device beamlines in

the Advanced Light Source upgrade rely on a common design principle. A flat, first

mirror intercepts the white beam; vertical focusing is provided by a variable-line-space

monochromator; and horizontal focusing comes from a single, pre-figured, adaptive

mirror. A variety of scenarios to cope with thermal distortion in the first mirror

are studied by finite-element analysis. We analyze the degradation of the intensity

distribution at the focal plane and model the adaptive optics that correct it. We report

the range of correctable wavefront errors across the operating range of the beamlines

in terms of mirror curvature and spatial frequencies. The software developed is a one-

dimensional wavefront propagation package made available in the OASYS suite, an

adaptable, customizable and efficient beamline modeling platform.
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1. Introduction

Quantitative calculation and evaluation of the parameters related to X-ray optics are

of great importance for designing, building and exploiting new beamlines. These calcu-

lations allow testing of the design parameters in a virtual computer environment where

advantages and limitations can be simulated accurately. The optics imperfections play

a fundamental role in the simulations and often constitute the limiting factor of beam-

line performance. Deformations of the optical elements due to heat load need to be

controlled and in some cases corrected, therefore optics simulations and engineering

modeling of the thermal deformations by finite element analysis (FEA) have to be

developed in parallel.

Simulations of the beamline optics can be done in different degrees of approxima-

tion and effort, starting from analytical formulas, performing ray-tracing, and also

wavefront propagation (Sanchez del Rio et al., 2019). Different packages for such sim-

ulations are available in the OASYS suite (Rebuffi & Sanchez del Rio, 2017b). For

beams of incoherent photons, the ray-tracing technique is suitable for most purposes.

If the X-ray beam is highly coherent, like in soft X-ray beamlines of the upgraded

ALS facility discussed in this paper, a pure wave-optics simulation is sufficient. For

hard X-rays, where the coherent fraction for upgraded facilities is usually a few per-

cent, simulations require using hybrid methods (Shi et al., 2014) or more sophisticated

partial coherence algorithms such as Monte Carlo sampling (Chubar et al., 2011) and

Coherent Mode Decomposition (Glass & Sanchez del Rio, 2017).

A common design being implemented in several insertion-device beamlines at the

upgraded Advanced Light Source (ALS-U) consists of a horizontally deflecting, cooled,

planar, M1 mirror to absorb a large part of the white beam power and deflect the light

out of the bremsstrahlung cone. This is followed by a horizontally focusing adaptive

mirror M3, that focuses and corrects wavefront errors. A variable-line-space (VLS)
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grating monochromator is placed in between to disperse and focus the beam in the

vertical plane (Reininger & de Castro, 2005). The monochromator is decoupled from

the M1-M3 system.

In this paper we study the ability of the adaptive mirror M3 to compensate wave-

front aberrations caused by power-load-induced thermal distortions on M1. The white

beam impinges on M1 after being shaped by high power slits, but the power absorbed

by the mirror system may produce significant mirror surface deformation that degrades

the beam quality. A variety of thermal distortion scenarios were implemented from

finite-element analysis models using realistic undulator power spectra and cooling

strategies under consideration by the project. In the case of interest of ALS-U, the

coherent fraction is high enough (about 0.8 for the case under study, a 4 m undula-

tor at 230.888 eV) to justify a calculation with a fully coherent beam. Moreover, in

this case, as is common with synchrotron beamlines, the optics in the horizontal and

vertical planes are decoupled, thus, separated modeling of the horizontal and vertical

planes is justified. The 1D modeling is orders of magnitude less demanding in compu-

tational resources than 2D calculations, therefore it is always recommended to start

a wave optics simulation in its simpler 1D form. We present here the fundamentals of

a 1D wave propagation model implemented in the WOFRY (Rebuffi & Sanchez del

Rio, 2017a) tool in OASYS.

The 1D waveoptics propagation model is also well adapted to study optimization

problems, because a parametric study (scan of a single variable) or multiple optimiza-

tions require running many single simulations. In our case, the M3 correction profile

is optimized and expressed as a function of the input signal required by the actuators

that shape the optics. Using data from a 18-channel adaptive X-ray mirror prototype,

we implemented mirror shape-control algorithms designed to restore the focused beam

and optimize the Strehl ratio.

IUCr macros version 2.1.6: 2014/01/16
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The paper is organised as follows. In section 2 we describe in detail the methods and

algorithms implemented in the WOFRY 1D simulations concerning the sources, wave

propagators for free space, and optical elements. In section 3 we describe the system

under study, that corresponds to the parameters of the FLEXON beamline being

developed for ALS-U. We further discuss finite-element modeling of the M1 surface

thermal deformation originating from the absorbed power. We show (section 3.6)

how the adaptive X-ray optics (AXO) can compensate the errors using an ad-hoc

computed mirror profile compatible with the AXO control system. In section 4 the

complete beamline is simulated using a 1D wavefront propagation model by combining

the results of the horizontal and vertical planes. A final summary is in section 5.

2. Simplified 1D wavefront modeling for synchrotron beamlines

A wavefront simulation consists of the creation of a wavefront with some characteristics

(geometry, wavelength), its propagation in free space and its modification by the

optical elements (slits, mirrors, etc). We restrict the description here to a 1D model

in the (x, y) plane, with y as the propagation direction (optical axis) and x as the

direction transverse to the beam propagation to analyze (usually the of horizontal or

vertical plane). The wavefront is represented by the electric field of a monochromatic

component (angular frequency ω, wavelength λ, wavenumber k = 2π/λ or photon

energy W ) at a position y = 0 along the propagation direction. This electric field or

electric disturbance is a complex scalar E(x; y = 0, ω) or, in case of polarized beams,

two complex scalars, one for σ and the other for π polarization. The wavefront intensity

is the square of the modulus of the amplitude: I = |A exp (iφ)|2 = A2.

IUCr macros version 2.1.6: 2014/01/16
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2.1. Modeling sources

2.1.1. Simple waves: plane, spherical and Gaussian The simplest wavefront is a plane

wave, with constant complex amplitude for any x coordinate:

E(x; y = 0, ω) = E0 = A0e
iφ0 , (1)

where E0 is a complex value that can be expressed in its constant real amplitude A0

and a constant phase φ0. A plane wave is infinite along the x direction. However, when

representing a wavefront spatially, in simulation, the electric field has to be sampled

over an array of discrete values of complex amplitude, and they are necessarily defined

over a finite x interval.

A spherical wave (strictly speaking a circular wave in 1D, but we keep the terminol-

ogy used in 2D) emanates from a fixed point and has a constant complex amplitude

over a sphere of a given radius R. Obviously it cannot be represented at the source

point (y = 0, center of the sphere) and our wavefront must be sampled at a given

distance y = R and over a line perpendicular to the radius and tangent to the sphere.

At x = 0 (a point in the sphere) the field has a constant value equal to the value

at the surface. But at a x 6=0, over a range of x-values x�R (i.e. for small numerical

apertures, NA) the distance from x to the sphere parallel to the y direction gives an

optical path that modifies the phase by k ∆x. It is easy to deduce that the wavefront

in the line tangent to the sphere has the expression

E(x; y = R,ω) = E0e
ikx2/(2R). (2)

A Gaussian beam at the source position y=0 has constant phase and intensity follow-

ing a Gaussian distribution with standard deviation σI , thus the electric disturbance

is:

E(x; y = 0, ω) = E0e
−x2/(4σ2

I ) (3)

IUCr macros version 2.1.6: 2014/01/16
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2.1.2. A simplified model for the undulator source A single electron (or filament beam)

traveling in an undulator with pure sinusoidal magnetic field in one direction will

produce a complicated wavefront with geometry that varies as a function of the photon

frequency (see, e.g., Ref. (Onuki & Elleaume, 2003)). At the resonance energy the

angular emission in the far field can be approximated by a Gaussian function of width

(Onuki & Elleaume, 2003)

σ′u ≈

√
λ

2L
, (4)

with wavelength of the photons at the undulator resonance, λ, and undulator length,

L. At the source point, the size of the source can also be approximated by a Gaussian

of width

σu ≈

√
λL

2π2
=

λ

2π

1

σ′
. (5)

A simplification of the undulator radiation in the far field consists in a spherical

wave (Eq.2) with origin in the undulator center modulated with an amplitude that

follows the Gaussian in Eq. 4, therefore

E(x; y = y0, λ) = E0e
ikx2/(2y0)e−x

2/(4σ′u
2y20). (6)

A second way to simulate the undulator is considering a Gaussian source as defined

in Eq. 3 with σI = σu. Note that propagating this approximation of the undulator as

a Gaussian source to a screen at y = y0 does not reproduce the result in Eq. 6 because

Gaussian propagation implies a product of sigmas (emittance) of λ/(4π) whereas

for undulator radiation the emittance is approximately λ/(2π) (Eq. 5). For practical

purposes, the Gaussian source approximation can be used for optical systems accepting

a high NA, whereas for systems of small NA, as used in this paper, the spherical wave

approximations may be preferred.

IUCr macros version 2.1.6: 2014/01/16
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2.2. Modeling propagation in free space

For simulating the beamline, the wavefront at the source has to be created using

the methods in section 2.1, and then the optical elements modify sequentially the

wavefront using the algorithms described in section 2.3. But the wavefront evolves

when transported in free space from element to element. We use here two propagators.

2.2.1. Direct implementation of integral Rayleigh-Sommerfeld propagator The Rayleigh-

Sommerfeld propagator for small-angle approximation expresses the electric field at a

spatial point ~r′ as an integral of the electric field at a spatial point ~r (Goodman, 2017)

E(~r′) =
k

2πi

∫
E(~r)

|~r′ − ~r|
eik|~r

′−~r|dΣ, (7)

where the integral is made over the domain of the source (the surface Σ). This propa-

gator can be applied to numerical discrete 1D wavefronts, and the integral reduces to

a sum

E(x1, y1) ≈
k

2πi∆y

N−1∑
i=0

E(x0,i, y0,i)e
ik
√

(x1−x0,i)2+(y1−y0,i)2∆x0, (8)

where ∆y is the mean value of the denominator in the integral in Eq. 7. Note that

one sum over the N points of the sampled incident wavefront has to be done for each

coordinate at the transported wavefront, thus the number of operations is of the order

N2. This simple propagator gives flexibility to define different gridding and limits

permitting the adjustment of the spatial domain or window and spatial resolution

when working with converging or divergent wavefronts. Moreover, the propagated

wavefront can be computed in a plane (or line) non parallel to the incident one, a

feature that is exploited in sections 2.3.4 and 2.3.5.

IUCr macros version 2.1.6: 2014/01/16
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2.2.2. Fresnel propagator using FFT: The zoom propagator The Fresnel propagator is

obtained by making a Taylor expansion of the quadratic phase in Eq. 7:

E(x; y1) =
eik(y1−y0)√
iλ(y1 − y0)

∫
E(x′; y0)e

ik
2(y1−y0)

(x−x′)2
dx′. (9)

The Fresnel integral propagator can be seen as convolution of the wavefield with a

Gaussian kernel. One can write Eq. 9 in convolution form, involving a Fourier trans-

form F and an inverse Fourier transform F−1(Goodman, 2017):

E(x; y1) = PGF−1
{
F{E}K

}
, (10)

where E is the electric perturbance at y0 E(x; y0), P
G = eik(y1−y0) is a global phase

and K = e−iπλ(y1−y0)u
2

is the Gaussian Kernel that comes from the inverse Fourier

Transform of the exponential inside the integral in Eq. 9, being u, the conjugated

variable of x. The real benefit of using this scheme comes from the use of Fast Fourier

Transforms, that reduce the number of operations from N2 to N log2N . Its use is

essential when doing simulations in 2D, because the direct calculation of the integral

lead to N4 operations at the limit of calculation power of usual laptop computers.

However, the FFT implementation requires that the gridding and spatial domain of the

incident and transported wavefronts must be equal. This is a problem when a wavefront

is propagated to a focal point: the gridding of the incident wavefront used at the image

provides a poor resolution because most of the intensity is concentrated in a very

few pixels. A clever solution to this problem is presented by J.D. Schmidt (Schmidt,

2010) that makes possible to calculate the propagated field in a “zoomed” window,

thus permitting optimizing the wavefront sampling in cases for propagating highly

convergent or divergent wavefronts. The problem reduces to a convolution problem of

the unpropagated field field E(x; y0) affected by a phase P with a kernel K, and the

result affected by a global phase PG:

E(x; y1) = PGF−1
{
F
{
E P

}
K
}
, (11)

IUCr macros version 2.1.6: 2014/01/16
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where

PG =
eik(y1−y0)
√
mx

e
i k
2(y1−y0)

mx−1
mx

x22 , (12)

P = e
i k
2(y1−y0)

(1−mx)x21 , (13)

K = e−iπλ(y1−y0)
u2

mx . (14)

The term mx is the magnification (zoom) factor. Note that setting unity magnification

mx = 1, one obtains the standard Fresnel propagator (Eq. 10).

2.3. Modeling optical elements

In cases where the distance between elements is significantly greater than the mirror

sizes, the optical elements can be approximated as thin elements (zero thickness along

the y axis), and their effect can be encapsulated in a complex transmission amplitude,

R(x;ω) = r(x;ω)eiρ(x,ω). (15)

Therefore, the wavefield after an optical element placed at position y = y0 will be the

wavefield at y0, just before the interaction, multiplied by the complex transmission:

E′(x; y = y0, ω) = E(x; y = y0, ω)R(x;ω) (16)

2.3.1. Apertures (slits, beamstops and element dimension) A generic aperture is a

mask that transmits a part of the wavefront in a range [xmin, xmax] and absorbs the

rest. It can be

R(x;ω) =

{
A, if xmin ≤ x ≤ xmax

1−A, elsewhere
(17)

When the element is a slit, then A = 1. If it is a beamstop, then A = 0. If we deal

with an optical element of finite length L placed at a grazing incidence angle θ, it

acts as a slit of aperture equal the projection of the length on the x axis: A = 1,

xmin = −(L/2) sin θ and xmax = (L/2) sin θ.

IUCr macros version 2.1.6: 2014/01/16
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2.3.2. Ideal lens We can define an ideal lens as a focusing device that converts a plane

wave into a spherical wave collapsing to the focus at a distance f from the ideal lens

position. Therefore

R(x;ω) = e−ik x
2/(2f) (18)

2.3.3. Ideal reflector Let us consider a perfectly reflecting surface (no absorption) with

a profile h(w) with h the elevation (height) and w the linear coordinate in a reference

frame attached to the reflector with origin in the reflector’s center. A plane reflector

has h(w) = 0 and, for example, a circular mirror of radius R has h(w) = R−
√
R2 − w2.

The profile h(w) can also match a deformation originated for instance by heat load or

a mirror surface error (waviness).

If the reflector is set with an incident angle θ, with the propagation axis y, the

change of optical path is ∆y = 2h(w) sin θ, w = x/ sin θ, with a consequent phase

shift ∆Φ = −k∆y, therefore for the ideal reflector

R(x;ω) = e−2ikh(w) sin θ. (19)

This model of ideal reflector as a thin object can be used for any reflecting shape

(circular, ellipse, etc.) but the intrinsic aberrations are not correctly considered. The

main reason is the incidence angle θ is not constant along the mirror profile thus Eq. 19

is not exact. A model for a “grazing reflector” that solves this problem is presented

in the next section 2.3.4.

A reflector of a finite size can be decomposed in two elements: the ideal reflector

described here, followed (or preceded) by the aperture as described in 2.3.1.

2.3.4. Grazing reflector The method used for the ideal reflector does not account for

mirror aberrations and it is not exact when dealing with mirror errors because the

optical path is approximated. These effects are more important for elements in graz-

IUCr macros version 2.1.6: 2014/01/16
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ing incidence, where the thin object approximation is not valid. A solution for that

consists in using the propagator in Sec. 2.2.1 to propagate the incident wavefront

until the points in the mirror surface (w, h). Let be p the distance from the wave-

front E0(x, ; y = 0, ω) to the center of the mirror placed at a grazing incidence θ

with the optical axis. In the mirror reference frame, the wavefront coordinates are

(ws, hs) = (−p cos θ, p sin θ) + (x sin θ, x cos θ). It is straightforward to extend the inte-

gral propagator (Eq. 8) to calculate the propagated field at the surface points (w, h) by

summing over all points of the input wavefront. Once the electric perturbation at the

mirror surface is known, another propagation is performed using the same principle,

to the image plane placed at a distance q from the mirror center.

2.3.5. Gratings A grating produces a diffraction of the incident beam that is depen-

dent on its wavelength. It is expressed by the grating equation:

mλg = sinα+ sinβ, (20)

with α the incidence angle (measured with respect to the normal), β the reflection

angle, with opposite sign of α if it lies at the other side of the normal, m the diffraction

order (positive for inside reflection, i.e., α ≥ |β|), λ is the photon wavelength, and g is

the grating groove density, which is a function of w for VLS gratings: g = g0 + g1w+

g2w
2 + ... with g0 = 1/d0 the lines per unit of length at the grating center (d0 the

distance between two grating lines).

The simulation of a grating using a thin object model (Eq. 19) is difficult because in

addition to the geometric optical path it is necessary to account for the wavelength-

dependent component. We use here an approach that is exact, except for accounting

for the diffraction efficiency, which consisting of sampling the grating as a numeric

mesh and apply the “grazing reflector.” This model also permits to study line spacing

errors together with height errors of the substrate. It is important not to undersample

IUCr macros version 2.1.6: 2014/01/16
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the grating (e.g., we must include several points per period) and orientate the incident

and image wavefronts with the correct angles α and β.

3. Simulation of ALS-U generic undulator beamline

Four new undulator beamlines are being designed for the ALS-U project. The different

scientific cases imply particular selection of the insertion devices and beamline optics.

However, most of the beamlines (or beamline branches) follow a similar scheme: 1)

undulator source; 2) white beam, flat mirror M1, deflecting horizontally; 2) plane

mirror M2, vertically deflecting to work in tandem with the grating; 3) a VLS (varied

line spacing) grating on a flat substrate that vertically disperses the beam and focuses

the first diffracted order to the exit-slit plane; and 4) a horizontally-deflecting, plane-

elliptical mirror M3 that focuses the source to exit slit plane. The mirror M3 is an

adaptive x-ray optic (AXO) equipped with a piezoelectric bimorph system that enables

corrections of the x-direction wavefront deformations introduced upstream of it.

The goal of this paper is to study the ability of the AXO mirror to correct the

distortions produced by thermally-induced deformation of M1.

3.1. Power loaded by the white mirror M1

The total power P emitted by an undulator is (e.g., (Onuki & Elleaume, 2003))

P [W] = 72.5688(Ee[GeV])2I[A]NuK
2/Λ[mm], (21)

where K is the undulator deflection parameter, Nu the number of periods, Λ the

undulator period, I is the storage ring current, and Ee is the storage ring energy. From

this equation we can deduce that the maximum of power is obtained at maximum of

K corresponding to the minimum of the energy for a given harmonic. We have selected

the case of the FLEXON beamline because the proposed insertion device will deliver

high power and the beamline optical design follows the structure described above.

IUCr macros version 2.1.6: 2014/01/16
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Therefore, it constitutes the worst case that requires the most demanding actions to

minimize the deformations (in M1) and correct the distortions (in M3). The FLEXON

beamline will incorporate a Delta undulator (Temnykh et al., 2011) with Λ= 28.8 mm,

Nu = 137 and Kmax = 3.07, emitting a total power of P = 6507 W in the ALS-U

storage ring (2 GeV, 0.5 A).

The white beam mirror M1 is placed at a distance 13.73 m from the source, has

a grazing angle of 1.25°, and is gold coated. The distribution of the heat load on

the mirror depends on undulator parameters (deflection parameters, horizontal Kh,

vertical Kv, and phase Φ). Depending on the desired polarization, these parameters

take different values. For example, for horizontal linear polarization, Kh = 0; vertical

linear polarization, Kv = 0; linear polarizartion at 45°Kh = Kv, Φ = 0; circular

polarization Kh = Kv, Φ = 90°. In Fig. 1, the incident power density on the M1

mirror surface is plotted for K =
√
K2
h +K2

v = 3.07 in various polarization states.

The undulator tuned at K=3.07 will have its first harmonic at photon energy 230.888

eV which central cone divergence is 32 µrad rms.

IUCr macros version 2.1.6: 2014/01/16
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Fig. 1. Power density (in W/mm2) on mirror M1. a) Kh = 3.07,Kv = 0 (inte-
grated power 3,523 W), b) Kh = 0,Kv = 3.07 (integrated power 3,776 W), c)
Kh = 2.171,Kv = 2.171,Φ = 0 °(integrated power 3,978 W), d) Kh = 2.171,Kv =
2.171,Φ = 90 °(integrated power 1,353 W).

In order to calculate the absorbed power density at the mirror, it is necessary

to apply the energy-dependent mirror reflectance on the power density for different

energies. There are several codes that can be used to compute this, e.g. SPECTRA

(Tanaka & Kitamura, 2001), SRCALC-IDPOWER (Reininger, 2001) and XOPPY.

The last two are available in the OASYS environment. Table 1 shows the results in

terms of power absorbed and peak power density as calculated by these three codes.
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Table 1. Absorbed power by the mirror M1 for two apertures with mirror illuminated areas of

460 × 10 mm2 and 100 × 24 mm2 (6σ) as calculated by different codes. The maximum

photon energy considered for SRCALC and XOPPY calculations is 12 keV .

H polarization SPECTRA SRCALC XOPPY
Power (W) in 460×10 mm2 2070 2128 2101
Power (W) in 100×2.4 mm2 239 247 225
Peak power density (W/mm2) 1.01 1.13 1.04

V polarization SPECTRA SRCALC XOPPY
Power (W) in 460×10 mm2 2070 2122 2126
Power (W) in 100×2.4 mm2 216 249 227
Peak power density (W/mm2) 1.01 1.12 1.05

3.2. Deformation of M1 due to heat load

The distortion of the mirror was calculated using the finite-element method (FEM),

as implemented in ANSYS software (http://ansys.com) for the horizontal and verti-

cal polarizations. The case of circular polarizations has not been considered because of

the small absorbed power. The FEM calculation generates a map of the surface defor-

mation for a given heat load and mirror design, including cooling. Figure 2 shows the

deformation maps (column 1) and the tangential profile at the mirror center (column

2). The maps were loaded in OASYS using a dedicated widget that also extracts the

1D profile and for the reflector widget.

We calculated surface deformations for two different cooling schemes: a water-side-

cooled mirror and a liquid-nitrogen-cooled mirror (Cutler et al., 2020). Both mirrors

are made from single-crystal silicon substrates. The liquid-nitrogen-cooled mirror sub-

strate has a trapezoidal shape. In the case of the water-side-cooled mirror, we con-

trolled distortion by a combination of mirror design parameters, including beam over-

filling, a notched or smart-cut substrate, and tuned cooling length (Zhang et al., 2013).

Note that we did not optimize these parameters to minimize height or slope error, but

instead chose parameters for a range of heat loads, and to facilitate adaptive correc-

tion.

IUCr macros version 2.1.6: 2014/01/16
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It is important to note that our water-cooled finite element model does not include

a mounting or cooling system, and therefore the presented results should be seen as

a ‘best’ or idealized case. In other words, the shape of an actual water-cooled mirror

will be more difficult to correct than what the calculations in this model indicate.

In contrast, our model of the liquid-nitrogen-cooled mirror does includes mounting

and cooling system deformation, and therefore is a more realistic model than what is

presented for the water-side-cooled case.
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Fig. 2. Left column: 2D map of the surface deformation: a1) cryogenic mirror for
Kh = 3.07, Kv = 0; b1) cryogenic mirror for Kh = 0, Kv = 3.07; c1) water-cooled
mirror Kh = 3.07, Kv = 0; d1) water-cooled mirror Kh = 0, Kv = 3.07. Central
column: the extracted 1D profiles a2,b2,c2, and d2 respectively. Right column: The
focused image with these profiles are in Figs. a3, b3, c3 and d3, respectively. The
FWHM values are: 3.85, 3.91, 8.53 and 36.34 µm, respectively (3.68 µm for the
undeformed one) and the Strehl ratios: 0.99, 0.98, 0.43 and 0.11, respectively (one
for the undeformed mirror).

3.3. Beamline simulation and effect of uncorrected M1 deformation

The beamline simulation has been performed using WOFRY using the algorithms

described in section 2. The undulator field is calculated at a position just before M1
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(y=13.73 m) using the model described in section 2.1.2. M1 is a plane reflector that

can be deformed in the model, using a given deformation profile. We began with no

deformation. The wavefront is propagated through free space from M1 to M3 at a

distance of 13.599 m, using the zoom propagator (section 2.2.2). Then M3 is treated

as an ideal reflector with a radius R = 220.72 m obtained from the lens equation

1/p + 1/q = 1/f = 2/R sin θ with p=13.73+13.599 m, q=2.64 m, θ=1.25 °. With no

M1 deformation, the image has a full-width at half maximum of 3.84 µm (Fig. 3 and

an intensity of 213 in arbitrary units; this value will be used to normalize intensities

with the non-deformed case and calculate the Strehl ratio.

Fig. 3. OASYS workspace showing the simulation for the beamline with no deforma-
tion in M1. The intensity profile of the beam are superposed at different positions,
with FWHM of 819 µm at M1, 1,631 µm at M3 and 3.82 µm at the focal position.

We can evaluate the focusing properties using two commonly applied metrics: the

full-width at half-maximum (FWHM) and the Strehl ratio (Strehl, 1894). The Strehl

ratio compares the peak intensity at focus to the ideal value in a system free of aber-

rations. Applying the different M1 shape deformations, we find the following. For the

cryogenically-cooled mirror, where the rms height error is about 4 nm, there is no

significant reduction of the intensity distribution of the image; the FWHM increases

slightly, from 3.82µm to 3.85µm with horizontal polarization, and to 3.91µm for verti-

cal polarization. The Strehl ratio is reduced to 0.99 and 0.98 for the two polarizations,
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respectively (column 3 in Fig. 2). For the water-cooled mirror, where the rms height

error is about 40 nm and 100 nm for horizontal and vertical polarizations, the degra-

dation is more significant. The focal spot broadens to FWHM = 8.53 µm and 36.34µm

for the two polarizations, with a consequent Strehl ratio reduction to 0.43 (H) and

0.11 (V), values that are unacceptable for most applications.

We can conclude that the cryogenic cooling is almost perfect in the sense that it does

not alter the intensity distribution with optimum Strehl ratios. The deformation in

the water cooled mirrors produces a large deterioration of the intensity profile for both

cases of polarization. The associated Strehl ratio are far away from what is usually

accepted (larger than 0.8, corresponding to Marechal criterion (Marechal, 1947) ).

There is a larger deterioration for the case of Kv 6= 0 corresponding to light polarized

in the plane perpendicular to the electron orbit. The next section discusses whether

the AXO can improve the situation for water-cooled mirrors.

3.4. Adaptive X-ray Optics M3. Ideal case.

The M3 mirror is adaptive, fabricated with a predefined elliptical shape at rest.

It incorporates a bimorph mechanism able to modify the ellipse in the tangential

direction (horizontal), as necessary to compensate and correct wavefront errors. It

will work with feedback from a wavefront sensor placed just downstream from it.

The diagnostic system will analyze the wavefront phase and amplitude, calculate the

distortion as a difference from the measured phase map and the ideal one, compute

the correcting mirror profile, and calculate the inputs for the adaptive optics actuators

required to achieve the desired profile, and also account for additional effects (back-

end, dynamic effects).

To simulate the AXO, an OASYS widget “WOFRY corrector (reflector)” computes

and applies the correction to the wavefront in the following way: i) it extracts the
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phase from the incident wave φinc(x), ii) it calculates the phase of the spherical wave

collapsing to this focal position φsph(x), given a distance to focus, iii) it calculates

the phase difference ∆φ(x) = φsph − φinc, and iv) it computes the profile height

h(w) = −∆φ(w)/(2k sin θ). In this model we extract the phase of the wavefront and

calculate the corrective profile deterministically, comparing this phase with the spheri-

cal collapsing wave without weighting the resulting profile. It should be mentioned that

this method could be improved by doing an optimization of the profile to maximize

the Strehl ratio, a process where the weight applied to the profile plays a fundamental

role (Goldberg & Yashchuk, 2016).

IUCr macros version 2.1.6: 2014/01/16



21

a1) a2)

150 100 50 0 50 100 150
w [mm]

0.0

0.1

0.2

0.3

0.4

0.5

he
ig

ht
 [

m
]

cryo H 
cryo V 
water H 
water V 

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
X [ m]

0

50

100

150

200

250

300

350

in
te

ns
ity

 [a
.u

.]

cryo H (3.88, 0.99)
cryo V (3.88, 0.99)
water H (3.61, 1.06)
water V (3.37, 1.15)

b1) b2)

150 100 50 0 50 100 150
w [mm]

0.0

0.1

0.2

0.3

0.4

0.5

he
ig

ht
 [

m
]

cryo H 
cryo V 
water H 
water V 

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
X [ m]

0

50

100

150

200

250

300

350

in
te

ns
ity

 [a
.u

.]

cryo H (4.90, 0.78)
cryo V (4.90, 0.78)
water H (4.82, 0.78)
water V (4.63, 0.79)

c1) c2)

150 100 50 0 50 100 150
w [mm]

0.0

0.1

0.2

0.3

0.4

0.5

he
ig

ht
 [

m
]

cryo H 
cryo V 
water H 
water V 

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
X [ m]

0

50

100

150

200

250

300

350

in
te

ns
ity

 [a
.u

.]

cryo H (3.88, 0.99)
cryo V (3.86, 0.99)
water H (4.12, 0.95)
water V (3.98, 0.97)

Fig. 4. Correction profile on M3 (left) and intensity distribution (right) at the focal
position when the different deformations of M1 are corrected by the AXO in M3
using a) ideal correction profile, b) expansion of the ideal profiles as a function of
the AXO orthonormal basis which defines a shorter mirror, and c) expansion of
the ideal profiles as a function of the AXO orthonormal basis and then making a
linear extrapolation at the edges to the longer mirror length. Note that the intensity
profiles have been shifted vertically for clarity.

Fig. 4a shows the result using the corrected profiles added to the elliptical shape

of the mirror. We observe that the correction results in an intensity distribution and

Strehl ratio that are very close to the case using the ideal, undeformed M1. The Strehl

ratio has been calculated as the ratio of the peak intensity for the deformed M1 and

corrected M3 mirrors over the peak intensity of the undeformed M1 and uncorrected

M3. It may look paradoxal that the Strehl ratio exceeds 1.0 for the cases of water-
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cooled M1 (in Fig.4a2). The reason of this apparent contradiction is that M1 becomes

convex due to the thermal load (See Figs. 2c2 and 2d2), increasing the divergence and

the apparent NA at M3. This change produces a narrower and taller intensity profile

thus a higher Strehl ratio. In such cases, the integrated power is preserved.

3.5. Adaptive X-ray Optics M3. Realistic case.

The next question is whether the correcting profiles can be obtained from the real

AXO. For that we need a realistic model of the adaptive mirror. We used experimental,

x-ray wavefront data from the study of a AXO mirror prototype manufactured by

JTEC (http://www.j-tec.co.jp) and tested at the Advanced Photon Source in

collaboration with the authors. The mirror optical length is 140 mm and the AXO

mirror has 18 individually addressable piezoelectric actuators, equally spaced over the

surface, used to correct local imperfections.

Tests were conducted at 14.1 keV photon energy (0.88 Å). The 18 influence functions

were obtained by activating each actuator, one at a time, and observing the differential

shape changes. To first approximation, each actuator imparts a local curvature across

the location of the piezo element (and slightly beyond), proportional to the voltage

applied. With constrained mirror ends, the net surface displacement depends on an

actuator’s position as well as the applied voltage. The maximum displacement occurs

when all actuators have the same maximum voltage applied, and the mirror takes on

an approximately cylindrical shape.

To set a given desired mirror profile, as a correction to the base shape, we decompose

the profile as a linear combination of the influence functions. The 18 coefficients con-

stitute the input to the actuators. They can be obtained by a performing a non-linear

fit of the profile with a linear combination of the influence functions. This procedure

is simplified if we construct an orthonormal basis set using the influenece functions,
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thus the fit is replaced to a simple expansion of the profile in terms of the orthonormal

functions. The basis set is computed from the 18 measured influence functions plus a

constant term to account for path length changes, and a linear term to provide tilt

capabilities. A weight function is usually added, obtained from the amplitude profile

of the beam on the mirror (as in Ref. (Goldberg & Yashchuk, 2016)). When required,

such weighting can be quickly included. However, in the cases presented here, satisfac-

tory results were obtained using a uniform weighting. The correction profile is easily

expressed as a linear combination of the orthonormal bases. The reconstructed profile

built in this way constitutes the “realistic” profile that could be obtained by the AXO.

Of course, not every profile could be obtained from the AXO system. For instance,

our mirror of length L with 18 actuators could not produce a sinusoidal profile with

period smaller than about L/6 considering 3 actuators per period.

To accept the full beam, the M3 mirror length in our model should be 270 mm, which

is almost twice the length of the AXO mirror prototype used. There are thus three

possible scenarios for implementing AXO in M3. The first is get from the manufactures

a single mirror which is practically a double replica of the studied prototype, i.e., a

length of 2×140 mm with 2×18 actuators. This is the most expensive solution but we

expect it would give the best results. We do not study this possibility as we do not have

the necessary data. A second possibility (case ”A”) would be to use the existing AXO

prototype as M3 mirror, and accept a narrower aperture of the beam. A third situation

(”B”) is to manufacture a mirror of 270 mm length with the same number of actuators,

centered, and placed in the same geometry. This mirror will be “non-adaptive” at the

edges, but we may expect acceptable shape-control performance because the beam

amplitude is strongly weighted in the central region with the actuators. The use of

the extrapolation is supported by unpublished FEA modeling showing that outside

of the actuation region of the mirror (that is, whichever actuators are set to non-zero
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voltages), the mirror ”ends” on either side of the actuators are straight to an accuracy

beyond the level of concern. The ”actuation region” does extend a few mm beyond

the physical size of the actuator, but the transition is smooth and well behaved.

In Fig. 4 (left column) one can see the different corrective profiles used for M3.

Fig. 4a1 presents the ideal corrective profiles as needed for correcting perfectly the

wavefront. Fig. 4b1 shows the mirror profiles decomposed in orthonormal bases but

limited to the mirror length of the JTEC prototype measured (case A). In this case

the mirror length is 140 mm and slightly crops the beam. Fig. 4c1 shows the mirror

profiles built from the AXO orthonormal bases and extended to the needed dimension

by extrapolating the edges (case B). The right column of Fig. 4 shows the intensity

distributions obtained with these profiles. The correction obtained using extrapolated

profiles (Fig. 4c2) is almost identical to the one obtained using the ideal correcting

profiles (Fig. 4a2). It is due to the fact that the edges of the mirror, that are obtained

by extrapolation of the profile resulting from the expansion on the orthonormal basis,

influence very little the intensity distribution. These results show the ability of the

AXO to compensate for the surface errors induced by heat load in M1. The case A

(Fig. 4b2) shows two effects: a reduction of the total intensity as the beam overfills

the mirror losing part of its intensity; and also the creation of low intensity diffraction

fringes around X=±6.5µm. These effects contribute to reduce the Strehl ratio to 0.8

independently of the selected cooling conditions.

3.6. Maximum correctable deformations

We study here the efficacy of the M3 wavefront correction, to test the limits of its

ability to correct large M1 deformations and preserve the beamline’s focusing proper-

ties. Deformations are parameterized in terms of curvature, with simulated “bump”

profiles, and in terms of spatial frequency, with a cosine shape.
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We created M1 shape-error profiles with a convex bump or a concave anti-bump

(Fig. 5a and 5b, respectively). For small errors (large curvature radii, above 100 km),

the changes in the intensity distribution are negligible and the Strehl ratio is approx-

imately one for all cases, included the uncorrected one. For smaller radii, the Strehl

ratio of the uncorrected case drops to zero passing from 100 km down to 100 m,

manifesting the need of correction. The adaptive M3 is able to correct the beam and

retrieve acceptable values of Strehl ration (close to 0.8 or larger) for radii larger than

1 km. In this zone, both for concave or convex deformations, the case A (extrapolating

the active zone of the AXO) perfors better than the case B (cropped profiles), because

the latter reduces the NA, increasing the peak width thus decreasing the peak value.

We observe a good correction down to about 100 m of M1 radii using ideal pro-

files, with the exception of the zone around 600 m for the concave deformation (the

deformation in M1 focuses the beam onto M3). The profiles obtained using the influ-

ence functions can only correct effectively down to about 2 Km of M1 radius. For

smaller radii, the corrective shape using the influence functions does not approximate

satisfactory the ideal corrective profile to maintain an acceptable Strehl ratio. This

happens even when the coefficients of the influence functions (or orthonormal basis) in

our model are not bounded. A boundary would be used to account for the minimum

radius that is experimentally reached by M3. The induced shape and height changes

depend on the actuator position, as discussed in (Ichii et al., 2019). It is the combined

action of all actuators that produces the minimum radius (all front-side actuators are

tuned to the same positive or negative voltage and the back-side actuator has the

opposite polarity).
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Fig. 5. Variation of the Strehl ratio at E=230.888 eV as a function of the deformation
radius of curvature in M1 for a) convex curvature (bump) and b) concave curva-
ture (anti-bump). Deformation is compensated with the corrective profiles in M3
expressed as a function of AXO basis for two cases: crop the profile to the AXO
dimension (case A) and extrapolate the profile outside the AXO mirror (case B).
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Next, we studied a periodic deformation in M1 with a form of cosine. The cosine is

selected for having a flat top at the mirror center (a sine would give an inflection). A

deformation amplitude of 50 nm is used, independent of the period. This value has been

chosen after studying a wider range of amplitudes to illustrate a case where corrections

are efficient. Deformations with small aplitudes (about 0-30 nm) give acceptable Strehl

ratio (above 0.8). We present in Fig. 6 the results as a function of the number of ripples

found in the mirror length. The period of the cosine is the mirror length over the

number of ripples; zero ripples corresponds to the undeformed profile, which defines

the normalization of Strehl ratio to one. The results may be very different if the

photon energy is increased, as the geometry (illumination) changes, the diffraction

effect is wavelength-dependent and also higher energies imply less coherence thus a

full coherence calculation as done here is insufficient.

For the uncorrected profiles, the intensity distribution at the focal plane will fea-

ture satellite peaks because the periodic deformation acts as a grating. These peaks

are more intense for higher deformation amplitudes, thus removing more intensity in

the central peak and decreasing the Strehl ratio. That makes that the curves (blue)

saturate about a Strehl ratio of 0.4. The satellite peaks will separate spatially from

the main peak, and the distance increases with the number of ripples (frequency),

manifested in a decrease of the Strehl ratio from one (zero ripples) to a constant value

at about 2–3 ripples, when the satellites completely separate from the main peak.

At this point, the satellites separate more and more when increasing the number of

ripples, but this does not modify the Strehl ratio, as the main peak remains constant.

This is also consistent with the fact that the Strehl ratio in Marechal’s approximation

depends only on rms, which does not vary with the period, only with the amplitude.

We study first the case of applying an ideal active correction, therefore applying

the calculated profile not yet expanded on AXO basis (orange curves in Fig. 6). These
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corrections work efficiently in the sense that they recover satisfactory values of Strehl

ratio larger than 0.8 independently of the number of ripples. One characteristic is the

oscillatory behaviour of the Strehl ratio. This is originated during the migration of a

satellite peak that is very narrow in width: there are positions where it is harder for

the AXO to suppress or reduce it with a consequent reduction of the Strehl ratio. A

second feature is that there are cases where the M1 deformation spreads the light at

M3, allowing the adaptive correction to achieve an effectively higher NA, leading to

an apparent Strehl Ratio above one as mentioned before.

By looking at the corrections produced by the profiles expressed as a function of the

AXO orthonormal bases (Fig. 6 (green and red curves), we can appreciate that the

Strehl ratio drops at about 7 ripples. It is because the inability of the limited number

of actuators to follow the high frequency distortion. The correction does not work

for more ripples. As discussed before for the curvature, the cropped profile reduces

both the integrated intensity and also the NA, making a shorter and wider peak thus

decreasing the Strehl ratio to unacceptable values below 0.8. Another feature is that

the correction using a extrapolated profile looks very noisy. This is explained by the

slope of the extrapolated part (the mirror edges) that is determined by the slope of

the edge points, which change drastically versus the number of ripples, thus giving

rise to fluctuations in the peak intensity and consequently in the Strehl ratio.

These results demonstrate that the correction works in a limited range of spatial

frequencies (up to 5-7 ripples), but this range depends on the mirror conditions such

as photon energy and deformation amplitude. In principle, higher spatial frequency

correction could be accomplished with a longer mirror containing a greater number of

electrodes.
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Fig. 6. Variation of the Strehl ratio for a deformation in form of cosine with a defor-
mation amplitude of 50 nm corrected with different profiles at M3: ideal correction,
and profiles resulting from applying the AXO basis with (cropped or extrapolated,
see text).

4. Simulation of the full beamline

For completeness, we simulate the beamline in the vertical plane, featuring a grating

monochromator. It consists of a plane M2 mirror deflecting vertically, and a VLS grat-

ing that focuses the first diffracted order to the focal plane (exit slit). The role of M2 is

to adjust the total deflecting angle of the monochromator (constant deflecting angle)

when the VLS grating is rotated to change photon energy. For the simulations we can

completely ignore it as it is not an optically active element given that i) it does not crop

the beam, and ii) its surface is supposed to be perfect. The VLS grating is placed at

p=25.73 m from the source and q=4.239 m from the focus. The parameters of the VLS

optimized for working at E=230.888 eV are: g0=300 lines/mm, g1 = 0.2698 mm−2, and
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g3=8.7715 10−5 mm−3, and the angles are α=87.127°, β=-85.660°and θ = (α−β)/2=

86.3936° (c=cosβ/ cosα=1.51). The grating is defined by a profile made with step

functions of 10 nm height (ruled grating) over a mesh covering the grating length of

150 mm (Fig. 7a). The effect of the grating diffraction is calculated using the model

described in section 2.3.5. The intensity distribution after the grating diffraction is

in Fig. 7b which shows a well-focused image with FWHM=4.41µm. These results are

in good agreement with other simulations for the grating made with the wave optics

code WISEr (Raimondi & Spiga, 2014) or the ray-tracing SHADOW.
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Fig. 7. a) VLS profile used for the simulations (fragment). The total VLS grating
length is 150 mm and contains 5 105 points. b) Intensity profile at the image position
(exit slit) produced by the VLS grating.

The simulations for the vertical plane are combined with the results for the hori-

zontal plane (Fig. 3 or 4) for making a 2D plot. This is done via the outer product

of the horizontal and vertical profiles. Fig. 8 shows the results for the worst case of

deformation (vertical polarization with water cooling) before and after correction.
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Fig. 8. 2D intensity at the image position (exit slit plane) obtained for the worst
deformation case (vertical polarization and water cooled M1) a) uncorrected image.
b) corrected image by using M3 AXO. These images have been obtained combining
the vertical profile (Fig. 7)) with the uncorrected and corrected horizontal profiles
(Figs. 3 and 4, respectively.)

5. Summary and conclusions

This work demonstrates the potential efficacy of downstream adaptive optics for cor-

recting wavefront errors introduced by upstream optical elements, across a range of

error magnitudes that would be large in practice.

For this study we developed a simple model to simulate a beamline using 1D wave-

front propagation. The theoretical models used are presentedin section 2. The code

developed is fully implemented in the WOFRY package in OASYS. We analyzed the

degradation of the beamline parameters, in particular intensity distribution and Strehl

ratio at focus, due to the thermal load of the white beam mirror M1, and various other

aberration cases. We showed that in the case of cryogenic cooling of the M1 mirror, the

performance remains close to the ideal (undeformed) case, therefore no downstream

wavefront correction is needed. However, if the M1 mirror is water-cooled, the induced

heat load errors significantly disturb the intensity distribution at the focal plane.

Our analysis, conducted with 230.888 eV photon energy, shows that wavefront dis-

turbances can be corrected using adaptive X-ray optics, as verified by simulating a
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realistic model of wavefront correction by an adaptive X-ray mirror. Furthermore, we

analyzed the M1 deformation range over which the adaptive optics work, by scanning

the M1 deformations modelled as curvature (bump or anti-bump) and waviness. We

showed that curvatures can be effectively corrected for radii greater than 100 m. The

simulations done with wavy profiles show than low spatial frequencies can be cor-

rected, in an optimal mode up to 2–3 ripples per mirror length, and in a satisfactory

way (providing Strehl ratio greater than 0.8) up to 5–7 ripples per mirror length. How-

ever, the geometry of the adaptive mirror featuring 18 actuators covering a length of

140 mm cannot correct spatial frequencies above 7 ripples across the mirror length.

The proposed model helped to demonstrate the suitability and limitations of using an

adaptive mirror to correct for wavefront deformations originated upstream of it. This

approach can be broadly applied to beamlines with adaptive elements. We recommend

such studies be conducted to establish the correctable range of errors as a function of

photon energy, across a beamline’s operating energy range.

OASYS workspaces and scripts used for calculations and graphics in this work are

available in the repository https://github.com/oasys-als-kit/Paper JSR yi5097.
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Synopsis

A simple and complete one-dimensional wavefront propagation model for beamline analysis is
developed in the WOFRY package in OASYS. It is used to analyze how the thermal load of
the white beam mirror degrades the wavefront. This can be corrected by a adaptive mirror,
with some limitations that are studied.
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