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COVID-19 pandemic reveals 
the peril of ignoring metadata 
standards
Lynn M. Schriml1 ✉, Maria Chuvochina2, Neil Davies   3, Emiley A. Eloe-Fadrosh   4, 
Robert D. Finn   5, Philip Hugenholtz   2, Christopher I. Hunter   6, Bonnie L. Hurwitz7, 
Nikos C. Kyrpides   4, Folker Meyer8, Ilene Karsch Mizrachi9, Susanna-Assunta Sansone10, 
Granger Sutton11, Scott Tighe12 & Ramona Walls   7

Efficient response to the pandemic through the mobilization of the larger scientific 
community is challenged by the limited reusability of the available primary genomic data. 
Here, the Genomic Standards Consortium board highlights the essential need for contextual 
genomic data FAIRness, for empowering key data-driven biological questions.

A research program at the University of Oxford, “Our World in Data”, maintains a global database on testing 
for COVID-19. Asked whether there are ‘low-hanging fruit’ to improve the response to the pandemic, 
Program Director Max Roser had a very simple answer: “for all those who publish original data, pro-

vide a clear description of your data” (@MaxCRoser: 1:39am · 12 Apr 2020 · Twitter Web App), highlighting the 
importance of maximizing the reusability of data. In the age of COVID-19, we are seeing where value really 
lies. Describing the WHO, WHAT, HOW, WHERE, and WHEN of genomic data enables comparative anal-
ysis, informs public health responses, drives assessment of outbreak progression and reveals variation in the 
host-specificity, modes of transmission, and sample collection protocols.

The cost of insufficiently describing information about the human host and collection process from genomic 
studies is greater than just the missing fields in a biological sample or nucleotide sequence record. Loss of critical 
genomics data reduces the near and long term utility of the data and hampers clinical advancements in risk pre-
diction, diagnosis, treatment options and outcomes.

Descriptions of data are known as metadata. It is an unglamorous corner of science, but metadata standards 
are vital infrastructure – often holding the key for data-driven research discoveries. Yet, like much critical infra-
structure, standards are little appreciated until crisis hits. The Genomic Standards Consortium (GSC, www.gensc.
org) was founded 15 years ago by scientists observing that genome sequence data, still somewhat of a novelty 
at the time, rarely had the most basic metadata readily available in a structured format1. As the field evolved 
from primarily laboratory-based (highly controlled) biomedical studies towards studies of the natural world, 
variability in the environmental context of the study – notably around sample collection – became increasingly 
pertinent to the interpretation of results in addition to metadata on other aspects, such as laboratory methods. 
As a new breed of “molecular ecologists” studying natural systems arose, the availability of such temporal-spatial 
metadata became crucial for the interpretation of sequence data. For metagenomics studies (profiling all genetic 
material, usually microbial, in a given environment), the need for metadata was most obvious, as without it, the 
sequence data were largely uninterpretable. Our growing appreciation of the complex interactions between genes 
and environment (and where appropriate host) in determining phenotypes compels a greater understanding of 
the environmental context of any sequence.
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Which metadata were needed to address key biological questions across genomic studies was unknown and 
undefined at the time. Should researchers provide everything possible or at least a minimal set of information that 
was applicable to all types of current and future studies? If the latter, what is the reasonable minimum and who 
would set that standard? The GSC was formed to address this question2. The first checklists devised by the GSC 
focused on guiding scientists to add the minimal information required to enable re-use of their data in future 
studies3. The standards were subsequently expanded into the suite of MIxS (Minimum Information about any 
(x) Sequence) checklists to provide minimal and expanded sets of metadata terms across different environment 
types for metagenome and genome studies4. MIxS checklists are also recommended by a number of journals, and 
implemented by a growing set of international databases, as tracked in the MIxS record in FAIRsharing (https://
fairsharing.org/FAIRsharing.9aa0zp).

Since the publication of the FAIR Principles5, which emphasize the importance of enhancing the ability of 
machines to automatically discover and use data and metadata, data management has been catapulted onto the 
international stage as a key component of open science6. Community standards for citing, reporting and shar-
ing data, software, code, models, and other digital objects are taking centre stage in many global initiatives and 
domain specific alliances (e.g. Research Data Alliance, https://www.rd-alliance.org/groups/rda-covid19; Global 
Alliance for Genomics and Health, https://www.ga4gh.org; MetaSUB7: https://pangea.gimmebio.com/contrib/
metasub)8. Few standards, however, related to data sharing and management practices exist. FAIRsharing9 pro-
vides an informative and educational snapshot of the standards landscape, tracking their life-cycle status and 
usage in databases and repositories, and their adoption by journals and funders’ data policies. Although the 
scientific community, funding agencies, and scholarly publishers endorse the concept that community-defined 
data and metadata standards underpin data reproducibility and enable FAIR data, putting them in action and 
complying with them takes time and effort by both individual researchers and community-based standards 
organizations.

To be FAIR, data must be published in a trustworthy repository. Despite widespread requirements to sub-
mit sequence data to a repository before publication, identifying sequence data for reuse is still severely limited 
by the lack of metadata submitted to genomic data repositories. For example, in the International Nucleotide 
Sequence Database Collaboration (INSDC, www.insdc.org) there are 2.1 million Sequence Read Archive (SRA) 
experiments listed under the taxonomy term “metagenomes”, less than 33% of which are tagged with environ-
ment metadata. Although published descriptions of metagenomic datasets are generally associated with enriched 
metadata describing the environment, source material, and sequencing technology, and in theory it is possible 
for one to read the manuscripts (including figures, tables and supplementary information) and gather that infor-
mation, this is an onerous task when dealing with multiple studies. It also means multiple researchers potentially 
repeating the same work of trawling for metadata, resulting in significant researcher-hours that could be better 
spent actually interrogating the data.

With COVID-19, the time and place a biosample was collected has suddenly become a life and death issue. As 
with previous pathogen outbreaks, the reporting of pertinent metadata has become critical. The time and effort 
to describe data requires researchers to value the effort for the Greater Good (and for society to reward their 
effort), to have knowledge on selecting the appropriate metadata types, to integrate metadata standardization in 
data management plans and research workflows, to prioritize community-driven efforts towards defining and 
implementing metadata standards, and the development of enhanced informative user guidelines. Despite the 
implementation of the breadth of (N = 20) MIxS packages (and their associated minimal contextual information 
requirements) across the INSDC partners (NCBI, EMBL-EBI, DDBJ)10 and core bioinformatics pipelines/web 
applications (e.g. GenBank, European Nucleotide Archive (ENA), DNA Data Bank of Japan (DDBJ), National 
Genomics Data Center, European Genome-phenome Archive (EGA), QIIME, Genomes OnLine Database 
(GOLD), MGnify, MG-RAST)11–15, poorly described data are still all too common across genomic and metagen-
omic studies. This is exemplified when data submitters provide only partial or mismatched metadata by leaving 
fields blank or filling in ‘missing’ (Fig. 1) for nucleotide records (in NCBI’s GenBank (https://www.ncbi.nlm.nih.
gov/nucleotide/) or EMBL-EBI’s European Nucleotide Archive (ENA)) or biological sample records (in NCBI’s 

Fig. 1  Lost opportunities for data reuse, SARS-CoV-2 (txid2697049[Organism:noexp]) BioSample records, 
where (a) collection date = “missing”: 143; latitude and longitude = “missing”: 1375; (b) SARS-CoV-2 
BioSample record with complete metadata.
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BioSample https://www.ncbi.nlm.nih.gov/biosample/ or EMBL-EBI’s BioSamples https://www.ebi.ac.uk/biosam-
ples/). For example, “host” is not annotated in 2,416 of the 5,198 SARS-CoV-2 BioSample submissions.

Responsible sharing of genomic and health-related data must, of course, recognize that genomic data are 
highly sensitive and identifiable. Reasonable steps must be taken to remove or obscure key information that may 
make sample data traceable to an individual person, such as only reporting the year collected and reporting geo-
graphic subdivisions no more specifically than a first-level administrative division (e.g. state)16.

Even when researchers use the required metadata packages in INSDC, reporting of critical metadata is often 
hampered by confusion over the selection of metadata packages and inconsistent value specification for specific 
metadata terms, leading to the submission of incomplete, mislabeled, or missing metadata. As exemplified by 
5,198 SARS-CoV-2 BioSample submissions (as of May 4, 2020), samples are being submitted using primarily 
the Pathogen: clinical or host-associated package, with a small set of submissions using the Microbe, Virus, or 
human-associated MIxS packages. The requirements for specific metadata attributes should ensure that sufficient 
contextual information is included. However, submitters may provide inappropriate information in these fields 
at the time of submission.

In an example relevant to COVID-19, the more granular level taxon “viral metagenome” in the INSDC SRA 
has about 12k experiments (12,105 runs)(as of 5/7/2020). Of those (viewed in SRA Run Selector: https://www.
ncbi.nlm.nih.gov/Traces/study/), 68% (8,225/12,105) have no reported geo_loc_name (country/continent) and 
9% of runs have an ‘uncalculated’ geo_loc_name, as the submitting institution information has been filled in the 
country/continent field. Perhaps encouragingly, SARS-CoV-2 (txid2697049) in the SRA identifies 3,352 records 
with (SRA Run Selector) only 25% (887) of the 3,352 runs are reported with no country/continent metadata and 
only one submission with an ‘uncalculated’ geo_loc_name. Regrettably, we simply do not know the geographic 
origin of many sequenced samples, which is critical for subsequent analysis and data reuse.

The majority of samples annotating the ‘disease’ metadata field include the World Health Organization 
(WHO) nomenclature “COVID-19”. However, the variation in submissions for ‘host disease’ complicate further 
analysis, as human disease has been submitted as (number of samples): COVID-19 (2,243); severe acute respira-
tory syndrome (119); Acute infection (34); novel coronavirus pneumonia (11); nCoV pneumonia (8); COVID19 
(6); pneumonia (5); respiratory infection (2); Covid-2019 (2); Severe acute respiratory syndrome coronavirus 2 
(1); pneumonia complicated by diarrhea (1). More than half of the submitted samples do not report any disease 
(2,766). Standard annotation of the metadata is supported by the usage of the structured controlled vocabularies 
and ontologies, such as the Environment Ontology17 and Disease Ontology18, as specified in the MIxS standard. 
Each term in the MIxS standard is defined to clarify the scope of each data descriptor.

When researchers neglect to submit enriched contextual metadata, is it because they do not realize the broader 
impact of their actions or they are unable to assess the benefits of describing their samples and study in com-
parison to the costs? Or is it that the benefits accrue as a social good and individual researchers receive little 
recognition and therefore tend to invest their valuable time elsewhere? One hopes the reason is not because 
they are withholding information over concerns of their data being reused as they are finalizing their own pub-
lications. Whatever the reasons, one consequence of ‘market failure’ in the supply of quality [omic] data is our 
inability to confidently compare and combine datasets, as the biological signals can be obscured by dominating, 
yet unaccounted, experimental confounding factors due to the absence of accurate and comprehensive metadata. 
For example, the effectiveness of state-of-the-art computational approaches – such as machine learning – are 
limited if the key signals (both biological and artifactual) in training datasets cannot be appropriately modelled. 
Yet, increasing statistical power through the analysis of large datasets or the application of machine learning 
approaches could help guide solutions to many of society’s greatest challenges.

As we solve these problems (technological and sociological) to achieve more complete metadata, it may be 
possible to identify datasets that are likely to hold previously un-investigated coronavirus sequence data and 
therefore possible insights into the natural reservoir of this currently important group of viruses. With more 
complete metadata it may be possible to ascertain the taxonomic, sequence, and environmental breadth of envi-
ronmental viral genomes, thus providing insight towards future viral outbreaks. Community-driven consensus of 
data types and genomic standards informs infrastructure development and addresses the critical need for meta-
data standardization to mitigate duplication of effort and to enhance data sharing across outbreak investigations.

When the next global outbreak crisis occurs, we need a predefined, widely adopted multidimensional 
approach to organize critical genomic data. Our strategy to broadly inform how to clearly describe genomic 
metadata and the tools to prepare genomic metadata datasets needs to be expanded now. Our community needs 
the organizational ability and coordination to respond to the imminent need well in advance. Opportunities for 
coordination of reported data types are critical for data interoperability as contact tracing efforts and outbreak 
resources, such as Nextstrain19 and GISAID20 are being developed.

To move forward as a research community, we must restructure how we recognize and reward these efforts of 
broad societal value. We must call on researchers to “provide a clear description of your data” and incentivize 
good data management plans that include the standardized collection of genomic metadata. We must also ensure 
that institutes and organizations adopt policies encouraging good metadata practices. Standards are consensual 
social technologies that necessarily take time to develop and require appropriate levels of reward (such as meas-
ures of data impact through reuse) when they are conformed to, but the current models for measuring output in 
academia (i.e. the number of peer-review citations) tend to overlook data contributions. Innovation begets new 
and improved standards supporting resilience of complex knowledge-driven societies. Decisive action is critical 
for development of essential genomics infrastructure. If we do not take decisive action, we will not be prepared.

In the words of Benjamin Franklin: “By failing to prepare, you are preparing to fail.”

Received: 27 April 2020; Accepted: 28 May 2020;
Published: xx xx xxxx

https://doi.org/10.1038/s41597-020-0524-5
https://www.ncbi.nlm.nih.gov/biosample/
https://www.ebi.ac.uk/biosamples/
https://www.ebi.ac.uk/biosamples/
https://www.ncbi.nlm.nih.gov/Traces/study/
https://www.ncbi.nlm.nih.gov/Traces/study/


4Scientific Data |           (2020) 7:188  | https://doi.org/10.1038/s41597-020-0524-5

www.nature.com/scientificdatawww.nature.com/scientificdata/

References
	 1.	 Field, D. & Kyrpides, N. The positive role of the ecological community in the genomic revolution. Microb. Ecol. 53, 507–511 (2007).
	 2.	 Field, D., Morrison, N., Selengut, J. & Sterk, P. Meeting report: eGenomics: Cataloguing our Complete Genome Collection II. 

OMICS 10, 100–104 (2006).
	 3.	 Field, D. et al. The minimum information about a genome sequence (MIGS) specification. Nat. Biotechnol. 26, 541–547 (2008).
	 4.	 Yilmaz, P. et al. Minimum information about a marker gene sequence (MIMARKS) and minimum information about any (x) 

sequence (MIxS) specifications. Nat. Biotechnol. 29, 415–420 (2011).
	 5.	 Wilkinson, M. et al. The FAIR Guiding Principles for scientific data management and stewardship. Sci Data 3, 160018 (2016).
	 6.	 National Academies of Sciences, Engineering, and Medicine. Open Science by Design: Realizing a Vision for 21st Century Research, 

https://doi.org/10.17226/25116, (National Academies Press, 2018).
	 7.	 MetaSUB International Consortium. The Metagenomics and Metadesign of the Subways and Urban Biomes (MetaSUB) 

International Consortium inaugural meeting report. Microbiome. 4, 24 (2016).
	 8.	 Ten Hoopen, P. et al. The metagenomic data life-cycle: standards and best practices. GigaScience 6, 1–11 (2017).
	 9.	 Sansone, S. et al. FAIRsharing as a community approach to standards, repositories and policies. Nat. Biotechnol. 37, 358–367 (2019).
	10.	 Karsch-Mizrachi, I., Takagi, T. & Cochrane, G. & International Nucleotide Sequence Database Collaboration. The international 

nucleotide sequence database collaboration. Nucleic Acids Res. 46, D48–D51 (2018).
	11.	 National Genomics Data Center Members and Partners. Database Resources of the National Genomics Data Center in 2020. Nucleic 

Acids Res. 48, D24–D33 (2020).
	12.	 Estaki, M. et al. QIIME 2 enables comprehensive end-to-end analysis of diverse microbiome data and comparative studies with 

publicly available data. Current Protocols in Bioinformatics 70, e100 (2020).
	13.	 Mukherjee, S. et al. Genomes OnLine database (GOLD) v.7: updates and new features. Nucleic Acids Res. 47, D649–D659 (2019).
	14.	 Mitchell, A. L. et al. MGnify: the microbiome analysis resource in 2020. Nucleic Acids Res. 48, D570–D578 (2020).
	15.	 Meyer, F. et al. MG-RAST version 4-lessons learned from a decade of low-budget ultra-high-throughput metagenome analysis. Brief 

Bioinform. 20, 1151–1159 (2019).
	16.	 Guidance Regarding Methods for De-identification of Protected Health Information in Accordance with the Health Insurance 

Portability and Accountability Act (HIPAA) Privacy Rule. U.S. Department of Health & Human Services, https://www.hhs.gov/hipaa/
for-professionals/privacy/special-topics/de-identification/index.html (2015).

	17.	 Buttigieg, P. L. et al. The environment ontology in 2016: bridging domains with increased scope, semantic density, and 
interoperation. J. Biomed. Semantics 7, 57 (2016).

	18.	 Schriml, L. M. et al. Human Disease Ontology 2018 update: classification, content and workflow expansion. Nucleic Acids Res. 47, 
D955–D962 (2018).

	19.	 Hadfield, J. et al. Nextstrain: real-time tracking of pathogen evolution. Bioinformatics 34, 4121–4123 (2018).
	20.	 Elbe, S. & Buckland-Merrett, G. Data, disease and diplomacy: GISAID’s innovative contribution to global health. Glob. Chall. 33‐ 1, 

46 (2017).

Acknowledgements
We, the board of the Genomic Standards Consortium, would like to acknowledge the members of the GSC 
community, for their active support, contributions and engagement that are vital to this effort. We would also like 
to acknowledge the GSC Advisory Board and GSC Alumnae Board members for their dedication and fortitude 
towards making genomic data discoverable, and in particular we acknowledge GSC founder Dr. Dawn Field 
(1969-2020), an inspirational leader and visionary scientist, championing the importance of contextual genomic 
data. The work of Ilene Karsch Mizrachi was supported by the Intramural Research Program of the National 
Library of Medicine, National Institutes of Health.

Competing interests
S.A.S. is the Honorary Academic Editor, L.M.S. is a member of the Senior Editorial Board, and P.H. & R.W are 
members of the Editorial Board of Scientific Data.

Additional information
Correspondence and requests for materials should be addressed to L.M.S.
Reprints and permissions information is available at www.nature.com/reprints.
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2020

https://doi.org/10.1038/s41597-020-0524-5
https://doi.org/10.17226/25116
https://www.hhs.gov/hipaa/for-professionals/privacy/special-topics/de-identification/index.html
https://www.hhs.gov/hipaa/for-professionals/privacy/special-topics/de-identification/index.html
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	COVID-19 pandemic reveals the peril of ignoring metadata standards

	Acknowledgements

	﻿Fig. 1 Lost opportunities for data reuse, SARS-CoV-2 (txid2697049[Organism:noexp]) BioSample records, where (a) collection date = “missing”: 143 latitude and longitude = “missing”: 1375 (b) SARS-CoV-2 BioSample record with complete metadata.




