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SUMMARY

Terpenoids are the largest family of natural products, but prokaryotes are vastly underrepresented 

in this chemical space. However, genomics supports vast untapped biosynthetic potential for 

terpenoids in bacteria. We discovered the first trans-eunicellane terpene synthase (TS), AlbS 

from Streptomyces albireticuli NRRL B-1670, in nature. Mutagenesis, deuterium labeling studies, 

and quantum chemical calculations provided extensive support for its cyclization mechanism. In 

addition, parallel stereospecific labeling studies with Bnd4, a cis-eunicellane TS, revealed a key 

mechanistic distinction between these two enzymes. AlbS highlights bacteria as a valuable source 

of novel terpenoids, expands our understanding of the eunicellane family of natural products 

and the enzymes that biosynthesize them, and provides a model system to address fundamental 

questions about the chemistry of 6,10-bicyclic ring systems.
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eTOC Blurb

Terpenoids, the largest and most structurally diverse class of natural products, are widely 

distributed in nature but less commonly reported in bacteria. Here, the first trans-eunicellane 

terpene synthase, AlbS, is discovered by genome mining in bacteria. Extensive evidence of 

mutagenesis, isotope-labeling studies, and DFT calculations reveal its cyclization mechanism. 

AlbS and the novel skeleton of its enzymatic product highlight bacteria as a valuable source of 

terpenoids and expand our understanding of the eunicellane family of natural products and their 

biosyntheses.

Keywords

Bacterial terpenoids; terpene synthase; enzymes; mechanism; genome mining; isotope labeling; 
quantum chemical calculations; diterpenoid; eunicellane

INTRODUCTION

Terpenoids, the largest and most structurally diverse class of natural products with over 

80,000 known compounds, are a rich reservoir of pharmaceuticals, vitamins, flavors, 

fragrances, and biofuels.1–5 While the vast majority of terpenoids have been isolated 

from plants, fungi, or marine organisms, relatively few are of bacterial origin.1 However, 

this contradicts the extraordinary biosynthetic potential for terpenoid biosynthesis seen 

in the genomes of bacteria.1,6–8 Terpene synthases (TSs), the enzymes that construct the 

hydrocarbon skeletons of terpenoids from prenyl diphosphates and are often responsible for 

the first step in their respective biosynthetic pathways, are widely distributed in bacteria.1,9 

Both canonical type I and type II TSs as well as about a dozen non-canonical TS families 
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are known to exist in prokaryotes.10–12 However, most of these enzymes have not been 

characterized and products from their biosynthetic gene clusters (BGCs) remain enigmatic.

The eunicellanes are a unique family of diterpenoids that possess a 6/10-bicyclic skeleton 

(Fig. 1A). Many members of this family have diverse biological activities,13,14 some of 

which have promising clinical applications such as eleutherobin and the sarcodictyins 

exhibiting potent antitumor activities via the paclitaxel-like mechanism of inducing tubulin 

polymerization and microtubule stabilization.14–16 Most eunicellane diterpenoids have been 

found in soft corals;13 there are only a few examples from plants17,18 and most recently 

bacteria.19,20 These natural products are highly oxidized and frequently possess at least 

one transannular ether bridge. One structural consistency in almost all eunicellanes is the 

presence of a cis ring fusion. Only six of more than 360 known eunicellanes contain a 

trans ring fusion: the plant-derived magdalenic acid and the magdalenic acid-containing 

diterpene dimers bisyinshanic acids,17,18 two cytotoxic bacterial microeunicellols,19 and the 

antibacterial coral-derived eunicellol A (Fig. 1A).21

Until recently, there were no biosynthetic studies on the eunicellane diterpenoids and 

no TSs known to produce their 6/10-bicyclic diterpene skeleton. In conjunction with 

our discovery of the antibacterial diterpenoid benditerpenoic acid from Streptomyces sp. 

(CL12–4), we identified the first TS and BGC responsible for eunicellane formation and 

functionalization.20 Mechanistic studies of this TS, Bnd4, revealed that cis-eunicellane 

formation likely occurs via initial 1,10-cyclization, followed by a 1,3-hydride shift, 1,14-

cyclization, and deprotonation to yield benditerpetriene (2) (Fig. 1B).22 Shortly after, two 

independent studies led to the identification of two coral TSs that produced klysimplexin 

R, a cis-eunicellane with a Z-configured alkene at C-2/C-3 and a hydroxyl at C-11.23,24 

Mechanistically, klysimplexin R is plausibly formed via initial 1,14-cyclization with 

isomerization of the Δ2,3 bond (likely via geranyllinalyl diphosphate, GLPP), followed by 

two sequential 1,2-hydride shifts, 1,10-cyclization, and cation quench by water (Fig. 1B).23 

This cyclization cascade is likely conserved throughout the coral eunicellanes given the 

nature of the cis ring fusion, 2,3-alkene configuration, and placement of the captured water 

or alkene that results from final cation quench. The mechanistic differences between the 

bacterial and coral cis-eunicellane synthases are not surprising given that these TSs do not 

share any appreciable sequence similarities.

Here, we report the identification and characterization of the first trans-eunicellane forming 

TS. Albireticulene synthase (AlbS), from Streptomyces albireticuli NRRL B-1670, was 

found by genome mining for TSs in bacteria. Using a series of spectroscopic and 

chemical techniques, we unambiguously determined that albireticulene (1) possesses a 

trans-eunicellane skeleton. Mutagenesis, deuterium labeling studies, and quantum chemical 

calculations provided extensive support for its cyclization mechanism. In addition, parallel 

stereospecific labeling studies with AlbS and Bnd4 revealed a mechanistic distinction 

between cis and trans eunicellane formation in bacteria.
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RESULTS AND DISCUSSION

Genome mining for bacterial terpene synthases

Using a sequence similarity network (SSN)25 of all bacterial protein sequences categorized 

as “terpene cyclase-like 2” proteins (IPR034686), we annotated the network with all 

characterized members (Figs. 2 and S1). At an e-value of 10−70, which was chosen based on 

the best separation of TS subfamilies with known products, there are 43 clusters with at least 

one characterized TS and 102 clusters and 151 singletons that are uncharacterized. In this 

study, we selected a small cluster containing five homologues for functional analysis. Each 

of these TSs possessed the canonical type I DDxxD and NSE metal-binding motifs as well 

as the C-terminal WxxxxxRY motif (Fig. S2). The closest known homologue to this cluster 

of TSs is (−)-germacradien-4-ol synthase from Streptomyces citricolor (27%/38% sequence 

identity and similarity, respectively, over 81% coverage).26 In addition, each of these TSs 

was encoded in genetic proximity to a polyprenyl synthase and at least one cytochrome P450 

(Fig. 2), suggesting the genuine products of these BGCs are oxidized terpenoids.

Characterization of albireticulene synthase, a trans-eunicellane diterpene synthase

We cloned the gene encoding UniProt ID A0A2A2D8W5 from Streptomyces albireticuli 
NRRL B-1670, into E. coli for heterologous expression and protein purification (Tables S1–

S3, Fig. S3). We tested A0A2A2D8W5, which previously showed C5 and C10 prenylation 

activity with small molecule nucleophiles and was designated TS118,27 for in vitro activity 

with farnesyl diphosphate (FPP) and geranylgeranyl diphosphate (GGPP). GC-MS analysis 

revealed that FPP was converted into five sesquiterpenes (Fig. 3AB). Analysis of the EI-MS 

fragmentation patterns and Kovats retention indices identified the products as β-elemene 

(3), shyobunol (4), elemol (5), trans-nerolidol (6), and epi-α-cadinol (7) (Figs. S4–S8). In 

the presence of GGPP, a single major product (1) was formed; production of 1 was also 

achieved in E. coli using our artificial GGPP production system (Fig. 3C).28 When analyzed 

by GC-MS, 1 exhibited an M+ peak at m/z of 272.17, which is consistent with a molecular 

formula of C20H32 (Fig. S9).

Compound 1 was isolated, and its structure was elucidated by 1D and 2D NMR analysis 

in benzene-d6 and toluene-d8 (SI, Tables S4 and S5, Figs. 3B and S10–S22). The HSQC 

spectrum displayed five methines, seven methylenes, and four methyls. HMBC correlations 

supported that two methines and one methylene are alkenes with Me-17, Me-19, and Me-20 

connected to C-15/C-16, C-6/C-7, and C-2/C-3, respectively. The characteristic methyl 

doublet of Me-18 revealed it is connected to C-11. Key 1H-1H COSY correlations of H-1/

H-10/H-11/H-12/H-13/H-14/H-1 assembled a cyclohexane ring system. Additional COSY 

correlations of H-8/H-9/H-10/H-1/H-2 and H-4/H-5/H-6, together with HMBC correlations 

between H-2 and C-3, H-4 and C-2, and Me-19 and both C-6 and C-8 revealed the 

existence of a 10-membered ring. IPAP-HMBC NMR29,30 data displayed the 3J(H-2,C-20) and 
3J(H-6,C-19) coupling constants to be approximately 8.9 and 8.5 Hz, respectively, indicating 

that both the C-2/C-3 and C-6/C-7 alkenes are E configured (Figs. 3D and S16–S17). 

Altogether, the NMR data supported that 1 possesses a 6/10-fused bicyclic eunicellane 

diterpene skeleton. Chemical exchange crosspeaks in the HSQC spectra at 258 K in toluene-

d8 revealed two major conformers in a ratio of 2.2:1 and suggested a flexible structure 
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(Fig. S12). Dynamic behavior in solution was similarly seen for the 10-membered ring in 

benditerpetriene (2).20 Peak broadening and conformational flexibility posed a significant 

challenge to determine both the relative and absolute configuration of 1.

Here, we turned to chemical modification to solve the configuration of 1. First, we observed 

that 1 rapidly degraded in chloroform to two products 8 and 9, in a ratio of 7:1 (SI, 

Fig. S23). Both gersemiene A (8) and gersemiene B (9), named after the structurally 

similar gersemiols,21 bear a 6/6/6-tricyclic ring system (SI, Table S6, Figs. 3D and S24–

S42) that is proposed to originate from protonation-initiated 2,7-cyclization and subsequent 

deprotonation. In 8, a 1D TOCSY spectrum with selective excitation of H-14 exhibited 

magnetization transfer for H-1, H-2, H-10, and H-11. H-1, H-2, H-10, and H-11 are each 

axial given that their vicinal coupling constants are all ~11 Hz (3J(H-2,H-1) = 11.6 Hz; 
3J(H-1,H-10) = 11.3 Hz; 3J(H-10,H-11) = 11.0 Hz). H-14 was equatorial based on its small 3J 

coupling constants to H-1 (4.6 Hz) and H-13ax (5.8 Hz). Me-19 displayed stronger NOE 

effects to H-1 and Hax-9 than to H-2 or H-11, supporting that Me-19 is axial and cis to H-1 

(Fig. 3D). This gave the relative configuration of 8, which was further supported by a series 

of IPAP-HMBC NMR experiments (Figs. S31–S33).

Next, inspired by the nonenzymatic conversion of 1 into 8 and 9, we installed an oxygen 

atom at C-6 by oxidizing 1 with m-chloroperoxybenzoic acid (mCPBA). Epoxidation of the 

Δ6,7 bond in 1 led to 10, NMR analysis of which led to the elucidation of the expected 

6/6/6-tricyclic framework with a hydroxyl at C-6 (SI, Table S7, Figs. 3D and S43–S50). A 

strong NOESY correlation between H-2 and H-6 supported that the hydroxyl at C-6 was 

equatorial and Mosher ester analysis31,32 unequivocally determined C-6 to be S configured 

(SI, Table S8, Figs. 3D and S51–S60). Together, the absolute configuration of 10 was 

assigned as 1S,2R,6S,7S,10R,11S,14R. Considering the relative configuration of 1 and 

the absolute configuration of 10, the absolute configuration of 1 was thus unambiguously 

determined to be 1R,2E,6E,10R,11S,14R, a trans-eunicellane skeleton (Fig. 3B). Compound 

1, which was named albireticulene, is the C-1-epimer of 2.

Mutagenesis reveals 10-membered ring formation occurs first in the AlbS mechanism

With AlbS and Bnd4 forming eunicellane epimers, we were interested in how these two TSs 

were different and how AlbS controls stereospecific cyclization of GGPP. AlbS and Bnd4 

share 24%/41% identity and similarity, respectively, over 75% coverage (Fig. S2). In the 

absence of a protein structure, we utilized tFold to create a model of AlbS33 and aligned 

it with our previous model of Bnd4 docked with GGPP (Fig. 4A).22 As was expected for 

a type I di-TS, the D121DxxD and N251xxxSxxxE metal-binding motifs and the R342Y 

diphosphate sensor are near the diphosphate moiety. Lining the active site of AlbS are 

seven aromatic amino acids, F94, H114, Y178, Y214, F329, and W336 and Y343 from the 

WxxxxxRY motif. There are only minor differences between the AlbS and Bnd4 models, 

namely the side chains of F94, H114, Y178, and F329 in AlbS are W67, T87, F162, and 

M309 in Bnd4, respectively (Fig. 4A).

Based on the AlbS model and the structural comparison with Bnd4, we conducted single-

point mutation studies to determine which residues are essential for eunicellane formation 
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(Fig. 4A). Several mutations, including those made to D121, F94, H114, W336, and 

Y343 either created insoluble protein or completely abolished diterpene cyclization activity, 

suggesting essential roles in Mg2+ binding (D121) or protein solubility and catalytically 

competent active site (F94, H114, W336, Y343) for these residues (Figs. 4B and S61). 

Mutation of E185, which was modeled near the diphosphate moiety and is essential for 

catalysis in selinadiene synthase,34 only moderately affected activity. An aromatic residue at 

Y178 is important for initial cyclization as Y178A only produced geranylgeraniol (GGOH, 

13), but Y178F fully restored cyclization activity. Similarly, hydrophobicity at residue 329 is 

important for folding and catalysis as F329A was insoluble but F329M retained 79% relative 

activity.

Finally, Y214 is implicated in playing an important role in eunicellane formation. When the 

homologous residue in Bnd4, Y197, was mutated to Ala, only GGOH was formed.28 When 

Y214 in AlbS was mutated to Ala, Trp, His, Ile, or Leu, solubility was greatly affected. 

The Y214F mutant, however, was soluble and retained a minor level (4%) of 1 formation 

and produced a major new peak, 14 (Fig. 3C). Isolation and NMR analysis of 14 led us to 

identify it as a 10-membered monocyclic system with a Z-configured Δ11,12 bond (SI, Table 

S9, Figs. 3B and S62–S68). The 1H, HSQC, and HMBC NMR spectra led us to identify 

at least two conformers of 14 present at 25 °C (Fig. S69).35–38 Compound 14, which we 

named prenylgermacrene A, is an isomer of both prenylgermacrene B and the E-configured 

eunicene A (Fig. S70).39,40 When AlbSY214F was incubated with FPP, both 3 and 6 were 

detected with 6 being the major product (Fig. 3A). The formation of 14, evidently via the 

deprotonation of a monocyclic cationic intermediate, indicates that AlbS initially catalyzes 

1,10-cyclization in the pathway to eunicellanes and that Y214 plays a role in stabilizing 

the monocyclic cationic intermediate and/or guiding the intermediate on the pathway to the 

6,10-bicycle.

Isotope-labeling and quantum chemical calculations support the cyclization mechanism 
and differentiate trans- and cis-eunicellane terpene synthases

To elucidate the cyclization mechanism by which the 6/10-bicyclic eunicellane skeleton is 

formed by AlbS, we next performed stable isotope labeling experiments.41 In comparison 

with unlabeled GGPP, 1,1-2H2-GGPP and chiral 1R-2H-GGPP (Fig. S71) were incubated 

with AlbS. The deuterated enzymatic products were isolated, purified, and spectroscopically 

characterized using GC-MS and NMR. The M+ peaks for the singly labeled and doubly 

labeled products matched the expected m/z values of 273 and 274, respectively (Fig. S9). 

Using the 1H and HSQC spectra to visualize the protons at C-18 (δH = 0.98 ppm), C-1 (δH 

= 2.07 ppm), and C-11 (δH = 1.09 ppm), it was clear that the 1R-2H in GGPP migrated from 

C-1 to C-11 in 1 while the 1S-2H was retained on C-1 (Figs. 5A and S72). The lack of any 

observed scrambling of deuterium in the singly labeled reaction, along with the retention 

of the 2,3-E-alkene, suggests that the initial cyclization reaction may follow an SN2-like 

mechanism (although an SN1-like process where the enzyme prevents stereochemical 

scrambling is also possible). This labeling study also supports that a direct 1,3-hydride 

shift from C-1 to C-11, rather than two sequential 1,2-hydride shifts,23 follows the initial 

1,10-cyclization (Fig. 5B). The resulting cationic charge at C-1 would then be attacked by 

the C-14/C-15 π-bond (1,14-cyclization), which would be followed by deprotonation to 
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yield 1. The production of sesquiterpenes 3, 4, 5, and 7 by AlbS additionally supports an 

initial 10-membered cyclization as they all originate from the monocyclic germacradienyl 

cation (Fig. S73). In addition, both 4 and 7 follow cyclization with a 1,3-hydride shift, as 

seen in eunicellane cyclization. The proposed mechanism is different to the one proposed 

to be catalyzed by the coral eunicellane synthases but similar to the proposed mechanism 

of Bnd4 (Fig. 1B),13,22,23 except for the stereocenter difference at C-1. To investigate 

this difference, we also incubated Bnd4 with 1R-2H-GGPP. The product was found to be 

1-2H-2, the expected product of Bnd4 with the configuration at C-1 opposite to that seen in 

AlbS (Figs. 5A, 5C, and S74–S76). Overall, the data support that the active sites of AlbS 

and Bnd4 provide GGPP with similar molecular templates to form the same monocyclic 

intermediate, yet different enough to favor conformers disposed for 1,3-hydride transfer of 

the pro-R in AlbS and the pro-S in Bnd4.

To assess the energetic viability of our proposed mechanism and gain additional insight into 

the differences in stereochemical control by AlbS and Bnd4, we performed computational 

analyses with density functional theory calculations, mPW1PW91/6–31+G(d,p)//B3LYP/6–

31+G(d,p)42–48. Calculated relative free energies of cationic intermediates and transition 

state structures indicated that the path shown in Fig. 5B is reasonable (Fig. 5D). After A+ 

is formed, the 1,3-hydride shift requires 11.1 kcal mol−1 and forms the allylic cation B1+ 

in a relatively deep well, 11.6 kcal mol−1 lower than the monocyclic intermediate A+ and 

8.5 kcal mol−1 lower than the subsequent transition state for 1,14-cyclization ([B-C]‡). We 

propose that a conformational change from B1+ to B2+, which requires 2.8 kcal mol−1, is 

necessary to allow the subsequent ring closure to C+. The trans-eunicellane cation C+ is 

not strongly energetically favored as it is higher in energy than B1+ (by 3.9 kcal mol−1) or 

B2+ (by 1.1 kcal mol−1). This contrasts with the calculated energies for the formation of 

cis-eunicellane by Bnd4, which followed a facile downhill pathway where the energies of B+ 

and the transition state for 1,14-cyclization were essentially equivalent.22 Therefore, AlbS 

must prevent premature cation quench of the B+ intermediates and provide an energetically 

favorable deprotonation to form the trans-eunicellane skeleton. This scenario is reminiscent 

of that proposed previously for taxadiene synthase.50

Conclusion

Plants, fungi, and very recently marine animals are often the main sources of terpenoid 

natural product discovery and biosynthetic studies. Consequently, bacteria continue to be 

overshadowed, even though they are well regarded as producers of structurally unique and 

biologically active natural products. Using genome mining, we discovered a bacterial TS 

that constructs the rare trans-eunicellane skeleton, the first enzyme of its kind found in 

nature. AlbS highlights bacteria as a valuable source of novel terpenoids, expands our 

understanding of the eunicellane family of natural products, and provided a model system to 

address fundamental questions about the chemistry of 6/10-bicyclic ring systems.

Given our recent discovery and characterization of Bnd4,20,22 we were in a unique position 

to compare the mechanisms of the two known bacterial eunicellane synthases, AlbS 

and Bnd4. In this study, we provided extensive support for the cyclization mechanism 

of AlbS and revealed atomic-level details of the stereospecific control of eunicellane 
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skeleton formation. Protein model-guided mutation studies and evaluation of enzyme 

products supported initial 1,10-cyclization followed by a 1,3-hydride transfer. Deuterium 

labeling studies confirmed the direct 1,3-hydride transfer from C-1 to C-11 using the pro-R 
hydrogen on GGPP. Quantum chemical calculations corroborated the cationic cascade and 

implicated a conformational change prior to the second cyclization step. Differences in 

primary sequence, active site residues, the stereospecificity of the 1,3-hydride shift, and the 

calculated energies and geometries of structures on the mechanistic pathway provide insight 

into why AlbS and Bnd4 selectively form eunicellane epimers. This study adds to a growing 

knowledge base of sequence-structure-function relationships that allow TSs to exquisitely 

control their carbocation-based cyclization reactions. Understanding these general principles 

will help the community engineer TSs to create tools for chemoenzymatic synthesis or 

synthetic biology.

The discovery and characterization of TSs such as AlbS provide access to synthetically 

challenging backbones, tools for synthetic biology and biocatalyst development, and 

optimism that many novel terpene skeletons and new natural products are awaiting to be 

found in bacteria via genome mining. Albireticulene is expected to be a precursor of a more 

tailored, complex natural product or starting point to a family of natural products. This 

hypothesis raises questions such as: (i) What is the genuine natural product(s) of this BGC? 

(ii) What types of biological activity or ecological function does the biosynthetic product 

have? and (iii) What types of enzymes can functionalize eunicellane skeletons?
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The bigger picture

Natural products have a long history of playing important roles in pharmaceutical, 

agricultural, and commercial applications. One of the current challenges is how to 

continue to discover new natural products. Using the genomes of organisms provides 

a route to select genes that are likely to contribute to the biosynthesis of new natural 

products. Our approach led to identifying an enzyme that produces an organic framework 

that is rare in nature and will lead to the identification of its genuine natural product. 

The goals of this research are to discover new natural products that are therapeutically 

relevant as drugs or drug leads, identify and develop biocatalytic tools for chemical 

synthesis or synthetic biology applications, and predict enzyme function from protein 

sequence alone.
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Highlights

First trans-eunicellane synthase found in nature

Sesquiterpene and diterpene enzyme products structurally elucidated

Mutagenesis, labeling studies and DFT calculations support cyclization mechanism

Mechanistic comparison with a cis-eunicellane synthase
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Figure 1. Eunicellane diterpenoid natural products and biosynthesis
(A) Selected members of eunicellane diterpenoids. The 6/10-bicyclic eunicellane skeleton 

possesses either cis or trans ring configuration and is found in coral, bacteria, and plants. 

The trans ring fusion is rare in known natural products.

(B) Recent studies support mechanistic differences between two cis-eunicellane di-TSs, 

Bnd4 from Streptomyces sp. (CL12–4) and EcTPS1 from Erythropodium caribaeorum. Prior 

to this study, no TSs that form the trans-eunicellane skeleton were known.
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Figure 2. Sequence analysis highlights functional diversity of bacterial terpene synthases
Sequence similarity network of TSs (IPR034686) from bacteria at an e-value threshold of 

10−70. Functionally characterized TSs are colored (magenta, C15; blue, C20; blue with 

yellow highlight, AlbS) and their major products are shown. For clarity, not all characterized 

TSs are shown and not all products are shown for all clusters. In this enzyme family, there 

are 101 clusters of uncharacterized subfamilies and 151 uncharacterized singletons (not 

shown, see also Fig. S1). (inset) The AlbS subfamily of TSs and putative BGCs of AlbS 

and its homologues (see also Fig. S2). Genes are colored according to proposed function; 

green, GGPP synthase; cyan, 4-hydroxy-3-methylbut-2-enyl diphosphate reductase; red, 

cytochrome P450; brown, conserved protein of unknown function; gray, unrelated.
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Figure 3. Enzymatic activity of AlbS and structurally determined sesquiterpene and diterpene 
products
(A) GC-MS analysis of AlbS and AlbSY214F reactions with FPP. The y-axis is the relative 

abundance of total ions.

(B) Enzymatic products identified in this study. See also Figs. S4–S22 and S62–S69. Only 

key 2D NMR correlations are shown for 1. See also Table S4.

(C) HPLC-UV analysis of AlbS and mutant reactions with GGPP; 1 was also produced in 

vivo in albS-expressing E. coli. Absorbance was detected at 210 nm. See also Fig. S61.

(D) Structural elucidation of 1, 8, 9, and 10 using NMR spectroscopy, chemical degradation, 

and Mosher’s analysis. See also Figs. S23–S60.
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Figure 4. Structural and mutational analysis of the AlbS active site
(A) Structural models of AlbS and Bnd4 displaying key active site residues (sticks) with 

a docked model of GGPP (gray ball and stick). The three Mg2+ ions (green spheres) from 

selinadiene synthase (PDB ID 4OKZ)34 were overlaid to show their approximate positions.

(B) Relative cyclization activities of AlbS and mutants forming 1. Values are the mean of 

three independent experiments, which are shown as overlaid orange circles, with error bars 

representing standard deviations. The absence of a bar denotes no activity detected; NS 

denotes not soluble. Mutants marked with asterisks produced other products (see also Figs. 3 

and S61).
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Figure 5. Mechanistic proposal and deuterium labeling support for the cyclization of GGPP into 
1
(A) 1H-13C HSQC spectra of 1, 1,11-2H2-1, 11-2H-1, and 1-2H-2, respectively. See also 

Figs. S9, S72, and S74–S76.

(B) Proposed mechanism for the formation of the trans-6,10-bicyclic eunicellane skeleton by 

AlbS (blue pathway). AlbS mutants yielding shunt products 13 and 14 are also shown (black 

pathways). The red R group depicts the location of the 1R-2H-labeling experiment.

(C) Structure of 1-2H-2 from the 1R-2H-labeling experiment with Bnd4 supporting a 

different hydride transfer in the AlbS and Bnd4 mechanisms.

(D) Relative free energies of intermediates and transition state structure in kcal mol−1, 

calculated at mPW1PW91/6–31+G(d,p)//B3LYP/6–31+G(d,p) level of theory.42–48 Bond 

distances (in Å) for key steps are listed beside the bond. The conformations depicted here 

are qualitative; see computed structures for actual conformations.49
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