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The analytic approach to determine the optimal conditions for maximizing altitude of a sounding rocket 
is extended to the case in which the rocket flies in a standard atmosphere where the air density as 
well as the gravitational acceleration changes with altitude. The one-dimensional rocket momentum 
equation including thrust, gravitational force, and aerodynamic drag is solved. Flight in the standard 
atmosphere is analyzed by dividing the whole flight time into small intervals where the drag parameter 
and gravitational acceleration can be treated as constant in each interval. The analytic approach gives
piecewise exact solutions of the rocket velocity and altitude that agree well with the numerical 
ones. A characteristic equation exists and provides accurate predictions of the optimal conditions for 
maximizing altitude at burn-out state or apogee.

© 2015 Elsevier Masson SAS. All rights reserved.
1. Introduction

Scientific studies with a sounding rocket are simple, fast, and 
inexpensive compared to those with a satellite. The costs for a 
sounding rocket mission are much lower than those required for 
an orbiter mission, since sounding rocket missions do not need ex-
pensive boosters, extended telemetry or tracking coverage. Mission 
costs are also low because of the acceptance of a higher degree of 
risk in the mission compared to orbital missions [1]. Many coun-
tries are running sounding rocket programs and trying to develop 
technologies related to sounding rockets to exploit these advan-
tages [2–13]. Most scientific measurements, observations, or exper-
iments for sounding rocket missions are carried out near apogee. 
The low speed near apogee provides favorable chances to explore 
or observe space in a short time period. Furthermore, there are 
some important regions of space that are too low to be sampled 
by satellites; thus, sounding rockets provide platforms to carry 
out in-situ measurements in these regions [10]. Some micrograv-
ity environments [14,15] are carried after burn-out state and some 
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scramjet experiments [16,17] are conducted during free-fall that 
provides a good hypersonic condition at low cost.

We consider the motion of a sounding rocket launched in the 
vertical direction for simplicity. Then the motion of a sounding 
rocket can be described with a one-dimensional momentum equa-
tion that includes thrust, gravitational force, and aerodynamic drag 
force. The rocket mass varies with time, and the aerodynamic drag 
is proportional to the square of the rocket velocity, which makes 
the governing equation nonlinear. Thus, we cannot obtain ana-
lytic solution in a general form. Hence, in most cases, numerical 
approaches are used to obtain solutions because of easy imple-
mentation with less assumption. An approximate solution can be 
obtained with neglecting drag force but it contains serious er-
rors especially near ground. There are also approximate solutions 
with the Taylor series expansion, the perturbation method or the 
least square method [18], but they are complex and do not give 
information about the optimal conditions. Analytic solutions, on 
the contrary to numerical ones, are exact without numerical er-
rors, give insights to understand the behavior of the system, show 
critical parameters, and lead to ways to determine the optimal 
conditions. Therefore it is necessary to obtain analytic solutions if 
possible.

An analytic exact solution of the rocket equation including aero-
dynamic drag exists only in a typical situation where all the forces 
are well balanced [19]. As a beginning study, we consider the typ-
ical case where an analytic solution exists. We are aware that the 
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Nomenclature

D drag
F thrust
G ratio between inertia and drag
g gravitational acceleration
h altitude
K drag parameter
m rocket mass
ṁ rate of rocket mass change or mass flow rate of pro-

pellant jet
q velocity parameter for rocket velocity
t time
u velocity of propellant jet
v rocket vertical velocity

p static pressure
T temperature
ρ density
Ω rocket mass ratio between total mass and dry mass
ω rocket mass ratio between adjacent intervals

Subscripts

a ambient air
b burn-out state
e jet condition at rocket nozzle exit
o ground state
opt optimal condition for maximizing altitude
s stationary state (apogee)
present approach could not be directly applied to the real cases. 
For instance, most of sounding rockets are designed to maintain 
the combustion chamber pressure to be constant for stable and 
safe operations, which lead to the constant mass flow of propel-
lant. We could not make an analytic approach to the cases since 
there are no analytic solutions of the rocket momentum equation. 
However the present analytic approach could be useful to build a 
method to obtain a pseudo-analytic or an approximate solution.

The design target of a sounding rocket is the altitude at burn-
out state or apogee. The rocket altitude can be changed with the 
ejection conditions of the propellant jet. Therefore, it is necessary 
to determine an optimal condition for maximizing altitude at given 
launching conditions. The Goddard problem of the optimal thrust 
programming for maximizing altitude of a rocket in vertical flight 
has been extensively studied with variation methods, asymptotic 
approach or optimal control theory [20–23]. But they are not based 
on the analytic solution of the rocket momentum equation. The 
previous study [19] showed an analytic approach to obtain exact 
solution of the rocket equation and to determine optimal condi-
tion for maximizing altitude. However the previous study cannot 
be applied to a sounding rocket flying in a real atmosphere where 
the air density changes with altitude. The objective of the present 
study is to extend the analytic approach to the flight in a real sit-
uation.

In a real atmosphere, even in calm conditions without wind, 
the air density dramatically changes with altitude, location or time. 
Also the gravitational acceleration cannot be treated as a constant 
when rockets go up to the upper atmosphere. Moreover, aerody-
namic drag coefficient changes with the flight Mach number espe-
cially around the Mach number of unity. Hence aerodynamic drag 
is variable with altitude or rocket velocity. These make it impossi-
ble to obtain an analytic solution of the governing equation valid 
through the whole flight time. Therefore, we have to change the 
strategy to approach the problem. A “divide-and-conquer” strat-
egy could be an alternative to avoid the serious problems. We can 
divide the whole flight time into intervals small enough to treat 
the air density, the gravitational acceleration and drag coefficient 
as constants in each interval. We can then have piecewise analytic 
solutions and also determine the optimal conditions.

The rocket considered in the present study is a simplified model 
based the Korea Sounding Rocket Program (KSR II and III). KSR II 
is a solid propellant rocket with total the weight of 2.0 ton, the 
diameter of 0.42 m and the length of 11.0 m. KSR III is a liquid 
propellant rocket with the weight of 6.1 ton, the diameter of 1.0 m 
and the length of 13.5 m. In the present study, we consider the 
medium specification between KSR II and KSR III.
2. One-dimensional rocket equation

2.1. Equation in boost phase

The motion of a sounding rocket in boost phase climbing in 
the vertical direction can be described with the following one-
dimensional rocket equation [24,25].

m
dv

dt
= F − D − mg. (2.1)

The mass of a rocket decreases with the mass flow of propellant.

m = mo +
t∫

o

ṁdt, (2.2a)

ṁ = dm

dt
. (2.2b)

The mass flow rate ṁ is equal to the rate of rocket mass and has a 
negative sign by definition.

The thrust F is composed of two parts:

F = ṁue + Ae(pe − pa). (2.3)

For an adiabatic nozzle flow, the total enthalpy is constant, and 
then we can assume that the jet velocity ue is constant. The jet 
velocity has the negative sign since its direction is opposite to the 
rocket velocity; thus, the thrust term ṁue has the positive sign. If 
the nozzle flow has a perfect expansion, the second term of the 
thrust vanishes. Hereafter, we ignore the second term of the thrust 
for simplicity.

The aerodynamic drag force D that proportional to the square 
of rocket velocity can be represented as follows:

D = K v2, (2.4a)

K = S

2
Cdρa. (2.4b)

The terms S and Cd are the cross-sectional area of a rocket and 
the aerodynamic drag coefficient, respectively. The air density of a 
standard atmosphere is not a constant but changes with altitude, 
which means that the drag parameter K also changes with alti-
tude. The aerodynamic drag coefficient is usually increases sharply 
near the Mach number of unity and decreases gradually with the 
Mach number after then [18,26,27]. Some preliminary numerical 
experiments showed that this model caused serious numerical os-
cillations especially when the velocity parameter is near to speed 
of sound, which seems due to the abrupt change of the drag co-
efficient around the Mach number of unity. We adopt a modified 
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model to guarantee smooth changes of the drag coefficient at all 
Mach numbers. The details will be presented in Section 5.2.

The change of the gravitational force due to the altitude change 
should be considered for high altitude sounding rockets. In the 
present study, the following relation is used.

g = go
R2

E

(R E + h)2
. (2.4c)

The terms go and R E stand for the gravitational acceleration and 
average radius of the earth at sea level that are 9.8067 (m/s2) and 
6.371 × 106 (m), respectively.

The governing equation then becomes

m
dv

dt
= ṁue − K v2 − mg. (2.5)

The mass is variable with time, and the square of the solution 
appears in the drag force, which makes the governing equation 
nonlinear. Thus, we could not obtain analytic solutions in a general 
form. However, there is a typical case where an analytic solution 
exists. We introduce a velocity parameter as follows:

q =
√

ṁue − mg

K
. (2.6a)

The governing equation can then be reduced as

m
dv

dt
= K

(
q2 − v2). (2.6b)

Separating variables leads to

dv

q2 − v2
= K

m
dt. (2.6c)

This governing equation can be represented according to the mass 
instead of the time as follows:

dv

q2 − v2
= K

m

dm

ṁ
. (2.7)

We can obtain an analytic integration of the left hand side of the 
above equation only when the velocity parameter is constant. If 
the velocity parameter is constant, the mass flow rate is not a 
constant since the velocity parameter is constant. For a saturated 
gaseous nozzle flow the mass flow rate changes proportionally to 
the throat area or the chamber pressure. It is technically difficult 
to change the nozzle shape. Thus it is better to control the mass 
flow rate by the pressure of the rocket combustor. On the other 
hand, if the mass flow rate is constant, the velocity parameter be-
comes a function of mass and thus the left hand side of the above 
equation cannot be analytically integrated. Then, in this case, we 
should try to obtain an approximate solution.

Even though the left hand side can be analytically integrated, 
on the contrary to the previous study [23], the right hand side 
cannot be analytically integrated over the whole flight time since 
the drag parameter changes with the altitude or the Mach number 
and thus could not expressed as an explicit function of the time 
or the mass. Hence we could not obtain analytic solutions valid 
throughout the whole flight time. Then we have to find out an-
other way to avoid such serious difficulties. This will be discussed 
in the next section.

2.2. Equation in coast phase

After the propellant of a rocket is totally consumed, the flight 
phase turns into coast phase, where the rocket climbs with inert 
force until the stationary state or apogee. The rocket equation be-
comes then

mb
dv

dt
= −K v2 − mb g. (2.8a)

Separating variables yields

dv

K v2 + mb g
= − 1

mb
dt, or (2.8b)

vdv

K v2 + mb g
= − 1

mb
dh. (2.8c)

An analytic solution of the above equation can be obtained if and 
only if the drag parameter is constant. As mentioned in equa-
tion (2.6c), we could not obtain analytic solutions valid throughout 
whole flight time since the drag parameter cannot be expressed as 
an explicit function of the velocity. This will be discussed in detail 
in the next section.

3. Analytic solutions

3.1. Solutions of the governing equation

3.1.1. Solutions in boost phase
The mass flow rate for a constant velocity parameter is variable 

with the mass and the drag parameter as follows:

ṁ = mg + Kq2

ue
. (3.1.1)

Inserting this relation into the governing equation yields

dv

q2 − v2
= K ue

mg + Kq2

dm

m
. (3.1.2)

In the standard atmosphere, the air density and thus the drag 
parameter change with altitude even though the aerodynamic drag 
coefficient is constant. If the drag parameter is a function of alti-
tude and so is the gravitational acceleration, then we cannot have 
a valid solution over the whole flight time. We then have to change 
the strategy to approach the problem. A divide-and-conquer strat-
egy could be an alternative to avoid such difficulties. If we divide 
the whole flight time into intervals small enough to assume that 
the drag parameter and the gravitational acceleration be constant, 
then we can apply the analytic approaches to the rocket motion 
in each interval and obtain piecewise analytic solutions. The piece-
wise governing equation in the interval between (n − 1) and (n) 
states becomes

dv

q2 − v2
= K̄n

m

dm

ṁ∗ , (3.1.3a)

ṁ∗ = mḡn + K̄nq2

ue
, (3.1.3b)

K̄n = Kn−1 + Kn

2
, ḡn = gn−1 + gn

2
(3.1.3c)

Integrating the right hand side of equation (3.1.3a) in the interval 
between (n − 1) and (n) states can be expressed as follows:

mn∫
mn−1

K̄nue

mḡn + K̄nq2

dm

m
= ue

q2
ln

(
mn

mn−1

mn−1 ḡn + K̄nq2

mn ḡn + K̄nq2

)
. (3.1.4a)

Hence, integrating equation (3.1.3a) from ground state to (n) state 
leads to

1

2q
ln

(
q + vn

q − vn

)
= ue

q2

n∑
ln

(
mi

mi−1

mi−1 ḡi + K̄ iq2

mi ḡi + K̄ iq2

)
. (3.1.4b)
i=1
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Rearranging this equation yields

vn = q
xn − 1

xn + 1
, (3.1.5a)

xn =
(

n∏
i=1

mi

mi−1

mi−1 ḡn + K̄ iq2

mi ḡn + K̄ iq2

)σ

=
(

n∏
i=1

mi

mi−1

Gi−1,i + q2

Gi,i + q2

)σ

, (3.1.5b)

Gi, j = mi ḡ j

K̄ j
, σ = 2ue

q
. (3.1.5c)

The velocity parameter q is the limit of the velocity since the ve-
locity approaches q as the variable x grows. The drag parameter 
and gravitational acceleration at the interval between (n − 1) and 
(n) states are not obtained until the velocity is determined. Thus it 
is necessary to calculate with iterations. The term x at the ground 
state and at the burn-out state become

xo =
(

mo

mo

Go,o + q2

Go,o + q2

)σ

= 1, (3.1.6a)

xb =
(

b∏
i=1

mi

mi−1

Gi−1,i + q2

Gi,i + q2

)σ

. (3.1.6b)

The time derivative of mass flow rate between (n −1) state and (n) 
state becomes

dṁ∗

dt
= ḡn

ue
ṁ∗, or (3.1.7a)

dṁ∗

ṁ∗ = ḡn

ue
dt. (3.1.7b)

Integrating this equation between (n − 1) state and (n) state with 
inserting the mass flow rate expressed in equation (3.1.3b) yields

ln
mn ḡn + K̄nq2

mn−1 ḡn + K̄nq2
= ḡn

ue
(tn − tn−1). (3.1.8a)

The mass can be expressed explicitly as follows:

mn =
(

mn−1 + K̄nq2

ḡn

)
exp

[
ḡn

ue
(tn − tn−1)

]
− K̄nq2

ḡn
. (3.1.8b)

The rocket mass ratio and piecewise mass ratio between masses at 
(n − 1) and (n) states are defined as

Ω = mo

mb
> 1, (3.1.9a)

ωn = mn−1

mn
> 1. (3.1.9b)

Also, the time can be represented as a function of mass as follows:

tn − tn−1 = ue

ḡn
ln

(
Gn,n + q2

Gn−1,n + q2

)
. (3.1.10)

The burn-out time can be determined with the summation of time 
intervals from ground state to burn-out state.

The altitude at burn-out state can be obtained by integrating 
the rocket velocity with respect to the time as follows:

hb =
tb∫

o

vdt =
n∑

i=1

mi∫
mi−1

q
x − 1

x + 1

dm

ṁ

=
n∑

i=1

mi∫
m

q
x − 1

x + 1

ue

mḡi + K̄ iq2
dm. (3.1.11)
i−1
The altitude could not be integrated analytically even though the 
drag parameter and gravitational acceleration are constant in the 
piecewise intervals. In the present study, numerical integration 
with the Simpson rule [28] is used to obtain the altitude.

3.1.2. Solutions in coast phase
In coast phase, the governing equation cannot be analytically 

integrated since the drag parameter and gravitational acceleration 
are not constant. Hence we also have to apply the divide-and-
conquer strategy. The differential of the altitude between (n − 1) 
state and (n) state can be expressed as follows:

dh = −mb
vdv

mb ḡn + K̄n v2
. (3.1.12a)

Integrating this equation between (n − 1) and (n) states yields

hn − hn−1 = −mb

2

1

K̄n
ln

(
mb ḡn + K̄n v2)vn

vn−1

= mb

2

1

K̄n
ln

(
Gb,n + v2

n−1

Gb,n + v2
n

)
. (3.1.12b)

Then the altitude change from burn-out state to apogee becomes

hbs = hs − hb = mb

2

s∑
i=b+1

1

K̄ i
ln

(
Gb,i + v2

i−1

Gb,i + v2
i

)
. (3.1.12c)

3.2. Optimal conditions at burn-out state

The rocket altitude changes according to the velocity parameter 
since the rocket velocity changes with the velocity parameter. We 
aim to find a way to determine the maximum altitude at burn-out 
state or at apogee for the flight in the standard atmosphere. The 
governing equation in boost phase can be rewritten according to 
the altitude instead of the time as follows:

dv

q2 − v2
= K

m

dh

v
. (3.2.1a)

Separating variables and integrating the above equation from 
ground state to burn-out state leads to

vb∫
o

vdv

q2 − v2
=

hb∫
o

K

m
dh. (3.2.1b)

The left side can be analytically integrated and is simply reduced 
as

−1

2
ln

(
q2 − v2

b

q2

)
= −1

2
ln

[
4xb

(xb + 1)2

]
. (3.2.2a)

Differentiating this term with respect to the velocity parameter 
yields(

− 1

2xb
+ 1

xb + 1

)
dxb

dq
= 1

2xb

xb − 1

xb + 1

dxb

dq
. (3.2.2b)

Differentiating the right hand side of equation (3.2.1b) with respect 
to the velocity parameter yields

hb∫
o

d

dq

K

m
dh + Kb

mb

dhb

dq
− Ko

mo

dho

dq
. (3.2.3)

The Leibniz rule [29] is applied on the right hand side of equation 
(3.2.1b). The derivative of the altitude at ground state is zero. Also, 
for the maximum altitude, the derivative of the altitude at burn-
out state should be zero. Thus the following characteristic equation 
must be satisfied for the maximum altitude at burn-out state.
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1

2xb

xb − 1

xb + 1

dxb

dq
=

hb∫
o

d

dq

K

m
dh. (3.2.4)

Taking the logarithm of the term xb expressed in equation (3.1.6b)
yields

ln(xb) = 2ue

q
ln

(
b∏

i=1

1

ωi

Gi−1,i + q2

Gi,i + q2

)
. (3.2.5)

The parameter G changes with the velocity parameter due to the 
change of the altitude. But at the maximum altitude the derivative 
of the altitude becomes zero and thus we can ignore the derivative 
of the parameter G . Then differentiating this equation with respect 
to the velocity parameter yields

1

xb

∂xb

∂q
= −1

q

[
ln(xb) − 4que

b∑
i=1

Gi,i(1 − ωi)

(Gi−1,i + q2)(Gi,i + q2)

]
.

(3.2.6)

Also, according to the same reason, we can ignore the derivative 
of the drag parameter on the right hand side of equation (3.2.4). 
Then applying the divide-and-conquer strategy leads to

−
b∑

i=1

K̄ i

hi∫
hi−1

1

m2

dm

dq
dh. (3.2.7a)

The mass at a given altitude would change with the velocity pa-
rameter and thus the derivative of the mass with respect to the 
velocity parameter could not vanish. As suggested in the previous 
study [23], the derivative of the mass with respect to the veloc-
ity parameter between (n − 1) and (n) states can be expressed as 
follows:

dm

dq
= 2q(m − βmb)

Gn−1,n + q2
. (3.2.7b)

If β is Ω , then the critical mass βmb becomes mo . The coefficient 
β would change with the rocket mass or rocket mass ratio.

Hence, the following characteristic equations should be satisfied 
to maximize altitude at burn-out state.

ln(xb) − 4que

b∑
i=1

Gi,i(1 − ωi)

(Gi−1,i + q2)(Gi,i + q2)
= Sb, (3.2.8a)

Sb = xb + 1

xb − 1

b∑
i=1

K̄ i

hi∫
hi−1

4q2

Gi−1,i + q2

m − βmb

m2
dh. (3.2.8b)

This equation is the fourth-order one but is impossible to be con-
structed in a polynomial form. Hence, to avoid this serious situa-
tion, it is inevitable to build alternative equation in a reduced order 
as follows:

q3[ln(xb) − Sb
] − 4ue

b∑
i=1

Gi,i(1 − ωi)

(
Gi−1,i

q2 + 1)(
Gi,i

q2 + 1)
= 0, or

(3.2.9a)

q
[
ln(xb) − Sb

] − 4ue

b∑
i=1

Gi,i(1 − ωi)

(
Gi−1,i

q + q)(
Gi,i

q + q)
= 0. (3.2.9b)

The solution of the characteristic equation cannot be obtained an-
alytically since the undetermined solution exists implicitly in the 
second term. Thus, we try to obtain the solution with the follow-
ing iterative equation.
qk+1 = 3

√√√√√ 4ue

ln(xb,k) − Sb,k

b∑
i=1

Gi,i(1 − ωi)

(
Gi−1,i

q2
k

+ 1)(
Gi,i

q2
k

+ 1)
, or

(3.2.10a)

qk+1 = 4ue

ln(xb,k) − Sb,k

b∑
i=1

Gi,i(1 − ωi)

(
Gi−1,i

qk
+ qk)(

Gi,i
qk

+ qk)
. (3.2.10b)

Preliminary numerical experiments show that as same as the pre-
vious study [23], the first order approximation (3.2.10b) converges 
faster than the third order approximation (3.2.10a) and gives ex-
actly same results. These equations are stable and, thus, converge 
within several iterations. The converged solution can be obtained 
within about 20 iterations that are slightly higher than that for the 
cases with constant drag parameter.

The term Sb in the above equation decreases and so does the 
estimated velocity parameter qk+1 as the coefficient β increases. 
Therefore, we can determine the coefficient β with the following 
iterative relation.

βk+1 = βk

[
1 − Cβ

(
q

hb

dhb

dq

)
k

]
. (3.2.11a)

On the contrary to the cases with a constant drag parameter con-
sidered in the previous study [23], the derivative of altitude with 
respect to the velocity parameter could not be explicitly deter-
mined since the drag parameter changes with the altitude that is 
not determined yet. A reasonable and simple alternative is numer-
ical derivative represented as follows:

∂hb

∂q
≈ hb(q + �q) − hb(q − �q)

2�q
. (3.2.11b)

The larger value of Cβ in equation (3.2.11a) results in the faster 
convergence but the stronger instabilities. In the present study, the 
constant of 1/4 is used. On the other hand, the smaller �q results 
in the more exact differentiation but the stronger instabilities. Pre-
liminary numerical experiments showed that the difference of the 
velocity parameter �q between 0.1% and 1.0% of the velocity pa-
rameter guaranteed stable convergences. In the present study, the 
difference of 0.5% is adopted.

3.3. Optimal conditions at apogee

The rocket in coast phase ascends until the apogee or apogee 
where the rocket velocity is zero. Hence, the optimal condition for 
maximizing altitude at apogee would differ from that at burn-out 
state. In coast phase, the thrust is terminated and the mass is con-
stant. Thus, the governing equation becomes

− dv

K v2 + mb g
= 1

mb

dh

v
. (3.3.1a)

Separating variables yields

− K vdv

K v2 + mb g
= K

mb
dh. (3.3.1b)

The left hand side of the above equation cannot be analytically in-
tegrated since the drag parameter is not constant. We can avoid 
such difficulty with the strategy of divide-and-conquer as applied 
to the burn-out situation. If we divide the whole flight time into 
intervals small enough to treat the drag parameter and gravita-
tional acceleration as constants in each interval. Then the integral 
of the left hand side of the above equation in the interval between 
(n − 1) state and (n) state becomes

−
vn∫

v

K̄n vdv

mb ḡn + K̄n v2
= 1

2
ln

(
mb ḡn + K̄n v2

n−1

mb ḡn + K̄n v2
n

)
. (3.3.2)
n−1
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The above term makes it difficult to analyze the behavior of the 
governing equation since we cannot determine the derivative of 
the intermittent velocities with respect to the velocity parameter. 
On the other hand, we can substitute the rocket velocity with an-
other variable as follows:

w = √
K v, (3.3.3a)

dw = √
Kdv + v

2
√

K
dK = √

K v

(
dv

v
+ dK

2K

)
. (3.3.3b)

Both the velocity and the drag parameter have positive signs and 
negative rates and thus we can assume that the differentials have 
the following relationship:

dK

K
= ψ

dv

v
. (3.3.3c)

If the drag parameter changes in a similar mode, we assume that 
the ratio ψ is constant throughout the flight time in coast phase. 
The ratio ψ can be determined with comparing the drag parame-
ters at burn-out state and at the state where the velocity is half of 
burn-out velocity as follows:

ψ = ln[K (vb)/K (vb/2)]
ln(2)

. (3.3.3d)

Hence the governing equation integrated from ground state to 
apogee approximately becomes

vb∫
o

vdv

q2 − v2
− 2

2 + ψ

o∫
wb

wdw

w2 + mb g

=
hb∫

o

K

m
dh +

hs∫
hb

K

mb
dh. (3.3.4)

The second term of the above equation is reduced as

− 1

2 + ψ
ln

(
mb gb

mb gb + Kb v2
b

)
= 1

2 + ψ
ln

(
Gb,b + v2

b

Gb,b

)
, (3.3.5a)

Gb,b = mb gb

Kb
. (3.3.5b)

The parameter G changes with the velocity parameter due to the 
altitude change. But at the maximum altitude the derivative of the 
altitude becomes zero and thus we can ignore the derivative of 
the parameter G . Differentiating the above term with respect to 
the velocity parameter yields

2

2 + ψ

vb

Gb,b + v2
b

d

dq

(
q

xb − 1

xb + 1

)

= 2

2 + ψ

xb − 1

xb + 1

q

Gb,b + v2
b

[
xb − 1

xb + 1
+ 2q

(xb + 1)2

dxb

dq

]
. (3.3.6)

On the other hand, differentiating the right hand side in equa-
tion (3.3.4) with respect to the velocity parameter leads to

hb∫
o

d

dq

K

m
dh +

hs∫
hb

d

dq

K

mb
dh + Kb

mb

dhb

dq
− Ko

mo

dho

dq
+ Ks

mb

dhs

dq

− Kb

mb

dhb

dq
. (3.3.7)

The Leibniz rule [29] is applied. The second and the last terms can-
cel out. The derivative of altitude at ground state is zero, and, for 
the maximum altitude, the derivative of altitude at apogee should 
be zero. The rocket mass after burn-out state is constant and thus 
its derivative is zero and, as mentioned in the above section, at 
the maximum altitude we can ignore the derivative of the drag 
parameter. Thus the second term vanishes but, as mentioned in 
the above section, the first term remains. Hence, the characteristic 
equation to indicate the optimal condition for maximizing altitude 
at apogee becomes

1

xb

dxb

dq
+ 4

2 + ψ

q

Gb,b + v2
b

[
xb − 1

xb + 1
+ 2qxb

(xb + 1)2

1

xb

dxb

dq

]

= 2
xb + 1

xb − 1

b∑
i=1

K̄ i

hi∫
hi−1

1

m2

dm

dq
dh. (3.3.8a)

Rearranging this equation yields

Γb
1

xb

dxb

dq
+ 4q

2 + ψ

xb − 1

xb + 1

= 2
(
Gb,b + v2

b

) xb + 1

xb − 1

b∑
i=1

K̄ i

hi∫
hi−1

1

m2

dm

dq
dh, (3.3.8b)

Γb = Gb,b + q2
[

1 − 4ψ

2 + ψ

xb

(xb + 1)2

]
. (3.3.8c)

Inserting equation (3.2.6) and equation (3.2.7) into the above equa-
tion leads to

ln(xb) − 4que

b∑
i=1

Gi,i(1 − ωi)

(Gi−1,i + q2)(Gi,i + q2)
= Ss, (3.3.9a)

Ss = 4q2

(2 + ψ)Γb

xb − 1

xb + 1
+ Gb,b + v2

b

Γb

xb + 1

xb − 1

×
b∑

i=1

K̄ i

hi∫
hi−1

4q2

Gi−1,i + q2

m − mcr

m2
dh. (3.3.9b)

This equation is the fourth-order one but is impossible to be con-
structed in a polynomial form. Rearranging this equation yields a 
reduced order equation as follows:

q3[ln(xb) − Ss
] − 4ue

b∑
i=1

Gi,i(1 − ωi)

(
Gi−1,i

q2 + 1)(
Gi,i

q2 + 1)
= 0, or

(3.3.10a)

q
[
ln(xb) − Ss

] − 4ue

b∑
i=1

Gi,i(1 − ωi)

(
Gi−1,i

q + q)(
Gi,i

q + q)
= 0. (3.3.10b)

The solution of the characteristic equation cannot be obtained an-
alytically since the undetermined solution exists implicitly in the 
second term. Thus, we try to obtain the solution with the follow-
ing iterative equation.

qk+1 = 3

√√√√√ 4ue

ln(xb,k) − Ss

b∑
i=1

Gi,i(1 − ωi)

(
Gi−1,i

q2
k

+ 1)(
Gi,i

q2
k

+ 1)
, or

(3.3.11a)

qk+1 = 4ue

ln(xb,k) − Ss

b∑
i=1

Gi,i(1 − ωi)

(
Gi−1,i

qk
+ qk)(

Gi,i
qk

+ qk)
. (3.3.11b)

Preliminary numerical experiments show that the first order ap-
proximation (3.3.11b) converges faster than the third order one 
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Table 5.1
Standard atmosphere [30].

Layer h
(km)

T
(K)

p
(Pa)

Layer h
(km)

T
(K)

p
(Pa)

Troposphere 0 288.15 1.0133E+5

thermosphere

90 186.87 1.8359E−1
11 216.77 2.2699E+4 100 195.88 3.2011E−2

Stratosphere 20 216.65 5.5293E+3 150 634.39 4.5422E−4
32 228.49 8.8906E+2 200 854.36 8.4736E−5
47 269.68 1.1585E+2 300 976.01 8.7704E−6

Mesosphere 51 270.65 7.0458E+1 400 995.83 1.4518E−6
70 217.45 4.6342E+0 500 999.24 3.0236E−7
85 188.89 4.4563E−1 600 999.85 8.2130E−8
(3.3.11a) and gives exactly same results, which is as same as the 
previous study [23]. However, in the case with a small mass ra-
tio less than 1.5, the third order approximation shows more stable 
convergence. The converged solution can be obtained in 30 itera-
tions that are almost same as that for the burn-out situation.

The term Ss in the above equation decreases and so does the 
estimated velocity parameter qk+1 as the coefficient β increases. 
Therefore, we can determine the coefficient β with iteration as fol-
lows:

βk+1 = βk

[
1 − Cβ

(
q

hs

dhs

dq

)
k

]
, (3.3.12a)

∂hs

∂q
≈ hs(q + �q) − hs(q − �q)

2�q
. (3.3.12b)

The larger Cβ in equation (3.3.12a) results in the faster conver-
gence but the stronger instability. In the present study, the con-
stant of 1/4 is used. On the other hand, the smaller �q results 
in the more exact differentiation but the stronger instabilities. 
Preliminary numerical experiments showed that the difference of 
the velocity parameter �q between 0.1% and 1.0% of the velocity 
parameter guaranteed stable convergences. In the present study, 
the same difference of 0.5% is adopted as the burn-out situa-
tion.

4. Numerical solutions

If the mass and velocity of the rocket are known at (n − 1), 
then the velocity at (n) can be obtained. The discretized governing 
equation becomes

mn−1/2
vn − vn−1

�t
= ṁn−1/2ue − K̄n v2

n−1/2 − mn−1/2 ḡn. (4.1a)

�t = tn − tn−1 = ue

ḡn
ln

(
mn ḡn + K̄nq2

mn−1 ḡn + K̄nq2

)
. (4.1b)

The index n −1/2 denotes the average of a variable between (n −1) 
and (n) states.

mn−1/2 = mn−1 + mn

2
, (4.2a)

vn−1/2 = vn−1 + vn

2
,

ṁn−1/2 = ṁn−1 + ṁn

2
= (mn−1 + mn)ḡn + 2K̄nq2

2ue
(4.2b)

The governing equation is then rewritten as follows:

mn−1/2
vn − vn−1

�t
= ṁn−1/2ue − K̄n

4

(
v2

n−1 + 2vn−1vn + v2
n

)
− mn−1/2 ḡn. (4.3a)
This discretized equation becomes a quadratic one as follows:

v2
n + 2

(
vn−1 + 2

mn−1/2

K̄n�t

)
vn + v2

n−1

− 4

K̄n

(
mn−1/2

vn−1

�t
+ ṁn−1/2ue − mn−1/2 ḡn

)
= 0. (4.3b)

This solution at (n) state is

vn = −B +
√

B2 − C, (4.4a)

B = vn−1 + 2
mn−1/2

K̄n�t
,

C = v2
n−1 − 4

K̄n

(
mn−1/2

vn−1

�t
+ ṁn−1/2ue − mn−1/2 ḡn

)
(4.4b)

In coast phase, the thrust term is extracted from the equations, 
and the mass is fixed as that at the burn-out state.

5. Calculation conditions

5.1. Atmosphere

The solution of the rocket equation depends strongly on the 
drag coefficient that varies with the ambient air density. Therefore, 
for the flight of a rocket in a real atmosphere, the density change 
according to altitude raises a critical issue for the rocket dynam-
ics. In the present study, the density is determined according to 
the standard atmosphere [30] where the effects of wind, location 
or time are excluded. The standard atmosphere is composed of 
the troposphere, stratosphere, mesosphere, and thermosphere. The 
typical thermodynamic properties for the standard atmosphere are 
listed in Table 5.1.

There are no universal formulas to express the thermodynamic 
properties up to the very high altitude. So the piecewise contin-
uous expression is adopted in the present study. For the standard 
atmosphere, the temperature in each layer is expressed as a linear 
function of the altitude. The temperature at an altitude between 
(a − 1) layer and (a) layer can be obtained as follows:

T = Ta − Ta−1

ha − ha−1
(h − ha−1) + Ta−1. (5.1)

The pressure in each interval is expressed as an exponential 
function of the altitude. Then the pressure at an altitude between 
(a − 1) layer and (a) layer can be obtained as follows:

p = pa−1 exp
[
ξa(h − ha−1)

]
, (5.2a)

ξa = 1

ha − ha−1
ln

(
pa

pa−1

)
. (5.2b)

We can then determine the density as a function of altitude with 
the thermodynamic state function for the ideal gas of air.
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Fig. 1. Profile of thermodynamic properties according to altitude. (a) Variation of 
temperature according to the altitude and (b) Variation of density according to the 
altitude.

Table 5.2
Variations of rocket mass.

Dry mass 
(kg)

Total mass (kg)

Ω = 2 Ω = 3 Ω = 4 Ω = 5 Ω = 6

500 1000 1500 2000 2500 3000
750 1500 2250 3000 3750 4500

1000 2000 3000 4000 5000 6000

Fig. 1 compares the changes of thermodynamic properties with 
altitude between data from the Standard Atmosphere [30] and 
that calculated with the functions used in the present study. The 
model function described in the above equations provides almost 
the same density as that of the Standard Atmosphere.

5.2. Rocket launching and propulsion conditions

In the present study, the absolute jet velocity at the nozzle exit 
is fixed as 1916 m/s. The rocket dry mass of 750 kg is considered. 
Also rocket dry masses of 500 kg and 1000 kg are considered for 
comparisons. The total mass or the propellant mass is determined 
according to the mass ratio, Ω . The mass ratio is varied from 2 to 
6, which means the rocket total mass is changed from 1500 kg to 
4500 kg. The conditions considered are listed in Table 5.2.

The cross-section diameter of the rocket is 0.6 m. The aerody-
namic drag coefficient, Cd , is not a constant but a function of the 
Mach number. The basic model to simulate the effect of the Mach 
number is the one used by Ganji [18]. However the basic model 
showed some unstable behaviors near the Mach number of one. 
Fig. 2. Effect of Mach number on the factor fd .

Hence, in the present study, the following model modified for the 
smooth transitions near the Mach number one is adopted.

Cd = Cdo
[
1 + Rd fd(M)

]
, (5.3a)

fd(M) =
⎧⎨
⎩

A0M6, M ≤ 1
1 − A1(M − M1)

4, 1 < M ≤ M2

A2(M + 1 − M2)
−1 M2 < M

, (5.3b)

A1 = 1 − A0

(M1 − 1)4
, A2 = 1 − A1(M2 − M1)

4. (5.3c)

In the present study, the aerodynamic drag coefficient at ground 
state Cdo and the jump ratio of the drag coefficient Rd are set as 
0.8 and 1.1, respectively. The critical Mach numbers M1 and M2
in the above equation are set as 1.2 and 1.325, respectively. The 
coefficient A0 is fixed as 0.75. Fig. 2 shows the Mach number ef-
fectiveness fd on the aerodynamic drag coefficient.

5.3. Numerical approaches

If the number of piecewise intervals increases, the numerical 
solution or the piecewise analytic solution becomes more exact. 
Preliminary numerical experiment shows that in case the number 
of intervals for boost phase, Nb , is as great as 150, the numerical 
integration with the trapezoid rule yields almost the same result 
as that with the Simpson rule [28]. The number of piecewise in-
tervals for boost phase and coast phase are fixed as 400 and 200, 
respectively. The mass change during each interval is assumed to 
be constant.

mn − mn−1 = mb − mo

Nb
= const. (5.4)

For a numerical iteration in an interval, the iteration process is 
continued until the relative solution change is less than 10−7 of 
the solution.

6. Results

6.1. Solution profiles

Fig. 3 compares the velocity profiles between analytic and nu-
merical solutions. The vertical dashed line indicates the burn-out 
time. The rocket velocities increase rapidly at early stage and after 
then keep constant until burn-out state. In coast phase, the ve-
locities decrease due to the gravity force and aerodynamic drag. 
Fig. 3a shows the variations of velocity profile according to the 
rocket mass ratio with a fixed rocket mass of 750 kg. Regardless 
of the rocket mass ratio, each analytic solution is identical to the 
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Fig. 3. Velocity profile according to time: (a) case with dry mass of 750 kg and 
(b) case with mass ration of 4.

Fig. 4. Altitude profile according to time.

numerical one. The case with a higher mass ratio yields a higher 
rocket velocity and a longer time to apogee. Fig. 3b shows the vari-
ation of velocity profiles according to the rocket mass with a fixed 
rocket mass ratio of 4. Regardless of the rocket mass, each analytic 
solution is identical to the numerical one. The case with a higher 
mass yields a higher velocity but a similar time to apogee to the 
other.

Fig. 4 shows the changes of altitude with time. The rocket mass 
at burn-out state is 750 kg. The vertical dashed line indicates 
the burn-out time. In boost phase, the rocket altitude increases 
through concave curves at early stage and after then keeps con-
stant slope until burn-out state. In coast phase, the rocket altitude 
Fig. 5. Profiles of mass flow rate according to time.

changes through a convex curve, since the rocket is decelerated by 
gravity force. The increase of rocket mass ratio results in a increase 
of the maximum altitude.

Fig. 5 shows the profiles of mass flow rate according to time. 
The increase of mass ratio results in the proportional increase of 
the mass flow rate. For a given mass ratio, there are three distinc-
tive regions. In the first region, the mass flow decreases gradually 
as the mass decreases. In the second region, the mass flow steeply 
increases and decreases because of the sharp increase and decrease 
of the drag coefficient where rocket passes the sonic barrier. In the 
third region, the mass flow decreases gradually with the decreases 
of the drag parameter and the rocket mass. The change of the mass 
flow rate is due to the constraint that the mass flow should be ad-
justed to keep the velocity parameter constant.

6.2. Optimal conditions at burn-out state

To determine the characteristic changes of the altitude at burn-
out state according to the velocity parameter, the following nor-
malized parameters are introduced.

φb = q − qopt,b

qopt,b
. (6.1a)

ηb = hb

hb(qopt,b)
. (6.1b)

Fig. 6 shows the variations of the normalized altitude at burn-
out state according to the normalized velocity parameter. The ver-
tical dashed line indicates the optimal velocity parameter calcu-
lated by characteristic equation. The reduced order approximations 
of the characteristic equation (3.2.10) give the exact predictions of 
the optimal velocity parameter regardless of the rocket masses or 
the mass ratios. The values of the velocity parameter in the figure 
stand for the optimal ones at burn-out state where φb are zero. 
On the contrary to the previous study [23], the change of the nor-
malized altitude on the right side is more sensitive to the velocity 
parameter than the other side, which is due to the drag reduction 
with altitude.

Fig. 6a represents the effects of the mass ratio on the varia-
tions of the normalized altitude. The case with the mass ratio of 
2 seems much more sensitive to the velocity parameter than the 
other cases, which is due to that the rocket velocity is near to 
the speed of sound where the drag coefficient changes sensitively. 
Fig. 6b represents the effects of the rocket mass on the normal-
ized rocket altitude. The normalized curves with different rocket 
masses nearly coincide even though the difference of the rocket 
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Fig. 6. Variation of altitude at burn-out state: (a) case with dry mass of 750 kg and 
(b) case with mass ration of 4.

Fig. 7. Variation of optimal velocity parameters at burn-out state.

mass is remarkably large, which suggests that the variation of the 
normalized altitude is almost irrelevant to the rocket mass.

Fig. 7 shows variations of the optimal velocity parameters with 
the rocket mass or the rocket mass ratio at burn-out state. For 
a given rocket mass ratio, the optimal velocity parameter grows 
with the rocket mass but the growth rate slightly decreases as the 
rocket mass increases. For a given mass, there are two distinctive 
regions where the increasing rates of the optimal velocity param-
eter are very different. Regardless of the mass, the critical velocity 
parameter separating the regions is near to the speed of sound 
where the drag coefficient increases sensitively.

Fig. 8 shows variations of the maximum altitude at burn-out 
state with the rocket mass or the rocket mass ratio. For a given 
rocket mass ratio, the maximum altitude increases with the rocket 
Fig. 8. Variation of maximum altitude at burn-out state.

mass but the rate slightly decreases as the rocket mass increases. 
For a given rocket mass, the altitude grows increasingly at lower 
mass ratio and after then grows with the mass ratio in a linear 
mode.

6.3. Optimal conditions at apogee

To determine the characteristic changes of altitude at apogee 
according to the velocity parameter, the following normalized pa-
rameters are introduced.

φs = q − qopt,s

qopt,s
. (6.2a)

ηs = hs

hs(qopt,s)
. (6.2b)

Fig. 9 shows variations of the normalized altitude at apogee ac-
cording to the normalized velocity parameter. The vertical dashed 
line indicates the optimal velocity parameter calculated by charac-
teristic equation. The reduced order approximations of the charac-
teristic equation (3.3.11) give the exact predictions of the optimal 
velocity parameter regardless of the rocket masses or mass ratios. 
The values of the velocity parameter in the figures stand for the 
optimal ones at apogee where φs are zero.

Fig. 9a represents the effects of the mass ratio on the altitude. 
The case with the mass ratio of 2 is much more sensitive on the 
left hand side but much less sensitive on the right hand side to 
the velocity parameter than the other cases. This is due to that the 
optimal velocity parameter is a little higher than the critical Mach 
number where the drag coefficient has the maximum value. Fig. 9b 
represents the effects of the rocket mass on the altitude. The nor-
malized curves with different rocket masses nearly coincide even 
though the change of the rocket mass is remarkably large, which 
suggests that the variation of the normalized altitude is almost ir-
relevant to the rocket mass.

Fig. 10 shows the variations of the optimal velocity parame-
ters with the rocket mass or the rocket mass ratio at apogee. For a 
given rocket mass ratio, the optimal velocity parameter grows with 
rocket mass. While, on the contrary to the situation at burn-out 
stare, for a given rocket mass, the optimal velocity parameter de-
creases steeply with the mass ratio until the minimum value and, 
after then, bounce back and grows gradually with the rocket mass 
ratio. For a given mass, there is distinctive region where the op-
timal velocity parameter is the minimum and maintained almost 
constant. The minimum velocity parameter is near to the speed of 
sound where the drag coefficient increases sensitively.

Fig. 11 shows variations of the maximum altitude at apogee 
with the rocket mass or the rocket mass ratio. For a given rocket 
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Fig. 9. Variation of altitude at apogee: (a) case with dry mass of 750 kg and (b) case 
with mass ration of 4.

Fig. 10. Variation of optimal velocity parameters at apogee.

mass ratio, the maximum altitude increases with the rocket mass 
but the rate slightly decreases as the rocket mass increases. For a 
given rocket mass, the altitude grows increasingly at lower mass 
ratio and after then grows with the mass ratio in a linear mode.

7. Conclusions

The one-dimensional rocket momentum equation including 
thrust, gravitational force, and aerodynamic drag is examined to 
determine analytically the optimal condition for maximizing al-
titude of a sounding rocket at burn-out state or at apogee. The 
rocket flights in a standard atmosphere where the air density as 
well as the gravitational acceleration change with altitude are con-
sidered. Also the change of the aerodynamic drag coefficient with 
Fig. 11. Variation of maximum altitude at apogee.

the Mach number is considered. The piecewise analytic solutions 
are obtained with a divide-and-conquer strategy with which the 
whole flight time is divided into small intervals where the drag 
parameter and the gravitational acceleration can be treated as con-
stants in each interval.

The piecewise analytic rocket velocity for a given velocity pa-
rameter can be obtained that matches the numerical one. For a 
given launching condition, there exists the optimal velocity param-
eter for maximizing altitude at burn-out state or at apogee. An 
analytic characteristic equation constructed from the analytic so-
lution of the governing equation provides accurate predictions of 
the optimal conditions for maximizing altitude at burn-out state 
or apogee, which is confirmed by the numerical experiments.

In burn-out situation, the increase of the rocket mass at a given 
mass ratio results in the increases of the optimal velocity parame-
ter but the increasing rate decreases as the rocket mass increases. 
The optimal velocity parameter at a given rocket mass grows with 
the rocket mass ratio in a linear mode. In apogee situation, the ve-
locity parameter for maximizing altitude at apogee exists and is 
higher than that at the burn-out situation. Like the situation at 
burn-out state, the optimal velocity parameter grows with rocket 
mass, but there is the mass ratio where the optimal velocity pa-
rameter is the minimum at a given rocket mass, which is not 
shown in burn-out situation.

The present approach is restricted to the case where an ana-
lytic solution exists and thus does not provide the general solution 
of the classical Goddard problem. Because of the assumption that 
the mass flow of propellant should be adjusted to keep the velocity 
parameter constant, the application of the present results to a real 
problem would be limited. For instance, most of sounding rockets 
use the constant mass flow of propellant. But, unfortunately, the 
analytic solution of the problem does not exist. However, we could 
provide an approximate analytic solution of the problem with a 
proper modification of the present analytic approach. In the fu-
ture study, we will search for alternative methods to get over the 
difficulties in dealing with the problem of constant mass flow. 
Adopting a new constant parameter that replaces the velocity pa-
rameter to guarantee analytic integration of the left hand side of 
equation (2.7), or exploiting piecewise analytic integrations with 
piecewise constant velocity parameters could be an alternative.
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