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Abstract
Background Accurate kinetic modeling of 18F-fluorodeoxyglucose  ([18F]-FDG) positron emission tomography (PET) data 
requires accurate knowledge of the available tracer concentration in the plasma during the scan time, known as the arterial 
input function (AIF). The gold standard method to derive the AIF requires collection of serial arterial blood samples, but 
the introduction of long axial field of view (LAFOV) PET systems enables the use of non-invasive image-derived input 
functions (IDIFs) from large blood pools such as the aorta without any need for bed movement. However, such protocols 
require a prolonged dynamic PET acquisition, which is impractical in a busy clinical setting. Population-based input func-
tions (PBIFs) have previously shown potential in accurate Patlak analysis of  [18F]-FDG datasets and can enable the use of 
shortened dynamic imaging protocols. Here, we exploit the high sensitivity and temporal resolution of a LAFOV PET system 
and explore the use of PBIF with abbreviated protocols in  [18F]-FDG total body kinetic modeling.
Methods Dynamic PET data were acquired in 24 oncological subjects for 65 min following the administration of  [18F]-FDG. 
IDIFs were extracted from the descending thoracic aorta, and a PBIF was generated from 16 datasets. Five different scaled 
PBIFs (sPBIFs) were generated by scaling the PBIF with the AUC of IDIF curve tails using various portions of image data 
(35–65, 40–65, 45–65, 50–65, and 55–65 min post-injection). The sPBIFs were compared with the IDIFs using the AUCs 
and Patlak Ki estimates in tumor lesions and cerebral gray matter. Patlak plot start time (t*) was also varied to evaluate the 
performance of shorter acquisitions on the accuracy of Patlak Ki estimates. Patlak Ki estimates with IDIF and t* = 35 min 
were used as reference, and mean bias and precision (standard deviation of bias) were calculated to assess the relative per-
formance of different sPBIFs. A comparison of parametric images generated using IDIF and sPBIFs was also performed.
Results There was no statistically significant difference between AUCs of the IDIF and sPBIFs (Wilcoxon test: P > 0.05). 
Excellent agreement was shown between Patlak Ki estimates obtained using sPBIF and IDIF. Using the  sPBIF55–65 with 
the Patlak model, 20 min of PET data (i.e., 45 to 65 min post-injection) achieved < 15% precision error in Ki estimates in 
tumor lesions compared to the estimates with the IDIF. Parametric images reconstructed using the IDIF and sPBIFs with and 
without an abbreviated protocol were visually comparable. Using Patlak Ki generated with an IDIF and 30 min of PET data 
as reference, Patlak Ki images generated using  sPBIF55–65 with 20 min of PET data (t* = 45 min) provided excellent image 
quality with structural similarity index measure > 0.99 and peak signal-to-noise ratio > 55 dB.
Conclusion We demonstrate the feasibility of performing accurate  [18F]-FDG Patlak analysis using sPBIFs with only 20 min 
of PET data from a LAFOV PET scanner.

Keywords LAFOV PET · Kinetic modeling · Parametric imaging · FDG

Introduction

With the recent technological developments in positron 
emission tomography (PET), kinetic modeling and paramet-
ric imaging of dynamic PET datasets have shown increased 
potential for improved disease diagnosis, therapeutic 
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response monitoring, and drug development [1–4]. Physi-
ologically based kinetic models often require an accurate 
knowledge of the time-dependent concentration of the PET 
tracer in the arterial blood, which is commonly known as 
the arterial input function (AIF). The current gold standard 
method to derive the AIF entails serial arterial blood sam-
pling throughout the entire dynamic PET scan. Due to its 
invasiveness, arterial blood sampling is rarely applied out-
side of a research setting. Measurement of an image-derived 
input function (IDIF) is a non-invasive alternative, but often 
suffers from partial volume effects if a large vascular struc-
ture is not present in the field-of-view (FOV), as occurs in 
some neuroimaging studies [5]. Hence, IDIF extraction 
methods for head imaging usually require a co-registered 
high-resolution anatomical image (i.e., MRI) for the deline-
ation of arteries and partial volume correction [6–8].

With the introduction of long axial FOV (LAFOV) PET/
CT scanners, IDIFs can be derived from various large vas-
cular structures or blood pools (i.e., aorta, left ventricle), 
minimizing the partial volume effects [9, 10]. Furthermore, 
the increased sensitivity of these systems enables the use 
of short frame durations in the reconstruction of early PET 
frames [11–13], allowing a more detailed capture of the 
IDIF curve peaks. Nevertheless, approximately hour-long 
dynamic  [18F]-FDG PET acquisitions from the time of tracer 
administration are still required to capture the whole IDIF 
from the time of tracer administration, making these proto-
cols cumbersome in a busy clinical setting. The development 
of alternative methods to enable dynamic imaging protocols 
which are compatible with routine clinical procedures is nec-
essary, and recently developed high-sensitivity scanners with 
long axial FOV (LAFOV) may make this possible. Recent 
work with LAFOV PET systems has shown that abbreviated 
dynamic imaging protocols can be used to extract net tissue 
influx of  [18F]-FDG, i.e., the Patlak slope, known as Ki (ml 
 g−1  min−1) with a total scan duration of 10 min [14]. We 
have also previously shown that Ki and some of the kinetic 
microparameters can be estimated with low bias and good 
precision with a total scan duration of 15–20 min [15]. How-
ever, one major limitation of these protocols is that they 
require dual-time point scanning to capture the early and late 
parts of tracer dynamics, making these protocols more chal-
lenging to be applied in practice. Furthermore, a second CT 
scan for PET data corrections and registration of early and 
late scans are required for accurate parametric imaging using 
these protocols with resultant additional radiation dose.

As an alternative, population-based input functions 
(PBIFs) [16–18] are an attractive alternative for Patlak 
modeling of  [18F]-FDG datasets [19–21] to derive kinetic 
macroparameters such as net tracer influx (Ki) and tracer 
distribution volume (DV; ml  g−1). In this study, we exploit 
the high sensitivity and temporal resolution of a LAFOV 
PET system to explore the use of PBIFs with abbreviated 

protocols in kinetic modeling of dynamic  [18F]-FDG data-
sets. We investigate the effect of different scanning periods 
on the accuracy of PBIF scaling and systematically explore 
the performance of abbreviated protocols with PBIFs to 
obtain reliable kinetic parameters from  [18F]-FDG datasets 
in a series of oncological patients.

Materials and methods

This work includes  [18F]-FDG PET data from a clinically 
heterogeneous group of 24 oncological subjects (9 females, 
15 males; mean age: 60 ± 15 years, mean weight: 77 ± 17 kg). 
The dataset was randomly separated into a PBIF generation 
group (n = 16) and a validation group (n = 8). There were 
no statistically significant differences between the mean age, 
weight, and injected doses of the two groups (unpaired t-test, 
p > 0.05). The subjects were scanned as part of a dynamic 
imaging protocol, where dynamic PET emission data were 
acquired for 65 min using Biograph Vision Quadra (Siemens 
Healthineers) LAFOV PET/CT system. Intravenous bolus 
injection of  [18F]-FDG (mean activity 235 ± 51 MBq) to the 
left or right arm was performed approximately 15 s after the 
start of the PET acquisition using a 150-cm-long extension 
line. Following the PET scan, a low-dose CT scan was used 
for anatomical information and PET data corrections. The 
list-mode PET data were reconstructed using 62 frames with 
the following frame durations: 2 × 10 s, 30 × 2 s, 4 × 10 s, 
8 × 30 s, 4 × 60 s, 5 × 120 s, and 9 × 300 s. The initial two 10-s 
frames were employed to account for the time delay between 
the start of PET acquisition and  [18F]-FDG administration. 
Image reconstruction was performed using the PSF + TOF 
reconstruction algorithm, with 4 iterations and 5 subsets with 
a voxel size of 1.65 × 1.65 × 1.65  mm3. A Gaussian filter with 
a 2 mm FWHM was used to smooth the images.

The descending thoracic aorta and whole brain volumes 
of interests (VOIs) were generated using a deep-learning-
based method implemented in a research prototype software 
(MIWBAS version 1.0, Siemens Medical Solutions USA, 
Inc) [9, 22]. Brain gray matter VOIs were extracted utilizing a 
standard space  [18F]-FDG healthy brain template (available in 
PMOD v.4.1, PMOD Technologies, Zurich, Switzerland). In 
addition, an experienced nuclear medicine physician manually 
delineated 34 tumor lesions from the 8 testing sets using an 
isocontour tool (PMOD 4.1, threshold set to 50% of max value).

The IDIFs were extracted using the VOI from the descend-
ing thoracic aorta, which was isotopically eroded by 6 mm in 
all directions to reduce partial volume and motion effects. The 
PBIF was derived using the 14 datasets in the PBIF generation 
group using the following steps: The IDIFs were normalized 
to their respective area under curves (AUC). Next, the nor-
malized curves were fitted using Feng’s input function model 
[23], which is a sum of a gamma variate function with two 
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exponentials with seven parameters (Eq. 1). The fitted curves 
were adjusted to population mean time delay. Then, the result-
ing curves were averaged to generate the PBIF

where λ1, λ2, and λ3 are the eigenvalues of the model and A1, 
A2, and A3 are the coefficients of the model [23].

During the evaluation of the PBIF, five scaled PBIFs 
(sPBIFs) were generated by scaling the PBIF to the AUC 
of IDIF curves tails using various time periods (35–65 min, 
40–65 min, 45–65 min, 50–65 min, and 55–65 min post-
injection). Each of these sPBIFs was evaluated against the 
IDIFs by comparing AUCs and Patlak Ki estimates in tumor 
lesions and brain gray matter. Once the best performing tim-
ing window to generate sPBIF was determined, the Patlak 
analysis was repeated with this sPBIF with varying Patlak 
start time (t*) to evaluate the performance of Patlak analysis 
with a sPBIF with shortened PET acquisitions. Patlak fittings 
were performed utilizing the open-source COMKAT software 
package (Compartment Model Kinetic Analysis Tool, v.4.1) 
[24] using MATLAB (v2021, The MathWorks, Inc). Here, we 
first compare the estimated Patlak Ki values computed using 
IDIF and sPBIF at different t* values. Second, to assess the 
performance of abbreviated dynamic imaging protocols with 
a sPBIF to full protocols with an IDIF, mean bias and preci-
sion (standard deviation of bias) of Patlak Ki estimates with a 
sPBIF and varying t* values were calculated using Ki estimates 
obtained using an IDIF and t* = 35 min as reference.

Parametric Patlak Ki images are also reconstructed using the 
IDIF, the best performing sPBIF, and different PET data dura-
tions. Parametric images were reconstructed using the direct 
Patlak method implemented in a dedicated parametric imag-
ing software prototype (Siemens Healthineers) which employs 
a nested expectation maximization algorithm [25]. Parametric 
images were reconstructed using the PSF + TOF method with 
8 iterations and 5 subsets, 30 nested loops, and were smoothed 
using a 2-mm FWHM Gaussian filter [9]. Quantitative evalua-
tion of images was performed by computing non-absolute and 
absolute relative change (% RC), the structural similarity index 
measure (SSIM), and peak signal-to-noise ratio (PSNR) relative 
to corresponding images obtained with the IDIF and t* = 35 min.

Results

The distribution of AUC-normalized IDIFs from the train-
ing set and the generated PBIF curve are shown in Fig. 1. 
The estimated parameters from fitting the generated PBIF 
with the Feng’s model [4] were τ = 0.72 min, A1 = 15.9, 
A2 = 0.02, A3 = 0.02, λ1 = 17.8  min−1, λ2 = 0.18  min−1, and 
λ3 = 0.01  min−1. Figure 2 shows each of the sPBIFs plot-
ted together with the IDIF from a representative subject 
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1
t − A

2
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3
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3
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in semi-logarithmic scale. This figure illustrates that the 
sPBIFs visually agreed well with the IDIF even though the 
true amplitudes of the peak were slightly underestimated. 
When computed for the eight validation datasets, the 
mean AUC (kBq  min−1  ml−1) was 550 ± 54 for IDIF and 
542 ± 45 for  sPBIF35–65, 544 ± 45 for  sPBIF40–65, 547 ± 44 
for sPBIF45–65, 550 ± 43 for  sPBIF50–65, and 554 ± 43 for 
sPBIF55–65 (supplementary Fig. 1). There were no statisti-
cally significant differences among the AUCs (0–65 min) 
of sPBIFs and the IDIF.

Table 1 shows the R2, bias and precision of Ki values in 
tumor lesions and brain gray matter, calculated using the 
Patlak model (t* = 35 min) with different sPBIFs, compared 
against the corresponding Ki estimates obtained with the 
IDIF. As shown in Table 1 (part A), all five sPBIFs served 
to estimate the tumor lesion Ki with less than 4% bias and 
good precision (standard deviation of bias < 10%). Table 1 
(part B) shows R2, the bias and precision of the error of Ki 
estimates in brain gray matter. The mean bias of the esti-
mates calculated using each of the sPBIFs ranged from 1.9 
to 4.3%. For both tumor lesions and brain gray matter, excel-
lent agreement between Patlak Ki values estimated using 
each sPBIF and IDIF (R2 > 0.98). Although all of the sPBIFs 
showed similar performance with very good resemblance to 
the IDIFs,  sPBIF55–65 yielded the lowest bias and standard 
deviation of bias in tumor and brain gray matter Ki values. 
Therefore, it can be said that the last 10 min of a 65-min 
long dynamic  [18F]-FDG scan can be accurately used for 
scaling of a PBIF. We used  sPBIF55–65 in the evaluation of 
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Fig. 1  The computed PBIF (solid curve) and distribution of nor-
malized IDIFs from 16 subjects (shaded gray area), presented as a 
semilog plot to accentuage agreement at the early phase. The y-axis 
represents the blood  [18F]-FDG concentration of individual curves 
normalized to their respective AUCs
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the abbreviated protocols with varying Patlak start time (t*) 
values in the rest of this work.

Examples of Patlak plots from a lymphoma tumor, includ-
ing fits with IDIF and  sPBIF55–65, are shown in Fig. 3 for 
different Patlak start time values. Similar curve shapes and 
Patlak slope (Ki) estimates were obtained using IDIF and 
 sPBIF55–65 at each of the t* values. As illustrated in Fig. 4, 
comparison of Patlak Ki values in 34 tumor lesions shows 
excellent agreement between IDIF and  sPBIF55–65 estimates 
with R2 > 0.99. This correlation was present when different 
Patlak start times were used.

Figure 5 illustrates the bias and precision of Patlak Ki 
for tumor lesions and brain gray matter estimated using 
 sPBIF55–65 with varying Patlak start time, t*, calculated 
against reference Ki values estimated using IDIF and t* of 
35 min. These results show that 20 min of PET data (45 to 
65 min post-injection) is needed to achieve less than 1% bias 
and 15% precision error in tumor Ki estimates. In order to 
reduce the precision of error to less than 10%, 25 min of PET 
data was required. Linear regression R2 values were 0.99 for 
t* = 40 min and 0.98 for t* = 45. For brain gray matter, only 
15 min of PET data (50 to 65 min post-injection) achieved 
less than 5% bias and precision error. Linear regression R2 
values were 0.99 for t* = 45 and 0.94 for t* = 50 min.

Figure 6 shows whole-body Patlak Ki images gener-
ated using IDIF and  sPBIF55–65 with 30 min of PET data 
(t* = 35 min) and  sPBIF55–65 with 20 min of PET data 
(t* = 45 min) for a representative subject with lymphatic 
cancer. The coronal slices illustrate the high qualitative 
resemblance of whole-body parametric images obtained 
using IDIF and  sPBIF55–65 with 30 min of PET data (35 to 
65 min post-injection) and  sPBIF55–65 with 20 min of PET 
data (45 to 65 min post-injection). The axial slices shown 
in Fig. 6b and c illustrate the similar contrast between 
tumor and background regions and, likewise, between 
brain gray and white matter using both input functions. 
Computed over whole-body images, the average absolute 
relative error between Patlak Ki images generated using 
 sPBIF55–65 with 30 min of PET data, compared against 
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Fig. 2  A representative IDIF plotted with sPBIFs scaled using image 
data from different scanning periods. The full input function curve (a) 
and tail of the curve (b) are illustrated separately

Table 1  R-squared, comparison 
of bias, and precision (standard 
deviation of bias) of  [18F]-FDG 
Ki estimates using PBIFs scaled 
with image data from different 
scan intervals compared against 
estimates with IDIF

Patlak linearization start time t* was set to 35 min post-injection. Results are shown for tumor lesions (A) 
and brain gray matter (B)

sPBIF35–65 sPBIF40–65 sPBIF45–65 sPBIF50–65 sPBIF55–65

A: Tumor lesions
  R2 0.998 0.999 0.999 0.999 0.999
  Bias 4.0% 3.6% 3.0% 2.4% 1.5%
  Precision 7.9% 7.8% 7.6% 7.3% 6.8%

B: Brain gray matter
  R2 0.981 0.982 0.984 0.986 0.989
  Bias 4.3% 3.8% 3.3% 2.6% 1.9%
  Precision 4.2% 4.1% 3.9% 3.7% 3.3%
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IDIF was 0.45 ± 0.29%. The absolute relative error 
increased to 1.00 ± 0.22% when  sPBIF55–65 was used with 
20 min of PET data (t* = 45). Parametric images generated 
using  sPBIF55–65 with 20 min of PET data provided excel-
lent image quality with SSIM > 0.99 and PSNR > 55 dB 
(Table 2).

Discussion

In this work, we have studied the use of population-based 
input functions with abbreviated dynamic  [18F]-FDG proto-
cols in a LAFOV PET system. Using 65-min long dynamic 
datasets obtained in oncological subjects undergoing scan-
ning on a LAFOV Biograph Vision Quadra, we explored the 

optimal timing period to accurately scale the PBIFs using 
limited PET image data. We also investigated the feasibility 
of obtaining stable Ki estimates by using different Patlak 
linearization start times (t*) and, by analogy, using shorter 
examination protocols.

Although there is a substantial body of literature 
acquired over some four decades, kinetic modeling has 
yet to find an established role in routine oncological PET/
CT imaging. One hindrance to its implementation is the 
requirement to scan for up to an hour, with application 
of the radiopharmaceutical on the scanning table. The 
advent of clinical LAFOV PET scanners with high sensi-
tivity and time-of-flight resolution has brought renewed 
interest in this important methodology. In addition to 
enabling faster acquisition times and higher temporal 

Fig. 3  Patlak fits (solid lines) 
to 18F-FDG time activity 
curve from a lymphoma tumor 
lesion using IDIF (blue) and 
 sPBIF55–65 (red). Patlak fits 
are shown for t* = 35 min (a), 
t* = 40 min (b), t* = 45 min (c), 
t* = 50 min (d), and t* = 55 min 
(e). The estimated Patlak 
parameters are shown in the 
inset boxes
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Fig. 4  Graphs illustrating 
linear regression (solid lines) 
between Patlak Ki values from 
tumor lesions (n = 34) estimated 
using IDIF and  sPBIF55–65 for 
t* = 35 min (a), t* = 40 min 
(b), t* = 45 min (c), t* = 50 min 
(d), and t* = 55 min (e). Very 
strong agreement between Ki 
values (R2 > 0.99) was observed 
at each t*

Fig. 5  Comparison of percent-
age bias and standard devia-
tion of bias (error bars) of Ki 
estimates using  sPBIF55–65 with 
different Patlak start times (t*), 
compared against estimates with 
individual IDIF and standard t* 
of 35 min. Results are shown 
for tumor lesions (top) and brain 
gray matter (bottom)
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sampling abilities in dynamic studies, LAFOV scanners 
can capture the entire body in a single FOV. This means 
that large blood pools or vascular structures, such as the 
aorta or left ventricle, can be exploited to yield an IDIF. 
In this present study, we derived individual IDIFs from 
the descending aorta and used these IDIFs to generate 
a PBIF. Kinetic analysis results with different sPBIFs 
show that scaling the PBIFs with an image-derived scal-
ing factor served to estimate Ki with low bias (< 5%). This 
procedure eliminates the need for late arterial or venous 
samples, which are often required for PBIF scaling. Our 
results show that scaling the PBIFs with a scaling fac-
tor derived from 10 min of PET data (55–65 min post-
injection) resulted in the lowest bias in tumor lesions and 

likewise in brain gray matter, indicating that this brief 
interval of PET data suffices for generating a reliable 
sPBIF. However, analysis of different Patlak lineariza-
tion start times (t*) showed low precision (> 30%) but 
acceptable bias (− 4%) in tumor lesions when the fits 
were performed with 10 min of data (55–65 min p.i). 
Increasing the scan duration to 20 min (45–65 min p.i) 
improved the precision error to 13%, whereas 25 min of 
data (40–65 min p.i) resulted in 7% precision error in the 
estimated Ki values in tumor lesions. The  [18F]-FDG data 
acquired within these time windows can also be used to 
generate a static image for more traditional SUV reading.

We have recently explored the fitness of abbreviated 
dynamic imaging protocols for LAFOV PET imaging 

Fig. 6  Whole-body Patlak 
Ki images were generated 
using 30 min of dynamic PET 
data (t* = 35 min) with IDIF, 
 sPBIF55–65 and 20 min of 
PET data (t* = 45 min) with 
 sPBIF55–65 for a representative 
lymphoma patient. (a) shows a 
coronal slice illustrating whole-
body parametric images, (b) 
shows an axial slice containing 
reported lesions, and (c) shows 
an axial slice showing the brain

Table 2  Non-absolute and absolute percentage relative change (RC), 
structural similarity index measure (SSIM), and peak signal-to-noise 
ratio (PSNR) of whole-body  [18F]-FDG Patlak Ki images generated 

using  sPBIF55–65 with PET data from 35 to 65  min post-injection 
(t* = 35 min) and 45–65 min p.i (t* = 45 min)

Patlak Ki images generated using IDIF and t* = 35 min served as reference

Relative change (%) Absolute relative change 
(%)

SSIM PSNR (dB)

sPBIF55–65, t* = 35 min 0.31 ± 0.25 0.45 ± 0.29 0.998 ± 0.001 64.03 ± 3.59
sPBIF55–65, t* = 45 min 0.09 ± 0.03 1.00 ± 0.22 0.996 ± 0.002 55.06 ± 3.48
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with  [18F]-FDG [15]. In that study, we found that two 
phase imaging protocol with dynamic PET data from 0 
to 10–15 min post-injection followed by a 5-min scan at 
60 min post-injection serves to estimate the magnitude 
of tumor Ki reliably (< 10% bias) [15]. In a similar work, 
Wu et al. showed that a dual imaging protocol that used 
PET data from 0 to 4 min and 54 to 60 min p.i can be 
used to estimate tumor Ki with 12–30% bias [14]. In that 
same study, Wu et al. also showed that a dual injection 
protocol can be used to estimate tumor Ki with a 10-min 
PET acquisition [14]. Use of PBIFs has also been evalu-
ated with PET data acquired from SAFOV PET scan-
ners. Results from Naganawa et al. showed that accu-
rate Ki estimates with a precision error of 8–9% can be 
achieved by scaling the PBIF with image data from 30 to 
60 min post-injection and then performing Patlak fitting 
to data from 60 to 90 min post-injection [21]. However, 
the required total scan duration with this protocol would 
still be 1 h, requiring substantial scanner time to realize 
which may hinder their routine implementation outside 
of research settings. In a similar work, van Sluis et al. 
showed that 30 min of PET data (30 to 60 min post-
injection) might be adequate for accurate Patlak analysis 
of tumor lesions with PBIFs using simulated PET data 
[26]. In this study, we are able to demonstrate that Ki 
estimates with low bias and good precision are feasible 
using PBIF and 20-min clinical scans using a LAFOV 
system without recourse to additional blood sampling or 
dual-time point imaging protocols. Such an abbreviated 
protocol can be realized within time frames comparable 
to a routine clinical scan using established short-axial 
FOV systems [27]. These shortened protocols may pave 
the way for implementation of parametric imaging of 
PET data as part of clinical routine.

Conclusion

Present results show that abbreviated protocols with a 
PBIF can serve for accurate Patlak linear graphic analysis 
of  [18F]-FDG datasets from a LAFOV PET scanner. We 
demonstrate that 20 min of PET data (45–65 min post-
injection) suffices for accurate kinetic modeling of tumor 
lesions, versus only 15 min (50–65 min post-injection) for 
brain gray matter. These abbreviated protocols exploiting a 
PBIF should enable wider implementation of quantitative 
parametric imaging protocols in a busy clinical setting.
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