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ABSTRACT
A formal framework is presented for the characterization
of cache allocation models in Information-Centric Networks
(ICN). The framework is used to compare the performance
of optimal caching everywhere in an ICN with opportunistic
caching of content only near its consumers. This comparison
is made using the independent reference model adopted in
all prior studies, as well as a new model that captures non-
stationary reference locality in space and time. The results
obtained analytically and from simulations show that opti-
mal caching throughout an ICN and opportunistic caching
at the edge routers of an ICN perform comparably the same.
In addition, caching content opportunistically only near its
consumers is shown to outperform the traditional on-path
caching approach assumed in most ICN architectures in an
unstructured network with arbitrary topology represented
as a random geometric graph.

Categories and Subject Descriptors
C.2 [Computer Communication Networks]: Network
Architecture and Design; H.3 [Information Storage and
Retrieval]: Systems and Software—Information networks

General Terms
Design,Theory

Keywords
information-centric networks; cache networks; network opti-
mization; spatiotemporal locality of reference

1. INTRODUCTION
Several Information-Centric Networking (ICN) architec-

tures [2,21] have been developed in an attempt to address the
shift in the Internet communication paradigm from the con-
ventional host-centric model towards a more flexible data-
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oriented design. As a result, ICN architectures seek to pro-
vide the necessary foundations for scalable and cost-efficient
content distribution. A key design principle of many such
architectures is the universal in-network caching of named
data objects opportunistically. The universality of such op-
portunistic caching implies that it should be done every-
where and for everything in the network. The former re-
quires all ICN routers to equally contribute in the network-
wide process of caching, while the latter necessitates the ICN
routers to cache all kinds of traffic they handle, irrespective
of the popularity of the content or its geographical relevance.
This approach is used to attain such performance benefits
as reduced response time, efficient content distribution, and
improved disruption tolerance.

As the review of prior work in Section 2 points out, even
though universal in-network caching is assumed in many
ICN architectures, there has been no quantitative analysis
justifying this choice compared to opportunistic caching of
content near its consumers. The main contribution of this
paper is to provide a formal framework for the character-
ization of the performance of optimal in-network caching
in ICNs, as well as opportunistic in-network caching at the
edge of ICNs—i.e., close to the end-users.

Section 3 uses the Independent Reference Model (IRM),
which assumes that object references occur independently,
to study the benefits of using universal caching compared to
a simple policy of caching only at the edge of the network
assuming a simple hierarchical caching structure. Our re-
sults, supported by extensive event-driven simulations over
a wide range of configurations, indicate that the optimal
caching approach based on universal caching provides only
marginal benefits over the simple policy of caching only at
the edge routers of the ICN. Although empirical studies [13]
in the past have shown similar results, we present the first
mathematical framework explaining this finding.

Section 4 addresses the impact of locality of references
(i.e., content requests) on the performance of caching in
an ICN. Our work is inspired in part by the results delin-
eated by Traverso et al. [31] on temporal locality of content
references. We introduce a novel view of reference locality
that captures both spatial and temporal aspects. The ref-
erence locality refers to the fact that a request to an object
is likely to trigger subsequent requests from the same ge-
ographical neighborhood (i.e., spatial locality) in the near
future (i.e., temporal locality). In other words, object refer-
ences are localized in both space and time. Most prior work
(e.g., [4,15,26,28]) neglects the existence of such dependen-
cies by assuming the IRM model.



Exploiting the notion of cluster point processes [9], we
present a general method to synthesize traces of object ref-
erences while maintaining their locality properties. The pro-
cedure we use for generating such non-stationary traces com-
plies with the intuitive perception of spread of epidemics on
today’s social networks. An information object first attracts
attention in a specific geographical region. People start shar-
ing the content with their social contacts. A subpopulation
of their contacts who find the content interesting re-share
it and this process is repeated so long as the content re-
tains its informational value in the network. We leverage the
fact that this process closely matches that of a self-exciting
Hawkes process [19] and present a new algorithm to produce
a synthetic trace in which, while the collective popularity
profile of objects follows the commonly observed Zipf dis-
tribution [3,18], the occurrences of object-specific references
over time and space are locally clustered when observed on
a smaller scale. Based on this, we introduce a convenient
measure to quantify the clustering degree of references on
a scale from 0 to 1. We call this measure the localization
factor, which can be used to cover the entire spectrum of
reference patterns, from IRM (when it equals 0) to highly
localized (when it goes to 1).

Armed with these new tools, we extend the comparison
of universal in-network caching with simple caching at the
edge of an ICN for traces not necessarily conforming to the
IRM assumption. The results from our model in conjunction
with event-driven simulations show that, while the optimal
caching naturally drifts towards the edge as the caching bud-
get increases, higher degrees of reference locality can further
accelerate this transition. According to our findings, a 35%
difference between edge- vs. optimal caching under the IRM
assumption decreases to only 8% with a locality factor of 0.9.

Section 5 addresses the problem of caching in an unstruc-
tured ICN modeled using a random geometric graph. Given
that optimal universal in-network caching is not possible to
attain in this case, ICN architectures have adopted caching
of content along the paths taken by content objects from
producers or caches to consumers, which has recently been
called Transparent En-Route Caching (TERC) [21]. The
results from our simulations using ndnSIM [1] demonstrate
that opportunistic caching at the edge of an ICN outper-
forms TERC in virtually all circumstances. While this result
may be surprising at first, it can be explained with the in-
sight gained by our modeling. TERC forces routers to store
excessive amounts of content that induces much more con-
tent replacement along paths, while edge-caching tends to
store more what is of interest to consumers near the routers.

Our work does not advocate specific mechanisms or ICN
architectures. However, it provides new tools (e.g., the gen-
eration of meaningful synthetic traces) to analyze novel cach-
ing approaches in the future, and insight that has been
missing to date on the caching schemes adopted in ICN ar-
chitectures. In particular, given that universal in-network
caching is not needed to attain efficiency, and given that
edge-caching performs so well, new approaches should be
developed that better integrate content routing and conges-
tion control with content caching near consumers. Architec-
turally, our results indicate that deploying different types of
routers in ICNs—some without any caching—would be far
more cost effective. In the words of Fayazbakhsh et al. [13],
content caching “at the edge” of ICNs indeed renders “less
pain, most of the gain.”

2. RELATED WORK

2.1 Caching
Although isolated caches have been studied extensively

in the past (e.g., [10, 20]), many aspects of interconnected
networks of caches are not yet fully understood. Cache net-
works first became a subject of interest as a means to im-
prove the performance of the Web [7,27], and work on ICN
architectures has renewed interest in this topic [4, 6, 16, 22–
26,33].

Understanding the full dimensions of networks of caches
is naturally much more complicated than that of individual
caches when operating in isolation. Many existing methods
developed for analyzing the performance of isolated caches
are based on algorithms that themselves are computation-
ally expensive. For simplicity, these methods often introduce
certain approximations that come at the inevitable cost of
inaccuracy. Despite being negligible in the analysis of in-
dividual caches, these errors can aggregate and propagate
through the system and produce a cascading effect when
used in analysis of a tandem of caches.

A highly accurate approximation of least recently used
(LRU) caching was introduced by Che et al. [7]. This
analysis was recently revived in a seminal work by Fricker
et al. [15] and shown to be applicable to a much wider
range of scenarios beyond the specific conditions that Che
et al. had initially anticipated. In the following, we briefly
review this method which we shall refer to as “Che-aprx”—
abbreviated form of Che-approximation—hereinafter.

Consider a system comprising a total of N information
objects and a LRU cache with capacity C. The requests
for an object n come at the cache forming a Poisson process
with rate q(n). In fact, q(n) signifies the popularity of object
n in the system—i.e., the proportion of total requests that
belongs to n. The more popular an object n, the higher q(n)
as compared with other objects.

Che et al. define the characteristic time of a cache of size
C, denoted by tC , as the time it takes the cache to be filled
with unique objects subject to the request rates q(·) under
the IRM assumption, and show that tC is indeed the unique
root that solves the following equation for t:

C =

N∑
i=1

(
1− e−q(i) t

)
. (1)

Knowing tC , the miss probability m(n) for an object n,
according to Che-aprx, is derived as:

m(n) ≈ e−q(n) tC . (2)

As mentioned earlier, the Che-aprx has been proven to
be very accurate and highly versatile. However, there are
two important restrictions in this approximation.

1) Equal-sized objects. All information objects in Che-
aprx are of equal size—more precisely, unit-size such that
the cache is able to store at most C objects. This assumption
might seem far from reality at first, though becomes more
plausible if objects are assumed to be segmented into equal-
sized chunks, as required by many existing ICN proposals.
It has also been shown [15] that Che-aprx can readily be
extended to also account for variable-sized objects. This,
however, makes the derivations more unwieldy with little, if
any, extra benefit to the purpose of our analysis. Hence, we
choose to keep this assumption in place.



2) Independent object references. Che-aprx assumes
that the requests for information objects—a.k.a. references—
arrive at the cache according to an i.i.d. process, indepen-
dent of the past history of the requests and following a dis-
tribution determined by q(·) function. This assumption—
generally referred to as the Independent Reference Model
(IRM)—is fairly standard to many similar analyses for tracta-
bility and in order to calculate stationary hit/miss rates.

Although the IRM assumption is convenient, it is too sim-
plistic in the context of cache networks, where object refer-
ences exhibit strong correlation in both space and time do-
mains. Consider for example a new song, while listed among
the top hits of the month, may be highly popular for a cer-
tain period, but gradually gets faded out as newer hits are
released. Furthermore, if the song is in a specific language,
it may be well-received in certain regions of the world where
that language is widely spoken, while attracting little at-
tention in many other regions. The first example reflects
the temporal locality of references, in contrast to the spa-
tial locality highlighted by the second example. The IRM
assumption disregards such localities in space and time by
assuming that content popularity is stationary.

2.2 Architectures and Systems
In-network caching of named content is a cornerstone of

many ICN architectures [2, 17, 21]. This consideration is
so pervasive that many research papers (e.g., [16, 21, 23, 29,
33]) use the notion of “cache network” as an abstraction to
describe “content-centric networks”.

The caching approach used in the vast majority of ex-
isting ICN proposals is the Transparent En-Route Cach-
ing (TERC) [21] by which all ICN routers in the network
participate in the process of content caching in conjunc-
tion with their primitive function of relaying the informa-
tion objects downstream. This näıve method of caching,
however, has been subject of many controversies and criti-
cisms [6, 13, 33]. To reduce caching redundancy, more com-
plex varieties of this paradigm, such as probabilistic in-
network caching (ProbCache) [24] and opportunistic caching
using reinforced counters [12] have recently been introduced.

A handful of attempts in the past few years have been
made to investigate most efficient methods of caching in
ICN, both empirically [13, 31, 32] and analytically [4, 6, 24].
The results from some of these studies, however, are some-
what inconsistent and indecisive. For instance, the authors
of [11] argue that caching at the core of the network can be
more effective, as opposed to [13, 25] who advocate caching
closer to the network edge.

Amidst this flurry of research, some researchers [6,33] be-
lieve that the best cache placement strategy is greatly in-
fluenced by factors such as network topology; hence, there
does not exist a unified strategy to be generally adopted. In
contrast, other work [30] reports that the impact of topology
on the performance of caching is limited.

Many notable analytical works [4,15,16,26,28,33] focusing
on the characterization of caching generally suffer from the
limitations imposed by the IRM assumption. This assump-
tion is so tightly coupled with the existing models of caching
that Kurose writes [21]: “[The IRM] assumption is as fun-
damental for cache modeling as the memoryless assumption
of exponential packet/circuit interarrival times . . . are for
modeling packet- and circuit-switched networks . . . ” This
is indeed the case; however, just as exponential interarrival

times, the IRM assumption is only a simplifying assumption
to make problems tractable; there is no evidence showing
that real-world traffic adheres to the IRM model [8, 14].

Recently, Traverso et al. [31] have addressed the impor-
tance of temporal locality of references in the performance of
today’s caching networks. Their work leverages the concept
of Poisson shot noise processes as a convenient mathematical
tool to model and analyze temporal reference locality. They
further show that adopting the IRM assumption results in
an overly pessimistic view of caching performance.

3. HIERARCHICAL CACHING MODEL
Given a hierarchical network of caches, we ask the ques-

tion: How much should each layer of the hierarchy of caches
contribute in the caching process in order to get the most
out of a constrained total caching budget? We frame this
question as an optimization problem and present solutions
based on non-linear integer programming.

Consider a hierarchy of LRU caches in the form of a tree
with its root acting as the content source. We assume that
the source stores permanent copies of all the information
objects in the system. Alternatively, the source can be con-
sidered as a collection of all possible content hosts that are
logically collapsed into one single entity as the root of the
tree in our model.

The tree comprises L+ 2 levels. The content subscribers
(i.e., users or information requesters) are at the 0th level,
while the content source is at level L + 1. Subsequently,
there exist L levels of nodes with caching capabilities be-
tween users and the content source which are sequentially
labeled from bottom (level 1) to the top (level L).

The caching paradigm we seek to optimize is called “on-
path caching”which works as follows. When a request for an
object is raised at level 0, it is forwarded along the (unique)
path of intermediate caches towards the root until a cache
hit occurs. If all cache accesses are missed along the path,
the request will be fulfilled by fetching a copy of the object
directly from the source (root). Once located, the object is
transferred on the reverse path back to the requester and a
local copy is also stored on each and every cache along.

For simplicity, in the following analysis we assume that the
hierarchy is a complete k-ary tree. Under the IRM assump-
tion and given that the cache states are independent1, the
rate at which requests for an object n arrive at a particular
cache at level ` can recursively be formalized as:

q`(n) =

{
q(n) ` = 0 ,

k q`−1(n)m`−1(n) 0 < ` ≤ L ,
(3)

where m`−1(n) is the miss probability of object n at a cache
of level ` − 1, which can itself be calculated directly using
Che-aprx (i.e., Equations (1) and (2)).

3.1 The Expected Time To Access Content
A parameter of interest is the expected time to access

(Etta) an object n, which we denote by τ(n). This is de-
fined as the expected duration between the time a user sends
a request for an object n until a copy is located in the sys-
tem (either at an intermediate cache or finally at the original
source). We measure this duration in terms of the number of
hops between the user and the closest replica of the content

1This assumption is reasonable when k is not very small.



along the path to the source. The following theorem gives a
closed-form for calculating Etta in terms of the miss rates
of the intermediate caches.

Theorem 1. Consider a tree structure with L + 2 levels
where the users are at level 0 and the content source at level
L + 1. Employing an on-path caching strategy as described
before, the expected time to access an object n is obtained as:

τ(n) = 1 +

L∑
i=1

i∏
j=1

mj(n) , (4)

where mj(n) is the miss probability of content n at a cache
of level j on the path from the user towards the root of the
tree.

Proof. For an object n, the problem can be modeled by a
discrete-time Markov chain whose states are the levels of the
caching hierarchy plus an additional state of H denoting a
cache hit (See Figure 1). Every state `, 0 < ` < L+1 transits
into either the following state `+ 1 or H with probabilities
m`(n) and h`(n) = 1−m`(n), respectively. States L+1 and
H transit into state H with probability 1.

H

0

1

2

· · ·

L

L+ 1

1

m1(n)
h1(n)

m2(n)

h2(n)

mL−1(n)

mL(n)

hL(n)

1

1

Figure 1: The Markov chain representing the process of locating
an object on a cache tree. State 0 is where the users’ requests
are generated. State H denotes the state of a cache hit and other
states correspond to the levels in the hierarchy from bottom to
the top. State L + 1 is the root of the tree where the content
source is located. mi(n) and hi(n) = 1−mi(n) are the miss and
hit probabilities at a cache of level i.

Define TH , inf{t ≥ 1 : Xt = H} as the stopping time
denoting when state H is visited for the first time. Also, the
expected time to visit H as τ0(n) , E[TH |X0 = 0], where
X0 is a random variable denoting the initial state. We note
that τ0(n) counts the expected number of transitions to visit
state H which can be expressed recursively as:

τ0(n) = 1 + τ1(n)

= 1 + 1 +m1(n) τ2(n) +
(
1−m1(n)

)
τH(n) .

Also, it is clear that τH(n) = 0 for every object n, since
visiting state H implies that the content is already located.
Similarly, τ2(n) = 1 + m2(n) τ3(n). By induction on the
index i of τi(n), it is easy to verify that

τ0(n) = 2 +

L∑
i=1

i∏
j=1

mj(n) .

In essence, τ0(n) serves to count the expected number of
steps it takes to locate the object in the hierarchy of caches.
However, due to the presence of the additional state H, the
real number of steps is always off by one from what τ0(n)
counts. Representing the actual expected value by τ(n),
therefore, τ(n) = τ0(n)− 1 and Equation (4) follows.

A slightly modified version of the foregoing result has also
been used in [5] as a measure of “virtual round-trip time” to
access contents of various popularity classes.

3.2 Optimal Cache Allocation in Tree Structure

Definition 1. (The optimal cache allocation problem)
Given a fixed total cache budget C, find the optimal break-
down of the caching budget across different levels of the tree
that minimizes the overall expected time to access subject to
a given content popularity profile q(·).

Under the IRM assumption, for a k-ary tree with L cache
levels, we formulate this problem as a non-linear integer pro-
gramming as follows:

c∗ = argmin
c

N∑
n=1

q(n) τ(n; c)

s.t.

L∑
`=1

c(`) k(L−`) = C , and

c(`) ≥ 0 and integer ∀` ∈ {1, . . . , L} , (5)

where c∗ ∈ NL is the vector of optimal cache sizes on the tree
in which c∗(`) denotes the optimal capacity of an individual
cache at the `th level.

3.3 Numerical Results
We collected some numerical results on the problem de-

scribed above utilizing the active-set algorithm of the op-
timization toolbox in MATLAB. As the underlying topol-
ogy, we considered k-ary tree structures of depth 7. The
requesters are the leaves (i.e., level 0) and the source (stor-
ing a permanent copy of all objects) is at the root (i.e.,
level 6). The 5 intermediate levels—which we call `1 to `5
caches—are cache routers with LRU replacement policy.

All named objects in the system are ranked based on their
global popularity—i.e., the overall frequency of requests for
that object throughout the system. For these simulations,
we used 1 million data objects of all the same size whose
popularities follow a Zipf distribution with exponent 1. Ref-
erences to these objects are Poisson distributed with rates
proportional to their popularities. For the time being, we
make sure that the references conform to the IRM assump-
tion and that identical objects have the same popularity
among all users. We shall later explain how the IRM as-
sumption can be relaxed by focusing on more general classes
of traffic with non-stationary behavior in time and space.

Figure 2 demonstrates the optimal breakdown of the cach-
ing budget across various levels of the tree hierarchy for com-
plete trees of degree 2 to 5. Bars show what fraction of the
caching budget is allocated to various levels for any given
total budget. The darker the color, the lower the cache level
in the hierarchy. As seen, there is a drift towards the edge
as the caching budget increases. This is trivially expected
when Etta is the objective criterion for the optimization
problem. For trees with lower degrees, this behavior is more
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Figure 3: The overall expected time to access (Etta) with respect to the total caching budget for optimal- vs. edge-caching

evident, because for the same total budget, edge caches in
lower degree trees can receive larger shares, making edge-
caching even more effective.

When the caching budget is large, edge-caching is clearly
the optimal strategy. At the limit, a budget of N × kL

can be broken up evenly across all `1 caches giving each of
them enough capacity to store a copy of all objects in the
system. This results in an Etta of close to 1 in the long
run. The available budget, nonetheless, is usually much less
than this in practice. Figure 3 serves to shed some light on
the question of how different optimal caching performs in
general as compared with pure edge-caching by comparing
the overall Etta for edge- with optimal caching.

The solid lines in Figure 3 represent edge-caching, where
all the caching budget is evenly split across `1 caches. The
dashed lines illustrate the optimal caching with a budget
breakdown specified in the corresponding part of Figure 2.
To verify the accuracy of these results, we also designed
a discrete-event simulation based on ndnSIM [1], a NS-3
module implementing Named Data Networking. As seen,
results from discrete-event simulations demonstrate almost
perfect agreement with the proposed model.

Interestingly, Figure 3 suggests that edge-caching can per-
form comparably close to the optimal caching in practice.
According to our results, the maximum difference observed
between the two schemes is around 10%. The difference is
seen to increase slightly with the degree of the tree. How-

ever, as Figure 2 also illustrates, the optimal breakdown
tends towards the edge with an increased caching budget.
This essentially means that the difference between the edge-
and optimal caching is reduced with further increasing the
budget. On the other hand, when the available budget is
small, both edge- and optimal caching strategies appear
to be equally ineffective. Thus, the maximum observed
gap applies only to the cases where the available budget is
modest—that is, neither so large to make edge-caching effec-
tively optimal, nor so small to undermine the effectiveness
of caching altogether.

Implementing edge-caching is practically more convenient,
in that it only requires deploying `1 caches at the AS-level
without any need to manipulate central routers deep in the
core of the network. Although the effectiveness of edge-
caching has previously been shown through extensive em-
pirical studies [13], our work, to the best of our knowledge,
presents the first formal framework as a basis to compare
the two paradigms in more depth.

4. CAPTURING REFERENCE LOCALITY
To obtain useful insights out of the foregoing analysis, it is

imperative to evaluate the model under realistic conditions.
As discussed, the IRM assumption overlooks the correlation
present among subsequent object references occurring over
a certain period of time (i.e., temporal locality) and/or a
specific region in space (i.e., spatial locality). We intro-



duce a convenient model to generate object references while
preserving their spatio-temporal locality properties. Before
proceeding, let us have a closer look at the intuitive inter-
pretation of the concepts of spatial and temporal locality.

Spatial locality of reference captures the impact that
the geographical diversity of the users has on the observed
trace of requested objects by them. More precisely, the re-
quests coming from a specific region in space are more likely
to be similar than those collected over regions far apart. For
example, a certain news object might be of special interest
in a certain area, while its global impact in the geography of
interest remains limited. On the other hand, globally pop-
ular objects are seen to be requested from a wider range of
geographical regions.

Temporal locality of reference captures the effect that,
if an object is requested at a certain point in time, more
likely it will be requested again in near future. In fact, nor
are the object references scattered randomly and indepen-
dently over time; rather, an object might be of particular
interest at a certain time interval, while its popularity grad-
ually fades out.

longitude(x) lat
itu

de(
y)

ti
m
e

Figure 4: A cluster process representing references to a specific
object file. The projection of points over X-Y plane represents
the spatial density of requests, whereas the projection along the
time axis reflects the temporal distribution.

4.1 Using Cluster Point Processes
In the light of the above discussion, an intuitive approach

for simulating the spatio-temporal locality of object refer-
ences is using“cluster point processes” [9]. A generic method
for producing one such process works as follows. First, a
point process Π generates “centers” of the process. Next, a
point process Xp for each p ∈ Π produces the off-springs.
The combination of these points X = ∪p∈ΠXp constitutes
a cluster process. Particularly, X is called a “Poisson cluster
process” if Π is a Poisson process.

A specific example of the Poisson cluster process is“Hawkes
process” [19] that is generated as follows. First, a Poisson
process on Rd with intensity function ρ(·) creates the clus-
ter centers Π. Then, for each cluster center p ∈ Π, the
first-generation off-springs are generated as a Poisson pro-
cess of intensity ϕ(x − p), where ϕ(·) is a positive function
on Rd. This process continues repeatedly such that for every
first-generation off-spring p1, a Poisson process of intensity

ϕ(x−p1) generates the second generation off-springs and so
on. The mean number of off-springs for each center point
is determined as β =

∫
ϕ(x) dx. A natural requirement for

this process to stop demands β < 1. Figure 4 illustrates one
realization of the Hawkes process in R3. The contour plot on
the X-Y plane represents the spatial density of the requests
for a certain object, while the histogram along the time axis
shows the temporal evolution of the object popularity.

Algorithm 1 Method for generating object references with
localization in a d-dimensional space

Input: Number of objects (N), Zipf parameter (α) and localiza-
tion factor (β)

Output: An aggregate Poisson cluster process X
Ensure: X is Zipf distributed with parameter α
1: procedure Generate-Trace(N,α, β)
2: X ← ∅
3: for n from 1 to N do
4: qn ←M × n−α . M is some constant multiplier

5: Πn ← Hawkes-Process(qn, β)
6: X ← X ∪Πn
7: end for
8: return X
9: end procedure

Input: Intensity of cluster centers (ρ) and the expected number
of off-springs (β)

Output: A Poisson cluster process Π
Require: ρ ≥ 0 and 0 ≤ β < 1
10: procedure Hawkes-Process(ρ, β)
11: nt ← Poisson(ρ)
12: for i from 1 to nt do
13: Π(i)← Uniform(0,1)
14: end for
15: idx← 1, end← nt
16: while idx < nt do
17: nc ← Poisson(β)
18: for j from 1 to nc do
19: Π(++end)← Π(idx)+ Normal(0,σ)
20: end for
21: nt ← nt + nc, idx++
22: end while
23: return Π
24: end procedure

This procedure can be repeated for the number of objects
in the system to generate a collective trace of all references.
The procedure Generate-Trace in Algorithm 1 shows the
pseudocode for this with inputs N denoting the total num-
ber of objects, α as the parameter of the Zipf distribution
for object popularity, and β specifying the localization fac-
tor. For an object n, Line 4 calculates the intensity qn at
which the references to that object should be generated. To
ensure that the global object popularity profile follows the
desired Zipf distribution, we choose this rate to be directly
proportional to the global popularity of the object in the
system. Consequently, references to more popular objects
will be placed over a wider geography and a longer course of
time, as opposed to the less popular items which may only
be requested from a specific region and a certain period.
The multiplier M in Line 4 is a positive constant which can
be interpreted as the maximum intensity—i.e., the desired
intensity for the most popular (first rank) object. Depend-
ing on the choice of N and α, one may need to set the value
of this multiplier sufficiently large to ensure that the lower
rank objects at the tail of the popularity distribution will
also have a reasonable chance to appear in the trace.
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Figure 6: The overall expected time to access (Etta) with respect to the localization factor for optimal- vs. edge-caching

Once the reference intensity is determined, a call to pro-
cedure Hawkes-Process is made at Line 10 to produce
the actual trace of references. The parameters ρ and β re-
spectively determine the intensity of the centers and the ex-
pected number of next-generation off-springs in the under-
lying cluster process. The centers are uniformly scattered
throughout the region, and for each center, the off-springs
are normally distributed around it. The procedures Uni-
form and Normal are assumed to return coordinates in
d-dimensional space with corresponding distributions and
the parameters specified.

4.2 Caching under Non-stationary References
With a non-stationary stream of references, the popular-

ity profile of objects in the system varies over both space
and time. Consequently, the model discussed in Section 3
can no longer be used to analyze the behavior of the cach-
ing system. A useful insight which can help remedy this
limitation is that while, in the big picture, the underlying
process of object references is dynamic, when studied at a
finer granularity, it can be well-approximated as a “piece-
wise” stationary process. In other words, if we look at the
process of references through a sufficiently small window in
the time-space domain, the subprocess observed exhibits a
rather stationary behavior.

Let qu(n, t) be the popularity of the nth object observed
by a cache node u around a particular time t. As a gener-

alization of Equation (3), we can compute this quantity as
follows:

qu(n, t) =


lim

∆t→0

E[Nu(n, t+ ∆t]

∆t
u ∈ {`1} ,∑

c∈Cu
qc(n, t)mc(n, t) u /∈ {`1} .

(6)

Here, {`1} denotes the set of `1 caches; Nu(n, t+∆t) denotes
the number of references to object n coming at node u during
interval (t, t+∆t); and Cu represents the set of caches which
have u as their upstream node. In other words, the aggregate
miss streams of nodes in Cu form the input stream of u.

In most scenarios, it is neither practical nor necessary
to work with the infinitesimal limit given in Equation (6).
Rather, the input stream of a `1 cache could be partitioned
into a number of smaller time bins over which the input pro-
cess is assumed to be stationary. The size of the time bins
does indeed depend on the degree of reference locality. The
more localized the input stream, the more clustered are the
occurrences of the references over time; hence, smaller time
bins will be required to mitigate the approximation error.

This treatment can be used in conjunction with Che-aprx
when dealing with non-stationary streams of references. The
miss rates and the corresponding Etta’s can be computed
separately for individual intervals. The overall Etta, subse-
quently, can be calculated as the time-average of individually
computed Etta’s over specific intervals.



To evaluate the accuracy of this method, we conduct some
Monte Carlo simulations backed by a series of discrete-event
simulations we perform in ndnSIM [1]. The underlying topol-
ogy we consider is a complete tree of degree 4 and depth 6
with 4 layers of intermediate caches. Our object catalogue
contains 100 files with a Zipf popularity profile of parameter
1. Algorithm 1 is used to generate a 2-D trace of object refer-
ences with various degrees of localization. Leaves of the tree
span across one dimension and object references are directed
at their L1-closest cache. The other dimension captures the
temporal distribution of references as discussed before.

Figure 5 demonstrates the optimal breakdown of cache
budget across levels of the tree for various degrees of ref-
erence locality. Again, a drift towards the edge can be ob-
served as the available caching budget increases. This tran-
sition is further accelerated with a larger localization factor.
Figure 5(d) reflects this phenomenon more vividly. In par-
ticular, we observe that an increased localization factor from
0.0 to 0.9 has almost the same impact on the performance of
the caching hierarchy as doubling the caching budget does.

Figure 6 compares the overall expected time to access for
edge- vs. optimal caching with the same configurations as
plots in Figure 5. As discussed earlier, for numerical analy-
sis, we split the time into smaller non-overlapping intervals
(bins). With zero localization, references are generated in-
dependently. The generated trace, therefore, conforms to
the IRM assumption and hence, one single time bin is con-
sidered. With a localization factor of 0.9, we found that 5
time bins yield a good approximation with a maximum error
of 6% over a wide range of configurations. For other cases in
between, the number of bins are chosen proportionally. At
this stage, we do not know how the number of bins should
be chosen optimally to minimize the approximation error.
Answering this question requires a deeper understanding of
the behavior of the underlying point process, and we leave
this as a subject for future research.

Figure 6 also captures how fast optimal on-path cach-
ing converges towards the edge as both the caching budget
and localization factor increase. In the examples depicted,
the maximum difference between the two schemes is around
35%. This is reduced to 8% on the far right of Figure 6(d)
where every `1 cache gets enough capacity to store 16 ob-
jects.

The main focus of our study so far was primarily on a well-
defined hierarchy of caches. In what follows, we broaden
the scope of our findings by considering a more arbitrary
topology of caches.

5. CACHING ON RANDOM NETWORKS
Let Π0 be a point process on d-dimensional space repre-

senting a random deployment of cache nodes. We define the
local cache of a sub-region in the space of interest as follows.

Definition 2. A node x ∈ Π0 is said to be the local cache
for the region Cx defined as:

Cx =

{
y ∈ Rd : ‖y − x‖ ≤ inf

x′∈Π0,x′ 6=x
‖y − x′‖

}
.

In fact, Cx comprises the closed set of points that are
geographically closer to x than any other point in Π0. In
this sense, the process Π0 forms a Voronoi tessellation of the
space similar to the construction depicted in Figure 7. The
solid dots are the points generated by Π0 and the polygons

c1

c2

c3
c4

c5 c6

c7

Figure 7: A Voronoi tessellation of the terrain via randomly de-
ployed cache nodes. Solid dots are local caches to the cells they
belong to, and empty dots indicate requests directed to them
(shown only for one cell for clarity). The dashed line represents a
path from cell 1 to cell 7. Cache node c7 is the original source of
the content to be routed to c1, the initial requesting cell. On this
way, if the content is cached at every cache node ci, i = 1, . . . , 6,
it is called on-path caching. If the content is cached only at c1,
we call it edge-caching.

where they reside are the Voronoi cells. We shall refer to Cx
as the cell of node x, hereinafter.

Each cache node is equipped with two types of storage.
One part is the permanent storage used for publishing con-
tent. The other part is used for caching content from other
nodes while the cache node serves to route the content to-
wards some end-user/subscriber.

Subscription requests (generated by Algorithm 1), form
a second point process. A request originating from cell Cx
is first forwarded to x, the local cache of that cell. If x
happens to have a copy of the requested object, it serves the
request locally. Otherwise, it forwards the request towards
the original owner of the content in a multi-hop fashion.

The connectivity among cache nodes is defined based on
Euclidean distance such that every xi, xj ∈ Π0 are connected
through a bidirectional link iff ‖xi − xj‖ ≤ r for some con-
stant r > 0. Such a paradigm is often adopted for modeling
of wireless ad hoc networks and might not well represent
a typical wired topology. Still, we believe it is interesting
to study the performance of various caching schemes on a
more general and irregular type of topology such as that of
a random geometric graph.

5.1 The Routing and Caching Process
The routing is performed along the shortest path connect-

ing source-destination pairs. For simplicity, we choose the
critical radius r large enough to ensure that the network is
connected. Hence, there always exists at least one path con-
necting each subscribing cell to the publishing source. Such
paths typically cross through several cells and the traffic
carried along them may be cached at the local caches of the
cells where they intersect.

On the way towards the source, if a valid replica of the
requested object is located at any of the intermediate caches
along the path, the request will be handled locally and it will
not be forwarded beyond that point. However, if no cache



hit occurs along the path, the request will be served by the
original source and the requested object will be routed back
towards the requester on the reverse path.

For a well-structured tree topology, we observed sugges-
tive evidence that edge-caching can perform comparably close
to optimal caching in certain situations. Implementing opti-
mal caching on a random configuration, nevertheless, is chal-
lenging if not impossible at all. This is perhaps why many
existing ICN proposals adopt a simplified version of on-path
caching in which all routers blindly cache every piece of in-
formation they relay.

Implementing edge-caching, in contrast, is not much of a
burden on a random network so long as a clear definition of
“edge” is given. Since object requests are scattered all over
the network, there is no physical boundary to separate edge
from the rest of the network. Instead, we give a logical def-
inition of the edge. In fact, we say edge-caching takes place
if caching is only performed at the local cache of the last cell
where the traffic is being served,—i.e., the destination cell.
According to this definition, a cache router is an edge cache
for the cell it resides in and a non-edge cache for the traffic
it relays to all other cells. An interesting aspect to investi-
gate is a performance comparison of the simplified on-path
caching—which for brevity we shall refer to as “on-path”—
versus edge-caching in the above described configuration.

Although appearing different, the system we just described
has many characteristics in common with the hierarchical
topology we discussed in the previous section. In particular,
for any given object, the original publisher (source) serves
as the root of a tree. The object requesters (i.e., destina-
tions) are the leaves, which can be from anywhere within
the network. Of course, the induced tree structures differ
for various object files. Consequently, a cache node can be
part of several such logical trees and at different levels.

5.2 Simulation Results
We perform event-driven simulations on ndnSIM [1] to

compare the performance of caching at the edge versus the
standard on-path caching on a random geometric topology.
The network consists of 200 cache nodes distributed uni-
formly and at random over a region of 100 × 100 square
units. Nodes’ radio range is set to 12 units giving each node
an average degree of 8.93. We use a total of 1000 content ob-
jects with a Zipf popularity distribution of parameter 1. The
objects are also uniformly distributed among nodes which
act as original publishers of the designated objects. Hence,
some nodes may publish more than one data object while
some others none. With the foregoing settings, the follow-
ing measurements are performed in the steady-state of the
system when all caches are full.

Figure 8 shows how the average hop-count decreases with
an increased locality factor when each node has a cach-
ing storage of size 10. In this case, edge-caching outper-
forms the standard on-path caching even under the IRM
assumption (i.e., β = 0). This behavior is rather surprising
because when the references are generated independently,
there should seemingly exist no difference between the two
schemes in terms of cache hits. However, a subtle observa-
tion is that replacements generally take place at a higher
rate with on-path caching than with the edge-caching. This
is due to the replacements that a cache incurs while relaying
traffic to other cells. These replacements do not take place
when caching is only done for the edge traffic.
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Figure 8: Overall expected time to access an object in a random
geometric topology for various degrees of reference locality (from
IRM (β = 0) to highly localized (β = 0.9))
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Figure 9: The impact of increasing the cache size on the cach-
ing gain for various degrees of reference locality. Edge-caching
outperforms on-path caching in almost all scenarios.

Not all such replacements are useful. In fact, with a Zipf-
like distribution, a vast majority of objects at the tail are
individually unpopular and very unlikely to be requested.
Yet, in the big picture, it is much more likely to see some
object from this whole population of less popular items being
referenced by some node throughout the network. With
on-path caching, all such references result in replacements
along the entire path serving the traffic to the destination
cell. Once referenced, however, because the object is of little
global interest, the odds are small that any of these affected
caches serve any subsequent reference to the same object in
near future. The replaced item takes up a space that could
have otherwise been dedicated to a more popular item and
thereby, diminishes the caching gain.

With edge-caching, such useless replacements occur at a
lower rate and the caching capacity is utilized more effi-
ciently. The same arguments hold in case of higher degrees
of locality resulting in an even sharper contrast.

Figure 9 illustrates the impact of increasing the caching
budget on the average hop-count. As seen, edge-caching out-
performs on-path caching for all cache sizes and over various
degrees of locality. The enhancements attained through in-
creasing the budget size become more pronounced with a
higher degree of reference locality. Another observation is
that a localization factor of 0.9 requires roughly 6 times less
caching budget to yield the same overall Etta than it does
under the independent reference model.



6. CONCLUSIONS AND FUTURE WORK
A computational framework was presented to compare the

performance of in-network caching mechanisms in ICN. In
particular, we compared optimal on-path caching against
the simple strategy of caching only at routers near the con-
sumers of an ICN in terms of their overall expected time to
accessing content objects. The results using the commonly-
used independent reference model showed that while the op-
timal breakdown of caching budget is markedly influenced
by factors such as topology and caching budget, optimal
caching provides only marginal benefits over edge-caching
in most scenarios. We investigated the impact of locality
of reference on the performance of ICNs, and introduced a
tool to synthesize traces of object requests that preserves
their spatial and temporal locality properties. The results
using this model demonstrate that, while optimal caching
naturally tends towards the edge with an increased caching
budget, higher degrees of reference locality further acceler-
ate this transition. This suggests that the difference between
edge- and optimal on-path caching is far less than what the
existing models based on the IRM assumption predict.

We also compared the on-path caching approach assumed
in most ICN architectures today against edge-caching using
random geometric graphs to model ICNs of irregular arbi-
trary topologies. The results of simulations in ndnSIM [1]
confirm the result in our models, and in fact show that edge-
caching outperforms on-path caching.

The results of this work open up new avenues for research
in ICN. New ICN architectures should be investigated that
exploit content routing with edge-caching. It is important
to broaden the scope of this study by considering more real-
istic types of topologies than we have used, and the locality
model we introduced should be fit against real-world traces
to examine how localized content requests are in actual net-
works.
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