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Abstract 
 

Methods for Earth System Analysis in the West African Sahel: 
Land Cover and Climate Through Computational and Applied Sciences 

 
by 

 
Mollie M. Van Gordon 

 
Doctor of Philosophy in Geography 

 
Designated Emphasis in Computational Science and Engineering 

 
University of California, Berkeley 

 
Associate Professor Laurel Larsen, Chair 

 
 

 
Precipitation and land cover in the West African Sahel have changed dramatically over the 
past 50 years. Region-wide data on land cover change in the Sahel, however, have been 
sparse or unreliable. I present a new 30 meter 2000-2016 annual resolution land cover 
dataset for the West African Sahel. The product is built from hand-classified land cover 
maps using random forest machine learning methods with Landsat, precipitation, and 
topography features. The resulting maps confirm the widespread extensification of 
agriculture in the region over this time period. Contrary to the common narrative of 
desertification, this increase in agriculture has not been accompanied by an increase in bare 
soil or sandy area. Land cover change volatility is shown to be spatially heterogeneous, both 
at local and regional scales. In addition to the new land cover dataset, I present spatial and 
temporal analyses of precipitation during the recent years of increased variability in the West 
African Sahel. I examine seasonal trends, interannual variability, and differences among 
datasets representing precipitation in the Sahel. Region-wide spatial organization of 
precipitation is identified using the self-organizing mapping pattern recognition technique. 
The number of days spent in the monsoon transition period is strongly negatively correlated 
with annual precipitation anomaly` indicating a tradeoff with the peak monsoon period, a 
result that supports the upped-ante hypothesis of precipitation in the Sahel. 
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Introduction. 
 
My first experience in West Africa was in 2008. I studied reforestry efforts in Burkina Faso 
across scales: community organizations, local NGOs, national programs, multilateral 
development projects. In the ten years since, I have worked in the region in different 
capacities and in different sectors. These have included: grant proposal writing and grant 
management for water, sanitation, and hygiene projects; serving as a consultant on women’s 
reproductive health projects; and most recently my work has been climate, land cover, and 
hydrology research. My collaborations have included local, national, regional, and 
international organizations.  
 
The context, relationships, and experience I’ve gained along the way are invaluable to what I 
do, no matter the sector or geographic location. The work presented herein as the 
culmination of my graduate studies is fundamentally shaped by and rooted in West Africa. It 
is also, by design, a development of flexible and adaptable methods and perspectives 
applicable to many different questions, regions, and disciplines. My work and my 
perspectives are concurrently informed by active attention on the dynamic contexts, politics, 
and impacts of my science. 

Background 
Both land cover and climate in the West African Sahel have been sites of interaction, 
negotiation and contention since at least the early colonial era. These are arenas where 
science, development, and natural resource management all play a role. The concepts of 
drought, desertification and deforestation have been powerful narratives in the region, 
influencing colonial practices, national policies and international development efforts.  
 
For the entirety of the 20th century, desertification has been a dominant narrative of past, 
current, and potential changes in climate, vegetation, and soil in the West African Sahel. 
Although there is no universal definition of desertification, the general idea is that the 
environment of the Sahel is becoming dryer, there is a trend toward less precipitation and 
reduced availability of surface moisture, and a reduction in vegetation that requires more 
water to thrive. This narrative is accompanied by a sense that the soil is becoming less fertile, 
less able to support vegetation and agriculture. The concept of desertification also expands 
beyond the purely physical characteristics of a landscape. 
 
From its inception, the desertification narrative has held that land use and land management 
by humans, and particularly local people, are critical causal factors in the perceived or 
asserted trend toward environmental destruction or degradation. Human activity is seen as 
the driver behind the destruction of fragile dryland environments, and the changes are  
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conceptualized as drastic and potentially irreversible. The relationships between human 
activity and the landscape is in reality much more nuanced and variable. In some areas, like 
the W Biosphere Reserve in Benin, the land use visions of agriculturalists, pastoralists and 
land managers have been at odds (Tamou et al. 2018). In the Maradi and Zinder regions of 
Niger and elsewhere, agricultural changes have been associated with restoration and 
increased tree growth (Boubacar 2016; Sendzimir et al. 2011). In northern Burkina, zai pits 
and stone bunds have been successful agricultural practices for the management of rainfall 
runoff (Roose et al. 2010). 
 
In the later half of the 20th century, there was a shift in desertification discourse to include 
climate change as a causal factor. The 1994 convention text of the United Nations 
Conference to Combat Desertification (UNCCD) states: “Desertification is land degradation 
in arid, semi-arid and sub-humid areas resulting from various factors, including climatic 
variations and human activities.” (UNCCD 1994). This institutionalization of the concept of 
desertification is vague enough to be all empassing, and available to be shaped for different 
contexts and different applications. This flexibility makes it a powerful concept in the 
political sphere, but hard to grapple with in a scientific or analytical context. 
 
Although desertification of the Sahel has long been rejected by the scientific community, the 
narrative persists. Desertification, to the extent that it evokes visions of vegetation turning 
into dust and the sands of the Sahara marching southward, does not accurately describe 
observed land cover change in the Sahel (Behnke & Mortimore, eds. 2016; Mortimore 1989; 
Thomas & Middleton 1994; Warren & Agnew 1988; Swift 1996). Further, while 
desertification discourse tends to cast drylands as fragile vulnerable environments, current 
literature does not clearly support that hypothesis. (Behnke & Mortimore, eds. 2016; 
Shanahan 2016).  
 
In recent decades, degradation has gained in popularity as an alternative or additional 
framework of land cover change. Where the desertification narrative envisions drastic step 
changes in land cover, the degradation approach captures a wider array of possible land 
cover dynamics. In the degradation framework, multi-directional, multi-dimensional, and 
more subtle land cover change is possible. Relevant characteristics for this conceptualization 
of land cover change include vegetation population distributions, hydrology, and land 
management practice. The valuation of land cover characteristics is of course subjective. 
Different agenda—for example ecosystem preservation or restoration, biofuel production, 
maximal agricultural yield, and pasture suitability—impose different criteria for optimal 
versus degraded land cover. 
 
Recent debates over observations of regreening in the Sahel illustrate the significance of 
these finer grained understandings land cover change. As annual regional rainfall has been 
increasing in the past few decades after severe drought in the 1970s and 80s, satellite data for  
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the Sahel has begun to show an increase in spectral indicators of vegetation. In many of 
these cases, however, co-located field studies do not find evidence of increasing vegetation 
(Herrmann & Sop 2016). This has generated an active debate on the significance of the 
contradictory observations. Studies increasingly support the idea that satellite detection of 
recent greening in the Sahel is related to herbaceous biomass, while woody vegetation has 
not exhibited an increase in prevalence (Spiekermann et al 2015; Brandt et al. 2017; 
Herrmann & Tappan 2013; Herrmann & Sop 2016). This distinction affects, for example, 
the suitability of the land for grazing. The potential roles and effects of anthropogenic land 
management are likewise an open topic of study (Bégué et al. 2011; Hiernaux et al. 2009; 
Olsson et al. 2005).  
 
Degradation as a framework for understanding land cover change is an advance over 
desertification. Degradation, with its finer grained conceptualization of land cover change, 
allows a more nuanced understanding of land cover change, which can be used for a wider 
array of priorities (e.g. yield for food production). Relative to the desertification framework, 
degradation is less all-or-nothing alarmist, less threatening impending catastrophic and 
irreversible crisis. While not necessitated, the degradation framework can be more focused 
on farmer and land manager agency, although degradation frameworks tend to be still 
prejudiced against local land users as destructive. Nonetheless, for complex understandings 
of the landscape, such as in the regreening debate, neither desertification or degradation are 
sufficient frameworks. 

Origins of Desertification 
Desertification, a concept now well-entrenched at the global scale, traces its lineage back to 
European desiccation theory (Davis 2016). In the late 17th and early 18th centuries, western 
writers such as Edmund Halley (b.1656; d.1742), John Woodward (b.1665; d.1728), and 
Stephen Hales (b.1677; d.1761) developed the desiccation theory of land cover change (e.g. 
Woodward 1699). The theory suggested that the aridity of a landscape is causally connected 
to its level of vegetation. Land cover could be moved in either direction along a moisture 
gradient by forest management: deforestation led to aridification; afforestation to 
humidification (Grove 1996).  
 
While early desiccation writing generally promoted the agricultural and health benefits of 
deforestation, this began to change toward the end of the 1700s (Davis 2016). In the 1760s 
and 70s, influential writing from colonial officials working in the tropics began to focus on 
deforestation as a threat to habitability and vitality (Grove 1996, 1997). Pierre Poivre (b.1719; 
d.1786) and Joseph Banks (b.1743; d.1820) were among those to warn that the lush Edenic 
environments of tropical islands could be lost to uninhabitable desert conditions under 
deforestation and overgrazing (e.g. Poivre 1797). 
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Western approaches to land management in the 18th and 19th centuries were further shaped 
by increasing capitalism, economic liberalization, and the agricultural improvement 
movement (Davis 2016). The growing agricultural improvement movement demanded a 
shift in the usage and governance of the commons. Peripheral lands managed in the 
commons, once considered a productive form of land use, became underutilized spaces, lost 
agricultural potential, and viewed as susceptible to misuse and degradation (Goldstein 2013). 
Proponents of the agricultural improvement movement in France worked for decades to 
change domestic land use and tenure rights, campaigning on the vilification of pastoral 
livelihoods, said to be hastening the demise of productive land by means of poor 
management and overgrazing. The prolonged battle for enclosure of the commons that 
played out in France over the 19th century left a widespread discourse of degradation, 
deforestation, overgrazing, and desiccation (Davis 2007; Whited 2000).  
 
These domestic conceptualizations of landscape and land use were transferred to French 
colonial governance. Land cover types in the region were interpreted by Europeans, in lieu 
of historical data, in accordance with the imposed idea that the grasslands had once been full 
of dense forest (Benjaminsen 2016). These grassland ecosystems were labeled “derived 
savanna,” that is, degraded from their “natural” forest climax vegetation (Fairhead & Leach 
1998; Clements 1916). The French colonial forester Louis Lavauden, in his 1927 “Les Forets 
du Sahara,” simultaneously coined the term “desertification” and ascribed the phenomenon 
to the ill-effects of nomadic people of the Sahara and the overgrazing by their animals 
(Lavauden 1927). Deforestation was often attributed to local agriculturalists and pastoralists, 
and colonial forest management and preservation governance served to dispossess local 
people of access to land and resources (Fairhead & Leach 1998). These coercive colonial 
policies carried through after independence in national environmental protection strategies 
(Boubacar 2016).  

Desertification in Development Discourse 
In the 1970s, the severe drought in West Africa brought widespread use and 
institutionalization of desertification language to national and international contexts. During 
the 1980s, however, climate change and biodiversity began to eclipse desertification as a 
priority concern for international development efforts. The creation of the UNCCD was 
seen by some as a concession made to African countries rather than a global commitment to 
the issue of desertification (Toulmin & Brock 2016). The UNCCD, ratified in 1996, holds a 
conference of the parties (COP) every two years to review progress. Their rhetoric supports 
local decentralized approaches, but program implementation is accomplished via National 
Action Programmes. The funding mechanism for the UNCCD, the “Global Mechanism,” 
channels existing funding only. Any new funding comes through the Global Environment 
Facility, but there desertification projects are relatively underfunded compared to competing 
projects for biodiversity and climate change. As a result, project funding often comes from  
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outside programs, such as the World Bank Sustainable Land Management Program 
(Toulmin & Brock 2016). Global attention, visibility, and narrative are of particular 
importance for the ability to secure funding for desertification projects. 
 
Regardless, desertification remains embedded in the missions—and names—of international 
and regional cross-cutting institutions that exist based on the concept of desertification, such 
as the UNCCD and the Permanent Interstate Committee for drought control in the Sahel 
(CILSS). The institutionalization and fundamental embeddedness of desertification language 
within organizations working on land cover management and change constrains the 
flexibility to reconsider other land cover change narratives. In national and regional levels as 
well, desertification features prominently but is positioned in relation to drought and climate 
change issues. The close connections with international mechanisms are evident in the 
language incorporated into national policy documents. Niger’s environmental management 
strategy, for example, echoes verbatim the definition of desertification used in the UNCCD 
(Boubacar 2016). In the most recent decades, desertification discourse has been coupled with 
the spectors of conflict, terrorism, and mass-migration. The Great Green Wall project was 
launched in 2007 by the African Union and supported by the European Union and the Food 
and Agriculture Organization of the United Nations (FAO). In its original conception, the 
project endeavored to plant a wall of trees across the continent east to west to fend off the 
advance of the Sahara desert (UNCCD 2016). The project was relaunched in 2013, backed 
by the UNCCD and the World Bank. The current semantics of the project emphasize 
reforestation benefits, including: “Growing a reason to stay to help break the cycle of 
migration” and “Growing a symbol of peace in countries where conflict continues to 
displace communities” (UNCCD 2016). 

Overview 
CILSS is the parent organization to a number of regional research institutes, including the 
regional center for research on agriculture, hydrology, and meteorology (AGRHYMET). 
Early in my graduate school career I found my way to Niamey, Niger to visit the institute. 
My conversations with researchers there about their work, progress and challenges were the 
germination of the land use land cover dataset presented in the first chapter. The dataset 
covers the West African Sahel at 30m resolution over the years 2000 to 2016, more than an 
order of magnitude increase in the land cover data available for land managers and 
decision-makers in the region. One of the tenets of my approach to science is the 
importance of applied research, and I embarked on this project in service of that goal. 
Knowing what questions to tackle required asking scientists in the region about the work 
already in progress. This kind of seeking and listening is crucial for producing useful, usable 
research.  
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I follow the presentation of the land use land cover dataset with details of its methodology 
development process. This work produced insights on spatial scale and factors affecting 
algorithm choice for machine learning classification of land cover from remote sensing data. 
Opening the methodology of the dataset to review, critique and adaptation promotes open 
science, strengthens the science itself, and fosters ethical, equitable research practices. I go 
on to lay out, in the service of open and collective effort, routes for future improvements of 
the dataset and methodology. Open presentation of possibilities for future work paves the 
way for continuing and nascent collaborations. Currently, development of the dataset is 
ongoing with collaborators at NASA and AGRHYMET. Further advances will be shaped by 
the involvement and ownership taken by scientists who are in and from the regions of study. 
I proceed from the land cover dataset and its methods to a demonstration of possibilities for 
rethinking approaches to spatio-temporal precipitation dynamics from a complex systems 
perspective. Exploring whether and how precipitation systems give rise to seasonal 
characteristics and trends provides an opportunity to explore inductive pattern recognition 
techniques and to question the representations of various precipitation datasets. 
 
My portfolio of projects is, broadly speaking, an exploration of innovative methods, 
methods intended to offer new approaches to previously intractable questions. The 
interconnectedness of land cover, climate, humans, governance and science is a driving 
concept behind the work of this dissertation. In short: Chapter One presents a new 30 meter 
annual land use land cover dataset for the West African Sahel; Chapter Two discusses in 
more detail the methodology used to create the dataset and the insights gained in the 
process; Chapter Three describes promising directions and next steps for ongoing 
development of the land cover dataset; Chapter Four investigates precipitation dynamics in 
West Africa across spatial scales. Pattern recognition techniques are used to link synoptic 
scale regional precipitation patterns to annual rainfall characteristics; spatial organization of 
seasonal rainfall trends are compared across precipitation data products. Concluding remarks 
address some of the institutional contexts with which this research interacts and offer an 
alternative to the desertification narrative that has dominated discourse about land cover 
change in the region. 
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Chapter One. 
A New High-Resolution LULC 

Dataset for West Africa 
Building on visually classified maps  

 

Introduction 
This chapter presents a regionally-calibrated 30 m annual resolution (2000-2016) land use 
land cover (LULC) dataset for West Africa. Both the spatial and temporal resolution of this 
new dataset represent significant improvement over previously available LULC data. The 
process by which the dataset was created (discussed at length in the following chapter) 
enables: classification of future years of satellite observations; the creation of custom 
classifiers for the West African region; and future application of the methodology to other 
regions of the world. The dataset and these tools will be openly available, and are designed to 
be accessible regardless of local computing or internet connectivity capacity.  
 
Global land cover products are notoriously unreliable for the Sahel, and accurate land cover 
data for the region are sparse (Leroux et al. 2014; Mbow et al. 2015). To address this gap, the 
U.S. Geological Survey (USGS) and the Regional Center for Agriculture, Hydrology and 
Meteorology (AGRHYMET) in Niger produced high-quality land cover maps for the region 
via hand-classification of Landsat images (Tappan et al. 2016). Classification of land cover by 
visual inspection of satellite images produces maps which are highly accurate, but the 
method is costly. The practical considerations of the time, labor, and money required 
constrain the spatial and temporal resolution of the end product. The advance presented 
here builds on these visually classified maps with machine learning techniques to successfully 
increase the resolution of available LULC maps by 1-2 orders of magnitude, from 2 km 
decadal resolution to 30 m annual resolution.  
 
Classification of land cover for the entire West African Sahel can now be accomplished in a 
matter of hours and for free. The classification is carried out by a machine learning algorithm 
trained on the original hand-classified Atlas. The accuracy of the classification is stunning; 
case study validation has shown the machine learning classification matches or exceeds the 
accuracy of the hand-classified map.  
 
The outputs from the project are three-fold: the completed 30 m annual time series of LULC 
for the entire region from 2000 to 2016; the methodology used to create the time series such 
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that future years of data can be likewise classified; and the modular data pipeline itself, open 
source script that can be adapted for use with different inputs, different training datasets, 
different regions.  
 
These high-resolution regionally calibrated land cover datasets, along with the classification 
algorithm developed to produce them, offer a foundation for major advances in the 
understanding of land surface processes in the region. These products can ultimately be used 
to provide more accurate inputs for food security modeling, hydrologic modeling, analyses 
of land cover change, and climate change adaptation efforts.  The land cover classification 
tool presented here will be publicly available for use in creating additional West Africa land 
cover datasets with future remote sensing data, and can be adapted for use in other parts of 
the world. 

Background 

Land cover in the Sahel 
The land cover of the West African Sahel has undergone drastic changes over the past fifty 
years. In the region, land cover is central to climate, demographic, and hydrologic changes, 
but data on regional land cover has historically been sparse. Field surveys of land cover are 
limited in spatial and temporal coverage, and global satellite products are notoriously 
inaccurate over West Africa. Land cover class schemas used in global products do not 
sufficiently represent the land cover types relevant in West Africa (Leroux et al. 2014; Mbow 
et al. 2015).  
 
The land cover dataset from the Moderate Resolution Imaging Spectroradiometer (MODIS) 
is one of the best existing global land cover products (Channan et al. 2014; Friedl et al. 
2010). It covers years 2001 to 2012 at 500 m resolution, and achieves a global accuracy of 
72.3% to 77.4% overall, and 64.8% for agriculture (Herold et al. 2008). The 2013 MODIS 
map of land cover in West Africa is shown below. The five most common MODIS land 
cover classes in the Sahel collectively account for 98.75% of the area: grasslands; barren or 
sparsely vegetated; croplands; savannas; cropland/natural vegetation mosaic. Note that 
cropland appears spread across two land cover types in the MODIS dataset: cropland and 
vegetation/cropland mosaic. 
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Figure 1 . MODIS 2013 land cover for West Africa. 

 

Table 1 . MODIS land cover class legend. 

 
 
The issue of class definitions aside, the land cover classes prevalent in West Africa are not 
easily distinguishable from one another by spectral signature alone. Traditional spectral land 
cover classification methods rely on land cover types having distinguishable characteristic 
patterns of reflectance across a number of different wavelengths. Without distinguishability 
in the characteristic spectra of different land cover types, algorithmic spectral classification 
breaks down. Examining the spectral signatures of land cover types present in the MODIS 
dataset for the West African Sahel offers insight into the difficulty with spectral 
classification.  
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Agriculture, for example, has been very challenging to reliably classify in West Africa using 
spectral data with algorithmic methods. It is perhaps the most important land cover type for 
understanding region-wide trends, targeting climate change adaptation measures, and 
planning food security measures. Differences in the appearance of agriculture over the 
course of the year and in different areas of the Sahel compound the issue of spectral 
separability. Variability in agricultural practices and changes across the region are influenced 
by national and multilateral agricultural extension programs and development initiatives and 
shaped by history, culture, and environment. Different staple crops are grown in different 
regions, and have different hydrological impacts (Ibrahim et al. 2014). Spatial organization of 
agriculture is not uniform across the region. Different trade offs are made between 
agricultural extensification (increasing the area under cultivation) and intensification 
(increasing the density of crops, reducing fallow periods, increasing intraseasonal crop 
cycles). 
 
 To date, efforts to monitor agriculture at a regional scale have depended on global land 
cover products produced with these methods. Despite being one of the highest performing 
products for agriculture worldwide, MODIS achieves only 51% accuracy for this class in 
West Africa (Leroux et al. 2014). With this level of accuracy, even the state-of-the-art 
MODIS product is largely useless for the study of agriculture in the region. 
 
The plots below show the 2013 spectral signatures for different land cover classes in the 
West African Sahel, for two seasons: mid-September to mid-November; and mid-March to 
mid-May. The top row depicts the top five MODIS land cover classes in the Sahel, one 
column for each season. The second row depicts the top six land cover classes from the 
Atlas, a hand-classified land cover dataset, described in the next section. The top five land 
cover classes from MODIS account for 98.75% of the area of the Sahel; the top six classes 
from the Atlas dataset account for 88.50% of the area of the Sahel. Mean values of 
reflectance (y-axis) in the wavelengths captured by Landsat 7 bands (x-axis) are shown as 
solid lines. The shading indicates the standard deviation of each distribution.  
 
Spectral signatures in both land cover datasets generally have at least some overlap, 
illustrating the challenge of spectral distinguishability between land cover classes in the Sahel. 
There are also some key differences to note between the two datasets. Relative to the Atlas 
data, the fewer classes in the MODIS dataset perhaps appear to have less overlap in their 
spectra. This is an indication that a spectra-based classification of land cover into the 
MODIS land cover types would be more successful than a spectral classification into Atlas 
land cover types. The question of the underlying accuracy of the two datasets, however, is 
key.  
 
Under the assumption that a hand-classified locally-specific land cover dataset (Atlas) is 
generally more accurate and appropriate than a globally-tuned coarser resolution dataset 
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(MODIS, accuracy evaluation ibid.), the Atlas dataset is the indicator of spectral separability 
for accurate land cover classification into locally appropriate land cover types. Where the 
MODIS classification trades accuracy for separability, the consistent overlap in the Atlas 
land cover spectra illustrates the hurdle for spectral land cover classification in the Sahel. 

Figure 2 . Landsat 7 spectral signatures for MODIS (a & b) and Atlas (c & d) land cover 
classes in the Sahel, data from 2013. a & c) Spectral signatures in the fall season, 
mid-September to mid-November; b & d) Spectral signatures in the spring season, 
mid-March to mid-May. Season definitions are identical to those used as features in the 
AtlasV2 classifier (see Data & Methods section). Mean spectral signatures are plotted as 
solid lines, shaded with ± one standard deviation. 

Figure 2 .a) MODIS fall season spectral signatures. 

Figure 2 .b) MODIS spring season spectral signatures.  
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Figure 2 .c) Atlas fall season spectral signatures. 

Figure 2 .d) Atlas spring season spectral signatures. 

 

The Atlas project 
To address this dearth of accurate regional LULC datasets, CILSS, USGS, and USAID 
partnered to create three LULC maps specifically for West Africa for the years 1975, 2000, 
and 2013 (Tappan et al. 2016). Because spectral classification performs so poorly over the 
region, the Atlas project trained technicians to visually classify land cover from Landsat 
imagery. The LULC map construction occurred in three parts: Landsat scene selection, 
visual classification, and map post-processing. Landsat imagery used for the classification 
was drawn from three year spreads centered on each year of the final LULC maps to create 
quality images free from clouds. To produce a single map representing 2013 at 2 km 
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resolution, technicians classified one 30 m pixel from Landsat imagery every 2 km. The 
choice to classify only one 30 m pixel every two km was forced by the sheer magnitude of 
the task: even at that limited density, a single map of the region requires classifying 1.2M 
land cover pixels by hand. The land cover class of each 30 m pixel was then assigned to the 2 
km cell surrounding it, for an aggregate resolution of 2 km.  
 
Every pixel of the resulting LULC map was visually inspected twice more to compare to 
Landsat imagery from 2000 and 1975, in order to produce maps for these two additional 
years. The maps were examined in workshops with regional experts, verified by field visit 
spot checks, and reviewed for quality control in post-processing. The final output of this 
monumental effort, which took 21 years to complete (1995-2016), was three hand-classified 
regional LULC maps for the years 2013, 2000 and 1975. They offer unprecedented accuracy 
and coverage for the region. However, with the visual classification approach scalability and 
resolution are limited. 

Figure 3 . Atlas 2013 land use land cover map with land cover class legend.  

 
Image from online data viewer at  https://eros.usgs.gov/westafrica/land-use-land-cover-map .  

 
While purely spectral-based methods for LULC classification have been unsuccessful for the 
region, the visually classified maps present a unique opportunity to create a new blended 
approach. It was specifically the Atlas project’s methodological choice to classify a single 30 
m pixel and then scale up to 2 km that allowed this breakthrough. By taking advantage of the 
hidden 30 m data set embedded in the 2 km Atlas product, the resolution and scalability of 
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LULC mapping in the region can be drastically increased. Machine learning trained by the 
highly accurate visually classified Atlas map was used to develop a land cover dataset for the 
region at annual 30 m resolution, representing a two orders of magnitude increase in spatial 
resolution and an order of magnitude improvement in temporal resolution. This method 
produced maps with 73% accuracy overall. For the agriculture class, these maps have 
accuracies of 70.9%, drastically out-performing MODIS agriculture classification both in the 
region and globally. 

Data & Methods 
Input data construction 
As seen in the previous section, spectral information alone does not provide an obvious 
separation between land cover classes. In light of that information, input data for training 
and classification were constructed from three different sources: Landsat Ecosystem 
Disturbance Adaptive Processing System (LEDAPS) surface reflectance bands 1-5 and 7 
(USGS 2018); Climate Hazards Group InfraRed Precipitation with Station data (CHIRPS) 
precipitation (Funk et al. 2015); and Shuttle Radar Topography Mission (SRTM) elevation 
with derived slope, aspect, and hillshade (Farr et al. 2007).  
 
Landsat composites were constructed for each year, 2000-2016. Landsat 7 scenes only were 
used to maintain consistency across the time period. To ensure good coverage from which 
to create quality composites, Landsat scenes were pulled from a three-year spread around 
each year. This also served to smooth the Landsat time series. Cloudy and saturated pixels 
were masked using the Landsat quality band, and multiple observations of the remaining 
pixels were composited by choosing the median value for each pixel. Compositing by 
median value offers robustness to outlier observations. The choice of time of year for which 
to create composites was informed by the methodology used for the original Atlas 
classification. 
 
Commonly, land cover classification is done with imagery from the season of peak 
greenness. The original Atlas project, however, used imagery from the time of year 
immediately after the end of the rainy season. The contrast between land cover types is 
highest during this time, skies are clear, and the fire season has not yet begun. In the Sahel, 
this time of year corresponds to mid-September to mid-November. The timing of the rainy 
season, however, is not the same everywhere in the region. Monsoon rains start in the 
coastal regions in March-April, move northward to the Sahel for peak northern rainfall in 
July-August, and then recede back to the coast to be followed by a dry season.  
 
The northern Sahel receives as little as 200 mm of annual precipitation, with a single peak in 
August, while southern coastal regions of West Africa can receive 1500-2200 mm of rainfall 
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per year, with peak rainfall in June and October, and clouds obscuring land surface for a 
much higher proportion of the year. To allow for differences in the seasonality of the rainy 
season throughout the region, and to capture more information particularly for regions with 
frequent cloud cover, two separate seasons were included as input data for the classifier 
training: a “fall” season from mid-September to mid-November; and a “spring” season from 
mid-March to mid-May. The inclusion of two seasons in the feature collection also 
potentially captures differences in annual phenological cycles between different land cover 
types, improving classification skill. 

Figure 4 . CHIRPS precipitation climatology with season selection. 

 
To construct precipitation input data, CHIRPS pentad precipitation was scaled to 30 m 
resolution via nearest neighbors interpolation. Following the same protocol as for the 
Landsat data, precipitation for a given year is a composite of that year and one year before 
and after. Precipitation occurring in the spring season in all three years is summed to create 
the spring precipitation feature. Precipitation occurring in the fall season in all three years is 
likewise summed to create the fall precipitation feature. As with the Landsat data, this serves 
to smooth the precipitation time series. SRTM topography data was included as constant 
parameters. 
 
The result of the input data construction process was a 30 m basemap of information to be 
used for algorithm training and land cover classification. Each 30 m pixel of this basemap 
contained, for any given year 2000-2016, 18 features:  

(6 Landsat Bands + 1 Precipitation Total) * 2 Seasons + 4 Topography Features = 18 Basemap Features 

The Atlas data was then paired with the corresponding 30 m basemap pixel to create a 
training dataset for the classification algorithm. Because the random forest algorithm is not 
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sensitive to data range or distribution, input data was not scaled. Random forests also tend to 
be robust to noise, which incentivizes inclusion of more features (Rodriguez-Galiano et al. 
2012). The primary practical limitation in this case was the tractability of the dataset in terms 
of size: with two seasons of six Landsat bands plus precipitation, along with four SRTM 
features, each year of basemap data is 120 Gb.  

Algorithm and parameters 
The process by which the algorithm training methodology was developed, as well as the 
insights gained from these intermediate results are detailed in chapter two. The final 
optimized choices for the algorithm training procedures and parameterizations are as 
follows. The classification algorithm was trained on data from 2000 and 2013, using Atlas 
data from those years for model testing and validation. 
 
The final land cover maps were classified using an array of geographically-specific random 
forest classifiers. The West Africa region was divided into 0.5 degree zones, and a separate 
random forest classifier was trained for each zone. In this particular case of algorithm-based 
classification, the smaller-scale classifiers outperformed larger regional classifiers trained on 
more data. This suggests that the effects of local variation in the appearance of land cover 
classes outweigh any classification skill gain from increasing the size and geographical extent 
of the training data. Such a result is in line with the existing hypothesis that local variation is 
one of the reasons that pure spectral classification has performed so poorly in West Africa.  

Figure 5 . Map of 0.5 degree zones over West Africa. A separate random forest classifier was 
trained for each of these zones. AtlasV2 includes zones only in the Sahel region of this map. 
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All random forest classifiers were given the same parameters. The subset of features 
available to each decision tree was sqrt(N features); minimum leaf split was one; there was 
no maximum tree depth. The choice of forest size was informed by the point of plateau in 
an accuracy vs. forest size plot tested on region-wide data. By qualitative evaluation, accuracy 
plateaued around a forest size of 60 trees. To capture any subsequent marginal accuracy 
gains, we increased the forest size to 100 trees with no loss in computational efficiency. The 
final classification algorithms were trained on the combined 2000 and 2013 Atlas data, 
holding 20% in reserve for validation. In order to smooth discrepancies in classification at 
zone boundaries, a nearest-neighbors kernel was implemented wherein 50% of the training 
data for each zone was taken from the surrounding eight zones and 50% of the training data 
was sampled from the central zone to which the algorithm was assigned. 

Platforms for algorithm development 
Two platforms were employed for algorithm development and map classification: Google’s 
Earth Engine (Gorelick et al. 2017) and UC Berkeley’s Savio computing cluster. Earth 
Engine is open access; when working on this platform data is stored, and computational 
operations are executed, on Google servers. This means access is independent of a user’s 
local computational resources and does not require high capacity internet connectivity. 
Further, the platform offers a relatively approachable interface to high-powered computing 
for which specialized knowledge is not necessary. Earth Engine does have drawbacks, 
including the limited customizability of its machine learning routines, and limitations 
imposed on computational resource allocations.  
 
While random forest training and classification software exists within the Earth Engine 
platform, working on UC Berkeley’s Savio cluster allowed greater control over both 
algorithm implementation and use of computing resources. Input data was assembled and 
pre-processed within Earth Engine; subsequently composite images were exported and 
loaded onto Savio for training and classification. Algorithm development and final 
classification was conducted on Savio using the Scikit-learn toolbox (Pedregosa et al. 2011). 
Classified land cover maps were then uploaded to Earth Engine.  
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Results: AtlasV2 

Overview 
Figure 6 . AtlasV2 map for the year 2016, overall accuracies, and dataset summary. The 
AtlasV2 map is bounded by (minLat, maxLat) = (9.0, 18.417); (minLon, maxLon) = (-17.542, 
18.883); not including Chad, with ocean and bad data areas masked. Accuracy values 
presented are accuracies measured against the original Atlas classification for the years 2000 
and 2013. 

 
 
 
The figure above shows the AtlasV2 classified land cover map for the year 2016; years 
2000-2015 not shown. Overall accuracy for the produced dataset, in terms of true positive 
rate, is 73.0%. This is comparable to MODIS global accuracy, at 72.3%-77.4%. For 
agriculture, AtlasV2 is 70.9% accurate, a vast improvement over MODIS accuracy for 
agriculture in the region (51%) and even over MODIS global agriculture accuracy (64.8%). 
The inclusion of precipitation in the AtlasV2 approach is of key importance for the 
classification accuracy, as detailed further in the feature importance section below. The 
accuracy improvements of the AtlasV2 accompany an increase in resolution over the original 
Atlas, from 2 km to 30 m in spatial resolution, and from decadal to annual temporal 
resolution. The data can be accessed, and custom analyses developed, through the Google 
Earth Engine platform, which is free to use. All data and computations are hosted on 
Google servers, which enables access regardless of local computational resources or internet 
connectivity.  
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Feature importance 
The feature importance plot below depicts the relative importance of all features to the 
classification algorithm. Results indicate that precipitation is important to the land cover 
classification, more than spectral bands alone. The inclusion of precipitation information is 
an important augmentation over algorithmic methods that rely on spectral information 
alone. 
 
The feature importance metric is calculated with the Gini impurity index as follows. Each 
node of a decision tree contains a collection of samples with associated labels. The Gini 
impurity is a measure of false positive rate if a randomly selected sample is labeled with a 
randomly selected label from the node membership. For each node in a decision tree that 
splits on a given feature, the reduction in Gini impurity given the split is calculated and then 
weighted by node membership. These impurity reduction scores are accumulated by each 
feature over the entire decision tree. Feature importances are then averaged across trees to 
get the feature importance measures for the forest. 
 
Most striking in the feature importance plot is the leading importance of precipitation. This 
is a strong indicator that precipitation information is necessary for a good classification; 
spectral classification alone would not perform as well. These results support the generally 
held knowledge that pure spectral land cover classification is not successful in the Sahel. 
Further, it demonstrates the advantage of AtlasV2 in the flexibility to include features 
beyond spectral information. Further exploration of the role of precipitation is detailed in 
the corresponding section that follows. 
 
Figure 7 . Relative feature importance values. Values are unitless and serve to indicate 
relative value across features. Feature importances are averaged across all zones within the 
AtlasV2 dataset. See chapter two for details of the random forest algorithm construction. 
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Among the other features in the library, Landsat 7 bands of both seasons are generally of 
equal importance. Topological features are generally least important, with the unexpected 
exception of elevation. A potential explanation for the importance of this feature is the 
plateau-lowland topography characteristic of much of the Sahel and the associated 
differences in land cover. In the area surrounding Niamey, for example, steppe is 
characteristic on the plateaus while agriculture occupies the lowlands. Further exploration of 
elevation and feature importances is warranted in future work, including examining relative 
feature importances with metrics other than Gini impurity such as permutation importance. 
 

Case study: Niamey   
Because high spatial resolution is one of the major advances of this new dataset, it is 
informative to look at a local case study (Figure 8). Niamey, on the banks of the Niger River, 
is the capital city of Niger and headquarters to AGRHYMET. The city is positioned in a 
zone of rapid geographical transition between more humid environments to the south and 
desert regions not far to the north. In this area, as in most of the Sahel, subsistence 
agriculture and pastoralism constitute a major part of the economy. As such, land cover is of 
critical importance; the difference between bare soil, steppe and agriculture has major 
implications for the population. Note the black circles on the MODIS and AtlasV2 highlight 
a crucial difference in the two LULC products. The reclassification of bare soil shown in 
MODIS to steppe or agriculture in the AtlasV2 tells a very different story about land cover 
changes in the region. 
 

Time Series 
In the period 2000-2016, the prevalence of savanna, steppe, and short grass savanna 
generally trended downward in the Sahel, while agriculture increased (Figure 9). While the 
Atlas maps for 2000 and 2013 offer a broad view of long-term trends, having only two data 
points can skew conclusions about the patterns or rate of change of different land cover 
types. The new AtlasV2 time series data allowed a finer investigation of how the prevalence 
of different land cover classes varies over this time period. Trends in the most common land 
cover classes (savanna, steppe, agriculture, short grass savanna, sandy area, and bare soil) 
were quantified with linear regression (Figure 10). The accompanying table details the 
estimated slopes, R 2 , and p-values. 
 
The trends in savanna, steppe, agriculture and short grass savanna dominate the time series 
of LULC in the region, all with p-values less than 0.024. Note also the trends in sandy area 
and bare soil: sandy area shows no significant trend over the period 2000 to 2016, and bare 
soil shows a significant if mild decrease in area. The agriculture and savanna classes in 
particular show strongly linear trends (high R 2 , low p-value). 
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Figure 8 . Land cover product comparison for Niamey case study. 

Figure 8 .a) Left: Location of Niamey in West Africa; Right: Land cover class legend 
 

 

  

   Water bodies 

   Wetland - floodplain 

   Gallery and riparian forest 

   Sahelian short grass savanna 

   Steppe 

   Bare soil 

   Rocky land 

   Settlements 

   Agriculture 

   Irrigated agriculture 

   Agriculture - flood recession 

 
Figure 8 .b) 2013 Niamey detail product comparison. Images are centered on the city; the 
Niger river bisects the map from northwest to southeast. All columns in a row show 
identical areas. Images in the second row are a zoomed in view of those in the first row. 
Columns are Landsat composite at 30 m resolution; Atlas at 2 km resolution; MODIS at 500 
m resolution; and AtlasV2 at 30 m resolution. Black circles highlight differences in land 
cover classification between the MODIS and AtlasV2 products. 

Landsat  Atlas  MODIS  AtlasV2 
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Figure 9 . Land cover time series. 

Figure 9 .a) AtlasV2 time series of land cover change in the West African Sahel from 
2000-2016 for the top six most prevalent land cover classes.  

 

Figure 9 .b) Comparison between AtlasV2 time series and original Atlas land cover class 
prevalence for 2000 and 2013.  
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Figure 10 . AtlasV2 time series of the six most common land cover classes, with linear 
regression lines of best fit. Shading indicates 95% confidence interval. 

 

Table 2 . Linear trend fits for top six land cover classes. 

Linear Trend Fits  Slope (km 2 /year)  R 2  p-value 
  Savanna  -9721  0.8889  1.5E-08 

  Steppe  -3108  0.2974  0.02357 

  Agriculture  16127  0.8885  1.5E-08 

  Short grass  -3700  0.6300  1.428E-04 

  Sandy area  82  0.0037  0.8166 

  Bare soil  -613  0.4352  3.961E-03 
 
 
 

   

17 



 
 

Conversion volatility and trends 

Overview 
Land cover in West Africa has gone through drastic changes over the past five decades. 
Climate, population trends and land use practices all contribute to land cover dynamics. 
Precipitation, for example, has exhibited increased variability, particularly in the last 25-30 
years; during that time precipitation anomalies have often changed sign annually. Land use 
has also changed dramatically. Economic, climate and development factors have shaped the 
landscape in variable ways, including the extensification of agriculture, regreening through 
land management and changes in cultivation practices, and shifts in forest use and 
management. While these factors vary on an annual timescale, land cover data for the region 
has been limited to decadal resolution. Particularly in the current period of increased 
variability, this resolution is insufficient to understand land cover change dynamics.  

Figure 11 . Schematic illustrating the concept of conversion volatility and its interaction with 
observational time scale. The two rows illustrate two different scenarios for a pixel of land 
cover. The pixel, represented as a circle, is shown for each of four years. The pixel is 
assigned a land cover type, indicated by color. In the transition between years, the pixel can 
remain the same land cover type or it can change type. The pixel in scenario (a) is relatively 
stable, transitioning land cover type only once over the four years. The pixel in scenario (b) 
is more volatile, changing land cover type every year. If attempting to characterize the 
volatility of each pixel, the time resolution of observation will influence results. If, as in the 
original Atlas, one observes the pixels at only two time points, the first and fourth years, 
pixel (a) would appear to be volatile and pixel (b) would appear to be stable. At the annual 
time scale, however, the opposite behavior is evident. 

a)

 

b)
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Using the new annual LULC dataset, however, it is possible to look at annual conversion 
volatility. This advance from the two-year Atlas dataset is illustrated in the figure above. 
Using the AtlasV2 dataset to identify land cover conversion volatility hot spots can enable 
researchers to focus on possible mechanisms driving that volatility, as well as enable 
decision-makers and land managers to focus their efforts accordingly.  

Region-wide 
Conversion volatility is defined, for each 30 m pixel, as the number of conversions the pixel 
accrued during the period 2000 to 2016; the maximum number of conversions possible is 16.  
Every land cover classification decision is made by popular vote among the decision trees in 
the random forest algorithm. To exclude dubious conversions when the classification 
certainty is low, a user-defined threshold was imposed on the percent split in vote between 
the first and second most popular classes. A conversion arising from a classification with a 
vote split by less than the threshold was discounted from the total conversions accrued by 
the pixel over the time series. A lower bound for the number of conversions was calculated 
by assuming no change during any period of missing data. 
 
The influence of classification uncertainty and the importance of thresholding the class vote 
split are illustrated in the figures below. Characteristic spectral signatures and precipitation 
features are plotted for all pixels and for only pixels with volatility scores ≥5 conversions for 
a 10% split threshold. These are the pixels more likely to be prone to erroneous class 
conversions as a result of poor feature separability. The difference in separability between 
the two columns is striking, reinforcing the importance of investigating higher split 
thresholds.   
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Figure 12 . Spectral signatures and precipitation features of the top six 
classes in the AtlasV2 dataset. Plots a) and c) include all pixels; plots b) 
and c) include only pixels with volatility scores ≥5 conversions for a 10% 
split threshold. Plots a) and b) are the characteristic reflectance values in 
the Landsat 7 bands for the fall season, mid-September to 
mid-November. As previously, mean values are shown with a solid line; 
shading indicates one standard deviation. Plots c) and d) show the mean 
and one standard deviation of the seasonal precipitation features for the 
top six Atlas classes. Fall season defined as above and spring season, 
mid-March to mid-May. Class legend at right. 

 
Figure 12 .a) figure 12 .b) 
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Figure 12 .c) figure 12 .d) 

 
 

Four maps are shown below: the 2016 AtlasV2 land cover map for geographic reference; and 
three conversion volatility maps for different thresholds for the split of the conversion vote. 
With higher split thresholds, the volatility map is restricted to conversions made with higher 
agreement among the decision trees; total conversions for the overall map are reduced. 
Looking at a range of split thresholds provides information about the spatial structure of the 
underlying classification confidence in seemingly volatile areas. 
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Figure 13 . Land cover and conversion volatility.  

Figure 13 .a) AtlasV2 land cover for 2016. Class legend at right. 

 

Figure 13 .b) Conversion volatility for 10% split threshold. 

 

Figure 13 .c) Conversion volatility for 20% split threshold. 

 
Figure 13 .d) Conversion volatility for 30% split threshold. 

 

Figure 13 .e) Color bar for conversion volatility in number of land cover class conversions 
from 2000 to 2016. Maximum number of transitions possible is 16; color bar truncated for 
readability. 
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Region-wide, there is great diversity in LULC volatility. Land cover types are stable in some 
places, undergoing few changes over the 17-year period 2000 to 2016. In other areas, land 
cover change frequently, flickering between different land cover types on an annual basis. At 
the boundaries between regions where land cover is largely homogenous (for example the 
steppe, short grass savanna and agriculture in southeastern Niger), land cover conversion is 
highly volatile. This indicates a flickering behavior as opposed irreversible conversions of 
land cover class that increase its contiguous area. A band of high conversion volatility 
sweeps across the Sahel, generally tracing the location where steppe meets a landscape of 
mixed agriculture and savanna. Even within this band, conversion volatility is not evenly 
distributed. Hotspots of conversion volatility appear in northwestern Burkina Faso and to 
the north of Bamako in Mali. Even at a split threshold of 30%, there is strong coherent 
spatial structure in the conversion volatility map. Possible influences of precipitation on 
conversion volatility at a regional scale are detailed in the next section. 

Smaller scales 
At the regional scale, some areas show intermediate volatility without much spatial structure. 
The thirty meter resolution allows closer examination, revealing that these areas are not 
characterized by intermediate volatility but instead by complex patterning of volatile and 
stable land cover at a much smaller scale. This highlights the importance of multiscale 
analysis and illustrates that different parts of the West African landscape exhibit conversion 
patterning at very different scales. Conversion volatility provides insight about landscape 
features that are not apparent from the land cover map. Within the AtlasV2 conversion 
volatility map, many examples of small-scale spatial patterning warrant future investigation. 
 
In the area east of Bamako, an intricate small-scale labyrinth of stable-volatile patterning 
appears, following the spatial organization of the agriculture and savanna classes. Much of 
this patterning takes on a dendritic structure. In the detail view, the western area shows 
stable dendritic structures in a field of more volatile land cover. The eastern area, in contrast, 
shows volatile dendritic structures in a field of more stable land cover. In the 2016 land 
cover map, both the stable and volatile dendritic structures correspond to agriculture. It is 
only with the full time series and resulting conversion volatility that it is possible to see how 
different parts of this landscape, which appear identical in a land cover map, exhibit opposite 
conversion volatility behaviors. Further investigation of these areas could lead to insights on 
the different processes governing landscape changes in these different areas. 
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Figure 14 . a) 2016 land cover map for Bamako and the surrounding area. The city of Bamako 
appears in bright red in the middle of the frame, cut through by the Niger River in blue, 
which runs diagonally southwest to northeast. Yellow area corresponds to agriculture; green 
corresponds to savanna; and dark red to the bowé land cover class. b) Conversion volatility 
map, spatially identical to the land cover class map in (a). Inset c) is a detail view of the 
conversion volatility map for the area east of Bamako. In the area at the western edge of the 
detail frame, stable agriculture (dark in the conversion volatility map) forms a dendritic 
spatial pattern distinct from the surrounding volatile savanna landscape. In the eastern part 
of the frame, the inverse is true. The dendritic structures are volatile and the surrounding 
savanna is stable. Legend for land cover classes and color bar for number of conversions, 
truncated. 

Figure 14 .a)  Figure 14 .b) 

 

 

Figure 14 .c) 
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In the Guinean Highlands, among the headlands of the Niger River to the southwest of 
Bamako, there are three river branches that come together. These include, from west to east 
in the map above, the headland Niger River, the Fié River tributary, and the Sankaran River, 
which flows into a lake behind the Sélingué dam. The lake behind the dam shows the typical 
shape of a dammed reservoir. The other two branches show up on the land cover map as a 
mixture of water and floodplain. In the conversion volatility map, however, the three rivers 
show different behaviors. The Niger River shows a volatile floodplain around a stable central 
channel. The Fié River shows the entire floodplain as highly volatile. The lake shows 
expected stability surrounded with a more volatile edge, presumably where changes in the 
lake level affect the footprint of the lake. The Sankaran River flowing into the lake shows a 
similar floodplain-channel pattern as the Niger River, although at a much smaller scale and 
with much higher resolution in the braiding of the central channel.  

Figure 15 . Headlands of the Niger River, southwest of Bamako. (a) 2016 AtlasV2 land cover 
map. (b) Conversion volatility map. Joining river tributaries, blue in the land cover class 
map, show different behaviors from one another in the conversion volatility map.  

 

Figure 15 .a) 

 

Figure 15 .b) 
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As the Niger river heads into the Sahara desert, it encounters a wetland in the area 
surrounding the port city of Mopti. The river spreads out and slows down in this delta 
before continuing on northward. The flooding in this area is seasonal, September to 
December, fed by rain in the Guinean Highlands and to a certain extent local rainfall as well. 
During the flood season, the inundation area in the delta can grow to over 31,000 km 2  from 
a dry season area of 3,800 km 2  (Zwarts 2010). Major economic and subsistence activities in 
the region include seasonal rice farming and fishing alongside pastoralism supported by the 
delta. Variable flood seasons, either anomalously wet or dry, have an enormous impact on 
the one million people who depend on the delta for their livelihoods. An annual land cover 
map can identify the floodplain of the delta, but the conversion volatility map reveals a much 
more complex landscape with heterogeneous hydrologic behavior. This additional 
information on the hydrology of the region can be incorporated into water resources 
management and flood forecasting. 

Figure 16 . Inland Niger River Delta, northern Mali. (a) 2016 AtlasV2 land cover map. (b) 
Conversion volatility map. Note the spatial structure that stands out in the conversion 
volatility map that is indistinguishable in the single-year land cover map. 

 

Figure 16 .a)  Figure 16 .b) 

 
 
 
   

26 



 
 

There are a number of possibilities for using conversion volatility maps for hydrologic 
applications. Conversion volatility could be used to identify differences in hydrologic 
behavior of rivers, central river channels within a floodplain, and monitoring lake level 
volatility. Conversion volatility offers insight on hydrologic behavior not necessarily 
represented in land cover maps. Further, there are places in the landscape, such as in the 
Madjoari Reserve in eastern Burkina Faso, where the conversion volatility map is able to pick 
out water features by their characteristic changes where they do not show up clearly in the 
land cover map. 

Figure 17 . Madjoari Reserve in eastern Burkina Faso. (a) 2016 AtlasV2 land cover map. (b) 
Conversion volatility map. Note the river features that appear in the conversion volatility 
map that are not so easily distinguishable in the land cover map. 

 

Figure 17 .a)  Figure 17 .b) 

 
 
It has been well-established that the Sahel has undergone drastic changes in land cover. The 
identification of areas of high conversion volatility could have major implications for land 
management strategies, geographically focusing efforts where they will have the most impact. 
The spatial organization of high conversion volatility can offer insight into possible 
mechanisms influencing conversion, which might inform both land management strategies 
and predictions about the future of LULC under climate change. The impacts of climate 
change on the Sahel region are highly uncertain. With this new information about the 
conditions in which land cover is highly variable, decision-makers may be able to improve 
their climate change adaptation plans.  
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Role of precipitation 
The relationship between vegetation and precipitation in the Sahel is long and well 
established. Within the active debate on recent land cover changes in the Sahel and their 
drivers, it is increasingly held that precipitation strongly influences regional-scale land cover 
(Tucker et al. 1991; Tucker & Nicholson 1999; Seaquist et al. 2009; Gonzalez et al. 2012; 
Hickler et al. 2005). Overall trends at the regional scale, however, do not necessarily translate 
to dynamics observed at a more local scale. Findings of spatial heterogeneity and smaller 
scale variation in greening trends have been related to local anthropogenic and 
environmental effects (Herrmann et al. 2005; Hiernaux et al. 2016; Dardel et al. 2014). These 
localized effects can dominate short timescale changes in land cover, particularly because 
land cover has a lagged response to long term trends in rainfall (Brandt et al. 2017; Zeng et 
al. 1999).  
 
The last few decades of precipitation in the West African Sahel have been characterized by 
sizable interannual variations rather than overall trend. The figure below shows precipitation 
from the CHIRPS dataset at an annual timestep, as used in the feature construction for the 
land cover classification algorithm. Data is a regional spatial average, with one series for 
annual precipitation, and one each for the fall and spring seasons. The interannual variation 
in annual precipitation is evident, along with the lack of a strong interannual trend.  
 
Figure 18 . Annual time series of CHIRPS precipitation for 2000-2016, taken as a spatial 
mean of Atlas areas. All time series are three-year smoothed averages, as used for the 
classification algorithm features. Green is the mean total annual precipitation, orange is 
total fall precipitation, blue is total spring precipitation. Season definitions follow 
classification features: fall season is defined as mid-September to mid-November; spring 
season is defined as mid-March to mid-May. 
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To evaluate the possible role of precipitation in land cover type volatility, the figure below 
plots precipitation metrics against pixel volatility. For every pixel in the dataset, the 
precipitation metrics are calculated along with a volatility score, i.e. the number of times the 
pixel changed class between 2000 and 2016. Neither mean annual precipitation nor standard 
deviation of annual precipitation show a relationship with volatility.  

Figure 19 . Precipitation mean and standard deviation vs. land cover conversion volatility. In 
both plots, volatility is on the x-axis, in number of land cover class conversions over the 
2000-2016 time period. Highest volatility bin includes pixels with 5 or more conversions. a) 
Mean annual precipitation vs. volatility; b) Precipitation standard deviation vs. volatility, 
where standard deviation of annual precipitation is shown as a percent of the mean annual 
precipitation. Density in pixel count displayed in color. Marginal distributions plotted above 
and to the right of the main plot in light blue. Precipitation data is from CHIRPS. 

Figure 19 .a)  Figure 19 .b)   

 

 
 

The plot below investigates the relationship between precipitation variability and land cover 
changes on an annual basis. Annual precipitation anomaly (difference from mean divided by 
standard deviation) is calculated from the CHIRPS time series, smoothed with a three-year 
moving average, and plotted on the y-axis. Net percent change in class area is calculated as 

for each class and each year and plotted on the x-axis.areay−1

area −areay y−1   

 
There is no discernable relationship between precipitation anomaly and class area change. 
Note that by design, the three-year moving average protocol smooths out signal from single 
years. Rather, this is an evaluation of variability at the landscape scale, at longer timescales. It 
may be that no relationship exists between precipitation and land cover type at the landscape 
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scale, or more likely, that the precipitation time series does not include sufficient variability 
to create a signal in land cover type change.  

Figure 20 . Scatter plot of precipitation anomaly against net % change for each land cover 
class. Precipitation anomalies are three-year moving averages, reflecting the feature 
construction in the classification algorithm. There is no discernable relationship between 
precipitation anomaly and net % change for any land cover class. 

 
While precipitation is the most important feature for classifying land cover, by itself it does 
not show a relationship with land cover change over the 17 years. This supports the 
hypothesis that precipitation alone is not sufficient to explain changes in land cover in the 
West African Sahel. Because the AtlasV2 includes land use (most importantly, agriculture) 
alongside land cover, one would expect the dataset to represent socioeconomic dynamics 
alongside and in interaction with biophysical relationships. The observed behaviors at the 
regional scale leave room for the possibility that the relationships and mechanisms shaping 
land cover change and trends in the AtlasV2 dataset are heterogeneous across space, in line 
with gathering evidence in the region. 
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Classifier Performance 

Accuracy maps and distributions 
As detailed in the Data and Methods section above, the Sahel region was split into 
0.5-degree zones and a separate classification algorithm trained in each zone. Because 
classification was carried out by distinct classifiers in different zones, it was possible to 
examine the spatial pattern of zonal class accuracy instead of only a single accuracy score for 
the entire region. Additionally, because each zone classifier produces an accuracy score by 
class, it is possible to look at the frequency distribution of accuracy by class in aggregate 
across zones. The geographic structure of overall accuracy, and the frequency distribution of 
class accuracy across zones can help identify the strengths of the AtlasV2 maps for 
applications in smaller regions. This data can also suggest areas of focus for future 
development of the dataset, and regions to target for accuracy improvements. 

Figure 21 . Map of overall accuracy of all 0.5-degree classifier zones. As detailed in the Data 
and Methods section, the Sahel area was divided into 0.5-degree zones and a separate 
classification algorithm trained for each zone. Each zone has its own accuracy scores by 
class. Overall accuracy of each individual zone is calculated by taking the area-weighted 
mean of all class accuracies. This overall accuracy of each zone is plotted in color in the 
below map. 

 
 
Frequency distributions of class accuracy across zones are plotted in the figure below. Plots 
(a) through (d) are the four most prevalent land cover classes: agriculture, savanna, steppe, 
and short grass savanna, respectively. Savanna, for example, shows a relatively tight 
distribution around its aggregate accuracy of 71.5%. Short grass has a higher aggregate 
accuracy (76.6%), but the distribution is more widely spread. In other words, most zones do 
well with classifying savanna, whereas zones have more mixed performance for classifying 
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short grass. Information on the frequency distributions of class accuracies can be included in 
the factors to optimize for future development of the AtlasV2.  

Figure 22 . Frequency distributions of accuracy for the four most common land cover 
classes: a) agriculture; b) savanna; c) steppe; d) short grass savanna. Class accuracies from 
all zones are gathered to create the frequency distributions. Frequency on the y-axis; 
accuracy on the x-axis. Mean class accuracy denoted in subplot titles. 

Figure 22 .a) Agriculture: 0.709 accuracy 

 

Figure 22 .b) Savanna: 0.715 accuracy 

 

Figure 22 .c) Steppe: 0.762 accuracy  Figure 22 .d) Short grass: 0.766 accuracy 

 

 

Atlas accuracies 
It is important to note that the measurement of “accuracy” of the V2 product is actually a 
metric of match with the original Atlas. Measuring the true accuracy of the Atlas is 
challenging: there is no region-wide, validated, accurate data set against which to evaluate 
Atlas or AtlasV2. Without regional-scale data for validation, the original Atlas was evaluated 
with expert input, peer review, and field visits for ground truthing. Because of feasibility 
constraints, these methods are applied at sub-regional scales, as case study spot checks or 
qualitative sense checks. Accuracy of the Atlas is by no means uniform across space or time, 
and these methods do not yield a definitive regional-scale accuracy evaluation. Rather, they 
are best available approaches to evaluating the data product. 
 
AtlasV2 faces the same scale-based evaluation challenges. In lieu of regional-scale validation, 
case studies provide an opportunity to validate and compare the two Atlas products. For 
small areas where independent high-resolution verified land cover data exists, relative 
accuracies of the Atlas and AtlasV2 products can be evaluated. An “ultra-high resolution” 
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(UHR) dataset exists for the area of the Guinean Highlands and Kedougou, Senegal (Nelson 
2010). The UHR map was visually classified from 15 m Advanced Spaceborne Thermal 
Emission and Reflection Radiometer imagery (ASTER; Abrams 2000), and has been 
intensively quality controlled and verified for accuracy. Using this common benchmark, 
Atlas and AtlasV2 can be compared and evaluated. The Kedougou and Guinean Highlands 
area has advantages as a case study for accuracy evaluation. The landscape is characterized by 
small-scale spatial heterogeneity in land cover class patterns. Further, in this particular 
location, the land cover classes present generally look relatively similar to one another. 

Figure 23 . Map of Kedougou and Guinean Highlands UHR datasets. The two datasets 
overlap slightly in space and are from two different years, 2012 and 2013 respectively. The 
small-scale spatial heterogeneity in land cover class is an advantage for use as an accuracy 
evaluation case study. 

 
 
The UHR data for Kedougou and the Guinean Highlands are separate datasets. The areas 
covered by the two datasets overlap slightly and the datasets are from two different years, 
2012 for Kedougou and 2013 for the Guinean Highlands. Because of this, accuracy metrics 
were calculated for the two areas separately, then combined using an area-weighted mean. 
The accuracies presented in the first two rows of the figure below are percent match with 
the UHR classified dataset. Note that the AtlasV2 product has higher accuracy than the 
original Atlas. In other words, AtlasV2 is better at matching the UHR dataset than the 
original Atlas.  
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Figure 24 . Evaluating accuracy at Atlas data point locations. Accuracy comparisons for Atlas 
and AtlasV2. 

 
 
In the previous section, AtlasV2 accuracies were defined by how well AtlasV2 matched the 
original Atlas. Taken as an objective score, this metric assumes the original Atlas is 100% 
accurate. While the original Atlas is certainly far more accurate than any previously available 
regional land cover dataset, it would be remiss to assume it to be flawless, its accuracy 
perfect. Calculating the accuracies of both the Atlas and AtlasV2 datasets against the 
common benchmark of the UHR data provides a more representative evaluation of how 
well the AtlasV2 identifies land cover and how that compares to the original Atlas. The third 
row of the table below shows this comparison. It is a calculation of how well AtlasV2 
matches UHR , relative to how well Atlas matches UHR. An agreement score of 100% 
would indicate that Atlas2 is equally as accurate as the original Atlas. Here AtlasV2 is more 
accurate than the original Atlas, a relative accuracy of 101.2%. 
 
Further, the method developed to produce the LULC dataset was designed to be modular 
and customizable. This means that with a UHR LULC dataset available, a new LULC dataset 
can be created that is tailored to that region and augmented by the higher resolution. For 
example, a map of where AtlasV2 misclassifies land cover in the Kedougou/Guinean 
Highlands region shows errors for narrow sinuous landscape features such as rivers and 
riparian forest. The Atlas, because it was built from one 30m classification every 2 km, is not 
very skillful at identifying such landscape features. V2, because it was built from Atlas, 
inherited these limitations.  
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Figure 25 . AtlasV2 error map (black = correct; white = error). 

 
 
There are, however, modifications that can be made to ameliorate some of these 
inaccuracies. Because the pipeline is modular, the training data set can be swapped out. 
Replacing the Atlas training set with the UHR land cover data set and re-running the pipeline 
created a new LULC data set. The base map of the product was still Landsat, but the higher 
resolution and higher accuracy UHR offered more data for the algorithm to train on, and 
this was a training set that could identify sinuous landscape features. Indeed, the resulting 
custom AtlasV2 LULC dataset improved from an accuracy of 69.61% to an accuracy of 
82.64%, and identified small-scale landscape features including rivers and riparian forest.  

Figure 26 . Custom LULC datasets with UHR data. AtlasV2-UHR custom dataset 
comparison. 
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These modifications were cheap, requiring approximately 90 minutes for the complete 
process: swapping out the training map, retraining the algorithm, classifying the LULC map, 
and publishing the new data on Earth Engine. Possible future improvements include also 
swapping out the base map, exchanging Landsat for ASTER, so the dataset would be built 
on a 15 m instead of 30 m LULC map. 
 
This accuracy evaluation of, and comparison between, Atlas and AtlasV2 is only a case study 
of a small area within a large and heterogeneous region; accuracies reported for this case 
study are not expected to be representative for the region as a whole. As shown in the 
accuracy by zone map, classification accuracy for the V2 dataset is not uniform across space. 
It is likely that this is the case for the Atlas as well. This may be caused by any combination 
of: land cover classes present and spatial landscape patterning being more or less difficult to 
classify, differences in the quality of the available base map data, or geographic differences. 
For example, the southern regions are cloudier, which restricts the amount of data available. 
There may also be differences among the technicians who classified the Atlas data, or 
differences in the quality control post-processing of the Atlas.  
 
It should be emphasized that this was a case study. Nevertheless, the success demonstrated 
in this area pointed toward the power of the V2 method and dataset. The case study served 
as proof of concept, and suggested that the true accuracy of the V2 data set may be even 
higher than that of the original Atlas. Further, it demonstrated the ease with which the 
product can be adapted, and the drastic accuracy gains available through the use of this 
modular pipeline and the production of a custom LULC dataset tailored to a particular 
region. With different training data, this pipeline could be adapted for different areas, 
different use cases, and regions outside of West Africa. 

Temporal transferability 
One of the important questions for an approach such as the AtlasV2 is the transferability of 
the trained algorithm to different years of data. There are a number of reasons that 
transferability might degrade when applied to years not in the training dataset. There is the 
potential for overfitting in the classification algorithm if the characteristics of the 
observational data or the the underlying relationships to land cover types is not year 
independent. Interannual variability and gradual changes over time could both contribute to 
this situation. 
 
For example, one would expect that in a dry period, land cover characteristics change 
accordingly. Perhaps even the relationships between land cover type and indicators such as 
surface reflectance change. From a systems point of view, this interannual variability can be 
represented as movement within state space. Observing the system in one region of state 
space (e.g. a dry period) does not necessarily afford enough information to represent the 
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system in a different region of state space (e.g. a wet period). By training an algorithm with 
information from only a limited subspace of the system’s full range of variability, the 
algorithm potentially performs poorly in other regions of state space. In addition to 
interannual variability, gradual shifts over time in land cover characteristics or sensor bias 
can contribute to the deterioration of a classification algorithm over time. The temporal drift 
in the information about the system limits the lifetime of a classifier. There is a restriction on 
its ability to accurately classify land cover in years temporally removed from the years for 
which it was trained. In this case, information on how quickly the accuracy of a classifier 
decreases could contribute to planning when another hand-classification campaign is 
necessary.  
 
To gather information on the temporal transferability of this classification method, accuracy 
tests were run exploring permutations of temporally segmented algorithm training and 
evaluation data. The classifiers trained on combined data from 2000/2013 were evaluated on 
2000 data and 2013 data separately. In addition, a set of classifiers was trained on data from 
2000 only and another set trained on 2013 only. Both sets were then evaluated on both years 
of Atlas data individually. Results of these accuracy assessments appear in the table below. 
The 2000/2013 classifier performed well on the single years of data. The single year 
classifiers likewise do well on their own year, but for both the 2000 classifier and the 2013 
classifier, performance was notably worse on the other year of data. Note that in all cases, 
the data used to evaluate the classifier for a particular year or years was held out from the 
training process; in other words, the accuracy assessment was conducted with data the 
classifier had not seen. This procedure makes possible an honest evaluation of classification 
accuracies. 

Table 3 . Classifier accuracies 

Classifier:  2000/2013  2000  2013 
Test years: 2000/2013  2000  2013  2000  2013  2000  2013 

Savanna  .7148  .7281  .6986  .7228  .6376  .7117  .6967 
Steppe  .7618  .7707  .7527  .7627  .6853  .6988  .7490 

Agriculture  .7095  .6885  .7243  .6861  .6705  .5777  .7163 
Sandy area  .8407  .8404  .8410  .8387  .7788  .7240  .8315 

Bare soil  .6592  .6596  .6587  .6480  .6144  .5612  .6397 
Short grass  .7659  .7775  .7527  .7738  .6442  .6955  .7556 
Avg/Total  .7296  .7336  .7255  .7235  .6530  .6573  .7176 

 
The limited skill of an algorithm trained on a single year to classify a different year leaves 
open the question of which aspect of that setup is most detrimental. It may be that the 
relationships between features and land cover type are highly year-specific, enough to 
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compromise the ability of an algorithm to classify a year not seen in its training data. This 
would present a particular challenge to the task of classifying the years between the two Atlas 
maps, and exploring interannual trends and volatility. Alternately, it may be that a single year 
does not cover enough of the variability range of the system to accurately classify a year 
outside of the explored phase space. Having data representing a wider region of phase space 
would improve this deficiency, without the need for data from every year. 
 
The evidence from this accuracy assessment is not conclusive about the time transferability 
of classifiers. It does, however offer insight into the factors affecting temporal transferability. 
In the case of high annual specificity, one would expect that classifiers trained and evaluated 
on data from the same year would perform better than classifiers trained on a combination 
of data from temporally distant years and then evaluated on only one of the years. Instead, 
for both 2000 and 2013, the 2000/2013 algorithm outperforms the classifier built on that 
year alone. This indicates that capturing interannual variability, in other words a wider 
elaboration of the state space, is more important for constructing a skillful classifier than 
temporal fidelity. With two years of Atlas data for training and evaluation, it is clear that 
including both years more fully covers the phase space of the system. It remains unclear how 
well those two years cover the entirety of the phase space. It is encouraging that the two 
Atlas map years are at or near the beginning and end of the AtlasV2 dataset, and that 
between these two time points there have been significant and large-scale changes in 
prevalence of the major land cover types in the Sahel. 
 
Investigation of AtlasV2 classifications for years without associated training data will, by 
necessity, include sources of land cover data other than the Atlas. While MODIS is perhaps 
not an ideal evaluation standard (Kaptué Tchuenté et al. 2011), there are small-scale high 
resolution land cover datasets from various sources for the Sahel region, both visually 
classified and field-based. These datasets can serve as more local case study evaluations of 
AtlasV2 for years not covered by Atlas. One such example is detailed in the previous section. 
In addition, there is an increasing number of high-resolution land cover datasets produced 
for the continent of Africa (e.g Midekisa et al. 2017; ESA CCI 2017). Comparison with these 
datasets, while not an evaluation against ground truth, will provide insight into the 
characteristic tendencies of datasets produced with different methodologies which can 
inform further development of the products. 

Open access methodology 
In addition to the regional land cover time series itself, a fully Earth Engine-based 
classification routine was implemented to facilitate classification of future years of data, and 
to make the methodology accessible for open use and customization. With this tool, users 
can change the input data and preprocessing techniques, select any region in the West Africa 
domain on which to train a custom algorithm, or upload their own training data for 

38 



 
 

anywhere in the world. For a single 0.5 degree zone, the entire pipeline—ingestion and 
compositing of Landsat input data, custom algorithm training, and subsequent classification 
of land cover for the entire zone—takes only seconds. This is a tremendous advance for the 
field of land cover classification, and offers both the foundation and the flexibility for land 
cover practitioners to create their own implementations tailored to any number of 
applications. 
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Chapter Two.  
Development of Land Cover 

Classification Algorithms 
Methodological insights 

 

Introduction 
To create the dataset presented in the first chapter, it was necessary to develop a machine 
learning protocol specifically for training algorithms to classify land cover types in the West 
African Sahel. This development process led to two insights key to the success of the 
project. First, the flexibility and tractability of random forests outweighs the tunability of 
support vector machines, even on smaller datasets. Further, geographic clustering is more 
important than the size of the training data. These results, while specific to this Sahel 
classification endeavor, add to the underdeveloped literature on optimizing land cover 
classification tasks, and call attention to factors that should be considered when developing 
algorithms. 

Algorithm choice 
Two machine learning algorithms were investigated for the classification routine: support 
vector machines (SVM) and random forests (RF), using scikit-learn (Pedregosa et al. 2011). 
Support vector machines are computationally intensive to train, but have an established 
reputation for performing well on land cover classification. Existing work finds that for land 
cover classification, SVM outperforms methods such as artificial neural networks and 
maximum likelihood estimators (Huang et al. 2002; Melgani and Bruzzone 2004; Shao and 
Lunetta 2012 among others). Huang et al. (2002), for example, find SVM algorithms are 
better classifiers when using a higher percentage of the total data. They find that increasing 
the number of features supplied to a given classification algorithm has a greater impact on 
accuracy than either increasing the number of training samples or choosing a different 
algorithm. In their study, the speed of SVM training is particularly sensitive to number of 
training samples, choice of kernel, and class separability. While SVMs are slow to train on 
large sample sizes, the authors maintain that SVM is a preferred algorithm for land cover 
classification, and that as many features as possible should be included. 
 
Random forests have also been shown to perform well on land cover classification tasks, 
with results comparable to or better than SVMs in some cases (Pal 2005; Rodriguez-Galiano 
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et al. 2012; Adam et al. 2014). The evaluation by Rodriguez-Galiano et al. (2012) of random 
forests found that they are competitively skilled at land cover classification, and further, have 
some advantages over other classification methods. A random forest provides an estimate of 
generalization error and feature importance. It is a method efficient for both large and 
high-dimensional datasets, and robust to small training samples and noise. Belgiu and Dragut 
(2016), however, in their overview of recent algorithm evaluation work, emphasize that 
random forests appear to be sensitive to training data sampling design, but reports are 
contradictory as to the effects of imbalanced training data. 
 
Toward the goal of building a skilled and robust classifier for land cover in West Africa, and 
in light of the myriad potential sensitivities of different algorithms, both support vector 
machines and random forests were explored. The classifier development was carried out in 
parallel. At each stage in designing the classification routine, two classifiers were 
independently optimized: both a support vector machine and a random forest. This allowed 
comparison of overall classification accuracies, and of the sensitivities of each method. In 
this chapter, an overview of support vector machines and random forests is provided. This is 
followed by an exploration of the effects of input data transformations on classification 
results. The training section details bottlenecks encountered in the classifier development 
process, the effects of input training data size, and unexpected findings on the role of spatial 
scale in the final classification results. Final results and discussion follow. 
 

Support Vector Machines 
For classification tasks, a support vector machine draws a plane through feature space to 
separate the input data into classes. A plane that maximizes the margins between itself and 
the nearest input data observations of different classes is determined to be the best solution. 
Those data observations at the edges of class groupings used to determine the plane margins 
are called the support vectors. For data that are not perfectly separable, a cost parameter 
defines how much an SVM prioritizes avoiding misclassifications. For non-linear solutions, 
the support vector machine transforms the feature hyperspace according to some function F 
and then draws a plane through the remapped hyperspace. Because the input data are 
mapped into the transformed hyperspace through dot products, the explicit form of F does 
not have to be found. Instead, optimal parameters are found for a kernel function K, where 
K is the dot product of the mapping function F. Details of the theoretical underpinnings of 
the support vector machine algorithm can be found in Huang et al. 2002, Vapnik 1995 and 
1998, and Burges 1998, among others. 

Preventing overfitting 
One of the routines required in training an SVM is the use of k-fold cross-validation. This 
procedure prevents overfitting of the algorithm. An overfit algorithm is too closely tuned to 

41 



 
 

the training data such that the generalizability of the algorithm suffers. The overfit algorithm 
will perform poorly on data not included in its training set, despite misleadingly high 
accuracies demonstrated in training. In k-fold cross-validation, the training data is split into k 
sections. The training for any particular set of parameters is completed in k iterations, each 
time holding out a different section of the data as the test data. The accuracies of each of 
these k iterations are then averaged to determine the overall accuracy of the algorithm with 
whatever parameterizations had been applied.  

Figure 27 . Schematic of 3-fold cross-validation. 

 
 

Optimization of the input parameters requires testing many different values for the 
parameters. The accuracy for each parameter set is determined by its own full k-fold 
cross-validation procedure. A percentage of the total training data is held out entirely from 
the k-fold cross-validation process; 10% was used during development of the V2. Once the 
optimal kernel parameters are determined, a final classifier is trained on the entire training 
dataset, less the held-out validation data. This held-out data is then used to evaluate the final 
classifier. The reservation of the validation data until the final evaluation of the classifier 
minimizes the bias in the final accuracy score. 

Choosing and parameterizing a kernel 
Support vector machines require the selection of a kernel to describe the mapping of data 
into higher dimensional space. The first kernel tested was the radial basis function (RBF):  

(x, )K y = e−γ x−y  || || 2   
The RBF was selected because it is generally a skillful kernel; its use requires optimizing only 
two parameters, � and cost; and it can accommodate nonlinear mappings. The parameter � 
for the RBF kernel sets the radius of influence for individual points. The cost parameter sets 
the penalty for an incorrect classification. Higher cost incurs a larger penalty.  
 
Following Hsu et al. 2003, a grid search was conducted in parameter space to optimize the 
parameters for classification accuracy. Stepping at intervals of 2 n+2  for both � and C, 
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classifiers were trained and evaluated with 5-fold cross validation. This exploration of the 
accuracy topology in (C, �) space was thus a systematic and comprehensive optimization 
protocol.  

Figure 28 . Accuracy surfaces from the grid search.  

 
 
Training of a single SVM algorithm is computationally expensive. When multiplied by 
necessary parameterization routines and k-fold cross-validation, the resources required 
quickly inflate. For an application with a relatively low number of data observations, training 
an SVM algorithm likely remains tractable; datasets with many more observations are 
potentially more difficult. The linear SVM kernel was explored, replacing the RBF, in an 
attempt to attenuate some of these computational resource requirements. Kernel choice can 
impact the speed of training a support vector machine significantly, and the linear kernel is 
recommended for large low-dimensional datasets (Hsu et al. 2003), but on this dataset the 
linear kernel did not yield satisfactory results. As such, the RBF kernel was retained for 
further development of the SVM algorithm. Ultimately, computational requirements of the 
SVM method proved a substantial hurdle in the algorithm development process. 
 

Random Forests 
A random forest classification approach was developed in tandem with the SVM in order to 
choose the most appropriate method for the AtlasV2 classification routine. Random forests 
are generally simpler than support vector machines, more interpretable, and far less 
computationally expensive. The random forest method is an ensemble technique wherein a 
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classification decision is made by a collection of decision trees. Each decision tree within the 
random forest is composed of a branching structure which an observation traverses to reach 
a classification result. The final classification is determined by collective vote of all the 
decision trees in the forest.  
 
To grow a decision tree, the training routine finds the feature and feature threshold value 
that best splits the training data into its constituent classes. Each node of the structure 
imposes this criterion which is used to determine which of the two emanating branches a 
data sample is subsequently passed to. This routine is repeated sequentially, finding the 
feature and threshold value that best splits the samples passed along by the previous step. 
For a decision tree classifier, the user must assigns the minimum number of samples 
required in a node to qualify for another split. When the decision process reaches this 
sufficiently terminal “leaf,” the process is complete and the resulting classification is the vote 
that decision tree casts. A minimum leaf size of one was used for the AtlasV2 classifiers. 
 
The training routine tests the accuracy gains with each available feature from a randomly 
permuted feature list order. To prevent overfitting and limit the correlation of the 
constituent decision trees, each tree is given random subsamples, of both the training data 
and the input data features, from which to build its structure. By choosing the number of 
features available to each decision tree, the user can tune the random forest to be more 
generalizable (fewer features available) or to be more fitted to the training dataset (more 
features available). The accepted rule of thumb for choosing the number of features available 
is the square root of the total number of features. Heuristic exploration completed on the 
Atlas training data confirmed that a classifier with a restricted number of features available to 
each decision tree performed better than a classifier with all features available to all decision 
trees.  
 
Parameters for random forest classifiers include the number of decision trees in the random 
forest. More trees produce a more robust classifier up to a certain limit. Above that number, 
there is little to no accuracy gain with a higher number of trees. Once all of the decision trees 
are trained, each tree in the ensemble casts a vote for the classification of each land cover 
pixel. Because of the ensemble approach to random forest classification, one of the metrics 
available from the classified validation dataset is the fraction of trees that voted for a 
particular class. This provides additional information about the certainty of the classification, 
and by proxy, about distances between classes in feature space.  
 
Another advantage of the random forest method is that the algorithm is robust to extra 
features, which accelerates the process of optimization. Extra features can be added without 
depressing accuracy results with the additional noise. Further, results from training a random 
forest classifier include a metric of importance of each feature included in the input data. 
These insights may inform mechanistic understandings of processes affecting land cover; 
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they can also further improvements in the RF algorithm development, and the development 
of other empirical or mechanistic models of land cover in the region.  
 
Detailed descriptions of decision trees and random forests, with a focus on their application 
to land cover classification can be found in the following: Friedl and Brodley 1997; DeFries 
and Chan 2000; Breiman 2001; Pal and Mather 2003; Pal 2005; Gislason et al. 2006; 
Rodriguez-Galiano et al. 2012; and Adam et al. 2014, among others. 
 
While random forests are fast to train, simple, and interpretable, however, there are often 
trade-offs in accuracy, so for the V2 both SVM and RF approaches were developed, and 
each method evaluated for performance as applied to land cover classification in West 
Africa.   
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Data transformation 
One technique for improving machine learning classification results is to transform the input 
data. Such transformation can improve data separability and computational tractability. 
Transformations can be applied either across feature space, or to input data features 
individually. 

Figure 29 . Linear, uniform and Gaussian transformations of two-dimensional projections of 
Landsat band feature space. Top row is band 4 vs. band 1. Bottom row is band 7 vs. band 2. 
Bands refer to wavelength ranges in Landsat 7 data. 

Unscaled  Uniform  Gaussian 

 

   

 
 
For the SVM method, feature values must be scaled to unify their ranges. This prevents a 
feature having outsized influence on the classification simply because the values assigned to 
that feature are significantly larger than the other feature values. For the SVM algorithm, 
smaller feature values are more tractable. Both (-1,1) and (0,1) are good choices for the range 
to which all features are standardized. Note the importance of consistent scaling of a feature 

46 



 
 

no matter the particular input data. Once scaling parameters are chosen to transform the 
input training data, those same parameters must be used for the classification data. With 
scaling parameters from the training data, the new data may fall slightly outside of the 
chosen feature value range. As long as the input data is all processed the same way, slight 
deviations from the specified value range do not pose a problem. The naïve method for 
transforming a feature to the unified value range is a simple linear scaling. 
 
In the SVM method, additional data transformations can improve the skill of the classifier. 
The SVM transforms parameter space in order to draw hyperplanes separating classes. The 
transformation of input features can give the algorithm a head start. The figure shows the 
training data used here projected onto two dimensional space. The top row is the projection 
of band 1 and band 4 of Landsat data; the bottom row is the projection of band 2 and band 
7. In the figure, each data observation is color-coded according to class membership. The 
left plot is the simple linear scaling, the middle is a uniform transformation, the right a 
Gaussian transformation. In the transformed data, for these particular projections with the 
uniform transformation, the data is distributed across the space and the groups of classes are 
more clearly differentiated even to the eye. A small-scale SVM classifier trained on 
transformed data produced overall precision scores of 0.570 for the untransformed (linearly 
scaled) data, 0.587 for the uniform transformed data, and 0.625 for the Gaussian 
transformed data; accuracy gain with the Gaussian transformation was a substantial 5.5%. 
 
The user must consider, however, that different machine learning algorithms respond 
differently to data transformations. The SVM algorithm finds continuous hyperplanes in 
transformed feature space, while the random forest makes linear slices in feature space with 
decreasing increment size. These differences in methodology for separating data into classes 
and different levels of sensitivity can mean that data transformation is not universally a 
useful technique to improve classification skill. The random forest method, for example, 
when trained on the same input data transformations, shows no significant improvement in 
accuracy. 

Training  

Bottlenecks 
In the methodology development process, factors associated with training bottlenecks 
included the size of the dataset, heuristic algorithm development, and parameter 
optimization. Minimum and maximum requirements for training dataset size were influenced 
by several factors: which machine learning technique was used, model parameterization and 
customization (e.g. what kernel used for SVM ), noise present in the training data, and 
features of the training data itself. Even subsetting the 1.2M observations, each iteration of 
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SVM training incurred heavy computational cost. Ultimately, computational time was the 
dominant bottleneck for development of the SVM process. In contrast, the computational 
tractability of the random forest algorithm (even on the full dataset) allowed for far more 
flexibility in the model development process.  
 
One of the key challenges for model development was the parameter optimization process. 
This proved prohibitively expensive for the SVM algorithm, while the RF was well-suited to 
a complete exploration of parameter space. The RBF kernel used for the SVM has relatively 
few parameters, a distance of influence metric (gamma) and a cost for misclassification (C). 
A methodical grid search of parameter space was conducted, training with all pairings of 
parameters in 2 n+2  increments. To prevent overfitting, each parameter pair was tested with 
5-fold cross-validation. This parameter optimization procedure, while thorough, required 
many iterations of algorithm training. That, combined with the resource-intensive nature of 
the SVM algorithm, meant that a complete search of parameter space was not a tractable 
task. As a result, only an under-optimized algorithm was possible, failing to capture potential 
accuracy gains from better parameterization.  
 
The poor tractability of SVM proved an insurmountable barrier to its use in a significantly 
heuristic development process. Development, aiming to design a complete classification 
pipeline for a dataset and a region that had never before been successfully analyzed with 
machine learning classification techniques, included many heuristic components. 
Examination of classification results was followed by iterative attempts to improve the 
results. This included exploring feature design, data pre-processing, and data sub-setting 
methodologies. The high overhead required by the SVM algorithm restricted capacity for 
testing different solutions, while the RF was well-suited to this sort of heuristic development 
process. 

Training data size 
One of the methodological variations tested for accuracy improvements was training on 
subsets of the available data. For the SVM method, this approach arose from tractability 
limitations, which were present even when the training was executed with cluster computing. 
To create a reasonably tractable training routine, the full domain dataset was randomly 
sampled to provide a training subset for the SVM routine. The computational requirements 
of SVM limited this subset to no more than 20% of the total data region-wide. Classifiers 
trained on 10% and 20% of the full dataset performed with accuracies no better than 0.440. 
Because the random forest method can accommodate training datasets on the order of at 
least 10 6 , it enabled a classifier to train on the entire West Africa domain. This single 
algorithm was then used to classify LULC across the region. 
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Spatial scale 
In another approach tested for its ability to improve classifier accuracy, multiple classifiers 
were trained on multiple, smaller domains within West Africa. This technique reduced the 
number of training observations for each classifier, which had the potential to detract from 
their accuracy. In this process, however, classifiers on smaller domains performed better 
than classifiers on larger domains. 4-degree, 2-degree, and 0.5-degree zones were tested; 
locally-specific and spatially coherent classifiers performed better than classifiers for larger 
regions using both SVM and RF. The improved accuracy of these smaller-scale classifiers 
supports the spatial heterogeneity of land cover class appearance across West Africa, which 
is one of the reasons cited that machine learning or algorithmic approaches to land cover 
classification generally perform poorly in the Sahel. Training multiple small classifiers 
addressed this challenge. 

Figure 30 . Zone size map. 

 

Figure 31 . Accuracy vs. number of trees by grid cell size. 
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Results and discussion 

Table 4 . Best SVM model accuracy table. 

 
 

In this project, SVMs were found to be sensitive to input data variation and parameter 
optimization. Additional tuning refinements could potentially increase the accuracy of the 
classifier; however, these refinements, whether systematic or heuristic, were prohibitively 
expensive in computing resources and time. SVMs tend to perform best on smaller training 
datasets. Even working with half-degree zones, however, the SVM training routine was 
computationally intractable on this dataset. Thus SVMs, while successful in some 
applications to land cover classification, were ill-suited for this project.  
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Table 5 . Best RF model accuracy table. 

 
 

Random forests are much simpler and faster than SVMs. Although random forests tend to 
be less accurate than SVM models under optimal circumstances, in this work they were more 
suited to iterative model development. With the tractability limitations on how well and how 
quickly an SVM model can be optimized, even a preliminary random forest model of LULC 
change in West Africa has comparable accuracy to the best-model SVM that was found. The 
ease of training opened more opportunities for heuristic improvements of the RF model.  
 
Because the random forest method is computationally inexpensive and relatively robust to 
input data processing, it was much more suited to an application for which future 
sustainability is important. The full algorithm development pipeline can feasibly be 
implemented on Earth Engine, ensuring wider access to the method and availability for 
future use and improvements. The algorithm development procedure can be easily changed, 
a flexibility that has potential applications for adaptation to specific use-cases or other data 
sources. Further, this implementation allows for the possibility of the classification 
methodology to be adapted and used for other parts of the world and with other training 
datasets. 
 
The development of the machine learning classification of land cover in West Africa yields 
two major methodological insights, one on algorithm choice and one on training data 

51 



 
 

subsetting. The results of the paired SVM and RF classifier development add to the existing 
literature on algorithm choice for land cover classification. For the AtlasV2 application, the 
flexibility and tractability of the random forest outweighs the customizability of the support 
vector machine algorithm. This finding supports the use of random forests for land cover 
classification. The result of the impact of zone size on classification accuracy also has 
implications for machine learning land cover classification applications more broadly. 
Improved classifier performance with smaller spatial domains highlights the importance of 
variations across space in the relationships of input features to land cover class. In the 
AtlasV2 setting, this spatial heterogeneity effect outweighs any positive effects of providing 
larger datasets to the training routine. For land cover classification applications more 
broadly, this result establishes the importance of considering spatial domain in the design of 
machine learning classification algorithms. 
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Chapter Three.   
Future Work and Next Steps for 

Land Cover Classification 
 

Introduction 
The dataset presented here is best described as a first working version of this product, a 
version zero. There remain many possibilities for improving and extending the dataset, these 
methods and development pipelines, and their accompanying capabilities. This future work 
includes classification improvements, additional analyses, comparisons with other land cover 
datasets, and extending user collaboration and applications.  

Input data processing 
Improvements of the land cover classification are possible for every component of the data 
classification pipeline. The first stage of the pipeline is the development of the feature 
library. Version zero used Landsat 7 bands, CHIRPS precipitation, and SRTM topography 
data, and these input data required preprocessing to be useful as components of the feature 
library. Scenes were selected from a chosen season, filtered for clouds and saturated pixels, 
and the median value per pixel of all the remaining scenes in the relevant time range was 
taken. This procedure, while sufficient to achieve the accuracies in the version zero product, 
can be modified for additional potential improvements in accuracy. 
 
As an example, the composite imagery is not currently corrected for the scan lines present in 
Landsat 7 data. While the current compositing procedure smooths out much of the scan line 
error, some artifacts still appear in the resulting land cover data set. These scan line artifacts 
usually manifest as erroneous land cover classification in the spatial pattern of the scan lines. 
Future work includes addressing the scan lines at the data preprocessing stage. The cloud 
masking method is another area where modification of the methodology may improve 
results: a custom built cloud detection procedure may improve the resulting composite. 
 
The version zero data set was built from three-year composites of landsat seven. Future 
work includes training classifiers for the other landsat campaigns. Note that because Atlas 
maps address 1975, 2000, and 2013, they can be used to train classifiers that span the full 
time period of Landsat campaigns, 1972 to present.  
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Table 6 . This table details the base map/training data/time period combinations. 

Training  Basemap  Classified Time Span 
Atlas 1975  LS1  1972-1978 
Atlas 1975  LS2  1975-1983 
Atlas 2000  LS5  1984-2012 
Atlas 2000  LS7  1999-present 
Atlas 2013  LS7  1999-present 
Atlas 2013  LS8  2013-present 

ESA20m (2016)  LS7/8  1999-present 
ESA20m (2016)  S2  2013/14-present 

 
New high resolution satellite data and the publication of other land cover data sets for 
Africa, e.g. the European Space Agency (ESA) 20 m product (ESA CCI Land Cover Project 
2017) and the Malaria Elimination Initiative land cover map (Midekisa et al. 2017), provide 
other opportunities for the use of the new data set and algorithm development pipeline. The 
2016 V2 map can be compared with both the ESA 20 m LULC product and ESA 20 m 
training data set. Comparing the data sets will identify locations and characteristics of data 
set agreement. This information informs the development of both the V2 and the ESA 
products. The classification pipeline can build a LULC dataset using Landsat 7 and 8 as the 
base map and the ESA 20 m data set (full map and/or ESA training data) as training data. 
These data sets can then be compared with both the original V2 data sets and with the Atlas 
2000 and 2013 maps. A V2 data set built with Sentinel as the base map and training on ESA 
20 m will allow comparison of the V2 and ESA algorithms and methods, and extend the 
ESA 20 m dataset to the full range of Sentinel (2013/14 to present). 

Feature Development 
As discussed, random forests are robust to superfluous features and easily scalable for a data 
set with many features, and this flexibility supports heuristic addition of features to the 
library in pursuit of higher classification accuracies. Future feature exploration could include 
additional data, such as temperature and higher tier products derived from Landsat data (e.g. 
NDVI, EVI, SAVI, NDMI, NBR) , as well as transformations or combinations of existing 1

features. Further, because land cover evolves continuously in time, including system memory 
features may be advantageous. This would entail, for example, including last year’s rainfall as 

1 NDVI: Normalized Difference Vegetation Index 
  EVI: Enhanced Vegetation Index 
  SAVI: Soil Adjusted Vegetation Index 
  NDMI: Normalized Difference Moisture Index 
  NBR: Normalized Burn Ratio 
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a feature for the current year’s classification. Another way to include temporal components 
in a future library would be the use data from multiple seasons. The current product includes 
information for two seasons (April and October), and future work could expand upon this, 
including data from the entire year divided into any number of seasons.  
 
The limitation on adding information to feature collection comes not from the random 
forest algorithm, but from data input/output requirements to port the training classification 
from Google Earth Engine to Savio. Intended future improvements to Earth Engine 
implementation of the random forest training and classification will aim to make the entire 
pipeline feasible at full-scale on Earth Engine, obviating these data input/output limitations. 

Algorithm Improvements 
Areas of focus for algorithm improvements include regional classifier performance, tailoring 
for specific use cases, and zone edge smoothing. At the regional scale, one of the major 
challenges for land cover classification is obtaining sufficient imagery for the Gulf of Guinea 
coastal regions. These areas receive high annual rainfall, spread out over much of the year, 
during which time they appear cloudy and no Landsat data can be collected for surface 
reflectance. The current AtlasV2 dataset does not include these coastal regions, because the 
random forest method required that all included features have no missing data; due to the 
spotty Landsat imagery, classifications there were not accurate enough to be useful. Creating 
a skillful classifier for the cloudy southern regions will require a more innovative approach. 
The V2 pipeline has a key and powerful characteristic: classification routines come not from 
a single region-wide classifier, but from a collection of small scale (0.5 degree) classifiers, and 
the feature libraries for these 0.5° zones do not have to be identical. This means that a smart 
feature selection protocol could be implemented. A master feature library would be created, 
one which includes all of the potentially useful features, even if these do not appear in all 
zones. Each individual zone would check which of those features have no missing data in 
that zone, and then only those features would then be included in the feature library for that 
zone. This would allow each zone to implement its custom feature library, without 
constraining the features available to a region-wide common denominator. 
 
Other algorithm improvements include tailoring for specific use cases. In the development 
of an algorithm, choices are made to maximize the performance of the classifier. The 
evaluation of what constitutes good “performance,” however, is determined by the priorities 
of the user. This version zero product was shaped by interest in aggregate precision squares, 
with attention to the agriculture class in particular. Other use cases might prioritize recall, or 
accuracy of a different class. These priorities affect decisions made along a heuristic 
development pathway; different use cases may call for significantly different choices. The 
future work here is would not be about developing an algorithm for predetermined use 
cases, but about making the algorithm development pipeline transparent and accessible. 
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Users could then create custom algorithms and data sets optimized for specific use cases. 
 
Edge effects are another area in which future development stands to greatly improve the V2 
product. Each 0.5° zone classifier was trained on the Atlas data contained by the zone 
boundaries. As such, the training data for a zone only included the classes that were present 
in that particular zone in the 2000 and/or 2013 Atlas maps. Land cover change dynamics, 
however, do not neatly match the boundaries of these classifier zones. For example, a land 
cover class that had never appeared in a particular zone can begin to populate that zone as 
time goes by. If the zone’s classification algorithm had not seen land cover of that class in its 
training process, the algorithm will not know how to classify the new land cover type, or 
even that this class of land cover exists at all. This difficulty is also present in cases where the 
classification algorithm has little (instead of no) information about that class.  
 
Along the western and Southern boundaries of the LULC map, the coastline cuts through 
the regular zone grid such that some zones are only partially covered by land, with the 
remainder covered by ocean. In this situation, the coastal edge zone has less information 
from which to draw on to learn to classify the land surface. This exacerbates difficulties with 
identifying land cover classes that were scarce or nonexistent in the zone’s training data. The 
first kind of edge effect (call it “landlocked” edge effects) reveals a trade off between locally 
specific classifiers versus widely generalizable classifiers. Zone size accuracy testing indicated 
that 0.5° zones perform better than the larger zones, which suggests a need for methods to 
smooth edge effects without losing the local specificity of the classifiers. Larger zones might 
smooth edge effects, but would sacrifice accuracy in the process.  
 
The edge smoothing method currently implemented is a local kernel technique. The classifier 
for each zone is trained on data from the surrounding eight zones. The information from the 
surrounding zones is incorporated into the classifier, which then remains responsible for 
classifying only the single center zone. This technique does improve the edge effects of the 
final region-wide classification. Note that the overall accuracy of the region-wide 
classification is not substantially different with and without this local kernel implementation. 
This is a good example of use case based design priorities. How important is reducing edge 
effects versus improving region-wide accuracy? Work remains to be done exploring the 
parameterization of the local kernel technique in pursuit of further improvements in zone 
edge effects. Parameterizations include the shape of the kernel function as well as its width. 
Currently the kernel is uniform in shape with a width of one zone. Other possibilities include 
a Gaussian kernel with a wider sphere of influence, or a dynamic box size. 
 
For coastal regions, a more custom approach will be necessary. The superposition of the 
coastline on the regular zone grid results in zones only partially covered by land surface 
pixels, with water in the remaining area. This limits the land surface information available for 
training the classifier. Issues arise when the classifier can distinguish differences in land cover 
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type but does not necessarily have the land cover class vocabulary to accurately assign the 
classes. Performance in the coastal regions, therefore, might be improved by redistributing 
pixels from partial coverage zones. Land cover data from partial coverage zones could be 
reassigned to nearby more complete zones. Alternately, partial coverage zones could be 
pooled together to form aggregate coastal zones with approximately the same number of 
pixels has the 0.5° zones.  
 
These edge effect techniques are part of a broader future exploration of zonation 
methodology. Classifiers trained on zones of three different sizes were tested for region-wide 
accuracy; those trained on 0.5° zones, the smallest tested, performed best. Presumably, were 
increasingly small training zones to be tested, further accuracy gains would at some point be 
offset by overfitting effects. A peak of this accuracy plot has not yet been identified, and 
further exploration of smaller zones is warranted. 

Figure 32 . Schematic of accuracy vs. zone size: overfit; just right; over generalized. 

 
 
Other methods for assigning zone boundaries might benefit region-wide accuracy or be well 
suited to particular use cases or applications. Zones may be assigned by eco-region, by 
country (to capture Atlas technician differences), or by areas of different agricultural 
practices. 

Analysis 
The analysis of the V2 results that was presented in the previous chapter represents only a 
fraction of the exploration possible with this rich source of new information. Much work 
remains to be done, and many new analyses will be possible because of this dataset; only a 
few are detailed below. 
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The dataset captures class transitions on an annual 3-year smoothed timescale. For the first 
time, therefore, it is possible to look at the character, conditions and predictors for land 
cover class transitions. Another step in the analysis of land cover change in this data set is 
exploring alternate methods for determining significance thresholds for land cover class 
transitions. The conversion volatility maps presented here are filtered by a tree agreement 
parameter, described in chapter one. Future analysis could include finer grained examination 
of conversion type (what class a pixel is converting from or to). Establishing significance for 
this analysis might include conducting a conversion analysis on spatially shuffled data, for 
example. Further, a Monte Carlo type approach to classifier training will provide an 
indication of the stability and significance of the land cover maps and accuracy values. 
 
The AtlasV2 LULC data set was built on a feature library that included spectral landsat data, 
which enabled analysis of classification topology and spectral signatures by land cover class. 
The land cover class schema utilized in the Atlas dataset was chosen based on both the land 
cover types present in the region and the class distinctions which are useful to researchers, 
land managers, and decision-makers in the region. This mapping is related but not identical 
to the topological structure present in the distribution of land cover data in feature 
hyperspace. Mapping the land cover data into features space (or two dimensional eigenvector 
space) may provide insight on classification challenges and on the classes themselves. 
Proximity or overlap of classes, for example, can indicate classification challenges and 
inform addition of other distinguishing features. A focus on mapping the land cover data 
into Landsat band space specifically may yield insight useful for the broader research 
questions on remote-sensing land cover in the region.  
 
Projecting the data into spectral space can aid in the development of a spectral library for 
each land cover type. While earlier or more general attempts to classify land cover in the 
region based on spectral signature have been unsuccessful, AtlasV2 data allow us to make 
advances in this vein. The map of agriculture in spectral hyperspace may show more or less 
coherence around a particular spectral signature that characterizes agriculture. The spectral 
mapping might show sub-groupings that could indicate different types of agriculture. 
Further, because a full time series is now available for land cover data, a shift in the spectral 
characteristics of agriculture may be discernible over time. The knowledge that more locally 
specific classifiers are more accurate than regional classifiers indicates that a land cover type 
spectral library should be similarly localized. Through a combination of visual map 
inspection, geographic spatial organization and an evaluation of the tightness of class 
grouping in spectral space, it may be possible to identify localized spectral signatures for 
different land cover classes. Depending on the separability of land cover classes based on 
spectral signature, spectral unmixing may be a feasible way to identify land cover at a sub-30 
m scale.  
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User Collaboration 
Future improvements and extensions of this data set and platform hinge on the ongoing 
collaboration with users of the data set. Possibilities include: the development of a custom 
user interface with built-in analysis functions; and/or the development of a customizable 
algorithm training and classification platform. The data set development platform is designed 
to be modular such that it can be adapted for other basemaps, other training data sets and 
for other regions in the world. Applications for the data set reach far beyond purely 
environmental concerns. Land cover data represents landscape characteristics and spatial 
organization and is also an indicator of people in space. This information has disease 
eradication applications. The locations of settlements and agricultural fields can help identify 
for example, how malaria moves across the landscape into different populations in Burkina; 
for where health workers should target ebola vaccination efforts in central Africa. 
 
The identification of ephemeral water bodies can guide pastoralists in need of water sources 
for their animals. The location of land cover conditions favorable to Locust ovopositioning 
can inform pest control efforts to avoid famine. Land cover dynamics affect flood risk and 
agricultural stability. Information on these dynamics can inform land management 
decision-making. 
 
The needs and priorities of the end users will guide the future development of this dataset 
and platform. It is likely that the most important features for future development are not 
anticipated here without detailed and ongoing inputs from the researchers, land managers 
and decision-makers in the region. This is the crux of the endeavor. The data set is possible 
because of years of discussion, review, decision-making and labor of experts in the region. 
The goal of the project described herein is to build on these efforts, creating a tool that can 
be adapted for myriad applications. 
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Chapter Four.  
Seasonality and Spatial Patterns 

of Sahelian Rainfall 
 

Introduction 
The past twenty-five years have seen a major shift in Sahelian rainfall. A decades-long 
drought has given way to some recovery of annual precipitation, but with changes in 
interannual and seasonal characteristics of rainfall (Giannini et al. 2016; Janicot et al. 2011; 
Lafore et al. 2016). Studies on recent interannual rainfall trends in the Sahel point toward 
increased annual variability, continued deficit of number of rainy days, and a possible 
increase in rainfall intensity (Sanogo et al. 2015; Panthou, Vischel & Lebel 2014; Ly et al. 
2013; Nicholson 2013). These trends are subject to high spatial variability of rainfall, and 
there is limited consensus on long-term rainfall trends, especially with regard to annual 
precipitation totals (Biasutti 2013; Joly et al. 2007; Biasutti & Giannini 2006; Cook & Vizy 
2006; Douville et al. 2006). Through the “upped-ante” mechanism, climate models predict a 
delay in the onset of the rainy season in the West African Sahel and a subsequent shortening 
of the rainy season (Neelin et al. 2003; Chou & Neelin 2004; Sobel & Camargo 2010; Chou 
et al. 2001; Biasutti & Sobel 2009; Biasutti 2013). After providing background on 
precipitation in the Sahel, this chapter analyzes small-scale rain gauge data for seasonal 
trends present in the recent rainfall record. Then follows a large-scale spatial analysis of 
rainfall over the region with an analysis of seasonality and annual precipitation. The last 
section compares precipitation products for their spatially explicit representation of 
seasonality trends. 

Background 
The first half of the 20th century is described as a wet period in the record of annual 
precipitation in the West African Sahel. The late 1960s, however, marked the onset of a 
decades long severe drought in the region (Lamb 1982; Nicholson 1983; Katz and Glantz 
1986; Hulme 2001; Dai et al. 2004; Trenberth et al. 2007; Greene et al. 2009; Nicholson 
2018). For the next 35 years, climate scientists debated the cause of the drought—the largest 
change in climate anywhere in the world over the entirety of the 20th century (Giannini 
2016).  
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Narratives about the effects of agriculture and pastoralism shape perspectives on the 
culpability of local people for negative changes in climate and land cover change. In 1975, 
Charney, a meteorologist, proposed that the catastrophic region-wide drought that began in 
1968 was the result of soil denuding caused by overgrazing (Charney et al. 1975). He 
suggested that a biophysical coupling between the land surface and climate could be the 
mechanism driving the drought. A reduction in vegetation would lead to an increase in 
albedo; the land surface and the boundary layer atmosphere would be relatively cooler and 
convection therefore suppressed. Charney acknowledged the limitations of the then-current 
climate modeling. He noted that this local suppression of convection would eventually be 
overwhelmed by larger-scale climate dynamics returning the system to equilibrium (Charney 
et al. 1977). In the decades since, subsequent modeling studies have confirmed the 
plausibility of such a biophysical feedback, but the reduction in rainfall exhibited in the 
modeling studies is only ~25-50% of the total observed reduction in rainfall during the 
drought (Taylor et al. 2002). 
 
In parallel, beginning with the work of Folland et al. (1986), modeling studies were used to 
investigate the possible role of the oceans in the Sahel drought. It was not until 2003 that the 
dominant role of the oceans in the drought was confirmed, though land-atmosphere 
feedbacks (Giannini 2003). 
 
Since the mid 1990s, annual rainfall in the Sahel has shown signs of return to higher levels, 
but with increased interannual variability (e.g. Loudoun et al. 2013; Nicholson 2013; 
Nicholson 2005; Ali & Lebel 2009; Salack et al. 2011). Increases in annual rainfall have not 
been uniform across the region; the Central Sahel has seen more rainfall recovery than the 
far west regions (Lebel & Ali 2009). Further, seasonal rainfall is characterized by fewer more 
intense rainstorms than in previous periods (Ly et al. 2013; Sanogo et al. 2015; Panthou et al. 
2014; Lebel et al. 2003).  
 
Precipitation patterns in West Africa are the combination of synoptic, meso, and local scale 
dynamics with a strong north-south gradient from wet forest ecosystems on the southern 
coast to arid steppe landscapes at the edge of the Saharan desert. At the synoptic scale, 
annual shifts in the position of the intertropical convergence zone bring monsoon 
precipitation northward to the West African Sahel in the boreal summer. This band of 
precipitation then retreats back to the south with the advance of the fall equinox (overviews 
of the West African Monsoon can be found in, e.g.: Lafore et al. 2016; Nicholson 2013; 
Janicot et al. 2011; Cappelaere et al. 2009; Louvet et al. 2003; Sultan & Janicot 2003). This 
annual procession of the monsoon rains creates a single peaked climatology in the Sahel with 
maximum precipitation in August. Southern coastal regions experience a double-peaked 
precipitation climatology as the monsoon rains pass by on their north-south transit.  
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In the Sahel, seasonal precipitation is marked by an onset period in April to May, a plateau in 
rainfall in June followed by a jump to peak precipitation amounts in August, and a quick 
decline through September and August (e.g. Sultan & Janicot 2003; Thorncroft et al. 2011, 
Louvet et al. 2003). At mesoscales, West African precipitation dynamics include squall lines 
that propagate east to west (e.g. Cappelaere et al. 2009). Finally, West Africa is one of the 
regions of the world with the strongest land-atmosphere couplings (Koster et al. 2004; Zeng 
et al. 1999; Findel et al. 2009). Vegetation and soil moisture impact local convection such 
that local precipitation can vary as much as 30 mm/km, far outstripping the general 
north-south gradient of 1 mm/km (Lebel et al. 2009; Lebel et al. 1997). Soil moisture 
evaporation contributes to local atmospheric water content and supports local convective 
activity such that “wet get wetter” (Lebel et al. 2009; Taylor et al. 2010). 
 
After decades of work investigating possible causes of the variability of Sahelian 
precipitation, there is general agreement on relevant factors. The major contributors to 
changes in precipitation in the Sahel is sea surface temperature (SST) dynamics. Sahelian 
precipitation is influenced by local conditions and global teleconnections. SST dynamics that 
have been shown to influence rainfall in the Sahel include: interhemispheric SST gradients 
(Hurrell et al. 2006; Knight et al. 2006; Kang et al. 2009); the Atlantic Multidecadal 
Oscillation (Kushnir 1994; Enfield & Mestas-Nuñez 1999; Mann & Emanuel 2006); 
difference between SSTs in the North Atlantic and the global tropics (Giannini et al. 2003; 
Giannini et al. 2013); the Gulf of Guinea (Lamb 1978a, b; Nicholson 1980, 1981; Fontaine et 
al. 1998; Vizy & Cook 2001, 2002; Losada et al. 2010); the Indian Ocean (Giannini et al. 
2003; Bader & Latif 2003; Kerr 2003); and the El Niño Southern Oscillation (Joly et al. 
2007). Greenhouse gasses have been shown to affect precipitation in the Sahel through both 
direct mechanisms (atmospheric warming) and indirect mechanisms (SST warming) (Biasutti 
& Sobel 2009). Anthropogenic sulfate aerosols have also been shown to have an effect, 
through cooling of the North Atlantic (Rotstayn & Lohmann 2002; Chang et al. 2011; 
Chiang et al 2013). The drought in the Sahel corresponded to an uptick in the warming trend 
of the Indian Ocean (Du & Xie 2008). Further, sulfate aerosol emissions were rising in the 
northern hemisphere, producing a cooling effect in the North Atlantic, until the mid 1980s 
when legislation was introduced to curb emissions connected to acid rain in Europe and 
North America (Chang et al. 2011; Booth et al. 2012). 
 
The influences of SST and atmospheric warming on Sahelian precipitation are now thought 
to be related to moisture transport and atmospheric stabilization (Giannini et al. 2013; 
Neelin et al. 2003; Chou & Neelin 2004). Top of atmosphere (TOA) warming through 
greenhouse gas effects combined with large scale TOA warming from local deep convection 
stabilizes the atmospheric column (Chou & Neelin 2004; Yang et al. 2003; Sugi & 
Yoshimura 2004). This creates an “upped ante” for convection (Neelin et al. 2003; Chou & 
Neelin 2004; Sobel & Camargo 2010; Chou et al. 2001). With sufficient moisture advection, 
this higher threshold can be overcome and convection can occur (Giannini et al. 2013). SST 

62 



 
 

gradients in the North Atlantic, Gulf of Guinea, Indian Ocean and global tropics all 
influence moisture advection into the West African monsoon system (Giannini et al. 2013; 
Biasutti et al. 2008). Variability in these factors, such as the cooling of the North Atlantic 
with the Atlantic Multidecadal Oscillation (AMO), contribute to the interannual variability of 
total precipitation in West Africa (Knight et al. 2006; Ting et al. 2009). The increased 
convection threshold which is overcome by increased moisture at the boundary layer creates 
fewer more intense storms, as observed in recent years in the Sahel (West et al. 2008; Salack 
et al. 2011; Lodoun et al. 2013; Lebel et al. 2003).  
 
Climate model projections generally do not agree on the effects of continued climate change 
on Sahelian annual precipitation, so much so that the sign of projected precipitation change 
is uncertain (Biasutti & Giannini 2006; Cook & Vizy 2006; Douville et al. 2006; Joly et al. 
2007; Biasutti 2013; Roehrig et al. 2013; Tian & Peters-Lidard 2010). There is agreement, 
however, in the projections of seasonal precipitation dynamics. Models agree on delay and 
shortening of rain season (Biasutti & Sobel 2009; Biasutti 2013). This is in keeping with the 
“upped ante” mechanism wherein it takes longer into the summer to generate the boundary 
layer moisture necessary for convection (Giannini et al. 2013; Biasutti & Sobel 2009; Seth et 
al. 2011). It has yet to be shown, however, if this delayed season appears in observational 
data. 
 
In light of the complexity of climate dynamics in the Sahel, this chapter undertakes an 
analysis of Sahelian precipitation through an array of methods and at a range of spatial scales. 

Small-scale rain gauge data 
The African Monsoon Multidisciplinary Analysis - Coupling the Tropical Atmosphere and 
the Hydrological Cycle (AMMA-CATCH) project provides an uncommon opportunity to 
use high frequency observational data to examine how rainfall patterns in the Niamey area of 
Niger have changed over the past two decades (Lebel et al. 2010; Cappelaere et al. 2009). 
The gauge-based rainfall dataset collected at the Niamey mesosite of the AMMA project 
covers the period 1992-2012 for a single degree box southeast of Niamey. This is a 
direct-observation dataset, without the errors particular to higher-order satellite products. 
The trade-off of course, is spatial coverage.  
 
The dataset analyzed here is a relatively high resolution gridded precipitation product derived 
from rain gauge data using eulerian block kriging with a climatological variogram. The data 
runs from 1990-2012 at 3 hourly resolution and covers the area bounded by 13-14 degrees 
latitude and 1.5-3 degrees longitude at 0.25 degree resolution, a continuous time series for 24 
grid cells.  
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Figure 33 . AMMA-Niger annual precipitation anomalies. 

 
 
AMMA annual rainfall anomalies for this time period show high temporal variability with 
respect to wet and dry years. To further investigate changes in the structure of the rainy 
season through time, daily precipitation is plotted in three dimensional space, with year on 
the y-axis, day of year (DoY) on the x-axis, and precipitation represented by color. This 
allows visual evaluation of changes in the annual distribution of rainfall over time.  

64 



 
 

Figure 34 . AMMA-Niger seasonal rainfall trends. Rainy season beginning and end, defined 
as first and last rainfall thresholded at 1mm, are plotted in green with a dashed green  linear 
fit line. DoY means are plotted with red dots and an accompanying linear fit line. The slopes 
(in change of DoY per year) along with p-values are shown in the table below. 

 
 
The slopes of all of these statistics are positive, indicating a shift in rainfall distribution 
toward later in the year, especially in the season onset. The shift in the onset of the rainy 
season (minimum) toward later is the season is the most significant, with a p-value of 0.02. 
The conclusions about seasonal trends, however, are sensitive to the definitions used for the 
start and end of the rainy season. 
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Figure 35 . AMMA-Niger seasonal rainfall trends, rainfall data as above. Rainy season 
beginning and end, here defined as 3% and 97% of the cumulative distribution function, 
respectively, are plotted in green with dashed linear best fit lines. DoY means are plotted in 
red with accompanying linear best fit line. Slopes (in change of DoY per year) along with 
p-values are shown in the table below. 

 
 
When the rainy season is defined as the time period between accumulation of 3% and 97% 
of the annual precipitation cumulative distribution function (CDF), the AMMA data do not 
show a significant trend in season onset. The sensitivity of trend detection to onset 
definition is potentially indicative of nuanced changes in rainfall characteristics, but with 
such a limited spatial domain there is not enough evidence to draw conclusions. Because the 
AMMA data are so limited in spatial extent, and the delay of the rainy season is hypothesized 
to be a large-scale phenomena, a spatially explicit approach is called for to examine 
large-scale seasonal and interannual precipitation patterns. 
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Spatially explicit analyses 

Empirical orthogonal functions 
It has been established that there is significant spatial variation in rainfall behavior within the 
Sahel region, calling for a spatially explicit approach to regional precipitation patterns (Lebel 
& Ali 2009). For this task, West Africa gauge-based precipitation data have prohibitive 
limitations in their spatial resolution and temporal continuity. Satellite precipitation 
observations offer spatial coverage, although the length of satellite records is somewhat 
limited. Tropical Rainfall Measuring Mission (TRMM) 3B42 precipitation data is widely used 
for the Sahel region and thus is used in this analysis as well (Kummerow et al. 1998). 
Discussed below are two approaches for analysis of spatial precipitation data: empirical 
orthogonal functions and self organizing mapping. 
 
Empirical orthogonal function (EOF) analysis is a common tool for the analysis of spatial 
climatological patterns. An EOF analysis is a spatially weighted principal component analysis 
(PCA). As in PCA, EOF analysis identifies modes of variability that are orthonormal by 
eigenvector transformation. In other words, the modes of variability identified in an EOF 
analysis are by definition independent. While this design ensures the separability of the 
modes, in physical reality, modes of variability are not necessarily independent. As such, 
EOF modes represent constituent components of variability (building blocks of variability). 
The EOF modes themselves, however, do not necessarily represent any spatial pattern that 
occurs in the physical world. 
 
Empirical orthogonal function (EOF) pattern identification is a traditional method for 
spatial analysis of climatological variables, but the method has a number of drawbacks. 
EOFs are limited to linear combinations of orthogonal features and the spatial patterns 
resulting from an EOF analysis are not physically meaningful. The EOF method is more 
suited to identifying distinct modes of variability in a system rather than a continuum. An 
EOF analysis produces a set of maps, or patterns. These patterns are modes of variability 
within the system, building blocks with which to create the overall system dynamics. An 
eigenvalue spectrum (also known as a scree plot) of these mode maps shows the eigenvalue 
of each pattern in descending order. A high eigenvalue of a mode map indicates that much 
of the system’s variability can be explained using that building block. Generally speaking, in 
an EOF or PCA, the scree plot will contain a handful of higher eigenvalue modes and then 
fall off to a noise floor.  
 
In the case below, based on an EOF analysis of TRMM precipitation data over West Africa 
from 1998 to 2014, the eigenvalues of the constituent modes of variability drop off steeply 
after the first building block mode. This suggests that a single orthogonal mode dominates 
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the explanatory power of modes of variability in the system. It does not indicate that there is 
only one pattern that governs the variability of the system. Recall that EOF analysis requires 
constituent modes be orthonormal to one another. While this is a mathematically sound 
approach to the decomposition of a system, a physically meaningful representation of that 
system may require relaxing the independence and linearity constraints. Without this 
flexibility, the EOF analysis is of limited utility when looking for finer dynamics present in 
the system or evidence that points toward physical explanations of precipitation variability. 

Figure 36 . Top (a) shows the first EOF pattern; Bottom (b) is the scree plot of the 
eigenvalue spectrum resulting from EOF analysis.  

a) 

 

b) 

 

Self-organizing mapping 
Self-organizing mapping (SOM) provides an alternate approach to pattern identification 
(Sheridan & Lee 2011; Johnson et al. 2008; Hewitson & Crane 2002). Developed in the 
1980s, SOM is an artificial neural network method similar to K-means (Kohonen 1989, 
1990, 1991, 1995, 2001). The key modification on K-means is the introduction of a 
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neighborhood kernel, whereby neighboring nodes (patterns) are adjusted in relation to one 
another. As a result, the resulting representative patterns are returned in a matrix organized 
by similarity. Each pattern output from the SOM method is a kernel-weighted composite of 
its constituent members. A method such as Sammon mapping (Sammon 1969) can be used 
to quantify and visualize the distance between SOM patterns in parameter space. SOM 
patterns preserve the density topology of the underlying data. Patterns will cluster in 
data-dense regions of parameter space, and outliers are less likely to be subsumed in an 
ill-suited pattern group (Nicholls et al. 2009; Hewitson & Crane 2002). Further, the SOM 
method accommodates missing data, which can be interpolated using the method itself 
(Hewitson & Crane 2002; Richardson et al. 2003). 
 
Application of SOM in the climate sciences has been growing in popularity since its 
introduction and adoption in the 1990s and early 2000s (e.g. Hewitson & Crane 1994, 2002; 
Crane & Hewitson 1998; Cavazos 1999, 2000). In the climate sciences, SOM has often been 
used to examine the relationships between precipitation and atmospheric circulation (e.g. 
Cavazos 1999, 2000; Hewitson & Crane 2002) along with validation of general circulation 
models (e.g. Hewitson & Crane 2006; Sheridan & Lee 2010). Advances in SOM 
methodologies in the climate sciences have included introducing a statistical 
distinguishability criterion (Johnson 2013), implementing the distinguishability test on data 
not used for the SOM training (Chang & Johnson 2015), and accounting for temporal 
autocorrelation (ibid.). 
 
Evaluations of SOM applications in the climate sciences have included direct comparisons 
with EOF or principal component analysis (PCA). Note that EOF and PCA are distinct 
methods similar enough that they are often used interchangeably in the climate literature 
(Lorenz 1956; Kutzbach 1967; Walsh 1978; Cohen 1983; Smith et al. 1996; Jolliffe 2002). In 
comparison with EOF, SOM has generally been shown to more closely identify underlying 
patterns and frequencies in both synthetic and observational climate data (Chang & Johnson 
2015; Reusch et al. 2005; Liu et al. 2006; Rousi et al. 2015). The orthogonality constraint in 
EOF analysis contributes to the tendency for EOF patterns to be mixtures of underlying 
component patterns identified by SOM. The orthogonality of EOF analysis sacrifices the 
correspondence to physically meaningful patterns, while SOM retains this relationship and is 
less sensitive to underlying data distributions. Thus while it is substantially more 
computationally intensive, SOM accommodates nonlinear continuum dynamics while 
preserving density distributions of underlying data and physically meaningful patterns. 
 
While the characteristics governing the order of the output patterns may not be obvious to 
the user, the organization of the maps can be helpful for indicating potential physical or 
mechanistic explanations of the patterns. Quantitatively, Sammon distance mapping can be 
used to determine the similarity distances along the output pattern grid. Self organizing 
mapping is a pattern recognition technique accomplished through a form of artificial neural 
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network analysis. It is an iterative procedure wherein a user-specified number of patterns are 
identified to best represent a set of observations. A self organizing mapping analysis is 
accomplished as follows.  

Figure 37 . Illustration of the self-organizing pattern recognition method. 

 
 
All observations are vectorized, that is, all observations z n  are distributed in j-dimensional 
phase space where n=1:N total observations. Each z n  is a vector of length j, where j is the 
number of characteristics contained in each observation. In the case of climatological 
patterns in geographic space, j equals the number of variables multiplied by the number of 
grid points in each observation. Having established the j-dimensional phase space, m k 
“nodes” are initialized in the phase space. Each m k  node will become one of the patterns 
representing observations in the dataset. Subscript k ranges from 1:K, where K is the total 
number of patterns requested by the user. The method used to initialize the m k  nodes into 
phase space is determined by the user. Options include a random initialization or an 
initialization based on EOF analysis results. At the same time that the m k  nodes are 
initialized in j-dimensional phase space, they are also cast into “SOM space.” SOM space is 
the topological organization of the m k  nodes (or patterns) with respect to one another. Like 
K, the dimensions of SOM space are determined a priori by the user. As the m k  patterns 
evolve during the training process to best represent the underlying observations, they will 
likewise sort themselves with respect to one another in SOM space. 
 
For each step in the training process, a single observation z n  is selected. The Euclidean 
distances between that z n  and all m k  are calculated. The node m k  with the minimum 
Euclidean distance from observation z n  will be activated, along with its SOM space node 
neighbors (regardless of the neighboring nodes’ position in j-dimensional phase space). With 
each training step, the activated nodes are adjusted in phase space toward the observation z n , 
that is, the pattern m k  is itself adjusted toward a better representation of observation z n . A 
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neighborhood kernel specified by the user determines how neighboring nodes are activated 
and adjusted toward z n  once activated. Kernel options include a bubble kernel wherein all 
nodes within a certain radius are adjusted equally or distance decaying kernels such as the 
Gaussian or Epanechnikov functions. The radius for qualifying neighbors and the amount 
such neighbors are adjusted (learning rate) can also be a function of training iteration. Large 
initial changes are followed by finer adjustments at later stages of training. 
 
The activation and adjustment of neighboring nodes during the training process causes the 
nodes, i.e. the representative patterns, to organize themselves with respect to one another. At 
the end of the training process, the m k  patterns represent not only their constituent data 
observations but also the influence of neighboring groups. The SOM patterns then are more 
than a simple average of their discrete constituent data observations. This is a key difference 
between SOM and K-means clustering, and also a key component in the suitability of SOM 
for the representation of continuum dynamics. See the following references for more 
information on the self-organizing mapping method and its applications: Liu et al. 2006; 
Johnson et al. 2008; Johnson 2013; Chang and Johnson 2015. 

Results 
In the analysis presented below, a self-organizing mapping analysis of TRMM precipitation 
over the Sahel is carried out. Four patterns in a 4x1 orientation are requested. The 
Epanechnikov kernel is used (after Liu et al. 2006). 
 
Figure 38 . Output maps from a K=4 SOM analysis of TRMM precipitation over the Sahel. 
Frequency values describe the relative pattern occurrence over all daily precipitation data.  
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The interpretation of the patterns is based on three sources of information: common 
understanding of regional precipitation dynamics, the organization of the patterns with 
respect to one another, and the seasonal timing of pattern occurrence. Patterns K4-K2 
suggest the phases of the monsoon over its north-south transit. Pattern K1 suggests a break 
period within the active monsoon. The suggested role of each SOM pattern is borne out in 
the seasonal timing of pattern occurrence.  

Figure 39 . Pattern occurrence for each day of the year (x-axis) over all years (advancing 
along the y-axis). 

 
 
This is 4-dimensional figure: two time dimensions—seasonal and interannual—and two 
spatial directions represented by the pattern assigned to each day. Pattern K4 represents the 
dry season, with the highest frequency (0.61). K3 indicates the monsoon transition period, 
appearing at the beginning and end of the rainy season. K2, the peak monsoon, and K1, the 
break period, occur interspersed at the height of the rainy season. 
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Figure 40 . Annual precipitation anomaly plotted against the annual frequencies of SOM 
patterns with linear regression lines of best fit. Adjusted R squared and F-statistic p-values 
follow in the table below. 

 
  K1  K2  K3 

adjRsq  0.0996  0.6930  0.2591 
fStatP  0.1168  0.00005  0.0214 

 
 
The analysis identifies a correlation of annual precipitation anomaly with pattern frequency. 
Both K2 (peak monsoon) and K3 (transition period) show strong correlation with annual 
precipitation anomaly with adjusted R squared values of 0.6930 and 0.2591 and F-statistic 
p-values of of 5E-5 and 0.0214, respectively. Annual precipitation anomaly is positively 
correlated with the number of peak monsoon days and negatively correlated with the 
number of monsoon transition days. K1, conversely, does not show a correlation with 
annual precipitation anomaly (line of best fit not shown). In other words, annual 
precipitation is not related to the frequency of break periods within the peak monsoon, but 
with the lengths of the transition and peak periods of the monsoon.  
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Despite the suggestion of a trend in the rainy season onset date in the AMMA data, 
precipitation from TRMM fails to reproduce this trend in a SOM analysis. The TRMM 
dataset exhibits a significant trend in neither seasonal timing of pattern occurrence nor in 
pattern frequency. Explanations for the lack of trend in the TRMM data include: there is 
indeed no trend; the trend predicted in the climate model studies has not yet begun to 
manifest; the TRMM record is too short to identify a trend; the TRMM precipitation dataset 
does not detect the rainfall involved in the changing onset trend. Further study is needed to 
investigate these possible explanations. 

Satellite product comparison 
Satellite precipitation products for the region have mixed performance in representing 
observational precipitation (Roca et al. 2009; Ali et al. 2005). Previous work on the 
evaluation of satellite precipitation products for West Africa shows that these products 
detect the onset of the rainy season before the onset as determined by gauge data (Gosset et 
al. 2013). It is therefore plausible that a trend toward a delay in the rainy season would not be 
detected by satellite precipitation products. It has yet to be investigated how different 
satellite products represent trends in seasonal rainfall over the Sahel.  

Spatial maps of season trends 
Because precipitation patterns over West Africa are spatially heterogeneous, a spatial map is 
used to investigate seasonal trends in three satellite precipitation products: TRMM, GPCP, 
and RFE2 (respectively: Kummerow et al. 1998; Adler et al. 2003; Novella & Thiaw 2013). 
The spatial resolution of the three datasets is scaled to a common resolution of 0.25 degrees; 
the season definition used is % annual rainfall to reduce the influence of outliers; the time 
domain (1998-2012) and precipitation threshold (1 mm) are likewise unified across the 
datasets. For each pixel of a given precipitation product, season indices are calculated for 
every year 1998 to 2014. A linear regression is then fit to each of the season indices for each 
pixel. A map of the slopes of these linear regressions can then be made. The result is a 
spatially explicit view of season trends where the slope of the best fit line is represented in 
color as change in day of year per year. Below are three sets of such maps, one for each 
precipitation product: TRMM, GPCP, and RFE2. The set for a single precipitation product 
contains four maps: annual climatology, and one trend map for each of the three season 
indices. None of the satellite products show a strong trend for rainy season onset in the area 
of the AMMA site in Niger, or indeed in the central Sahel more broadly. All three satellite 
products show a trend toward later onset in the northwest region as well as the northeastern 
area of the spatial domain.  
 
The lack of convincing seasonal trend in space indicates that the aggregation into spatial 
SOM patterns is not obscuring underlying geographically specific seasonal trends. The 

74 



 
 

degree of system state aggregation in the SOM methodology is a function of the number of 
patterns used. Using a higher number of constituent patterns would more finely disaggregate 
smaller-scale dynamics (both in time and in space). 

Figure 41 . TRMM climatology and season trends. Onset, midpoint, and endpoint of rainy 
season defined by 3%, 50%, and 97% of cumulative annual rainfall, respectively. 
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Figure 42 . GPCP climatology and season trends. 
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Figure 43 . RFE2 climatology and season trends. 
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Spatially averaged satellite precipitation 
Having honed in on a few geographic locations with potentially interesting seasonal trend 
dynamics, returning to a spatial average view can be informative. Naïve domain choices for 
spatial averaging can muddy results if trend behavior varies with overlapping geographic 
boundaries or if it varies at a smaller spatial scale than the domain for averaging. The spatial 
map of trend behavior makes it possible to select domains with coherent trend behavior for 
a closer investigation of temporal dynamics. To further investigate the observed trends in the 
northwestern and northeastern Sahel, spatial averages of these areas were taken for each of 
the three precipitation products, plotted in year vs. DoY space, and then linear regressions fit 
to the season indices (Figures 44-45). Note that the northwestern trend is likely an artifact of 
the anomalous intense precipitation event that occurred in that region during the dry season 
of 2002 (Meier & Knippertz 2009). This early precipitation drags the linear regression model 
toward a positive slope. A linear regression without the year 2002 may be more 
representative of any trends present in the seasonal onset of the rainy season. The cause of 
the northeastern precipitation delay is less clear (Lyon & DeWitt 2012). There is little total 
annual precipitation in this region, and thus the seasonal trend analysis is subject to the 
effects of noise. The fact that all three satellite products exhibit it, however, for all three 
seasonal metrics, hints that there may be a meaningful change occurring in this region. In 
both cases, further investigation is warranted. 

Statistical significance of spatially explicit trends 
Evaluating the robustness of the detected trends in the spatially explicit season trend maps 
requires further investigation. Using TRMM as an example, for each season metric, root 
mean squared error (RMSE) and R 2  values are calculated for the linear fits of each pixel. 
These metrics are then plotted as spatially explicit maps for comparison with the trend maps. 
In addition, the trend map is replotted using a filter to remove all pixels with p-values > 0.05 
(Figure 46). In the case of TRMM, the onset trend map is the only one in which substantial 
parts of the map persist pass the p-filtering, specifically the central Sahel with earlier onset 
and the northwestern Sahel with onset delay. Because precipitation in the Sahel is a system in 
which a certain amount of seasonal variability is to be expected, the RMSE is of limited 
utility. The R 2  maps are more useful and indeed, the spatial distribution of high R 2 
corresponds with the p-value filtered onset map. 
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Figure 44 . Seasonal trends for a spatial average of the northwestern Sahel. 
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Figure 45 . Seasonal trends for a spatial average of the northeastern Sahel. 
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Figure 46 . Maps over the Sahel of trends in TRMM rainy season timing. a) Onset, b) 
midpoint, and c) endpoint of rainy season timing are defined by accumulation of annual 
rainfall total, 3%, 50%, and 97%, respectively. Each season index has a set of four plots, from 
top to bottom: a map of the slopes of pixel-wise linear regressions on season index trends 
over the period 1998-2014; RMSE map of variance from the pixel-wise linear regression 
models; R 2  map of variance percent explained by the linear regression models; another map 
of season trend slopes now filtered for p < 0.05 to reject the null hypothesis of zero trend. 

Figure 46 .a) TRMM rainy season onset trends and regression metrics.  
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Figure 46 .b) TRMM rainy season midpoint trends and regression metrics.  
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Figure 46 .c) TRMM rainy season endpoint trends and regression metrics.  
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Future Work 
Future work includes: 

A. Correlation of patterns to other climate indicators such as sea surface temperature in 
the Gulf of Guinea and the North Atlantic.  

B. A SOM analysis with a higher number of patterns to resolve detail in the dynamics of 
the rain season. 

C. SOM analysis using different precipitation datasets such as the Tropical Applications 
of Meteorology using Satellite data and ground-based observations (TAMSAT) 
precipitation product, which has a longer time domain and is built on gauge data 
(Maidment et al. 2017). The TAMSATv3 precipitation dataset is produced specifically 
for Africa and has a much higher resolution (0.0375° compared to TRMM at 0.25°) 
and a much longer record (1983 to present). The longer record may make it more 
possible to identify any trends present in rain season timing.  

D. Spatial trend analysis accounting for 2002 rainfall anomaly event and possible 
mechanisms for northeastern trends in seasonal timing of precipitation. 

Conclusion 
Results of trend analysis of seasonal timing show no discernable coherent trend in season 
timing of phase shifts. This neither supports nor refutes the prediction of later season onset 
with increasing global warming. It does, however, support that at near-term timescales, any 
potential seasonal timing trends are outweighed by interannual variability. In other words, 
this time period is generally thought to be characterized by increased variability, which would 
make it harder to detect trends. Seasonal timing does vary, but on an interannual scale 
instead of a coherent trend over time. 
 
A longer peak period is associated with a higher precipitation anomaly. This is intuitive: 
more heavy rain days in a year are associated with more annual precipitation. A longer 
transition period is associated with a lower precipitation anomaly. This finding is not 
obvious. The transition period could lengthen either at the expense of dry pattern days 
(leading to more annual precipitation), or at the expense of peak season days (leading to less 
annual precipitation). In this case, the longer transition period being associated with lower 
precipitation anomaly indicates that the lengthening of the transition period is replacing peak 
days instead of dry days. This finding is coherent with the influence of the upped-ante 
mechanism. The transition season persists into what would otherwise be peak rainy season, 
without sufficient heat or moisture to power convection. The suggestion of the role of 
upped-ante mechanism in interannual variability of annual precipitation, and without 
significant sub-regional spatial structure, is another piece of evidence supporting the primary 
role of large-scale (global) climate dynamics in determining precipitation of West Africa over 
the role of local land cover effects. 

84 



 
 

 
A self-organizing mapping approach can examine the role of the myriad underlying 
spatio-temporal precipitation patterns in the overall changes in variability and timing of 
precipitation. It can also distinguish, at inter- and intra-annual time scales, regional scale 
precipitation patterns associated with the West African monsoon system. Examining 
precipitation in West Africa with the higher-dimensional, more flexible method of 
self-organizing mapping provides a new tool for disentangling the underlying behavior 
responsible for precipitation changes in this region, indicating the systems that will dominate 
changes in precipitation over West Africa as climate change progresses. Linking precipitation 
anomalies to spatial-temporal patterns of rainfall supports the pursuit of mechanistic 
explanations, for both precipitation dynamics in the Sahel and how Sahelian precipitation 
may change in the future. This proof-of-concept example shows the utility of the SOM 
approach to the study of spatial-temporal dynamics in the Sahel. 
 
Changes in pattern occurrence over the course of the season is a robust way to define 
seasonal transitions such as the onset of the rainy season. Without pattern identification, 
determining seasonal transitions has been a matter of spatial averages of rainfall combined 
with precipitation or rainy day thresholds. Particularly as more studies address the possible 
effects of climate change in the seasonal timing of rainfall in the Sahel, a spatial physically 
meaningful pattern-based definition of season stages can contribute to mechanistic 
understandings of precipitation in the Sahel.  
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Conclusion. 
 
The work herein describes a set of methods used to investigate Earth system dynamics in 
West Africa. By design, this portfolio of approaches is transferable, not only to other 
geographic regions but to other types of questions and to other disciplines. Beyond 
application of a particular method to a particular problem however, the work requires the 
careful consideration of a question and its basis, the evaluation of different frameworks of 
analysis, the search for or development of a method that is appropriate and effective, all the 
while critically engaging in the broader human and institutional components and effects of 
the research. This critical engagement is not ancillary to the research; it shapes and informs 
every stage of the endeavor: conceptualization, foundation, framing, practice, process, 
analysis, results, communication, feedback. Vignettes on the real-world contexts in which 
this body of work operates are presented below, followed by deeper considerations specific 
to the AtlasV2. Finally, AtlasV2 results provide a juncture point, an opportunity to reframe 
the desertification narrative, for which I lay out a proposal. 

Science in the real world 

Applied science 
The importance of applied science, and the sometimes mismatch with priorities of academia, 
were highlighted in a West Africa regional LULC conference I attended in Accra, Ghana in 
2018. Attendees were experts in remote sensing and geographic information systems (GIS) 
from across the region, from government and public sectors, local to international scale 
actors, with representation from the Economic Community of West African States 
(ECOWAS), NASA, and USAID as well. The scientists in the room worked on projects 
supporting international convention reporting, development planning, national natural 
resource management, and local decision-making about land use planning. The purpose of 
the conference was to open a dialog about how to coordinate and harmonize LULC 
mapping efforts across the region. One of the major themes that arose was the critical 
importance of the end user and the usefulness of the LULC product over the merits of 
science conducted in a vacuum. 
 
Cheikh Mbow, head of START-International (Global System for Analysis, Research and 
Training) and Dan Irwin, head of NASA-SERVIR, were among those to express the primary 
importance of the  applications  of science: What good is the science to anyone but yourself if 
all you do with it is publish papers and present at conferences? We as scientists have a 
responsibility to action even if our career metrics don’t account for it. Patrice Lumumba, 
head of l’Institut supérieur d’études spatiales et des télécommunications (ISESTEL) in 
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Burkina Faso passionately put forth the challenge: What is the point of perfecting the 
minutiae of your methods in an echo chamber of academics if “life in the village is still 
hard?” Applied or not, scientific research is inextricably embedded in human and 
institutional contexts. Climate and land surface research is no exception. The matter of data 
accessibility illustrates the impacts of these embeddings on multiple fronts.  

Data access 
Access to land cover and climate datasets for West Africa, for example, is limited but crucial 
for climate change and climate change adaptation research (Washington et al. 2006). This 
information contributes to understandings of what changes have been going on in the 
region, what the causes have been, and what to expect in the future. In current climate 
models, West Africa has globally high uncertainty for peak season precipitation (Tian & 
Peters-Lidard 2010). The models don’t even agree on the  sign  of the precipitation predictions 
for the future (Biasutti & Giannini 2006; Cook & Vizy 2006; Douville et al. 2006; Joly et al. 
2007; Biasutti 2013; Roehrig et al. 2013). In this context, ground-based data is important. 
And while the coverage of field data in the region is far more sparse than in regions like 
Europe or North America, the data do exist, sometimes with a record going back to the 
1900s or earlier. But almost none of this data is publicly available (Mahe et al. 2008). The 
National Meteorological Services of the countries in the region collect and maintain an 
archive of this data, but for researchers working at institutions outside of the country, and 
often for researchers at institutions within the country as well, the data are largely available 
only for a fee, one that is prohibitively expensive for many research efforts.  
 
I don’t think it is well known even in the climate science community, but this arrangement is 
not purely the result of fiscal prioritization on the parts of the national governments 
themselves. There are bigger global contexts that come into play. In the 1990s many of the 
countries in West Africa took on loans from the International Monetary Fund (Boughton 
2012). The Structural Adjustment Programs attached to the loans imposed severe austerity 
measures. With these economic changes, many countries converted their National 
Meteorological Services to a market-based profit model for access to meteorological data 
(Descroix et al. 2015). The effect of this policy is that the field record of climate data in West 
Africa remains behind a paywall for researchers in the Global North and in the Global 
South. As with Landsat imagery when it was commercialized in the 1980s and 90s, the 
overall effect is that less research gets done with the data (Wulder et al. 2012; Descroix et al. 
2015).  
 
Still, the question of policies for sharing data produced by researchers and institutions in the 
Global South is not a straightforward one. Legacies of colonial exploitation and differences 
in resources and capacities among those producing and using data complicate the idea of 
open data policies (Serwadda et al. 2018; Dove et al. 2016). Concerns include “parachute 
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research” wherein researchers from the Global North drop in to extract data, and then head 
off to do analysis and publish results without input, feedback, or involvement of the people 
who originated the data. Differences in capacity mean that researchers in the Global North 
may be able to churn out research and publications on the data sooner than researchers in 
the Global South, monopolizing the intellectual capital. Further, some types of data raise 
concerns about privacy, ethics, and safety. These questions are active and ongoing; their 
negotiation will continue as new types of data, research, and collaborations are forged. 

Remote sensing 
Remote sensing data, more specifically earth observation satellite data, can be seen as a 
potential solution to democratizing environmental data availability and access. NASA and 
ESA are two of a growing list of institutions and corporations that have satellite programs 
which collect data over the entire globe. These data are then freely and publicly available, 
more or less depending on the data supplier, the data consumer, and the proposed 
application. Indeed, this can be a major advance for inputs into climate change adaptation 
efforts, disaster management, land use and development planning, and resource monitoring, 
especially in countries where ground-based data is limited. The satellite imagery data 
collection method is seemingly the model for equity: space satellites collect data the same 
way over the entire globe, the data are gathered and centrally processed and then published 
for open access. Yet even here, the effects of uneven development influence the availability 
of satellite data, and in a way that is largely invisible. 
 
The Landsat 5 satellite, which was active from 1984 to 2013, included no onboard data 
recording capability. Ongoing land surface observations taken as the satellite traveled along 
its orbit were continuously overwritten with new observations. Instead of saving the 
observations onboard, the satellite depended on data transmission in real time to a 
geosynchronous Tracking Data Relay Satellite (TDRS) network, which could then pass the 
data along to a receiving station on the ground. In 1992, however, the TDRS relay 
technology aboard Landsat 5 failed, leaving the satellite without a way to communicate with 
its companion TDRS satellites.  From that point on, any transmission of data observations 
by the Landsat satellite had to be directly downlinked to a ground station in real time. 
Without storage capacity onboard the satellite, only data that was transmitted in real time to 
ground stations could be collected and archived. Otherwise, no record of the satellite 
observations would persist (Wulder et al. 2016; Goward et al. 2006).  
 
Over areas such as the U.S. and Europe, ground station coverage was dense enough that the 
Landsat data could be transmitted continuously. Over Africa, that was not the case. A lower 
density of scientific infrastructure meant that no ground stations existed to receive the real 
time transmissions from the Landsat satellite. Large swaths of Landsat observations over 
Africa were simply overwritten without being recorded. This created gaps in the Landsat 
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record specifically for the places on Earth that did not have sufficient ground stations to 
receive the data as the satellite went by. A theoretically geographically equitable data record is 
now missing data for exactly the places that perhaps have more limited technological 
resources for generating other sources of information (Wulder et al. 2016; Goward et al. 
2006). While understanding this background does not change the past, it can inform a 
researcher’s perspective on the particular context she is working in, influence project design 
for future campaigns, and illuminate some of the disparities in constraints and challenges 
faced by researchers working in different regions of the world.  

AtlasV2 
Among my portfolio of graduate projects, the AtlasV2 project was conceived and carried out 
to be useful applied research. It was not the most scientifically cutting-edge. It was not 
pursuing a revolutionary answer to a scientifically pivotal question. This project was not in 
my portfolio for its academic or intellectual caché. It was, instead, solving a practical 
problem with practical applications. It has since become by far the most meaningful and 
impactful of the work I have done in the last six years. Concurrently, the AtlasV2, and its 
potential impact in the region, is in tension with land cover discourses and with regional 
agendas in a number of ways, including ownership, collaboration, methods, and 
communication. 
 
As with any academic or implementation-based collaboration, negotiations around issues of 
ownership are pervasive in the Atlas and AtlasV2 projects. Differences in geographies and 
institutional capacities and resources add further layers of complexity. For the Atlas products 
to be useful, used, and maintained at the local or regional levels, the research must be owned 
at those levels. These questions expand far beyond the claim of credit, to include idea 
generation, method development, research planning, implementation, and dissemination.  
 
While the creation of the original Atlas was lead by USGS, AGRHYMET and their regional 
partners have retained strong ownership of the work. The inputs, methodology, process, and 
outputs of the original Atlas are transparent to researchers at AGRHYMET both because 
the methodology is familiar and because of their direct and guiding role in the entire cycle of 
the project. The case of AtlasV2 is somewhat different. As a graduate student and a 
newcomer to collaboration with AGRHYMET, I was operating as unknown and unproven. 
Further, the methods I used for the AtlasV2 are unfamiliar to more traditional practitioners 
of land cover science. These factors, combined with the temporal and geographic constraints 
of my graduate studies, limited my collaboration with AGRHYMET during the development 
stage of the project. This is a critical disadvantage for designing a project that matches needs 
and priorities in the region.  
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Enduring partnership, meanwhile, is the road to transfer or joint ownership. The progression 
of the AtlasV2, its proven success, and the interest of NASA-SERVIR as an embedded 
established partner of AGRHYMET has bolstered my direct collaboration with 
AGRHYMET and other partners in the region. This in turn fosters increasing ownership of 
the AtlasV2 by region-based partners. It remains that the methodologies I use to create the 
algorithm-based classification, as well as the technical tools to interact with the data and the 
development pipeline, tend to be unfamiliar to traditional land cover scientists, but this 
becomes less of a sticking point as partnerships continue. 
 
The impact of ownership was strikingly clear at the workshop I ran at AGRHYMET in July 
of 2018 to hand over the AtlasV2. Participants included land cover scientists from across the 
region working in local research institutions, government ministries, and international 
coalition organizations. What interested the workshop participants far more than access to 
and analysis of the final land cover data product, or the ability to replicate the classification 
process, was being able to use and adapt the data creation pipeline itself. It was the tool, the 
means, instead of the product that was most important.  
 
The constraints shaping the collaborative relationship with AGRHYMET, as well as 
institutional and situational contexts, also shape the scale of analysis, intervention, and 
collaboration. The AtlasV2 project development and outcomes have relied on AGRHYMET 
exclusively for engaging with regional stakeholders and operationalizing research outcomes. 
This includes local land planners, all levels of government, and international agencies. In 
some ways, this is absolutely appropriate; I have neither the expertise, experience, nor 
positionality requisite for that task. Nevertheless, the next phase of development of AtlasV2 
requires wider collaborative relationships that can engage with a localization of the product 
development process.  
 
The development of AtlasV2 is near the ceiling of what is possible to do with an eye only on 
the regional scale and without expertise or information to move to the local scale. 
Development of the AtlasV2 product at the local level is necessary to benefit the dataset and 
methodology as a whole. Some of this takes the form of using local land cover maps from 
different sources to compare and improve the AtlasV2 classification. Perhaps more 
importantly, engagement with end-users or collaborators working at the local scale focuses 
the existing needs and applications to guide further AtlasV2 development. As ever, this 
requires navigating collaboration across institutional practices. As more connections are 
made over time and over many interactions, the engagement with end users and potential 
co-developers expands, while stronger collaborative relationships can build as well.  
 
With algorithm-based classification of land cover made possible at a regional scale, there is 
potential for a de-localization in how land cover data is produced and applied. Focus can be 
redirected from local, spatially small-scale heterogeneous features and dynamics. This is a 
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tendency widely cautioned against in, for example, Behnke & Mortimore’s collection of 
writings about land cover change in the Sahel (2016). From what I can see of the 
perspectives and priorities of my collaborators and interlocutors, however, there is 
widespread and firm grounding in the importance and heterogeneity of the local scale.  
 
Mismatches in science communication and methodological expertise on top of perception 
and ownership factors can create stumbling blocks for building constructive partnerships. 
For example, downscaling land cover maps from 2 km to 30 m radically changes the 
appearance of errors in the dataset. Because of its coarse resolution, the 2 km land cover 
product more readily disguises classification error. Once the map is downscaled to 30 m, 
however, it becomes much easier to qualitatively identify errors in the classification. These 
include errors in the representation of small-scale spatial heterogeneity patterns as well as 
errors at a larger scale such as at the boundaries between classification zones in AtlasV2.  
 
This creates an opening for methodological and science communication negotiation. From 
one perspective, the apparent increase in noticable error in the downscaled product is an 
artifact that does not detract from its advancement over the coarser product, which certainly 
has errors as well even if they are less obvious. From another perspective, the qualitatively 
perceived accuracy is critical to the validity and usefulness of the land cover product. Sitting 
in the first perspective, the second might look ill-informed or methodologically naïve. 
Especially in this context of applied science, however, perception can trump technical 
accuracy as the dominant factor for the utility of the science. Working to incorporate both 
perspectives shapes the design goals of project and contributes to building ownership. 
 
Machine learning also introduces sites of methodological negotiation and tricky 
contingencies. Thorough understanding of the limitations, validity, and bias of any particular 
implementation of machine learning is crucial for robust ethical use of machine learning 
products. It also often requires technical specialized knowledge. For AtlasV2, the potential 
real-world applications of the data and methodology make for an acute tension between the 
need and barriers to comprehension. There is no universal resolution to this tension. Broad 
collaboration is part of the response, distributing knowledge and expertise rather than 
warehousing it. Making the AtlasV2 data production pipeline open and modifiable is a 
necessary step, although an open process does not necessarily mean a transparent process. 
 
Institutional contexts and resources are likewise considerations relevant for the Atlas and 
AtlasV2 projects. Concretely, the time, labor, and associated expense required to produce the 
original hand-classified Atlas is at issue. Researchers and technicians in West Africa were 
financially supported, at least in part by USAID, for the duration of the 22-year project. An 
algorithm-based rapid classification methodology obviates the need for time, labor and 
expense. These characteristics of AtlasV2 were part of the project design, with the idea that 
researchers and technicians freed from repetitive time-consuming hand-classification could 
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instead move on to advancing research efforts. AGRHYMET, however, is in large part 
funded by project-based grants from international and multilateral donors. Cost reduction in 
one area does not automatically mean those resources can be redistributed to a different 
area. 
 
Results from the AtlasV2 offer insights on changes in land cover relevant to food security 
planning and natural resource management, as well as perspective on land cover narratives in 
the region. AtlasV2 offers a confirmation of the extent, location, and pace of agricultural 
expansion since 2000. It also provides a large-scale view of the relative changes in other 
major land cover types, for example savanna is in faster decline than short grass or steppe. 
The absence of significant increase in the area of bare soil or sand in the Sahel since the year 
2000 refutes simplistic desertification narratives. Further, the assertion that desertification is 
not occurring in the Sahel, based on a definition of bare soil and sandy area, is not surprising 
among social and physical scientists who study land cover change in the Sahel, but it is 
directly at odds with the language used both in the international development sphere and in 
environmental strategies at the national level. 
 
Refuting the desertification narrative has consequences far beyond the technical science 
findings. The narrative of desertification is leveraged by both national and international 
institutions to garner international attention and support, including financial resources. 
Refuting the desertification narrative has the potential to reduce available resources in the 
region. This is the motivation for generating an alternate equally compelling narrative that 
can augment the availability and access to resources at the local level, while fostering a 
perspective that allows for variation at the local level of identified issues and appropriate 
solutions. 

Reframing Desertification 
Desertification as a framework for understanding and approaching land cover change in the 
Sahel is no longer appropriate, if it ever was. It does not accurately represent observed land 
cover dynamics in the Sahel. Persistent and high-profile aspects of the desertification 
narrative have included the ever-expanding advance of the desert, the encroachment of bare 
soil and sandy landscape. These behaviors do not accurately represent land cover change in 
the Sahel, a conclusion of the AtlasV2 dataset that adds to the compendium of supporting 
evidence. Even vaguely defined, scientific consensus is that desertification is not occurring in 
the Sahel. Further, the legacy of the desertification framework as a tool of coercive colonial 
control continues to foster a bias toward exogenous top-down blanket responses to land 
cover dynamics seen as locally caused problems (Mortimore 2016). Better alternatives to this 
approach are both conceivable and possible. 
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Narrative is crucial in political domain: compelling storytelling captures attention, changes 
opinions, and attracts funding. Development agendas designed to accomplish those 
outcomes tend toward dramatic, simple, general, urgent (Swift 1996). Huntsinger adds 
morality to the criteria for a successful narrative (Huntsinger 2016). Desertification meets all 
four of Swift and Huntsinger’s proposed criteria for an impactful narrative. The UNCCD 
definition of desertification is simultaneously both simple and general. The morality 
component is embedded with the implication of local people as the cause of desertification. 
The impending catastrophe of drastic, perhaps irreversible change that renders the landscape 
uninhabitable is suitably dramatic and urgent. 
 
Moving land cover science toward (for example) data-based, nuanced, locally grounded, scale 
specific approaches easily results is a weakening or displacement of the cleaner more 
powerful desertification narrative. This leads to a tension wherein science and political 
agendas are at odds. Divergence of the discourse around desertification in international 
development contexts from consensus in scientific communities illustrates a striking 
outcome of this tension. The narrative negotiation of scientific results is fundamental to the 
practice and communication of science. These narratives are also subject to pressure to be 
compelling, through political interfacings with science, science application agendas, and 
within the scientific community itself. This pressure can create tensions between nominal 
objectivity and underlying agendas. Subsequent disconnects can arise wherein, for example, 
scientists or journalists express personal opinions or perspectives that differ from those they 
publicly profess (Jiang 2016; Shanahan 2016). Narrative choice shapes not only the ontology 
of the issue at hand, but also the conceivable solutions. Stafford Smith (2016) advocates for 
Sahel land cover change narratives that promotes empowerment and solutions. 
 
The results of the AtlasV2 classification firmly refute the dominant desertification narrative. 
They also provide an opportunity and a foundation to offer an alternate narrative. My 
formulation of a proposal for an alternate narrative follows below. The project of crafting a 
narrative is a fundamental part of science and science communication. Whether 
acknowledged or not, it is always part of the practice of science, one which cannot be 
accomplished with data alone. Whether considered or not, any narrative serves a particular 
agenda, expresses different priorities, and has different potential implications.  
In developing an alternate framework it is crucial to explicitly think through these 
considerations. In direct acknowledgement and engagement with the socio-institutional 
embeddings of land cover science, I lay out an explicit treatment of the agenda and priorities 
involved in the development of an alternate narrative. 
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My proposed working agenda for the development of an alternate narrative is as follows: 

● An alternate framework should be a framework that supports efforts to channel 
resources toward environmental management strategies that serve the needs of the 
local people.  

 
● An alternate framework should be a framework that is effective in the ways it shapes 

discourse, action, and outcomes. 

 
My proposed priorities for an alternate narrative: 

Local perspective 

Emphasis on localization and decentralization is a common thread across current writing on 
alternate approaches to land cover change in the Sahel. One such example is the proposal of 
a “resilience” framework to take the place of the desertification narrative (Mortimore 2016). 
“Resilience” in general is a concept with history and meaning not only in the development 
sphere, but in the field of complexity and systems science (Folke 2006). In the present 
discussion, reference to the “resilience” framework is restricted to Mortimore’s 
interpretation (2016). 
 
This “resilience” based approach focuses on local endogenous solutions realized through the 
positive impacts of local land management. Implicit within this framework is an inversion of 
the cause-solution attribution across scales. The desertification paradigm predisposes 
exogenous solutions to what are significantly, if not exclusively, locally caused environmental 
problems. In the resilience framework, exogenously caused negative impacts such as climate 
change serve as an implicit if not exclusive counterpoint to the focus on local solutions. A 
shift in focus to localized solutions also allows for heterogeneity across space, both in terms 
of existing dynamics and appropriate responses, in a way that the broad sweeping 
generalization of desertification does not. 

Direct problem framing  

If public narrative and private perspective have so diverged over the desertification narrative, 
the proposal of an alternate narrative is an opportunity to identify and foreground the actual 
issues that scientists and land managers in the region see as priorities. The results from 
AtlasV2 and other work refuting any universal, region-wide, locally caused southward 
advance of the Sahara desert would indicate that the desert is not, indeed, the threat. 
Face-to-face conversations about desertification with leading scientists in the region quickly 
turn instead to the issues they are de facto concerned with. From these perspectives in the 
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Sahel, finding locally appropriate solutions that achieve agriculture sufficiently productive to 
feed the growing population is paramount. There is a strong sense that population growth is 
not the driving problem, that it is the state’s responsibility to be able to feed all of its people, 
and that it is immaterial whether land degradation is a result of human activity or climate. 
There is scale and urgency and solution-oriented thinking embedded in this off-stage 
discourse, all powerful ingredients for a potential alternate narrative. Instead of holding onto 
desertification as a proxy narrative, I propose directly framing the major issues and priorities 
in the region, while keeping in mind the importance of maintaining the level of influence 
wielded by the desertification narrative. 

Positive forward-looking solutions 

Local land management and drylands knowledges can be seen as positive opportunities and 
advantages instead of amelioration activities. In this light, the extensification of agriculture 
looks like an enormous opportunity for proactive beneficial land management instead of the 
progression of an environmental crisis. The absence of an increase in bare soil or sand 
accompanying the drastic increase over the past two decades in agricultural area region-wide 
supports the compatibility of increasing land use with environmental sustainability. 
Grounding in the local scale is important for the outcomes of the framing. Otherwise, 
agricultural improvement solutions can be blanket, universal projects, such as large scale 
irrigation projects in the Sahel backed by the World Bank (World Bank 2015). 
 

My proposal for an alternate narrative: 
 
There remains, then, the matter of how one crafts an effective narrative to fulfill the agenda 
and priorities above. Building a narrative based on current scientific understanding of 
existing dynamics, while true to orthodox science protocol, has not been an effective strategy 
for crafting a compelling alternative narrative for land cover change in the Sahel. Instead, I 
propose to build backward from the qualities characteristic of an impactful narrative. While 
the implications of those  qualities are arguably problematic, the formulation of characteristic 
ingredients can guide the development of a narrative that prioritizes impact. Adopting 
Huntsinger’s criteria for an effective narrative: general, simple, and moral (and leaving aside 
Swift’s dramatic and urgent criteria), and following the agenda and priorities detailed above, I 
propose the following alternate narrative to replace the desertification story. 
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From: “Local people are causing widespread potentially uncontrollable environmental 
destruction.” 

To: “Local people have the power to create widespread robust and sustainable food systems 
given locally appropriate support.” 

 
 
A framework doesn’t solve anything, but it provides a structure from which to start. 

Summary 
The first chapter of this dissertation presents a new LULC dataset for West Africa. This is 
my applied science. The second chapter details the methods used to create the dataset. This 
is an explicit treatment of the importance and influences of the “how” of science, regardless 
of whether it is evident in the final results. The third chapter expands on the future work for 
the continued development of the LULC classification product and methodology. The 
second and third chapters taken together are recognition of the importance of open science, 
methodological sharing and collaboration, particularly when working across differences in 
institutional resources and access. Chapter four is more than anything an exposition of 
methodologies to explore multidimensional patterns in time and space. It is a demonstration 
of the importance of scale and space, the insights to be gained from a continuous systems 
dynamics perspective, the importance of examining one’s data instead of taking its truth for 
granted. Finally, building from an understanding of the science, with an eye on the relevant 
social-institutional contexts, I offer an alternative to the desertification narrative of land 
cover change in West Africa. These projects are all beginnings. There is much more work to 
be done. 
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