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A novel algorithm for removing artifacts from EEG data

Yongcheng Li1, Po T Wang2, Mukta P Vaidya3,4,5, Charles Y. Liu6, Marc W Slutzky3,4,5 and An H Do1

Abstract— In recent years, many studies examined if EEG
signals from traumatic brain injury (TBI) patients can be
used for new rehabilitation technologies, such as BCI sys-
tems. However, extraction of the high-gamma band related to
movement remains challenging due to the presence of surface
electromyogram (sEMG) caused by unconscious facial and
head movement of patients. In this paper, we proposed a
modified independent component analysis (ICA) model for
EMG artifact removal in the EEG data from TBI patients
with a hemicraniectomy. Here, simulated EMG was generated
and added to the raw EEG data as the extra channels
for independent components calculation. After running ICA,
the independent components (ICs) related to artifacts were
identified and rejected automatically through several criteria.
EEG data underlying hand movement from one healthy subject
and one TBI patient with a hemicraniectomy were conducted
to verify the efficacy of this algorithm. Results showed that the
proposed algorithm removed sEMG artifacts from the EEG
data by up to 86.72% while preserving the associated brain
features. In particular, the high-gamma band (80 to 160 Hz)
was found to arise principally from the hemicraniectomy area
after this technique was applied. Meanwhile, we found that the
magnitude of gamma power during movement improved after
removal of sEMG artifacts.

Index Terms— artifact removal; ICA; traumatic brain injury;
neural network; rehabilitation technology

I. INTRODUCTION

Prior research demonstrated that the γ bands (usually from
40 to 160 Hz) from brain signals were strongly related
to the movement [1], [2]. In particular, the γ band from
the electrocorticogram (ECoG) signal is directly related to
some kinematic [3], [4] and kinetic [5] parameters. This
information may be employed to develop the rehabilitation
technologies for paralyzed patients, such as brain-computer
interfaces. However, it is difficult to detect the real γ fre-
quency in the electroencephalogram (EEG) signal due to
the filtering effects of the skull. Some research recently
demonstrated that EEG γ band can be recorded from the
hemicraniectomy site in traumatic brain injury (TBI) pa-
tients [6]. Even so, the extraction of the EEG γ band
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features during movement remains challenging due to the
large overlap in the γ band between the EEG signal and
surface electromyogram (sEMG), which is primarily caused
by unconscious facial and head movement.

For EEG signal processing, there are many sEMG arti-
fact removal algorithms which use independent component
analysis (ICA), and other high-order statistical methods in
current research work [7], [8]. Although ICA is now con-
sidered an important technique for artifact rejection [9], this
approach has several problems in removing sEMG noise.
For example, since the recording channels are limited, the
independent components also are limited, thereby making
it difficult to “force” all of the noise into a minimal set
of independent components. Another issue is the potential
for over-correction or under-correction as users attempt to
distinguish between neurogenic and myogenic components.
Bias is also introduced as experimenters manually reject
components. Hence, it is necessary to develop a technique
that can more effectively remove sEMG noise so that it does
not confound the neurogenic γ band while not affecting any
of the underlying signal features.

In order to efficiently remove the sEMG artifacts, we
developed a modified ICA model by adding sEMG noise
into the EEG data. Either real or simulated sEMG noise
was added to the EEG data, which was then subjected to
ICA. Several criteria were established to reject noise ICs
automatically. In order to verify this approach, the EEG
from a healthy subject and a TBI patient with a left-
sided hemicraniectomy were used to test whether the sEMG
artifacts can be removed efficiently while preserving the
brain features underlying motor behaviors. In particular, the
high-γ band (80 to 160 Hz) in the hemicraniectomy area was
investigated in this work.

II. METHOD

A. Experiments

This study was approved by the Institutional Review Board
of the University of California, Irvine and the Rancho Los
Amigos National Rehabilitation Center. Two experiments
were carried out to verify this approach. A healthy subject
(Subject 1) was asked to wear a 64-channel EEG cap while
signals were acquired 2× Nexus-32 EEG amplifiers (Mind
Media, Herten, The Netherlands). The subject performed
repetitive right fist pumping in response to commands on
a computer screen. The subject alternated between right fist
pumping and idling for two seconds for a total of 20 trials.

Real sEMG signals from the frontalis, temporalis, mas-
seter, posterior head muscles were recorded with a sampling
rate of 2000 Hz for healthy subject. This EMG data was later



used in the noise removal process (described in subsection
C and D below).

Next, a TBI patient with a left-sided frontal hemicraniec-
tomy (Subject 2) was fitted with a 128-channels EEG cap
(ActiCap, Brain Products, Gilching, Germany) and asked to
perform a pincer gripping task on the right side while the
EEG signals were acquired by Blackrock Neuroport system
(Blackrock, Salt Lake City, USA). Gripping events were
detected by a force sensor. The subject was asked to perform
a pincer grasp with varying levels of force, as guided by a
cursor on a computer screen. This was repeated for a total
of 20 times over a 120s-long session. All of the data were
recorded with a sampling rate of 2000 Hz.

B. ICA model based on adding EMG

To efficiently remove the sEMG noise from the EEG data,
we added EMG noise into the EEG datasets and used a
modified ICA model as follows:(

X̂t

n∗τ

)
= At+τ × St+τ(

Xt + bt ×Nt
n∗τ

)
= At+τ ×

(
st +mt

m∗τ

)
where X̂t = Xt+ bt×Nt, and Xt is the real EEG data, Nt
is the real noise, bt is the linear coefficients, n∗τ is the added
EMG noise, t is the number of the EEG electrodes, τ is the
number of the added EMG noise, At+τ is the mixing matrix,
St+τ is the independent component sources, in which st is
the sources representing the real EEG, mt are the sources
representing the real EMG noise, and m∗τ are the added EMG
sources.

In this model, when the added EMG noise are independent,
if n∗τ is linearly related to Nt, then mt = 0. We presume
that mt 6= 0, that is, Nt = a1t × mt + a2τ × m∗τ and
n∗τ = a3t × mt + a4τ × m∗τ (a1, a2, a3 and a4 are the
corresponding coefficients of the mixing matrix). Since n∗τ
is linearly related to Nt, that means mt is linearly related to
m∗τ . This is completely in violation of the ICA principles,
that is, the ICA components are independent. Therefore, mt

must equal 0.
Two key assumptions are made in our model. One is the

independence among the added EMG noise and the other
was the correlation between the real noise and the added
EMG noise.

C. Generating the simulated EMG

Since collecting sEMG from TBI patients can often times
be difficult, we generated simulated EMG as a substitute.
The following approach was used:

1) generating the extracellular current with Hodgkin-
Huxley model

2) generating the single fiber action potential (SFAP)
based on the volume conduction model

3) generating the motor unit action potential (MUAP)
4) generating the sEMG by defining the firing rate of

MUAP

5) customizing the sEMG to mimic the characteristics of
different muscles

Step 1: The Hodgkin-Huxley model was chosen since it is
a widely accepted model for a typical excitatory cell, such
as skeleton muscles.

Step 2: A volume conduction model was generated as in
[10]:

VE(z, y) =K[

∫
S1

∂e(z)

∂z
· 1
r
dS +

∫
S

dS

∫ +∞

−∞

∂2e(z)

∂z2
· 1
r
dz

−
∫
S2

∂e(z)

∂z
· 1
r
dS]

(1)
where VE is the SFAP, e(z) is the extracellular current, z and
y are the axial and radial directions, respectively, S1 and S2

are the fiber sections at the fiber ends, and r is the distance
between the surface element, and dS is the observation point.

The SFAP was generated by discretization of this formula
and using known parameter values from the literature, in-
cluding fiber length, endplate position, observation position,
etc. [11], [12].

Step 3: Endplate positions were considered as a Gaussian
distribution with 0 mean and standard deviation (SD) = 2.5
mm [11]. A Gaussian distribution was used for the voltage
propagation velocities, with an average of 4 m/s and SD =
0.125. A total of 100 SFAPs were first generated and their
average served as the MUAP.

Step 4: The firing rate of the MUAPs was modeled as the
Poisson process [11]. The sEMG firing rate and amplitude
were assumed to co-vary with the hand/finger movements.
Hence, sEMG firing rate and amplitudes were increased
during these events.

Step 5: Simulated EMG noise was generated for 4 different
muscles, including the frontalis, temporalis, masseter, poste-
rior head muscles, for each session. Since each head/facial
muscle has different frequency domain characteristics, each
muscle’s simulated EMG was filtered based on the frequency
characteristics found in the literature [12].

Before running ICA, these simulated EMG noises were
added as extra virtual channels in the original EEG data.
These virtual channels located at different positions on the
edge of brain topographic map (details shown in Fig.1-3).
The coordinates of these positions corresponded to the actual
muscle locations on the head. Note that for the Subject 1,
the real EMG (from subsection A) was added and processed
in a similar manner to the simulated EMG data.

D. Rejection criteria

The following two criteria were established and an au-
tomatic rejection method was developed to reject the noise
independent components after running ICA. First, the root
mean square (RMS) values of coefficients in each mixing
matrix rows corresponding to sEMG noise were calculated
and used to establish a threshold. Subsequently, the coeffi-
cients which exceeded the threshold in the corresponding
mixing matrix rows were identified and defined as high
noise values. The components represented by the high noise



values’ columns were considered as components related to
artifacts and rejected. Second, components which primarily
involved channels in the hatband EEG areas were also
rejected. Note that this second criteria is used as the rejection
criterion for conventional ICA in this paper.

E. Data processing

After adding the EMG noise in the EEG data, the com-
bined data was subjected to a 3-200 Hz 3rd order band
pass filter. Each trial, consisting of 1-s idle time followed
by 2-s movement, was identified and segmented. The same
ICA algorithm was employed in these three conditions (with
real EMG noise, with simulated EMG noise and without
any EMG noise). Here, the FastICA algorithm from the
EEGLAB toolbox [13] was adopted on the EEG data from
both subjects. The components related to artifacts were
then rejected as above. The time-frequency decomposition
underlying short-time Fourier transform was employed to
analyze the time-frequency properties on the EEG before and
after running ICA. For the data after running ICA, the time-
frequency properties under three conditions (with simulated
EMG, real EMG and without EMG) were calculated and
compared in different frequency bands (α band: 8 to 12
Hz, high-γ band: 80 to 160 Hz), respectively. Both the
data before and after the time frequency decomposition were
separately normalized to the statistics of the EEG during the
idling epochs using a Z-score.

III. RESULTS

Subject 1 completed the fist pumping task successfully,
whereas Subject 2 only performed 19 out of the 20 expected
pincer grasp trials.

In Subject 1, the α band desynchronization was localized
to the left hemispheric areas around the C3 channel in
the conditions with real EMG and simulated EMG Fig. 1).
In the conventional ICA condition, only a modest α band
desynchronization was seen. In Fig. 2, after running ICA,
the power of the high-γ band decreased by 10.25% for con-
ventional ICA, 60.08% for real EMG condition and 86.72%
for simulated condition, respectively. Specifically, the power
of the high-γ band during movement was lower in the real
and simulated EMG conditions compared to the conventional
ICA condition (reduced by 20.41% for conventional ICA,
65.6% for real EMG condition and 77.27% for simulated
condition, respectively).

For Subject 2, the α desynchronization during movement
was well-preserved after running ICA in both simulated
EMG and conventional ICA conditions and it was localized
to the hemicraniectomy areas around C3 channel (Fig. 3 A-
C). In the high-γ band, the increased power during movement
was observed primarily only in the hemicraniectomy areas
just in the simulated EMG condition (Fig. 3 D-F). In non-
hemicraniectomy area, the high-γ band decreased by 28.76%
for conventional ICA and 65.28% for simulated EMG con-
dition. Fig. 4B showed that, after running ICA, the high-γ
power underlying movement in the simulated EMG condition
within the hemicraniectomy area was significantly larger
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Fig. 1. Brain topography map for displaying the power of the α band (8
to 12 Hz) on the Subject 1. Time bin here was 0.5 second. 0s denoted the
starting point of the movement. Negative denoted the time before movement
(first two subfigures). The black dots outlined the position of the added
virtual channels. The value for the color bar was from -1 to 1.
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Fig. 2. Brain topography map for displaying the power of the high-γ
band (80 to 160 Hz) on the Subject 1. Time bin here was 0.5 second.
0s denoted the starting point of the movement. Negative denoted the time
before movement (first two subfigures). The black dots outlined the position
of the added virtual channels. The value for the color bar was from -1 to 1.

than that in the conventional ICA condition (Wilcoxon rank
sum test, P<0.001). Moreover, only in the simulated EMG
condition was the high-γ power underlying movement in the
hemicraniectomy significantly larger than that in the non-
hemicraniectomy area (Wilcoxon rank sum test, P<0.001).
The averaged time series of high-γ power in C3 (which was
in the hemicraniectomy area) and amplitude of the squeezing
force was shown in Fig. 4A. Fig. 4A showed that the high-
γ power during movement in C3 channel was obviously
increased after running ICA in the condition with simulated
EMG while modest improvement with conventional ICA.
However, there is a latency of approximately 250 ms between
the onset of movement and the high-γ power increase event.

IV. DISCUSSION

We believe that the new technique removes EMG noise
because:
• it successfully removed EMG from the EEG data from

a healthy subject, where no high-γ signal (80 to 160
Hz) was expected to originate from the brain (Fig. 2).

• both α desynchronization and high-γ power increase
during movement in the TBI patient were observed in
anatomically expected areas, making this physiologi-
cally plausible (Fig. 3).
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Fig. 3. Brain topography map for displaying the power of α band (8 to
12 Hz, A-C) and γ-band (80 to 160 Hz, D-F) in different conditions on
the Subject 2. Time bin here was 0.5 second. 0s denoted the starting point
of the movement. Negative denoted the time before movement (first two
subfigures). The value for the color bar was from -1 to 1. The black dots
outlined the position of the added virtual channels. The red outline in each
subfigure defined the hemicraniectomy area.
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Fig. 4. A. Averaged power of the high-γ band (80 to 160 Hz) and
amplitude of squeezing force in the TBI patient experiment. Values here
were averaged over 19 trials. The power was normalized to the maximum
of absolute value. Time point 0 meant the start of the movement. Negative
denoted the time before moving. B. Power of high-γ band (80 to 160 Hz)
under different conditions in the TBI patient experiment. Values here were
from 19 trials. Wilcoxon rank sum test, asterisks indicate the significant
differences between two datasets, and the significance level=***p<0.001.
In the figure, NHA was the abbreviation for Non-hemicraniectomy area,
HA was Hemicraniectomy area.

We also found the new technique does not remove high-
γ signal from the brain - instead, it helped to improve the
quality of the high-γ power underlying movement (Fig. 4).

Although the quality of the high-γ power after running
ICA with simulated EMG condition has been improved,
simulated sEMG noise still could not precisely mimic the
real sEMG noise due to the time-varying of real sEMG.
Furthermore, the increase of recovered high-γ power during
movement lags the onset of movement, suggesting that this
event may represent some form of sensory or feedback
processing. Future work will involve rigorous testing, which
includes verification with synthetic EEG and EMG data and

with EEG data from a large group of patients, as well
as developing a method that overcomes the time-varying
nature of sEMG. Another future work is to perform direct
comparisons with other popular EMG removal algorithms.
In addition, the technique will need to be implemented in
such a way that it can potentially be used in real time for
neurorehabilitation applications, such as in BCI systems.

V. CONCLUSION
Here, we proposed a modified ICA model which involved

adding sEMG noise into the EEG data to remove the sEMG
artifacts automatically. According to the results from one
healthy subject and one TBI patient, this approach can
potentially remove the confounding overlap between EMG
and gamma signals, and preserve the expected brain fea-
tures underlying motor behavior. Therefore, it may allow
researchers to confidently use the resulting high-γ signals
for subsequent analysis or interpretation.
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