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Single-cell mapping of lipid metabolites
using an infrared probe in human-derived
model systems

Yeran Bai 1,2 , CarolinaM. Camargo1, StellaM. K. Glasauer1, RaymondGifford1,
Xinran Tian1, Andrew P. Longhini1 & Kenneth S. Kosik 1

Understanding metabolic heterogeneity is the key to uncovering the under-
lying mechanisms of metabolic-related diseases. Current metabolic imaging
studies suffer from limitations including low resolution and specificity, and the
model systems utilized often lack human relevance. Here, we present a single-
cell metabolic imaging platform to enable direct imaging of lipid metabolism
with high specificity in various human-derived 2D and 3D culture systems.
Through the incorporation of an azide-tagged infrared probe, selective
detection of newly synthesized lipids in cells and tissue becamepossible, while
simultaneousfluorescence imaging enabled cell-type identification in complex
tissues. In proof-of-concept experiments, newly synthesized lipids were
directly visualized in human-relevant model systems among different cell
types, mutation status, differentiation stages, and over time. We identified
upregulated lipid metabolism in progranulin-knockdown human induced
pluripotent stem cells and in their differentiated microglia cells. Furthermore,
we observed that neurons in brain organoids exhibited a significantly lower
lipid metabolism compared to astrocytes.

Metabolic heterogeneity is prevalent in biological systems and has
profound influences on human health, including diseases such as
diabetes, cancers, and neurodegenerative disorders1–3. To accurately
model human-relevant metabolism and develop effective therapies, it
is crucial to use appropriatemodel systems. Traditional animalmodels
engineered to produce phenotypic features of human diseases like
Caenorhabditis elegans, Drosophila melanogaster, and mice have been
foundational in metabolic research4–8. They have been extensively
characterized, providing a vast pool of resources and a unique envir-
onment to study tissue interactions. However, despite their undeni-
able contributions, these models often exhibit metabolic pathways
that significantly diverge from those found in humans9–11. On the other
hand, human-derived models, such as primary human cells, human
induced pluripotent stem cells (hiPSCs), and hiPSC-derived organoids
offer distinct advantages. These systemsmore closely recapitulate the
heterogeneity and complexity of humanmetabolic processes12–14. They

also offer the potential for more direct applicability to human phy-
siology, thereby increasing the translational value of research
findings15–17. To better understand metabolic heterogeneity within
these models, advanced metabolic imaging technologies are needed.
Positron emission tomography (PET) andmagnetic resonance imaging
(MRI) have beenwidely used in clinics18,19, but their spatial resolution is
not sufficient to study these model systems. Imaging mass spectro-
metry (IMS) provides detailed metabolomic characterization20,21.
However, most commercially available IMS setups have a spatial
resolution of tens of micrometers21,22, which makes single-cell meta-
bolic analysis difficult to achieve. Optical imaging, on the other hand,
provides sub-micrometer spatial resolution, which is an attractive
alternative for single-cellmetabolic analysis.Generalmetabolic activity
levels can be quantified by detecting the intensity or lifetime of
fluorescent coenzymes nicotinamide adenine (pyridine) dinucleotide
and flavin adenine dinucleotide23,24. To investigate certain metabolic
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pathways, modified exogenous molecules such as fluorescence ana-
logs of glucose and lipids have also been used25,26. Nevertheless, these
modified molecules contain fluorescence tags that may perturb nor-
mal cell physiology and lead to altered pathways when compared to
unmodified counterparts27,28.

Vibrational spectroscopy imaging integrated with vibrational
probes provides a new direction for single-cell metabolic analysis.
Vibrational probes are biorthogonal, enabling selective detection of
metabolic products without interference from cellular endogenous
molecules8,29–32. Due to their small size and bio-compatibility, vibra-
tional probe-labeled small molecules are widely used to trace meta-
bolic activities such as fatty acids, amino acids, and nucleic acids.
Existing cellular metabolic profiling with vibrational probes is largely
focused on Raman imaging, where a full set of Raman probes have
been investigated33,34. Infrared (IR) absorption provides over eight
orders of magnitude stronger absorption cross sections when com-
pared with Raman scattering35, which promises higher sensitivity and
speed. While there are a handful of reports integrating different IR
probes to study metabolism using Fourier transform IR or discrete
frequency IR29,36, the coarse resolution associated with these IR ima-
ging modalities presents challenges to achieving single-cell or even
sub-cellular metabolic analysis and co-registration of other imaging
modalities such as fluorescence imaging.

The recently developed optical photothermal infrared (OPTIR)
microscope provides sub-micrometer resolution IR imaging in the far-
field and is highly compatible with fluorescence imaging37–40. InOPTIR,
a visible probe beam is used to detect the localized photothermal
effect induced by sample absorption of an IR pump source. Isotope-
labeled substrates such as fatty acids or glucose have been used to
study the metabolic activity of protein and lipid synthesis with sub-
cellular resolution41–43. However, carbon-deuterium bonds produce
weak IR signals44, and 13C labeled molecules suffer from background
signals because the shifted peaks are largely overlapped with the
unlabeled molecules43. Therefore, it is vital to investigate and incor-
porate sensitive IRprobes intoOPTIRsystems that enablebackground-
free detection of metabolic products.

In this report, we demonstrate OPTIR metabolic imaging inte-
grated with IR probes for single-cell metabolic analysis in human-
relevant model systems consisting of neuroglioma, hiPSCs, hiPSC-
derived microglia, and hiPSC-derived brain organoids. By using a
sensitive and biorthogonal IR tag azide, we were able to selectively
image newly synthesized lipids in these model systems with sub-
micrometer resolution. We also investigated the differences in lipid
metabolismbetweenhiPSC-derivedmicroglia cells andhiPSCs, and the
impact of progranulin deficiency on lipid metabolism. To exemplify
the potential of this platform for cell-type specific metabolic imaging,
we compared the lipid metabolic levels of neurons and astrocytes in
hiPSC-derived brain organoids. These demonstrations validate the
applicability of the IR probe integrated OPTIR platform for single-cell
lipid metabolic imaging and the suitability of using human-derived
model systems for studying human-relevant metabolic alterations.

Results
Fluorescence-integrated OPTIR platform for lipid metabolic
imaging
The concept of utilizing IR probes to trace metabolic processes is
illustrated in Fig. 1A. Azide was used as the IR tag since it offers an at
least one order of magnitude increase in the absorption cross-section
compared with the C-D stretching mode35 (Supplementary Fig. 1).
Additionally, the absorption peak of azide lies in the so-called cell-
silent region, which enables selective detection of newly synthesized
molecules without interference from endogenous cellular signals.
Palmitic acid (PA) is the first fatty acid produced during fatty acid
synthesis in mammalian cells and can be further desaturated and
elongated to generate an array of fatty acids45. Moreover, PA

metabolism has been reported to be dysregulated in various diseases
including Alzheimer’s disease46,47. Therefore, we aim to demonstrate
the feasibility of direct imaging of sub-cellular lipid metabolism using
PA as a model compound. Azide conjugated PA (azide-PA) was added
into the culture media of cells and tissue, and subsequently azide tags
were incorporated into the newly-synthesized lipids such as trigly-
cerides, phospholipids, and cholesterol esters through different
metabolic processes. By focusing OPTIR imaging at the azide stretch-
ing frequency, newly synthesized lipids were mapped with high
resolution.

The schematic setup of the fluorescence-integrated OPTIR
instrumentation is shown in Fig. 1B. Briefly, a pulsed quantum cascade
laser is used as themid-IR pump sourcewith a wavelength coverage of
the fingerprint region (940 to 1800 cm−1, or 5.6 to 10.6μm) and cell-
silent region (2000 to 2320 cm−1, or 4.3 to 5μm). The visible probe
source is provided by a 532nm continuous wave laser. Themid-IR and
visible beams were focused on the same spot on the sample with a
reflective or a refractive objective. For cell imaging, a counter-
propagation of the pump and probe beam was used, while a co-
propagation was utilized for organoid slice imaging. Backscattered
probe photons were collected and guided to a photodiode. Signals
were demodulated with a lock-in amplifier at the mid-IR laser repeti-
tion rate of 100 kHz. OPTIR images were acquired in a raster-scanning
manner with amotorized stage. The fluorescence imagingmodule was
equipped with multiple fluorescence cubes and a high-quantum yield
camera.

To demonstrate the biorthogonal capacity of using azide-PA to
monitor lipid metabolism, we acquired OPTIR spectra of azide-PA and
PA (Fig. 1C). In addition to the major peaks in the fingerprint region
including peaks around 1700 cm−1 (νC=O) and 1473 cm−1 (δC-H), azide-PA
possesses an additional peak centered around 2100 cm−1, which cor-
responds to -N3 stretching mode. A typical biological cell spectrum is
shown in red as a reference, and it is clear the azide peak lies in the
region where no cellular endogenous signal is present. We further
evaluated the limit of detection (LoD) of azide-PA using spectra from
its serial dilution in dimethyl sulfoxide (DMSO) (Supplementary Fig. 2).
The LoDof azidebond inDMSO is around 100 μM,which surpasses the
LoD of the alkyne bond in SRSmicroscopy48. The LoD is limited by the
relatively low NA objective and non-optimized detection geometry. A
recent study has achieved a 5μM LoD for the nitrile bond in OPTIR
microscopy using a 1.2NA water-immersion objective and a fast digi-
tization method49. Given the higher extinction coefficient of azide
compared to nitrile50,51, we expect an improved LoD with optimized
experimental conditions such as co-propagation of IR and visible light,
along with transmission detection using a high numerical aperture
liquid immersion objective lens with cover glass correction. Such an
approach is anticipated to enhance the photon collection efficiency,
thereby improving the LoD of target molecules52.

Newly synthesized lipids were directly visualized in cells
After characterizing the system with pure samples, we aimed to test
the feasibility of utilizing OPTIR and azide-PA to image lipid metabo-
lism in cells. Tomap azide incorporation into cells, themid-IR laserwas
tuned to 2096 cm−1 targeting -N3 stretching mode. To visualize the
total lipid distribution, we acquired OPTIR images around 1744 cm−1

targeting C =O stretching mode in lipid esters. We incubated human
neuroglioma H4 cells with media containing azide-PA at a final con-
centration of 100μM for around 6.5 h, then fixed them for imaging.
This concentration was selected based on prior metabolic studies
using vibrational probes and cell viability tests against different PA
concentrations29,53–55. We also observed the incorporation of azide into
intracellular lipids at a reduced azide-PA concentration of 20μM
(Supplementary Fig. 3), suggesting that a lower azide-PA incubation
concentration is viable for tracing lipidmetabolites, especially if there
are viability concerns for certain cell types.We first verified thatOPTIR
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image contrasts at 1744 cm−1 and 2096 cm−1 were indeed from lipids by
comparing them with fluorescence images of lipid staining with
BODIPY (Fig. 1D). A good agreement between OPTIR and BODIPY
images validates that the contrasts were from lipids, further under-
scoring the chemical selectivity of OPTIR imaging. In addition to the
incorporation of azide-tagged lipids into intracellular lipid droplets,
we also observed their incorporation into plasma membranes (Sup-
plementary Fig. 4). Since the concentration of lipids is lower in the cell
membrane when compared to lipid droplets, the signal contrast is
weaker. Despite this, we still managed to observe clear cellular

boundaries. Additionally, the azide peak was unambiguously resolved
on the spectrum when localized at the cell boundary.

We further quantified the spatial resolution of OPTIR metabolic
imaging by pinging to a small lipid droplet and acquiring a line profile
along two, perpendicular directions (Fig. 1E). The fitting results
indicated a resolution of around 500 nm, which is a 6 times
improvement compared to previously reported IR-based metabolic
imaging setups29. Another key advantage of OPTIR compared to
direct IR imaging is the consistent sub-micrometer spatial resolution
irrespective of broadly tuning IR wavelengths (4.3 to 10.6 μm),
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whereas direct IR imaging will experience 2.5 times reduced resolu-
tion when IR tuning in this range.

To demonstrate the capability of selectively probing of newly
synthesized lipids enabled by the azide probe, we imaged 1744 cm−1

and 2096 cm−1 channels from H4 cells incubated with azide-PA or PA-
containing media at a final concentration of 100μM for 24 h. Clear
contrasts were observed in the 2096 cm−1 channel for azide-PA incu-
bated cells, indicating the active incorporation of the azide molecule
to newly synthesized lipids. As a control, cells incubated with unmo-
dified PA do not produce the spectroscopic signatures of newly syn-
thesized lipids, thus no contrast was observed at 2096 cm−1 (Fig. 1F).
We randomly picked points in the cytoplasm from multiple cells in
each condition to perform spectral measurements and analyses
(Fig. 1G–I).We performedwhole-spectral fitting (Supplementary Fig. 5)
to decompose the signal from protein (amide I ~ 1650cm−1), total lipids
(carbonyl ~ 1740 cm−1), and newly synthesized lipids (azide ~
2096 cm−1). To account for focus and biomass variations across dif-
ferent fields of view (FOV), we did not rely solely on a single-color
imaging or an individual fitted peak for total lipid quantification.
Instead, we normalized the total lipid to protein (1740/1650), thereby
producing a more reliable normalized total lipid signal. Furthermore,
we defined the ratio of newly synthesized lipids to total lipids as
2096 cm−1/1740 cm−1. The spectral-based quantification showed no
significant difference in the normalized total lipid between incubations
with PA or azide-PA, indicating the physiological compatibility of
azide-PA (Fig. 1H). The newly synthesized lipid levels showed a sig-
nificant difference between azide-PA and PA treatment, as expec-
ted (Fig. 1I).

To ascertain theobserved signal isnot from fatty acids uptake, but
from the newly synthesized lipids after metabolic process, we chemi-
cally interrogate the lipid metabolic pathway by treating neuroglioma
cells with the small molecule inhibitor Triacsin C. Triacsin C is a long
fatty acyl CoA synthetase inhibitor that blocks the de novo synthesis of
glycerolipids and cholesterol esters56. For the Triacsin C treated group,
1μM of the inhibitor was added together with azide-PA and cultured
for 24 h. For the control group, cells were incubated with azide-PA for
24 h. We acquired images from both groups and the representative
images are shown in Supplementary Fig. 6. It was clear that with the
Triacsin C treated group, both the 2096 cm−1 and 1744 cm−1 contrast
drops substantially. We further acquired spectra from treated and
control cells andobserved anobvious reduction of 1740and2096 cm−1

peak intensity for the Triacsin C treated group (Supplementary
Fig. 6B). Imaging and quantification results confirmed the normalized
total lipid as well as the ratio of newly synthesized to total lipid both
significantly decreased after 24 h treatment of Triacsin C, suggesting
the observed signal in 2096 cm−1 was indeed from the newly synthe-
sized lipids.

To investigate the dynamics of lipid synthesis following the sup-
plement of azide-PA, we tracked the time-dependent incorporation of
azide into newly synthesized lipids over 24 h in culture (initialized

azide-PA final concentration 100μM). The neuroglioma H4 cells were
collected at various incubation times and fixed for OPTIR imaging.
Representative OPTIR images at 1744 and 2096 cm−1 are shown in
Fig. 2A. The azide signal was detectable as early as 1 h posttreatment,
followed by an increase till ~11 h, followed by a gradual decrease. We
found a similar contrast trend for the total lipids signal. The spectra
and quantification results showed the intensity of normalized total
lipids and newly synthesized lipids reached amaximumbetween 6.5 to
11 h followed by a subsequent decrease (Fig. 2B–D). The ratio of newly
synthesized lipids to total lipids follows a similar pattern while staying
relatively stable longer (6.5 to 16 h) before finally decreasing (Fig. 2E).
The observed rise in total lipids and newly synthesized lipids during
the initial hours indicates active lipid synthesis. Since the fatty acid
concentration in the cell culture media57 is relatively low compared to
the added azide-PA, cells aremore likely to uptake azide-PA, leading to
an increased azide signal. The observed decline of total lipids and
newly synthesized lipids after 11 to 16 h might be attributed to cellular
metabolic adaptions due to decreasing nutrient availability. It hasbeen
shown that PA treatment canpromote cancer cell growth58.With active
cellular growth and division, there is an increased demand for lipids,
which are essential for membrane expansion and phospholipids
synthesis. As exogenous lipid resources are reduced, cells may initiate
lipid catabolism to support the increasing lipid demand. This pattern
of an initial lipid surge followed by a decline after PA treatment has
been described previously in a different cell line59. Interestingly, the
same research highlighted distinct lipid dynamics upon oleic acids
treatment, where it shows a continuous buildup of lipids over 24 h
incubation period. These results indicate that specific fatty acids may
trigger distinct lipid metabolic pathways, leading to varied lipid
dynamics. To thoroughly understand the unique lipid metabolism
dynamics that we observed in the present study, it is essential to
perform comprehensive analysis across diverse fatty acids and
cell types.

Enhanced lipid metabolism in hiPSC during microglia
differentiation
After characterizing lipid metabolism of immortalized cells using
OPTIR and azide-PA, we then examined the potential of using this
platform to study lipid metabolism in hiPSC and hiPSC-derived
microglia. Microglia cells were differentiated from hiPSCs following a
published protocol60. The hiPSCs and differentiated microglia cells
were incubated with azide-PA at a final concentration of 100μM for
24 h, and then fixed beforeOPTIR imaging.We validated ourmicroglia
differentiation protocol by labeling with the microglia markers IBA1
and CD45 (Supplementary Fig. 7). A representative single-cell image is
shown in Fig. 3A. In the hiPSC-derivedmicroglia, both the carbonyl and
azide signals are prominent, and there is a substantial overlap between
the two contrasts (Supplementary Fig. 8). On the other hand, hiPSCs
produced a notably reduced signal in both channels. From the OPTIR
spectra (Fig. 3B), microglia showed an overall increase in the 1740 cm−1

Fig. 1 | Concept, instrumentation, and characterization of imaging lipid
metabolism with OPTIR microscopy and IR probes. A Azide tags were meta-
bolically incorporated into newly-synthesized lipids and thus enabled the selective
detection of these metabolites. B Schematic setup of a fluorescence-integrated
OPTIR system. IR infrared, PBS polarizing beam splitter, PD photodiode. C OPTIR
spectra of Azide-PA, PA, and a biological cell. Spectra were normalized (Norm.) to
maximum intensity and offset for clarity.D Representative total lipids (1744 cm−1),
newly synthesized lipid (2096 cm−1), and BODIPY imaging from a single cell. Scale
bars, 10 μm.E Lineprofile along thehorizontal and vertical directionof a small lipid
droplet indicated with a white arrow in 2096 cm−1 image in D. The raw data is
shown in black dots and the Gaussian fitting is shown in the red curve. Full-width
half maximum (FWHM) of the fitted curve is shown to demonstrate the spatial
resolution. F Representative OPTIR images at 1744 cm−1 and 2096 cm−1 of human
neuroglioma H4 cells after incubation in Azide-PA and PA-containing media for

24h. Corresponding brightfield images are also shown. Scale bars, 20μm GOPTIR
spectra for azide-PA and PA incubated cells. Raw spectra were normalized to
protein signal at 1654 cm−1 and offset for clarity. Mean curve (solid) and standard
deviation (shade) were generated from 22 azide-PA cultured cells and 14 PA cul-
tured cells. H, I Statistical analysis of total lipid and newly synthesized lipid from
spectral fitting results. Area under curve centered around 1654 cm−1, 1740 cm−1,
and 2096 cm−1 were used for quantification. A non-significant difference was
observed for total lipids between azide-PA incubated (n = 22) and PA incubated
cells (n = 14). Statistical test: two-sided two-sample t-testH. Central horizontal lines
in the box plot indicate medians, box limits indicate first and third quartiles, ver-
tical whisker lines indicate minimal and maximum values, the outliers were iden-
tifiedusing a coefficient of 1.5 times the interquartile range (H-I). The spectral range
of 1780 to 2030 cm−1 was omitted since no observable peaks were presented.
Source data are provided as a Source Data file.
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and 2096 cm−1 intensities compared to hiPSCs. A strong band more
pronounced for the microglia cells around 1170 cm−1 can be attributed
to the C–O–C stretching mode in lipid ester moieties61. This evidence
suggests more lipid content can be detected during the progression
towardmicroglial differentiation. Using confocal fluorescence imaging
of lipid staining, we observed that microglia without azide-PA sup-
plement already had substantial lipid droplets in cells (Supplementary
Fig. 9). For the untreated hiPSCs, the 2096 cm−1 signal does not show
up in cells, and no peaks were observed when the spectrum was
acquired in the cell-free region of the spectrum, indicating the coating
of Matrigel to support stem cell growth does not produce an obser-
vable signal and therefore would not interfere with the lipid metabo-
lism profiling (Supplementary Fig. 10). The spectral fitting-based
quantification (Fig. 3C, D) showed a significantly higher normalized
total lipids and newly synthesized lipids to total lipids ratio for hiPSC-
derivedmicroglia compared to that of hiPSCs. A similar observation of
increased total lipid content was reported for iPSC-differentiated
neurons compared to that with iPSCs using spontaneous Raman

spectroscopic measurement62. Collectively, these data suggest
increased lipid synthesis activities during differentiation, which pro-
vides insights into the function of lipids in early brain development63.

Distinct lipid metabolism in GRN-KD hiPSC & hiPSC-derived
microglia
We further tested whether this platform is applicable to studying dis-
ease mutation-related metabolic changes. For this purpose, we chose
progranulin (PGRN) as our focus. PGRN, encoded by the GRN gene, is
widely expressed in various tissues including those in the central
nervous systems, where it is predominantly found in neurons and
microglia64–66. PGRN plays a vital role in many physiological processes
including regulating lysosomal functions and inflammation. Critically,
deficiencies in GRN have been linked to a range of neurodegenerative
diseases including frontotemporal dementia and Alzheimer’s
disease64–66. GRN and PGRN have been closely associated with lipid
metabolism. For example, complete loss of PGRN leads to Neuronal
Ceroid Lipofuscinosis67,68, a neurodegenerative disease characterized
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by lysosomal accumulation of lipofuscin, a lipid-protein aggregate.
Moreover, previous studies have indicated lipid accumulation in
humans and mice with GRN deficiency, as evidenced through lipid
staining and lipidomic methodologies69,70. However, there is no direct
imaging evidence of lipid metabolism in these systems reported.

Additionally, whether the GRN deficiency will impact lipid metabolism
as early as in stem cell stages remains unknown. Here, we compared
the lipid metabolic levels in control hiPSCs and GRN knockdown (KD)
hiPSCs. GRN expression in GRN-KD hiPSCs was significantly reduced
based on qPCR analysis (Supplementary Fig. 11). The cells were

hiPSC  hiPSC-derived microglia
A B C

D

E

C
trl

 
G
R
N

-K
D

 

0 40

1744 cm-1 2096 cm-1

0 0.2

Brightfield

1744 cm-1 2096 cm-1 1654 cm-1 2096/17441744/1654

2096/1744

Brightfield

CSPih

C
trl

 
G
R
N

-K
D

 iT
F-

ailgorci
m

Ctrl GRN-KD 
1 

2 

3 

4 

20
96

/1
74

4

*** p < 0.001

17
44

/1
65

4
1 

2 

3 *** p < 0.001

0

hiPSC-derived microglia hiPSC

17
44

 c
m

-1
20

96
 c

m
-1

Br
ig

ht
fie

ld

40

Wavenumber (cm-1)
2100 1700 1500 1300 1100

N
or

m
. O

PT
IR

in
t. 

(a
.u

.)

0

1

2

hiPSC hiPSC-derived
microglia

** p = 0.0018

*** p < 0.001

20
96

/1
74

0
17

40
/1

65
0

0.25

0.75

1.25

0.00

0.25

0.50

0 8

0.119410.10552
 Ctrl
GRN-KD

F

Ratio pixel value
0.04 0.08 0.12 0.16 0.20

0

100

200

300

400

C
ou

nt
s

G

Ctrl GRN-KD
17

40
/1

65
0

0.04

0.08

0.12
ns p = 0.97 H

Ctrl GRN-KD

20
96

/1
74

0

0.0

0.5

1.0
*** p < 0.001

0 120 0 60 0 20.2 20 500

I J

K

0

40

Fig. 3 | Distinct lipid metabolic levels were observed during hiPSCs microglia
differentiation and inGRN-KDmicroglia cells. A Representative OPTIR images at
newly synthesized lipids (2096 cm−1) and total lipids (1744 cm−1) for hiPSC-derived
microglia cells and hiPSCs. Scale bars, microglia 20μm, hiPSCs, 10μm. B OPTIR
spectra of hiPSCs and hiPSC-derived microglia cells. Mean (solid curve) and stan-
darddeviation (shade)werederived frommicroglia (n = 33) andhiPSC (n = 23) cells.
Spectra were offset for better visualization. C, D Spectral-based quantification of
normalized total lipids (1740/1650), and the ratio between newly synthesized lipids
to total lipids (2096/1740) from hiPSC (n = 23) and microglia (n = 33). p = 9.0e−10 in
C. E Representative OPTIR images for control and progranulin knockdown (GRN-
KD) stem cells acquired at indicated wavenumbers. Ratio images were calculated
from 2096/1744 image contrasts. Scale bars, 40μm. F Histogram distribution of
ratioed image for control (orange) andGRN-KD (green) hiPSCs.Gaussfittingof each

groupwas shown in solid curveswith center value shown inblackdashed lines.G,H
Spectral-based quantifications of normalized total lipids and ratio between newly-
synthesized lipids to total lipids from control (n = 21) and GRN-KD (n = 21) hiPSCs.
p = 3.2e−4 in (H). (I) Representative OPTIR images for control and GRN-KD induced-
transcription factor (iTF)-microglia cells at indicated wavenumbers and corre-
sponding ratioed images and brightfield images. Scale bars, 20μm. (J, K) Ratioed-
image basedquantification fromcontrol (n = 46) andGRN-KD (n = 36) iTF-microglia
cells. p = 1.3e−8 in (J) and p = 8.6e−10 in (K). Statistical test: two-sided two-sample
t-test (C-D, G-H, J-K). Central horizontal lines in the box plot indicate medians, box
limits indicate first and third quartiles, vertical whisker lines indicate minimal and
maximum values, the outliers were identified using a coefficient of 1.5 times the
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incubatedwith azide-PA at a final concentration of 100μMfor 24 h and
then fixed for measurements. OPTIR images of total lipids and newly
synthesized lipids were acquired (Fig. 3E). From the histogram dis-
tribution of the 2096 cm−1/1744 cm−1 ratioed images (Fig. 3F), two
subgroups exist. By fitting the histogram data with a Gauss function
and comparing the center value from the fitting, we observed that the
hiPSCs with GRN-KD have higher ratioed values when compared with
control hiPSCs, indicating a higher ratio of newly synthesized lipids in
GRN-KDcells. Toget aquantitative comparison,weperformed spectral
measurements and spectral fitting (Fig. 3G, H). Consistent with histo-
gram analysis, we observed a significantly higher newly synthesized
ratio for GRN-KD cells (Fig. 3H). Interestingly, there is no significant
difference in the normalized total lipid content (Fig. 3G). We validated
the total lipid intensity with fluorescence imaging of cells stained with
a lipid marker (Supplementary Fig. 12) and observed a non-significant
difference of total lipids in control and GRN-KD hiPSCs, which is con-
sistent with the spectral fitting-based results. The observation of
increased newly synthesized lipid ratios and unchanged total lipids in
GRN-KD cells may suggest a higher lipid turnover rate in these cells.
The significance of directly imaging newly synthesized lipids for pre-
cise quantification of lipid metabolism is underscored by this dataset.
It cautions against relying solely on fluorescence imaging of total lipids
to indicate lipidmetabolism, as it may lead to incorrect interpretation.

Building on these insights, we further investigated the implica-
tions of GRN-KD in a differentiated cell state. Growing evidence has
suggested the pivotal role of microglia in the disease pathogenesis of
frontotemporal dementia with GRN mutations, and studies have indi-
cated that Grn−/− microglia accumulate significantly more lipids70–73.
This led us to investigate if the lipid metabolic alterations observed in
hiPSCs were also evident in differentiated microglia cells. Adopting an
established protocol74, we derivedmicroglia from a CRISPRi hiPSC cell
line that allows rapid generation of microglia through inducible
expression of transcription factors and allows knockdown of endo-
genous genes. These induced-transcription factor (iTF) microglia-like
cells show ramified morphology and express canonical microglia
markers (Supplementary Fig. 13). As shown in Supplementary Fig. 14,
GRN expression levels were successfully knocked down in GRN-KD
microglia cells. The GRN-KD and control iTF-microglia cells were
incubated in azide-PA (final concentration 100μM) containing media
for 24 h before being fixed for OPTIR imaging. Representative OPTIR
images at 1744 cm−1, 2096 cm−1, 1654 cm−1, and ratioed images are
shown in Fig. 3I. An increased contrast was evident in both lipid-
associated channels for GRN-KD cells. The ratioed results clearly
illustrate GRN-KD cells possess increased levels of normalized total
lipids and newly synthesized lipid to total lipids ratio. We further
performed statistical analysis comparing the normalized total lipids
and the ratio of newly synthesized lipids to total lipids, averaged across
single-cell areas, between the control and GRN-KD groups (Fig. 3J, K).
Consistent with both imaging results and previous literature70, the
normalized total lipids revealed a significant lipid accumulation in the
GRN-KD iTF-microglia when compared to control cells (Fig. 3J).
Moreover, the increased newly synthesized to total lipids ratio pro-
vides direct evidence of the increased lipid metabolism associated
with GRN-KD microglia cells.

Previous studies have indicated high transcriptional similarities
between lipid droplet-enriched microglia in Grn−/− mouse brains and
lipid droplet-accumulating microglia observed in aged mice70. RNA-
sequencing (RNA-seq) ofGrn−/− mice’s lipid droplet-enrichedmicroglia
revealed significant upregulation of fatty acid degradation-specific
genes, suggesting fortified lipid catabolism in these models. Another
lipidomic study revealed that GRN loss leads to an accumulation of
polyunsaturated triacylglycerides, as well as a reduction of diacylgly-
cerides and phosphatidylserines in GRN mutant mouse embryonic
fibroblasts69. This study also performedRNA-seq and identified a panel
of lysosomal genes and lipid metabolic genes that are significantly

dysregulated in Grn−/− mouse brains compared to control Grn+/- mouse
brains. Further, RNA-seq data from age-dependent microglia in GRN−/−

mice indicated significant upregulation of lysosomal functions (Ctsb)
and lipid transport (Apoe) genes72. These findings indicate an intricate
relationship between lipid synthesis, accumulation, breakdown,
transport, and GRN deficiency. By conducting further transcriptomic
analyses on human-relevant GRN deficiency models employed in the
present study, we can directly correlate our phenotypical OPTIR
results with genotypic changes. This approach will expand our
understanding of the impact of GRN deficiency on lipid metabolism
and its potential link to neurodegeneration.

Cell-type specific lipid metabolic imaging in brain organoids
Different cell types in the central nervous system possess distinct lipid
metabolic patterns, which could have implications for various neuro-
logical diseases75. Therefore, we continued to evaluate the lipid
metabolism in the hiPSC-derived brain organoid model system that
involves the self-assembly of different cell types including stem cells,
progenitor cells, and multiple differentiated cells76. To evaluate the
lipid metabolism in a human-relevant 3D model system, we cultured
brain organoids using the hiPSC line F12442.4. By 5.5months, the brain
organoid had expanded to an average diameter of 3 to 4mm (Sup-
plementary Fig. 15) and showed an abundant network of organized
neurons and astrocytes. 100μM (final concentration) of azide-PA was
added to the culture media and incubated for 24 h. The organoid was
then fixed and thin-sectioned to 10μm for immunostaining. A repre-
sentative fluorescence imageof anorganoid section is shown in Fig. 4A
where neurons and astrocytes were visualized by staining for TUJ1
(green, neurons) and GFAP (red, astrocytes). To investigate the cell-
type specific lipidmetabolism,we acquiredOPTIR images at 2096 cm−1

and 1744 cm−1 across organoid sections. A representative FOV is shown
in Fig. 4B–D. It is clear that the OPTIR contrast is inhomogeneous
across the FOV, and through merged results with fluorescence (OPTIR
contrast shown in greyscale), we found that the newly synthesized
lipids largely overlapped with the astrocytes. We then performed
spectral analysis and observed more pronounced carbonyl and azide
signals in astrocytes when compared to neurons (Fig. 4E). Impress-
ively, due to the high spatial resolution of OPTIR, the visualization of
small lipid droplets in an astrocyte that was surrounded by neurons,
was possible (Fig. 4F). Spectra acquired along a line with fine spacing
(1–2μm) covering neurons and the lipid-containing astrocyte is shown
in Fig. 4G. We found that the total lipid and newly synthesized lipid
peak intensities increased when spectra were acquired on the astro-
cytes, but these peak intensities were much reduced when spectra
were acquired on neurons. We tested more FOVs and got the Pearson
correlation value for OPTIR azide image with fluorescence neuron and
astrocyte images (Fig. 4H). A significantly higher correlation between
newly synthesized lipids and astrocytes was observed. We further
validated our findings with another less diffusive neuronal marker
MAP2and foundconsistent results (SupplementaryFig. 16). Thesedata
indicated that lipid metabolism is heterogeneous across different cell
types in hiPSC-derived brain organoids, which coincides with obser-
vations in human brain tissue75. The higher lipid metabolic levels in
astrocytes also provide additional insights into the neuron-astrocytes
lipid homeostasis77.

We further characterized how deep azide-PA can penetrate into
the brain organoid. We took fluorescence images and OPTIR images at
different depths from the surface of an organoid slice (Fig. 4I–K). It is
clear that the azide signal is concentrated on the surface of the orga-
noid and gradually decreases when moving toward the core. We took
spectra at different locations and observed a decrease in total lipids
and newly synthesized lipids when moving inwards (Fig. 4L). The
quantification of newly synthesized lipids was performed by integrat-
ing the area under the curve to fit a 2096 cm−1 peak and plotting it as a
function of distance from the surface (Fig. 4M). Consistent with the
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imaging results, we observed a gradual decrease of 2096 cm−1 peak
intensity with detectable signal around 700μm from the surface.

Given that brain organoids lack a vascularization system, their
interior cells are subjected to hypoxia and necrosis from restricted
oxygen and nutrient delivery by surface diffusion76,78. This leads to a
denser cell population at the periphery. Consequently, the outer cells
are naturally the primary absorbers of azide-PA in the cell culture

medium, potentially limiting the compound’s diffusion into deeper
layers. This establishes anazide-PA concentrationgradient,with higher
levels near the surface and decreasing concentrations toward the core.
Previous research has suggested that the viable region of organoids is
typically limited to a few hundred μm from the surface, despite efforts
to enhance oxygen and nutrient diffusion79–81. Given this context, it is
possible that metabolism towards the core is compromised due to
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Fig. 4 | Cell-type specific lipid metabolic imaging in hiPSC-derived brain orga-
noids. A Immunofluorescence imaging showed the distribution of neurons (TUJ1)
and astrocytes (GFAP). Scale bar, 500 μm. B–D Zoom-in view of the dashed area
indicated inA. Scale bars, 100 μm. In themerged image C, OPTIR contrast is shown
in greyscale. E Mean (solid curve) and standard deviation (shade) of spectra
acquired on neurons (n = 7) and astrocytes (n = 10). F, G Spectral acquisition across
a small FOV (white-arrow indicated in A). Location for spectral measurements is
indicatedwith circles that have the same color coding for spectra. Scale bar, 10μm.
H Pearson correlation value showed higher colocalization of newly synthesized
lipidswith astrocytes thanneurons. Eachpair represents an FOVwith dimensions of
200 to 390μmsquare (n = 7). I–K Fluorescence andOPTIR azide imaging at varying
distances from the surface of an organoid slice. The location of the three fields of
view in J, K (top to bottom) is indicated in (I) (right to left) with white dashed

squares. The surface-to-core direction is also indicated with dashed arrows. Scale
bars, 500 μm in I, 100 μm in J, K. L OPTIR spectra at different distances from the
organoid surface, with the location indicated with numbers 1–5 in I. Mean (solid
curve) and standard derivation (shade) were generated from 8 (Location 1), 6
(Location 2), 3 (Location 3), 7 (Location 4), and 5 (Location 5) cells.M Integration of
the intensity of 2096 cm−1 peak as a function of distance to surface. The data
generated is based on the spectral measured in L. For spectra shown in E, G, and
L, all raw spectra were normalized to the intensity at 1654 cm−1 and offset for better
visualization. Statistical tests: two-sided paired sample t-test H. Central horizontal
lines in the box plot indicate medians, box limits indicate first and third quartiles,
vertical whisker lines indicate minimal and maximum values, the outliers were
identified using a coefficient of 1.5 times the interquartile rangeM. Source data are
provided as a Source Data file.
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hypoxia and nutrient scarcity. Therefore, the observed reduction of
OPTIR azide signal towards the core is likely a complex interplay
between cell density, azide-PA concentration gradient, and potential
metabolic alterations due to oxygen and nutrient deficiency. In future
studies, we aim to integrate organoid slices into our metabolic
research. These slices can access oxygen and nutrients from both top
and bottom surfaces and have been shown to substantially reduce
internal cell death81.

Discussion
In this study, we reported a single-cellmetabolic imaging platform that
enables direct imaging of lipid metabolic activity in human-relevant
model systems with high resolution and high specificity. The azide
labelled PA was used as a metabolic tracer to study the lipid metabo-
lism in various systems under different conditions. Although we used
PA as a testing bed in this report, the platform can be easily adapted to
study themetabolismofothermolecules. For example, cholesterol has
been implicated in the pathogenesis of many neurodegenerative
diseases82, and the developed platform could be utilized with com-
mercially available azide-tagged cholesterol analogs to investigate
cholesterol distribution in cells as well as its interaction with other
biomolecules, thereby providing new insights into the role of choles-
terol in cellular processes. Moreover, to expand the IR probe library, it
will be valuable to test and compare other IR tags, such as nitriles, to
the azide tag used in this study. By doing so, we can further enhance
the capability of the platform to investigate a broader range of meta-
bolic processes and pathways.

It is worthwhile to compare the reported metabolic imaging
platform with other single-cell optical metabolic imaging methods.
Opticalmetabolic imaging (OMI) employs the fluorescence imaging of
cellular endogenous co-enzymes that are involved in metabolism,
providing a map of general metabolic activities in a label-free
manner83. Due to the signal contrast mechanisms used in OMI, it is
challenging to apply this technique to study specific metabolic path-
ways of a target molecule such as cholesterol. Additionally, photo-
bleaching may occur in OMI measurements, which can lead to
inconsistent fluorescence intensity or lifetimequantifications. Another
metabolic characterization technology based on vibrational spectro-
scopy is Raman scattering. While single-cell spontaneous Raman
spectroscopy provides full spectral coverage, the presence of strong
fluorescence background overlapping with Raman scattering wave-
lengths may complicate spectral analysis84,85. Furthermore, it does not
support single-color imaging at the wavelength of interest, which
limits its throughput. Stimulated Raman scattering (SRS) microscopy
provides high speed imaging at specific wavelengths with narrow
wavelength coverage86. The instrumentation of the SRS system is
complex as it requires spatial and temporal overlap of two invisible
near-IR lights, and they are more expensive, as ultrafast lasers are
required. In contrast, the OPTIR signal does not suffer from fluores-
cence background, and it can be easily switched between single-color
imaging mode and single-point full wavelength coverage mode. Fur-
thermore, the OPTIR setups stand out by not requiring ultrafast lasers,
which significantly reduces both the complexity and cost.

To fully explore the potential of OPTIR metabolic imaging plat-
forms for biomedical discovery, we aim to improve the performanceof
the current system. To provide statistical robustness, the capability to
acquire data from a large number of cells in a reasonable time frame is
essential. In the present work, our analysis based on tens of cells was
sufficient to suggest a statistical difference between experimental
groups. However, more cells may be needed to reveal more subtle
biological differences or reveal heterogeneity. For example, cellular
experiments that highlight the heterogeneity typically use 103 to 105

cells87,88. In this study, acquiring a single wavenumber OPTIR image
with a size of 280 by 280μm and a step size of 0.5μm takes about
330 s. Assuming the average size of a single cell is 40μm in diameter,

this corresponds to about 60 cells in the 280 by 280μm FOV. This
translates to about 4.5 h data acquisition for 103 cells covering 3 IR
wavenumbers. This low throughput will also make full-hyperspectral
imaging impractical for a large number of cells. To improve imaging
speed, multiple methods from hardware to software innovations are
envisioned. Widefield OPTIR setups can be utilized89,90, where the
imaging speed ranges from a few to tens of Hz, leading to a sig-
nificantly reduced hyperspectral imaging time to tens of minutes.
Sparse sampling in the spectral domain can be used in tandem with
widefield OPTIR setup to further boost the hyperspectral imaging
speed91. For point-scan based OPTIR setups, digitization of OPTIR
signals using a fast digitizer could improve signal-to-noise (SNR) and
thus improve the imaging speed92. Video-rate OPTIR imaging has
recently been achieved by coupling the laser-scanning geometry93 or
by optimizing the key parameters such as mid-IR laser and widefield
detectors94. Additionally, advancement in denoising methods to
recover the images acquired at high-speed with low SNR could also be
incorporated to improve the overall OPTIR hyperspectral imaging
speed95. Besides imaging throughput, another endeavor to pursue is
the spatial resolution of the current OPTIR setups. Although achieving
much-improved spatial resolution for IR imaging, the resolution is still
diffraction-limited for the visible beam. Recent advances in breaking
the diffraction limit of the visible beam through detection of higher
harmonics96 or illumination at multiple angles97 to improve the
frequency-domain coverage, both achieve around 120 nm resolution.
We can easily adapt these modalities into our OPTIR metabolic ima-
ging system and achieving improved resolution.

While the presentedwork utilizes fixed cells and tissue as a testing
bed to demonstrate the feasibility, the platform can be readily trans-
lated to study live-cell lipid metabolism. Reports utilizing isotopes to
study lipid metabolism and glucosemetabolism in live cells have been
achieved with OPTIR setups41,42,98. By comparing the spectra and ratios
between 13C and 12C ester carbonyls of live cells and fixed cells, Shuster
et al. concluded the fixed cells can provide a reliable representation of
de novo lipogenesis as observed in live cells98. Spadea et al. have
reported theOPTIR spectral comparison between live and fixed cancer
cell lines and observed similar protein amide I to amide II ratios in live
and fixed cells99. These findings suggest that fixed cells can be a good
representative of live cells when studying lipid metabolism. However,
the fixation process can modify the cell morphology and cause cell
shrinkage100, thus introducing unwanted spatial overlap of targeted
molecules and other interfering molecules within the diffraction-
limited spots98. Therefore, to better preserve cell morphology and
enable longitudinal studies of lipid metabolism, live-cell imaging will
be a preferred option. Additionally, by implementing the throughput-
optimizing methods described above, potential motion artifacts that
couldcomplicate quantifications in live-cell imaging canbeminimized.
Another note on live-cell imaging is the localized temperature increase
may raise concerns about interfering with normal cellular functions.
We can estimate the thermal effect based on the modulation depth of
the OPTIR process. Take a cell image as an example, the DC signal is
around3.5 V, and theAC signal is 20mV,with theACgainof 2 times,we
can calculate themodulation depth to be 2.9 × 10−3. Since the AC signal
is generated based on scattering intensities difference between IR-on
and IR-off states, and studies have established the dependence of
scattering intensity on temperature to be 10−3/K92,101, we can estimate
our localized temperature increase is around 2.9 K. Additionally, this
temperature increase is transient and lasts shorter than the IR pulse
width of 1μs. The calculated temperature increase scale is consistent
with other photothermal IR reports where different readouts such as
fluorescence intensity fluctuation (2–4K)102 and quantitate phase
(0.1 K)103. Therefore, with the current configuration, we do not expect
the thermal effect to significantly impact cellular normal physiology.
However, if it is a concern, the local temperature can be reduced by
reducing the IR power or shortening the IR pulse width.
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With the metabolic imaging feasibility demonstrated, the
developed platform is ready for application to a wide range of
metabolic-related questions. In this study, we identified an elevated
lipid metabolism in GRN-deficient hiPSCs and hiPSC-derived micro-
glia cells. Moving forward, we aim to explore if similar phenotypes
are evident in other cell types such asGRN-KD astrocytes, which have
been shown to promote synaptic dysfunction71,104. To deepen our
insights, we plan to incorporate more complex systems such as
hiPSC-derived brain organoids and animal models69,70,104. Through
these investigations, we aim to explore how GRN deficiency differ-
entially impacts lipidmetabolism across cell types, brain regions, and
model systems. These insights could potentially shed light on the
underlyingmechanisms of neurodegenerative diseases linked toGRN
mutation and offer new avenues for therapeutic interventions.
Extending from the GRN gene, we can study more broadly lipid
accumulation related to aging and neurodegeneration105, which have
been widely observed but lack the underlying mechanism to explain
the phenotype. Benefiting from the superior resolution, our platform
can also be applied to study metabolic heterogeneities in micro-
organisms, where individual cellmetabolic responses can bemapped
and potentially employed as a screening tool to optimize biofuel
energy production106. Collectively, we anticipate OPTIR microscopy,
together with sensitive IR probes, will transform the single-cell
metabolic imaging field, enabling more profound biological dis-
coveries and improved disease treatment.

Methods
Ethical statement
Our research complies with all relevant ethical regulations at the Uni-
versity of California Santa Barbara and study procedures were
approved by the Institutional Review Board (#767).

Human neuroglioma cell culture and treatment
H4 (male neuroglioma, ATCC HTB−148) cells were cultured in DMEM
supplemented with 10% FBS and 100μg/ml penicillin/streptomycin.
Cultures were maintained at 37˚C, 5% CO2, and passaged every 3-4
days when 80% confluency was reached. 10-mm diameter CaF2 slides
were placed in each well of the 24-well plate and were soaked in 70%
ethanol for 15min. Before cells were plated, the slides were rinsedwith
MilliQ water twice. H4 cells were plated at 67,500 cells per well in the
24-well plate the day before treatment. On the day of treatment, cells
were 50% confluent. Azide palmitic acid (Click Chemistry Tools, 1346)
or palmitic acid (Sigma Aldrich, P0500) was added directly to the
media at the final concentration of 100μM. The slides with treated
cells were collected after 0, 1, 6.5, 11, 16, and 24 h. The slides were
rinsed with cold PBS once, incubated in 4% PFA at room temperature
for 10min, and then rinsed again with cold PBS twice. Before OPTIR
imaging, cells were rinsed with MilliQ water twice to remove the
excessive salt deposit. The cells were then air-dried and ready for
OPTIR imaging and spectral measurements. For Triacsin C treatment,
the stock chemicals were diluted in cell culture media to a final con-
centration of 1μM. 100μM azide-PA was added to the cell culture
media without or without Triacsin C, and cultured 24 h before
collection.

hiPSC culture for GRN knockdown andmicroglia differentiation
The hiPSC lines used in this study were CRISPRi hiPSC107, an iPSC line
with a constitutive CRISPRi machinery (dCas9-BFP-KRAB), and iTF-
hiPSC74, an iPSC line expressing inducible CRISPRi machinery and
inducibly expressing six transcription factors that enable the genera-
tion of microglia-like cells. Both hiPSC lines were generated in the
background of the WTC11 human iPSC line (male, Coriell Catalog No.
GM25256), andwere kindly provided byDr.MartinKampmann (UCSF).
HiPSCs were cultured inmTeSR Plusmedium (StemCell Technologies)
in 6-well plates (Corning) coated withMatrigel (Corning).Mediumwas

changed daily, and cells were passed with ReleSR (StemCell Technol-
ogies) when 70-80% confluent.

Knockdown of GRN
To knockdown GRN, a sgRNA targeting GRN was lentivirally packaged
in HEK293T cells, and transduced into CRISPRi- or iTF-hiPSCs. The
control hiPSCs were transduced with a scrambled sgRNA. Cells were
selected with 2 µg/ml puromycin (Gibco). To quantify GRN knock-
down, total RNA was extracted from iPSC using PureLink RNAMini Kit
(ThermoFisher Scientific), and cDNA synthesizedwith the ProtoScript®
II First Strand cDNA Synthesis Kit (NEB). qPCR was performed on an
Applied Biosystems QuantStudio 6 Pro Real-Time PCR System, using
TaqMan probes (ThermoFisher Scientific) specific for GRN
(Hs00963707_g1) and for PPIA (endogenous reference,
Hs99999904_m1). Expression fold change was calculated using the
ΔΔCt method.

hiPSC-derived microglia differentiation
Microglia cells were differentiated from hiPSC following a published
protocol60. Briefly, hiPSC were allowed to grow until 90-95% con-
fluency. From day 0 (D0) to D3, cells were fed daily with mTeSR plus
supplementedwith 80ng/ml BMP4.OnD4,mediumwas replacedwith
StemPro-34 SFM medium as a base containing the following: 2mM
GlutaMax (Gibco), 25 ng/mLbFGF, 100ng/mLSCFand80ng/mLVEGF.
On D6, medium was replaced with StemPro-34 SFM supplemented
with 50 ng/mL M-CSF, 50 ng/mL SCF, 50 ng/mL IL-3, 5 ng/mL Throm-
bopoietin and 50 ng/mL Flt3 ligand. On D10, supernatant was col-
lected, cells were pelleted and resuspended in the samemediumasD6.
Every 4 days, from D14 until D25-D50, cells from the supernatant were
pelleted then resuspended in StemPro-34 SFM supplemented with
50 ng/mL M-CSF, 50 ng/mL Flt3l and 25 ng/mL GM-CSF, and returned
to the same well. Around D25, microglial progenitors floating in the
medium were collected, pelleted and resuspended in microglia dif-
ferentiation medium containing RPMI−1640 (Gibco), plus 2mM Glu-
taMAX, 10 ng/ml GM-CSF and 100ng/ml IL-34. Cells were plated into a
new 6-well plate, and microglia was matured in the same media for
14 days, with fullmedia change every 4 days. Cells were assayed atD14.
All cytokines were purchased from Peprotech.

iTF-microglia differentiation
Induced-transcription factor (iTF) microglia-like cells were generated
following a published protocol74. Briefly, iTF-iPSC were allowed to
grow until 90–95% confluency. On D0, iPSC colonies were dissociated
as single cells with Accutase (StemCell Technologies) and replated on
Matrigel-coated 6-well plates in mTeSR Plus medium (StemCell Tech-
nologies), 10 nMROCK inhibitor, and 2 ug/mLdoxycycline (Sigma). On
D2, medium was replaced with Advanced DMEM/F12 Medium as a
base, plus 1× GlutaMax (Life Technologies, 35050), 1× Antibiotic-
Antimycotic (Gibco), 2 ug/mL doxycycline, 10 ng/ml GM-CSF (Pepro-
tech), 100 ng/ml IL-34 (Peprotech), and 50 nMTMP (MPBiomedical) to
induceCRISPRi activity.OnD4, cellswere fedwith the samemediumas
D4, and supplemented with 50ng/mlM-CSF (Peprotech) and 50ng/ml
TGFB1 (Peprotech). Medium changed every 2 days, and iTF-microglia
were assayed at D10.

Immunocytochemistry of hiPSC-derived microglia and hiPSC
For immunofluorescence, hiPSC and hiPSC-derived microglia/iTF-
microglia werefixedwith 4% PFA for 10min at room temperature (RT),
thenwashed 3×with PBS. Fixed cells were incubated in blocking buffer
containing PBTA (0.5% BSA and 0.1% Triton X−100 in PBS) plus 5%
normal donkey serum for 1 h at room temperature. Samples were then
incubatedwith primary antibodies inblocking buffer overnight at 4 °C,
washed three times with PBTA, then incubated with secondary anti-
body in blocking buffer for 1 h at room temperature. Samples were
washed three times with PBTA, then mounted with Prolong Diamond
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Antifade Mountant (Invitrogen) with DAPI for nuclei staining. Anti-
bodies used were 1:1000 rabbit anti-IBA1 (Wako, 019-19741), 1:500
rabbit anti-CD45 (Abcam, ab214437), and 1:1000 donkey anti-rabbit
Alexa Fluor 488 (Invitrogen, A-21206).

Brain organoids culture
The hiPSC line F12442.4108 was kindly provided by Celeste Karch and
used for organoid experiments. iPSCs were cultured in mTeSR Plus
medium (Stem Cell Techonologies) on tissue culture plates coated
with hESC-qualified Matrigel (Corning). mTeSR Plus was exchanged
every other day and iPSCs were routinely passed using ReLeSR (Stem
Cell Technologies). Cerebral organoids were generated using micro-
fiber scaffolds as described in Lancaster et al.109, with the modification
that no Matrigel was added after day 40 of differentiation to medium
IDM+A (1:1 ofDMEM/F12 andNeurobasal, 0.5%N2 supplement, 2%B27
+vitamin A, 0.25% insulin solution, 50μM 2-mercaptoethanol, 1% Glu-
tamax, 0.5%MEM-NEAA, 1%penicillin-streptomycin, 0.4mMvitaminC,
and 1.49 g HEPES per 500ml).

Brain organoid tissue preparation
5.5-months-old organoids were incubated in 100 µM azide palmitic
acid in IDM+Amedium for 24 h. Organoids werewashed 2x in IDM+A
media, 2× in PBS, and fixed in 4% PFA at 4 °C o/n. Following fixation,
organoids were washed 3x in PBS for 15min and cryoprotected in 30%
sucrose at 4 °C o/n. Organoids were embedded in NEG-50 media,
frozen and cryosectioned on a Cryostat (Leica CM1850) at 10 µm
thickness. Sections were collected on Superfrost Plus Microscope
Slides (Thermo Fisher).

Brain organoid tissue immunohistochemistry
Organoid sectionswerewashed in PBS for 5min, permeabilized in0.3%
Triton-X in PBS for 5min and incubated in blocking solution (10%
normal goat serum, 1%bovine serumalbumin, 0.3%Triton-X in PBS) for
30min at RT. Then, sections were incubated in primary antibodies
(mouse anti-Tuj1 at 1:500, Sigma T8578; chicken anti-GFAP at 1:1000,
abcam ab4674) in blocking solution at 4 °C o/n. After washing 3× for
5min in 0.1% Tween in PBS (PBT), sections were incubated in sec-
ondary antibodies (Alexa Fluor 488-labeled goat anti-mouse antibody,
Thermo Fisher A11001; Alexa Fluor 647-labeled goat anti-chicken
antibody, Life tech A-21449), both at 1:500 in PBT, for 1 h at RT. For
MAP2 andGFAP staining, organoid sectionswerewashed inphosphate
buffer (PB) 3 x for 5minon a rocker, permeabilized in 1% Triton-X in PB
(PBT) 2x for 5min on the rocker and incubated in blocking solution (1%
bovine serum albumin, 1% Triton-X in PB) for 1 h at RT. Sections were
incubated in primary antibodies (rabbit anti-MAP2 at 1:750, Thermo
Fisher PA5-17646; chicken anti-GFAP at 1:1000, Abcam ab4674) in
antibody solution (0.3%bovine serumalbumin, 1%Triton-X inPB) atRT
for 2 h, on a rocker. After washing 3x for 5min in PBT, sections were
incubated in secondary antibodies (Alexa Fluor 488-labeled donkey
anti-rabbit antibody, Thermo Fisher A21206; Alexa Fluor 647-labeled
goat anti-chicken antibody, Life techA-21449), both at 1:500 in PBT, for
1 h at RT. Finally, sections were washed (2 × 5min in PBT, 1 × 5min in
PBS), stained with 0.5 µg/ml DAPI for 10min at RT and washed 3× for
5min in PBS. For OPTIR imaging, sections were rinsedwithMiliQwater
twice and then air-dried.

Fluorescence-integrated OPTIR setup
OPTIR imaging was performed on mIRage LS (Photothermal Spectro-
scopy Corp.). The system consists of amid-IR pumpbeamand a visible
probe beam. The mid-IR beam was a pulsed quantum cascade laser
running at 100 kHz repetition rate and 1 to 10% duty cycle. The visible
probewas a continuouswave laserwith a centerwavelength of 532 nm.
Two geometries were used for themeasurement: counter-propagation
and co-propagation of the IR and visible beam. For counter-propaga-
tion, the mid-IR beam was focused below the sample substrate (CaF2)

with a reflective objective (40x, 0.78NA, Pike Technologies), and the
visible beam was focused from above the sample substrate with a
refractive objective (50x, 0.8NA, Olympus). For co-propagation, both
the mid-IR and visible beam was focused with the reflective objective.
Epi-detected light was collected and focused on a photodiode. The
OPTIR signal was demodulated with a lock-in amplifier and the image
wascreatedby raster scanningwith anXYmotorized stage. The system
was enclosed and purged under gentle nitrogen flow to minimize
water vapor interference of spectra. For widefield fluorescence ima-
ging, filter cube sets covering common fluorophore and fluorescence
proteins in blue, green, red, and far-red channels were used. A camera
with a high quantum yield was used to capture the fluorescence
images.

OPTIR image, spectral acquisition, and fluorescence imaging
TheOPTIR images of Fig. 1D and Fig. 3I were acquired with a step size
of 0.2 μm, while the image in Fig. 3A was acquired with a step size of
0.15 μm. Other data presented were acquired with 0.5μm pixel size.
The acquisition time for an OPTIR image varied from tens of seconds
to around 5min depending on the FOV, pixel size, and stage scan
rates. The recipe used for OPTIR spectral measurement was
200 cm−1/s scan speed. The spectral scan range was 980 to 2300 cm−1

for neuroglioma cells, stem cells, and microglia cells. 1300 to
2300 cm−1 was scanned for brain organoid samples to avoid strong
glass absorption below 1300 cm−1. 1780 to 2030 cm−1 spectral range
was omitted for all spectra shown in the manuscript due to no
observable peaks presented in the range. Fluorescence imaging of
the whole brain organoid tissue sectionwas performed by stitching 4
images acquired with a 10x objective. Exposure time for fluorescence
imaging was 100μs for the DAPI channel, 1 s for TUJ1 channel, and 1 s
for GFAP channel. The IR power at the sample was 5mW for co-
propagation measurement of brain organoid tissue samples, and
6mW for counter-propagation measurement for rest of samples. IR
power was measured at 2096 cm−1. All OPTIR spectra shown in the
manuscript were normalized with the IR laser power spectrum. The
visible power at the sample was in the range of 2.5 to 16.3mW
depending on the sample.

OPTIR spectra and image analysis
Spectra analysis, image analysis, and quantifications were performed
with OriginPro 2022b (OriginLab Corporation) and ImageJ if otherwise
noted. For the normalized (Norm.) spectra shown in the manuscript,
raw spectra were normalized to total protein content at 1654 cm−1. For
Fig. 1C, PA and azide-PA powder OPTIR spectra were normalized to
1700 cm−1 and the cell spectrum was normalized to 1654 cm−1. To
derive a spectrum from a single cell, we collected and averaged at least
3 pinpoint spectra after normalization. This resultant spectrum is used
for spectral fitting and area under curve calculations. For spectral-
based quantifications, whole spectral fitting was used with the peaks
found using smoothed second derivatives (Peak Analyzer function in
OriginPro, detailed parameters listed in the caption of Supplementary
Fig. 5). The calculation of the ratio between newly synthesized lipids,
total lipids, and protein was done using the area under the curve from
the fitted results. OPTIR images were normalized to the IR power
intensity at the corresponding wavenumber. For the Ratioed image
presented in Figs. 2A, 3E, I, the build-in function ‘ratio’ of the OPTIR
data acquisition software PTIR Studio 4.5 (Photothermal Spectroscopy
Corp.) was used. For image correlation analysis presented in Fig. 4H,
the corr function inMATLAB 2021b (MathWorks) was used to generate
the Pearson correlation coefficient.

Statistics & reproducibility
All statistical analysis were performed using OriginPro 2022b software
(OriginLab Corporation). All experiments were repeated at least 3
times. Data were analyzed for statistical significance using two-sided
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two-sample t-test or two-sided paired sample t-test. p values < 0.05
were considered statistically significant.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All data supporting the findings of this study are presented in this
manuscript and the Supplementary Information. All the raw data has
been provided in the Source Data Files with no restrictions to access.
Further information and requests for resources can be directed to the
corresponding authors, and requests will be fulfilled within 6 weeks.

Code availability
The code-based analysis is done following standard guidelines of the
software functions. User-defined parameters are provided in the
Methods section. No custom code is developed or used.
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