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The accuracy of flood forecasting models depends crucially on understanding wave

runup. I use theory, insitu and remote observations, numerical modeling, computer vision,

and deep learning to (1) investigate numerically the runup dependence on bathymetry

and incident wave conditions, (2) improve video-based bathymetry estimates, and (3)

characterize infragravity waves in 10m depth, for use in boundary conditions of runup

models. Implementation into operational runup observing systems and models is ongoing.

A numerical modeling (SWASH) study used 138 hindcast historical storm waves,

two offshore boundary conditions, and 24 representative eroded beach bathymetries from

a Southern California beach. The runup 2% exceedance level varied by more than 30% in
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response to changes in bathymetry or infragravity wave boundary conditions. An empirical

parameterization trained on this dataset includes both a foreshore beach slope βf and an

effective mid-surfzone slope βeff (Chapter 2, Lange et al., 2022). Subaqueous bathymetry

is usually unknown because of the large expense of insitu jetski surveys, but βf and βeff

can be estimated approximately and cost-effectively from images.

The new 2-slope runup models have smaller errors than 1-slope models, but lack

generality and have fundamentally limited accuracy. I show that useful bathymetry can be

extracted from video collected during a single 17-minute quadcopter hover. The existing

cBathy algorithm is extended with a crest-tracking algorithm that significantly reduces

large cBathy errors near the breakpoint. The crest-tracking algorithm uses a deep-learning

neural network to annotate timestacks for celerity estimates, and the depth inversion

includes a nonlinear correction. This approach reduces RMSE surfzone depth errors to

0.17m, from ∼ 0.81m with cBathy (Chapter 3, Lange et al. 2023, revision submitted to

Coastal Engineering).

The infragravity offshore (∼10m depth) boundary condition is another potential

error source in the runup model estimates. Several years of observations show that free

infragravity waves are often much larger (up to x10) than the bound waves often used as

a boundary condition. A parameterization of the incident-free IG wave field is combined

with the predicted boundwave energy into a sea surface elevation timeseries of the incident

IG energy suitable for use in numerical models (Chapter 4).
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Chapter 1

Introduction

Around 250 million people living in low-lying coastal areas could be affected by

rising sea levels and increasingly frequent inundations during storms (Kulp, Strauss, 2019).

Accurate wave runup predictions are an invaluable part of early warning flood forecasting

systems or flood mapping that enables precautionary measures to be taken (Stephens,

Cloke, 2014; Stokes et al., 2019; Jordi et al., 2019; Stokes et al., 2021; Merrifield et al.,

2021; FEMA, 2021; USGS, 2022).

The thesis goal is to develop methods that improve the presently limited skill of

runup and overtopping forecasts in Southern California. Each of the three thesis chapters

is a self-contained research paper with a literature review and extensive references. Key

concepts, wave runup, nearshore bathymetry and infragravity waves, are now reviewed

briefly.

1.1 Wave runup

Wave runup is the maximum elevation of the uprush from individual waves at

the shoreline (Figure 1.1). Breaking waves transfer mean momentum into the water

column, elevating the mean water level (wave setup η, Longuet-Higgins, Stewart (1964)).

Wave energy is partially dissipated by wave breaking but some reaches the shoreline and

oscillates (swash) around the wave setup (Miche, 1951; Guza, Thornton, 1982; Battjes,
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Figure 1.1. Schematic of wave runup at the shoreline. The still water level is affected by
the tide and sea-level anomalies such as storm surge and climatic cycles. Breaking waves
force an elevated water level (setup) with a maximum at the shoreline. Wave runup is
measured as a vertical elevation.

1988; Martins et al., 2018). Swash oscillations on ocean beaches can be energetic at

periods of incident sea-swell waves (4 < Tp < 25s) and at longer ’infragravity’ periods

(25 < Tp < 250s) (Stockdon et al., 2006). The flooding potential of an irregular wave field

during a given time period is often quantified with R2%, the vertical elevation exceeded

by 2% of maximum runup from individual waves (FEMA, 2021). Assuming Gaussian

statistics, R2%,G from waves equals the mean elevation (wave setup, η) plus two standard

deviations of the vertical swash oscillations:

R2%,G = η + S/2 S =
√

S2
IG + S2

SS, (1.1)

where Sf = 4 ∗
√∫

f
Erunup(f)df , Erunup(f) is the runup energy spectrum, separated into

infragravity (IG) [0.004 < f < 0.04Hz] and sea-swell (SS) [0.04 < f < 0.25Hz] frequency

bands. The 0.04Hz limit includes long swell sometimes present in Southern California

(Okihiro et al., 1992; Fiedler et al., 2018).
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There are different ways to estimate either wave runup or R2%. Given the beach

profile and incident wave conditions, wave runup time series can be obtained with computa-

tionally intensive numerical models, such as SWASH (Guimarães et al., 2015; Nicolae Lerma

et al., 2017; Liu et al., 2021) or XBeach (Gallien, 2016; Beer de et al., 2021; Roelvink et al.,

2018). In wave flumes (Ruju et al., 2014, 2019), or on relatively featureless bathymetry

with weak alongshore variations (Fiedler et al., 2018; Henderson et al., 2022) numerical

models can accurately predict runup. However, these numerical models require bathymetry

(extending from above the waterline across the surf zone to offshore) that can change

over time and is rarely available. Furthermore, the spectral properties of waves incident

to the beach from deep water (a model boundary condition) are usually known only

approximately. Runup overtopping warnings are therefore often driven with numerically

simple empirical parameterizations of R2%,G, that require only a shoreline beach slope and

bulk incident wave statistics readily obtained from buoys (Behrens et al., 2019) or regional

wave forecasts.

Hunt (1959) related runup to offshore wave height and wavelengthH0 and L0 =
g
2π
T 2
p

respectively and a linear slope β, by R ∼ β
√
H0L0. The most widely used empirical

equation, Stockdon et al. (2006), retains the H0L0 variable of Hunt, with individual

parameterizations for setup, IG and SS swash

R2%,G = 1.1 (H0L0)
0.5

(
0.35βf +

1

2

[
0.004 + 0.56β2

f

]0.5)
, (1.2)

where βf is the beach slope in the swash zone. Many other, sometimes conflicting,

parameterizations use different (from Eq. 1.2) dependencies on H0, L0, and β, (non-

exhaustive lists are given in Silva Gomes da et al., 2020; O’Grady et al., 2019; Dodet et al.,

2019). A recent parameterization (IPA, Fiedler et al. (2020)) replaces the incident wave bulk

parameter
√
H0L0 with a frequency-weighted integral

∫
SS

Eoffshore(f)
af bdf that includes

additional information about the incident wave spectral shape. Many empirical runup
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models use only the foreshore slope βf but others use the offshore slope. The constants (a, b)

are determined using the numerical wave model SWASH. A parameterization developed in

Chapter 2 uses both foreshore and surf zone slopes.

1.2 Bathymetry

Bathymetry, the water depth relative to NAVD88 in the current work, defines the

subaqueous terrain. While the effect of bathymetry on surf zone processes and in turn on

wave runup is at least partially understood using numerical and empirical models, natural

bathymetry is difficult to observe. Sandy beach bathymetry can change on timescales

ranging from hourly (e.g. during storm events, Seymour et al., 2005; Henderson et al.,

2022) to seasonally. San Diego subaerial beaches are typically narrow (eroded) in winter

and wider in summer, (Aubrey, 1979; Larson, Kraus, 1994; Yates et al., 2009), but also

vary inter-annually in response to El Niño (Ranasinghe et al., 2004; Ruggiero et al., 2016;

Doria et al., 2016; Young et al., 2018).

Sandbars, ubiquitous on sandy beaches, affect runup. However, bars move on-

offshore and grow and decay over times as short as a few days (Thornton et al., 1996;

Gallagher et al., 1998; Hoefel, 2003; Bender, Dean, 2003; Trombetta et al., 2020). Sandbars

are poorly understood, and monitored quantitatively at a handful of sites worldwide.

Model predictions of beach profile evolution are generally inaccurate. The lack of accurate

(historical, real-time, and forecast) bathymetry necessarily reduces the skill of runup

models hindcasts and forecasts.

For a given set of incident wave conditions, bathymetry controls the evolution of

waves and wave-driven currents across the surf and swash zone. Focusing of wave energy in

certain areas can, for example, lead to pronounced flooding during storms on some streets

in Imperial Beach, CA, while neighboring streets remain dry (Merrifield et al., 2021).

Shallow, subaqueous nearshore bathymetry can be measured with a jet ski equipped
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with acoustic sonar, sea surface thermistor, and GNSS-RTK (Global Navigation Satellite

System - Real-time Kinematic) antenna (Ludka et al., 2019). However, jet ski surveys are

labor intensive, restricted to daylight and low-moderate waves, require meticulous and

expensive attention to hardware maintenance, and can be halted by poor water quality

(Merrifield et al., 2021; Henderson et al., 2022).

Remote sensing is an attractive alternative to insitu bathymetry measurements.

Remote methods include data from satellites (Vanderstraete et al., 2003; Mallet, Bretar,

2009; Gao, 2009; Jing, Datt, 2010; Abileah, Trizna, 2010; Hodúl et al., 2018; Zuckerman,

Anderson, 2018; Legleiter, Harrison, 2019; Li et al., 2019; Geyman, Maloof, 2019), fixed-

wing airplanes, small drones and quadcopters, and fixed (ground-based) instruments

mounted with LiDAR (Irish, White, 1998; Fiedler et al., 2021; Martins et al., 2023),

hyperspectral imagery (Sandidge, Holyer, 1998; Ma et al., 2014; Maas et al., 2019; Alevizos,

2020) or cameras (Stockdon, Holman, 2000; Holman, Stanley, 2007; Catálan, Haller, 2008;

Wengrove et al., 2013; Bergsma et al., 2016; Brodie et al., 2019; Stringari, Power, 2019;

Tsukada et al., 2020; Holman, Bergsma, 2021). In clear water, bathymetry can be directly

obtained with LiDAR or hyperspectral imaging. However, in Southern California, as well

as many other coastal regions, the water is too opaque to usefully observe the bottom. A

thesis goal is to improve the accuracy of remotely sensed bathymetry.

In recent decades, camera images of the runup and sea surface are increasingly

used for low-cost near-continuous nearshore monitoring. Fixed camera stations have

been used to observe runup, beach topography and bathymetry (Holman, Haller, 2013,

, and references therein). Two surface signatures used for depth estimation from RGB

(red-green-blue) imagery are wave dissipation and wave celerity.

Wave dissipation methods are applied to time-average images, such as timex image

products from ARGUS stations (5-camera fixed systems, Holman, Stanley, 2007) and the

high-intensity peaks are correlated to depth-limited wave breaking. Although useful for

studying sandbar morphology evolution qualitatively, the depth profiles needed in runup
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models are not estimated. Dissipation patterns can be used in data assimilation models, by

comparing them to patterns computed by numerical models on a known bathymetry and

updating said bathymetry (Aarninkhof, 2005; Dongeren van et al., 2008). These model-

and observation-intensive approaches are not pursued here.

Alternate methods obtain a bathymetry estimate by exploiting the dependency

of wave celerity (c = ω/k) on depth as given by the linear dispersion relation (ω2 =

gk tanh (kh)) (Suhayda, Pettigrew, 1977; Catálan, Haller, 2008; Yoo et al., 2011; Stringari,

Power, 2019). cBathy (Holman et al., 2013) fits wavenumber EOFs to Fourier transformed

pixel intensity timeseries (Stockdon, Holman, 2000; Plant et al., 2009; Wengrove et al.,

2013; Radermacher et al., 2014; Bergsma et al., 2016; Rutten et al., 2017; Bergsma et al.,

2019; Holman, Bergsma, 2021; Rodŕıguez-Padilla et al., 2022). Other work obtains the

mean celerity using a cross-correlation technique (Almar et al., 2009; Bergsma et al., 2019;

Tsukada et al., 2020).

1.3 Infragravity Waves

Infragravity waves were first observed by Munk (1949) and Tucker (1950) as long-

period undulations lagging behind the higher-frequency sea-swell wave groups, with an

amplitude proportional to the incident waves, and named ’surf beats’. Since then, multiple

theories on the generation mechanisms of these waves have been put forth, including

Longuet-Higgins, Stewart (1962, 1964) and Hasselmann (1962) who mathematically showed

that in deep and intermediate water depths, SS wave groups that follow the linear dispersion

relationship force a 2nd order ’bound wave’ at the group frequency that is 180◦ out of

phase with the group and does not follow the linear dispersion relationship. As the wave

group propagates into shallow water, the bound wave lags behind the wave group as it is

no longer in equilibrium. The increasing shallow water allows for energy to be transferred

from the incident sea-swell frequencies of the group to lower (IG) frequencies through
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Figure 1.2. Schematic of an infragravity bound wave propagating over a flat bottom.
(Upper) Time series of two sinusoidal waves with periods of 15s (blue) and 14s (orange).
(Lower) Short-wave sea surface elevation (solid) and resulting (scaled) boundwave (dashed)
(figure adapted from Bertin et al. (2018), and using Hasselmann (1962) theory).

nonlinear triad difference interactions (Hasselmann, 1962; Herbers, Burton, 1997).

This shoreward propagating IG wave, considered ’free’ because it approximately

satisfies the free-wave dispersion relation, can reflect at the shore and propagate seaward

(Sheremet et al., 2002). These reflected IG waves, given a certain combination of frequency

and direction, are trapped in the nearshore due to refraction and can propagate up- and

down-coast and decay offshore (Okihiro et al., 1992; Herbers et al., 1995b). The free IG

waves that are not trapped can radiate seaward past the continental shelf (’leaky waves’)

and are able to propagate across deep water (Ardhuin et al., 2014; Rijnsdorp et al., 2021).

These deep-water IG waves can contribute to the total incident IG waves at a different site,

particularly evident on low-energy swell days (Webb et al., 1991; Herbers et al., 1995b;

Sheremet et al., 2002).
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1.4 Research Outline

The goal of this thesis is to improve the accuracy of runup estimates on sandy San

Diego County beaches by incorporating bathymetric information obtained from remote

imaging and an observation-driven infragravity wave boundary condition. This is done in

the following chapters:

Chapter 2: Estimating runup with limited bathymetry

Research questions : What is the effect of poorly known bathymetry on runup

models? How can limited bathymetric information be incorporated into empiri-

cal wave runup models?

Approach: Numerical modeling isolates the effects of different bathymetries on

runup with identical incident waves A parameter describing the subaqueous

bathymetry is determined and incorporated into the empirical models.

Chapter 3: UAV video-based estimates of nearshore bathymetry

Research questions : Can remotely sensed bathymetry estimates be improved.

particularly in the dynamic surf zone region?

Approach: Video imagery from Uncrewed Aerial Vehicles (UAVs) at Torrey

Pines and Cardiff, CA is used to develop an improved method that combines

the cBathy algorithm (Holman et al., 2013) and new crest-tracking methods

from timestack imagery.

Chapter 4: Free infragravity waves on the inner shelf: Observations and Parameteri-

zations at two Southern California beaches

Research questions: What is the distribution of bound versus free IG waves

at the wave model offshore boundary (∼ 10m)? How can this distribution be
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parameterized as a function of the incident SS wave field, and what does this

imply about the generation mechanisms and source of the IG waves? How can

the 2D distribution of IG energy be incorporated into the SWASH 1D numerical

model?

Approach: Use pressure and velocity measurements at two locations in San

Diego County and IG wave theory to determine the ratio of bound to free

IG energy, during energetic storm conditions as well as low incident sea-swell

energy conditions.
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Chapter 2

Estimating runup with limited
bathymetry

2.1 Abstract

Wave runup estimates are used in erosion and overtopping models, and in coastal

structure design. However, runup depends on often incompletely known surf and swash

bathymetry. The many existing runup parameterizations characterizing bathymetry with

only the foreshore (swash zone) beach slope βf are necessarily of limited accuracy. Here,

an empirical model relating runup to incident wave spectra is extended to include an

effective, mid-surf zone slope, βeff , that depends on the cross-shore location of the midpoint

of breaking-wave dissipation. The empirical model is trained using numerical simulations

(SWASH) of 138 hindcast historical storm waves, two different offshore infragravity wave

boundary conditions, and 24 representative eroded beach bathymetries from a Southern

California beach. The model is tuned for the swell waves and concave up (sometimes

barred) depth profiles characteristic of the study region. Consistent with their generation

by surf zone-wide processes, setup and infragravity runup depend more strongly on surf

zone βeff than on foreshore βf . In contrast, sea-swell runup depends more strongly on

shoreline processes, and βf is more important than βeff . Empirical model accuracy is

improved by including both βeff and βf .
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2.2 Introduction

Wave runup, the maximum elevation of the uprush of water at the shoreline, is

determined by surf zone and shoreline processes. Breaking waves transfer momentum

into the water column, elevating the mean water level (wave setup, Longuet-Higgins,

Stewart, 1964). Some wave energy reaches the shoreline and oscillates (swash) around the

setup. Swash oscillations on ocean beaches can occur at the periods of incident sea-swell

(SS) waves and also at longer ”infragravity” (IG) periods (Battjes, 1974; Suhayda, 1974;

Huntley, 1976).

For a given set of incident wave conditions, bathymetry controls the evolution

of waves across the surf and swash zones, and the resulting shoreline setup and swash.

The effects of bathymetry on setup (Stephens et al., 2011), infragravity swash (Cox

et al., 2013) and total runup (Cohn et al., 2014; Silva Gomes da et al., 2020) have been

investigated using multiple barred profiles and a range of forcing conditions in numerical

models. Bar crest depth influences setup, with shallower bars generating higher setup

levels (Stephens et al., 2011). In cases where waves break seaward of the bar, the IG

swash was reduced when compared to runs of the same forcing and with no bars (Cox

et al., 2013). Raubenheimer et al. (2001) showed the effect of shallow bars on setup varies

with tide. Runup debris lines observed on 10+ beaches, for each of two storm events

(H0 ∼ 8.5 and 10.7m), suggest Rmax ∼ β
2/3
sz (Mather et al., 2011) where β

2/3
sz is the average

slope from the shoreline to the 15m depth contour (approximately the surf zone slope

for these storm waves). Using observations of runup and the corresponding bathymetry

to improve runup parameterizations, Silva Gomes da et al. (2019) created three different

empirical equations for dissipative, intermediate and reflective sandy beaches (each with

their own characteristic nearshore bathymetry). Because natural subaqueous bathymetry

and wave conditions each span a wide range, their combined effect on runup has not been

generalized. Empirical formulas are only reliably valid within their calibration range, and
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in many calibration cases important observational details (e.g. surf zone bathymetry,

incident wave frequency spectra) are unknown. Silva Gomes da et al. (2020) show that

unknown subaqueous bathymetry is likely responsible for much of the scatter between

bulk parametric models (e.g. Stockdon et al., 2006) about observations from a wide range

of settings, and that information about the beach state could improve the skill of the

predictor.

Although the importance of surf zone bathymetry is widely acknowledged, most

empirical runup models include only the swash zone (e.g. foreshore) beach slope, βf . Hunt

(1959) related runup R to offshore wave height H0, deep water wavelength L0 =
g
2π
T 2
p at

the peak wave period, and a linear slope β

R ∼ β (H0L0)
0.5 . (2.1)

Irregular wave field runup is often expressed as R2%, the vertical level exceeded by 2% of

the runup. With runup energy spectra Er(f) and Gaussian statistics, R2%,G is the mean

setup (η) plus two standard deviations of the vertical runup time series S:

R2%,G = η +
S

2
with S =

(
S2
IG + S2

SS

)0.5
, (2.2)

where S = 4
(∫

Erdf
)0.5

, separated into infragravity (IG) [0.004 ≤ f < 0.04] and sea-

swell (SS) [0.04 ≤ f < 0.25] frequency bands (Holman, Sallenger, 1985; Holman, 1986;

Vousdoukas et al., 2012; Atkinson et al., 2017). The 0.04Hz limit is selected to include

long swell in the SS band. A widely used empirical equation (S06, Stockdon et al., 2006)

has individual parameterizations for setup, IG swash, and SS swash, respectively:

R2%,G = 1.1 (H0L0)
0.5

(
0.35βf +

1

2

[
0.004 + 0.56β2

f

]0.5)
. (2.3)

The foreshore beach slope, βf , is defined as the average slope between the mean plus or
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minus two standard deviations of the vertical runup. Each term in Eq. 2.3 depends on

H0L0, and η and SSS also depend on βf . Many variants of Eq. 2.3 have been developed,

often based on different definitions of the independent variables and tuned to different

bathymetries and wave conditions. For example, L0 is commonly based on the mean wave

frequency or mean period, rather than the peak (O’Grady et al., 2019; Dodet et al., 2019;

Silva Gomes da et al., 2020, and references therein). While the more readily available

βf is prevalent, previous studies have used alternative slopes, such as a surf zone slope

in setup (Raubenheimer et al., 2001, and others) and maximum uprush (Mather et al.,

2011). IG runup is independent of βf in some studies (e.g. Stockdon et al., 2006; Hughes

et al., 2014; Fiedler et al., 2020) and slope dependent in others (e.g. Ruggiero, 2004;

Thomson et al., 2006). In contrast, the strong dependence of SS on βf is well estabilished

(Miche, 1951; Hunt, 1959; Battjes, 1974; Huntley et al., 1977; Hughes et al., 2018, and

many others). The bulk offshore wave height H0 ≈ 4
(∫

E(f)df
)0.5

does not include the

incident wave spectral shape, leading to sometimes large errors with bimodal or broad

offshore spectra (Oorschot van, d’Angremond, 1968; Almeida et al., 2017). Below, models

using H0 and L0 (or similar) as independent variables (sometimes squared or in other

functions) will be referred to as “Bulk” parametric models.

Fiedler et al. (2020) replaced H0 and L0 (Eq. 2.3) as separate variables with a

single frequency-weighted energy spectra, the integrated power law approximation (IPA).

R2%,G = η + 2 (EIG + ESS)
0.5 (2.4)

with

[∫
η, EIG, ESS

]
shoreline

=

[
αβf

∫
SS

Em(f)fndf

]
deep

,

where βf is the foreshore slope, and the parameters α, l,m, and n are chosen to maximize

model skill, R2 = 1 −
∑n

i=1(p−o)2∑n
i=1(o−ō)2

where p is the parameterization-predicted value and o

the SWASH-modeled value (’observed’). The units of α are set to give m and m2 for the
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setup and swash terms respectively. Frequency-weighted energy spectral models (Eq. 2.4)

will be referred to as “IPA” (integrated power approximation). The best-fit IPA using the

numerical runup model SWASH (reviewed below), historical waves and a single winter

subaqueous bathymetry at Imperial Beach, CA (Fiedler et al., 2020), is

R2%,G = 0.21

∫
SS

E0.55f−1.05df + 2

[
0.04

∫
SS

E1f−1df + 0.99β2
f

∫
SS

E0.45f−1.85df

]0.5
.

(2.5)

Optimal IPA (m,n) values (Eq. 2.5) indicate a linear or weaker (m between 0.45 and 1)

dependence of R2%,G on E, and an inverse or stronger (n between −1 and −2) dependence

on f , qualitatively consistent with H0L0 ∼ E0.5f−2 (Eq. 2.3). The S06 (Eq. 2.3) and

IPA estimates (Eq. 2.5) of SS swash have the same β2
f dependence, and neither IG swash

term depends on βf . However, the S06 estimate (Eq. 2.3) of setup depends linearly on

βf , whereas the IPA setup (Eq. 2.5) does not. An IPA model using ∼
∫
SS

E0.5f−2df

for IG and SS swash had skill only slightly lower than optimal (Eq. 2.5). The S06 skill

was (of course) improved by calibration to these simulations, but IPA-type models (Eq.

2.5) had higher skill than a bulk-type model (Eq. 2.3), suggesting the utility of IPA

in accounting for spectral shape. The IPA (Eq. 2.5) was developed as a storm wave

runup model for the swell-dominated wave climates typical of Southern California. It

is currently used in the overtopping forecasts for Imperial Beach with a modeled βf

(https://climateadapt.ucsd.edu/imperialbeach/forecast/).

Here, the effect on R2% of varying surf zone bathymetry, in addition to foreshore

slope, is assessed. The range of modeled waves and bathymetry is restricted to plausible

storm conditions for the study region. Eight observed subaqueous winter bathymetries,

each with three foreshore beach slopes, are coupled with 138 hours of model storm waves

to create 6624 runup simulations using the SWASH numerical model. Both bulk H0L0 (Eq.

2.3) and IPA integral (Eq. 2.5) parameterizations are improved by including an effective,

mid-surf zone slope βeff . The variation in runup between different (observed) winter profiles
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with equal βf are differentiated by βeff . Section 3.3 describes the bathymetries, waves

and SWASH model used for runup simulations. In Section 3.4, βeff is included in runup

empirical models. Section 3.5 is a discussion of the applicability and limitations of this

study.

2.3 Methods

2.3.1 Bathymetries

Quarterly bathymetric and monthly subaerial LiDAR surveys at Imperial Beach

began in November 2008 (Ludka et al., 2019). The study transect offshore of Cortez Avenue

(MOP D0045, Ludka et al., 2019) has been surveyed 119 times. Eight representative

winter profiles (between November and February) are selected to use in the numerical

modeling study (Figure 2.1). The profiles include an offshore sandbar (2009-2010 El Niño)

and range from shallow (blue) to eroded (red). These constructed profiles rejoin offshore

at (x, z) = (−433m,−8.4m) and extend with constant slope 0.01 to h = −15m (NAVD88),

where SWASH is initialized for all profiles. The subaqueous bathymetries rejoin onshore

at x = 0m, and foreshore bathymetry βf is varied for each offshore bathymetry. Three

concave foreshore profiles are used: (1) a LiDAR-derived profile from the January 2019

storm described in Fiedler et al. (2020) (βf ≈ 0.1), (2) the average eroded profile used for

calibration in Fiedler et al. (2020) (βf ≈ 0.08) and (3) a surveyed profile from February

15th, 2018 (βf ≈ 0.05), similar to the average observed beach slope at Cortez Avenue

(Figure 2.1). The foreshore beach is extended linearly above x = 5m to prevent overtopping

in the numerical model. All simulations are applied at mean higher high water (MHHW).

2.3.2 Incident Waves

Using a subset of the wave conditions with potential for overtopping from Fiedler

et al. (2020), the wave forcing for the SWASH simulations (Figure 2.2) consists of 138
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Figure 2.1. Depth (NAVD88) versus cross-shore distance at Cortez Avenue, Imperial
Beach, CA (MOP line D0045). Subaqueous profiles used in the current study are colored
from blue (shallow) to red (eroded), with respective survey dates shown in legend. Three
foreshore beach slopes are shown in blue (βf = 0.1), green (βf = 0.08), and purple
(βf = 0.05). Subaqueous and subaerial profiles are joined at (x, z) = (0, 0). The historical
profiles are shown in gray. The horizontal lines indicate MHHW = 1.57m and SWL = 0m.

spectral estimates extracted from a 20 year hindcast in 10m depth offshore of Cortez

Avenue, Imperial Beach (MOPS, O’Reilly et al., 2016). The offshore wave conditions

are reverse shoaled to deep water H0 between 1.5− 4.5m, fp between 0.05− 0.08Hz, and

(H0L0)
0.5 between 30− 48m. Model spectral estimates were applied in 15m depth to avoid

initializing the runup SWASH model within the surf zone.

2.3.3 SWASH model

SWASH is a phase-resolving numerical model that solves the nonlinear shallow

water equations for a depth-averaged, non-hydrostatic free surface flow (Zijlema et al.,

2011). In highly controlled laboratory flumes, carefully implemented modern numerical

models generally agree well with observed waves and runup (Torres-Freyermuth et al.,

2010; Ruju et al., 2014; Bakker de et al., 2014, 2015; Suzuki et al., 2017). In field

applications, numerical model assumptions are violated and boundary conditions poorly
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Figure 2.2. (H0L0)
0.5 versus offshore significant wave heightH0, colored by peak frequency

fp for 138 MOP wave spectral hindcasts used to force the SWASH model. H0 and deep
water wavelength L0 are obtained by reverse-shoaling the wave hindcasts from 10m depth
to deep water.

known. Nevertheless, forecast warning systems for beach narrowing, wave overtopping

and street flooding must estimate R2% for changing wave forecasts. Fiedler et al. (2020)

developed the IPA, an empirical, computationally simple runup parameterization using

SWASH in conjunction with historical waves and bathymetry. That approach is extended

here from 1 to 8 offshore bathymetries, and to include a characteristic surf zone slope as

well as foreshore slope.

SWASH is run in nonstationary 2D mode, with a curvilinear grid with a 2-m

alongshore mesh for two identical parallel transects with 2 vertical layers. Bathymetric

profiles are interpolated onto a 2-m cross-shore grid from offshore at x = −909m until x =

−507m, and smoothed to a 0.25m grid on the foreshore. Bottom friction is parameterized

using the default Manning formula with coefficient 0.019m−1/3s and background viscosity

0.1e−4m2/s. Breaking parameters are α = 0.6, β = 0.3, and µ = 0.25 (Smit et al., 2013).

Additional details follow Fiedler et al. (2020).

The modeled tide level is fixed at MHHW (1.57m NAVD88, La Jolla NOAA tide
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Station 9410230), as overtopping events at Imperial Beach typically occur when large

waves and high tide combine. Model runs are 60 minutes, allowing for 10 minutes of

model spin up. The 50 minute records are a compromise between statistical stability

and computation time (Fiedler et al., 2018). Cross-shore and vertical runup location

time series are calculated with a 10 cm runup threshold depth. Setup is estimated as the

mean vertical runup. Swash statistics are estimated from spectra of the detrended vertical

runup with 10 minute Hanning windows and 50% overlap. Foreshore beach slopes for

parameterizations are the average slope between two runup standard deviations above and

below the mean vertical runup line (Stockdon et al., 2006).

The offshore boundary conditions of shoreward propagating SS and IG waves are

prescribed in precision 1D laboratory flume studies and observed approximately in a few

field studies. Regional waves models (including MOPS, O’Reilly et al., 2016) do not

provide reliable IG forecasts. The offshore IG energy in situations where it is unknown

have been specified as a theoretical 1D boundwave (Hasselmann, 1962) and with EIG = 0.

Runup using these offshore boundary conditions tends to converge with the subaqueous

bathymetry considered by Fiedler et al. (2019), but can differ substantially in the present

cases. Both IG boundary conditions are used here for all test waves and bathymetries, and

their difference is treated as noise in the fit between simulations and parameterizations

(Section 3.5).

2.4 Results

The eight subaqueous and three subaerial bathymetries give a total of 24 profiles,

which along with the two IG boundary conditions and 138 forcing conditions, result in

6624 SWASH model runs. For the same H0, R2%,G can vary by over 2 meters depending

on the subaqueous bathymetry (Figure 2.3 g). SS swash differs by more than a factor of 2

with the lowest and highest βf (Figure 2.3 f) consistent with parameterizations (Eq. 2.3
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and 2.5). In contrast, SWASH-simulated IG swash and setup η do not separate by βf

(Figure 2.3 b,d). The three components separate to varying degrees with offshore profile

(Figure 2.3 a,c,e). Profiles with an offshore sandbar have smaller R2%,G than those with a

trough (compare blue with red in Figure 2.3 g). R2%,G (the sum of components) depends

on both βf and βeff (Figure 2.3 g,h). The profile-dependent spread indicates that R2%,G

on eroded profiles is generally higher than shallow (or barred) profiles for the tested wave

conditions. Below we characterize the effect of different subaqueous bathymetry with an

effective mid-surf zone slope βeff .

First, the parameter values in existing formulations characterizing bathymetry with

only the foreshore slope βf (Eq. 2.3 and 2.5) are optimized for this simulated data set.

Based on the Hunt parameterization of (H0L0)
0.5, and following S06 (Eq. 2.3), linear

regressions give a Bulk runup form (RMSE = 0.44m, R2 = 0.40)

R2%,G = (H0L0)
0.5

(
0.02 +

1

2

[
0.005 + 0.4β2

f

]0.5)
. (2.6)

Below, Eq. 2.6 is referred to as “1-slope Bulk”. Note the IG and SS swash constants

(0.005 and 0.4, respectively) are within 50% of the S06 values (Eq. 2.3) of 0.004 and 0.56

respectively. A difference between the present results and S06 (Eq. 2.3) is that setup

does not depend on βf , in contrast with standard S06 (Figure 2.3 b). Here, when βf

dependence is included in setup, skill decreases from 0.32 to −0.72 (see Table 2.1 for skills

of individual components). The IG and SS swash terms (Eq. 2.6) are equal with steep

foreshore beach slope (βf = 0.11). Ignoring the SS swash term, the ratio of IG swash

to setup terms is 1.8. Note that Eq. 2.6 nonlinearly couples IG and SS, and their total

contribution to R2%,G does not equal their linear sum.

A 1-slope IPA tuned to the current simulations maximizes model skill by optimizing

values of (α, l,m, n) in
[
αβl

f

∫
SS

Emfndf
]
deep

, where E is the incident sea-swell MOP

spectra for η, SIG and SSS. With allowed values 0 ≤ m ≤ 3, −4 ≤ n ≤ 3, and l = [0, 1, 2],
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Figure 2.3. 20 cm binned means of SWASH-modeled runup components, (a,b) η, (c,d)
SIG/2 and (e,f) SSS/2 and (g,h) total R2% versus offshore wave height H0. Line colors
indicate subaqueous profile (left, see inset in a) and (right) subaerial beach slope βf .
The binned standard deviations of an average profile (orange/left) and βf = 0.08 (right)
are shown in the shaded area around their respective mean. All components depend on
subaqueous profile (a,c,e), SSS depends most strongly on βf (f). SS swash (e,f) does not
generally increase with increasing H0, consistent with saturation.
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the optimum form is

R2%,G = 0.12

∫
SS

E0.45f−1.3df + 2

[
0.52

∫
SS

E0.9f−0.2df + 0.06β2
f

∫
SS

E0.3f−3.1df

]0.5
,

(2.7)

with R2 = 0.62 and RMSE = 0.35m. Below, Eq. 2.7 is referred to as “1-slope IPA”.

Using the Hunt dependence (H0L0)
0.5 ∼ E0.5f−2 in integral form gives R2 = 0.53 and

RMSE = 0.39m (not shown), confirming Fiedler et al. (2020) that an integral form of

(H0L0)
0.5 performs almost as well as with optimum powers. Skills for each component

(setup, IG swash, SS swash) in untuned S06 (Eq. 2.3), 1-slope Bulk (Eq. 2.6), and

1-slope-IPA (Eq. 2.7) are in Table 2.1 and Figure 2.4. Note the ratio of IG to SS swash

terms (Eq. 2.7) depends on β2
f similar to Eq. 2.6, but also depends on spectral shape. The

f−0.2 dependence for IG swash is much weaker than the f−3.1 dependence of SS swash.

The E0.3 dependence of SS swash is relatively weak compared with setup and IG swash,

and not inconsistent with SS saturation (Figure 2.3 e,f), as discussed below.
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Figure 2.4. Model skill (R2) for R2%,G, η , SIG, and SSS for 9 runup models using Bulk
forms (left) and IPA forms (right). Each color corresponds to an R2%,G component (see
legend). Skill values below 0 are shown at 0. Skills are in Table 2.1.
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Table 2.1. RMSE, skill (R2), slope (α) of the linear regression, and exponents l, g,m, n
are shown for selected runup parameterizations (left column). RMSE and skill shown for
setup, IG, and SS swash and total R2%,G. The entries correspond to Eq. 2.3, 2.6, 2.12,
unnumbered equation, 2.7, 2.9, 2.10 and 2.11.

parameterization component RMSE R2 α l g m n

η 0.45 -3.87 0.35 1 - - -
S06 SIG 0.80 -0.09 0.06 0 - - -

SSS 0.54 0.44 0.75 1 - - -
R2%,G 0.75 -0.77 1.1 - - - -
η 0.17 0.32 0.02 0 - - -

1-slope Bulk SIG 0.63 0.33 0.07 0 - - -
SSS 0.37 0.73 0.63 1 - - -
R2%,G 0.44 0.40 - - - - -
η 0.13 0.58 0.09 0 0.4

2-slope Bulk SIG 0.59 0.42 0.19 0 0.25 - -
SSS 0.29 0.84 2.33 1 0.35 - -
R2%,G 0.34 0.64 - - - - -

η 0.15 0.47 0.37 0 - 0.25 -1
1-slope

∫
H0L0 SIG 0.59 0.41 0.01 0 - 0.5 -2

SSS 0.38 0.72 0.80 2 - 0.5 -2
R2%,G 0.39 0.53 - - - - -
η 0.14 0.55 0.12 0 - 0.45 -1.3

1-slope IPA SIG 0.45 0.66 0.52 0 - 0.9 -0.2
SSS 0.36 0.75 0.06 2 - 0.3 -3.1
R2%,G 0.35 0.62 - - - - -
η 0.09 0.82 0.40 0 0.45 0.5 -1.45

2-slope IPA SIG 0.39 0.75 3.72 0 0.6 0.95 -0.25
SSS 0.27 0.86 0.76 2 0.75 0.4 -3.1
R2%,G 0.22 0.85 - - - - -
η 0.09 0.81 0.47 0 0.5 0.5 -1.45

2-slope IPA SIG 0.39 0.75 2.59 0 0.5 0.9 -0.3
(fixed slope) SSS 0.29 0.84 2.55 2 1 0.45 -2.95

R2%,G 0.22 0.85 - - - - -
η 0.11 0.71 2.38 0 0.5 0.25 -1

2-slope
∫
H0L0 SIG 0.55 0.50 0.07 0 0.5 0.5 -2

(fixed slope) SSS 0.31 0.82 31.88 2 1 0.5 -2
R2%,G 0.28 0.75 - - - - -
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2.4.1 2-slope parameterizations

To characterize the effect of subaqueous profile differences on R2%,G, an effective,

mid-surf zone slope βeff is estimated for each profile (Figure 2.1) during each incident wave

condition (Figure 2.2). For each SWASH run, the distance between the cross-shore location

xmid where the shoreward SS linear energy flux is 50% of the incoming SS boundary flux

(∼ 17m water depth at MHHW, Figure 2.5 a) is identified. For a given wave case, shallower

profiles have larger xmid than more eroded profiles. The sandbar profile has the largest

xmid for all H0. For all profiles, xmid increases with increasing offshore significant wave

height H0 (Figure 2.5 b). During the largest waves, the full surf zone width is deeper than

10m and therefore independent of profile, whereas xmid still differentiates between profiles.

The breaking wave height at xmid (Hmid) and the offshore wave height H0, are

highly correlated (R2 = 0.96) (Figure 2.5 c), where Hmid = CH0, with C = 0.94. The

mid-surf zone width (xmid) is incorporated in the runup parameterization as an effective

surf zone slope:

βeff = Hmid/xmid = CH0/xmid. (2.8)

Estimation of βeff from remote-sensing (rather than SWASH) is discussed in Section 3.5.

For a 2-slope IPA,
[
αβl

fβ
g
eff

∫
SS

Emfndf
]
deep

, with all four powers (l, g,m, n) allowed

to vary, the optimized form has R2 = 0.85 and RMSE = 0.22m,

R2%,G =0.4β0.45
eff

∫
SS

E0.5f−1.45df

+2

[
3.72β0.6

eff

∫
SS

E0.95f−0.25df + 0.76β2
fβ

0.75
eff

∫
SS

E0.4f−3.1df

]0.5
.

(2.9)

The optimal values of (l, g,m, n) in Eq. 2.9, referred to as “2-slope IPA free”, yield skill

> 0.75 for setup, IG and SS swash (Figure 2.4). IG swash has the lowest skill, perhaps

owing to offshore IG boundary condition uncertainty. Free parameter values are not tightly

constrained by the training data set. A 2-slope form with equal skill in each component
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Figure 2.5. Example of xmid estimates using different bathymetry profiles (color corre-
sponds to Figure 2.1) and H0 = 3.7m, Tp = 18s, IG boundary condition: EIG = 0, and
βf = 0.1. (a) Incoming sea-swell linear energy flux (

∫
SS

E+
SS(f)cg(f)df) versus cross-shore

distance. The mid-surf zone width xmid, where the flux equals 50% of the boundary flux F
(black dot), depends on surf zone bathymetry (blue = shallow with well-developed sandbar,
red = eroded profile). For shallower (blue) profiles, wave breaking occurs further offshore.
The foreshore area used to compute βf is excluded by the choice of the x origin. (b) xmid

versus H0 for all cases. More eroded profiles (red) always have narrower xmid for the same
H0, and higher H0 produce a larger xmid for all profiles. (c) Mid-surf zone breaking wave
height Hmid versus offshore wave height 0.94H0. Black line is 1:1.
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uses fixed rounded values (0, 0.5, 1, 2) for slope powers

R2%,G =0.47β0.5
eff

∫
SS

E0.5f−1.45df

+2

[
2.59β0.5

eff

∫
SS

E0.9f−0.3df + 2.55β2
fβeff

∫
SS

E0.45f−2.95df

]0.5
.

(2.10)

Error contours of the 2-slope IPA (with fixed power) (“2-slope IPA fixed”, Eq. 2.10) shows

that a range of (m,n) combinations have similar high skill (dark green in Figure 2.6). For

SS swash, high skill can also be achieved when m = 0, signaling no dependence on deep

water energy E, consistent with saturation (Figure 2.6 c). In contrast, setup and IG swash

more clearly increase with increasing E (e.g. m > 0, Figure 2.6 a,b). Note that with low

βf and negligible SS, the remaining setup and IG terms in Eq. 2.9 depend on ∼ E0.5 ∼ H,

and not on βf . Three empirical formulas (Senechal et al., 2011, Table 4, Eq. 1-3) that

relate total swash S to H0 on dissipative beaches, with no frequency or beta dependence,

have negative skill for the present runup simulations (not shown).

A model with (m,n) prescribed by H0L0 and fixed powers of β (e.g. the “2-slope

HoLo fixed” model), has 3 free parameters, the proportionality constant α for each

component,

R2%,G = 2.38β0.5
eff

∫
SS

E0.25f−1df + 2

[∫
SS

E0.5f−2df
(
0.07β0.5

eff + 31.0β2
fβeff

)]0.5
. (2.11)

Skill remains high in SS swash and setup, but IG swash skill falls to 0.5 (Eq. 2.11, Figure

2.4). The H0L0 ∼ E0.5f−2 dependence differs enough from optimal E0.9f−0.3 to degrade

skill. The R2 of R2%,G is 0.75 (Eq. 2.11), which is lower than the 0.85 from the optimal

forms (Eq. 2.9 or 2.10). Furthermore, IG and SS swash have the same E0.5f−2 dependence

and SS swash does not show saturation effects. Finally, a bulk 2-slope form, where βg
eff
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∫
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. White stars highlight the optimum powers (m,n) for each runup

component. An integrated form of H0L0 and fixed exponents on the slopes (Eq. 2.11,
black stars) has notably reduced skill in IG.
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with g variable between 0 and 2 has significantly decreased R2 = 0.45 (Figure 2.4),

R2%,G = (H0L0)
0.5

(
0.09β0.4

eff +
1

2

[
0.036β0.5

eff + 5.43β2
fβ

0.7
eff

]0.5)
. (2.12)

The robustness of the parameter H0L0 in both IPA (Eq. 2.11) and Bulk (Eq. 2.12) forms

is noteworthy, but Eq. 2.10 (”2-slope IPA fixed”) is preferred because it is more accurate

yet still computationally simple.

2.5 Discussion

2.5.1 Errors

Error in parameterization is reduced by increasing the amount of included bathy-

metric and incident wave information. The simplest bulk 1-slope βf model has significant

skill (R2 = 0.4, Figure2.7 b) despite a pronounced bathymetric bias in the setup and

SS swash components (Figure 2.7 a, 2.A.2 a,c). R2 is improved to 0.64 by including

spectral shape (1-slope IPA, Figure 2.7 b), and similarly to 0.62 by including subaqueous

bathymetry (2-slope Bulk, Figure 2.7 c). All runup components in 1-slope IPA show

a strong bathymetric bias, which is exacerbated by the largest offshore forcing (Figure

2.A.2 g-i). Including both spectral shape and βeff yields the 2-slope IPA fixed model, with

R2 = 0.85 and RMSE = 0.22m (Figure 2.7 d). Inclusion of βeff reduces the error associated

with subaqueous bathymetry in both Bulk and IPA models.

The largest remaining error is the IG term (Figure 2.8), with error from the offshore

IG boundary condition compounding other errors. For the Bulk models, even low offshore

wave forcing can result in significant error in the IG swash component (Figure 2.A.2 b,e).

Inclusion of spectral shape information (IPA models) improves this fit in smaller forcing

(H0 < 3.5m) but is degraded by the noise introduced by the boundary condition in larger

wave forcings, most notably on the more eroded profiles (red dots, Figure 2.8 and 2.A.2

h,k). That is, IG boundary condition errors are oftentimes large in conditions favorable to

27



1

1.5

2

2.5

3

3.5

4

4.5

B
ul

k 
(m

)

1-slope form

R2 = 0.40
RMSE = 0.44

a

2-slope form

R2 = 0.64
RMSE = 0.34

b

1 2 3 4

SWASH R
2%,G

 (m)

1

1.5

2

2.5

3

3.5

4

4.5

IP
A

 (
m

)

R2 = 0.62
RMSE = 0.35

c

1 2 3 4

SWASH R
2%,G

 (m)

R2 = 0.85
RMSE = 0.22

d

Figure 2.7. Empirical models versus SWASH-modeled R2%,G for all 6624 model runs:
(a) 1-slope Bulk (Eq. 2.6), (b) 2-slope Bulk (Eq. 2.12), (c) 1-slope IPA (Eq. 2.7), (d)
2-slope IPA fixed (Eq. 2.10). 1-slope only includes the foreshore beach slope βf and
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eroded). Errors in the 1-slope forms (a,c) that depend on surf zone slope are reduced in
the 2-slope forms (b,d). Errors in the Bulk models (a,b) are reduced by weighted (IPA)
integrals (c,d).
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overtopping (Figure 2.A.1). An improved offshore IG boundary condition, a 2D boundwave

combined with an empirically determined amount of free waves, is under development.

2.5.2 Spectra

Average vertical runup spectra of the SWASH runs (Figure 2.9) illustrate the above

results. The SS band spectra have a strong dependence on the foreshore beach slope,

supporting the inclusion of a βf term in the SS swash component. This f−4 slope in the

SS band is consistent with saturation, as also suggested by the weak dependence of SS on

H0 (Figure 2.3 e,f) and E (Figure 2.6).

The IG band shows a strong offshore boundary condition dependence, with βf

having a much smaller impact, consistent with Figure 2.8. While both setup and SS

swash have minimal difference between the results for the different offshore IG boundary

condition (< 10%), IG swash shows significant difference - almost 1m (∼ 25%) in certain

conditions. A more accurate boundary condition would help reduce this scatter.

The relative sizes of η, SIG, and SSS, are estimated by computing the ratio of terms

for the different foreshore beach slopes as well as all 6624 model runs. In general, setup is

less than both IG and SS swash, with mean SIG/η = 3.51 and mean SSS/η = 2.61, with

few ratios less than unity (Table 2.2). On average, the modeled beach is dominated by IG

waves, with mean SIG/SSS = 1.64, but the ratio is highly variable (σ = 0.81). In particular,

the largest SS waves on the steepest foreshores tend to have SS dominated runup. On

average, shoreline IG swash with a 1D boundwave offshore IG boundary condition is 90%

of the IG swash with EIG = 0 at the boundary (Table 2.2).

2.5.3 Limitations and applicability

This study is limited to wave events with 2.0 < H0 < 4.5m, 8 observed subaqueous

bathymetries and 3 foreshore slopes between 0.05 and 0.11. The largest runups are driven

by low frequency (0.05 − 0.07Hz) swell waves, and saturation of the SS swash is often
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Figure 2.8. Scatter caused by different offshore IG boundary conditions in SWASH.
For each component, the difference between the runup component values using the 1D
boundwave and EIG = 0 versus their average (a) η, (b) SIG, (c) SSS. Results are shown
for all foreshore slopes, and are colored by subaqueous profile (Figure 2.1). Differences
between R2% owing to boundary conditions are relatively small for setup and SS swash,
and largest for energetic IG waves on profiles lacking sandbars and other triggers of wave
breaking (red in (b)).
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Figure 2.9. Shoreline vertical runup spectra, averaged for all eight subaqueous bathyme-
tries and all 138 forcing conditions. Offshore IG boundary conditions (BC) are 1D
boundwave and EIG = 0, with 3 different βf (see legend). The vertical black lines define
the IG and SS bands. SS spectra separate by βf and do not depend on offshore BC,
whereas IG spectra depend on BC.
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Table 2.2. Relative sizes of η, SIG, and SSS split by foreshore beach slope and for all
SWASH runs, and size of SIG from the 2 offshore IG boundary conditions.

βf Ratio mean σ

βf = 0.1 SIG/η 3.59 0.56
SSS/η 3.68 0.48

SIG/SSS 1 0.24
SIG(boundwave)/SIG(EIG=0) 0.89 0.11

βf = 0.08 SIG/η 3.58 0.52
SSS/η 2.73 0.66

SIG/SSS 1.4 0.41
SIG(boundwave)/SIG(EIG=0) 0.87 0.11

βf = 0.05 SIG/η 3.36 0.35
SSS/η 1.42 0.46

SIG/SSS 2.55 0.66
SIG(boundwave)/SIG(EIG=0) 0.89 0.10

All βf SIG/η 3.51 0.49
SSS/η 2.61 1.07

SIG/SSS 1.64 0.81
SIG(boundwave)/SIG(EIG=0) 0.89 0.11

observed (Figure 2.6 c). A range of non-equilibrium profiles are included, for example a

sandbar only observed during the 2009-2010 El Niño. βeff was found to be a useful tool

to individuate these profiles. However, if the range of possible subaqueous bathymetries

and waves is increased, the need for refined subsurface bathymetry estimates will also

increase and βeff may not suffice to differentiate between different plausible subaqueous

profiles. Other locations with less offshore morphologic change, either owing to geology

(e.g. bedrock reef) or wave climate, might have no significant improvement in runup

models by including the relatively constant βeff .

The effective mid-surf zone slope βeff , using the location where breaking reduces

the incoming linear SS energy flux to 50% of the boundary flux, is estimated with SWASH.

Gomes et al. (2016) showed that the locations of the time-averaged maximum of breaking

intensity from SWASH and remote sensing (e.g. Argus, Holman, Stanley, 2007) are similar

for the cases they considered. We used a 50% flux metric to define xmid in SWASH.

An alternative definition uses the location of maximum dissipation. With the present
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bathymetry and waves, xmid and xmax(Qb) are correlated (R2 = 0.44, RMSE = 40.88m,

Figure 2.10) for all subaqueous profiles (Figure 2.10 a) and offshore significant wave height

(Figure 2.10 b). xmax(Qb) is the location of peak intensity of modeled wave breaking whereQb

is the time averaged modeled wave breaking (Gomes et al. (2016, Eq. 8) Qb =
1

Nw

dx
L0

∑
B,

with Nw = tsimulation/Tp as the ratio of simulation time to peak period, dx cross-shore grid

spacing, deep water wavelength L0, and model-defined breaking B, a binary quantity).

The correlation however degrades with extreme offshore wave heights. A subset of smaller

offshore waves (H0 < 3m) improves the agreement (R2 = 0.73,RMSE = 22.9m). The

correspondence between xmid and xmax(Qb) suggests that βeff or analogous simple proxies

for effective bathymetry can be estimated remotely.

0 100 200 300
0

100

200

300

R2 = 0.44
RMSE = 40.88

a

0 100 200 300

b
35 40 45

Figure 2.10. Cross-shore location of the effective, mid-surf zone xmid versus cross-shore
location of the peak intensity of wave breaking xmax(Qb) (Eq. 8 Gomes et al., 2016), colored
by (a) subaqueous bathymetry and (b) (H0L0)

0.5. Black line is 1:1. With H0 < 3m, skill
increases to R2 = 0.73 (RMSE = 22.9m).
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2.6 Conclusion

In the absence of well-known subaerial and subsurface bathymetry, many empirical

formulae for wave runup rely on a simple foreshore beach slope. Here, we improve on

bulk runup estimations in large wave conditions through a frequency- and energy-weighted

integrated offshore wave spectrum, and the inclusion of both a foreshore and effective surf

zone slope. We have shown a 2-slope IPA model to decrease the error associated with

large variations in subsurface bathymetry and large wave conditions, which may prove

useful when bathymetric information is limited.

Remotely sensed morphology can inform overtopping/flood forecasts by specifying

the present bathymetry, and how the beach (in a similar bathymetry) responded to past

storms. Development of remote sensing of subaqueous bathymetry is ongoing (Holman

et al., 1993; Aarninkhof, 2005; Dongeren van et al., 2008; Holman et al., 2013; Bak et al.,

2019; Salameh et al., 2019; Geyman, Maloof, 2019; Benshila et al., 2020; Collins et al., 2020,

and references therein). Extended remote observations of surf zone dissipation (including

extreme events) at a site would help inform forecast models for morphologic change and

runup.

2.7 Acknowledgments

This study was funded by the U.S. Army Corps of Engineers (W912HZ192) and

the California Department of Parks and Recreation (C19E0026). B. Ludka provided the

historical bathymetry data, and W.C. O’Reilly the MOPS modeling modeling. Data was

collected and processed by Center for Coastal Studies field team members Lucian Parry,

Rob Grenzeback, Kent Smith, Brian Woodward, Greg Boyd, and Mele Johnson. Laura

Engeman and Michele Okihiro organized logistics.

Chapter 2, in full, is a reprint of the paper ”Estimating runup with limited

bathymetry” published in Coastal Engineering by A.M.Z. Lange, J.W. Fiedler, J.M.

34



Becker, M.A. Merrifield and R.T. Guza in 2022. The dissertation author was the primary

investigator and author of this paper.

2.A Errors

R2%,G contains errors from η, SIG, and SSS. The least-square fits are weighted

towards the most frequently occurring H0 < 3.5m. IPA fits for the relatively few points

with H0 > 3.5m are biased low by as much as 1m (Figure 2.A.1).
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Figure 2.A.1. Difference between 2-slope IPA fixed (Eq. 2.10) R2%,G versus SWASH
R2%. The misfits arise from incomplete knowledge of the bathymetry and uncertainty in
the IG BC.
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Figure 2.A.2. Predicted and SWASH-observed runup components η, SIG and SSS (left
to right columns) for the (a-c) 1-slope Bulk (Eq. 2.6), (d-f) 2-slope Bulk (Eq. 2.12), (g-i)
1-slope IPA (Eq. 2.7), and (j-l) 2-slope IPA fixed (Eq. 2.10) models. Dots colored by
subaqueous bathymetry (see Figure 2.1). Component parameterizations and statistics are
in Figure 2.4 and Table 2.1.
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Chapter 3

UAV video-based estimates of
nearshore bathymetry

3.1 Abstract

Nearshore bathymetry estimated from video acquired by a hovering UAV is com-

pared with ground truth. Bathymetry estimates from the widely used cBathy algorithm

are improved by crest tracking (with machine learning) from near breaking through the

surf zone. Individual wave crests (distinguished from the breaking wave toe that can move

down the wave front face) in video timestacks are determined with a deep-learning neural

network and surf zone depth estimates are computed from the wave celerity. Time-2D

spatial transforms (cBathy) are used to estimate wave celerity and depth between the

surf zone and 10-m depth. Composite profiles (cBathyCT), formed by joining cBathy and

crest-tracking solutions near the surf zone seaward edge, based on a newly determined

γ(x) parameter, avoid the large cBathy errors associated with the onset of breaking.

Incident wave heights were relatively constant on each day but varied over days between

0.55− 2.15m. Averaged over all 17 min hovers and cross-shore transects (112 total), surf

zone depths errors were relatively small (average root-mean-square error ⟨RMSE⟩ = 0.17m,

⟨Bias⟩ = 0.06m) after including a heuristic nonlinear correction to the linear phase speed.

Between the seaward surf zone edge and 10m depth, errors are similar to previous cBathy

studies: ⟨RMSE⟩ = 0.87m, ⟨Bias⟩ = 0.58m with the largest errors in deepest water. Beach
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profiles were generally similar for all 8 test days, concave up with a slight terrace (no

sandbar) and small alongshore depth variations. Accuracy was lower on one transect with

a shallow reef.

3.2 Introduction

Accurate bathymetry is critical to understanding nearshore processes like beach

erosion and accretion, the fate of beach nourishment sand, sandbar migration, and the

corresponding hydrodynamics. While topography above the waterline may be moni-

tored efficiently with mobile scanning LiDAR or photogrammetry, subaqueous nearshore

bathymetry is usually less well-known owing to the expense of insitu subaqueous surveys.

Early-warning overtopping forecasts can therefore have limited accuracy owing to over-

simplified (planar) or outdated bathymetry (Stephens, Cloke, 2014; Stokes et al., 2019;

Jordi et al., 2019; Silva Gomes da et al., 2020; Stokes et al., 2021; Merrifield et al., 2021;

USGS, 2022, and references therein).

Remote sensing via satellite or video can provide relatively wide-area, low-cost

observations of nearshore bathymetry. Satellite subaqueous observations require relatively

clear water, and resolution in space and time can be limited (Vanderstraete et al., 2003;

Mallet, Bretar, 2009; Gao, 2009; Jing, Datt, 2010; Abileah, Trizna, 2010; Zuckerman,

Anderson, 2018; Legleiter, Harrison, 2019; Li et al., 2019; Geyman, Maloof, 2019). Enabled

by improved cameras and computing power, nearshore bathymetry can be estimated using

video observations of surface wave dissipation and celerity (Holman, Haller, 2013). Wave

dissipation methods use high-intensity peaks in time-averaged images (timex e.g. ARGUS

stations (5-camera system, Holman, Stanley, 2007)) to identify persistent foam caused by

depth-limited breaking on sandbar crests (Lippmann, Holman, 1989; Aarninkhof, 2005;

Collins et al., 2020). Celerity-based methods exploit the dependence of wave celerity on

depth (Stockdon, Holman, 2000; Catálan, Haller, 2008; Plant et al., 2009; Almar et al.,
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2009; Holman et al., 2013; Holman, Haller, 2013; Wengrove et al., 2013; Radermacher

et al., 2014; Bergsma et al., 2016; Rutten et al., 2017; Thuan et al., 2019; Tsukada et al.,

2020).

The accuracy of estimated depths can be improved with prior imagery from long-

term observations and sophisticated numerical modeling. Observed and numerical model

predictions of wave dissipation patterns can be coupled and used in data-assimilation

schemes that estimate depth from pixel intensity, wave celerity and other observables

(Aarninkhof, 2005; Dongeren van et al., 2008). Full end-to-end machine learning methods

combine image analysis with extensive past bathymetry observations and sophisticated

wave modeling (Collins et al., 2020).

Bathymetry is often required in areas lacking continuous, long-term observations,

and the fixed, elevated platform for a permanent camera system. To address this, hovering

UAVs (Uncrewed Aerial Vehicles) have increasingly been used for nearshore observations

(Brodie et al., 2019). In this study, we evaluate the accuracy of bathymetry estimates

obtained from relatively short (17-minute) observations taken from a hovering UAV,

without use of prior imagery, bathymetry surveys, or numerical wave models. We use

celerity and the proportion of waves breaking in relation to cross-shore location to refine

depth estimates in the outer surf zone, where the mix of both broken and unbroken creates

errors in existing methods.

Bathymetry is estimated in four steps: 1) cBathy is applied offshore of the surf

zone, 2) timestack images are used to track individual wave crests and locate the onset of

breaking. Crests are tracked with a deep learning U-Net algorithm, 3) surf zone depth

is estimated using the observed crest celerity and shallow water theory with a simple

nonlinear correction and 4) full depth profiles (from backbeach to 8m depth) combine

cBathy offshore, crest tracking in the surf zone, and a low-tide survey of the subaerial

beach.

In Section 3.3, existing video-based estimates of bathymetry are reviewed and
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extended. Observations are described in Section 3.4. In Section 3.5, methods valid

within and seaward of the surf zone are combined, yielding composite profiles that are

then compared with ground truth bathymetric surveys. Error sources and the need for

additional model development to include complex bathymetry are discussed in Section 3.6.

3.3 Background

3.3.1 cBathy

cBathy (Holman et al., 2013; Holman, Bergsma, 2021) is a popular, open-source

celerity-based depth inversion algorithm. It fits the most coherent frequency-wavenumber

pairs (default of 4) to the cross-spectra of all pixels within a given area around a point.

The depth estimates are based on the nonlinear best fit from the dominant frequency-

wavenumber pairs from the surrounding points and the linear dispersion relationship (see

Table 3.5.1 for cBathy parameters used here). cBathy ⟨RMSE⟩ (average root-mean-square-

error) of individual estimates are ∼ 0.72m with low waves (H < 1.2m) and 1.28m with

all H included (Wengrove et al., 2013; Brodie et al., 2018; Bergsma et al., 2019; Holman,

Bergsma, 2021; Rodŕıguez-Padilla et al., 2022) The offshore extent of accurate cBathy

depends on camera quality, elevation, and stabilization (particularly for UAVs, Bergsma

et al., 2019); insitu validation is limited to < 7m depth at the Field Research Facility (FRF)

in Duck, NC, USA, and reasonably good agreement (⟨RMSE⟩ = 0.56m, ⟨Bias⟩ = −0.41m)

between cBathy and observations as deep as 14m were obtained at Agate Beach, Oregon,

USA using an elevated (128m) headland-mounted camera (Holman et al., 2013). Results

here extend to 10m depth, about 500m from the backbeach.

cBathy assumes spatially homogeneous waves and bathymetry over a specified

tile size (here we use 50m cross-shore by 200m alongshore, Figure 3.3.1). Prior to wave

breaking, wave front faces usually appear darker than wave rear faces. However, when

waves begin breaking, the foam-dominated front wave face becomes much brighter (whiter)
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than the back face, reversing the pattern from offshore. Switching between dark and light

wave faces within a tile can cause large celerity and depth overestimates and is known

as the Modulation Transfer Function (MTF). Holman et al. (2013) suggests using the

shifting cross-shore location of the “switching region” over a tidal cycle (or longer) and

a Kalman filter to reduce these errors. Kalman results accumulate over a series of prior

data collections, with each new run improving the estimate until the results stabilize after

roughly one or two days (Holman, Bergsma, 2021). Alternatively, Bergsma et al. (2019)

used the absolute value of the pixel intensity time derivative to augment timestacks and

reduce foam on the image. This modified signal is included in the input data for cBathy

and reduces the surf zone ⟨RMSE⟩ from 3.1m to 1.3m. Here, surf zone depths are inferred

from 17-min timestacks of individual waves (Figure 3.3.1 c,d), without Kalman filtering.

3.3.2 Timestack Analysis

Timestack images (Figure 3.3.1 c,d) show wave evolution over time on a single

cross-shore transect, rather than snapshots of a 2D field (Figure 3.3.1 a,b). The x-location

of individual shoaling and breaking waves can be determined in sequential pixel columns.

Depth estimates based on video celerity are necessarily heuristic. The relationship between

pixel intensity and sea surface elevation is a required assumption (Lippmann, Holman,

1991). Many RGB image-based timestack analyses use standard edge detection algorithms

(Canny or Sobel, Szeliski, 2022) to identify the wave toe, the bright front edge of the

incoming, breaking waves that sharply contrast with the darker water in front. However,

as spilling breaking begins and the roller slides down the wave face, the toe moves faster

than the crest, increasing the estimated speed and complicating depth inversions. The

roller toe eventually reaches a relatively stable position on the wave face, and in the inner

surf zone is a stable proxy for the wave crest (Stive, 1980; Basco, 1985; Svendsen et al.,

2003). Traditional computer vision approaches have difficulty detecting wave crests (as

opposed to toes) robustly inside the surf zone due to the complexity of foam patterns
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Figure 3.3.1. Contrasting conditions (left) Dec 15th, 2021, relatively high waves and
high tide (Hs = 1.96m, tide = 1.41m) and (right) Dec 2nd, 2021, lower waves and lower
tide (Hs = 0.64m, tide = 0.46m.) Beach is at the bottom of each image. (Upper)
Orthorectified planview images of shoaling region and surf zone. Orange rectangle encloses
200m-alongshore by 50m-cross-shore area used for each cBathy depth estimate (red dot).
Box dimensions increase offshore. Ground-truth survey cross-shore transects (white) are
identified by “MOP” number. (Lower) wave crest trajectories (cross-shore location versus
time) determined by a deep learning algorithm on MOPs (c) 583 and (d) 582. Red
trajectories were rejected for further analysis.
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(Stringari et al., 2019). Yoo et al. (2011) combined Radon-transform edge tracking and

a nonlinear wave propagation model to estimate shallow water (h < 2m) bathymetry

accurately (⟨RMSE⟩ = 0.25m, ⟨Bias⟩ = 0.1m) with relatively low incident wave heights

(H < 0.8m) on bathymetry not dissimilar to Torrey Pines State Beach, CA, USA (our

primary study site). Stringari et al. (2019) estimates phase speed using a combination of

Sobel edge detection, pixel-intensity extrema, and machine learning to extract the white

signature of ‘foam corresponding to the crests of breaking waves’ with surf zone wave

heights and depths less than 1m.

We were unable to implement Stringari et al. (2019), Yoo et al. (2011), and Bergsma

et al. (2019) with the present observations. Almar et al. (2009) and Tsukada et al. (2020)

obtain mean wave celerity using a cross-correlation technique with varying space and time

intervals. However, for a test case, the correlation methods were relatively noisy for the

present data and still exhibit the well-known errors in the breakpoint transition zone (not

shown). Here we describe an alternative and reproducible crest-tracking algorithm with

good surf zone performance, available in a GitHub repository. A crest-tracking algorithm

with good surf zone performance with Hs as large as 2m in 4m depth is described and

combined with cBathy estimates valid offshore and a low-tide subaerial survey to obtain a

full nearshore profile.

3.3.3 Surf Zone Wave Celerity

In linear (small amplitude) shallow water theory waves advance with celerity

c =
√

gh. (3.1)

However, nonlinear shoaling and breaking waves travel with amplitude-dependent phase

speeds faster than c (Svendsen, Buhr Hansen, 1976; Svendsen et al., 2003). For idealized
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cnoidal and solitary waves with wave height H

c2 = g(h+H) = gh(1 +H/h), (3.2)

(Inman et al., 1971; Thornton, Guza, 1982; Stockdon, Holman, 2000). Assuming a saturated

surf zone with γ = Hrms/h yields

hestimate = c2/(g(1 + γ). (3.3)

Surf zone waves are not constant shape as assumed in Eq. 3.2. Although phase speeds

for nonlinear random waves generally increase with increasing amplitude, Eq. 3.3 is a

heuristic simplification.

Variations in observed γ between 0.3 and 1.1 have been ascribed to the effects of

beach slope, breaker wave type (e.g. plunging versus spilling) and location within the

surf zone (Raubenheimer et al., 1996; Catálan, Haller, 2008; Brodie et al., 2018). For

both broken and unbroken waves, c on average increases with increasing amplitude and

depth but celerity observed on a wave-by-wave basis diverges from Eq. 3.3. Despite

these complications, corrections based on Eq. 3.3 consistently improve celerity-based surf

zone depth estimates (Holland, 2001; Svendsen et al., 2003; Catálan, Haller, 2008; Yoo

et al., 2011; Tissier et al., 2015; Martins et al., 2018; Fiedler et al., 2021). We compare

observed depths with estimates from linear (Eq. 3.1) and simplified nonlinear (Eq. 3.3)

crest-tracking methods.

3.4 Observations

We completed 52 UAV hovers in San Diego, California with a DJI Phantom 4

RTK drone: 39 hovers over 6 days at Torrey Pines State Beach (July 2020 - Dec 2021), 6

hovers during 1 day at Cardiff State Beach, and 7 hovers over 1 day at Scripps Institution
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of Oceanography (SIO). Wave conditions were relatively constant during data collection

on each day, and varied over the 8 days, with 0.55 < H0 < 2.15m and 9 < Tp < 17.6s

(Table 3.4.1). Transects are defined by MOnitoring and Prediction (MOP) System number

(O’Reilly et al., 2016). Torrey Pines depth varies little alongshore with a maximum

difference of approximately 1m across 300− 500m (Figure 3.4.1 a insert). Bathymetries

at the three sites are similar, with the exception of a pronounced bedrock reef on MOP

667 at Cardiff and a well-developed terrace at SIO (Figure 3.4.1). The beach profile near

and above the waterline was measured with subaerial (LiDAR or photogrammetry) beach

surveys on the same day as UAV hovers.
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UAV hovers were typically 17 min (minimum 10 min). The UAV hovered between

27 and 91.5m above NAVD88, with no significant difference in performance with height.

JPEG images were extracted from the video using the ffmpeg tool at 10Hz. RTK-surveyed,

1m x 1m checkerboards provide stability control points used for rectification with CIRN

UAV Rectification software (Bruder, Brodie, 2020). Cross-shore timestacks were extracted

at 20m along-shore intervals, gridded up to 500m offshore at 0.1m spacing. The (dx, dt)

size was kept constant across all extracted timestacks and is a trained part of the neural

network.

Ground truth was insitu (labor-intensive) bathymetry surveys (jet ski, push dolly,

All-Terrain Vehicle) on 100-m alongshore intervals to 10m depth usually obtained on the

same day as the hovers, and always within one day. There were usually 3 cross-shore

transects within the video field of view (Table 3.4.1), although the number varied with

different video look angles. The 52 hovers included a total of 11 unique surveyed transects

at 3 sites, with a total of 112 transects with ground truth.

Figure 3.4.1. Seabed elevation versus cross-shore distance at (a) Torrey Pines. Mean of
all transects and days (bold, n = 42) and shaded by range of all observed profiles. (insert)
Deviations of MOP 582 transect from mean, colored by date. (b) Cardiff (reef at x > 125m
on MOP 667, blue) and SIO (green MOP 514).
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3.5 Methods

Our proposed method combines an existing celerity-based depth inversion algorithm

(cBathy 2.0, Holman et al., 2013; Holman, Bergsma, 2021), which has been shown to be

most effective seaward of the surf zone, with nonlinear surf zone depth estimates derived

from machine learning-aided timestack wave crest tracks. The method is implemented in

four steps.

3.5.1 cBathy Surf Zone Depth Estimation

cBathy results based on a single hover (no Kalman filtering) have much larger RMSE

in the surf zone than offshore, similar to Holman et al. (2013); Brodie et al. (2018); Bergsma

et al. (2019) and others. Holman, Bergsma (2021) consider cBathy estimates unreliable

when the cBathy 95% confidence interval hErr > 0.5. This criterion can underestimate

the width of the overpredicted data (Figure 3.5.1 a) or fail to identify a narrow surf zone

(Figure 3.5.1 b) resulting in ⟨RMSE⟩ and ⟨Bias⟩ > 0.8m. A constant threshold other than

hErr > 0.5 did not reliably estimate where cBathy failed. An alternative criterion assumes

that cBathy estimates are corrupted by a mix of breaking (white faced) and nonbreaking

(dark faced) waves. The fraction of waves breaking (determined from timestacks, below)

defines the region of cBathy validity as > 95% (inner surf zone) or < 5% (offshore) of

waves breaking (Figure 3.5.1 e,f), and can be used instead of the standard hErr > 0.5

as the region where cBathy fails. In addition, the fraction of wave breaking can also be

used to determine a nonlinear correction (described in Section 3.5.3) to include in the

cBathy estimates. For all 3 error-filtered cBathy versions (only using hErr < 0.5, removing

timestack derived wave-breaking region, and nonlinear correction to cBathy), estimates are

interpolated across regions where cBathy fails (according to the different criteria, Figure

3.5.1).
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Figure 3.5.1. Bed elevation versus cross-shore distance for relatively (a,c) high waves
and tide, Dec 15th, 2021 (Hs = 1.96m, tide = 1.41m) and (b,d) low waves and tide,
Dec 2nd 2021 (Hs = 0.64m, tide = 0.46m) at Torrey Pines State Beach, USA. Mean
ground-truth survey (black). Remote sensing estimates: (a,b) cBathy: default (gray with
hErr shaded), hErr > 0.5m removed and interpolated over (red dashed), breaking region
removed and interpolated (red solid) and (best cBathy-only method) with a nonlinear
correction (blue dashed). (c,d) crest-tracking, linear (solid red), nonlinear (blue dashed),
breakpoint transition (green). (e,f) effective γ = H/h versus cross-shore distance above
compressed view of the corresponding timestack with detected breakpoints shown (green
dots). Effective γ(x) is the mean of γ step functions for all waves in a given hover.
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3.5.2 Deep Learning for Timestack-image Wave Crest Detec-
tion

Traditional computer vision techniques, e.g. Canny or Sobel edge detection, often

have difficulty accurately identifying the location of wave crests when foam is persistent

(Stringari et al., 2019). Because manually identifying wave crests (e.g. through ground-

truth annotations) can be time-consuming, we propose using a deep learning approach

as an automated annotation tool (e.g. Collins et al., 2020). Our method is not intended

to provide new information, but rather to aid in the tedious process of identifying wave

crests, which we define as the location between the solid block of white water that is

characteristic of a wave roller and the more interspersed longer tracks of foam on the back

side of a broken wave (Figure 3.5.2 insert).

The training/validation dataset consists of 20 timestack-images with sparse (not for

all waves) ground-truth provided by binary hand annotations of wave crests. To include a

range of wave, lighting, and bathymetry conditions, one transect from each hover in Fall

2021 at Torrey Pines is included. Training used 16 randomly selected timestack-images

and validation used 4. Note that because the deep learning approach is used here simply

as an annotation tool, the specific choices of parameters of the neural network are of little

importance.

Figure 3.5.2 shows the workflow for the crest-detection. An input timestack is

provided and a binary output image of the detected crests is returned. An example of

the output wave crests superimposed on the timestack image can be seen in the insert.

Further details on the wave crest detection algorithm can be found in Appendix 3.A.

3.5.3 Surf Zone Depth from Crest-tracking

The surf zone method estimates the celerity of individual wave crests observed in

timestacks using a deep learning neural network. Depth is recovered by inverting celerity

using linear and nonlinear shallow water dispersion.
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Table 3.5.1. cBathy 2.0 Parameters (Holman, Bergsma, 2021)

Parameter Description Value
∆t Time series sampling interval 0.5s

(∆xp,∆yp) Pixel spacing (5,5)m
(∆xm,∆ym) Analysis point spacing (5,25)m
(hmin, hmax) Min/Max acceptable depth (0.25, 20)m

(Lx,Ly) Analysis smoothing scale (25,100)m
κ Smoothing scale 3
f Analysis frequency bins, range and df [0.055− 0.25 : 0005] Hz

Nkeep Number of frequency bins to retain 4

13 64 64

64

64

128

256

512

512

512

512

512256

256

256 256

256

128

128

128

64

64

64 64

25
6

25
6

25
6

25
6

25
6

25
6

12
8

12
8

12
8

64 64 64

32 32 32

16 16 16

8 8

conv 3x3, ReLU
maxPool

conv 1x1, ReLU upsample

conv 3x3, ReLU

conv 1x1

Figure 3.5.2. U-Net Architecture: Number of features on top and resolution (number of
pixels) to the left of the blocks. (insert) Example of ML wave crest detection.
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Crest tracks are extracted from the U-Net binary output images (Figure 3.5.2).

The 2-D binary image is reduced to 1-pixel (0.1 m, 0.1 sec) wide curves, and the (x, t)

coordinates of the individual curves are detected by 1) finding the first offshore instance of

the curve (where no other black points are found previously in time and further offshore

in a given area), 2) following the crest, with the next coordinate detected by the shortest

Euclidean distance between black points that follow in time and are onshore of the current

points, and 3) removing short curves (< 7.5 sec). Figure 3.3.1 c,d shows the difference

between the initial U-Net output and the wave crests accepted for computing celerity.

The phase speed of each crest, computed by the best-fit slope (RANSAC) between two

points in the 15m vicinity of each (x, t) coordinate along the curve, is interpolated onto a

regular grid of 0.1m intervals. The same gridding discretization (0.1 m, 0.1 sec) is used

everywhere. At large offshore distances, a single video pixel can span multiple grid points,

resulting in degraded accuracy. To address this issue, a pixel resolution cutoff is applied.

Any pixel that covers more than 2 grid points is removed.

The ‘breakpoint transition’ (BP) method uses linear and nonlinear methods in

their respective best areas by imposing a wave-by-wave step function γs as a function

of cross-shore distance, with γs = 0 prior to breaking and γs = 0.42 post-breaking. The

location of the breakpoint for each accepted wave track is determined heuristically (example

given in Appendix 3.B). The step function γs = (0, 0.42) is imposed only at x-locations

with at least 10% of the maximum number of phase speed estimates at any x-location

during that hover (with the minimum number of estimates included typically between 5

and 11). The average of the individual γs = (0, 0.42) step functions yields an effective γ(x)

(Figure 3.5.1 e,f green line) that is used to define the “bad” (interpolated over) region

for cBathy (Section 3.5.1). The transition from nonbreaking (here linear) to breaking,

nonlinear domains through shoaling in the physical world is captured by the effective γ(x)

changing gradually from 0 to 0.42.

For each wave track, we invert for depth following linear shallow water theory
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h = c2/g (‘Linear’, Figure 3.5.1), or with the nonlinear estimation (Eq. 3.3, with γ = 0.42

for ‘Nonlinear’, and γs for ‘BP’ in Figure 3.5.1). The average depth is then computed

from the individual tracks with a 5-m Gaussian smoothing applied. Following cBathy

methodology, depths are then converted to an elevation (in NAVD88 datum) with a tidal

offset, using the average water level over each UAV hover at the nearby La Jolla tide gauge

(NOAA station 9410230).

3.5.4 Generating composite profiles

Profiles spanning from the shoreline to 10-m depth (“composites”) are constructed

by combining improved surf zone bathymetry estimates with cBathy offshore estimates

(Figure 3.5.3 d,h). The beginning of wave breaking (timestack derived, Appendix 3.B) is

used as the switching location between BP and cBathy estimates. Timestacks are used

both to estimate surf zone depths and to define the shoreward limit of cBathy applicability,

where cBathy and crest-tracking are joined. Example depth estimates have (Figure 3.5.3

a-d) varying tidal level and approximately constant wave height and (Figure 3.5.3 e-h)

varying wave height and approximately the same tide level. The large surf zone depth errors

(⟨RMSE⟩ = 1.42m, Figure 3.5.3 a,e, Table 3.5.2) in raw, unfiltered cBathy are reduced

by interpolating across the span identified as incorrect with timestacks (Figure 3.5.3 b,f).

Errors in the surf zone are further significantly reduced using the phase speeds of individual

crests and applying a depth inversion individually before smoothing (Gaussian-weighted

5-m moving average) and averaging (Figure 3.5.3 c,g).
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Figure 3.5.3. Bathymetry estimates at Torrey Pines MOP 582. Upper panels show July
7th, 2020 elevation versus cross-shore distance for varying tide levels (1.3m max difference,
legend). The dotted vertical line (upper panels) marks the shoreward edge of surf zone
and offshore extent of subaerial survey where the crest tracking method (c,g) is fused with
insitu data for composite cBathyCT (d,h). Vertical dashed lines mark beginning of wave
breaking where cBathy (b,f) and crest-tracking bathymetry (c,g) are stitched together
to form the composite (d,h). Bottom panels show estimated versus observed elevation
for varying wave heights (legend) near mid-tide on various dates (Table 3.4.1). Solid
black is ground truth. Bathymetry estimates are shown from cBathy interpolated over
hErr < 0.5 (a,e), cBathy interpolated over the breaking region (b,f), breakpoint transition
crest-tracking (c,g) and cBathyCT (d,h). Owing to the non-planar beach profile, the
stitching location varied little with tide (top panel, dotted line). Fit statistics for various
composites are in Table 3.5.2.
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A subaerial beach profile obtained from a low tide RTK-GNSS survey is combined

with the subaqueous bathymetry to obtain a full profile (Figure 3.5.3 d,h). When both

the survey and bathymetric estimations are available in the same cross-shore location, the

low-tide survey is preferentially selected. By overriding the inner surf zone/swash zone

bathymetry results with a ground-truth survey, we avoid potential issues with wave setup

or large depth over-estimations near the shoreline (Sénéchal et al., 2004; Power et al., 2010;

Fiedler et al., 2021). If no overlapping region between survey and bathymetry estimates

exists, the distance between the two are linearly interpolated. The composite profile has

smaller errors (⟨RMSE⟩ and ⟨Bias⟩) in < 3m depth than either cBathy version. Composite

profile normalized errors (⟨RMSE⟩/h) vary between 0.1 − 0.2, with largest values near

the shoreline (Figure 3.5.4). RMSE values offshore of the surf zone are similar because

all methods use cBathy. The mean RMSE varied between 0.05 − 1.75m depending on

conditions (including UAV height, lighting, Hs and other factors). Although using γ(x) to

determine the bounds of the surf zone for interpolation within cBathy (rather than hErr)

improves the estimates, only breakpoint crest-tracking accurately captures the terrace in a

single hover.

3.6 Discussion

3.6.1 Error sources

Holman et al. (2013) proposed mitigating the surf zone gap in cBathy by Kalman

filtering cBathy estimations together, based on hErr, over a tidal cycle. However, tidal

variation from −0.27− 1.13 NAVD88m did not shift the surf zone gap location sufficiently

to span the full profile (Figure 3.5.3 e). Rather than simply a shoreward shift of a constant

width surf zone as on a plane beach, the observed surf zone both widened and shifted

onshore. The location where cBathy estimates fail changes with tidal elevation (Figure

3.6.1) but not enough to generate a full accurate bathymetry from cBathy alone. Composite
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Figure 3.5.4. Torrey Pines composite bathymetry mean statistics from 59 full profiles,
binned by depth (solid curves). (Upper) mean Bias, (lower) mean RMSE. Curve color
indicates surf zone method: (red) cBathy estimate with hErr < 0.5m, (blue) cBathy with
breaking criterion for surf zone interpolation and nonlinear gamma correction, (green)
cBathy with breakpoint transition crest-tracking in the surf zone (cBathyCT). Seaward
of breaking, methods all use cBathy and curves overlap. Depth is relative to the still
water line, accounting for tides but not setup. Error bars show standard deviation. For
cBathyCT composite, the normalized standard ⟨RMSE⟩/h = 0.27, 0.13, 0.11, and 0.15 for
bin centered on 0.5, 1.5, 4.5, and 8.5m respectively.

profiles are relatively insensitive to tide level (Figure 3.5.3 d).

The largest (un-normalized) ⟨RMSE⟩ and ⟨Bias⟩ are in the deepest water h =

8 − 10m (Figure 3.5.4, Table 3.5.2) where historical ground-truth (not shown) depths

change relatively little (⟨RMSE⟩ ∼ 0.5m). Offshore errors could be reduced using historical

insitu profiles to constrain the range of plausible offshore depths. The extent to which

previous ground truth profiles improve remote estimates (e.g. Kalman filtering) depends

on both the characteristics of the available insitu bathymetry and the beach variability.

Kalman filtering is most effective for a beach that is known (from past, extensive, accurate

surveys) to change little, or to change predictably in response to changing wave conditions.

UAV rectification uses ground (stability) control points that are limited to the
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Figure 3.6.1. Torrey Pines MOP 582 on July 7th, 2020. Wave height Hs ∼ 0.89m.
Timestacks (intensity versus time on a cross-shore transect) for 5, 17-min hovers during
flood tide, separated by green vertical lines. The waterline (colored horizontal lines, Figure
3.5.3 a) gradually moves onshore 60m (from x = 97m to 37m) during flood (1.37m tide
increase). The shoreward limit of accurate cBathy (solid red lines) includes breaking in
the 50m-wide sample window. The offshore boundary moves onshore only 12m (from
x = 200m to 188 m) owing to a small terrace (Figure 3.4.1) that triggers breaking.

bottom of the field of view, approximately in a straight line, and rarely near the image

offshore edge. The resulting roll and pitch errors are corrected with a cross-shore shift

(mean shift = 5.4m) when combining remotely-sensed subaqueous and observed subaerial

surveys. Including horizon tracking to the least-squares fitting of the camera extrinsics

might reduce these offsets and errors in the deepest water (Bergsma et al., 2019; Tsukada

et al., 2020).

Normal incidence is not assumed in cBathy, but is assumed with surf zone crest-

tracking using timestacks. Waves in the present dataset are primarily normally incident

with the largest 10m-depth wave obliquity at Torrey Pines at 12◦ (Table 3.4.1). Assuming

Snell’s Law, and using 5m as a maximum surf zone depth, errors from neglecting wave

obliquity are usually less than 2%. Larger wave obliquities may lead to more obvious
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overestimation of phase speeds and depth, however, the current dataset limits testing the

crest-tracking (CT) part of cBathyCT for obliquely incident waves. Similarly, seas with

very broad spectra and therefore many different celerities present in a single timestack may

lead to bad estimates with the present surf zone correction. cBathy Phase 1 frequency-

wavenumber pairs can be used to determine the appropriateness of a narrow spectrum

assumption, by identifying the frequency spread of the 4 most coherent frequencies. Further

testing of the method in a larger variety of wave conditions is required to determine the

limits of both the normal incidence and narrow spectrum assumptions.

The shallow water approximation for c used in crest-tracking is valid in the present

depths (< 5m) with long-period swell (Tp > 9sec) but finite depth theory could readily be

used. The peak period as determined from the timestack and a nearby buoy in 17m depth

(NOAA NDBC Station 46266) usually differs by less than 1 sec. Outliers in single hovers

are removed by using the median of 3 flights rather than a single flight (Figure 3.6.2), but

overall statistics do not consistently improve. Full profile single-hover profile bias is low

owing to cancelling errors (⟨RMSE⟩ is high) (Table 3.5.2).

3.6.2 Applicability to other sites

Pre-training a U-Net network on a large surf zone dataset provides the network

with a good general feature representation. Additional training would be needed for sites

with much different incident waves or breaking wave characteristics. A strength of the

present methodology is that deep learning is only used as an annotation tool, automating

the extraction of crest speeds from timestack-image wave detection, while allowing for

depth estimates from different wave dispersion models (here Eq. 3.1 - 3.3).

The crest-tracking BP method performs similarly (to Torrey Pines) on the terraced

profile at SIO (Figure 3.4.1), with mean ⟨RMSE⟩ = 0.08m and ⟨Bias⟩ = −0.02m in the

surf zone. Performance was also good at Cardiff on MOP 668, 669, but was degraded

by a bedrock reef at the southern edge of the field of view (MOP 667, Figure 3.6.3 a).
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Figure 3.6.2. Histograms of depth inversion errors at Torrey Pines (for the surf zone
region) for different methods (stacked vertically) on 59 transects (left) 1 hover and (right)
median of 3 hovers. (a,b) cBathy with interpolation where hErr < 0.5m, (c,d) cBathy
with breaking criterion for surf zone interpolation and nonlinear gamma correction, and
(e,f) composite using breakpoint crest-tracking cBathyCT, (g,h) mean bias of cBathyCT.
Colored by offshore Hs (legend). Outliers with the largest bias and RMSE are removed
with 3 hovers. Fit statistics in Table 3.5.2. Probabilities (vertical axis) sum to 1.0.
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The wave detection algorithm annotates the images accurately (Figure 3.6.3 b), but the

estimation and inversion from c to depth is inadequate. Nonlinear frequency doubling (e.g.

Elgar et al., 1997) on the flat terrace (between x = 120 and 200m, Figure 3.6.3 a) may

create additional crests that would confound simple crest-conserving inversions.

The effect of alongshore variations in bathymetry on phase speed and crest direction

is neglected here, but could be included in more sophisticated 2D inversions both within

and seaward of the surf zone.

The γ = 0.42 used here is based on historical observations at Torrey Pines (Thornton,

Guza, 1982). LiDAR wavescans concurrent with UAV hovers yield a local γ(x) (Figure

3.6.4), computed from direct sea surface elevation measurements (Hm0) and insitu surveys

(Fiedler et al., 2021). The average γ over the surf zone varies between 0.55−0.74, decreasing

offshore. Deviations in gamma estimations at these sites do not significantly affect the

bathymetric estimations; mean ⟨RMSE⟩ = 0.25m is minimum over all available transects

for 0.4 < γ < 0.5, increasing only slightly to 0.3m for 0.6 < γ < 0.8. Yoo et al. (2011)

reported γ = 0.6 in their crest-tracking study. Note in ‘low’ wave conditions (Hs < 0.75m),

linear crest-tracking (γ = 0) and BP perform comparably well with ⟨RMSE⟩ ∼ 0.18m in

the breaking region. Not surprisingly, corrections for wave nonlinearity are most important

when Hs is largest. The present approach (γ = 0.42) likely fails in shallow water on steep

slopes where plunging waves with γ > 0.8 are expected. Concurrent video and LiDAR

(e.g. Figure 3.6.4) of γ and c would enable application of the present method to sites with

much different breaking wave characteristics and γ.

Results for individual 17 min hovers are encouraging. The dependence of cBathy

and crest-tracking error statistics (e.g.⟨RMSE⟩) on record length is unknown, and likely

varies with wave conditions and bathymetry. Errors in composite profiles do not depend

significantly on tide level for the present limited range of conditions but may depend on

tide level on barred bathymetry. Additional model testing and calibration is needed.
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Figure 3.6.3. (left) Depth versus cross-shore distance from 1 hover on MOP 667 - 669
(stacked with a 5m vertical offset). Ground truth (black), cBathy with hErr < 0.5m (red),
cBathy with a nonlinear correction (blue) and cBathyCT (green). Bedrock reef on MOP
667 from x = 125m to 1km offshore. (right) Results of the deep-learning crest-tracking
algorithm on MOP 667. The wave crest detection neural network was not trained on
reef-like profiles, but may detect wave crests accurately enough for use in alternative (e.g.
2D nonlinear) depth inversions.
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Figure 3.6.4. (left) for 468 transects, median RMSE versus γ (green curve), (boxes) 50%
quantile, (black bars) 90% quantile for crest-tracking BP method in the surf zone (outliers
red dots). Minimum ⟨ RMSE ⟩ at γ = 0.4 increases < 20% for 0.1 < γ < 0.7. (right) surf
zone LiDAR measured γ = Hm0/h versus cross-shore distance for (b) Nov 2nd, 2021, Hs
= 1.12m, (c) Oct 26th, 2021, Hs = 1.92m, (d) Dec 15th, 2021, Hs = 2.15m, colored by
hover. Black horizontal line is mean γ over surf zone.
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3.A Wave-crest Detection Deep Learning

Algorithm

The U-Net architecture (Ronneberger et al., 2015) is well established for segmenta-

tion tasks such as crest detection. U-Nets are based on an Encoder-Decoder architecture,

with skip connections from the Encoder to the Decoder at the different levels to be able to

recover resolution. The Encoder provides a compact feature representation (many features,

but little resolution) of the input image by applying convolutions followed by a maxpool

downsampling at multiple levels (more features, less resolution). The Decoder takes the

compact feature representation and provides a classification for each pixel in the image

at full resolution by upsampling followed by concatenation and convolutions at multiple

levels (fewer features, more resolution). We used a modified version of the U-Net with a

ResNet18 encoder pre-trained on the ImageNet dataset (Usuyama, 2018) (Figure 3.5.2).

Wave crest detection uses a limited neighborhood area in timestack-images. Training

and prediction can use small high-resolution image tiles, increasing the training dataset

size and reducing the deep learning network complexity. To augment the training dataset,

image tiles are sampled at arbitrary locations in the image. Timestack-images are 5000
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pixels cross-shore direction and a time-dependent width of 600 pixels per minute. For the

training, we sample 1000 256 x 256 image tiles from a timestack-image. For the prediction,

we divide the timestack-image into overlapping 256 x 256 image tiles. The border of the

predicted image tiles (therefore the overlap) has relatively large errors and is not used.

Thresholds such as minimum length and width of detected track can be specified.

A binary cross-entropy (BCE) loss function is used for binary classification (limited

to a region around the sparse ground-truth), with a Root-Mean-Square (RMS) optimizer

and an adaptive learning rate scheduler. The model is trained for 50 epochs, with a batch

size of 8 and an initial adaptive learning rate of 0.0001. Training and validation losses

remained constant after 40 epochs. Model predictions are made after 50 epochs. The

deep learning approach was implemented in Python and PyTorch. A desktop computer

with a GeForce GTX 1660 GPU required 50 hours to train the model for 50 epochs, with

predictions taking 2.5 min per timestack.

3.B Breakpoint locator

The breakpoint location is determined with an algorithm based on pixel intensity

gradients along a wave track. Thresholds for broken and unbroken waves are determined

by fitting two Gaussian distributions to the image pixel intensity histograms (Figure 3.B.1

a) and determining the mean of the distributions. Individual waves track may include

only broken or only unbroken waves, with relatively small gradients, and high or low pixel

intensity levels (red and black circles respectively, Figure 3.B.1 a). Tracks that include the

breakpoint begin unbroken (below the low threshold), with a sharp gradient (purple dot,

Figure 3.B.1 c) when breaking begins, and a high but stable pixel intensity above the high

threshold (green circle, Figure 3.B.1 b). The breakpoint location is set to the location of

maximum gradient. Residual foam can obscure sharp breakpoint gradients, and each wave

track goes through an iterative process to determine if it contains the breakpoint. Failing a

64



conclusive result with the first pass with the strictest thresholds, less stringent thresholds

are applied until the segment is characterized (examples provided in the attached code).

The breaking location estimated by the algorithm and visual inspection agree.
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Figure 3.B.1. Schematic of breakpoint location using gradients of pixel intensity. (left)
histogram of pixel intensity of the full image (107 counts are shown) typically have two
maxima and each is fit to a Gaussian distribution, centered around high and low thresholds
(red and yellow respectively). (middle) idealized pixel intensity versus location on wave
track segment completely within (all broken) or completely seaward (unbroken) of surf
zone (red and black circles, respectively). Sharp gradients (green) indicate breakpoint.
(right) idealized pixel intensity gradient versus along-track location.
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Chapter 4

Free infragravity waves on the inner
shelf: Observations and
Parameterizations at two Southern
California beaches

4.1 Abstract

Co-located pressure and velocity observations in 10-15m depth are used to estimate

the relative contribution of bound and free infragravity (IG) wave energy to the IG wave

field. Shoreward and seaward going IG waves are analyzed separately. At the Southern

California sites, shoreward propagating IG waves are dominated by free waves, with the

bound wave energy fraction < 30% for moderate energy incident sea-swell and < 10%

for low energy incident sea-swell. Only the 5% of records with energetic long swell show

primarily bound waves. Consistent with theory (Hasselmann, 1962) bound wave energy

scales as the square (frequency integrated) sea-swell energy, with a higher correlation with

swell than sea energy. The observed linear dependency of free shoreward IG energy on

local SS wave energy and tide is included in a parameterization. Free (random phase)

and bound (phase-coupled) IG waves are included in numerically simulated time series

for shoreward IG waves that can be used to initialize (∼ 10m depth) numerical models

for wave runup. Seaward and shoreward propagating free IG wave energy vary in 10-15m
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depth, and are both parameterized with good skill (R2 ∼ 0.90).

4.2 Introduction

Infragravity (IG) waves are low-frequency surface-gravity ocean waves with periods

typically between 25-200s. IG waves were first observed (Munk, 1949; Tucker, 1950)

seaward of the surfzone, traveling shoreward with the group velocity of short-period

wind-generated waves and ∼ 10% of their amplitude. IG waves can contribute significantly

to runup (Ruggiero, 2004; Stockdon et al., 2006; Becker et al., 2016; Fiedler et al., 2019,

2021; Lange et al., 2022), sediment transport (Aagaard, Greenwood, 1994, 2008; Baldock

et al., 2010; De Bakker et al., 2016), harbor seiches (Okihiro et al., 1993; Ardhuin et al.,

2010) and earth hum (Rhie, Romanowicz, 2006; Webb, 2007).

4.2.1 Bound Waves

“Bound waves” are shoreward propagating IG waves generated on the inner shelf

(seaward of the surfzone) by the second-order nonlinear interaction of higher frequency

surface gravity waves, and are 180◦ phase-locked with the wave envelope (Longuet-Higgins,

Stewart, 1962). Shoaling, shoreward propagating sea-swell (SS) frequencies interact

and transfer energy to their sum (higher-order harmonics) and difference (infragravity)

frequencies through nonlinear triad interactions (Hasselmann et al., 1963; Dongeren van

et al., 2007). As SS waves shoal, the bound wave approaches resonance, lags behind the

wave group, and is eventually a ‘free’ wave (on the dispersion curve) that propagates to

shore (List, 1986; Battjes, 2004; Bakker de et al., 2015). Throughout the short wave (e.g.

sea-swell) surf zone, free IG waves can acquire and lose energy from SS waves and can

themselves shoal and break (Battjes, 2004; Thomson et al., 2006; Henderson et al., 2006;

Dongeren van et al., 2007; Ruju et al., 2012; Bakker de et al., 2014). At the shoreline, free

IG waves can reflect and propagate seaward (Elgar et al., 1994; Thomson et al., 2006).

Bound infragravity spectral energy Ebound
IG =

∫
IG

Ebound(f)df is estimated from
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second-order nonlinear wave theory (Hasselmann, 1962; Herbers et al., 1995a),

Ebound
IG (∆f,∆θ) = 2

∫
∆f

D2S(f, θ1)S(f +∆f, θ2)df, (4.1)

D =
−gk1k2 cos (∆θ)

2ω1ω2

+
1

2g
(ω2

1 + ω2
2 + ω1ω2) + C

g(ω1 + ω2)

(gk3 tanh (k3h)− (ω1 + ω2)2) ∗ ω1ω2

,

C = (ω1 + ω2) ∗
(
ω1ω2

g

)2

− k1k2 cos (∆θ)− 1

2

(
ω1k

2
2

cosh2 (k2h)
+

ω2k
2
1

cosh2 (k1h)

)
,

with wavenumber k, angular frequency ω (= 2πf) and where the sea-swell frequency-

direction spectra S(f, θ) can be estimated from a PUV, a pitch-roll buoy (Kuik, 1988),

or a regional wave model. The interaction coefficient D is computed for the difference

frequency (∆f) of every frequency pair (f1, f2) and if assuming directionally spread waves

(2D), every difference direction (∆θ = θ2 − θ1 + 180◦). D varies strongly as a function

of ∆θ, depth and SS frequency f . In shallow water, D is maximum (Dmax) for co-linear

(∆θ = 0) waves, and 1D theory (∆θ = 0) provides an upper limit on the amount of bound

wave energy. D decreases quickly with increasing ∆θ; ∆θ = 30◦ results in D ∼ 25%Dmax

(Herbers, Guza, 1994)). The theoretical sensitivity of 2D bound wave energy to S(f, θ)

and the fundamentally low resolution of a single PUV directional estimator limits the

accuracy of the present 2D bound wave estimates. Due to the frequency dependence of

the coupling coefficients, swell (8-25s) tends to produce larger bound waves than sea (4-8s)

(Okihiro et al., 1992).

Bound IG waves can also be estimated with bispectral analysis (Hasselmann et al.,

1963; Kim et al., 1980; Elgar, Guza, 1985). The third-order spectrum (bispectrum)

detects nonlinear phase coupling between wave triads with angular frequencies ω1, ω2,

ω1+2. The bispectrum is the expected value of the triple product of complex Fourier

coefficients, B(k, l) = Ẽ[XkXlXk+l]. With no nonlinear coupling of the three frequencies,
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the bispectrum vanishes. The normalized magnitude of the bispectra (b, bicoherence),

b(f1, f2) =
B(f1, f2)√

E(f1)E(f2)E(f1 + f2)
(4.2)

provides a measure of the strength of the coupling between the three waves. The phase

of the bispectrum (biphase), assuming high bicoherence values, corresponds to the phase

lag between the bound IG wave and the SS wave group (Elgar, Guza, 1985). Bispectral

analysis can also be used to compute the forced wave spectral density by integrating the

bispectrum over all frequency pairs for a given difference frequency (Herbers, Guza, 1994),

bi(∆f) = 2

∫ inf

∆f

dfB(f,∆f)/

√
2

∫ inf

∆f

dfE(f +∆f)E(f)E(∆f ), (4.3)

Eforced
IG (∆f) = α(∆f)|bi(∆f)|2E(∆f), (4.4)

and the bias term α can be computed from the bound wave theory.

4.2.2 Free Waves

Free waves contribute significantly to IG waves (Gallagher, 1971; Huntley et al.,

1981; Oltman-Shay, Guza, 1987; Okihiro et al., 1992; Zijlema, 2012; Fiedler et al., 2018;

Smit et al., 2018). ‘Edge’ waves are free waves trapped on a sloping beach by shoreline

reflection and back-refraction by the increasing water depth (Eckart, 1951). Edge waves

are sensitive to geography, with the amount of trapping depending on the continental

shelf and beach topography (Herbers et al., 1995b). Seaward propagating IG waves that

propagate freely from the shoreline across the shelf to deep water are known as ‘leaky’

waves (Webb et al., 1991; Ardhuin et al., 2014; Rijnsdorp et al., 2021). Ardhuin et al.

(2014) and Rawat et al. (2014) parameterize seaward-going free wave energy for use as an

incident boundary condition for global model WAVEWATCH III, but the free IG wave

climate on the inner shelf is poorly understood.
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Previous work in Duck, NC, Southern California, and Hawai’i, USA and the North

Sea have investigated the fraction of IG energy contained in the bound component, giving

an indication of the amount of free shoreward wave energy. Numerous studies at Duck,

NC (∼ 8− 13m depth) (Elgar et al., 1992; Herbers, Guza, 1994; Ruessink, 1998; Reniers,

2002) found that the bound wave fraction was typically between 10− 20%, with higher

values above 30% (and up to 100%) only during the most energetic SS conditions. In the

North Sea (∼ 30m depth), IG wave conditions are always free wave dominant and only

during the peak of storms is the fraction bound ≥ 50% (Reniers et al., 2021). At beaches

in Southern California and Hawai’i (∼ 8− 13m and 183m depth) (Okihiro et al., 1992)

up to 50% of the IG energy is at times attributed to bound wave energy. The fraction

bound is also heavily dependent on the water depth, e.g. (Elgar et al., 1992) observed

twice the bound fraction in 8m depth compared to 13m depth in Duck, NC. Torrey Pines

has long been a study site for refractively trapped waves (Huntley et al., 1981; Guza,

Thornton, 1985; Oltman-Shay, Guza, 1987; Oltman-Shay, Howd, 1993; Thomson et al.,

2006), with significant trapped IG energy detected shoreward of 15m water depth. This

refracted energy then propagates onshore as free waves. While these trapped waves are

not bound to the SS wave groups, because they were originally generated locally, there

will be a dependence on local SS wave conditions.

While SS waves are relatively well observed with buoys (Behrens et al., 2019) or

satellites (Ribal, Young, 2019; Qin, Li, 2021), IG waves are not, due to measurement

sensitivites. IG waves are typically observed with bottom-mounted pressure and/or current

sensors. However, the practical limitations of direct observations of infragravity waves

motivates efforts to parameterize IG energy for use in nearshore and global models. Bound

wave theory has been implemented as an offshore IG boundary condition in laboratory

studies where the wavemaker is carefully controlled to create only a shoreward propagating

bound IG wave and (ideally) to absorb seaward propagating IG waves (Noorloos van, 2003;

Van Thiel De Vries et al., 2008; Ruessink et al., 2013; Altomare et al., 2020, and resulting
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papers). Bound waves have also been used as the offshore boundary condition in field

settings (Roelvink et al., 2009; Zijlema, 2012; Bakker de et al., 2014, 2015; Dusseljee et al.,

2014; Rijnsdorp et al., 2014, 2015; Fiedler et al., 2019; Zhang et al., 2020; Li et al., 2020;

Henderson et al., 2022). The effect of free shoreward propagating IG waves in the model

offshore boundary has not received much attention. To our knowledge, no parameterization

or boundary condition exists that includes both bound and free IG waves.

In this chapter, I analyze the relative contribution of bound and free IG energy to

the total IG energy in 10−15m water depth for beaches in San Diego County, USA, confirm

theoretical estimates of the incident bound wave energy, investigate parameterizations

for both bound and free IG energy and estimate an IG sea surface elevation timeseries

that can be used as an incident boundary condition for nearshore models. Section 4.3.1

describes the dataset and quality control. Section 4.3.2 confirms that directional bound

wave theory (Hasselmann, 1962) accurately predicts the observed bound wave energy. In

Section 4.3.2 and 4.3.3, the relative contributions of shoreward propagating bound and

free IG waves and their respective dependencies on the SS wave field is presented and

compared with previous observations from other sites. The total incident bound and free

IG energy and the spectral shape of the free energy are discussed in Section 4.4.

4.3 Observations

4.3.1 Data

Bottom-mounted pressure sensors and current meters (PUV) were deployed in 10

and 15m depths at Torrey Pines State Beach and Cardiff State Beach, CA intermittently

between Fall 2019 and Spring 2022 (Figure 4.3.1 and Table 4.3.1). Data were collected

continuously between Fall 2021 and Spring 2022 as part of the Runup and Bathymetry 2D

(RuBy2D) experiment at Torrey Pines, a 3km long, alongshore-uniform composite (summer

sand, winter cobbles) beach. Cardiff is a 1.8km alongshore-variable beach, with a rocky reef
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beginning approximately 125m offshore at the southern end (Ludka et al., 2019). The 2Hz

PUV data were segmented into 3h records. The three largest tidal constituents are removed

from the bottom pressure and velocity records, and the records are surface-corrected using

linear finite-depth theory over the frequency band 0.004 − 0.25Hz. Computed spectra

are segmented in 7200s demeaned ensembles, with an applied 50% overlapping Hanning

window, with 0.0003Hz frequency resolution and 13 degrees of freedom. The IG band is

defined between 0.004− 0.04Hz, the swell band between 0.04− 0.12Hz and the sea band

between 0.12− 0.25Hz. As quality control, 3-hour pressure and velocity spectra passed a

Z-test (Eq. 1 in Elgar et al., 2005),

Z2 =
P 2(

ω
gk

)2
cosh2 khP

cosh2 khU
(U2 + V 2)

, (4.5)

with cutoffs of 0.8 < ZIG < 1.2 and 0.95 < ZSS < 1.05. This confirms the use of linear

theory in the sea surface correction. Additionally, only records with reflection coefficients

(Eq. 4 in Sheremet et al., 2002) of R2
SS < 0.25 and R2

IG < 2.5 are used further. The

resulting 2844 quality controlled 3h record instrument information and SS bulk wave

statistics are given in Table 4.3.1, including MOP location (580s are Torrey Pines and 669

is Cardiff in O’Reilly et al. (2016) and Ludka et al. (2019)), date range, depth and the

number of resulting records from a given PUV, and significant wave height HsSS, peak

period Tp, peak direction Dp and spread Dspread. Spectral wave model (MOPS, O’Reilly

et al., 2016) hindcast data from the observation periods show similar distributions of bulk

parameters as a 23-year hindcast (Figure 4.3.2, ⟨
√
H0L0⟩ = 14.5± 4.6m, ⟨

√
H0L0⟩obs =

15.5 ± 4.6m, ⟨H0⟩ = 0.83 ± 0.38m, ⟨H0⟩obs = 0.85 ± 0.39m, ⟨fspread⟩ = 0.033 ± 0.007Hz,

⟨fspread⟩obs = 0.032±0.007Hz, ⟨fpeak⟩ = 0.083±0.03Hz, ⟨fpeak⟩obs = 0.077±0.026Hz). The

current observations are therefore indicative of the San Diego wave climate. Sea-surface

elevation and velocity are combined to estimate shoreward and seaward propagating wave

components (Sheremet et al., 2002). Unless explicitly stated, the shoreward sea-surface
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elevation timeseries is used below.

MOP669 - 10m

MOP589 - 10m

MOP582 - 10m
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MOP573 - 10m
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Torrey Pines

Cardi�

Torrey Pines

Figure 4.3.1. Map of PUV (co-located pressure and biaxial acoustic current meter)
locations in San Diego County.
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Figure 4.3.2. Histograms of (a)
√
H0L0, (b) H0, (c) fspread, and (d) fpeak at Torrey Pines

in 10m at MOP582. Histograms are similar for 2000 - 2022 hindcast (blue, 201,600 1h
values) and present observations (orange, 12,602 1h records). All hindcasts computed from
MOPS data.
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4.3.2 Bound Waves

Examples of the 1D and 2D (±90◦ from shorenormal directionally-integrated) bound

wave energy predicted by Hasselmann (1962) and bispectral estimates for different SS

conditions are shown in Figure 4.3.3. Consistent with the effects of co-linearity on the

interaction coefficient D in Eq. 4.1, the 1D estimates are on average 3x larger than the

(directionally-integrated) 2D estimates.
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Figure 4.3.3. Observed (blue) sea surface elevation frequency spectra E(f) in 10m
for varying sea-swell wave heights Hs (a) Hs = 3.7m, Dspread,SS = 18◦ (b) Hs = 1.4m,
Dspread,SS = 13◦, (c) Hs = 1.0m, Dspread,SS = 17◦, and (d) Hs = 0.4m, spread Dspread,SS =
24◦. In the IG band (f < 0.04Hz, dashed vertical line), theoretical results are shown for
1D bound wave and 2 D bound wave, and for a bispectral approach (Herbers, Guza, 1994).
Fraction bound (based on 2D bound waves) ranges from about 100% (a, largest Hs) to
1% (d, smallest Hs).
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Bispectral analysis confirms Hasselmann (1962)’s 2D nonlinear theory provides

reasonable estimates of the bound wave energy (Figure 4.3.4). However, the bispectral

Eforced
IG estimate can be inaccurate when nonlinear coupling is weak, bound wave energy

is low and free waves dominate. At individual frequencies, the bispectral and the bound

wave estimates can differ by as much as a factor of 50 (Figure 4.3.3 and Herbers, Guza

(1994)). Integrated over IG frequencies, the 2D bound wave and the forced wave energy

(for fraction bound > 15%) agree well (slope = 0.93) with a correlation of R2 = 0.94

(Figure 4.3.4). The cases of fraction bound > 15% are typically larger SS events (median
√
H0L0 = 13.1m compared to the median of the dataset = 10.7m).

Further analysis uses 2D bound wave theory because (unlike the bispectral estimates)

it does not rely on insitu IG observations and can be estimated from buoy or spectral wave

model data. The frequency dependence of the bound wave coupling coefficient is seen with

Ebound
IG being more highly correlated with Eswell (R

2 = 0.84) than Esea (R2 = 0.59).

The bound wave fraction of the current dataset is typically ∼ 8% for the most

prevalent moderate wave conditions (HsSS ∼ 0.7m), with only 5% of the cases (120/2488)

having a fraction bound greater than 50% (Figure 4.3.5 d). Across all previous observations,

the fraction bound increases with increasing EIG and ESS and decreasing depth (or tides),

where the sensor is most likely closer to the surfzone, and therefore more bound wave

generation has occurred. In our results, the total bound wave energy scales similarly

(Figure 4.3.5 a). This can be traced back to the shallow water limit of Eq 4.1, with

Ebound
IG ∼ E2

SSh
−5 (Herbers et al., 1995a).

4.3.3 Free Waves

The shoreward free IG energy spectra is estimated by subtracting the bound wave

estimate (Ebound
IG (f)) from the total incident wave energy spectra. These shoreward-directed

free waves are a combination of refractively trapped (and typically locally generated) waves

and leaky waves from remote sources. The free (and due to the dominance of free wave IG
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Figure 4.3.4. Bound IG energy from nonlinear 2D theory (Hasselmann, 1962) versus an
estimate Eforced

IG based on bispectral analysis (Herbers, Guza, 1994). Colors are fraction
bound based on 2D bound wave theory. When fraction bound < 15% bispectral results are
widely scattered, and not shown or included in R2. The 1-1 line, and mean and standard
deviation for binned data (green curve and shading) are shown.

energy, the total) wave energy is approximately linearly proportional to ESS (Figure 4.3.5 b,

c, and consistent with Herbers et al., 1995b; Okihiro, Guza, 1995). This linear dependence

on ESS, as opposed to a quadratic dependence for the bound wave, has been attributed

to dissipation (Herbers et al., 1995b). Free waves have a weaker depth dependence (h−1)

than bound waves (h−5), consistent with Herbers et al. (1995b).

Okihiro et al. (1992) found that in Southern California for typical SS energy, 25% of

the IG energy was bound in 8-13m depth, 70% was trapped shoreward of a sensor in 183m

depth, and only 5% was leaky. Leaky, free IG waves can propagate across ocean basins

and in deep water appear uncoupled from and uncorrelated with local SS wave conditions

(Webb et al., 1991; Ardhuin et al., 2014). However, on the inner shelf, remotely generated
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Figure 4.3.5. Observed shoreward propagating IG energy (a)Ebound

IG , (b) Efree
IG , (c) Etotal

IG ,
and (d) fraction bound versus ESS. △ is 15m PUV data. Ebound

IG scales as E2
SS whereas

both total and free IG energy scale as ESS (solid and dashed lines, respectively). Most
observed fraction bound are < 50% and many are < 10%.

IG waves only dominate local IG waves when ESS is very low (Herbers et al., 1995b;

Sheremet et al., 2002). Remotely generated IG waves (i.e., unrelated to local SS wave

energy) are not considered in the following analysis and contribute to parameterization

noise.
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4.4 Parameterizing the IG wave field

4.4.1 Bound Waves

Although 2D bound wave energy can be determined from the incident sea-swell

spectrum and theory, it can be useful for computational efficiency to parameterize the

total bound wave energy from bulk sea-swell wave statistics. A linear regression between

predE
bound
IG and E2

SSh
−5 (with exponents predicted in Herbers et al. (1995a) and similar

to Ruessink (1998)), performs reasonably well, with correlation coefficients R2 between

0.58− 0.91, for 10m Torrey Pines, 15m Torrey Pines and 10m Cardiff PUVs. A frequency-

weighted sea-swell energy integral
(∫

SS
E(f)f−1df

)
(similar to the approach of Fiedler et al.

(2020)), results in higher correlations across all PUV sensors (Eq. 4.6 with R2 = 0.84−0.97,

Figure 4.4.1 a),

pE
bound
IG = 15.2

(∫
SS

E(f)f−1df

)2

h−5. (4.6)

The parametric form includes the important dependencies of depth, frequencies, and SS

wave energy.

4.4.2 Shoreward Free Waves

Figure 4.3.5 b shows a relationship between obsE
free
IG and ESS, which performs

reasonably well (linear regression gives a correlation of R2 = 0.79). However, similar to

the bound wave parameterization, a frequency-weighted SS energy integral improves the

linear regression fit to R2 = 0.84. The known tidal dependence of the free IG energy is

accounted for with the normalized tide (σ̃ = tideobs−tidelow
tidehigh−tidelow

, where 2.5m is the total tidal

range observed across all deployments), with σ̃ = 0 at the lowest observed tide (−0.5

NAVD88m), and σ̃ = 1 at the highest tide (2 NAVD88m). Including a linear σ̃ dependence

in the regression improves the correlation between observed and predicted total Efree
IG
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Figure 4.4.1. Parameterizations of incident IG wave field. (a) 2D bound wave parameter-
ization (Eq. 4.6, R2 = 0.95), (b) Free wave parameterization (Eq. 4.7, R2 = 0.9), (c) 2D
bound wave theory + free wave parameterization (R2 = 0.97), colored by total incident
SS energy (see color bar in (b)) and (d) significant wave height of estimated IG timeseries
(R2 = 0.95), colored by SS significant wave height.

energy to R2 = 0.9 (Eq. 4.7, Figure 4.4.1 b) at all but the lowest tides and ESS,

pE
free
IG = 0.00067σ̃

∫
SS

E(f)f−1df. (4.7)

Correlations in different depths and beaches are in Table 4.4.1.

The total shoreward IG energy, with contributions from both bound and free waves
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Table 4.4.1. R2 between total (frequency-band integrated) free shoreward IG energy
observed and three parameterizations using the observed sea-swell wave energy spectrum
ESS(f). PUV sensors were deployed in 10m and 15m at Torrey Pines and 10m at Cardiff
(see Table 4.3.1 for details). In all cases, σ̃

∫
SS

E(f)f−1df has the highest R2.∫
SS

E(f)df
∫
SS

E(f)f−1df σ̃
∫
SS

E(f)f−1df
10m Torrey Pines 0.82 0.88 0.92
15m Torrey Pines 0.63 0.74 0.84

10m Cardiff 0.5 0.69 0.87
Total 0.79 0.84 0.9

can be estimated with local SS parameters. The parmeterization performs well (R2 = 0.96)

for all but the smallest ESS and tides using either the bound wave parameterization (Eq.

4.6) or the integrated 2D Hasselmann bound wave energy (Figure 4.4.1 c). On the smallest

ESS conditions, the parameterization underpredicts EIG. This may be due to very little

local IG wave generation and fractionally higher contributions to the IG wave field from

free waves from remote sources (Webb et al., 1991; Ardhuin et al., 2014), but without

other observations, this is not possible to determine.

Functional forms of the frequency distribution of the free IG energy were compared

with the observed free IG spectra (normalized by the frequency-weighted SS energy).

Functional forms investigated include linear and cubic fits to the median spectral shape, the

spectral shape of Ardhuin et al. (2014) and an altered form (referred to as nouvelleArdhuin,

Eq. 4.8),

A(f) =


β 1

∆f
∗ [f/0.012Hz] when f < 0.012Hz

β 1
∆f

∗ [0.012Hz/f ] when f > 0.012Hz

, (4.8)

with β = 0.0146.

NouvelleArdhuin has the smallest (∼ 0.35) median root-mean-square logarithmic

error (RMSLE) between obsE
free
IG ∗ A(f) and obsE

free
IG (f). Over all 2488 records, RMSLE

are linear ∼ 0.45, cubic ∼ 0.4 and Ardhuin ∼ 0.42. The free wave frequency distribution

varies over a wide range and leads to relatively large RMSLE errors in all the tested forms.
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NouvelleArdhuin (Eq. 4.8) is relatively simple, has the smallest errors, and is used below.

Timeseries realizations of the shoreward free IG are estimated from an inverse FFT

of predE
free
IG (f),

pE
free
IG (f) =pE

free
IG ∗ A(f),

with pE
free
IG = 0.00067σ̃

∫
SS

E(f)f−1df,
(4.9)

with random phases and A(f) (Eq. 4.8).

Linearly combining the computed bound wave timeseries with the estimated shore-

ward propagating free wave timeseries (with random phase), yields an estimated total

shoreward IG timeseries that can be used as a boundary condition for numerical models.

The parameterizations approximately reproduce a range of infragravity heights (Figure

4.4.1 c, RMSE ∼ 0.01m, Skill = 0.82, R2 = 0.95, Bias = 0.006m).

4.5 Discussion

Ardhuin et al. (2014) parameterized seaward free IG energy as a function of local

sea-swell conditions, and used that parameterization as a shoreline boundary condition in

a global ocean wave model. The underlying assumption is that seaward IG energy is free,

directionally broad, and mainly radiated from the surfzone. The pE
sea
IG (f) parameterization

is

pE
sea
IG (f) =

[
1.2α2kg

2

cg2

(
HsT

2
m,0

4

)2
]
∗ 1

∆f

[
min

(
1,

0.015Hz

f

)]1.5
, (4.10)

with the first part determining the frequency-band integrated pE
sea
IG energy, and the second,

the frequency distribution of the seaward IG spectrum. Zheng et al. (2021) compared

output from the Ardhuin et al. (2014) model and observations of HIG and found R2 = 0.6.

Using this approach for seaward IG energy yields similar parameters for α (= 8.3 x 10−4s−1)

with R2 = 0.71 between estimated and observed Efree
IG (Figure 4.5.1 a). A parameterization,
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similar to Eq. 4.7, for the seaward energy,

pE
seaward
IG = 0.001σ̃

∫
SS

E(f)f−1df. (4.11)

shows similar tidal dependence of seaward and shoreward energy, and similar high skill

R2 = 0.91 (Figure 4.5.1 b). The ratio of seaward/shoreward = 0.001/0.00067 = 1.5, is

constant and independent of tide. Although the dependence on σ̃ and the constant are

not well constrained, the implication that R2
IG is not a function of tide level is supported

by the observations (Figure 4.5.2, R2 = 0.22).
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Figure 4.5.1. Parameterization of seaward IG energy from local SS conditions. (left)
Ardhuin et al. (2014) (R2 = 0.71) and (right) new parameterization (R2 = 0.91), including
tidal dependence (Eq. 4.11).

A tidal modulation of the total and free IG energy is observed (Figure 4.3.5 b, c),

consistent with previous observations of total IG energy in Southern California (Okihiro,

Guza, 1995). This modulation, lower EIG at low tide, has been attributed to IG energy

loss within the surfzone being stronger on flat and shallow low-tide beaches than on steeper

high-tide beaches (given a concave beach profile, Figure 4.5.2) (Thomson et al., 2006).

84



Note that refractive trapping of seaward IG energy creates shoreward IG waves. That

is, seaward and shoreward IG waves both increase at high tide, when the surfzone more

efficiently radiates IG energy.

Observed values of R2
IG vary between 0.5 - 2.5, whereas R2

IG = 1.5 follows from

the present crude parameterizations. While R2
IG at the shoreline is constrained to < 1,

R2
IG > 1 in 10-15m depth allows for onshore IG surf zone generation and dissipation,

shoreline reflection and trapping (Gallagher, 1971; Elgar, Guza, 1985; Oltman-Shay, Guza,

1987; Okihiro et al., 1992; Elgar et al., 1992, 1994; Herbers, Guza, 1994; Herbers et al.,

1995a,b; Okihiro, Guza, 1995; Sheremet et al., 2002; Battjes, 2004; Thomson et al., 2006;

Henderson et al., 2006; Rijnsdorp et al., 2015). Ongoing numerical simulations with the

SWASH model are intended to understand IG wave physics, including at beaches with

much lower and higher slopes (and different wave climates) than parameterized here.
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Figure 4.5.2. Beach slope versus mean tide (relative to NAVD88m) of 3h record) at
Torrey Pines. Beach slope is the linear fit ±0.5m around the tide level. The concave shape
of subaerial beach results in a steeper beach face at high tide than low tide. However, R2

IG

is not significantly correlated with on beach slope or tide level.
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4.6 Conclusion

This relative contribution of bound and free infragravity waves to the IG wave

field on the inner shelf (depth 10-15m) in San Diego County, USA was examined using

PUV observations and nonlinear wave theory. In general, free waves dominate the IG

wave field with only 5% of the records showing a bound wave fraction > 50%. This is

consistent with previous observations in Southern California and Duck, USA and the

North Sea. The bound wave energy scaled with the local SS energy squared (with higher

correlation to swell energy than sea) and has a slight depth dependence consistent with

a h−5 scaling. The free IG energy was found to scale linearly with the local SS energy

and the mean tide. These dependencies were exploited to derive parameterizations for

the total (bound and free IG) shoreward propagating energy as a function of tide and

local sea-swell conditions that can be determined from spectral refraction models or buoy

observations. A parameterization of the seaward propagating IG waves also showed a

tidal dependence that differed from previous seaward-going IG energy (Ardhuin et al.,

2014). Using an observation-based frequency distribution for free IG energy, bound and

free wave can be included in synthetic IG timeseries that can be used to initialize models

for surfzone processes including runup.
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