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ABSTRACT OF THE DISSERTATION

Stationary Distributions for Stochastic Delay Differential Equations with

Non-Negativity Constraints

by

Michael Sean Kinnally

Doctor of Philosophy in Mathematics

University of California San Diego, 2009

Professor Ruth J. Williams, Chair

Deterministic dynamic models with delayed feedback and state constraints arise in a

variety of applications in science and engineering. Much ofthe analysis of such deterministic

models has focussed on stability analysis of equilibrium points. There is interest in understand-

ing what effect noise has on the behavior of such systems. Here we consider a multidimensional

stochastic delay differential equation with normal reflection as a noisy analogue of a determinis-

tic system with delayed feedback and non-negativity constraints. We obtain sufficient conditions

for existence and uniqueness of stationary distributions.The results are applied to examples

from Internet rate control and biochemical reaction systems.

viii



Chapter 1

Introduction

1.1 Overview

Dynamical system models with delay are used in a variety of applications in science

and engineering where the dynamics are subject to propagation delay. Examples of such ap-

plication domains include packet level models of Internet rate control where the finiteness of

transmission times leads to delay in receipt of congestion signals or prices [32, 44], neuronal

models where the spatial distribution of neurons can resultin delayed dynamics, epidemiological

models where incubation periods result in delayed transmission of disease [7], and biochemical

reactions in gene regulation where lengthy transcription and translation operations have been

modeled with delayed dynamics [1, 6, 29]. There is an extensive literature, both theoretical and

applied on ordinary delay differential equations. The book[17] by Hale and Lunel provides an

introduction to this vast subject.

In some applications involving delayed dynamics, the quantities of interest are nat-

urally non-negative. For instance, rates and prices in Internet models are non-negative, con-

centrations of ions or chemical species and proportions of apopulation that are infected are all

naturally non-negative quantities. In deterministic differential equation models for the delayed

dynamics of such quantities, the dynamics may naturally keep the quantities non-negative or

they may need to be adapted to be so, sometimes leading to piecewise continuous delay differ-

ential dynamics (see e.g., [32, 33, 34, 35, 36]). There is some literature, especially applied, on

the latter, although less than for unconstrained delay systems or naturally constrained ones.

Frequently in applications, noise is present in a system andit is desirable to under-

stand its effect on the dynamics. For unconstrained systems, one can consider ordinary delay

1
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differential equations with an addition to the dynamics in the form of white noise or even a state

dependent noise. There is a sizeable literature on such stochastic delay differential equations

(SDDE) especially when the associated noiseless system hasa globally attracting equilibrium

[3, 11, 15, 20, 27, 28, 30, 31, 37, 41, 42, 43]. To obtain the analogue of such SDDE models

with non-negativity constraints, it is not simply a matter of adding a noise term to the ordinary

differential equation dynamics, as this will typically notlead to a solution respecting the state

constraint (even if the deterministic model was naturally constrained).

As described above, there is natural motivation for considering stochastic differential

equations where all three features, delay, non-negativityconstraints and noise, are present. How-

ever, there has been little work on systematically studyingsuch equations. One exception is the

work of Kushner (see e.g., [25]), although this focuses on numerical methods for stochastic de-

lay differential equations (including those with state constraints), especially those with bounded

state space. We note that the behavior of constrained systems can be quite different from that

of unconstrained analogues, e.g., in the deterministic delay equation case, the addition of a non-

negativity constraint can turn an equation with unbounded oscillatory solutions into one with

bounded periodic solutions, and in the stochastic delay equation case, transient behavior can be

transformed into positive recurrence.

Here we seek conditions for existence and uniqueness of stationary distributions for

stochastic delay differential equations with non-negativity constraints of the form:

X(t) = X(0) +

∫ t

0
b(Xs)ds+

∫ t

0
σ(Xs)dW (s) + Y (t), t ≥ 0, (1.1)

whereX(t) takes values in the positive orthant of some Euclidean space, τ ∈ [0,∞) is the

length of the delay period,Xs = {X(s + u) : −τ ≤ u ≤ 0} tracks the history of the process

over the delay period,W is a standard (multi-dimensional) Brownian motion noise source and

the stochastic integral with respect toW is an Itô integral,Y is a vector-valued non-decreasing

process which ensures that the non-negativity constraintsonX are enforced, in particular, theith

component ofY can increase only when theith component ofX is zero. We refer to equations

of the form (1.1) as stochastic delay differential equations with reflection, where the action ofY

is termed reflection (at the boundary of the orthant).

This thesis is organized as follows. The rigorous definitionof a solution of (1.1) and

properties of solutions are given in Chapter2. Stationary distributions are defined in Chapter

3, and a general condition guaranteeing their existence is described in Sections3.2-3.4. This

condition is in terms of uniform moment bounds. Conditions under which such moment bounds

hold in terms of restrictions onb andσ are given in Chapter4. While the results here are new,
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we do use some results and adapt some techniques developed byItô and Nisio [20] and Mao

[28]. The results of Chapters3 and4 are combined to give sufficient conditions for existence of

a stationary distribution in Section5.1. Conditions for uniqueness of such a stationary distribu-

tion are given in Section5.2. Our proofs in that section are an adaptation of methods developed

recently by Hairer, Mattingley, and Scheutzow [16] for proving uniqueness of stationary dis-

tributions for stochastic delay differential equations without constraints. An important aspect

of the results in [16] is that they enable one to obtain uniqueness of stationary distributions for

stochastic delay differential equations when the dispersion coefficient depends on the history of

the process over the delay period. Previous results on uniqueness of stationary distributions were

often restricted to cases where dispersion coefficients depended only on the current state of the

process (cf. [11, 25, 37, 41, 43]), with an exception being [20]. This is in part due to poten-

tial reconstruction of the initial condition from the quadratic variation process ([37, 43]), which

precludes ergodicity of the process and rules out use of Doob’s theorem (see [11], Theorem

4.2.1). Some applications of our results to a few particularexamples arising from biochemical

reaction systems and Internet rate control are discussed inChapter6. AppendixA contains a

list of the notation that appears throughout this work, Appendix B covers some inequalities that

appear frequently throughout this work, and AppendixC discusses some conditions that imply

that equation (1.1) is well-posed.

As an example of the applicability of these results, the one-dimensional equation (in

differential form)

dX(t) = (A1 −B1X(t− 1))dt + (A2 +B2X(t− 1))dW (t) + dY (t), t ≥ 0, (1.2)

whereA1 ∈ R, B1 > 0, A2 > 0, B2 ∈ (0, 1
4), has a unique stationary distribution as long as

B1 >
B2

2
2(1−4B2) . See Section6.2 for justification of this result.

1.2 Notation

We shall use the following notation throughout this work.

For each positive integerd, let Rd denoted-dimensional Euclidean space, and letRd
+

denote the closed positive orthant inRd. Whend = 1, we suppress thed and writeR for

(−∞,∞) andR+ for [0,∞). For eachi = 1, . . . , d, the ith component of a column vector

v ∈ Rd will be denoted byvi. For two vectorsu, v ∈ Rd, the statementu ≥ v will mean that

ui ≥ vi for eachi = 1, . . . , d. For eachr ∈ R, definer+ = max{r, 0} andr− = max{−r, 0}.



4

For any real numbersr, s, δr,s denotes the Kronecker delta, i.e., it is one ifr = s and zero

otherwise.

Unless specified otherwise, we treat vectorsv ∈ Rd as column vectors, i.e.,v =

(v1, . . . , vd)′. Foru, v ∈ Rd, u · v =
d
∑

i=1
uivi denotes the dot product ofu with v. Let Md×m

denote the set ofd×mmatrices with real entries. For a given matrixA ∈ Md×m,Ai
j denotes the

entry of theith row and thejth column,Ai denotes theith row, andAj denotes thejth column.

The notationId will denote the(d× d)-identity matrix.

We denote the maximum norm onRd by

|v|∞ = max
i=1,...,d

|vi|, v = (v1, . . . , vd)′ ∈ Rd.

Forp ∈ [1,∞), we also have the correspondingp-norms:

|v|p =
(

|v1|p + · · · + |vd|p
)

1
p
, v ∈ Rd.

These norms can also be applied to row vectors, i.e., forv = (v1, . . . , vd), |v|p := |v′|p for

p ∈ [1,∞]. We use some matrix norms as well. Given a matrixA, ‖A‖∞ := max
i,j

|Ai
j | denotes

the maximum norm ofA, and‖A‖2 :=

√

d
∑

i=1

m
∑

j=1
(Ai

j)
2 denotes the Frobenius norm, ofA.

For any two metric spacesE1,E2, letC(E1,E2) denote the space of continuous func-

tions fromE1 into E2. Here,E1 will often be a closed intervalF ⊂ (−∞,∞), andE2 will often

beRd or Rd
+ for various dimensionsd. For any metric spaceE with metricρ, we useB(x, r)

(wherex ∈ E andr > 0) to denote the open ball{y ∈ E : ρ(x, y) < r} of radiusr around

x, and we useB(E) to denote the associated collection of Borel sets ofE. The set of bounded

Borel measurable real-valued functions onE will be denoted byBb(E), andCb(E) will denote

the set of bounded continuous real-valued functions onE.

For any integerd and closed intervalI in (−∞,∞), we endowC(I,Rd) andC(I,Rd
+)

with the topologies of uniform convergence on compact intervals inI. These are Polish spaces.

In the case ofC(I,Rd
+), we useMI to denote the associated Borelσ-algebra. We shall also

use the abbreviationsCI = C(I,R+) and Cd
I = C(I,Rd

+). For a given dimensionm, let

C0(R+,R
m) denote the set of continuous functionsx : [0,∞) → Rm such thatx(0) = 0. For

a given closed bounded intervalI, metric spaceE, andt ∈ I, we define the evaluation map

et : C(I,E) → E by et(f) = f(t).

Throughout this work, we fixτ ∈ (0,∞), which will be referred to as the delay. Define

I = [−τ, 0] andJ = [−τ,∞). As a subset of the vector spaceC(I,Rd), Cd
I has the equivalent
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norms

‖x‖p := sup
t∈I

|x(t)|p, x ∈ Cd
I , p ∈ [1,∞],

that induce its topology of uniform convergence on compact intervals. The associated Borel

σ-algebra isMI. Forx ∈ Cd
J andt ≥ 0, definext ∈ Cd

I by xt(s) = x(t + s) for all s ∈ I. It

should be emphasized thatx(t) ∈ Rd
+ is a point, whilext ∈ Cd

I is a continuous function onI

taking values inRd
+. For eacht ∈ R+, we define the projectionpt : Cd

J → Cd
I by pt(x) := xt

for eachx ∈ Cd
J.

For a closed intervalI in (−∞,∞), a1 ≤ a2 in I, and a pathx = (x1, . . . , xd)′ ∈
C(I,Rd), we define the oscillation ofx over [a1, a2] by

Osc(x, [a1, a2]) := sup
s,t∈[a1,a2]

|x(t) − x(s)|∞ =
d

max
i=1

sup
s,t∈[a1,a2]

|xi(t) − xi(s)|, (1.3)

the modulus of continuity ofx overI by

wI(x, δ) :=
d

max
i=1

sup
s,t∈I

|s−t|<δ

|xi(t) − xi(s)|, δ > 0

and for eachp ∈ [1,∞], the supremump-norm ofx overI by

‖x‖I,p = sup
t∈I

|x(t)|p.

WhenI = I, the notation‖ · ‖p described in the previous paragraph will be used as an abbrevia-

tion for ‖ · ‖I,p. Whend = 1, the maximum norm and allp-norms (forp ∈ [1,∞)) are equal to

the absolute value, so we abbreviate‖ · ‖I := ‖ · ‖I,∞ = ‖ · ‖I,p in this case.

By a filtered probability space, we mean a quadruple(Ω,F , {Ft, t ≥ 0}, P ), whereF
is aσ-algebra on the set of possible outcomesΩ, P is a probability measure on the measurable

space(Ω,F), and{Ft, t ≥ 0} is a filtration of sub-σ-algebras ofF where theusual conditions

are satisfied, i.e.,(Ω,F , P ) is a complete probability space, and for eacht ≥ 0, Ft contains all

P -null sets ofF andFt+ := ∩
s>t

Fs = Ft. Given twoσ-finite measuresµ, ν on a measurable

space(Ω,F), the notationµ ∼ ν will mean thatµ andν are mutually absolutely continuous,

i.e., for anyΛ ∈ F , µ(Λ) = 0 if and only if ν(Λ) = 0.

Given a positive integerm, by a standardm-dimensional Brownian motion, we mean

a continuous process{W (t) = (W 1(t), . . . ,Wm(t))′, t ≥ 0} taking values inRm such that

(i) W (0) = 0 a.s.,

(ii) the coordinate processes,W 1, . . . ,Wm, are independent,
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(iii) for eachi = 1, . . . ,m, positive integern and0 ≤ t1 < t2 < . . . tn <∞, the increments

W i(t2) −W i(t1), W i(t3) −W i(t2), . . . , W i(tn) −W i(tn−1)

are independent, and

(iv) for eachi = 1, . . . ,m and0 ≤ s < t < ∞, W i(t) −W i(s) is normally distributed with

mean zero and variancet− s.

Given a functionf : {1, 2, . . . } → R anda ∈ (−∞,∞], the notationf(n) ր a as

n→ ∞ means thatlim
n→∞

f(n) = a andf(n) ≤ f(n+ 1) for eachn = 1, 2, . . ..

A list of the preceding notation along with other notation that appears in this work can

be found in the Appendix.



Chapter 2

Stochastic Delay Differential Equations

with Reflection

In this chapter, we define a solution to equation (1.1) precisely, and we derive some

useful properties of solutions.

2.1 Definition of a Solution

Recall from Section1.2 that we are fixing aτ ∈ (0,∞), which will be referred to

as the delay, and we defineI = [−τ, 0], J = [−τ,∞), Cd
I = C(I,Rd

+), andCd
J = C(J,Rd

+).

Furthermore, we fix positive integersd andm, and functionsb : Cd
I → Rd andσ : Cd

I → Md×m

that satisfy the following continuity and linear growth assumptions.

Assumption 2.1.1.The functionsb andσ are continuous, and there exist non-negative constants

C1, C2, C3, andC4 such that for eachx ∈ Cd
I ,

|b(x)|2 ≤ C1 + C2‖x‖2, and (2.1)

‖σ(x)‖2
2 ≤ C3 + C4‖x‖2

2. (2.2)

Definition 2.1.1. A solution of the stochastic delay differential equation with reflection (SD-

DER) associated with(b, σ) is ad-dimensional continuous processX = {X(t), t ∈ J} defined

on some filtered probability space(Ω,F , {Ft, t ≥ 0}, P ) thatP -a.s. satisfies (1.1), where

(i) X(t) is F0-measurable for eacht ∈ I,X(t) is Ft-measurable for eacht > 0, andX(t) ∈
Rd

+ for all t ∈ J,

7
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(ii) Y is ad-dimensional continuous and non-decreasing process such thatY (0) = 0 andY (t)

is Ft-measurable for eacht ≥ 0,

(iii) W is a standardm-dimensional Brownian motion such that{W (t),Ft, t ≥ 0} is a mar-

tingale underP ,

(iv)
∫ t

0 X(s) · dY (s) = 0 for all t ≥ 0, i.e., Y i can increase only whenXi is at zero for

i = 1, . . . , d.

A natural initial condition for equation (1.1) is not an initial state such asX(0) = v ∈
Rd

+ as the dynamics would be indeterminate fort ∈ [0, τ ] in that case (assuming thatb or σ

depends on a delayed state). The natural initial condition is an initial segmentX0 = x ∈ Cd
I ,

or more generally, an initial distributionµ on (Cd
I ,MI), i.e., P (X0 ∈ Λ) = µ(Λ) for each

Λ ∈ MI.

Remark.A solution of the SDDER (1.1) defines a stochastic process{Xt, t ≥ 0} with state

spaceCd
I . This process may be considered a more natural “state descriptor process” than the

process{X(t), t ≥ 0}.

Remark.As a consequence of condition (i) and the continuity of the paths ofX, {Xt, t ≥ 0}
is adapted to{Ft, t ≥ 0}, andt 7→ Xt(ω) is continuous fromR+ into Cd

I for eachω ∈ Ω.

It follows that the mappingF : R+ × Ω → Cd
I , whereF (t, ω) = Xt(ω), is progressively

measurable, being continuous int and adapted (see Lemma II.73.10 of [39]). Therefore since

σ : Cd
I → Md×m is continuous,(σ ◦ F )(t, ω) = σ(Xt(ω)) is progressively measurable. Since

σ(·) is continuous andX·(ω) is continuous for eachω, σ(Xt(ω)) is continuous int, and thus

bounded on compact time intervals, so thatP
(

∫ t

0 ‖σ(Xs)‖2
2ds <∞

)

= 1 for eacht ∈ R+,

so that
{

∫ t

0 σ(Xs)dW (s),Ft, t ≥ 0
}

is a continuousd-dimensional local martingale. Similarly,

b(Xt(ω)) is continuous int for eachω ∈ Ω, so for each fixedT ≥ 0, there is a constant

Kω ∈ (0,∞) such that|b(Xt(ω))|2 ≤ Kω for eacht ∈ [0, T ]. Therefore,
∫ T

0 |b(Xt(ω))|2dt ≤
TKω < ∞, so that{

∫ t

0 b(Xs)ds, t ≥ 0} is a continuous adapted process whose coordinates

are locally of bounded variation. Since{Y (t), t ≥ 0} is continuous, has nondecreasing (and

therefore locally of bounded variation) coordinates, and is adapted to the filtration{Ft, t ≥ 0},

{X(0)+
∫ t

0 b(Xs)ds+Y (t),Ft, t ≥ 0} is a continuous adapted process that is locally of bounded

variation. Therefore,{X(t), t ≥ 0} is a continuous semimartingale with respect to{Ft, t ≥ 0}.

Since this work is directed at proving existence and uniqueness ofstationarydistribu-

tions, we shall assume that the equation (1.1) is well-posed. That is, in addition to Assumption
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2.1.1, we make the following minimal assumption on existence and uniqueness in law of solu-

tions to (1.1).

Assumption 2.1.2.For each deterministic initial conditionX0 = x ∈ Cd
I , on some filtered prob-

ability space(Ωx,Fx, {Fx
t , t ≥ 0}, P x), there exist a Brownian motion martingale{W x(t), t ≥

0} and continuous processesXx = {Xx(t), t ∈ J} andY x = {Y x(t), t ∈ R+}, such thatXx

is a solution to the SDDER (1.1) with (Xx, Y x,W x) in place of(X,Y,W ). Furthermore, the

law ofXx is unique givenx.

Sufficient conditions for strong existence and pathwise uniqueness for solutions to the

SDDER (1.1) are given in AppendixC. These conditions imply that Assumptions2.1.1and2.1.2

hold.

2.2 Examples

Example 2.2.1.Fix α, γ, ε, C > 0. For x ∈ CI, define

b(x) = α
(

1+
x(−τ)

C

)2 − γ, and σ(x) = ε
√

α
(

1+
x(−τ)

C

)2 + γ .

The SDDER associated with this pair(b, σ) is an example ford = 1 that arises in the study of

biochemical reaction systems [29].

Example 2.2.2.Differential delay equations with linear or affine coefficients are used often in

engineering. An example of an SDDER with affine coefficients is the following. Forx ∈ CI, let

b(x) := b0 − b1x(0) −
n
∑

i=2

bix(−ri) +

n′
∑

i=n+1

bix(−ri), (2.3)

and

σ(x) := a0 +
n′′
∑

i=1

aix(−si), (2.4)

where0 ≤ ri ≤ τ and0 ≤ si ≤ τ for eachi,n′ > n ≥ 2, n′′ ≥ 0, andb0, . . . , bn′ , a0, . . . , an′′ ≥
0.

Example 2.2.3.Paganini and Wang [33], Peet and Lall [36], and Papachristadolou, Doyle, and

Low [34, 35], studied a multidimensional deterministic model of Internet rate control withd

servers andd′ sources. In this, the dynamics are given by

dX(t) = b̂(Xt)dt, (2.5)
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where theith component ofX(t) represents the price at timet that serveri charges for the trans-

mission of a packet through it, assuming that the servers useActive Queue Management (AQM)

and that the sources use the Transmission Control Protocol (TCP). The drift̂b is discontinuous;

for eachi = 1, . . . , d, andx ∈ Cd
I ,

b̂i(x) =























−1 +
d′
∑

j=1
Aij exp

(

−Bj

d
∑

k=1

AkjCkjx
k(−rijk)

)

if xi(0) > 0

(

−1 +
d′
∑

j=1
Aij exp

(

−Bj

d
∑

k=1

AkjCkjx
k(−rijk)

)

)+

if xi(0) = 0

(2.6)

for someB1, . . . , Bd > 0, andAij ≥ 0, Ckj > 0, andrijk > 0 for all i, k ∈ {1, . . . , d} and

j ∈ {1, . . . , d′}. The constants depend on parameters such as the capacity of the queues at the

servers, the maximal rate of transmission from each source,a routing matrix that determines

which sources use which servers, and some other parameters.The solutions of (2.5) remain

in the nonnegative orthant by the construction ofb̂ (for the meaning of a solution with such

a discontinuous righthand side, see, e.g., [13]). It turns out that the solutions of the SDDER

associated withσ ≡ 0 coincide with the solutions of (2.5) when the driftb is defined by

bi(x) := −1 +

d′
∑

j=1

Aij exp

(

−Bj

d
∑

k=1

AkjCkjx
k(−rijk)

)

, i = 1, . . . , d.

Allowingσ to be non-zero yields a noisy version of the deterministic model.

2.3 Reflection

To ensure that a solution of (1.1) remains non-negative, we employ Skorokhod’s well-

known mapping for constraining a continuous real-valued function to be non-negative by means

of reflection at the origin. We apply this mapping to each component.

For each positive integerd, defineC+(R+,R
d) := {x ∈ C(R+,R

d) : x(0) ∈ Rd
+}.

Definition 2.3.1. Given a pathx ∈ C+(R+,R
d), we say that a pair(z, y) of functions in

C+(R+,R
d) solves the Skorokhod problem forx with (normal) reflection if

(i) z(t) = x(t) + y(t) for all t ≥ 0 andz(t) ∈ Rd
+ for eacht ≥ 0,

(ii) for eachi = 1, . . . , d, yi(0) = 0 andyi is nondecreasing,

(iii) for eachi = 1, . . . , d, yi(t) =
∫ t

0 1{0}(z
i(s))dyi(s) for all t ≥ 0, i.e.,yi can increase only

whenzi is at zero.
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The pathz is called the reflection ofx, and the pathy is called the regulator ofx.

Remark.Here, we consider only normal reflection as described in the above definition, but there

is a substantial theory for oblique reflection. For a survey up through 1995, see [45], and for

some applications, see [24]. We have some partial results still under development for oblique

reflection. In the following, when we use the term reflection,we mean normal reflection.

We summarize some basic facts about the Skorokhod problem inthe next proposition.

With normal reflection, the problem can be solved component by component in an explicit way.

Proposition 2.3.1. For each pathx ∈ C(R+,R
d), there exists a unique solution(z, y) to

the Skorokhod problem forx. Thus there exists a pair of functions(φ,ψ) : C+(R+,R
d) →

C+(R+,R
2d) defined by(φ(x), ψ(x)) = (z, y). The pair(φ,ψ) satisfies the following:

(i) Osc(φ(x), [a, b]) ≤ Osc(x, [a, b]).

(ii) There exists a constantKℓ > 0 such that for eachx, y ∈ C+(R+,R
d), we have for each

t ≥ 0,

‖ψ(x) − ψ(y)‖[0,t],2 ≤ Kℓ‖x− y‖[0,t],2, and

‖φ(x) − φ(y)‖[0,t],2 ≤ Kℓ‖x− y‖[0,t],2.

Proof. These properties follow from the well-known construction of y:

yi(t) =

(

− min
0≤s≤t

xi(s)

)+

, i = 1, . . . , d.

For more details, see [12, 18, 46]. We note thatKℓ ≤ 2, but we keep the notationKℓ for

convenience.

Thus the Skorokhod problem with reflection is well-posed, the solution map(φ,ψ) is

Lipschitz continuous, and oscillations of the reflectionφ(x) are bounded by the oscillations of

x.

For notational convenience, given a continuous adapted stochastic process{ξ(t), t ≥
−τ} taking values inRd

+ and anm-dimensional Brownian motionW defined on some filtered

probability space(Ω,F , {Ft}, P ), , we define

I(ξ)(t) := ξ(0) +

∫ t

0
b(ξs)ds +

∫ t

0
σ(ξs)dW (s), t ≥ 0. (2.7)

For a solutionX of the SDDER,X(t) = I(X)(t) + Y (t), t ≥ 0. In other words,{X(t), t ≥
0} can be obtained by reflectingI(X), i.e.,X = φ(I(X)), andY = ψ(I(X)), because of
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the uniqueness of solutions to the Skorokhod problem. Then,as a consequence of Proposition

2.3.1(i), for any0 ≤ a < b <∞

Osc(X, [a, b]) ≤ Osc(I(X), [a, b]). (2.8)

2.4 Bounds for Moments of Supremum Norm over Bounded Inter-

vals

We now state the Burkholder-Davis-Gundy inequalities. A proof can be found, e.g., in

[22], Theorem 3.3.28.

Proposition 2.4.1.For eachp > 0, there exist constantscp, c̃p > 0 such that for any real-valued

continuous local martingale{M(t),Ft, t ≥ 0} with quadratic variation process{〈M〉(t), t ≥
0}, and each stopping timeη taking values inR+,

cpE
[

(〈M〉(η))
p
2

]

≤ E
[

‖M‖p
[0,η]

]

≤ c̃pE
[

(〈M〉(η))
p
2

]

.

Under Assumption2.1.1, any solutionX to (1.1) satisfies the following supremum

bound.

Lemma 2.4.1. For eachp ∈ [2,∞), there exists a continuous functionFp : R+ × R+ → R+

that is nondecreasing in each argument, such that

E
[

‖X‖p
[−τ,T ],p

]

≤ Fp(E[‖X0‖p
p], T ) for eachT > 0. (2.9)

In fact,

Fp(r, s) = kp(s) + k̃p(s)r,

where the functionskp and k̃p are non-decreasing on(0,∞), and they depend only onp, the

dimensionsd,m, and the linear growth constantsC1, C2, C3, C4 from Assumption2.1.1.
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Proof. For anyT > 0,

‖X‖p

[0,T ],p
≤ ‖X1‖p

[0,T ]
+ · · · + ‖Xd‖p

[0,T ]

≤ |X1(0) + Osc(X1, [0, T ])|p + · · · + |Xd(0) + Osc(Xd, [0, T ])|p

≤ 2p−1
(

|X1(0)|p + (Osc(X1, [0, T ]))p + · · · + |Xd(0)|p + (Osc(Xd, [0, T ]))p
)

≤ 2p−1
(

|X(0)|pp + d(Osc(X, [0, T ]))p
)

≤ 2p−1
(

|X(0)|pp + d(Osc(I(X), [0, T ]))p
)

≤ 2p−1|X(0)|pp

+2p−1dmax
i

(

∫ T

0
|bi(Xt)|dt + 2 sup

s∈[0,T ]

∣

∣

∣

∣

∫ s

0
σi(Xt)dW (t)

∣

∣

∣

∣

)p

≤ 2p−1|X(0)|pp

+2p−1d

(

∫ T

0
|b(Xt)|2dt+ 2 sup

s∈[0,T ]

∣

∣

∣

∣

∫ s

0
σ(Xt)dW (t)

∣

∣

∣

∣

2

)p

≤ 2p−1|X(0)|pp

+22p−2d

(

(
∫ T

0
|b(Xt)|2dt

)p

+ 2p sup
s∈[0,T ]

∣

∣

∣

∣

∫ s

0
σ(Xt)dW (t)

∣

∣

∣

∣

p

2

)

. (2.10)

Here, we have used PropositionB.0.1for the third and eighth inequalities.

For each integern ≥ 1, define the stopping timeηn := inf{t ≥ 0 : ‖X‖[−τ,t],2 ≥ n},

with the convention thatinf ∅ = ∞. The Burkholder-Davis-Gundy inequalities imply that for

eachn, for anyT > 0,

d
∑

i=1

m
∑

j=1

E

[

sup
s∈[0,T∧ηn]

∣

∣

∣

∣

∫ s

0
σi

j(Xt)dW
j(t)

∣

∣

∣

∣

p
]

≤ c̃p

d
∑

i=1

m
∑

j=1

E

[

(∫ T∧ηn

0

∣

∣σi
j(Xt)

∣

∣

2

2
dt

)

p
2

]

≤ c̃pE

[

(∫ T∧ηn

0
‖σ(Xt)‖2

2 dt

)

p
2

]

≤ c̃pE

[

(
∫ T∧ηn

0

(

C3 + C4‖Xt‖2
2

)

dt

)

p
2

]

≤ c̃p2
p
2
−1

(

C
p
2
3 T

p
2 + C

p
2
4 E

[

(∫ T

0
‖X‖2

[−τ,t∧ηn],2dt

)

p
2

])

. (2.11)

The third inequality follows from repeated application of inequality (B.2) and the linearity of

integration, the third inequality follows from the linear growth condition (2.2), and the fourth

inequality follows from PropositionB.0.1.
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Then, on replacingT by T ∧ ηn in (2.10), taking expectations, using the linear growth

assumption (2.1) on b, inequality (2.11), and repeated application of PropositionB.0.1 and

Hölder’s inequality, we have for eachn andT > 0,

E
[

‖X‖p
[0,T∧ηn],p

]

≤ 2p−1E
[

‖X0‖p
p

]

+ 22p−2dE

[

(∫ T∧ηn

0
|b(Xt)|2dt

)p
]

+23p−2dE

[

sup
s∈[0,T∧ηn]

∣

∣

∣

∣

∫ s

0
σ(Xt)dW (t)

∣

∣

∣

∣

p

2

]

≤ 2p−1E
[

‖X0‖p
p

]

+ 22p−2dE

[

(∫ T∧ηn

0
(C1 +C2‖Xt‖2) dt

)p
]

+23p−2dE






sup

s∈[0,T∧ηn]





d
∑

i=1

∣

∣

∣

∣

∣

∣

m
∑

j=1

∫ s

0
σi

j(Xt)dW
j(t)

∣

∣

∣

∣

∣

∣

2



p
2






≤ 2p−1E
[

‖X0‖p
p

]

+ 23p−3dC
p
1T

p + 23p−3dC
p
2E

[

(∫ T∧ηn

0
‖Xt‖2dt

)p
]

+23p−2dm
p
2E






sup

s∈[0,T∧ηn]





d
∑

i=1

m
∑

j=1

∣

∣

∣

∣

∫ s

0
σi

j(Xt)dW
j(t)

∣

∣

∣

∣

2




p
2







≤ 2p−1E
[

‖X0‖p
p

]

+ 23p−3dC
p
1T

p + 23p−3dC
p
2T

p−1
p E

[∫ T∧ηn

0
‖Xt‖p

2dt

]

+23p−2dm
p
2 (dm)

p−2
2

d
∑

i=1

m
∑

j=1

E

[

sup
s∈[0,T∧ηn]

∣

∣

∣

∣

∫ s

0
σi

j(Xt)dW
j(t)

∣

∣

∣

∣

p
]

≤ 2p−1E
[

‖X0‖p
p

]

+ 23p−3dC
p
1T

p + 23p−3dC
p
2T

p−1
p

∫ T

0
E
[

‖X‖p

[−τ,t∧ηn],2

]

dt

+23p−2d
p
2mp−1c̃p2

p
2
−1

(

C
p
2
3 T

p
2 + C

p
2
4 T

p−2
p E

[∫ T

0
‖X‖p

[−τ,t∧ηn],2dt

])

≤ K1(T ) +K2(T )E
[

‖X0‖p
p

]

+K3(T )

∫ T

0
E
[

‖X‖p
[0,t∧ηn],p

]

dt, (2.12)

where

K1(T ) = 23p−3dC
p
1T

p + 23p−2d
p
2mp−1c̃p2

p
2
−1C

p
2
3 T

p
2 ,

K2(T ) = 2p−1 + 23p−3dC
p
2T

2p−1
p d

p
2
−1 + 23p−2d

p
2mp−1c̃p2

p
2
−1C

p
2
4 T

2p−2
p d

p
2
−1,

K3(T ) = 23p−3dC
p
2T

p−1
p d

p
2
−1 + 23p−2d

p
2mp−1c̃p2

p
2
−1C

p
2
4 T

p−2
p d

p
2
−1.

For the last inequality, we used the fact that inequality (B.5) implies

‖X‖p
[−τ,t],2 ≤ ‖X0‖p

2 + ‖X‖p
[0,t],2 ≤ d

p
2
−1‖X0‖p

p + d
p
2
−1‖X‖p

[0,t],p. (2.13)
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Note thatK1,K2,K3 are all increasing inT , so that for eacht ∈ [0, T ], we have

E
[

‖X‖p
[0,t∧ηn],p

]

≤ K1(T ) +K2(T )E
[

‖X0‖p
p

]

+K3(T )

∫ t

0
E
[

‖X‖p
[0,s∧ηn],p

]

ds. (2.14)

Gronwall’s inequality (PropositionB.0.4) now yields for eacht ∈ [0, T ],

E
[

‖X‖p
[0,t∧ηn],p

]

≤
(

K1(T ) +K2(T )E
[

‖X0‖p
p

])

etK3(T ), (2.15)

so that

E
[

‖X‖p
[−τ,T∧ηn],p

]

≤ E
[

‖X0‖p
p

]

+ E
[

‖X‖p
[0,T∧ηn],p

]

≤ E
[

‖X0‖p
p

]

+
(

K1(T ) +K2(T )E
[

‖X0‖p
p

])

eTK3(T ). (2.16)

The monotone convergence theorem can now be invoked to obtain

E
[

‖X‖p
[−τ,T ],p

]

≤ E
[

‖X0‖p
p

]

+
(

K1(T ) +K2(T )E
[

‖X0‖p
p

])

eTK3(T ). (2.17)

Thus, the result holds withFp(r, s) = K1(s)e
sK3(s) + (1 +K2(s)e

sK3(s))r for p ≥ 2.

2.5 Feller Property

This section is devoted to proving a type of regularity in theinitial condition of the

solutions to (1.1) (referred to as Feller continuity). This will be used in later sections. Indeed,

in the next section it will be shown that under Assumptions2.1.1and2.1.2, the SDDER (1.1)

generates a Feller continuous family of transition functions{Pt(x,Λ), t ≥ 0, x ∈ Cd
I ,Λ ∈ MI},

wherePt(x,Λ) = P (Xx
t ∈ Λ). The proof of this relies on a standard argument: prove tightness

of solutions with initial conditions converging tox ∈ Cd
I and show any limit point has law of the

solution starting fromx.

Recall the notation for the modulus of continuity of a function introduced in Section

1.2. We will use the following well-known criterion for tightness onC(I,Rd), whereI is a

closed interval inR and has left endpointt0 ∈ R. A proof can be found in Theorem 2.4.10 of

[22], or in the case of a bounded intervalI, Theorem 7.3 of [5].

Proposition 2.5.1.For any closed intervalI of R with left endpointt0 ∈ R, a sequence{Pn}∞n=1

of probability measures on the path space(C(I,Rd),B(C(I,Rd))) is tight if and only if

(i) lim
a→∞

sup
n≥1

Pn

(

x ∈ C(I,Rd) : |x(t0)|∞ > a
)

= 0, and



16

(ii) for each fixedT > t0 andλ > 0, we have

lim
δ→0

sup
n≥1

Pn

(

x ∈ C(I,Rd) : w[t0,T ]∩I(x, δ) ≥ λ
)

= 0.

Remark.If the probability laws of a sequence{Xn}∞n=1 of continuous stochastic processes are

tight then we say that the sequence{Xn}∞n=1 is tight.

The following two technical lemmas have a general form that will allow us to use them

again in Section3.3.

Lemma 2.5.1. Assume that−τ ≤ t1 < t2, and thatX is a solution to (1.1) on (Ω,F , {Ft}, P )

with associated Brownian motionW . Then for anyδ, λ > 0, we have

P
(

w[t1,t2](X, δ) ≥ λ
)

≤ P

(

w[t1∧0,t2∧0](X, δ) + δ(C1 + C2‖X‖[(t1∨0)−τ,t2∨0],2) ≥
λ

2

)

+P






sup

t1∨0≤s<t≤t2∨0
|s−t|<δ

∣

∣

∣

∣

∫ t

s

σ(Xr)dW (r)

∣

∣

∣

∣

∞
≥ λ

2






. (2.18)

Proof. The conclusion is obvious ift2 ≤ 0, so we assume thatt2 > 0. Fix δ > 0 andλ > 0.

Then,

sup
s,t∈[t1,t2]
|s−t|<δ

|X(s) −X(t)|∞ ≤ w[t1∧0,t2∧0](X, δ) + sup
s,t∈[t1∨0,t2]

|s−t|<δ

|X(s) −X(t)|∞

≤ w[t1∧0,t2∧0](X, δ) + sup
t1∨0≤s<t≤t2

|s−t|<δ

Osc(X, [s, t])

≤ w[t1∧0,t2∧0](X, δ) + sup
t1∨0≤s<t≤t2

|s−t|<δ

Osc(I(X), [s, t])

≤ w[t1∧0,t2∧0](X, δ) + sup
t1∨0≤s<t≤t2

|s−t|<δ

∣

∣

∣

∣

∫ t

s

b(Xr)dr

∣

∣

∣

∣

∞

+ sup
t1∨0≤s<t≤t2

|s−t|<δ

∣

∣

∣

∣

∫ t

s

σ(Xr)dW (r)

∣

∣

∣

∣

∞

≤ w[t1∧0,t2∧0](X, δ) + δ
(

C1 + C2‖X‖[(t1∨0)−τ,t2],2

)

+ sup
t1∨0≤s<t≤t2

|s−t|<δ

∣

∣

∣

∣

∫ t

s

σ(Xr)dW (r)

∣

∣

∣

∣

∞
.
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The third inequality follows from Proposition2.3.1(i), while the fourth inequality follows from

the form ofI(X) as in (2.7). The linear growth condition (2.1) and the fact that|v|∞ ≤ |v|2 for

all v ∈ Rd were used for the fifth inequality. Therefore, for anyδ > 0, λ > 0, we have

P
(

w[t1,t2](X, δ) ≥ λ
)

= P






sup

s,t∈[t1,t2]
|s−t|<δ

|X(s) −X(t)|∞ ≥ λ







≤ P

(

w[t1∧0,t2∧0](X, δ) + δ
(

C1 + C2‖X‖[(t1∨0)−τ,t2∨0],2

)

≥ λ

2

)

+P






sup

t1∨0≤s<t≤t2
|s−t|<δ

∣

∣

∣

∣

∫ t

s

σ(Xr)dW (r)

∣

∣

∣

∣

∞
≥ λ

2






. (2.19)

Lemma 2.5.2. Assume that for some index setN and positive real numberT , we have a collec-

tion of closed subintervals{[sν , tν ], ν ∈ N} of R+ such thattν − sν = T for all ν ∈ N , and

we have a collection{Xν}ν∈N where for eachnu ∈ N ,Xν defined on(Ων ,Fν , {Fν
t }, P ν) is a

solutions to (1.1) with associated Brownian motionW ν, and{‖Xν‖[sν−τ,tν ],2}ν∈N is stochasti-

cally bounded, i.e.,

lim
a→∞

sup
ν∈N

P ν
(

‖Xν‖[sν−τ,tν ],2 > a
)

= 0.

Then for eachε, λ > 0, there is aδε,λ > 0 such thatδ ∈ (0, δε,λ] implies that for allν ∈ N ,

P ν






sup

sν≤s<t≤tν
|s−t|<δ

∣

∣

∣

∣

∫ t

s

σ(Xν
r )dW ν(r)

∣

∣

∣

∣

∞
≥ λ






< ε. (2.20)

Proof. We shall prove this by using a time change to transform the local martingales

{
∫ t

0
σi(Xν

r )dW ν(r), t ≥ 0

}

to Brownian motions (possibly run up to random times).

For eachν ∈ N , defineMν(t) = (Mν,1, . . . ,Mν,d)′(t) :=
∫ t

0 σ(Xν
s )dW ν(s) for all

t ≥ 0 so that

〈Mν,i〉(t) =

∫ t

0
|σi(Xν

s )|22ds. (2.21)

Fors ≥ 0, let Tν,i(s) = inf{t ≥ 0 : 〈Mν,i〉(t) > s} andGν,i
s := Fν

Tν,i(s)
.
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For eachν ∈ N andi = 1, . . . , d, let

{

{W (ν,i)(t),F (ν,i)
t , t ≥ 0},

(

Ω(ν,i),F (ν,i), P (ν,i)
)}

be a Brownian motion martingale on a filtered space satisfying the usual conditions. Define

Ω̃ν,i := Ων × Ω(ν,i), G̃ν,i := Fν ⊗ F (ν,i), andP̃ ν,i := P ν × P (ν,i), and letN ν,i be the set

of all subsets of null sets of̃P ν,i from G̃ν,i. SetF̃ν,i := σ
(

G̃ν,i ∪ N ν,i
)

, and for eacht ≥ 0,

G̃ν,i
t := ∩

s>t
σ
((

Fν
Tν,i(s)

⊗F (ν,i)
s

)

∪ N ν,i
)

, andF̃ν,i
t := ∩

s>t
σ
((

Fν
s ⊗F (ν,i)

0

)

∪ N ν,i
)

.

Consider the extended probability space(Ω̃ν,i, F̃ν,i, P̃ ν,i) and on it, the processes

M̃ν,i(ων , ω(ν,i)) := Mν,i(ων) andW̃ (ν,i)(ων , ω(ν,i)) := W (ν,i)(ω(ν,i)), which are adapted to

{F̃ν,i
t , t ≥ 0} and{G̃ν,i

t , t ≥ 0}, respectively, and have the same distributions underP̃ ν,i asMν,i

underP ν andW (ν,i) underP (ν,i), respectively. Also definẽTν,i(s) := inf{t ≥ 0 : 〈M̃ν,i〉(t) >
s} andS̃ν,i := lim

t→∞
〈M̃ν,i〉(t), so that, for instance,̃Tν,i(s)(ω

ν , ω(ν,i)) = Tν,i(s)(ω
ν), {T̃ν,i ≤

t} = {Tν,i ≤ t} × Ω(ν,i), andF̃ν,i

T̃ν,i(t)
⊂ G̃ν,i

t .

For eacht ≥ 0, 〈M̃ν,i〉(t) is a{G̃ν,i
s , s ≥ 0}-stopping time because

{〈M̃ν,i〉(t) ≤ s} = {T̃ν,i(s) ≥ t} ∈ F̃T̃ν,i(s)
⊂ G̃ν,i

s ,

and thusS̃ν,i = lim
n→∞

〈M̃ν,i〉(n) is also a{G̃ν,i
s }-stopping time.

The time-change theorem (see, e.g., Theorem 3.4.6 and Problem 3.4.7 in [22], or The-

orem V.1.7 in [38]) implies that

{

βν,i(t) := W̃ (ν,i)(t) − W̃ (ν,i)(t ∧ S̃ν,i) + M̃ν,i(T̃ν,i(t)), G̃ν,i
t , t ≥ 0

}

is a Brownian motion martingale, and thatβν,i
(

〈M̃ν,i〉(t)
)

= M̃ν,i(t).

Equation (2.21) and the linear growth bound (2.2) imply that for eacha > 0, on the

eventAa,ν,i := {‖Xν‖[sν−τ,tν ],∞ ≤ a} × Ω(ν,i) ∈ F̃ν,i, we have for anysν ≤ s < t ≤ tν ,

(C3 + C4a
2)(t− s) ≥ 〈M̃ν,i〉(t) − 〈M̃ν,i〉(s).

SinceM̃ν,i(t) = βν,i
(

〈M̃ν,i〉(t)
)

for eacht ≥ 0, we have on eachAa,ν,i that

w[sν ,tν ](M̃
ν,i, δ) = w[sν ,tν ](β

ν,i(〈M̃ν,i〉(·)), δ)

≤ w[〈M̃ν,i〉(sν),〈M̃ν,i〉(tν )](β
ν,i, δ(C3 + C4a

2))

≤ w[〈M̃ν,i〉(sν),〈M̃ν,i〉(sν)+(C3+C4a2)(tν−sν)](β
ν,i, δ(C3 + C4a

2)).
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Therefore for everya > 0,

P ν






sup

sν≤s<t≤tν
|s−t|<δ

∣

∣

∣

∣

∫ t

s

σ(Xν
r )dW ν(r)

∣

∣

∣

∣

∞
≥ λ






= P ν

(

w[sν ,tν ](M
ν , δ) ≥ λ

)

= P ν

(

max
i
w[sν ,tν ](M

ν,i, δ) ≥ λ

)

≤
d
∑

i=1

P ν
(

w[sν ,tν ](M
ν,i, δ) ≥ λ

)

=

d
∑

i=1

P̃ ν,i
(

w[sν ,tν ](M̃
ν,i, δ) ≥ λ

)

≤
d
∑

i=1

P̃ ν,i
(

w[〈M̃ν,i〉(sν),〈M̃ν,i〉(sν)+(C3+C4a2)T ](β
ν,i, δ(C3 + C4a

2)) ≥ λ,Aa,ν,i

)

+

d
∑

i=1

P̃ ν,i(Ac
a,ν,i)

≤
d
∑

i=1

P̃ ν,i
(

w[0,(C3+C4a2)T ](β
ν,i, δ(C3 + C4a

2)) ≥ λ
)

+
d
∑

i=1

P̃ ν,i(Ac
a,ν,i). (2.22)

The third inequality follows from the fact that〈M̃ν,i〉(sν) is a{G̃ν,i
t }-stopping time, and Brow-

nian motion restarted at a stopping time is a another Brownian motion. Since the set of random

variables{‖Xν‖[sν−τ,tν ],2}ν∈N is stochastically bounded, there is anaε big enough that

sup
ν∈N

P̃ ν,i(Ac
aε,ν,i) = sup

ν∈N

P ν(‖Xν‖[sν−τ,tτ ],2 > aε) <
ε

2d
for each i = 1, . . . , d.

Then since a single measure is tight, and{βν,i} all have the same distribution under their respec-

tive probability measures̃P ν,i, there is aδε,λ > 0 such thatδ ∈ (0, δε,λ] implies that

sup
ν∈N

P̃ ν,i
(

w[0,(C3+C4a2
ε)T ](β

ν,i, δ(C3 + C4a
2
ε))≥λ

)

<
ε

2d
for eachi = 1, . . . , d.

The result follows.

Lemma 2.5.3. Assume{xn}∞n=1 ⊂ Cd
I such that lim

n→∞
xn = x ∈ Cd

I , and for eachn ≥ 1, let

Pn be the distribution on the space(Cd
J × C0(R+,R

m),MJ ⊗ B(C0(R+,R
m))) of the pair

(Xxn ,W xn) associated with a solution of (1.1) that has initial conditionxn. Then{Pn}∞n=1 is

tight.

Proof. Fix ε > 0. Sincexn → x, the set{‖xn‖2 : n ≥ 1} is bounded,so that for each

fixed T ≥ 0, Lemma2.4.1 implies thatsup
n≥1

E[‖Xxn‖2
[−τ,T ],2] < ∞,so that the collection
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{‖Xxn‖[−τ,T ],2}∞n=1 is stochastically bounded. Because of the boundedness of{‖xn‖∞ : n ≥
1}, which follows fromxn → x asn→ ∞, we have

lim
a→∞

sup
n≥1

P (|Xxn(−τ)|∞ ≥ a) = lim
a→∞

sup
n≥1

P (|xn(−τ)|∞ ≥ a)

= 0. (2.23)

Lemma2.5.1implies that for anyδ, λ > 0 andn ≥ 1, we have

P
(

w[−τ,T ](X
xn , δ) ≥ λ

)

≤ P

(

wI(xn, δ) + δ
(

C1 + C2‖Xxn‖[−τ,T ],2

)

≥ λ

2

)

+P






sup

0≤s<t≤T
|s−t|<δ

∣

∣

∣

∣

∫ t

s

σ(Xxn
r )dW xn(r)

∣

∣

∣

∣

∞
≥ λ

2






. (2.24)

Sincexn → x in Cd
I , the set{xn : n ≥ 1} is precompact inCd

I , so that the Arzelà-

Ascoli theorem implies that there is aδ(1)ε,λ > 0 such thatwI(xn, δ) <
λ
4 for everyn ≥ 1 and

δ ∈ (0, δ
(1)
ε,λ). Then for eachδ ∈ (0, λ

4C1
∧ δ(1)ε,λ), we have

P

(

wI(xn, δ) + δ
(

C1 + C2‖Xxn‖[−τ,T ],2

)

≥ λ

2

)

≤ P

(

δ
(

C1 + C2‖Xxn‖[−τ,T ],2

)

≥ λ

4

)

= P

(

‖Xxn‖[−τ,T ],2 ≥
λ
4δ

− C1

C2

)

. (2.25)

Since
λ
4δ

−C1

C2
→ ∞ asδ → 0, the stochastic boundedness of{‖Xxn‖[−τ,T ],2} implies that there

is aδ(2)ε,λ ∈ (0, λ
4C1

∧ δ(1)ε,λ) such that for allδ ∈ (0, δ
(2)
ε,λ),

P

(

wI(xn, δ) + δ
(

C1 + C2‖Xxn‖[−τ,T ],2

)

≥ λ

2

)

<
ε

2
for all n ≥ 1. (2.26)

Lemma2.5.2implies that there is aδ(3)ε,λ > 0 such thatδ ∈ (0, δ
(3)
ε,λ] implies that

P






sup

0≤s<t≤T
|s−t|<δ

∣

∣

∣

∣

∫ t

s

σ(Xxn
r )dW xn(r)

∣

∣

∣

∣

∞
≥ λ

2






<

ε

2
for all n ≥ 1. (2.27)

Therefore, wheneverδ ∈ (0, δ
(2)
ε,λ ∧ δ(3)ε,λ], from (2.24) we have for alln ≥ 1,

P
(

w[−τ,T ](X
xn , δ) ≥ λ

)

<
ε

2
+
ε

2
= ε. (2.28)

Therefore, by Proposition2.5.1, the sequence of stochastic processes{Xxn} is tight.

Since each element of the sequence{W xn} has the same distribution, this sequence is tight as
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well. Therefore the sequence{(Xxn ,W xn)} is also tight (see [20], Lemma 3.1), which shows

that{Pn} is tight.

Given a continuous functionf : R+ → R that is locally of bounded variation, and

t ≥ 0, denote the total variation off up to time t by T Vt(f). We will use the following

proposition proved in [23] (Theorem 2.2 and Remark 2.3).

Proposition 2.5.2.Let(Ω,F , P ) be a complete probability space and for each integern ≥ 1, let

{Fn
t , t ≥ 0} be a filtration satisfying the usual conditions, and letXn, Sn be{Fn

t }-adapted pro-

cesses with sample paths inC(R+,R
d) andC(R+,R

m), respectively, such thatSn is an{Fn
t }-

semimartingale with decompositionSn = Mn + An, whereMn is an{Fn
t }-local martingale

andAn is an{Fn
t }-adapted process locally of bounded variation such that foreacht ≥ 0, the se-

quence of random variables{T V t(A
n)}∞n=1 is stochastically bounded. If(Xn, Sn) → (X,S) in

probability in the Skorokhod topology asn→ ∞, thenS is a semimartingale with respect to a fil-

tration to whichX andS are adapted, and(Xn, Sn,
∫ ·
0 X

n(s)dSn(s)) → (X,S,
∫ ·
0 X(s)dS(s))

in probability in the Skorokhod topology asn→ ∞.

Remark.Kurtz and Protter actually prove a more general theorem, andthe above proposition is

a simplification tailored to our needs.

Lemma 2.5.4. Assume that{xn}∞n=1 ⊂ Cd
I is such thatxn → x ∈ Cd

I asn → ∞. LetPn

be the law of the pair(Xxn ,W xn) associated with a solution to (1.1) having initial condition

Xxn
0 = xn. LetQ be any weak limit point of the sequence{Pn}∞n=1. Then,Q is the law of a

pair (X∗,W ∗) associated with a solution to (1.1) having initial conditionX∗
0 = x.

Proof. To simplify notation, we assume (by passing to a subsequence) thatPn → Q weakly as

n → ∞. The by the Skorokhod representation theorem, there is a complete probability space

(Ω∗,F∗, P ∗) andCd
J × C0(R+,R

m)-valued random elements{(Xn,W n)}∞n=1, and(X∗,W ∗)

on that probability space such that(Xn,W n) → (X∗,W ∗) P ∗-a.s. in the topology of uniform

convergence on compact time intervals, and such thatPn is the law of(Xn,W n) underP ∗ for

eachn ≥ 1, andQ is the law of(X∗,W ∗) underP ∗. In particular,

P ∗(X∗
0 = x) = P ∗

(

lim
n→∞

Xn
0 = x

)

≥ 1 −
∞
∑

n=1

P ∗(Xn
0 6= xn) = 1.

For eacht ≥ 0, defineFn
t = ∩

s>t
Fn,o

s whereFn,o
s is the sub-σ-algebra ofF∗ generated by

{(Xn(u),W n(u)) : u ≤ s} and the null sets ofF∗.
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Fix ε, λ > 0. DefineI(t) = x(0) +
∫ t

0 b(X
∗
s )ds +

∫ t

0 σ(X∗
s )dW ∗(s), t ≥ 0, and

for eachn ≥ 1, In(t) = xn(0) +
∫ t

0 b(X
n
s )ds +

∫ t

0 σ(Xn
s )dW n(s), t ≥ 0. By Section2.3,

Xn(·) = φ(In)(·).Then for eacht ≥ 0, λ > 0,

P ∗(|X∗(t) − φ(I)(t)|2 > (2 +Kℓ)λ)

≤ P ∗(|X∗(t) −Xn(t)|2 > λ) + P ∗(|Xn(t) − φ(In)(t)|2 > λ)

+P ∗(|φ(In)(t) − φ(I)(t)|2 > Kℓλ)

≤ P ∗(|X∗(t) −Xn(t)|2 > λ) + P ∗(‖In − I‖[0,t],2 > λ). (2.29)

The second inequality uses Proposition2.3.1.

SinceXn → X∗ P ∗-a.s., we obtainXn → X∗ in probability. Therefore for each

t ≥ 0, since the evaluation mapet is continuous, we haveXn(t) → X∗(t) in probability as

n→ ∞. Thus there is aN (1)
ε,λ (t) > 0 such that

P ∗(|X∗(t) −Xn(t)|2 > λ) <
ε

2
whenevern ≥ N

(1)
ε,λ(t). (2.30)

For eacht ≥ 0, we have that

P ∗(‖In − I‖[0,t],2 > λ)

≤ P ∗
(

|xn(0) − x(0)|2 +

∫ t

0
|b(Xn

s ) − b(X∗
s )|1ds >

λ

2

)

+P ∗
(

sup
s∈[0,t]

∣

∣

∣

∣

∫ s

0
σ(Xn

r )dW n(r) −
∫ s

0
σ(X∗

r )dW ∗(r)

∣

∣

∣

∣

2

>
λ

2

)

. (2.31)

Sincexn → x, we havexn(0) → x(0), so that there is aN (2)
ε,λ > 0 such that|xn(0) −

x(0)|2 < λ
4 whenevern ≥ N

(2)
ε,λ . Therefore, forn ≥ N

(2)
ε,λ

P ∗
(

|xn(0) − x(0)|2 +

∫ t

0
|b(Xn

s ) − b(X∗
s )|1ds >

λ

2

)

≤ P ∗
(
∫ t

0
|b(Xn

s ) − b(X∗
s )|1ds >

λ

4

)

. (2.32)

For eacht ≥ 0, there is a setΩ∗
t ∈ F of P ∗-measure 1 such that for allω ∈ Ω∗

t ,

‖Xn(ω)−X∗(ω)‖[−τ,t],2 → 0 asn→ ∞. We then have from the linear growth bound onb that

for eachn ≥ 1, s ∈ [0, t], ω ∈ Ω∗
t ,

|b(Xn
s (ω)) − b(X∗

s (ω))|1 ≤ d
1
2 |b(Xn

s (ω)) − b(X∗
s (ω))|2

≤ 2d
1
2C1 + d

1
2C2

(

‖Xn(ω)‖[−τ,t],2 + ‖X∗(ω)‖[−τ,t],2

)

≤ 2d
1
2C1 + d

1
2C2

(

sup
n≥1

‖Xn(ω)‖[−τ,t],2 + ‖X∗(ω)‖[−τ,t],2

)

,
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which is finite since‖Xn(ω) −X∗(ω)‖[−τ,t],2 → 0.

Since for eachs ∈ [0, t] andω ∈ Ω∗
t , Xn

s (ω) → X∗
s (ω) in Cd

I , the continuity ofb

implies that|b(Xn
s (ω)) − b(X∗

s (ω))|1 → 0, so that the dominated convergence theorem implies

that asn → ∞,
∫ t

0 |b(Xn
s ) − b(X∗

s )|1ds → 0 on Ω∗
t (i.e., P ∗-a.s.), and thus in probability.

Therefore there exists aN (3)
ε,λ(t) ≥ N

(2)
ε,λ such thatn ≥ N

(3)
ε,λ (t) implies that

P ∗
(

|xn(0) − x(0)|2 +

∫ t

0
|b(Xn

s ) − b(X∗
s )|1ds >

λ

2

)

<
ε

4
. (2.33)

SetΩ :=
∞
⋂

n=1
Ω∗

n, which also hasP ∗-measure one. For eacht ≥ 0, the function

ht : [0, t] × Cd
J → Cd

I , defined byht(s, f) := fs, is continuous (see, for instance, the proof of

Lemma 4.2 in [20]). Since for eachω ∈ Ω, {Xn(ω) : n ≥ 1} ∪ {X∗(ω)} is a compact set

in Cd
J, [0, t] × ({Xn(ω) : n ≥ 1} ∪ {X∗(ω)}) is also compact. Therefore its imageHt(ω) :=

{Xn
s (ω) : n ≥ 1, s ∈ [0, t]} ∪ {X∗

s (ω) : s ∈ [0, t]} underht is also compact. Therefore the

restriction ofσ toHt(ω) is uniformly continuous (see, e.g., [10], Theorem II.5.15).

Since the functionσ and the paths ofXn are continuous, the processes{Xn
s , s ≥

0} and {σ(Xn
s ), s ≥ 0} are continuous. As a consequence of the uniform continuity of σ

when restricted to eachHt(ω), σ(Xn
· ) → σ(X∗

· ), P ∗-a.s. (and thus in probability), in the

topology of uniform convergence on compact sets ofR+ (the Skorokhod topology). To see this,

let t ≥ 0, ω ∈ Ω, η > 0, δ(η, ω, t) > 0 such thaty, z ∈ Ht(ω) and‖y − z‖2 < δ(η, ω, t)

imply ‖σ(y) − σ(z)‖2 < η, and for eachδ > 0, ω ∈ Ω, let N(δ, ω, t) be big enough so

that sup
s∈[−τ,t]

|Xn(ω)(s) − X∗(ω)(s)|2 < δ for all n ≥ N(δ, ω, t). Then sup
s∈[0,t]

‖σ(Xn
s (ω)) −

σ(X∗
s (ω))‖2 < η for all n ≥ N(δ(η, ω, t), ω, t).

Since for eachω ∈ Ω∗, σ(Xn
s (ω)) is a continuous function ofs, (W n(s),Fn

s , s ≥
0) is anm-dimensional martingale, and(σ(Xn

· ),W n) → (σ(X∗
· ),W ∗) in probability in the

Skorokhod topology, Proposition2.5.2implies that there is a filtration{Ft, t ≥ 0} to whichX∗

andW ∗ are adapted, and with respect to which{W ∗(t),Ft, t ≥ 0} is a semimartingale, and that
∥

∥

∥

∥

∫ ·

0
σ(Xn

s )dW n(s) −
∫ ·

0
σ(X∗

s )dW ∗(s)

∥

∥

∥

∥

[0,t],2

→ 0 in probability, asn→ ∞.

Therefore there is anN (4)
ε,λ (t) > 0 such thatn ≥ N

(4)
ε,λ(t) implies that

P ∗
(

sup
s∈[0,t]

∣

∣

∣

∣

∫ s

0
σ(Xn

r )dW n(r) −
∫ s

0
σ(X∗

r )dW ∗(r)

∣

∣

∣

∣

2

>
λ

2

)

<
ε

4
. (2.34)

In fact,W ∗ is a martingale with respect to the filtration generated by(X∗,W ∗) since

this property holds for eachW n with respect to the filtration generated by(Xn,W n), and it is
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preserved in the limit by uniform integrability conferred by the fact thatW n is a standardm-

dimensional Brownian motion for eachn. Thus, whenevern ≥ N
(1)
ε,λ (t) ∨N (3)

ε,λ (t) ∨N (4)
ε,λ (t), it

follows from (2.29), (2.30), (2.31), (2.33), and (2.34) that

P ∗(|X∗(t) − φ(I)(t)| > (2 +Kℓ)λ)

≤ P ∗(|X∗(t) −Xn(t)|2 > λ) + P ∗(‖In − I‖[0,t],2 > λ)

< ε. (2.35)

Sinceε, λ > 0 were arbitrary, we have thatX∗(t) = φ(I)(t), P ∗-a.s. for eacht ≥ 0.

By consideringt ∈ Q ∩ R+, the continuity of the paths ofX∗ andφ(I)(t) imply thatX∗(t) =

φ(I)(t) for all t ≥ 0, P ∗-a.s., and thusX∗ is a solution of the SDDER (1.1).

Corollary 2.5.1. Assume that the sequence{xn} ⊂ Cd
I is such thatxn → x ∈ Cd

I asn → ∞.

Then ifP xn is the (unique) law of a solutionXxn to (1.1) with initial conditionXxn
0 = xn,

{P xn} converges weakly toP x, the unique law of a solutionXx to (1.1) with initial condition

Xx
0 = x.

Proof. This follows by a standard argument. Tightness of{P xn} follows from Lemma2.5.3

since the sequence of marginal distributions of a tight sequence is also a tight sequence. Since

each subsequence has a further subsequence that converges weakly to the same limit law, which

is P x by Lemma2.5.4, it follows that the original sequence converges.

Theorem 2.5.1.Under Assumptions2.1.1and2.1.2, for each continuous and bounded function

f : Cd
J → R, the functionx 7→ E[f(Xx)] =

∫

y∈Cd
J

f(y)P (Xx ∈ dy), x ∈ Cd
I , is a continuous

function onCd
I .

Proof. Let {xn}∞n=1 ⊂ Cd
I such that lim

n→∞
xn = x ∈ Cd

I . Then it follows immediately from the

Corollary thatE[f(Xxn)] → E[f(Xx)] asn→ ∞.

Corollary 2.5.2. Under Assumptions2.1.1 and 2.1.2, for each t ≥ 0 and continuous and

bounded functionf : Cd
I → R, the functionx 7→ E[f(Xx

t )] =
∫

Cd
I

f(y)P (Xx
t ∈ dy), is a

continuous function onCd
I .

Proof. This follows from the fact that the functiong := f ◦ pt is continuous and bounded onCd
J

if f is continuous and bounded onCd
I .
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2.6 Markov Property and Associated Semigroup

We devote this section to proving that under Assumptions2.1.1and2.1.2, equation

(1.1) generates a family of Markovian transition functions, generally defined as follows (see

[11]).

Definition 2.6.1. Let (E, E) be a Polish space with Borelσ-algebra generated by a metricρ, and

recall that we denote byCb(E) (resp.,Bb(E)) the bounded and continuous (resp. bounded and

Borel-measurable) real-valued functions onE, with norm‖f‖E = sup
x∈E

|f(x)|, for f ∈ Bb(E).

A family of Markovian transition functions on(E, E) is a family{Pt(·, ·), t ≥ 0} of functions

Pt : E × E → [0, 1], t ≥ 0, such that

(i) For eacht ≥ 0,Λ ∈ E , the functionx 7→ Pt(x,Λ) is measurable on(E, E),

(ii) For eacht ≥ 0, x ∈ E, the functionΛ 7→ Pt(x,Λ) is a probability measure onE ,

(iii) For eachs, t ≥ 0, x ∈ E,Λ ∈ E ,

Ps+t(x,Λ) =

∫

E

Ps(y,Λ)Pt(x, dy), (2.36)

(iv) For eachx ∈ E,Λ ∈ E , P0(x,Λ) = 1Λ(x).

For eachf ∈ Bb(E), t ≥ 0, we define

(Ptf)(x) =

∫

E

f(y)Pt(x, dy), for x ∈ E. (2.37)

We call{Pt, t ≥ 0} defined onBb(E) aMarkovian semigroupof linear operators if{Pt(·, ·), t ≥
0} is a family of Markovian transition functions.

Definition 2.6.2. A Markovian semigroup{Pt, t ≥ 0} onBb(E) is calledstochastically contin-

uousif

lim
t→0

Pt(x,B(x, ε)) = 1

for eachx ∈ E andε > 0.

The following proposition is proved in [11] (Proposition 2.1.1).

Proposition 2.6.1. A Markovian semigroup{Pt, t ≥ 0} is stochastically continuous if and only

if for eachf ∈ Cb(E) andx ∈ E, lim
t→0

(Ptf)(x) = f(x).

Lemma 2.6.1. If a Markovian semigroup{Pt, t ≥ 0} is stochastically continuous, then for each

x ∈ E andΛ ∈ E , the functiont 7→ Pt(x,Λ) is Borel measurable on[0,∞).
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Proof. Since{Pt} is Markovian, Proposition2.6.1 implies that the functiont 7→ Ptf(x) on

[0,∞) is right continuous for eachx ∈ E andf ∈ Cb(E). For an open setΛ ∈ E , the sequence

of continuous functions{fn}∞n=1, wherefn(x) := 1 ∧ nρ(x,Λc), x ∈ E, increases pointwise to

1Λ. Therefore by the monotone convergence theorem, asn→ ∞,

(Ptfn)(x) =

∫

E

fn(y)Pt(x, dy) ր
∫

E

1Λ(y)Pt(x, dy) = Pt(x,Λ),

for eachx ∈ E, t ≥ 0. For eachn ≥ 1, x ∈ E, the functiont 7→ (Ptfn)(x) is right continuous

and therefore measurable. Therefore the functiont 7→ Pt(x,Λ) = sup
n

(Ptfn)(x) is measurable.

SinceE is generated by the open sets inE, the result follows by a standard invocation of the

monotone class theorem.

We now explicitly define the family of Markovian transition functions (or equivalently,

the associated Markovian semigroup) induced by the SDDER (1.1) that we will work with hence-

forth. For each(x,Λ) ∈ Cd
I ×MI, define

Pt(x,Λ) = P x (Xx
t ∈ Λ) , t ≥ 0, (2.38)

where{(Xx, Y x,W x), (Ωx,Fx, {Fx
t }, P x)} yields a solution to (1.1) with initial condition

Xx
0 = x. Uniqueness in law implies thatPt is well-defined. Then conditions (ii) and (iv) of

Definition 2.6.1are clearly satisfied.

The remainder of this section is devoted to proving that{Pt} is a Feller continuous

and stochastically continuous semigroup of linear operators onBb(C
d
I ).

Lemma 2.6.2. For eachΓ ∈ MJ, the functionx 7→ P x(Xx ∈ Γ) is measurable.

Proof. Let ρ be a metric onCd
J inducing the same topology as that of uniform convergence on

compact sets. As in the proof of Lemma2.6.1, we first assume thatΓ is open, and we define

the continuous and bounded functionsfn(w) := 1 ∧ nρ(w,Γc), w ∈ Cd
J, for n = 1, 2, . . .. By

Theorem2.5.1, for eachn, E·[fn(X ·)] is continuous and therefore measurable. The sequence

of functionsfn ր 1Γ pointwise, so by the monotone convergence theorem,E·[fn(X ·)] ր
E·[1Γ(X ·)] = P ·(X · ∈ Γ), so thatP x(Xx ∈ Γ) = sup

n
Ex[fn(Xx)] is measurable inx.

Applying a monotone class theorem completes the proof.

Corollary 2.6.1. For eacht ≥ 0,Λ ∈ MI, the functionx 7→ Pt(x,Λ) is measurable.
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Proof. This follows from the fact that{w ∈ Cd
J : wt ∈ Λ} = p−1

t (Λ) ∈ MJ.

We have therefore shown that condition (i) of Definition2.6.1holds.

Lemma 2.6.3(Chapman-Kolmogorov Equation). For eachs, t ≥ 0,Λ ∈ MI, x ∈ Cd
I ,

Ps+t(x,Λ) =

∫

Cd
I

Ps(y,Λ)Pt(x, dy).

Proof. Define the canonical space(Ω := Cd
J ×C0(R+,R

m),F := B(Ω)). For eachx ∈ Cd
I , we

have a well-defined probability measure,P̄ x := P x ◦ (Xx,W x)−1, on(Ω,F). Define the coor-

dinate mapping process(X,W ) on (Ω,F) byX(ω(1), ω(2)) = ω(1) ∈ Cd
J andW (ω(1), ω(2)) =

ω(2) ∈ C0(R+,R
m), and defineF̄x := σ(F ∪N x) andF̄x

t := F̂x
t+, whereN x is the collection

of all subsets of̄P x-null sets ofΩ, andF̂x
t := σ (N x ∪ σ(X(s),W (s), s ≤ t)).

We claim that the process{X(t), t ≥ −τ} on (Ω, F̄x, {W (t), F̄x
t , t ≥ 0}, P̄ x) is a

solution to (1.1) with initial conditionX0 = x, P̄ x-a.s..

The usual conditions are satisfied by construction, as is theinitial condition, and

{W (t), F̄x
t , t ≥ 0} is a Brownian motion martingale under̄P x by the following.

For any0 ≤ s ≤ t andΓs ∈ F̂x
s , there is āΓs ∈ σ(X(r),W (r), r ≤ s) such that

P̄ x(Γs∆Γ̄s) = 0, where∆ denotes the symmetric difference. Then we have

EP̄ x

[W (t)1Γs ] = EP̄ x

[W (t)1Γ̄s
] = EP̄ x

[W (t)1{(X,W )∈Γ̄s}]

= EP x

[W x(t)1{(Xx,W x)∈Γ̄s}] = EP x

[W x(s)1{(Xx,W x)∈Γ̄s}], (2.39)

since{W x(t),Fx
t , t ≥ 0} is a martingale underP x and1{(Xx ,W x)∈Γ̄s} ∈ Fx

s . Proceeding in

reverse, we obtainEP̄ x
[W (t)1Γs ] = EP̄ x

[W (s)1Γs ], so that{W (t), F̂x
t , t ≥ 0} is a martingale

underP̄ x. Then Theorem II.2.8 in [38] implies that{W (t), F̄x
t , t ≥ 0} is a martingale under

P̄ x.

Since for eacht ≥ 0, EP x
[

∫ t

0 ‖σ(Xs)‖2
2ds
]

< ∞ by (2.2) and Lemma2.4.1, we

can take a suitable sequence of partitions ofR+ such that approximations to the stochastic inte-

gral process
{

∫ t

0 σ(Xx
s )dW x(s), t ≥ 0

}

converge uniformly on compact time intervalsP x-a.s..

Thus, for eachx ∈ Cd
I , there exists a subsequence{Ux,nxi}∞i=1 of the sequence of processes







Ux,n(t) :=
n2
∑

i=1

σ
(

Xx
i
n
∧t

)

(

W x

(

i+ 1

n
∧ t
)

−W x

(

i

n
∧ t
))

, t ≥ 0







, n ≥ 1,
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such that for eachT ≥ 0,

lim
i→∞

sup
0≤s≤T

∣

∣

∣

∣

Ux,nxi(s) −
∫ s

0
σ(Xx

r )dW x(r)

∣

∣

∣

∣

2

= 0, P x − a.s..

If we define the continuous processes






Un(t) :=
n2
∑

i=1

σ
(

X i
n
∧t

)

(

W

(

i+ 1

n
∧ t
)

−W

(

i

n
∧ t
))

, t ≥ 0







, n ≥ 1, (2.40)

then the triple(X,W, {Un}∞n=1) has the same distribution underP̄ x as(Xx,W x, {Ux,n}∞n=1)

has underP x. Therefore, for eachx ∈ Cd
I , we can define, on the probability space(Ω, F̄x, P̄ x),

the Itô integral process

∫ t

0
σ(Xs)dW (s) := 1Ax lim

i→∞
Unxi(t), t ≥ 0, (2.41)

where

Ax :=

{

lim
i→∞

sup
j≥i

sup
0≤s≤T

|Unxi(s) − Unxj(s)|2 = 0 for all T ≥ 0

}

. (2.42)

Since{F̄x
t , t ≥ 0} satisfies the usual conditions and̄P x(Ax) = 1, {

∫ t

0 σ(Xs)dW (s), t ≥ 0} is

adapted to{F̄x
t , t ≥ 0}. Then for eachx ∈ Cd

I ,

P̄ x

(

X(t) = X(0) +

∫ t

0
b(Xs)ds+

∫ t

0
σ(Xs)dW (s) + Y (t), for all t ≥ 0

)

= P̄ x

(

X(t) = X(0) +

∫ t

0
b(Xs)ds + lim

i→∞
Unxi(t) + Y (t), for all t ≥ 0

)

= P x

(

Xx(t) = Xx(0) +

∫ t

0
b(Xx

s )ds + lim
i→∞

Ux,nxi(t) + Y x(t), for all t ≥ 0

)

= P x

(

Xx(t) = Xx(0) +

∫ t

0
b(Xx

s )ds +

∫ t

0
σ(Xx

s )dW x(s) + Y x(t), for all t ≥ 0

)

= 1. (2.43)

Thus, (1.1) also holds for the processX on
(

Ω, F̄x, {F̄x
t }, P̄ x

)

with Brownian motion martin-

galeW , and the claim is proved.

Fix s, t ≥ 0 andx ∈ Cd
I . Define the Brownian motion{W t(r) := W (t + r) −

W (t), r ≥ 0}, which underP̄ x is a martingale with respect to the filtration{F̂x,t
r := F̂x

t+r, r ≥
0} (and thus also with respect to{F̄x,t

r := F̄x
t+r, r ≥ 0}), and defineXt(r) = X(t + r) for

r ∈ J, so thatXt is a weak solution to (1.1) on the probability space(Ω, F̄x, {F̄x,t
r , r ≥ 0}, P̄ x)

with Brownian motion martingaleW t and the (random) initial conditionXt
0 = Xt.
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Let {P̄ x
ω (Γ), ω ∈ Ω,Γ ∈ F} be a regular conditional probability distribution for̄P x

on (Ω,F) given theσ-algebra generated byXt, Gt := σ(X(s) : s ∈ [t − τ, t]). Since(Ω,F)

and(Cd
I ,MI) are countably determined standard spaces (they are Polish (and therefore Lusin)

spaces with their Borelσ-algebras), we have that̄P x
ω

({

ω′ ∈ Ω : Xt
0(ω

′) = Xt(ω)
})

= 1 for

P̄ x-a.aω ∈ Ω (see [21], Theorem 1.3.2, or [39], Theorem II.89.1). DefineN x,ω to be the set of

all subsets of̄P x
ω -null sets ofF , and defineF̂x,t,ω

r := σ (N x,ω ∪ σ(X(s),W (s), s ≤ t+ r)) for

eachr ≥ 0. We now show thatW t is a Brownian motion martingale under̄P x
ω for P̄ x-a.a.ω.

For P̄ x-a.a. ω ∈ Ω,
{

W t(r), F̂x,t,ω
r , r ≥ 0

}

is a martingale under̄P x
ω . Indeed, fix

r2 ≥ r1 ≥ 0. For anyΓ1 ∈ F̂x,t,ω
r1 andΓ2 ∈ Gt,

∫

Γ2

EP̄ x
ω

[(

EP̄ x
ω

[

W t(r2)
∣

∣F̂x,t,ω
r1

]

−W t(r1)
)

1Γ1

]

P̄ x(dω)

=

∫

Γ2

∫

Γ1

(

EP̄ x
ω

[

W t(r2)
∣

∣F̂x,t,ω
r1

]

(ω′) −W t(r1)(ω
′)
)

P̄ x
ω (dω′)P̄ x(dω)

=

∫

Γ2

∫

Γ1

(

W t(r2)(ω
′) −W t(r1)(ω

′)
)

P̄ x
ω (dω′)P̄ x(dω)

=

∫

Γ2

EP̄ x
ω
[

1Γ1

(

W t(r2) −W t(r1)
)]

P̄ x(dω)

=

∫

Γ2

EP̄ x [

1Γ1

(

W t(r2) −W t(r1)
) ∣

∣Gt

]

(ω)P̄ x(dω)

=

∫

Γ2

1Γ1(ω)
(

W t(r2)(ω) −W t(r1)(ω)
)

P̄ x(dω)

=

∫

Ω
1Γ2∩Γ1(ω)

(

W t(r2)(ω) −W t(r1)(ω)
)

P̄ x(dω)

= 0, (2.44)

sinceΓ1 ∩ Γ2 ∈ F̂x,t,ω
r1 , and

{

W t(r), F̂x,t,ω
r , r ≥ 0

}

is a martingale with respect tōP x. By

definition, the functionω 7→ P̄ x
ω (Γ) is Gt-measurable for eachΓ ∈ F . The integral comparison

theorem then implies that for̄P x-a.a. ω ∈ Ω, EP̄ x
ω [W t(r2)|F̂x,t,ω

r1 ] = W t(r1), P̄ x
ω -a.s.; i.e.,

{

W t(r), F̂x,t,ω
r , r ≥ 0

}

is a martingale with respect tōP x
ω for P̄ x-a.a.ω ∈ Ω. Again, Theorem

II.2.8 in [38] implies that
{

W t(r), F̄x,t,ω
r := F̂x,t,ω

r+ , r ≥ 0
}

is also a martingale under̄P x
ω for

P̄ x-a.a.ω ∈ Ω.

Let Γ0 ∈ Gt, and for eachi = 1, . . . ,m, letΓi ∈ σ
(

(

W t(s)
)i

: s ≥ 0
)

, theσ-algebra
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generated by(W t)i. Then,

∫

Γ0

(

P̄ x
ω

(

m∩
i=1

Γi

)

−
m
∏

i=1

P̄ x
ω (Γi)

)

P̄ x(dω)

=

∫

Γ0

(

P̄ x

(

m∩
i=1

Γi

∣

∣

∣

∣

Gt

)

(ω) −
m
∏

i=1

P̄ x(Γi|Gt)(ω)

)

P̄ x(dω)

=

∫

Γ0

(

P̄ x

(

m∩
i=1

Γi

)

−
m
∏

i=1

P̄ x(Γi)

)

P̄ x(dω)

= P̄ x(Γ0)

(

P̄ x

(

m∩
i=1

Γi

)

−
m
∏

i=1

P̄ x(Γi)

)

= 0, (2.45)

sinceW t is a Brownian motion under̄P x. We used the fact that under̄P x, Γi is independent

of F̂x,t,ω
0 for eachi sinceW t is (andXt ∈ F̂x,t,ω

0 ). Thus{W t(s), s ≥ 0} has independent

coordinates under̄P x
ω for P̄ x-a.a.ω.

Fix i ∈ {1, . . . ,m}, and let0 ≤ r0 < r1 < · · · < rn < ∞ andv ∈ Rn, and set

u2 :=
n
∑

j=1
v2
j (rj − rj−1). Then for anyΓ ∈ Gt,

∫

Γ



EP̄ x
ω



exp





√
−1

n
∑

j=1

vj
(

(W t)i(rj) − (W t)i(rj−1)
)







− exp

(−u2

2

)



 P̄ x(dω)

=

∫

Γ
EP̄ x



exp





√
−1

n
∑

j=1

vj
(

(W t)i(rj) − (W t)i(rj−1)
)





∣

∣

∣

∣

Gt



 (ω)P̄ x(dω)

−P̄ x(Γ) exp

(−u2

2

)

= EP̄ x



1Γ exp





√
−1

n
∑

j=1

vj
(

(W t)i(rj) − (W t)i(rj−1)
)









−P̄ x(Γ) exp

(−u2

2

)

= P̄ x(Γ)



EP̄ x



exp





√
−1

n
∑

j=1

vj
(

(W t)i(rj) − (W t)i(rj−1)
)







− exp

(−u2

2

)





= 0, (2.46)

and thus forP̄ x-a.a.ω ∈ Ω, underP̄ x
ω , ((W t)i(r1)−(W t)i(r0), . . . , (W

t)i(rn)−(W t)i(rn−1))

has a multivariate normal distribution with mean zero and covariances

EP̄ x
ω
[(

(W t)i(rj) − (W t)i(rj−1)
) (

(W t)i(rk) − (W t)i(rk−1)
)]

= δjk(rj − rj−1).
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In conclusion, there is a setΩx,t ∈ F such thatP̄ x(Ωx,t) = 1, and for eachω ∈ Ωx,t,

(W t(r), F̄x,t,ω
r , r ≥ 0) is a Brownian motion martingale on the probability space(Ω, F̄x,ω, P̄ x

ω ),

whereF̄x,ω is theP̄ x
ω -completion ofF .

For eachx ∈ Cd
I , define the process

∫ r

0
σ(Xt

u)dW t(u) := 1Ax lim
i→∞

(Unxi(t+ r) − Unxi(t)) , r ≥ 0, (2.47)

whereAx is defined as in line (2.42), andUn is defined as in line (2.40). This process can

be defined on the probability space(Ω, F̄x, P̄ x), or on(Ω, F̄x,ω, P̄ x
ω ) for anyω ∈ Ωx,t. Then

as above, forP̄ x-a.a. ω ∈ Ωx,t, P̄ x
ω (Ax) = 1 and{

∫ r

0 σ(Xt
u)dW t(u), r ≥ 0} is adapted to

{F̄x,t,ω
r , r ≥ 0}.

If we defineY t(r) := Y (t+ r)− Y (t), r ≥ 0, then forP̄ x-a.a.ω ∈ Ω, (Xt,W t, Y t)

on (Ω, F̄x,ω, {F̄x,t,ω
r , r ≥ 0}, P̄ x

ω ) satisfies (i)-(iv) of Definition2.1.1. For eachΓ ∈ Gt,
∫

Γ
P̄ x

ω

(

Xt(r) = Xt(0) +

∫ r

0
b(Xt

u)du+

∫ r

0
σ(Xt

u)dW t(u) + Y t(r), for all r ≥ 0

)

P̄ x(dω)

=

∫

Γ
P̄ x

(

Xt(r) = Xt(0) +

∫ r

0
b(Xt

u)du+

∫ r

0
σ(Xt

u)dW t(u) + Y t(r), r ≥ 0

∣

∣

∣

∣

Gt

)

(ω)P̄ x(dω)

= P̄ x

(

Γ ∩
{

Xt(r) = Xt(0) +

∫ r

0
b(Xt

u)du+

∫ r

0
σ(Xt

u)dW t(u) + Y t(r), r ≥ 0

})

= P̄ x

(

Γ ∩
{

X(t+ r) = X(t) +

∫ t+r

t

b(Xu)du+

∫ t+r

t

σ(Xu)dW (u)+Y (t+ r) − Y (t), r ≥ 0

})

= P̄ x(Γ). (2.48)

The last equality follows from equality (2.43). Therefore, forP̄ x-a.a. ω ∈ Ω, Xt solves (1.1)

with initial conditionXt
0 = Xt(ω) on the probability space(Ω, F̄x,ω, {F̄x,t,ω

r , r ≥ 0}, P̄ x
ω ) with

driving Brownian motion martingale{W t(r), F̄x,t,ω
r , r ≥ 0}.

By uniqueness in law, for̄P x-a.a. ω ∈ Ω, P̄ x
ω (Xt ∈ Γ) = P̄Xt(ω)(X ∈ Γ) for

all Γ ∈ MJ. Corollary 2.6.1and the measurability ofω 7→ Xt(ω) imply that the mapω 7→
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Ps(Xt(ω),Λ) = P̄Xt(ω)(Xs ∈ Λ) is Gt-measurable for eachΛ ∈ MI. Thus,

Ps+t(x,Λ) = P̄ x(Xs+t ∈ Λ)

= P̄ x(Xt
s ∈ Λ)

=

∫

Ω
P̄ x

ω (Xt
s ∈ Λ)P̄ x(dω)

=

∫

Ω
P̄Xt(ω)(Xs ∈ Λ)P̄ x(dω)

=

∫

Cd
I

P̄ y(Xs ∈ Λ)Pt(x, dy)

=

∫

Cd
I

Ps(y,Λ)Pt(x, dy). (2.49)

We have therefore shown that each condition (i)-(iv) of Definition 2.6.1 holds, and

therefore{Pt(x,Λ), t ≥ 0, x ∈ Cd
I ,Λ ∈ MI} is a family of Markovian transition functions,

which then generates a semigroup{Pt, t ≥ 0} of linear operators onBb(C
d
I ). Corollary2.5.2

implies that this semigroup is Feller continuous.

Definition 2.6.3. Given a metric spaceE, a Markovian semigroup{Pt, t ≥ 0} of linear operators

onBb(E) is calledFeller continuousif for any f ∈ Cb(E) andt ≥ 0, Ptf(x) is a continuous

function ofx.

Corollary 2.6.2. The semigroup induced by the SDDER (1.1) is Feller continuous.

Remark.The argument in Theorem 1 of Section 2.3 of [8] can be used to show that any Feller

continuous Markov process with continuous paths is also a strong Markov process.

Lemma 2.6.4.The semigroup{Pt, t ≥ 0} induced by the SDDER (1.1) is stochastically contin-

uous.

Proof. By the definition of a solution, the solutionXx to (1.1) with initial condition x ∈ Cd
I

is continuous. For eacht ≥ 0, the functionpt : Cd
J → Cd

I (recall thatpt(f) := ft) is also

continuous (see [20], Lemma 4.2). Therefore the functiont 7→ Xx
t (ω) is continuous for each

ω. So for anyf ∈ Cb(C
d
I ), the functiont 7→ f(Xt(ω)) is continuous for eachω. It follows by

the bounded convergence theorem thatlim
t→0+

(Ptf)(x) = lim
t→0+

Ex[f(Xx
t )] = f(x). The result

follows by Proposition2.6.1.



Chapter 3

Stationary Distributions

This chapter is devoted to defining stationary distributions for the SDDER (1.1), and

to exhibiting a technique often used to prove that a stationary distribution exists. This involves

precompactness of a sequence of averaging measures. A sufficient condition for this precom-

pactness is provided in Theorem3.3.1. More specific conditions on the coefficientsb andσ are

later given in Chapter4. Assumptions2.1.1and2.1.2are assumed throughout this chapter, and

{Pt(x,Λ) : x ∈ Cd
I ,Λ ∈ MI, t ≥ 0} is the family of Markovian transition functions induced by

the SDDER (1.1).

3.1 Definition of a Stationary Distribution

For eacht ≥ 0 and probability measureµ on (Cd
I ,MI), consider the probability

measureµPt on (Cd
I ,MI) defined by

(µPt)(Λ) =

∫

Cd
I

Pt(x,Λ)µ(dx), for Λ ∈ MI.

Corollary2.6.1shows the required measurability for this integral to be meaningful.

Definition 3.1.1. A stationary distribution for (1.1) is a probability measureπ on(Cd
I ,MI) such

that(πPt)(Λ) = π(Λ) for all t ≥ 0 andΛ ∈ MI.

3.2 Krylov-Bogulyubov Measures

A common method for showing theexistenceof a stationary distribution for a Markov

process is to exhibit a limit point of a sequence of Krylov-Bogulyubov measures ([3, 11, 20, 37]).
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In light of that, givenxo ∈ Cd
I andT > 0, we define the Krylov-Bogulyubov probability measure

Qxo

T on (Cd
I ,MI) by

Qxo

T (Λ) :=
1

T

∫ T

0
Pu(xo,Λ)du (3.1)

for all Λ ∈ MI.

Remark.The integral in expression (3.1) is well-defined since the functionu 7→ Pu(xo,Λ) is

measurable by Lemmas2.6.1and2.6.4, and it is bounded by one.

The following proposition justifies a “Fubini theorem” (equality (3.3)), which will be

used in the proof of Theorem3.2.1.

Proposition 3.2.1. For eachf ∈ Bb(C
d
I ) and probability measureµ on Cd

I ,
∫

Cd
I

f(x)(µPt)(dx) =

∫

Cd
I

(Ptf)(y)µ(dy). (3.2)

Proof. If f = 1Λ for someΛ ∈ MI, then (3.2) follows from the definitions ofµPt andPtf . By

the linearity of the integral, (3.2) also holds for simplef . The result now follows by invoking a

monotone class theorem.

Therefore, for eachf ∈ Bb(C
d
I ) and probability measureµ onCd

I ,
∫

x∈Cd
I

∫

y∈Cd
I

f(x)Pt(y, dx)µ(dy) =

∫

Cd
I

f(x)(µPt)(dx)

=

∫

Cd
I

(Ptf)(y)µ(dy)

=

∫

y∈Cd
I

∫

x∈Cd
I

f(x)Pt(y, dx)µ(dy). (3.3)

Theorem 3.2.1.Assume that for somexo ∈ Cd
I and some sequence{Tn}∞n=1 such thatTn ր ∞

asn → ∞, the sequence{Qxo

Tn
}∞n=1 converges weakly asn → ∞ to some probability measure

πxo on (Cd
I ,MI). Thenπxo is a stationary distribution for the SDDER (1.1).

Proof. We use a standard argument.

By Theorem 1.2 of [5], it suffices to show that for any bounded and continuous real-

valued functionf onCd
I ,

∫

Cd
I

f(x)(πxoPt)(dx) =

∫

Cd
I

f(x)πxo(dx) for all t ≥ 0. (3.4)
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So fix t ≥ 0, and letf : Cd
I → R be bounded and continuous. Then,

∫

Cd
I

f(x)(πxoPt)(dx) =

∫

Cd
I

(Ptf)(y)πxo(dy)

= lim
n→∞

∫

Cd
I

(Ptf)(y)Qxo

Tn
(dy)

= lim
n→∞

1

Tn

∫ Tn

0

∫

Cd
I

(Ptf)(y)Pu (xo, dy) du

= lim
n→∞

1

Tn

∫ Tn

0

∫

Cd
I

∫

Cd
I

f(x)Pt (y, dx)Pu (xo, dy) du

= lim
n→∞

1

Tn

∫ Tn

0

∫

Cd
I

f(x)Pt+u (xo, dx) du

= lim
n→∞

1

Tn

∫ t+Tn

v=t

∫

Cd
I

f(x)Pv (xo, dx) dv

= lim
n→∞

1

Tn

∫ Tn

0

∫

Cd
I

f(x)Pv (xo, dx) dv

+ lim
n→∞

1

Tn

∫ t+Tn

Tn

∫

Cd
I

f(x)Pv (xo, dx) dv

− lim
n→∞

1

Tn

∫ t

0

∫

Cd
I

f(x)Pv (xo, dx) dv

= lim
n→∞

∫

Cd
I

f(x)Qxo

Tn
(dx) + 0 − 0

=

∫

Cd
I

f(x)πxo(dx),

thus proving (3.4). Here, the second equality follows since by the the Feller continuity of the

semigroup (Corollary2.6.2), (Ptf)(·) is a continuous function. Equality (3.3) and the Markov

property (2.36) were used for the fifth equality.

3.3 Tightness Criterion for Krylov-Bogulyubov Measures

For eachxo ∈ Cd
I , letXxo together with Brownian motionW xo define a solution to

(1.1) with initial conditionXxo ≡ xo on some filtered probability space(Ωxo,Fxo , {Fxo
t }, P xo).

The following theorem provides conditions guaranteeing tightness of the Krylov-Bogu-

lyubov measures, and its proof uses Lemmas2.5.1and2.5.2. Kushner ([25]) shows tightness

of these measures under the assumption thatb andσ are bounded. The linear growth conditions
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(2.1) and (2.2) allow us to bound the oscillations ofXxo by moments of‖Xxo
t ‖∞, assuming the

latter are uniformly bounded.

Theorem 3.3.1. Fix xo ∈ Cd
I and assume thatsup

t≥0
Exo [‖Xxo

t ‖p
2] < ∞ for somep > 0.

Then for any sequence{Tn}∞n=1 in (0,∞) increasing to∞, the sequence{Qxo

Tn
}∞n=1 of Krylov-

Bogulyubov measures is tight.

Proof. Fix ε, λ > 0.

By Markov’s inequality, for anya > 0,

Qxo

T

(

x ∈ Cd
I : |x(0)|∞ > a

)

=
1

T

∫ T

0
P xo (|Xxo(s)|∞ > a) ds

≤ 1

T

∫ T

0

1

ap
Exo [|Xxo(s)|p∞] ds

≤ 1

ap
sup
t≥0

Exo [|Xxo(t)|p∞]

≤ 1

ap
sup
t≥0

Exo [|Xxo(t)|p2] .

The last term tends to zero asa→ ∞, independently ofT . This establishes that condition (i) of

Proposition2.5.1holds forPn = Qxo

Tn
, n ≥ 1.

Fix u ≥ τ . Sinceu − τ ≥ 0, w[(u−τ)∧0,u∧0](X
xo , δ) = 0, so Lemma2.5.1implies

that for anyδ > 0 we have

P xo (wI(X
xo
u , δ) ≥ λ) = P xo

(

w[u−τ,u](X
xo , δ) ≥ λ

)

≤ P xo

(

δ
(

C1 + C2‖Xxo‖[u−2τ,u],2

)

≥ λ

2

)

+P xo






sup

u−τ≤s<t≤u
|s−t|<δ

∣

∣

∣

∣

∫ t

s

σ(Xxo
r )dW xo(r)

∣

∣

∣

∣

∞
≥ λ

2






. (3.5)

By using Markov’s inequality, the assumption thatsup
t≥0

Exo [‖Xxo
t ‖p

2] <∞ implies that

sup
t≥τ

P xo
(

‖Xxo‖[t−2τ,t],2 > a
)

≤ 1

ap
sup
t≥τ

Exo

[

‖Xxo‖p
[t−2τ,t],2

]

≤ 1

ap
sup
t≥τ

(

Exo

[

‖Xxo‖p
[t−τ,t],2

]

+Exo

[

‖Xxo‖p
[t−2τ,t−τ ],2

])

≤ 2

ap
sup
t≥0

Exo

[

‖Xxo‖p
[t−τ,t],2

]

=
2

ap
sup
t≥0

Exo [‖Xxo
t ‖p

2] ,
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which approaches zero asa→ ∞, so that{‖Xxo‖[t−2τ,t],2 , t ≥ τ} is stochastically bounded.

For0 < δ < λ
4C1

, we have from inequality (B.7),

P xo

(

δ
(

C1 + C2‖Xxo‖[u−2τ,u],2

)

≥ λ

2

)

= P xo

(

‖Xxo‖[u−2τ,u],2 ≥ λ− 2C1δ

2C2δ

)

.

Then stochastic boundedness from above implies that there is aδ(1)ε,λ ∈ (0, λ
2C1

) such that

sup
u≥τ

P xo

(

δ
(

C1 + C2‖Xxo‖[u−2τ,u],2

)

≥ λ

2

)

<
ε

4

for all δ ∈ (0, δ
(1)
ε,λ].

Lemma2.5.2implies that there is aδ(2)ε,λ > 0 such that wheneverδ ∈ (0, δ
(2)
ε,λ], we have

sup
u≥τ

P xo






sup

u−τ≤s<t≤u
|s−t|<δ

∣

∣

∣

∣

∫ t

s

σ(Xxo
r )dW xo(r)

∣

∣

∣

∣

∞
≥ λ

2






<

ε

4
. (3.6)

It follows that

P xo (wI(X
xo
u , δ) ≥ λ) <

ε

2

whenever0 < δ < δε,λ := δ
(1)
ε,λ ∧ δ(2)ε,λ andu ≥ τ .

For anyT ≥ 2τ
ε
∨ τ and0 < δ < δε,λ, on combining the above we have

Qxo

T

(

x ∈ Cd
I : wI(x, δ) ≥ λ

)

=
1

T

∫ T

0
P xo (wI(X

xo
u , δ) ≥ λ) du

=
1

T

∫ τ

0
P xo (wI(X

xo
u , δ) ≥ λ) du

+
1

T

∫ T

τ

P xo (wI(X
xo
u , δ) ≥ λ) du

≤ τ

T
+

1

T

∫ T

τ

ε

2
du

≤ ε

2
+
T − τ

T

ε

2

≤ ε. (3.7)

It follows that condition (ii) of Proposition2.5.1 holds, wherePn = Qxo

Tn
, n ≥ 1, for any

Tn ր ∞. Hence,{Qxo

Tn
}∞n=1 is tight.

Remark.Obvious modifications of the above proof yield the same result in the case that

sup
t≥0

Exo [‖Xxo
t ‖p

2] <∞ is replaced bysup
t≥0

Exo [f (‖Xxo
t ‖2)] <∞, wheref : R+ → R+ is any

strictly increasing function such thatlim
t→∞

f(t) = ∞; e.g., a sufficient condition for tightness is

thatsup
t≥0

Exo
[

(log(‖Xxo
t ‖2))

+] <∞.
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3.4 Sufficient Conditions for Existence of a Stationary Distribution

We combine Theorems3.2.1and3.3.1to obtain the following corollary.

Corollary 3.4.1. Assume that Assumptions2.1.1and 2.1.2hold, and that there existxo ∈ Cd
I

andp > 0 such thatsup
t≥0

Exo [‖Xxo
t ‖p

2] < ∞. Then there exists a stationary distribution for the

SDDER (1.1).

Proof. Theorem3.3.1implies that for each sequence{Tn}∞n=1 such thatTn ր ∞ asn→ ∞, the

sequence{Qxo

Tn
}∞n=1 is tight. Therefore, Prohorov’s theorem implies that thereis a subsequence

{Tnk
}∞k=1 such that{Qxo

Tnk
}∞k=1 converges weakly ask → ∞ to some probability measureπxo

on (Cd
I ,MI). Theorem3.2.1then implies thatπxo is a stationary distribution for the SDDER

(1.1).

Thus, to ensure existence of a stationary distribution, we need only have a uniform (in

t ≥ 0) moment bound on‖Xt‖2
2, and Chapter4 has examples of different sets of assumptions

on b andσ that are sufficient to guarantee such uniform moment bounds.One thing to notice

about each of these sets of assumptions is that beyond the basic Assumptions2.1.1and2.1.2,

there are no restrictions on the coefficientsb andσ on the set{x ∈ Cd
I : |x(0)|2 < M}, where

M is arbitrarily large. This freedom is possible because the uniform bound on the moments of

‖Xt‖2
2 just needs to be finite.



Chapter 4

Moment Bounds

Throughout this chapter, we assume thatX is a solution of the SDDER (1.1) with

a possibly random initial conditionX0. We give sufficient conditions onb andσ that yield

moment bounds on‖Xt‖2 uniformly in t ≥ 0. Section4.1 introduces an important auxiliary

process, the overshoot process, and develops preliminary results on the “positive oscillation” of

a path that are used for obtaining such bounds. Sections4.2 and4.3 develop moment bounds

under the assumption that each component ofb has a term providing a push in the negative

direction (towards zero) on the set{x ∈ Cd
I : |x(0)|2 ≥ M} for someM > 0. Sections4.2and

4.3 are distinguished by differences in the assumptions made onthe restoring force and on the

additional terms composingb and the assumptions onσ. Section4.2allows the additional terms

to grow (in a sufficiently controlled manner) but requires the negative push at timet to be at least

proportional to a value lying in the range of the segmentXt, all on{x ∈ Cd
I : |x(0)|2 ≥M}. In

Section4.3, ‖σ‖2 and the components ofb are bounded above and the negative push is strictly

negative (uniformly), all on{x ∈ Cd
I : |x(0)|2 ≥M}. This section also has stronger conclusions

in the form of exponential moment bounds.

4.1 Overshoot and Positive Oscillation

In this section, we introduce two concepts that will be used frequently in what follows.

The overshoot process will enable us to make use of conditions onb andσ that only hold on

{x ∈ Cd
I : |x(0)|∞ ≥ M} for someM > 0. The concept of positive oscillation is a convenient

tool for studying theincreaseof each component of a reflected process.
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4.1.1 Overshoot Process

Let M̃ ≥ 0. For eachi ∈ {1, . . . , d}, we ignore the dynamics ofXi whenXt is in the

set{x ∈ Cd
I : xi(0) ≤ M̃} by truncatingXi as follows. For eachi, define the overshoot,Zi, of

Xi by

Zi(t) :=
(

Xi(t) − M̃
)+

, for t ≥ −τ. (4.1)

Part (iv) of Definition2.1.1implies that
∫ t

0 1{Xi(s)>M̃}dY
i(s) = 0 for eacht ≥ 0 and

i = 1, . . . , d. Thus, by Tanaka’s formula for continuous semimartingales(see, e.g., Theorem 1.2

of Chapter VI in [38]), we have thatP -a.s., for allt ≥ 0,

dZi(t) = 1{Xi(t)>M̃}b
i(Xt)dt+ 1{Xi(t)>M̃}σ

i(Xt)dW (t) + dLi(t), (4.2)

whereLi is a constant multiple of the local time ofXi at M̃ , which can increase only when

Xi(·) is atM̃ , and hence only whenZi(·) is zero (see, e.g., Proposition VI.1.3 in [38]).

The following application of Itô’s formula will be useful in Sections4.2and4.3. For

eacht ≥ 0,

d(Zi(t))2 = 2Zi(t)dZi(t) + d〈Zi〉(t)

= 2Zi(t)bi(Xt)dt+ 2Zi(t)σi(Xt)dW (t) + 2Zi(t)dLi(t)

+1{Xi(t)>M̃}
∣

∣σi(Xt)
∣

∣

2

2
dt

= 2Zi(t)bi(Xt)dt+ 2Zi(t)σi(Xt)dW (t)+ 1{Xi(t)>M̃}
∣

∣σi(Xt)
∣

∣

2

2
dt, (4.3)

where〈Zi〉 denotes the quadratic variation process for ofZi, and we have used the fact thatLi

can increase only whenZi is at zero. Thus

d
(

|Z(t)|22
)

= d
(

(Z1(t))2 + · · · + (Zd(t))2
)

= 2(Z(t))′b(Xt)dt+ 2(Z(t))′σ(Xt)dW (t)

+
d
∑

i=1

1{Xi(t)>M̃}
∣

∣σi(Xt)
∣

∣

2

2
dt. (4.4)

4.1.2 Positive Oscillation

We now introduce the notion of the positive oscillation (or largest increase) of a path

over an interval. This refinement of the oscillation of a path(1.3) is well suited to our problem,

and it still obeys an inequality analogous to part (i) of Proposition2.3.1.



41

Definition 4.1.1. Given a pathx ∈ C([a1, a2],R), define thepositive oscillation ofx over

[a1, a2] by

Osc+(x, [a1, a2]) = sup
a1≤s≤t≤a2

(x(t) − x(s)).

Remark.Note that there is no absolute value in the definition of Osc+, so that we have the

following obvious inequality:

Osc+(x, [a1, a2]) ≤ Osc(x, [a1, a2]), x ∈ C([a1, a2],R).

Remark.We also have the following inequalities: for allx ∈ Cd
I andi = 1, . . . , d,

Osc+(xi, I) ≤ ‖xi‖I ≤ ‖x‖2, and (4.5)

‖xi‖I ≤ xi(−τ) + Osc+(xi, I). (4.6)

We have the following property of Osc+ when it is applied to a reflected path.

Lemma 4.1.1. Fix 0 ≤ t1 < t2 <∞. Suppose thatx, y, z ∈ C([t1, t2],R) such that

(i) z(t) = x(t) + y(t) ∈ [0,∞) for all t ∈ [t1, t2],

(ii) y(t1) ≥ 0, andy(·) is nondecreasing, and

(iii) y(·) can only increase whenz is at zero:

y(t) = y(t1) +

∫ t

t1

1{0}(z(s))dy(s), for all t ∈ [t1, t2].

Then,

Osc+(z, [t1, t2]) ≤ Osc+(x, [t1, t2]). (4.7)

Proof. By continuity ofz and compactness of the triangle{(s, t) : t1 ≤ s ≤ t ≤ t2}, there exist

s, t ∈ [t1, t2] such thats ≤ t and Osc+(z, [t1, t2]) = (z(t) − z(s)). If s = t, then the inequality

(4.7) is clear. So we suppose thats < t. Then there are two cases to consider.

Case 1: Assume thaty(s) = y(t). Then

z(t) − z(s) = x(t) − x(s)

≤ Osc+(x, [t1, t2]). (4.8)
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Case 2: Suppose thaty(s) < y(t). Then there isu ∈ [s, t] such thatz(u) = 0, by (iii).

Let u′ = sup{v ≤ t : z(v) = 0}. Thenu′ ∈ [u, t], z(u′) = 0, andz(v) > 0 for all v ∈ (u′, t].

Thus,y cannot increase on(u′, t] by (iii), and so by continuity,y(u′) = y(t). Then we have that

z(t) − z(s) ≤ z(t)

= z(t) − z(u′)

= x(t) − x(u′) + y(t) − y(u′)

= x(t) − x(u′)

≤ Osc+(x, [t1, t2]), (4.9)

where we have used the facts thatz(s) ≥ 0, z(u′) = 0, andy(t) − y(u′) = 0.

We will also need the following technical lemma.

Lemma 4.1.2. Suppose thatX = {X(t), t ∈ J} is a solution of the SDDER (1.1). Then for

eachi = 1, . . . , d andM̂ ≥ 0, for any0 ≤ t1 < t2 <∞, P -a.s.,

Osc+(Xi, [t1, t2]) ≤ M̂ +

∫ t2

t1

1{Xi(u)>M̂}
(

bi(Xu)
)+
du

+ sup
t1≤r<s≤t2

∫ s

r

1{Xi(u)>M̂}σ
i(Xu)dW (u), (4.10)

and for anyt ≥ 0,

Osc+(Xi, [t− τ, t]) ≤ Osc+(Xi
0, I) + M̂ +

∫ t

(t−τ)+
1{Xi(u)>M̂}(b

i(Xu))+du

+ sup
(t−τ)+≤r<s≤t

∫ s

r

1{Xi(u)>M̂}σ
i(Xu)dW (u). (4.11)

Proof. Fix i ∈ {1, . . . , d}, M̂ ≥ 0, 0 ≤ t1 < t2 < ∞. In the definition ofZ, setM̃ = M̂ , so

thatZi(·) := (Xi(·) − M̂)+. Then,

Osc+(Xi, [t1, t2]) ≤ M̂ + Osc+(Zi, [t1, t2]). (4.12)

The inequality (4.12) can be readily verified by considerings ≤ t in [t1, t2] such that the left

hand side above is equal toXi(t)−Xi(s) and then considering the three cases: (a)Xi(t) < M̂ ,

(b) Xi(t) ≥ M̂ andXi(s) ≥ M̂ , and (c)Xi(t) ≥ M̂ andXi(s) < M̂ . Thus, it suffices to

estimate Osc+(Zi, [t1, t2]).
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SinceP -a.s. (4.2) holds andLi can increase only whenZi is zero, we may apply

Lemma4.1.1to yieldP -a.s.,

Osc+(Zi, [t1, t2]) ≤ Osc+(I i, [t1, t2]), (4.13)

where

I i(t) := Zi(0) +

∫ t

0
1{Xi(s)>M̂}b

i(Xs)ds +

∫ t

0
1{Xi(s)>M̂}σ

i(Xs)dW (s), (4.14)

for t ≥ 0. Now,

Osc+(I i, [t1, t2]) ≤
∫ t2

t1

1{Xi(u)>M̂}(b
i(Xu))+du

+ sup
t1≤r<s≤t2

(∫ s

r

1{Xi(u)>M̂}σ
i(Xu)dW (u)

)

. (4.15)

This establishes (4.10). Inequality (4.11) follows from (4.10) and the observation that fort ≥ 0,

Osc+(Xi, [t− τ, t]) ≤ Osc+(Xi, I) + Osc+(Xi, [(t− τ)+, t]). (4.16)

4.2 Bounded Moments whenb and σ Satisfy an Integral Growth

Condition

Throughout this section, we assume that the coefficientsb, σ satisfy Assumption4.2.1

below.

4.2.1 Assumptions onb and σ

Assumption 4.2.1.There exist non-negative constantsB0, B1, B1,1, . . . , B1,d, B2,1, . . . , B2,d,

C0, C2,1, . . . , C2,d, M , constantsq1 ∈ (0, 1], q2 ∈ (0, 2], probability measuresµ1
1, . . . , µ

d
1,

µ1
2, . . . , µ

d
2 on (I,B(I)), and a measurable functionℓ : Cd

I → Rd
+, such that for eachx ∈ Cd

I

andi = 1, . . . , d, ℓi(x) ∈ xi(I) := {xi(s), s ∈ I} for eachi, and

(i) wheneverxi(0) ≥M , we have

bi(x) ≤ B0 −B1x
i(0) −B1,iℓ

i(x) +B2,i

∫ 0

−τ

|x(r)|q1
2 µ

i
1(dr), (4.17)
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(ii) wheneverxi(0) ≥M , we have

∣

∣σi(x)
∣

∣

2

2
≤ C0 +C2,i

∫ 0

−τ

|x(r)|q2
2 µ

i
2(dr), (4.18)

(iii) for B1 := min
i
B1,i andB̃2 :=





(

d
∑

i=1
B2,i

)

∧
(

d
d
∑

i=1
B4

2,i

)

1
4



, we have

B1 +B1

>



τ

(

d
∑

i=1

(B1,iB2,i)
2

)

1
2

+ B̃2



 δq1,1 +





1

2

d
∑

i=1

C2,i + 4
√
τ

(

d
∑

i=1

C2,iB
2
1,i

)

1
2



 δq2,2.

Remark.Note that parts (i) and (ii) restrictbi andσi only on{x ∈ Cd
I : xi(0) ≥ M}, and the

control onbi is only one-sided. However,b andσ will always be required to satisfy the supremum

linear growth bounds (2.1) and (2.2), which restrict the growth ofb andσ for all x ∈ Cd
I , though,

on
d∪

i=1
{x ∈ Cd

I : xi(0) ≥ M}, this supremum growth control onb and‖σ‖2 is weaker than the

at-most-integral-linear growth imposed by parts (i) and (ii) of the above assumption.

Throughout Section4.2, we useM̃ = M +1 in the definition of the overshoot process

Z in (4.1). The simple inequalitiesXi(·) ≤ Zi(·) + M̃ , for eachi, reduce the problem of

bounding the moments of‖Xt‖2 to bounding the moments of‖Zt‖2. The intuition behind the

following proofs is that the dynamics of the overshoot processZi whenZi(t) > 0 are the same

as the dynamics ofXi whenXi(t) > M̃ , and sinceM̃ > M , Assumption4.2.1is sufficient to

get control over the growth of each component ofZ.

4.2.2 Uniform Bound onE [|X(t)|22]

The main result of this subsection is the following theorem,which holds under As-

sumption4.2.1.

Theorem 4.2.1.Suppose thatE[‖X0‖2
2] <∞. Then, sup

t≥−τ
E[|X(t)|22] <∞.

The proof uses Lyapunov/Razumikhin-type arguments similar to those found in a the-

orem of Mao (Theorem 2.1 of [28]). Methods associated with the names Lyapunov and Razu-

mikhin are often used to establish stability of dynamical systems. The proof is broken down into

a series of supporting lemmas.
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Lemma 4.2.1. AssumeE
[

‖X0‖2
2

]

< ∞. There exists a constantM1 > 0 such that whenever

t ≥ τ is such that both

E[|Z(t)|22] ≥ M1, (4.19)

and

E[|Z(r)|22] ≤ E[|Z(t)|22] for all r ∈ [t− 2τ, t], (4.20)

then

E

[

2(Z(t))′b(Xt) +
d
∑

i=1

1{Xi(t)>M}
∣

∣σi(Xt)
∣

∣

2

2

]

< 0.

Remark.We will refer to inequality (4.20) as the Razumikhin assumption.

Proof. Recall that we have set̃M = M + 1. Assume that we are given at ≥ τ such that (4.20)

holds. For eachx ∈ Cd
I , there is anrx ∈ Id such that for eachi = 1, . . . , d,

− ℓi(x) = −xi(ri
x) ≤ −xi(0) + Osc+(xi, I). (4.21)

We note that for eachu ≥ 0 such thatZi(u) > 0, we haveXi(u) > M̃ > M and so the

inequalities (4.17) and (4.18) hold withx = Xu. Then,

(Z(t))′b(Xt) =
d
∑

i=1

Zi(t)bi(Xt)

≤
d
∑

i=1

Zi(t)

(

B0 −B1X
i(t) −B1,iℓ

i(Xt) +B2,i

∫ 0

−τ

|X(t+ r)|q1
2 µ

i
1(dr)

)

≤ B0|Z(t)|1 − (B1 +B1)

d
∑

i=1

Zi(t)Xi(t) +

d
∑

i=1

B1,iZ
i(t)Osc+(Xi, [t− τ, t])

+

d
∑

i=1

B2,iZ
i(t)

∫ 0

−τ

|X(t+ r)|q1
2 µ

i
1(dr)

≤ B0|Z(t)|1 − (B1 +B1)|Z(t)|22 +
d
∑

i=1

B1,iZ
i(t)

(

Osc(Xi
0, I) +M

)

+
d
∑

i=1

B1,iZ
i(t)

∫ t

t−τ

1{Xi(u)>M}(b
i(Xu))+du

+

d
∑

i=1

B1,iZ
i(t) sup

t−τ≤r<s≤t

∣

∣

∣

∣

∫ s

r

1{Xi(u)>M}σ
i(Xu)dW (u)

∣

∣

∣

∣

+ |Z(t)|2

(

d
∑

i=1

B2
2,i

(∫ 0

−τ

|X(t+ r)|q1
2 µ

i
1(dr)

)2
)

1
2

. (4.22)
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Here, Assumption4.2.1(i) and the non-negativity of the coordinates ofZ were used for the first

inequality, and the fact thatX(s) ≥ Z(s) for all s ≥ −τ , Lemma4.1.2with M̂ = M , and the

Cauchy-Schwarz inequality were used for the third inequality.

Using part (i) of Assumption4.2.1, for eachi = 1, . . . , d, we have

∫ t

t−τ

1{Xi(u)>M}(b
i(Xu))+du ≤

∫ t

t−τ

(

B0 +B2,i

∫ 0

−τ

|X(u + r)|q1
2 µ

i
1(dr)

)

du

≤ B0τ +B2,i

∫ t

t−τ

∫ 0

−τ

|X(u + r)|q1
2 µ

i
1(dr)du. (4.23)

Incorporating part (ii) of Assumption4.2.1with the above yields

(Z(t))′b(Xt) +
1

2

d
∑

i=1

1{Xi(t)>M}
∣

∣σi(Xt)
∣

∣

2

2

≤ B0|Z(t)|1 − (B1 +B1)|Z(t)|22 +
d
∑

i=1

B1,iZ
i(t)

(

Osc+(Xi
0, I) +M

)

+

d
∑

i=1

B1,iZ
i(t)

(

B0τ +B2,i

∫ t

t−τ

∫ 0

−τ

|X(u + r)|q1
2 µ

i
1(dr)du

)

+

d
∑

i=1

B1,iZ
i(t) sup

t−τ≤r<s≤t

∣

∣

∣

∣

∫ s

r

1{Xi(u)>M}σ
i(Xu)dW (u)

∣

∣

∣

∣

+ |Z(t)|2

(

d
∑

i=1

B2
2,i

(∫ 0

−τ

|X(t+ r)|q1
2 µ

i
1(dr)

)2
)

1
2

+
1

2

d
∑

i=1

(

C0 + C2,i

∫ 0

−τ

|X(t+ r)|q2
2 µ

i
2(dr)

)

. (4.24)

DefineB1 :=
d

max
i=1

B1,i. Using the Cauchy-Schwarz inequality and taking expectations in in-
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equality (4.24) yields

E

[

(Z(t))′b(Xt) +
1

2

d
∑

i=1

1{Xi(t)>M}
∣

∣σi(Xt)
∣

∣

2

2

]

≤
(

B0 +MB1

)

E [|Z(t)|1] − (B1 +B1)E[|Z(t)|22]

+B1E



|Z(t)|2
(

d
∑

i=1

(

Osc+(Xi
0, I)

)2

)

1
2





+E

[

d
∑

i=1

B1,iZ
i(t)

(

B0τ +B2,i

∫ t

t−τ

∫ 0

−τ

|X(u+ r)|q1
2 µ

i
1(dr)du

)

]

+E

[

d
∑

i=1

B1,iZ
i(t) sup

t−τ≤r<s≤t

∣

∣

∣

∣

∫ s

r

1{Xi(u)>M}σ
i(Xu)dW (u)

∣

∣

∣

∣

]

+E



|Z(t)|2
(

d
∑

i=1

B2
2,i

(
∫ 0

−τ

|X(t+ r)|q1
2 µ

i
1(dr)

)2
)

1
2





+
1

2
dC0 +

1

2

d
∑

i=1

C2,iE

[
∫ 0

−τ

|X(t+ r)|q2
2 µ

i
2(dr)

]

. (4.25)

We now separately develop estimates for the second and thirdto the last lines in (4.25).

For eachi,

sup
t−τ≤r<s≤t

∣

∣

∣

∣

∫ s

r

1{Xi(u)>M}σ
i(Xu)dW (u)

∣

∣

∣

∣

≤ 2 sup
t−τ≤s≤t

∣

∣

∣

∣

∫ s

t−τ

1{Xi(u)>M}σ
i(Xu)dW (u)

∣

∣

∣

∣

.(4.26)

Part (ii) of Assumption4.2.1, the assumption thatE[‖X0‖2
2] < ∞, and Lemma2.4.1imply that

for eachi,
{
∫ s

t−τ

1{Xi(u)>M}σ
i(Xu)dW (u),Fs, s ≥ t− τ

}

is a square-integrable martingale. Then, Doob’s submartingale inequality, theL2 isometry for

stochastic integrals, the independence of the coordinatesof W , and (4.18) imply that

E

[

sup
t−τ≤s≤t

∣

∣

∣

∣

∫ s

t−τ

1{Xi(u)>M}σ
i(Xu)dW (u)

∣

∣

∣

∣

2
]

≤ 4E

[

∣

∣

∣

∣

∫ t

t−τ

1{Xi(u)>M}σ
i(Xu)dW (u)

∣

∣

∣

∣

2
]

= 4E

[∫ t

t−τ

1{Xi(u)>M}
∣

∣σi(Xt)
∣

∣

2

2
du

]

≤ 4C0τ + 4C2,i

∫ t

t−τ

∫ 0

−τ

E [|X(u+ r)|q2
2 ]µi

2(dr)du. (4.27)
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We used Tonelli’s theorem in the last inequality. Then, using the Cauchy-Schwarz inequality

(twice) and inequality (B.1), we have

E

[

d
∑

i=1

B1,iZ
i(t) sup

t−τ≤r<s≤t

∣

∣

∣

∣

∫ s

r

1{Xi(u)>M}σ
i(Xu)dW (u)

∣

∣

∣

∣

]

≤ 2E

[

d
∑

i=1

B1,iZ
i(t) sup

t−τ≤s≤t

∣

∣

∣

∣

∫ s

t−τ

1{Xi(u)>M}σ
i(Xu)dW (u)

∣

∣

∣

∣

]

≤ 2E



|Z(t)|2

(

d
∑

i=1

sup
t−τ≤s≤t

∣

∣

∣

∣

∫ s

t−τ

B1,i1{Xi(u)>M}σ
i(Xu)dW (u)

∣

∣

∣

∣

2
)

1
2





≤ 2
(

E
[

|Z(t)|22
])

1
2

(

E

[

d
∑

i=1

sup
t−τ≤s≤t

∣

∣

∣

∣

∫ s

t−τ

B1,i1{Xi(u)>M}σ
i(Xu)dW (u)

∣

∣

∣

∣

2
])

1
2

≤ 4
(

E
[

|Z(t)|22
])

1
2

(

d
∑

i=1

B2
1,iC0τ +

d
∑

i=1

C2,iB
2
1,i

∫ t

t−τ

∫ 0

−τ

E [|X(u+ r)|q2
2 ]µi

2(dr)du

)

1
2

≤ 4
√

C0τ

(

d
∑

i=1

B2
1,i

)

1
2
(

E
[

|Z(t)|22
])

1
2

+4
(

E
[

|Z(t)|22
])

1
2

(

d
∑

i=1

C2,iB
2
1,i

∫ t

t−τ

∫ 0

−τ

E [|X(u + r)|q2
2 ]µi

2(dr)du

)

1
2

. (4.28)

For the second last line in (4.25), the Cauchy-Schwarz inequality and Tonelli’s theorem imply

that

E



|Z(t)|2
(

d
∑

i=1

B2
2,i

(
∫ 0

−τ

|X(t+ r)|q1
2 µ

i
1(dr)

)2
)

1
2





≤
(

E[|Z(t)|22]
)

1
2

(

d
∑

i=1

B2
2,iE

[

(
∫ 0

−τ

|X(t+ r)|q1
2 µ

i
1(dr)

)2
])

1
2

≤
(

E[|Z(t)|22]
)

1
2

(

d
∑

i=1

B4
2,i

)

1
4





d
∑

i=1

(

E

[

(
∫ 0

−τ

|X(t+ r)|q1
2 µ

i
1(dr)

)2
])2





1
4

. (4.29)

PropositionB.0.2implies that for anyγ > 1, ands ≥ −τ , there is a constantK(d, M̃ , γ, 2) ≥ 0

such that

|X(s)|22 = (X1(s))2 + · · · + (Xd(s))2

≤ K(d, M̃ , γ, 2) + γ
(

(Z1(s))2 + · · · + (Zd(s))2
)

= K(d, M̃ , γ, 2) + γ|Z(s)|22. (4.30)
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Two applications of Hölder’s inequality, inequality (4.30), Fubini’s theorem, and the

Razumikhin assumption (4.20) imply that for eachγ > 1,

d
∑

i=1

(

E

[

(∫ 0

−τ

|X(t + r)|q1
2 µ

i
1(dr)

)2
])2

≤
d
∑

i=1

(

E

[(
∫ 0

−τ

|X(t+ r)|22 µi
1(dr)

)q1])2

≤
d
∑

i=1

(

E

[
∫ 0

−τ

|X(t+ r)|22 µi
1(dr)

])2q1

≤
d
∑

i=1

(

K(d, M̃ , γ, 2) +

∫ 0

−τ

γE
[

|Z(t+ r)|22
]

µi
1(dr)

)2q1

≤
d
∑

i=1

(

K(d, M̃ , γ, 2) +

∫ 0

−τ

γE
[

|Z(t)|22
]

µi
1(dr)

)2q1

≤ d
(

K(d, M̃, γ, 2) + γE
[

|Z(t)|22
]

)2q1

, (4.31)

and thus

E



|Z(t)|2
(

d
∑

i=1

B2
2,i

(∫ 0

−τ

|X(t+ r)|q1
2 µ

i
1(dr)

)2
)

1
2





≤
(

E[|Z(t)|22]
)

1
2

(

d
∑

i=1

B4
2,i

)

1
4 (

d
(

K(d, M̃ , γ, 2) + γE
[

|Z(t)|22
]

)2q1
)

1
4

=
(

E[|Z(t)|22]
)

1
2

(

d

d
∑

i=1

B4
2,i

)

1
4
(

K(d, M̃, γ, 2) + γE
[

|Z(t)|22
]

)

q1
2
. (4.32)

Alternatively, we could have used inequality (B.1), Hölder’s inequality, (4.30), and (4.20), to
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yield for eachγ > 1,

E



|Z(t)|2
(

d
∑

i=1

B2
2,i

(
∫ 0

−τ

|X(t+ r)|q1
2 µ

i
1(dr)

)2
)

1
2





≤ E

[

|Z(t)|2
d
∑

i=1

B2,i

∫ 0

−τ

|X(t+ r)|q1
2 µ

i
1(dr)

]

=

d
∑

i=1

B2,iE

[

|Z(t)|2
∫ 0

−τ

|X(t+ r)|q1
2 µ

i
1(dr)

]

≤
(

E
[

|Z(t)|22
])

1
2

d
∑

i=1

B2,i

(

E

[

(∫ 0

−τ

|X(t+ r)|q1
2 µ

i
1(dr)

)2
])

1
2

≤
(

E
[

|Z(t)|22
])

1
2

d
∑

i=1

B2,i

(

E

[(∫ 0

−τ

|X(t+ r)|22µi
1(dr)

)q1])
1
2

≤
(

E
[

|Z(t)|22
])

1
2

d
∑

i=1

B2,i

(

E

[∫ 0

−τ

|X(t+ r)|22µi
1(dr)

])

q1
2

≤
(

E
[

|Z(t)|22
])

1
2

d
∑

i=1

B2,i

(∫ 0

−τ

(

K(d, M̃ , γ, 2) + γE
[

|Z(t+ r)|22
]

)

µi
1(dr)

)

q1
2

≤
(

d
∑

i=1

B2,i

)

(

E
[

|Z(t)|22
])

1
2

(

K(d, M̃ , γ, 2) + γE
[

|Z(t)|22
]

)

q1
2
. (4.33)

Combining inequalities (4.32) and (4.33), and using (B.1), we have for eachγ > 1,

E



|Z(t)|2
(

d
∑

i=1

B2
2,i

(∫ 0

−τ

|X(t+ r)|q1
2 µ

i
1(dr)

)2
)

1
2





≤ B̃2

(

(

K(d, M̃ , γ, 2)
)

q1
2

+ γ
q1
2
(

E
[

|Z(t)|22
])

q1
2

)

(

E
[

|Z(t)|22
])

1
2 . (4.34)

Continuing from (4.25), by (B.6), the Cauchy-Schwarz inequality, (4.5), (4.28), and
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(4.34), we have that

E

[

(Z(t))′b(Xt) +
1

2

d
∑

i=1

1{Xi(t)>M}
∣

∣σi(Xt)
∣

∣

2

2

]

≤ (B0 + (M +B0τ)B1)
√
d
(

E[|Z(t)|22]
)

1
2 − (B1 +B1)E[|Z(t)|22]

+B1

√
d
(

E
[

|Z(t)|22
])

1
2
(

E
[

‖X0‖2
2

])
1
2

+E

[

d
∑

i=1

B1,iB2,iZ
i(t)

∫ t

t−τ

∫ 0

−τ

|X(u + r)|q1
2 µ

i
1(dr)du

]

+4
√

C0τ

(

d
∑

i=1

B2
1,i

)

1
2
(

E
[

|Z(t)|22
])

1
2

+4

(

d
∑

i=1

C2,iB
2
1,i

∫ t

t−τ

∫ 0

−τ

E[|X(u + r)|q2
2 ]µi

2(dr)du

)

1
2
(

E
[

|Z(t)|22
])

1
2

+B̃2

(

(

K(d, M̃ , γ, 2)
)

q1
2 (

E
[

|Z(t)|22
])

1
2 + γ

q1
2
(

E
[

|Z(t)|22
])

q1+1
2

)

+
1

2
dC0 +

1

2

d
∑

i=1

C2,i

∫ 0

−τ

E [|X(t+ r)|q2
2 ]µi

2(dr). (4.35)

By Hölder’s inequality (used twice), (4.30), and the Razumikhin assumption (4.20),

we have for eachγ > 1,

E

[

(∫ t

t−τ

∫ 0

−τ

|X(u+ r)|q1
2 µ

i
1(dr)du

)2
]

≤ E

[

τ

∫ t

t−τ

(∫ 0

−τ

|X(u+ r)|q1
2 µ

i
1(dr)

)2

du

]

≤ τ

∫ t

t−τ

E

[(
∫ 0

−τ

|X(u+ r)|22µi
1(dr)

)q1]

du

≤ τ

∫ t

t−τ

(

E

[
∫ 0

−τ

(

K(d, M̃ , γ, 2) + γ|Z(u+ r)|22
)

µi
1(dr)

])q1

du

≤ τ

∫ t

t−τ

(

K(d, M̃ , γ, 2) + γ

∫ 0

−τ

E
[

|Z(u+ r)|22
]

µi
1(dr)

)q1

du

≤ τ

∫ t

t−τ

(

K(d, M̃ , γ, 2) + γE
[

|Z(t)|22
]

)q1

du

≤ τ2
(

K(d, M̃ , γ, 2) + γE
[

|Z(t)|22
]

)q1

. (4.36)
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Therefore, by the Cauchy-Schwarz inequality (twice), and (B.1),

E

[

d
∑

i=1

B1,iB2,iZ
i(t)

∫ t

t−τ

∫ 0

−τ

|X(u+ r)|q1
2 µ

i
1(dr)du

]

≤
(

E[|Z(t)|22]
)

1
2

(

d
∑

i=1

(B1,iB2,i)
2E

[

(
∫ t

t−τ

∫ 0

−τ

|X(u+ r)|q1
2 µ

i
1(dr)du

)2
])

1
2

≤
(

E[|Z(t)|22]
)

1
2

(

τ2
d
∑

i=1

(B1,iB2,i)
2
(

K(d, M̃ , γ, 2) + γE
[

|Z(t)|22
]

)q1

)

1
2

≤ τ

(

d
∑

i=1

(B1,iB2,i)
2

)

1
2
(

K(d, M̃ , γ, 2) + γE
[

|Z(t)|22
]

)

q1
2 (

E[|Z(t)|22]
)

1
2

≤ τ

(

d
∑

i=1

(B1,iB2,i)
2

)

1
2(
(

K(d, M̃ , γ, 2)
)

q1
2
+ γ

q1
2
(

E
[

|Z(t)|22
])

q1
2

)

(

E[|Z(t)|22]
)

1
2 .(4.37)

Hölder’s inequality, (4.30), the Razumikhin assumption (4.20), and (B.1) also imply

that for eachγ > 1,

(

d
∑

i=1

C2,iB
2
1,i

∫ t

t−τ

∫ 0

−τ

E[|X(u + r)|q2
2 ]µi

2(dr)du

)

1
2

≤
(

d
∑

i=1

C2,iB
2
1,i

∫ t

t−τ

∫ 0

−τ

(

E
[

|X(u + r)|22
])

q2
2 µi

2(dr)du

)

1
2

≤
(

d
∑

i=1

C2,iB
2
1,i

∫ t

t−τ

∫ 0

−τ

(

K(d, M̃, γ, 2) + γE
[

|Z(u+ r)|22
]

)

q2
2
µi

2(dr)du

)

1
2

≤ √
τ

(

d
∑

i=1

C2,iB
2
1,i

)

1
2
(

K(d, M̃ , γ, 2) + γE
[

|Z(t)|22
]

)

q2
4

≤ √
τ

(

d
∑

i=1

C2,iB
2
1,i

)

1
2 (
(

K(d, M̃, γ, 2)
)

q2
4

+ γ
q2
4
(

E
[

|Z(t)|22
])

q2
4

)

. (4.38)

By using Hölder’s inequality, the fact thatµi
2 is a probability measure, inequalities

(4.30) and (B.1), and the Razumikhin assumption (4.20), we obtain

∫ 0

−τ

E [|X(t+ r)|q2
2 ]µi

2(dr) ≤
∫ 0

−τ

(

E
[

|X(t+ r)|22
])

q2
2 µi

2(dr)

≤
∫ 0

−τ

(

E
[

K(d, M̃ , γ, 2) + γ|Z(t+ r)|22
])

q2
2
µi

2(dr)

≤
(

K(d, M̃ , γ, 2)
)

q2
2

+ γ
q2
2
(

E
[

|Z(t)|22
])

q2
2 . (4.39)
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Continuing from line (4.35) using inequalities (4.37), (4.38), and (4.39), we have

E

[

(Z(t))′b(Xt) +
1

2

d
∑

i=1

1{Xi(t)>M}
∣

∣σi(Xt)
∣

∣

2

2

]

≤
(

B0 +
(

M +B0τ +
(

E
[

‖X0‖2
∞
])

1
2

)

B1

)√
d
(

E[|Z(t)|22]
)

1
2

−(B1 +B1)E[|Z(t)|22]

+τ

(

d
∑
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)

1
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(

E[|Z(t)|22]
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1
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(

(
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q1
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+ γ
q1
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E
[
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q1
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+4
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(

d
∑
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B2
1,i

)

1
2
(

E
[

|Z(t)|22
])
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2
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√
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(

d
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2
1,i

)

1
2
(

E
[
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(
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)
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4

+ γ
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(

E
[
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(
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)
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2 (

E
[
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q1
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E
[
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1

2

(
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(
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q2
2
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q2
2
(

E
[

|Z(t)|22
])

q2
2

)

= K1(γ) +K2(γ)
(

E[|Z(t)|22]
)

1
2 +K3(γ)

(

E[|Z(t)|22]
)

1+q1
2 +K4(γ)

(
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)

q2
2
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(
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)
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4 − (B1 +B1)E[|Z(t)|22], (4.40)
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where

K1(γ) =
d

2
C0 +

1

2

(

K(d, M̃ , γ, 2)
)

q2
2

d
∑
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C2,i,
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(
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E
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‖X0‖2
∞
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1
2

)
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)√
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(

d
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+ 4
√

C0τ

(
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1
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+4
√
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1
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)
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+ B̃2

(

K(d, M̃ , γ, 2)
)

q1
2
,

K3(γ) =



τ

(

d
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(B1,iB2,i)
2

)

1
2

+ B̃2



 γ
q1
2 ,

K4(γ) =
1

2
γ

q2
2

d
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C2,i, and

K5(γ) = 4
√
τ

(

d
∑

i=1

C2,iB
2
1,i

)

1
2

γ
q2
4 .

By Assumption4.2.1(iii), we can fix aγ > 1 such thatB1 + B1 > K3(γ)δq1,1 +

(K4(γ) +K5(γ))δq2,2. Therefore,

E

[

2(Z(t))′b(Xt) +
d
∑

i=1

1{Xi(t)>M}
∣

∣σi(Xt)
∣

∣

2

2

]

< 0

wheneverE[|Z(t)|22] is large enough. Indeed, define the functionf : R+ → R+ by

f(r) := K1(γ) +K2(γ)r
1
2 +K3(γ)r

1+q1
2 +K4(γ)r

q2
2 +K5(γ)r

2+q2
4 − (B1 +B1)r.

All of the exponents onr are at most one, and the above shows that the constant in frontof the

highest degree term, namely,

−(B1 +B1) +K3(γ)δq1,1 + (K4(γ) +K5(γ))δq2,2,

is strictly negative, and this implies that

lim
r→∞

f(r) = −∞,

so there exists a constantM1 > 0 such thatr ≥M1 implies thatf(r) < 0.
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Lemma 4.2.2. AssumeE[‖X0‖2
2] < ∞. LetM1 be defined as in the previous lemma, and

assume thatt ≥ τ is such that both (4.19) and (4.20) hold. Then there exists anh∗ > 0 such that

E[|Z(t+ s)|22] < E[|Z(t)|22], for eachs ∈ (0, h∗]. (4.41)

Proof. Settingηn = t ∨ inf{s ≥ −τ : |X(s)|2 ≥ n} for each integern > 0. Then the adapted

process{1(t,ηn ](s)(Z(s))′σ(Xs), s ≥ t} is bounded, so that the process

{

∫ (t+h)∧ηn

t

(Z(s))′σ(Xs)dW (s),Ft+h, h ≥ 0

}

is a square-integrable martingale, and so

E
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∫ (t+h)∧ηn

t

(Z(s))′σ(Xs)dW (s)

]

= 0, for all h ≥ 0, n > 0.

We have from equality (4.4) that
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t

2(Z(s))′σ(Xs)dW (s), (4.42)

and sinceE

[

sup
s∈[−τ,t+h]

|Z(s)|22

]

<∞ by Lemma2.4.1with p = 2, we have

E
[
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−E
[

|Z(t)|22
]

= E

[
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∑
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∣

∣

2

2

)

ds

]

, (4.43)
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and then for eachh > 0, by the dominated convergence theorem,

E[|Z(t+ h)|22] − E[|Z(t)|22]

= E[ lim
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)
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. (4.44)

The second last equality uses dominated convergence conferred by Lemma2.4.1and the linear

growth bounds (2.1) and (2.2) on b andσ.

Definef : R+ → [0, 1] by f(r) = (r −M)+ − (r − M̃ )+. SinceM̃ = M + 1,

1(M̃ ,∞)(r) ≤ f(r) ≤ 1(M,∞)(r) for all r ≥ 0. (4.45)

Then by (4.44), (4.45), dominated convergence, and Lebesgue’s differentiationtheorem, we have

lim
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2
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. (4.46)

Here, we used the fact that the integrand in the third last line is a continuous function ofs.

According to Lemma4.2.1, the last line above is strictly negative under the assumptions (4.19)

and (4.20).
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If there were noh∗ > 0 such thatE[|Z(t + s)|22] < E[|Z(t)|22] for eachs ∈ (0, h∗],

then we could construct a sequence{hn}∞n=1 of positive numbers decreasing to zero such that

E[|Z(t + hn)|22] ≥ E[|Z(t)|22] for all n. Then lim
h→0+

E[|Z(t+h)|22]−E[|Z(t)|22]
h

≥ 0, which is a

contradiction to (4.46). Therefore there is anh∗ > 0 such that (4.41) holds.

We now prove the main theorem of this subsection.

Proof of Theorem4.2.1. First of all, as a consequence of Lemma2.4.1, the continuity ofZ, and

the dominated convergence theorem,E[|Z(s)|22] is continuous as a function ofs ≥ 0.

LetM2 = sup
s∈[−τ,τ ]

E[|Z(s)|22] +M1, which is finite by Lemma2.4.1and the assump-

tion thatE[‖X0‖2
2] < ∞. If there was at1 > τ such thatE[|Z(t1)|22] > M2, then since

sup
s∈[−τ,τ ]

E[|Z(s)|22] < M2, t := inf{s < t1 : E[|Z(s)|22] > M2} is a point of(τ, t1). We also

haveE[|Z(t)|22] = M2 by continuity, and thusE[|Z(r)|22] ≤ E[|Z(t)|22] for all r ∈ [t − 2τ, t].

SinceM2 ≥ M1, Lemma4.2.2 implies that there is anh∗ > 0 such thatE[|Z(s)|22] <
E[|Z(t)|22] = M2 for all s ∈ (t, t + h∗], but this contradicts the definition oft. Therefore,

sup
s≥−τ

E[|Z(s)|22] ≤M2 which in turn implies that

sup
s≥−τ

E[|X(s)|22] ≤ sup
s≥−τ

2
(

E[|Z(s)|22] + dM̃2
)

≤ 2M2 + 2dM̃2. (4.47)

4.2.3 Uniform Bound onE[‖Xt‖2
2]

Recall that we are assuming Assumption4.2.1holds.

Theorem 4.2.2.Suppose thatE[‖X0‖2
2] <∞. Then,sup

t≥0
E
[

‖Xt‖2
2

]

<∞.

Proof. Recall the definition of the overshoot processZ from Section4.1.1with M̃ = M + 1.

Theorem4.2.1implies that sup
t≥−τ

E[|X(t)|22] <∞.

For eacht ≥ τ , by (4.6), (4.13)-(4.15), PropositionB.0.1, (4.17), and (4.26) with M̃
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in place ofM , we have

‖Zt‖2
2 ≤

d
∑
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(
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)2

≤
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∣
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)
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∫ 0
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i
1(dr)ds
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+
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4 sup
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∣

∣
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∣

∣

∣

2
)

. (4.48)

Here, using PropositionB.0.1and the Cauchy-Schwarz inequality, we have for eachi = 1, . . . , d,

(

B0τ +B2,i

∫ t

t−τ

∫ 0

−τ

|X(s+ r)|q1
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i
1(dr)ds

)2
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1(dr)ds

)2
)

≤ 2

(

(B0τ)
2 +B2

2,iτ

∫ t

t−τ
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)

, (4.49)

and by a similar argument to that for (4.27), using (4.18) we have for eachi that

E

[

sup
t−τ≤s≤t

∣

∣

∣

∣

∫ s

t−τ

1{Xi(s)>M̃}σ
i(Xu)dW (u)

∣

∣

∣

∣

2
]

≤ 4

(

C0τ + C2,i
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t−τ

∫ 0

−τ

E [|X(u + r)|q2
2 ]µi

2(dr)du

)

. (4.50)

By Hölder’s inequality,E [|X(s)|p2] ≤ E
[

|X(s)|22
]

p
2 for all s ≥ −τ and0 < p ≤ 2. So by the

hypotheses of the theorem and the fact thatr
p
2 ≤ 1 + r for all r ≥ 0 and0 < p ≤ 2, there is a

constantK > 0 such thatsup
s≥−τ

E[|X(s)|p2] ≤ K for all 0 < p ≤ 2. On combining the above and
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taking expectations in (4.48), we obtain fort ≥ τ ,

E
[
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2

]

≤ 3

(

E[|Z(t− τ)|22] + 2d(B0τ)
2

+2

d
∑
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B2
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t−τ
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−τ

E
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2

]

µi
1(dr)ds

+16C0τ + 16
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∑
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∫ t

t−τ
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−τ
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2 ]µi

2(dr)du

)

≤ 3

(

K + 2d(B0τ)
2 + 16C0τd+ 2

d
∑

i=1

B2
2,iτ

2K + 16C0τ + 16
d
∑

i=1

C2,iτK

)

,

which is a bound that is independent oft ≥ τ , so that

sup
t≥τ

E
[

‖Zt‖2
2

]

<∞.

Therefore,

sup
t≥τ

E
[

‖Xt‖2
2

]

≤ 2

(

sup
t≥τ

E
[

‖Zt‖2
2

]

+ dM̃2

)

< ∞, (4.51)

and thus for eacht ∈ [0, τ ],

E
[

‖Xt‖2
2

]

≤ 2E
[

‖X0‖2
2 + ‖Xτ‖2

2

]

,

which is finite by (4.51) and the assumption thatE
[

‖X0‖2
2

]

<∞.

4.3 Bounded Moments whenb and σ Satisfy a Boundedness As-

sumption

Throughout this section, we assume that the coefficientsb andσ satisfy Assumption

4.3.1below.

4.3.1 Assumptions onb and σ

Assumption 4.3.1.There exist non-negative constantsKu,M , strictly positive constantsKd, C0,

and a measurable functionℓ : Cd
I → Rd

+, such that for eachx ∈ Cd
I and i = 1, . . . , d,

ℓi(x) ∈ xi(I), and wheneverxi(0) ≥M , we have:

(i) bi(x) ≤ Ku1[0,M ](ℓ
i(x)) −Kd1[M,∞)(ℓ

i(x)), and
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(ii) |σi(x)|22 ≤ C0.

Remark.Assumption4.3.1 requiresbi and |σi|2 to be bounded above on the set{x ∈ Cd
I :

xi(0) ≥ M}, but this does not necessarily imply that they are bounded above onCd
I . For

instance, forτ = d = 1, if we define the functionf : R+ → [0, 1] by f(r) := (2−r)+−(1−r)+,

then the drift coefficient

b(x) := ‖x‖f(x(0)) + (1 − x(−1)) (1 − f(x(0)))

is continuous and satisfies part (i) withM = 2, Ku = 1, Kd = 1, andℓ(x) = x(−1), yet it is

unbounded onCd
I : if for eachn ≥ 1, x(n) ∈ Cd

I is defined byx(n)(r) = 1−nr, r ∈ [−1, 0], then

b(x(n)) = n + 1. Similarly, one may construct a continuous unbounded dispersion coefficient,

σ, satisfying part (ii).

Remark.Note that Assumption4.3.1has no restrictions on the size of the constantsM ,Ku,Kd,

C0 (beyond strict positivity ofKd andC0), cf. part (iii) of Assumption4.2.1.

Recall the overshoot processZ defined in (4.1), where here we let̃M = M . In The-

orem4.3.1below, for eachi = 1, . . . , d, we will useE
[

(Zi(t))2 exp(αZi(t))
]

as a Lyapunov-

type function to show thatE[exp(αXi(t))] is bounded uniformly int ≥ 0, for someα > 0.

4.3.2 Preliminary Lemma

A key role in the proof of Theorem4.3.1is played by the following proposition proved

by Itô and Nisio ([20], Lemmas 8.1 and 8.2).

Proposition 4.3.1. Assume thatf, g ∈ C([0,∞),R) such thatf(0) ≥ 0 anda1, a2, a3 > 0.

(i) If f(t) ≤ f(s)− a1

∫ t

s
f(u)du+

∫ t

s
g(u)du for all 0 ≤ s < t ≤ ∞, then

f(t) ≤ f(0) +

∫ t

0
e−a1(t−u)g(u)du, for all t ≥ 0.

(ii) If g(t) ≤ a1 + a2

∫ t

0 e
−a3(t−u)g(u)du for all t ≥ 0, anda3 > a2, then

g(t) ≤ a1a3

a3 − a2
for all t ≥ 0.

Remark.This proposition allows us to use an analytical technique that Itô and Nisio developed.

If for eachε > 0, there is a constantKε ≥ 0 such thatg(t) ≤ Kε + εf(t), then the two parts

of the proposition can be combined, and the collective result can be used in a manner similar to
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that in which Gronwall’s inequality is often used. This suits our Lyapunov-type argument, where

the role off(t) is played byE[(Zi(t))2 exp(αZi(t))], and that ofg(t) byE[exp(αZi(t))]. The

details are in the proof of Theorem4.3.1below.

4.3.3 Uniform Bound on Exponential Moments ofX i(t)

The following theorem depends on some technical lemmas thatare deferred until after

the proof of the theorem.

Theorem 4.3.1.Suppose thatE[exp(κ‖X0‖2)] < ∞ for eachκ > 0. Then there existsα > 0

such thatsup
t≥0

E[exp(αXi(t))] <∞ for eachi = 1, . . . , d, and consequently,sup
t≥−τ

E[|X(t)|pp] <
∞ for all p ∈ [1,∞).

Proof. Fix i ∈ {1, . . . , d}. We derive the differential of the process{(Zi(t))2 exp(αZi(t)), t ≥
0}. Itô’s formula together with (4.2) yield for eachα > 0 andt ≥ 0,

d
(

exp(αZi(t))
)

= α exp
(

αZi(t)
)

1{Xi(t)>M}b
i(Xt)dt + α exp

(

αZi(t)
)

1{Xi(t)>M}σ
i(Xt)dW (t)

+
α2

2
exp

(

αZi(t)
)

1{Xi(t)>M}
∣

∣σi(Xt)
∣

∣

2

2
dt + α exp

(

αZi(t)
)

dLi(t). (4.52)

Combining (4.52) with the differential (4.3) of (Zi(t))2, we obtain for eachi =

1, . . . , d andt ≥ 0,

d
(

(Zi(t))2 exp(αZi(t))
)

= (Zi(t))2d
(

exp(αZi(t))
)

+ exp(αZi(t))d
(

(Zi(t))2
)

+ d
〈

(Zi)2, exp(αZi)
〉

(t)

= α
(

Zi(t)
)2

exp
(

αZi(t)
)

bi(Xt)dt+ α
(

Zi(t)
)2

exp
(

αZi(t)
)

σi(Xt)dW (t)

+
α2

2
(Zi(t))2 exp

(

αZi(t)
) ∣

∣σi(Xt)
∣

∣

2

2
dt+ α(Zi(t))2 exp

(

αZi(t)
)

dL(t)

+2Zi(t) exp
(

αZi(t)
)

bi(Xt)dt

+2Zi(t) exp
(

αZi(t)
)

σi(Xt)dW (t)

+1{Xi(t)>M}
∣

∣σi(Xt)
∣

∣

2

2
exp

(

αZi(t)
)

dt + 2Zi(t)α exp
(

αZi(t)
) ∣

∣σi(Xt)
∣

∣

2

2
dt

= α(Zi(t))2

(

bi(Xt) +
α
∣

∣σi(Xt)
∣

∣

2

2

2

)

exp
(

αZi(t)
)

dt

+2Zi(t)
(

bi(Xt) + α
∣

∣σi(Xt)
∣

∣

2

2

)

exp(αZi(t))dt

+1{Xi(t)>M}
∣

∣σi(Xt)
∣

∣

2

2
exp(αZi(t))dt

+
(

α
(

Zi(t)
)2

+ 2Zi(t)
)

exp(αZi(t))σi(Xt)dW (t). (4.53)
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Here we have used the facts thatZi(t) = 0 on {Xi(t) ≤ M} and thatLi can increase only

whenZi is zero, which implies that the termα(Zi(t))2 exp
(

αZi(t)
)

dL(t) contributes zero.

Assumption4.3.1can now be applied to the coefficientsbi andσi in this last expression because

each appears only when multiplied by something that is zero whenXi(t) < M .

For t ≥ 0, sinceXi(t) > M if and only ifZi(t) > 0, using (4.53), Assumption4.3.1,

and Lemma4.3.1below, we have that for any choice ofγ > 0,

d
(

(

Zi(t)
)2

exp
(

αZi(t)
)

)

≤ α(Zi(t))2
(

(Ku +Kd)e
γMe−γXi(t)+γ Osc+(Xi

t ,I) −Kd +
αC0

2

)

exp(αZi(t))dt

+2Zi(t)
(

(Ku +Kd)e
γMe−γXi(t)+γ Osc+(Xi

t ,I) −Kd + αC0

)

exp(αZi(t))dt

+C0 exp(αZi(t))dt +
(

α(Zi(t))2 + 2Zi(t)
)

exp(αZi(t))σi(Xt)dW (t) (4.54)

≤ α(Ku +Kd)e
γM (Zi(t))2 exp

(

αXi(t) − γXi(t) + γOsc+(Xi
t , I)

)

dt

+

(

αC0

2
−Kd

)

α(Zi(t))2 exp(αZi(t))dt

+2(Ku +Kd)e
γMZi(t) exp

(

αXi(t) − γXi(t) + γOsc+(Xi
t , I)

)

dt

+2(αC0 −Kd)Z
i(t) exp(αZi(t))dt

+C0 exp(αZi(t))dt +
(

α(Zi(t))2 + 2Zi(t)
)

exp(αZi(t))σi(Xt)dW (t), (4.55)

where the second inequality follows from the facts thatXi(t) ≥ Zi(t) for all t ≥ 0 and that the

exponential function is increasing.

Assumeγ > α, and consider the functionsf1(r) = r exp(−(γ − α)r) andf2(r) =

r2 exp(−(γ − α)r). Both f1 andf2 are bounded onR+; in fact, f1(r) ≤ f1

(

1
γ−α

)

= 1
(γ−α)e

andf2(r) ≤ f2

(

2
γ−α

)

= 4
(γ−α)2e2 , for all r ≥ 0. Also, Zi(t) ≤ Xi(t) for all t ≥ 0, so for

k = 1, 2, (Zi(t))k exp(−(γ − α)Xi(t)) ≤ fk(X
i(t)).

Therefore, fort ≥ 0,

d
(

(

Zi(t)
)2

exp
(

αZi(t)
)

)

≤ α
(α

2
C0 −Kd

)

(Zi(t))2 exp(αZi(t))dt

+α(Ku +Kd)e
γM 4

(γ − α)2e2
exp

(

γOsc+(Xi
t , I)

)

dt

+2(αC0 −Kd)Z
i(t) exp

(

αZi(t)
)

dt

+2(Ku +Kd)e
γM 1

(γ − α)e
exp

(

γOsc+(Xi
t , I)

)

dt

+C0 exp
(

αZi(t)
)

dt+
(

α
(

Zi(t)
)2

+ 2Zi(t)
)

exp
(

αZi(t)
)

σi(Xt)dW (t). (4.56)
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Set

K1 =

(

4α(Ku +Kd)e
γM

(γ − α)2e2
+

2(Ku +Kd)e
γM

(γ − α)e

)

=
2(Ku +Kd)e

γM

(γ − α)e

(

2α

(γ − α)e
+ 1

)

.

If we chooseα ∈
(

0, Kd

C0

)

, thenβ := α(Kd − α
2C0) > 0, and we obtain

d
(

(

Zi(t)
)2

exp
(

αZi(t)
)

)

≤ −β(Zi(t))2 exp(αZi(t))dt +K1 exp
(

γOsc+
(

Xi
t , I
))

dt

+C0 exp
(

αZi(t)
)

dt + Zi(t) exp
(

αZi(t)
) (

αZi(t) + 2
)

σi(Xt)dW (t). (4.57)

Here, we used the fact that(αC0 −Kd)Z
i(t) exp

(

αZi(t)
)

≤ 0 for all t ≥ 0.

Using the fact that there exists aκ1 > α such thatr2(αr + 2)2e2αr ≤ eκ1r for all

r ≥ 0, we obtain on using Assumption4.3.1(ii) that for eacht ≥ 0,

E

[
∫ t

0
(Zi(s))2 exp(2αZi(s))(αZi(s) + 2)2

∣

∣σi(Xs)
∣

∣

2

2
ds

]

≤ E

[
∫ t

0
C0 exp(κ1Z

i(s))ds

]

≤ tC0E

[

sup
0≤s≤t

exp(κ1Z
i(s))

]

,

which is finite by Lemma4.3.3below and the assumption thatE [exp(κ‖X0‖2)] < ∞ for all

κ > 0. It follows that
{

∫ t

0 Z
i(s) exp(αZi(s))(αZi(s) + 2)σi(Xs)dW (s),Ft, t ≥ 0

}

is a

square-integrable martingale. Thus, integrating in time and taking expectations in (4.57), we

obtain for eacht, h ≥ 0,

E
[

(Zi(t+ h))2 exp(αZi(t+ h))
]

≤ E
[

(Zi(t))2 exp(αZi(t))
]

−β
∫ t+h

t

E
[

(Zi(s))2 exp(αZi(s))
]

ds

+

∫ t+h

t

C0E[exp(αZi(s))]ds

+

∫ t+h

t

K1E
[

exp(γOsc+(Xi
t , I))

]

ds

≤ E
[

(Zi(t))2 exp(αZi(t))
]

−β
∫ t+h

t

E
[

(Zi(s))2 exp(αZi(s))
]

ds

+

∫ t+h

t

(

K1K(γ) + C0E[exp(αZi(s))]
)

ds, (4.58)

where we have used Lemma4.3.3 for the finiteness ofE[(Zi(s))2 exp(αZi(s))] and Lemma

4.3.4for the last inequality. By Lemma4.3.3and dominated convergence, the functionsf(t) :=



64

E[(Zi(t))2 exp(αZi(t))] andg(t) := K1K(γ) + C0E[exp(αZi(t))] are continuous int ≥ 0.

Then, part (i) of Proposition4.3.1implies that

E
[

(Zi(t))2 exp(αZi(t))
]

≤ E[(Zi(0))2 exp(αZi(0))] +

∫ t

0
exp(−β(t− u))

(

C0E
[

exp(αZi(u))
]

+K1K(γ)
)

du

≤ K2 + C0

∫ t

0
exp(−β(t− u))E[exp(αZi(u))]du, (4.59)

whereK2 = E[(Zi(0))2 exp(αZi(0))]+K1K(γ)
β

≤ E[exp((2+α)Zi(0))]+K1K(γ)
β

, by Proposi-

tion B.0.5, and this is finite by hypothesis. Using the fact thatexp(ar) ≤ exp( a√
ε
)+εr2 exp(ar)

for any a, r ≥ 0, ε > 0 (as can be checked by considering the two cases whenr > 1√
ε

or

r ≤ 1√
ε
), we obtain that for eacht ≥ 0,

E[exp(αZi(t))] ≤ e
α√
ε + εE[(Zi(t))2 exp(αZi(t))]

≤ e
α√
ε + εK2 + εC0

∫ t

0
exp(−β(t− u))E[exp(αZi(u))]du. (4.60)

Forε < β
C0

, part (ii) of Proposition4.3.1yields

E[exp(αZi(t))] ≤ (e
α√
ε + εK2)β

β − εC0
, (4.61)

and therefore,

E[exp(αXi(t))] ≤ eαM (e
α√
ε + εK2)β

β − εC0
, (4.62)

and hencesup
t≥0

E[exp(αXi(t))] <∞ for eachi = 1, . . . , d. By considering the Taylor expansion

of exp(αr), we can see that for eachr ∈ R+ and positive integern, rn ≤ n!
αn exp(αr), and thus

it follows from (4.62) and Hölder’s inequality that for eachp ≥ 1 andi = 1, . . . , d,

sup
t≥0

E[(Xi(t))p] < ∞, (4.63)

and the fact thatsup
t≥−τ

E[|X(t)|pp] <∞ follows.

4.3.4 Supporting Lemmas

We now prove the supporting lemmas.
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Lemma 4.3.1. For eachγ > 0 and eachx ∈ Cd
I with xi(0) ≥M , we have

bi(x) ≤ (Ku +Kd)e
γM exp

(

−γxi(0) + γOsc+(xi, I)
)

−Kd. (4.64)

Proof. Let x ∈ Cd
I with xi(0) ≥ M . Sinceℓi(x) ∈ xi(I), there is arx ∈ I such thatℓi(x) =

xi(rx), and thusxi(0) ≤ xi(rx)+ Osc+(xi, I) = ℓi(x)+ Osc+(xi, I) by the definition of Osc+.

Therefore,

− ℓi(x) ≤ −xi(0) + Osc+(xi, I). (4.65)

From Assumption4.3.1(i), it follows that for eachγ > 0,

bi(x) ≤ Ku1[0,M ](ℓ
i(x)) −Kd1[M,∞)(ℓ

i(x))

= (Ku +Kd)1[0,M ](ℓ
i(x)) −Kd

≤ (Ku +Kd) exp
(

−γ(ℓi(x) −M)
)

−Kd

= (Ku +Kd)e
γM exp(−γℓi(x)) −Kd

≤ (Ku +Kd)e
γM exp

(

−γxi(0) + γOsc+(xi, I)
)

−Kd. (4.66)

The next lemma follows from basic growth estimates on solutions to stochastic (unde-

layed) differential equations with coefficients that grow at most linearly. This lemma only uses

(ii) of Assumption4.3.1.

Lemma 4.3.2. For eacht ≥ 0 andi = 1, . . . , d, define the process
{

ξt,i(s) := exp

(

∫ (t−τ)++s

(t−τ)+
1{Xi(u)>M}σ

i(Xu)dW (u)

)

, s ≥ 0

}

,

whereσ satisfies part (ii) of Assumption4.3.1. Then, there exists a functionK : (0,∞)×R+ →
R+ independent oft and i, which can be chosen to be non-decreasing in each coordinate, such

that for eachp > 0 andT ≥ 0,

E
[

‖ξt,i‖p
[0,T ]

]

∨ E
[

‖(ξt,i)−1‖p
[0,T ]

]

≤ K(p, T ).
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Proof. For eacht ≥ 0, Itô’s formula tells us that the processξt,i satisfies the stochastic differen-

tial equation (SDE)

dξt,i(s) = 1{Xi((t−τ)++s)>M}ξ
t,i(s)σi(X(t−τ)++s)dW ((t− τ)+ + s)

+
|σi(X(t−τ)++s)|22

2
1{Xi((t−τ)++s)>M}ξ

t,i(s)ds, s ≥ 0, (4.67)

with initial conditionξt,i(0) ≡ 1. The coefficients satisfy linear growth conditions. Indeed,

∣

∣1{Xi((t−τ)++s)>M}ξ
t,i(s)σi(X(t−τ)++s)

∣

∣

2
≤
√

C0|ξt,i(s)|, and

∣

∣

∣

∣

∣

1{Xi((t−τ)++s)>M}|σi(X(t−τ)++s)|22
2

ξt,i(s)

∣

∣

∣

∣

∣

≤ 1

2
C0|ξt,i(s)|.

Therefore by the proof of Theorem V.12.1 in [40] (which is similar to the proof of Lemma2.4.1),

for eachp ≥ 2, T ≥ 0, there is aK(p, T ) > 0 such thatE
[

‖ξt,i‖p

[0,T ]

]

≤ K(p, T ) < ∞ for

all t and i, sinceK(p, T ) depends only on the growth constants and initial condition,which

are independent oft and i. Hölder’s inequality can now be used to obtain the same result for

p ∈ (0, 2]. The process
{

(

ξt,i(s)
)−1

= exp

(

∫ (t−τ)++s

(t−τ)+
−1{Xi(u)>M}σ

i(Xu)dW (u)

)

, s ≥ 0

}

satisfies a similar SDE whose coefficients satisfy the same growth bounds, and thus for each

p > 0 andT ≥ 0,

E
[

‖(ξt,i)−1‖p
[0,T ]

]

≤ K(p, T ) <∞.

The following lemma is somewhat of an exponential analogue to Lemma2.4.1in the

case thatσi is bounded on{x ∈ Cd
I : xi(0) ≥ M}. It’s validity should not be a surprise after

consideration of Theorem 4.7 in [26].

Lemma 4.3.3. SupposeE [exp(α‖X0‖2)] < ∞ for eachα > 0. Then for eachT ≥ 0 and

α > 0,

E
[

‖ exp(α|X(·)|1)‖[−τ,T ]

]

<∞.

Remark.This lemma remains valid without assuming part (i) of Assumption 4.3.1as long as the

linear growth condition (2.1) and Assumption4.3.1(ii) hold.
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Proof. Fix α > 0. Define the stopping timesηn := inf{t ≥ 0 : ‖X‖[−τ,t],2 ≥ n}, with the

convention thatinf ∅ = ∞.

PropositionB.0.3implies that for eachT ≥ 0,

E
[

‖ exp(α|X(·)|1)‖[−τ,T∧ηn]

]

= E
[

exp(α‖X‖[−τ,T∧ηn],1)
]

≤ E
[

exp
(

α‖X1‖[−τ,T∧ηn]

)

· · · exp
(

α‖Xd‖[−τ,T∧ηn]

)]

≤ 1

d

(

E
[

exp(αd‖X1‖[−τ,T∧ηn])
]

+ · · · + E
[

exp(αd‖Xd‖[−τ,T∧ηn])
])

. (4.68)

SinceXi(t) ≤M + Zi(t) for eacht ≥ −τ andi = 1, . . . , d,

E
[

exp(αd‖Xi‖[−τ,T∧ηn])
]

= E
[

‖ exp(αdXi(·))‖[−τ,T∧ηn]

]

≤ eαdME
[

‖ exp(αdZi(·))‖[−τ,T∧ηn]

]

≤ eαdM
(

E
[

exp(αd‖Zi
0‖)
]

+ E
[

‖ exp(αdZi(·))‖[0,T∧ηn]

])

.

Convexity of the exponential function implies that for anya1, a2, a3, a4 ∈ R and

κ ∈ (0, 1), we have

exp

(

1 − κ

3
a1 + κa2 +

1 − κ

3
a3 +

1 − κ

3
a4

)

≤ 1 − κ

3
exp(a1) + κ exp(a2) +

1 − κ

3
exp(a3) +

1 − κ

3
exp(a4),

which then implies that

exp(a1 + a2 + a3 + a4) ≤ 1 − κ

3
exp

(

3

1 − κ
a1

)

+ κ exp
(a2

κ

)

+
1 − κ

3
exp

(

3

1 − κ
a3

)

+
1 − κ

3
exp

(

3

1 − κ
a4

)

. (4.69)

Since (4.2) holds, as in the proof of Lemma4.1.2, we use Lemma4.1.1to conclude

that

Osc+(Zi, [0, T ∧ ηn]) ≤
∫ T∧ηn

0
1{Xi(u)>M}(b

i(Xu))+du

+ sup
0≤r≤s≤T∧ηn

∫ s

r

1{Xi(u)>M}σ
i(Xu)dW (u)

≤
∫ T∧ηn

0
|b(Xu)|2du+ sup

0≤s≤T∧ηn

∫ s

0
1{Xi(u)>M}σ

i(Xu)dW (u)

+ sup
0≤r≤T∧ηn

∫ r

0
−1{Xi(u)>M}σ

i(Xu)dW (u), (4.70)
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where we used the fact that|bi(Xu)| ≤ |b(Xu)|2.

The linear growth condition (2.1) and Jensen’s inequality imply that for anyβ > 0 and

eachT > 0,

exp

(

β

∫ T

0
1{‖X‖[−τ,t],2<n}|b(Xt)|2dt

)

≤ exp

(

β

∫ T

0
1{‖X‖[−τ,t],2<n}(C1 + C2‖Xt‖2)dt

)

≤ 1

T

∫ T

0
exp

(

Tβ1{‖X‖[−τ,t],2<n}(C1 + C2‖Xt‖2)
)

dt

≤ 1

T

∫ T

0
‖exp (Tβ(C1 + C2|X(·)|2))‖[−τ,t∧ηn] dt. (4.71)

Therefore, for anyκ ∈ (0, 1), T > 0, i = 1, . . . , d,

E
[

‖ exp(αdZi(·))‖[0,T∧ηn]

]

≤ E
[

exp
(

αd
(

Zi(0) + Osc+(Zi, [0, T ∧ ηn])
))]

≤ E

[

exp

(

αd

(

Zi(0) +

∫ T∧ηn

0
|b(Xt)|2dt

+ sup
s∈[0,T∧ηn]

∫ s

0
1{Xi(t)>M}σ

i(Xt)dW (t) + sup
s∈[0,T∧ηn]

∫ s

0
−1{Xi(t)>M}σ

i(Xt)dW (t)

))]

≤ 1 − κ

3
E

[

exp

(

3αd

1 − κ
Zi(0)

)]

+κE

[

exp

(

αd

κ

∫ T

0
1{‖X‖[−τ,t],2<n}|b(Xt)|2dt

)]

+
1 − κ

3
E

[

exp

(

3αd

1 − κ
sup

s∈[0,T ]

∫ s

0
1{Xi(t)>M}σ

i(Xt)dW (t)

)]

+
1 − κ

3
E

[

exp

(

3αd

1 − κ
sup

s∈[0,T ]

∫ s

0
−1{Xi(t)>M}σ

i(Xt)dW (t)

)]

≤ 1 − κ

3
E

[

exp

(

3αd

1 − κ
‖X0‖2

)]

+κE

[

1

T

∫ T

0

∥

∥

∥

∥

exp

(

T
αd

κ
(C1 + C2|X(·)|2)

)∥

∥

∥

∥

[−τ,t∧ηn]

dt

]

+
1 − κ

3
E

[

sup
s∈[0,T ]

exp

(

3αd

1 − κ

∫ s

0
1{Xi(t)>M}σ

i(Xt)dW (t)

)

]

+
1 − κ

3
E

[

sup
s∈[0,T ]

exp

(−3αd

1 − κ

∫ s

0
1{Xi(t)>M}σ

i(Xt)dW (t)

)

]

. (4.72)

Lemma4.3.2(with t = 0) along with (4.68) and (B.3) now imply that for eachT > 0
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andκ ∈ (0, 1),

e−αdME
[

‖ exp(α|X(·)|1)‖[−τ,T∧ηn]

]

≤ E[exp(αd‖X0‖2)] +
1 − κ

3
E

[

exp

(

3αd

1 − κ
‖X0‖2

)]

+
κ

T
exp

(

T
αd

κ
C1

)
∫ T

0
E

[

∥

∥

∥

∥

exp

(

T
αdC2

κ
|X(·)|1

)∥

∥

∥

∥

[−τ,t∧ηn]

]

dt

+
1 − κ

3

(

K

(

3αd

1 − κ
, T

)

+K

(

3αd

1 − κ
, T

))

. (4.73)

If T ∈
(

0, 1
2dC2

]

, we can setκ = TdC2 ∈
(

0, 1
2

]

and then we obtain for each

T ∈
(

0, 1
2dC2

]

,

E
[

‖ exp(α|X(·)|1)‖[−τ,T∧ηn]

]

≤ K0(α) +K1(α)

∫ T

0
E
[

‖exp (α|X(·)|1)‖[−τ,t∧ηn]

]

dt, (4.74)

where

K0(α) = eαdME[exp(αd‖X0‖2)] + eαdM 1

3
E [exp (6αd‖X0‖2)]

+eαdM 2

3
K

(

6αd,
1

2dC2

)

, and

K1(α) = deαdMC2 exp

(

αC1

C2

)

.

Inequality (4.74) is obvious forT = 0 because of inequality (B.6).

The assumptions implyK0(α) <∞ andK1(α) > 0. Therefore, since

‖exp(α|X(·)|1)‖[−τ,t∧ηn] ≤
∥

∥

∥
exp(αd

1
2 |X(·)|2)

∥

∥

∥

[−τ,t∧ηn]

≤ exp(αd
1
2 ‖X0‖2) + exp(αd

1
2n), (4.75)

so that the expectation on the left of (4.74) is finite, Gronwall’s inequality implies that

E

[

‖ exp(α|X(·)|1)‖[−τ, 1
2dC2

∧ηn

]

]

≤ K0(α) exp

(

K1(α)
1

2dC2

)

. (4.76)

The monotone convergence theorem can then be applied to letn → ∞ and obtain for each

α > 0,

E

[

‖ exp(α|X(·)|1)‖[−τ, 1
2dC2

]

]

≤ K0(α) exp

(

K1(α)
1

2dC2

)

. (4.77)
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This procedure can be iterated to obtain a finite bound onE
[

‖ exp(αX(·))‖[−τ,T ]

]

for

anyT > 0. Indeed, for eachk ≥ 1, setT (k) = k
2dC2

. Assume that

E
[

‖ exp(αX(·))‖[−τ,T (k) ]

]

<∞ for eachα > 0,

which we have already shown to hold in the case whenk = 1. We can extend toT (k+1) as above

with T (k) taking the place of0, ηn replaced withη(k)
n := inf{t ≥ T (k) : ‖X‖[−τ,t],2 ≥ n},

K1(α) unchanged, andK0(α) replaced with

K
(k)
0 (α) := eαdME[exp(αd‖X‖[−τ,T (k) ],2)] + eαdM 1

3
E
[

exp
(

6αd‖X‖[−τ,T (k) ],2

)]

+eαdM 2

3
K

(

6αd,
1

2dC2

)

.

Then,

E
[

‖ exp(α|X(·)|1)‖[−τ,T (k+1)]

]

≤ K
(k)
0 (α) exp

(

K1(α)
1

2dC2

)

. (4.78)

Recognizing thatT (k) → ∞ ask → ∞ completes the proof.

Lemma 4.3.4. Fix a possibly randomX0 and assume thatE[exp(α‖X0‖2)] < ∞ for each

α > 0. Then for eachγ > 0, there is a constantK(γ) > 0 such that for eachi ∈ {1, . . . , d}
andt ≥ 0,

E
[

exp
(

γOsc+(Xi
t , I)

)]

≤ K(γ). (4.79)

Proof. Lemma4.1.2with M̂ = M and Assumption4.3.1imply thatP -a.s.,

exp(γOsc+(Xi
t , I))

≤ eγ(M+τKu) exp(γOsc(X0, I)) exp

(

sup
(t−τ)+≤s≤t

γ

∫ s

(t−τ)+
σi(Xu)1{Xi(u)>M}dW (u)

)

× exp

(

sup
(t−τ)+≤s≤t

γ

∫ s

(t−τ)+
−1{Xi(u)>M}σ

i(Xu)dW (u)

)

. (4.80)
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By the Cauchy-Schwarz inequality, we have

E

[

exp

(

sup
(t−τ)+≤s≤t

∫ s

(t−τ)+
2γ1{Xi(u)>M}σ

i(Xu)dW (u)

)

× exp

(

sup
(t−τ)+≤s≤t

∫ s

(t−τ)+
−2γ1{Xi(u)>M}σ

i(Xu)dW (u)

)]

≤
(

E

[

exp

(

sup
(t−τ)+≤s≤t

∫ s

(t−τ)+
4γ1{Xi(u)>M}σ

i(Xu)dW (u)

)]) 1
2

×
(

E

[

exp

(

sup
(t−τ)+≤s≤t

∫ s

(t−τ)+
−4γ1{Xi(u)>M}σ

i(Xu)dW (u)

)]) 1
2

=

(

E

[

sup
(t−τ)+≤s≤t

exp

(

∫ s

(t−τ)+
4γ1{Xi(u)>M}σ

i(Xu)dW (u)

)]) 1
2

×
(

E

[

sup
(t−τ)+≤s≤t

exp

(

∫ s

(t−τ)+
−4γ1{Xi(u)>M}σ

i(Xu)dW (u)

)]) 1
2

. (4.81)

Therefore, Lemma4.3.2implies that for eacht ≥ 0,

E

[

exp

(

sup
(t−τ)+≤s≤t

∫ s

(t−τ)+
2γ1{Xi(u)>M}σ

i(Xu)dW (u)

)

× exp

(

sup
(t−τ)+≤s≤t

∫ s

(t−τ)+
−2γ1{Xi(u)>M}σ

i(Xu)dW (u)

)]

≤ K(4γ, τ). (4.82)
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Using the Cauchy-Schwarz inequality again we obtain that

E
[

exp(γOsc+(Xi
t , I))

]

≤ eγ(M+τKu)E

[

exp(γOsc(X0, I))

× exp

(

sup
(t−τ)+≤s≤t

γ

∫ s

(t−τ)+
1{Xi(u)≥M}σ

i(Xu)dW (u)

)

× exp

(

sup
(t−τ)+≤s≤t

γ

∫ s

(t−τ)+
−1{Xi(u)≥M}σ

i(Xu)dW (u)

)]

≤ eγ(M+τKu) (E [exp(2γOsc(X0, I))])
1
2

×
(

E

[

exp

(

sup
(t−τ)+≤s≤t

2γ

∫ s

(t−τ)+
1{Xi(u)≥M}σ

i(Xu)dW (u)

)

× exp

(

sup
(t−τ)+≤s≤t

2γ

∫ s

(t−τ)+
−1{Xi(u)≥M}σ

i(Xu)dW (u)

)])
1
2

≤ eγ(M+τKu) (E [exp(2γ‖X0‖2)])
1
2 (K(4γ, τ))

1
2 , (4.83)

which is finite by assumption.

4.3.5 Uniform Bound onE[‖Xt‖2
2]

Lemma 4.3.5. Assume thatsup
t≥−τ

E[|X(t)|22] < ∞ andE[‖X0‖2
2] < ∞. Thensup

t≥0
E[‖Xt‖2

2] <

∞.

Proof. After replacingB0 by Ku and settingB2,i = C2,i = 0 for eachi, the proof is identical

to the proof of Theorem4.2.2.

Combining Theorem4.3.1with p = 2 and Lemma4.3.5yields the following.

Corollary 4.3.1. Under Assumption4.3.1, if E [exp (κ‖X0‖2)] < ∞ for all κ > 0, then

sup
t≥0

E
[

‖Xt‖2
2

]

<∞.



Chapter 5

Existence and Uniqueness of

Stationary Distributions

5.1 Existence of Stationary Distributions

For simplicity of exposition, we introduce the following assumption.

Assumption 5.1.1.Either Assumption4.2.1or 4.3.1holds.

The following is obtained by combining our results from Chapters3 and4.

Theorem 5.1.1.Under Assumptions2.1.1, 2.1.2, and5.1.1, there exists a stationary distribution

for the SDDER (1.1).

Proof. For eachxo ∈ Cd
I , the hypotheses on the initial conditions of either Theorem4.2.2or

Corollary 4.3.1are met, so thatsup
t≥0

E[‖Xxo
t ‖2

2] < ∞. The result now follows from Corollary

3.4.1.

5.2 Uniqueness of Stationary Distributions

In this section, we prove uniqueness of a stationary distribution for the SDDER under

the following Assumption5.2.1on b andσ. We use an asymptotic coupling argument that is

an adaptation to the situation with reflection of a novel argument recently introduced by Hairer,

Mattingley, and Scheutzow [16] for stochastic delay differential equations without reflection.

73
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Assumption 5.2.1.

(i) there exists a bounded right inverse forσ, i.e., there is a constantC6 > 0 and a measurable

functionσ† : Cd
I → Mm×d such that for allx ∈ Cd

I , σ(x)σ†(x) = Id, and‖σ†(x)‖2 ≤ C6

for all x ∈ Cd
I , and

(ii) the coefficientsb and σ are globally Lipschitz continuous, i.e., there exists a constant

κL > 0 such that

|b(x) − b(y)|22 + ‖σ(x) − σ(y)‖2
2 ≤ κL‖x− y‖2

2 for all x, y ∈ Cd
I . (5.1)

Remark.Part (i) implies thatm ≥ d, since the rank of a product of matrices cannot exceed the

rank of either factor. Ifσσ′ is uniformly elliptic (or uniformly positive definite), i.e., there is

a constanta > 0 such thatvσ(x)(σ(x))′v ≥ a|v|22 for all x ∈ Cd
I andv ∈ Rd

+, thenσ has a

bounded right inverse. Indeed, in this case for eachx ∈ Cd
I , let a singular value decomposition

be σ(x) = U(x)Λ(x)V (x), whereU(x) ∈ Md×d andV (x) ∈ Mm×m are unitary matrices,

Λ(x) ∈ Md×m, Λi
j(x) = 0 wheneveri 6= j, andΛi

i(x) ≥ 0 for eachi = 1, . . . , d. We

shall drop thex in what follows. Thenσσ′ = UΛΛ′U ′, and uniform ellipticity implies that

the diagonal entries of thed × d diagonal matrixΛΛ′ are at leasta > 0, so that the diagonal

entries of(ΛΛ′)−1 are at most1
a
. Therefore, the maximal diagonal entry of the Moore-Penrose

pseudoinverseΛ† = Λ′(ΛΛ′)−1 of Λ is at most 1√
a
. Therefore,

σ† := σ′(σσ′)−1 = V ′Λ′(ΛΛ′)−1U ′ = V ′Λ†U ′,

is a right inverse forσ with spectral radius bounded above by1√
a
, sinceU andV are unitary.

Also, σ†(·) is continuous sinceσ(·) andσ(·)(σ(·))′ are continuous, and taking the inverse of a

non-singular matrix is a continuous operation.

Remark.Part (ii) of Assumption5.2.1implies that Assumptions2.1.1and2.1.2hold (see Ap-

pendixC).

The main result of this is section is the following theorem.

Theorem 5.2.1.Under Assumption5.2.1, there exists at most one stationary distribution for the

SDDER (1.1).

A key element to our proof is the following proposition, which is adapted to our situa-

tion from Corollary 2.2 of [16]. Before stating it, we introduce some notation. Denote thespace

of sequences{xn}∞n=0 in Cd
I by (Cd

I )
∞, and endow this with the product topology and associated
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Borelσ-algebra. Denote the space of pairs of sequences with valuesin Cd
I by (Cd

I )
∞ × (Cd

I )
∞,

again with the product topology and associatedσ-algebra. Denote the space of probability mea-

sures on(Cd
I )

∞ × (Cd
I )

∞ by P((Cd
I )

∞ × (Cd
I )

∞). Let {Pt(x,Λ), x ∈ Cd
I ,Λ ∈ MI, t ≥ 0}

be the family of Markovian transition functions associatedwith the SDDER (1.1) and letµ be a

probability measure onCd
I . Define the probability measurePµ

∞ on(Cd
I )

∞ as follows. A cylinder

setA ⊂ (Cd
I )

∞ has the form:

A =
{

{xn}∞n=0 ∈ (Cd
I )

∞ : xn ∈ An for all n
}

,

whereAn ∈ MI for eachn, and there is a non-negative integerN such thatAn = Cd
I for all

n ≥ N + 1. Then,Pµ
∞ is defined on such a setA by

Pµ
∞(A) =

∫

x0∈A0

∫

x1∈A1

· · ·
∫

xN∈AN

Pτ (xN−1, dxN ) · · ·Pτ (x0, dx1)µ(dx0).

Kolmogorov’s extension theorem (see, e.g., [11] or [39]) ensures thatPµ
∞ extends uniquely to a

probability measure on(Cd
I )

∞. Thus,Pµ
∞ is the distribution of the sequence{Xnτ}∞n=0 when

X is a solution of (1.1) started with distributionµ. Recall that the symbol∼ between two

probability measures means that they are mutually absolutely continuous.

The following proposition follows immediately from Corollary 2.2 of [16] by setting

A = Cd
I there.

Proposition 5.2.1.Assume that there is a family
{

P̃x,y : (x, y) ∈ Cd
I × Cd

I

}

of probability mea-

sures on(Cd
I )

∞ × (Cd
I )

∞ such that for eachx, y ∈ Cd
I ,

(i) P̃x,y(· × (Cd
I )

∞) ∼ P δx∞ (·) andP̃x,y((C
d
I )

∞ × ·) ∼ P
δy
∞ (·),

(ii) for eachx, y ∈ Cd
I ,

P̃x,y

(

({xn}∞n=0, {yn}∞n=0) ∈ (Cd
I )

∞ × (Cd
I )

∞ : lim
n→∞

‖xn − yn‖2 = 0
)

> 0,

and for eachΓ ∈ B((Cd
I )

∞ × (Cd
I )

∞),

(iii) the mapping(x, y) 7→ P̃x,y(Γ) is measurable onCd
I × Cd

I .

Then there exists at most one stationary distribution for the semigroup that is associated with

{Pt(·, ·), t ≥ 0}.

We need to develop some preliminary results before giving the proof of Theorem5.2.1.

We begin with a stochastic variation of constants formula.



76

Proposition 5.2.2.Assume that on some filtered probability space(Ω,F , {Ft}, P ), {ξ(1)(t), t ≥
0} is an adapted process satisfying the following stochastic differential equation:

dξ(1)(t) = αξ(1)(t)dt + dξ(2)(t), (5.2)

for someα ∈ R and some continuous semimartingale{ξ(2)(t), t ≥ 0}. Then

ξ(1)(t) = eαtξ(1)(0) +

∫ t

0
eα(t−s)dξ(2)(s), t ≥ 0, (5.3)

and thus for eacht ≥ s ≥ 0,

ξ(1)(t) = eα(t−s)ξ(1)(s) +

∫ t

s

eα(t−r)dξ(2)(r).

Proof. Denote the right-hand-side of (5.3) by ξ(3)(t). Thenξ(3)(0) = ξ(1)(0), and

dξ(3)(t) = αeαtξ(1)(0)dt + αeαt

∫ t

0
e−αsdξ(2)(s)dt

+eα(t−t)dξ(2)(t) + d

〈

eα·,
∫ ·

0
e−αsdξ(2)(s)

〉

(t)

= αξ(3)(t)dt + dξ(2)(t). (5.4)

Thus,

d
(

ξ(1)(t) − ξ(3)(t)
)

= α
(

ξ(1)(t) − ξ(3)(t)
)

dt,

and it follows that

ξ(1)(t) − ξ(3)(t) =
(

ξ(1)(0) − ξ(3)(0)
)

eαt

= 0,

and so

P
(

ξ(1)(t) = ξ(3)(t) for all t ≥ 0
)

= 1.

We assume that anm-dimensional Brownian motion martingale{W (t), t ≥ 0} is

given on a filtered probability space(Ω,F , {Ft, t ≥ 0}, P ). For eachλ > 0, consider the

system of SDDERs

dX(t) = b(Xt)dt + σ(Xt)dW (t) + dY (t), (5.5)

dX̃λ(t) = b(X̃λ
t )dt + λ(X(t) − X̃λ(t))dt + σ(X̃λ

t )dW (t) + dỸ λ(t), (5.6)
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whereP -a.s.,(X(t), X̃λ(t)) ∈ R2d
+ for all t ≥ −τ , and where(Y, Ỹ λ) is a continuous adapted

process such thatP -a.s.,Y (0) = Ỹ λ(0) = 0 andY i (resp. Ỹ λ,i) can increase only whenXi

(resp. X̃λ,i) is zero. We allow possibly random initial conditionsX0 ≡ ξ andX̃λ
0 ≡ ξ̃. This

is a2d-dimensional system with globally Lipschitz coefficients,and thus AppendixC implies

that there exists a (pathwise) unique strong solution for any pair of square-integrable initial

conditions:

E[‖ξ‖2
2] <∞ and E[‖ξ̃‖2

2] <∞. (5.7)

We consider a solution pair(X, X̃λ) with initial conditions satisfying (5.7). The dif-

ferenceUλ(t) := X(t) − X̃λ(t) satisfies

dUλ(t) =
(

b(Xt) − b(X̃λ
t )
)

dt − λUλ(t)dt

+
(

σ(Xt) − σ(X̃λ
t )
)

dW (t) + d
(

Y − Ỹ λ
)

(t), t ≥ 0. (5.8)

The following lemma is a modified version of Lemma 3.5 of [16], where here we have

equations with reflection. Inequality (5.11) is the reason that this lemma remains true in the

reflected case. Our proof is very similar to that in [16] from (5.14) onwards.

Lemma 5.2.1. For eachα > 0, there existλ > 0 andK > 0 such that

E

[

sup
t≥0

eαt‖Uλ
t ‖8

2

]

≤ KE
[

‖Uλ
0 ‖8

2

]

,

wheneverE[‖Uλ
0 ‖8

2‖] <∞.

The proof uses the following proposition, which is a slight generalization of Lemma

3.4 in [16] for the case whereW is m-dimensional, and specializes to the case whereh is

continuous. The proof is nearly identical, and so we omit it.The proof uses the representa-

tion V α(t) = e−αt
∫ t

0 e
αsh(s)dW (s), the Burkholder-Davis-Gundy inequality, an integration

by parts, and estimates onV α on the segments
[

kT
N
,

(k+1)T
N

]

, k = 0, . . . , N − 1, for large

enough integersN .

Proposition 5.2.3.On a filtered probability space(Ω,F , {Ft}, P ), letW be anm-dimensional

Brownian motion martingale, let{h(s), s ≥ 0} be a continuous adapted process taking values

in M1×m, and assume that for eachα > 0, we have an adapted continuous real-valued process

{V α(t), t ≥ 0} satisfying the stochastic differential equation

dV α(t) = −αV α(t)dt + h(t)dW (t), t ≥ 0, (5.9)
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with the initial conditionV α(0) = 0. Then for eachT > 0 andp > 2, there exists a function

νT,p : R+ → R+ satisfying lim
α→∞

νT,p(α) = 0 such that for any stopping timeη,

E

[

sup
0≤t≤T∧η

|V α(t)|p
]

≤ νT,p(α)E

[

sup
0≤t≤T∧η

|h(t)|p2

]

.

Proof of Lemma5.2.1. Fix α > 0. Without loss of generality, we may assume thatλ > α
2 . From

equation (5.8), we have

d
(

|Uλ(t)|22
)

= 2
(

Uλ(t)
)′ (

b(Xt) − b(X̃λ
t )
)

dt− 2λ|Uλ(t)|22dt

+2
(

Uλ(t)
)′ (

σ(Xt) − σ(X̃λ
t )
)

dW (t) + 2
(

Uλ(t)
)′
d
(

Y − Ỹ λ
)

(t)

+
∥

∥

∥
σ(Xt) − σ(X̃λ

t )
∥

∥

∥

2

2
dt. (5.10)

The constraints on whereY andỸ λ can increase and the non-negativity ofX andX̃λ imply that

for eacht ≥ s ≥ 0 andβ ∈ R,

∫ t

s

eβr(Uλ(r))′d(Y − Ỹ λ)(r) =

d
∑

i=1

∫ t

s

eβrUλ,i(r)d
(

Y i − Ỹ λ,i
)

(r)

= −
d
∑

i=1

(∫ t

s

eβrXi(r)dỸ λ,i(r)

+

∫ t

s

eβrX̃λ,i(r)dY i(r)

)

≤ 0. (5.11)

The Lipschitz continuity condition (5.1) on b andσ implies that for anyx, y ∈ Cd
I ,

2(x(0) − y(0))′(b(x) − b(y)) + ‖σ(x) − σ(y)‖2
2

≤ 2|x(0) − y(0)|2|b(x) − b(y)|2 + ‖σ(x) − σ(y)‖2
2

≤ |x(0) − y(0)|22 + |b(x) − b(y)|22 + ‖σ(x) − σ(y)‖2
2

≤ (1 + κL)‖x− y‖2
2. (5.12)

Itô’s formula and equality (5.10) yield

d
(

eαt|Uλ(t)|22
)

= αeαt|Uλ(t)|22dt+ eαtd
(

|Uλ(t)|22
)

= (α− 2λ)eαt|Uλ(t)|22dt+ 2eαt
(

Uλ(t)
)′ (

b(Xt) − b(X̃λ
t )
)

dt

+2eαt
(

Uλ(t)
)′(

σ(Xt) − σ(X̃λ
t )
)

dW (t) + 2eαt
(

Uλ(t)
)′
d
(

Y − Ỹ λ
)

(t)

+eαt
∥

∥

∥σ(Xt) − σ(X̃λ
t )
∥

∥

∥

2

2
dt. (5.13)
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Then Proposition5.2.2and inequalities (5.12) and (5.11) imply that for each fixedt1 ≥ 0, and

t ≥ t1,

eαt|Uλ(t)|22 = e(α−2λ)(t−t1)|Uλ(t1)|22 + 2

∫ t

t1

e(α−2λ)(t−r)eαr
(

Uλ(r)
)′(

b(Xr) − b(X̃λ
r )
)

dr

+2

∫ t

t1

e(α−2λ)(t−r)eαr
(

Uλ(r)
)′ (

σ(Xr) − σ(X̃λ
r )
)

dW (r)

+2

∫ t

t1

e(α−2λ)(t−r)eαr
(

Uλ(r)
)′
d
(

Y − Ỹ λ
)

(r)

+

∫ t

t1

e(α−2λ)(t−r)eαr
∥

∥

∥σ(Xr) − σ(X̃λ
r )
∥

∥

∥

2

2
dr

≤ e(α−2λ)(t−t1)|Uλ(t1)|22 + (1 + κL)

∫ t

t1

e(α−2λ)(t−r)eαr
∥

∥

∥Uλ
r

∥

∥

∥

2

2
dr

+2

∫ t

t1

e(α−2λ)(t−r)eαr
(

Uλ(r)
)′ (

σ(Xr) − σ(X̃λ
r )
)

dW (r). (5.14)

The remainder of the proof is very similar to that of Lemma 3.5in [16] (following on from the

top of page 15, or the third display of the proof), but for completeness, we provide the details

and correct a few minor oversights.

For eachβ > 0, p ≥ 1, integern ≥ 0, andt2 ≥ t1, we have

sup
s∈[t1,t2]

eβs‖Uλ
s ‖p

2 ≤ eβτ

(

sup
s∈[t1−τ,t1]

eβs|Uλ(s)|p2 + sup
s∈[t1,t2]

eβs|Uλ(s)|p2

)

. (5.15)

Therefore, continuing from (5.14)

eαt|Uλ(t)|22
≤ |Uλ(t1)|22

+(1 + κL)eατ

(
∫ t

t1

e(α−2λ)(t−r)dr

)

(

sup
r∈[t1−τ,t1]

eαr|Uλ(r)|22 + sup
r∈[t1,t]

eαr|Uλ(r)|22

)

+2 sup
r∈[t1,t]

∣

∣

∣

∣

∫ r

t1

e(α−2λ)(r−u)eαu
(

Uλ(u)
)′ (

σ(Xu) − σ(X̃λ
u )
)

dW (u)

∣

∣

∣

∣

. (5.16)

In a similar manner to that in which inequality (4.69) was derived, using the convexity ofr → r4

we have for eachγ > 1 anda1, a2, a3, a4 ∈ R+,

(a1 + a2 + a3 + a4)
4 ≤ γ3a4

1 +

(

3γ

γ − 1

)3

a4
2 +

(

3γ

γ − 1

)3

a4
3 +

(

3γ

γ − 1

)3

a4
4.

Then, since
∫ t2
t1
e−ζ(t2−u)du = 1

ζ
(1 − eζ(t1−t2)) ≤ 1

ζ
for any ζ > 0 andt2 ≥ t1, raising both
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sides of (5.16) to the fourth power yields fort ≥ t1,

e4αt|Uλ(t)|82
≤ γ3|Uλ(t1)|82

+

(

3γ

γ − 1

)3 (1 + κL)4e4ατ

(2λ− α)4

(

sup
r∈[t1−τ,t1]

e4αr|Uλ(r)|82 + sup
r∈[t1,t]

e4αr|Uλ(r)|82

)

+

(

3γ

γ − 1

)3

24 sup
r∈[t1,t]

∣

∣

∣

∣

∫ r

t1

e(α−2λ)(r−u)eαu
(

Uλ(u)
)′(

σ(Xu) − σ(X̃λ
u )
)

dW (u)

∣

∣

∣

∣

4

. (5.17)

By Itô’s formula, the differential of

V (t) :=

∫ t1+t

t1

e(α−2λ)((t1+t)−u)eαu
(

Uλ(u)
)′ (

σ(Xu) − σ(X̃λ
u )
)

dW (u), t ≥ 0,

is

dV (t) = d

(

e(α−2λ)(t1+t)

∫ t1+t

t1

e(α−2λ)(−u)eαu
(

Uλ(u)
)′ (

σ(Xu) − σ(X̃λ
u )
)

dW (u)

)

= (α− 2λ)e(α−2λ)(t1+t)

∫ t1+t

t1

e2λu
(

Uλ(u)
)′ (

σ(Xu) − σ(X̃λ
u )
)

dW (u)dt

+e(α−2λ)(t1+t)e2λ(t1+t)
(

Uλ(t1 + t)
)′ (

σ(Xt1+t) − σ(X̃λ
t1+t)

)

dW (t1 + t)

= −(2λ− α)V (t)dt

+eα(t1+t)
(

Uλ(t1 + t)
)′ (

σ(Xt1+t) − σ(X̃λ
t1+t)

)

dW t1(t), (5.18)

where{W t1(t) := W (t1 + t) −W (t1), t ≥ 0} is a Brownian motion martingale relative to the

filtration {F t1
t := Ft1+t, t ≥ 0}. If we defineηλ

n = inf{r ≥ t1 :
∣

∣Uλ(r)
∣

∣

2
≥ n}, thenηλ

n − t1 is

a stopping time relative to{F t1
t }, so Proposition5.2.3and Assumption5.2.1(ii) imply that

E

[

sup
r∈[t1,(t1+τ)∧ηλ

n]

∣

∣

∣

∣

∫ r

t1

e(α−2λ)(r−u)eαu
(

Uλ(u)
)′ (

σ(Xu) − σ(X̃λ
u )
)

dW (u)

∣

∣

∣

∣

4
]

= E

[

sup
r∈[0,τ∧(ηλ

n−t1)]

(V (r))4

]

≤ ντ,4(2λ− α)E

[

sup
r∈[0,τ(∧ηλ

n−t1)]

e4α(t1+r)

∣

∣

∣

∣

(

Uλ(t1 + r)
)′ (

σ(X(t1+r)) − σ(X̃λ
(t1+r))

)

∣

∣

∣

∣

4
]

≤ ντ,4(2λ− α)E

[

sup
r∈[t1,(t1+τ)∧ηλ

n]

∣

∣

∣

∣

eαr
(

Uλ(r)
)′ (

σ(Xr) − σ(X̃λ
r )
)

∣

∣

∣

∣

4

2

]

≤ ντ,4(2λ− α)κ2
LE

[

sup
r∈[t1,(t1+τ)∧ηλ

n]

e4αr
∥

∥

∥
Uλ

r

∥

∥

∥

8

2

]

. (5.19)
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Taking the supremum up to time(t1+τ)∧ηλ
n and then the expectation on both sides of inequality

(5.17), and using (5.15) and (5.19), we obtain

E

[

sup
t∈[t1,(t1+τ)∧ηλ

n]

e4αt|Uλ(t)|82

]

≤ γ3E
[

|Uλ(t1)|82
]

+

(

3γ

γ − 1

)3 (1 + κL)4e4ατ

(2λ− α)4
E

[

sup
t∈[t1−τ,t1]

e4αt|Uλ(t)|82 + sup
t∈[t1,(t1+τ)∧ηλ

n]

e4αt
∣

∣

∣
Uλ(t)

∣

∣

∣

8

2

]

+

(

3γ

γ − 1

)3

24ντ,4(2λ− α)κ2
Le

4ατ

×
(

E

[

sup
t1−τ≤t≤t1

e4αt|Uλ(t)|82 + sup
t∈[t1,(t1+τ)∧ηλ

n]

e4αt
∣

∣

∣
Uλ(t)

∣

∣

∣

8

2

])

≤
(

γ3 +

(

3γ

γ − 1

)3

δ(λ, α)

)

E

[

sup
t∈[t1−τ,t1]

e4αt|Uλ(t)|82

]

+

(

3γ

γ − 1

)3

δ(λ, α)E

[

sup
t∈[t1,(t1+τ)∧ηλ

n]

e4αt
∣

∣

∣
Uλ(t)

∣

∣

∣

8

2

]

, (5.20)

whereδ(λ, α) := (1+κL)4e4ατ

(2λ−α)4 + 24ντ,4(2λ − α)κ2
Le

4ατ > 0. Note that lim
λ→∞

δ(λ, α) = 0 for

each fixedα > 0. By the definition ofηλ
n,

E

[

sup
t∈[t1,(t1+τ)∧ηλ

n]

e4αt|Uλ(t)|82

]

≤ e4α(t1+τ)E

[

1{|Uλ(t1)|2≥n}|Uλ(t1)|82 + 1{|Uλ(t1)|2<n} sup
t∈[t1,t1+τ ]

(

n ∧ |Uλ(t)|2
)8
]

≤ e4α(t1+τ)
(

E
[

|Uλ(t1)|82
]

+ n8
)

, (5.21)

which is finite ifE[|Uλ(t1)|82] < ∞. Thus inequality (5.20) implies that for allλ sufficiently

large,δ(λ, α) <
(

γ−1
3γ

)3
and providedE[|Uλ(t1)|82] <∞, we will have

E

[

sup
t∈[t1,(t1+τ)∧ηλ

n]

e4αt|Uλ(t)|82

]

≤
γ3 +

(

3γ
γ−1

)3
δ(λ, α)

1 −
(

3γ
γ−1

)3
δ(λ, α)

E

[

sup
t∈[t1−τ,t1]

e4αt|Uλ(t)|82

]

. (5.22)

Lettingn→ ∞, monotone convergence yields

E

[

sup
t∈[t1,t1+τ ]

e4αt|Uλ(t)|82

]

≤
γ3 +

(

3γ
γ−1

)3
δ(λ, α)

1 −
(

3γ
γ−1

)3
δ(λ, α)

E

[

sup
t∈[t1−τ,t1]

e4αt|Uλ(t)|82

]

. (5.23)
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Define

β(γ, λ, α) :=
γ3 +

(

3γ
γ−1

)3
δ(λ, α)

1 −
(

3γ
γ−1

)3
δ(λ, α)

.

Then lim
λ→∞

β(γ, λ, α) = γ3. Considerλ large enough thatδ(λ, α) <
(

γ−1
3γ

)3
. We now prove by

induction that providedE[‖Uλ
0 ‖8

2] <∞, we have

E

[

sup
(n−1)τ≤t≤nτ

e4αt|Uλ(t)|82

]

≤ (β(γ, λ, α))nE
[

‖Uλ
0 ‖8

2

]

, (5.24)

for n = 0, 1, 2, . . .. Forn = 0, this holds trivially sincee4αt ≤ 1 for all t ∈ I. Now suppose that

(5.24) holds forn = k− 1 ≥ 0. SinceE[|Uλ((k− 1)τ)|82] ≤ (β(γ, λ, α))k E
[

‖Uλ
0 ‖8

2

]

<∞ by

the induction hypothesis, settingt1 = (k − 1)τ in (5.23) we obtain

E

[

sup
(k−1)τ≤t≤kτ

e4αt|Uλ(t)|82

]

≤ β(γ, λ, α)E

[

sup
(k−2)τ≤t≤(k−1)τ

e4αt|Uλ(t)|82

]

≤ (β(γ, λ, α))k E

[

∥

∥

∥
Uλ

0

∥

∥

∥

8

2

]

.

This completes the inductive step. Now,

E

[

sup
t≥0

eαt‖Uλ
t ‖8

2

]

≤ eατ

(

E

[

sup
t∈I

eαt|Uλ(t)|82
]

+ E

[

sup
t≥0

eαt|Uλ(t)|82
])

≤ eατ

(

E
[

‖Uλ
0 ‖8

2

]

+ E

[ ∞
∑

n=1

sup
(n−1)τ≤t≤nτ

eαt|Uλ(t)|82

])

≤ eατ

(

E
[

‖Uλ
0 ‖8

2

]

+ E

[ ∞
∑

n=1

e−3α(n−1)τ sup
(n−1)τ≤t≤nτ

e4αt|Uλ(t)|82

])

≤ eατ

(

E
[

‖Uλ
0 ‖8

2

]

+

∞
∑

n=1

e−3α(n−1)τ (β(γ, λ, α))nE

[

∥

∥

∥Uλ
0

∥

∥

∥

8

2

]

)

= eατE
[

‖Uλ
0 ‖8

2

]

(

1 + e3ατ
∞
∑

n=1

e−3αnτ (β(γ, λ, α))n

)

, (5.25)

which is finite providedβ(γ, λ, α) < e3ατ . To accomplish this, we may first chooseγ > 1

small enough thatγ3 < 1+e3ατ

2 , and then chooseλ > α
2 large enough that bothδ(λ, α) <

(

γ−1
3γ

)3
and β(γ, λ, α) < γ3 +

(

1+e3ατ

2 − γ3
)

< e3ατ . Thus, the lemma is proved with

K = eατ

(

1 + e3ατ
∞
∑

n=1
e−3αnτ (β(γ, λ, α))n

)

.

Lemma5.2.1provides us with strong asymptotic convergence of the pathsof X and

X̃λ for large enoughλ. From this point on, we shall fix aλ > 0 such that the result of Lemma
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5.2.1holds. For two segmentsx, y ∈ Cd
I , let (Xx, X̃x,y) be the unique strong solution to (5.5)

and (5.6) with the initial condition(X0, X̃
λ
0 ) ≡ (x, y). For eachn ≥ 1 andx, y ∈ Cd

I , define the

stopping time

ηx,y,n := inf

{

t ≥ 0 :

∫ t

0
λ2
∣

∣

∣σ†(X̃x,y
s )(Xx(s) − X̃x,y(s))

∣

∣

∣

2

2
ds ≥ n

}

.

Lemma 5.2.2. For eachx, y ∈ Cd
I ,

P
(

lim
t→∞

|Xx(t) − X̃x,y(t)|2 = 0
)

= 1, and

lim
n→∞

P (ηx,y,n = ∞) = 1.

Proof. The first claim is a direct consequence of Lemma5.2.1.

Define the random variableΥ := sup
t≥0

et‖Uλ
t ‖2

2, which isP -a.s. finite by Lemma5.2.1.

Then, by Assumption5.2.1(i) and the fact that‖Uλ
t ‖2

2 ≤ e−tΥ for eacht ≥ 0,
∫ ∞

0
λ2
∣

∣

∣σ†(X̃λ
s )Uλ(s)

∣

∣

∣

2

2
ds ≤ λ2C2

6

∫ ∞

0

∣

∣

∣Uλ(s)
∣

∣

∣

2

2
ds

≤ λ2C2
6

∫ ∞

0
e−sΥds

≤ λ2C2
6Υ. (5.26)

Therefore,

P (ηx,y,n = ∞) = P

(∫ ∞

0
λ2
∣

∣

∣
σ†(X̃λ

s )Uλ(s)
∣

∣

∣

2

2
ds < n

)

≥ P
(

λ2C2
6Υ < n

)

, (5.27)

which increases to one asn→ ∞ sinceΥ <∞, P -a.s..

Proof of Theorem5.2.1. Define the functionN : Cd
I × Cd

I → {1, 2, . . . } by

N(x, y) := inf

{

n ≥ 1 : P (ηx,y,n = ∞) ≥ 1

2

}

,

which is finite by Lemma5.2.2. The map

Cd
J × Cd

J ∋ (ω(1), ω(2)) →
∫ ∞

0
λ2
∣

∣

∣
σ†(ω(2)

s )(ω(1)(s) − ω(2)(s))
∣

∣

∣

2

2
ds

is measurable because it is the limit inn of the measurable maps

Cd
J × Cd

J ∋ (ω(1), ω(2)) →
∫ n

0
λ2
∣

∣

∣σ†(ω(2)
s )(ω(1)(s) − ω(2)(s))

∣

∣

∣

2

2
ds.
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It follows from the result of Lemma2.6.2that the map(x, y) 7→ P ((Xx, X̃x,y) ∈ Γ) is measur-

able for eachΓ ∈ MJ ⊗MJ. Therefore,N(·, ·) is measurable. Henceforth, we abbreviate

ηx,y := ηx,y,N(x,y).

For eachx, y ∈ Cd
I , let vx,y(t) = 1{t≤ηx,y}λσ

†(X̃x,y
t )

(

Xx(t) − X̃x,y(t)
)

for t ≥ 0.

Define the process

W̃ x,y(t) := W (t) +

∫ t

0
vx,y(s)ds, t ≥ 0.

By construction ofηx,y andvx,y,
∫ ∞

0
|vx,y(s)|22ds ≤ N(x, y),

so by Novikov’s criterion (see, e.g., Proposition VIII.1.15 of [38]),

ρx,y(t) := exp

(

−
∫ t

0
(vx,y(s))′ dW (s) − 1

2

∫ t

0
|vx,y(s)|22ds

)

, t ≥ 0,

defines a uniformly integrable martingale. Letρx,y(∞) denote theP -a.s. strictly positive limit

of ρx,y(t) ast → ∞. It then follows from Girsanov’s theorem (see, e.g., Section 1 of Chapter

VIII of [ 38]) that the probability measureQx,y, defined byQx,y(A) = EP [ρx,y(∞)1A] for all

A ∈ F , is equivalent toP , and underQx,y, W̃ x,y is a Brownian motion{Ft}-martingale. Let

X̄x,y be the unique solution underQx,y to the SDDER

dX̄(t) = b(X̄t)dt + σ(X̄t)dW̃
x,y(t) + dȲ (t), (5.28)

with initial conditionX̄0 = y. Then,P -a.s.,

dX̄x,y(t) = b(X̄x,y
t )dt + 1{t≤ηx,y}λ

(

Xx(t)−X̃x,y(t)
)

dt+ σ(X̄x,y
t )dW (t) + dȲ (t), (5.29)

whereW is the Brownian motion underP . For (5.29), we used the facts thatσσ† = Id and

P
(

σ†(X̄x,y
t ) = σ†(X̃x,y

t ) for all t ∈ [0, ηx,y] ∩ R

)

≥ P
(

X̄x,y(t) = X̃x,y(t) for all t ∈ [−τ, ηx,y] ∩ R

)

= 1. (5.30)

The equality above follows by a very similar proof to that forthe pathwise uniqueness for the

SDDER with Lipschitz coefficients (see the proof of TheoremC.0.2with ηx,y in place ofηn).

Since uniqueness in law holds for solutions of (5.5), the distribution ofX̄x,y under

Qx,y is the same as that of the solutionXy to (5.5) underP with initial conditionX0 = y. Then,
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sinceQx,y ∼ P , the distribution ofX̄x,y underP is equivalent to that ofXy underP . Thus, if we

let P̃x,y be the probability measure on(Cd
I )

∞×(Cd
I )

∞ that is the law of
(

{Xx
nτ}∞n=0, {X̄x,y

nτ }∞n=0

)

underP , thenP̃x,y satisfies condition (i) of Proposition5.2.1.

On the set{ηx,y = ∞}, we haveX̄x,y = X̃x,y P -a.s. by (5.30). Thus, on{ηx,y = ∞},

P -a.s.,

lim
t→∞

|Xx(t) − X̄x,y(t)|2 = lim
t→∞

|Xx(t) − X̃x,y(t)|2
= 0 (5.31)

as was shown in Lemma5.2.2. Therefore,

P̃x,y

(

({xn}∞n=0, {yn}∞n=0) ∈ (Cd
I )

∞ × (Cd
I )

∞ : lim
n→∞

‖xn − yn‖ = 0
)

≥ P (ηx,y = ∞)

≥ 1

2
, (5.32)

so thatP̃x,y also satisfies condition (ii) of Proposition5.2.1.

All that remains to show is the measurability of(x, y) → P̃x,y (Γ) for eachΓ ∈
B((Cd

I )
∞ × (Cd

I )
∞), which would follow from the measurability of(x, y) → P̄x,y (B) for each

Borel measurableB ⊂ C(R+,C
d
I )×C(R+,C

d
I ), whereP̄x,y is the law of(Xx

· , X̄
x,y
· ) underP .

This is proved in the lemma below, and completes the proof.

Lemma 5.2.3. Using the notation in the proof of Theorem5.2.1, for each measurableB ⊂
C(R+,C

d
I ) × C(R+,C

d
I ), the map(x, y) → P̄x,y (B) is measurable.

Proof. Using monotone class theorem arguments (see, e.g., TheoremII.3.2 in [39]), it suffices

to prove the measurability of(x, y) 7→ E
[

g1(X
x
t1
, X̄

x,y
t1

) · · · gk(X
x
tk
, X̄

x,y
tk

)
]

for each collection

of times0 ≤ t1 < · · · < tk <∞ and functionsg1, . . . , gk ∈ Cb(C
2d
I ) for k = 1, 2, . . ..

Fix an integerk ≥ 1. Define the setsA0 := {0 ≤ ηx,y < t1}, Ak := {tk ≤ ηx,y},

and for eachj = 1, . . . , k − 1, Aj := {tj ≤ ηx,y < tj+1}, so thatΩ is the disjoint union of
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A0, . . . , Ak. Then

E
[

g1(X
x
t1
, X̄

x,y
t1

) · · · gk(X
x
tk
, X̄

x,y
tk

)
]

=
k
∑

j=0

E

[

k
∏

i=1

gi(X
x
ti
, X̄

x,y
ti

)1Aj

]

=

k
∑

j=0

E





(

j
∏

i=1

gi(X
x
ti
, X̄

x,y
ti

)

)

1Aj





k
∏

i=j+1

gi(X
x
ti
, X̄

x,y
ti

)









=

k
∑

j=0

E





(

j
∏

i=1

gi(X
x
ti
, X̄

x,y
ti

)

)

1Aj
E









k
∏

i=j+1

gi(X
x
ti
, X̄

x,y
ti

)





∣

∣

∣

∣

Fηx,y







 , (5.33)

where we use the standard convention that
0
∏

i=1
ai =

k
∏

i=k+1

ai = 1 for any real numbersai.

By (5.30),

(

j
∏

i=1

gi(X
x
ti
, X̄

x,y
ti

)

)

1Aj
=

(

j
∏

i=1

gi(X
x
ti
, X̃

x,y
ti

)

)

1Aj
.

For eachx̌, x̂ ∈ Cd
I , let P x̌,x̂ denote the law induced onC(R+,C

2d
I ) by the pair of strong

solutions to (5.5) with the two initial conditionšx, x̂ and the same driving Brownian motionW .

Now, on{ηx,y <∞}, we define

X̌x,y(t) := Xx(ηx,y + t), and X̂x,y(t) := X̄x,y(ηx,y + t), t ≥ −τ,

which satisfy

X̌x,y(t) = Xx(ηx,y) +

∫ t

0
b(X̌x,y

s )ds +

∫ t

0
σ(X̌x,y

s )dŴ x,y(s) + Y̌ x,y(t), (5.34)

and

X̂x,y(t) = X̄x,y(ηx,y) +

∫ t

0
b(X̌x,y

s )ds+

∫ t

0
σ(X̂x,y

s )dŴ x,y(s) + Ŷ x,y(t), (5.35)

whereX̌x,y
0 = Xx

ηx,y , X̂x,y
0 = X̄

x,y
ηx,y , Ŵ x,y(t) := W (ηx,y+t)−W (ηx,y), Y̌ x,y(t) := Y x(ηx,y+

t)−Y x(ηx,y), andŶ x,y(t) := Ȳ x,y(ηx,y + t)− Ȳ x,y(ηx,y) (here,Y x andȲ x,y are the regulator

processes ofXx andX̄x,y). Now, on{ηx,y < ∞}, conditioned onFηx,y , Ŵ x,y is a standard

m-dimensional Brownian motion independent ofFηx,y . It follows from strong uniqueness for

the pair of solutions to the SDDER that the conditional law of(X̌x,y, X̂x,y) is given byP x̌,x̂
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wherex̌ = Xx
ηx,y andx̂ = X̄

x,y
ηx,y . Then on{ηx,y <∞}, for j ≤ k,

1Aj
E









k
∏

i=j+1

gi(X
x
ti
, X̄

x,y
ti

)





∣

∣

∣

∣

Fηx,y





= 1Aj
E









k
∏

i=j+1

gi(X̌
x,y
ti−ηx,y , X̂

x,y
ti−ηx,y)





∣

∣

∣

∣

Fηx,y





= 1Aj

∫

(C(R+,Cd
I
))

2

k
∏

i=j+1

gi (w̌(ti − ηx,y), ŵ(ti − ηx,y))PXx
ηx,y ,X̃

x,y

ηx,y (dw̌, dŵ). (5.36)

We note that the above expression equals1Aj
if j = k. Let hk(x̌, x̂, t) ≡ 1 for all (x̌, x̂, t) ∈

Cd
I × Cd

I × R+. Forj = 0, 1, . . . , k − 1, we define the functionshj : Cd
I × Cd

I × [0,∞) by

hj(x̌, x̂, t) :=

∫

(C(R+,Cd
I
))

2

k
∏

i=j+1

gi (w̌(ti − t), ŵ(ti − t))P x̌,x̂(dw̌, dŵ), for t < tj+1,

andhj(x̌, x̂, t) = 0 for t ≥ tj+1. The last line in (5.36) equals1Aj
hj(X

x
ηx,y , X̃

x,y
ηx,y , ηx,y).

The functionhj is measurable in(x̌, x̂) for each fixedt by Lemma2.6.2, and it is piecewise

continuous int for each fixed pair(x̌, x̂). Hence,hj is measurable (see, e.g., exercise 11 of

Section 2.1 of [14]).

For eachx, y ∈ Cd
I , defineP̂ x,y to be the distribution of(Xx, X̃x,y) underP on

(Ω̃ := (Cd
J)

2, F̃ := B((Cd
J)

2)), and denote by(w, w̃) the coordinate mapping process on(Ω̃, F̃).

Also, define on(Ω̃, F̃)

η := inf

{

t ≥ 0 :

∫ t

0
λ
∣

∣

∣σ†(w̃s)(w(s) − w̃(s))
∣

∣

∣

2

2
ds ≥ N(w0, w̃0)

}

,

which is measurable sinceN(·, ·) is measurable. The random timeη is also a stopping time with

respect to
{

F̃t := σ (ws, w̃s, s ≤ t) , t ≥ 0
}

. Therefore(wη, w̃η, η) is measurable. Combining

all of the above,

E
[

g1(X
x
t1
, X̄

x,y
t1

) · · · gk(X
x
tk
, X̄

x,y
tk

)
]

=
k
∑

j=0

E

[(

j
∏

i=1

gi(X
x
ti
, X̃

x,y
ti

)

)

1Aj
hj(X

x
ηx,y , X̃

x,y
ηx,y , ηx,y)

]

=
k
∑

j=0

EP̂ x,y

[(

j
∏

i=1

gi(wti , w̃ti)

)

1Bj
hj(wη , w̃η, η)

]

, (5.37)

whereBj is defined in the same manner asAj , but withηx,y replaced withη.
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Lemma2.6.2implies that the mapping(x, y) 7→ P̂ x,y(Γ) is measurable for eachΓ ∈
B(Cd

J × Cd
J), and thus the measurability of the integrand implies that the expression in (5.37) is

a measurable function of(x, y).

Corollary 5.2.1. Under Assumptions5.1.1and5.2.1, there exists a unique stationary distribu-

tion for the SDDER (1.1).

Proof. The second remark after Assumption5.2.1implies that Assumptions2.1.1and2.1.2hold,

so the result follows from Theorems5.1.1and5.2.1.



Chapter 6

Applications

We now apply the previous results to the Examples2.2.1, 2.2.2, and2.2.3.

6.1 Example2.2.1: Biochemical Reaction System

Fix α, γ, ε, C > 0.

Lemma 6.1.1. The functions

b(x) :=
α

(

1 + x(−τ)
C

)2 − γ, for x ∈ CI, and

σ(x) := ε







α
(

1 + x(−τ)
C

)2 + γ







1
2

, for x ∈ CI,

satisfy the Lipschitz condition in Assumption5.2.1(ii).

Proof. Since the derivative ofr 7→ 1
r2 is bounded by1 for r ≥ 1, we have

∣

∣

1
r2 − 1

s2

∣

∣ ≤ |r − s|
for r, s ≥ 1. Therefore, for anyx, y ∈ CI,

∣

∣

∣

∣

∣

∣

∣

α
(

1 + x(−τ)
C

)2 − α
(

1 + y(−τ)
C

)2

∣

∣

∣

∣

∣

∣

∣

≤ α

∣

∣

∣

∣

(

1 +
x(−τ)
C

)

−
(

1 +
y(−τ)
C

)∣

∣

∣

∣

=
α

C
|x(−τ) − y(−τ)| . (6.1)

Therefore,

(b(x) − b(y))2 ≤
(α

C

)2
|x(−τ) − y(−τ)|2

≤
(α

C

)2
‖x− y‖2

2. (6.2)

89
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Using the equality|√r −√
s| = |r−s|√

r+
√

s
, we have

(σ(x) − σ(y))2 ≤ ε2
(

α
C

)2 ‖x− y‖2
2





√

α
(

1+ x(−τ)
C

)2 + γ +
√

α
(

1+ y(−τ)
C

)2 + γ





2

≤ ε2

4γ

(α

C

)2
‖x− y‖2

2. (6.3)

If x ∈ CI such thatx(−τ) ≥ C
√

2α
γ

, thenb(x) ≤ −γ
2 . The dispersion coefficient is

bounded byε
√
α+ γ. Therefore, Assumption4.3.1is satisfied withℓ(x) = x(−τ), Kd = γ

2 ,

Ku = α, C0 = ε2(α + γ), andM = C
√

2α
γ

. Also, σ has a measurable right inverse bounded

by 1
ε
√

γ
. Therefore, the SDDER associated with this(b, σ) has a unique stationary distribution.

6.2 Example2.2.2: Affine Coefficients

Set

b(x) := b0 − b1x(0) −
n
∑

i=2

bix(−ri) +
n′
∑

i=n+1

bix(−ri), (6.4)

and

σ(x) := a0 +
n′′
∑

i=1

aix(−si), (6.5)

where2 ≤ n < n′, 0 ≤ ri ≤ τ for eachi = 1, . . . , n′, 0 ≤ si ≤ τ andai ≥ 0 for each

i = 0, . . . , n′′, b0 ∈ R, andb1, . . . , bn′ ≥ 0. If a0 > 0 and

n
∑

i=1

bi >

(

n′
∑

i=n+1

bi

)(

1 + τ

n
∑

i=2

bi

)

+
1

2

(

n′′
∑

i=1

ai

)2

+ 4
√
τ

n′′
∑

i=1

ai

n
∑

i=2

bi,

then the one-dimensional SDDER

dX(t) =

(

b0 − b1X(t) −
n
∑

i=2

biX(t− ri) +

n′
∑

i=n+1

biX(t− ri)

)

dt

+

(

a0 +

n′′
∑

i=1

aiX(t− si)

)

dW (t) + dY (t)

will have a unique stationary distribution. The example (1.2) in Chapter1 is a special case of

this result.
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Existence follows because the coefficientsb andσ are uniformly Lipschitz continuous

and satisfy Assumption4.2.1with

M = 0, B0 = (b0)
+, B1 = b1, B1,1 =

n
∑

i=2
bi,

B2,1 =
n′
∑

i=n+1
bi, q1 = 1, q2 = 2,

ℓ(x) =

n
∑

i=2
bix(−ri)

B1,1
, µ1 =

n′
∑

i=n+1
biδ{−ri}

B2,1
, µ2 =

n′′
∑

i=1
aiδ{−si}

n′′
∑

i=1
ai

,

where0
0 ≡ 0, and for anyγ > 1,

C2,1 = γ

(

n′′
∑

i=1

ai

)2

and C0 = K(a0, γ, 2)

by using PropositionB.0.2. Uniqueness follows becauseσ has a measurable right inverse

bounded by1
a0

, so that Assumption5.2.1is also satisfied.

6.3 Example2.2.3: Internet Congestion Control

Recall, the drift from Example2.2.3was given by

bi(x) := −1 +
d′
∑

j=1

Aij exp

(

−Bj

d
∑

k=1

AkjCkjx
k(−rijk)

)

, i = 1, . . . , d,

for someB1, . . . , Bd > 0, andAij ≥ 0, Ckj > 0, andrijk > 0 for all i, k ∈ {1, . . . , d}
and j ∈ {1, . . . , d′}. Let us assume thatm ≥ d, and that there are0 < a1 < a2 such that

σ : Cd
I → Md×m is uniformly Lipschitz continuous and satisfies

a1|v|22 ≤ v′σ(x)σ(x)′v ≤ a2|v|22 for all x ∈ Cd
I andv ∈ Rd. (6.6)

Inequality (6.6) implies thatσσ′ is invertible, and thusσ′(σσ′)−1 is a right-inverse forσ that is

bounded above by1√
a1

. Inequality (6.6) also implies that‖σi‖2
2 ≤ a2 on all ofCd

I for all i.

For eachi = 1, . . . , d,

bi(x) = −1 +
d′
∑

j=1

Aij exp

(

−Bj

d
∑

k=1

AkjCkjx
k(−rijk)

)

≤ −1 +
d′
∑

j=1

Aij exp
(

−BjAijCijx
i(−riji)

)

≤ −1

2
(6.7)
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if
d′
∑

j=1
Aij exp

(

−BjAijCijx
i(−riji)

)

≤ 1
2 , which will be true whenever

Aij exp
(

−BjAijCijx
i(−riji)

)

≤ 1

2d′
for eachj = 1, . . . , d′.

The latter will be true ifAij = 0 for eachj; otherwise,
d′

max
j=1

Aij > 0 and min
j:Aij 6=0

BjAijCij > 0,

and (6.7) will be true whenever

d′

min
j=1

xi(−riji) ≥
ln

(

2d′
d′

max
j=1

Aij

)

min
j:Aij 6=0

BjAijCij
.

Therefore,b andσ satisfy Assumptions4.3.1and5.2.1with τ := max
i,j,k

rijk, ℓi(x) =

d′

min
j=1

xi(−riji), Ku = max
i

d′
∑

j=1
Aij, M =

d
max
i=1

1
{ d′
max
j=1

Aij>0}

ln

(

2d′
d′

max
j=1

Aij

)

min
j:Aij 6=0

BjAijCij
, Kd = 1

2 , C0 = a2,

andC6 = 1√
a1

.

Therefore, the SDDER

dXi(t) =



−1 +

d′
∑

j=1

Aij exp

(

−Bj

d
∑

k=1

AkjCkjx
k(−rijk)

)



 dt

+σi(Xt)dW (t) + dY i(t), i = 1, . . . , d,

has a unique stationary distribution.



Appendix A

Notation List

For the convenience of the reader, we summarize here some notation used in this paper.

• R = (−∞,∞), R+ = [0,∞), Rd = (−∞,∞)d, andR+ = [0,∞)d

• τ ∈ (0,∞), I = [−τ, 0], andJ = [−τ,∞)

• for any real numbersr, s, δr,s denotes the Kronecker delta, i.e., it is one ifr = s and zero

otherwise

• for any metric space(E, ρ),

– B(x, r) = {y ∈ E : ρ(x, y) < r}, for eachx ∈ E andr > 0

– B(E) denotes the associated Borelσ-algebra

– Cb(E) denotes the space of continuous bounded real-valued functions onE

– Bb(E) denotes the space of bounded Borel-measurable real-valuedfunctions defined

on E with norm‖f‖ := sup
x∈E

|f(x)|

• for metric spacesE1,E2, C(E1,E2) is the space of continuous functionsx : E1 → E2

• for each positive integerd, C+(R+,R
d) := {x ∈ C(R+,R

d) : x(0) ∈ Rd
+}

• given a vectorv = (v1, . . . , vd)′ ∈ Rd, |v|∞ = max
i=1,...d

|vi|, and for eachp ∈ [1,∞),

|v|p = p
√

|vi|p + · · · + |vd|p

• Id denotes the(d× d)-identity matrix

• given a matrixA = (Ai
j) ∈ Md×m := {(d×m)-matrices with real entries}
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– A′ is the transpose ofA

– Ai denotes theith row andAj denotes thejth column ofA

– ‖A‖∞ := max
i,j

|Ai
j | denotes thel∞-norm

– ‖A‖2 :=

√

d
∑

i=1

m
∑

j=1
(Ai

j)
2 denotes the Frobenius norm

• C0(R+,R
m) = {x ∈ C(R+,R

m) : x(0) = 0}

• for any closed intervalF ⊂ R

– CF = C(F,R+) andCd
F = C(F,Rd

+)

– MF = B(Cd
F )

– givenx = (x1, . . . , xd)′ ∈ C(F,Rd),

∗ for eachp ≥ 1 andG ⊂ F , ‖x‖G,p = sup
r∈G

|x(r)|p

∗ for anyδ > 0, wF (x, δ) = max
i

sup
s,t∈F
|s−t|<δ

|xi(s) − xi(t)|

∗ for any [a, b] ⊂ F , Osc(x, [a, b]) := max
i

sup
s,t∈[a,b]

|xi(s) − xi(t)|

– for eachx ∈ C(F,R), ‖x‖F = sup
r∈F

|x(r)| = ‖x‖F,p for anyp ∈ [1,∞]

• for eachx ∈ CI, ‖x‖ = ‖x‖I

• for eachx ∈ Cd
I andp ∈ [1,∞], ‖x‖p = ‖x‖I,p

• for anyx ∈ C(J,E) andt ≥ 0, the segmentxt ∈ C(I,E) is defined byxt(r) = x(t +

r), r ∈ I

• for anyt ∈ F , et : C(F,E) → E is defined byet(x) = x(t)

• for anyt ≥ 0, pt : C(J,E) → C(I,E) is defined bypt(x) = xt



Appendix B

Useful Inequalities

For referencing purposes, we state here several inequalities that are used in this paper.

For anya1, a2 ≥ 0, we have the inequality

(a1 + a2)
q ≤ a

q
1 + a

q
2, for all q ∈ [0, 1], (B.1)

which is obvious ifa1 = a2 or if either is 0, and ifa1 > a2 > 0 then (a1 + a2)
q − a

q
1 ≤

qa
q−1
1 a2 < a

q
2. A consequence of (B.1) is that for anya1, a2 ≥ 0, we have

(a1 + a2)
q ≥ a

q
1 + a

q
2, for all q ≥ 1. (B.2)

From (B.1), it follows that for any1 ≤ p1 < p2 <∞, andv ∈ Rd, we have

|v|p1
p2

=
(

|v1|p2 + · · · + |vd|p2

)

p1
p2

≤
(

|v1|p1 + · · · + |vd|p1

)

= |v|p1
p1
. (B.3)

We also have by Hölder’s inequality that for any∞ > p1 ≥ p2 ≥ 1,

|v|p1
p2

=
(

|v1|p2 + · · · + |vd|p2

)

p1
p2

≤ d
p1−p2

p2

(

|v1|p1 + · · · + |vd|p1

)

= d
p1−p2

p2 |v|p1
p1
. (B.4)

Combining inequalities (B.3) and (B.4), we obtain for anyp1, p2 ∈ [1,∞), v ∈ Rd,

|v|p1
p2

≤ d

(

p1
p2

−1
)+

|v|p1
p1
. (B.5)
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Finally, after raising both sides of (B.5) to the power1
p1

, we obtain

|v|p2 ≤ d
(p1−p2)+

p1p2 |v|p1 . (B.6)

We also have the following comparisons with the maximum norm: for anyp ∈ [1,∞),

|v|∞ = max
i

|vi| = (max
i

|vi|p)
1
p ≤

(

d
∑

i=1

|vi|p
)

1
p

= |v|p

≤
(

dmax
i

|vi|p
) 1

p

= d
1
p |v|∞, (B.7)

which can also be seen as the limiting case of (B.6).

The following is a well-known fact that follows from the convexity of power functions.

Proposition B.0.1. For anyp > 1, a1, . . . , an ∈ R, we have

|a1 + · · · + an|p ≤ np−1(|a1|p + · · · + |an|p).

Proof. Sincef(x) := xp is a convex function onR, we obtain that

|a1 + · · · + an|p = np

∣

∣

∣

∣

a1 + · · · + an

n

∣

∣

∣

∣

p

≤ np

( |a1|p + · · · + |an|p
n

)

= np−1(|a1|p + · · · + |an|p). (B.8)

Sometimesnp−1 is too big for our needs, and we will use the following alternative.

Proposition B.0.2. For anyγ > 1, anda, q ≥ 0, there is aK = K(a, γ, q) ≥ 0 such that

(a+ t)q ≤ K + γtq for all t ∈ R+.

Proof. If q ≤ 1, then we can chooseK = aq because fora1, a2 ≥ 0, we have inequality (B.1).

If q > 1, then for eachK ≥ 0, definefK(t) = γtq + K − (a + t)q for t ≥ 0. We

must findK so thatfK is nonnegative. Sinceγ > 1, lim
t→∞

fK(t) = ∞, and thusfK has a global
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minimum onR+. We have thatf ′K(t) = qγtq−1 − q(a + t)q−1 is zero only att = a

γ
1

q−1 −1
, so

thatfK(t) ≥ 0 wheneverK ≥
(

a+ a

γ
1

q−1 −1

)q

− γ

(

a

γ
1

q−1 −1

)q

.

Therefore we can choose

K(a, γ, q) = aq ∨
((

a+
a

γ
1

q−1 − 1

)q

− γ

(

a

γ
1

q−1 − 1

)q)

.

The following inequality is related to Artin’s inequality and the arithmetic-geometric

mean inequality, and it is due to the concavity of the logarithm function.

Proposition B.0.3. For anyd ∈ N anda1, . . . , ad ∈ R+,

a1a2 · · · ad ≤ 1

d

(

ad
1 + · · · + ad

d

)

. (B.9)

Proof. The functiont 7→ log(t) is concave (i.e.,t 7→ − log(t) is convex), so

log( d
√
a1 · · · ad) =

1

d
log(a1 · · · ad)

=
1

d
(log(a1) + . . . log(ad))

≤ log

(

a1 + · · · + ad

d

)

. (B.10)

Since the functiont 7→ exp(t) is increasing,

d
√
a1 · · · ad ≤ a1 + · · · + ad

d
,

from which it follows that

a1 · · · ad ≤
(

a1 + · · · + ad

d

)d

≤ 1

d

(

ad
1 + · · · + ad

d

)

, (B.11)

where we’ve used PropositionB.0.1for the last inequality.

We now state Gronwall’s inequality, which is used frequently. For a proof, consult [9],

p. 250 and p. 262, or [22], pp. 287-288 and pp. 387-388.
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Proposition B.0.4. Fix T > 0. Assume thatf, g are Borel measurable, nonnegative, integrable

functions defined on[0, T ]. Suppose that there is aK > 0 such that

f(t) ≤ g(t) +K

∫ t

0
f(s)ds, for all t ∈ [0, T ].

Then

f(t) ≤ g(t) +K

∫ t

0
eK(t−s)g(s)ds, for all t ∈ [0, T ].

If g is constant, thenf(t) ≤ geKt.

The following simple estimate is used in Section4.3.

Proposition B.0.5. For eachα > 0, we havet2eαt ≤ e(α+2)t for all t ≥ 0.

Proof. Definef(t) = e(α+2)t − t2eαt, t ≥ 0. Then,f(0) = 1 andf ′(t) = (α + 2)e(α+2)t −
2teαt − αt2eαt, sof ′(t) ≥ 0 for all t > 0 if

e2t ≥ α

α+ 2
t2 +

2

α+ 2
t, for all t > 0. (B.12)

Inequality (B.12) is true because it is true fort = 0, and the slope of the left side is at least the

slope of the right side fort > 0, sincee2t ≥ 2t+ 1 for all t ≥ 0.



Appendix C

Sufficient Conditions for Strong

Existence and Uniqueness of Solutions

In this appendix, we provide specific assumptions onb andσ that imply that Assump-

tion 2.1.2holds. Assume that there exists a positive constantκL < ∞ such that inequality (5.1)

holds, i.e., for eachx, y ∈ Cd
I ,

|b(x) − b(y)|22 + ‖σ(x) − σ(y)‖2
2 ≤ κL‖x− y‖2

2.

The equivalence of all matrix norms can be used to show that Assumption2.1.1is a consequence

of this Lipschitz condition.

We consider the SDDER (1.1) and show that strong existence and pathwise uniqueness

hold under the Lipschitz condition (5.1). We assume{Ω,F , {Ft, t ≥ 0}, P, {W (t), t ≥ 0}} is

given with the properties stated in Definition2.1.1. First, we state a few remarks for referencing

purposes.

Remark.The Lipschitz condition (5.1) and PropositionB.0.1imply that

|b(x)|22 = |b(0) + b(x) − b(0)|22
≤ 2 |b(0)|22 + 2κL‖x‖2

2, and (C.1)

‖σ(x)‖2
2 = ‖σ(0) + σ(x) − σ(0)‖2

2

≤ 2‖σ(0)‖2
2 + 2κL‖x‖2

2 (C.2)

for eachx ∈ CI, where0 here stands for the element ofCd
I that is identically 0 on all ofI.
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Remark.The Lipschitz condition (5.1) also implies that for eachf, g ∈ Cd
J,

∫ t

0

(

|b(fs) − b(gs)|22 + ‖σ(fs) − σ(gs)‖2
2

)

ds ≤
∫ t

0
κL‖fs − gs‖2

2ds

≤
∫ t

0
κL‖f − g‖2

[−τ,s],2ds (C.3)

Remark.It follows from the definition of the oscillation ofx that

Osc(x, [a, b]) ≤ 2‖x‖[a,b],∞. (C.4)

We begin with a lemma. Recall the notationI(·) from line (2.7).

Lemma C.0.1. If X(t), X̃(t),X†(t), X̃†(t), t ≥ −τ and Y (t), Y †(t), t ≥ 0 are continuous

Rd
+-valued processes such thatX0 = X̃0, X†

0 = X̃
†
0 , and (X|R+ , Y ) solves the Skorokhod

problem forI(X̃) and (X† |R+ , Y
†) solves the Skorokhod problem forI(X̃†), then assuming

E
[

‖X̃‖2
[−τ,t],2

]

∨ E
[

‖X̃†‖2
[−τ,t],2

]

<∞, we have

E
[

‖X‖2
[−τ,t],2

]

≤ (24d + 1 + 2d)E
[

‖X0‖2
2

]

+ 192d‖σ(0)‖2
2t

+48d|b(0)|22t2 + (48t+ 192)κLd

∫ t

0
E
[

‖X̃r‖2
2

]

dr, (C.5)

and

E
[

‖X −X†‖2
[0,t],2

]

≤ 3K2
ℓ (1 + κLt(t+ 4))E

[

‖X0 −X
†
0‖2

2

]

+3K2
ℓ κL(t+ 4)

∫ t

0
E
[

‖X̃ − X̃†‖2
[0,r],2

]

dr. (C.6)

Proof. By inequality (B.7) and the definitions, for eacht ≥ 0,

‖X‖2
[0,t],2 = sup

s∈[0,t]
|X(s)|22

≤ d sup
s∈[0,t]

|X(s)|2∞

≤ d

(

|X(0)|∞ + sup
r,s∈[0,t]

|X(s) −X(r)|∞
)2

≤ 2d|X(0)|22 + 2d(Osc(X, [0, t]))2. (C.7)

It follows from inequality (C.4) and Proposition2.3.1(i) that for eacht ≥ 0,

‖X‖2
[−τ,t],2 ≤ ‖X0‖2

2 + ‖X‖2
[0,t],2

≤ ‖X0‖2
2 + 2d|X0(0)|22 + 2d(Osc(X, [0, t]))2

≤ (1 + 2d)‖X0‖2
2 + 2d(Osc(I(X̃), [0, t]))2

≤ (1 + 2d)‖X0‖2
2 + 8d‖I(X̃)‖2

[0,t],∞. (C.8)
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After fixing t ≥ 0, for eachr ∈ [0, t], it follows from inequality (C.2) that

E
[

‖σ(X̃r)‖2
2

]

≤ 2‖σ(0)‖2
2 + 2κLE

[

‖X̃r‖2
2

]

(C.9)

≤ 2‖σ(0)‖2
2 + 2κLE

[

‖X̃‖2
[−τ,t],2

]

, (C.10)

which is finite by assumption.

Therefore, Itô’s isometry implies that for eachs ∈ [0, t],

E

[

∣

∣

∣

∣

∫ s

0
σ(X̃r)dW (r)

∣

∣

∣

∣

2

2

]

= E

[

d
∑

i=1

∣

∣

∣

∣

∫ s

0
σi(X̃r)dW (r)

∣

∣

∣

∣

2
]

=

d
∑

i=1

E





∫ s

0

m
∑

j=1

(

σi
j(X̃r)

)2
dr





= E

[∫ s

0
‖σ(X̃r)‖2

2dr

]

≤ E

[
∫ s

0

(

C3 + C4‖X̃r‖2
2

)

dr

]

≤ tC3 + tC4E
[

‖X̃‖2
[−τ,t],2

]

, (C.11)

which is finite by assumption.

It follows from (C.11) that
{

∫ s

0 σ(X̃r)dW (r),Fs, s ∈ [0, t]
}

is a square-integrable

martingale. Therefore Doob’s inequality and the Itô isometry imply that

E

[

sup
0≤s≤t

∣

∣

∣

∣

∫ s

0
σ(X̃r)dW (r)

∣

∣

∣

∣

2

2

]

≤ 4E

[∫ t

0

∥

∥

∥
σ(X̃r)

∥

∥

∥

2

2
dr

]

. (C.12)

For eacht ≥ 0, we have

E
[

‖I(X̃)‖2
[0,t],2

]

≤ 3E
[

|X(0)|22
]

+ 3E

[

sup
0≤s≤t

∣

∣

∣

∣

∫ s

0
b(X̃r)dr

∣

∣

∣

∣

2

2

]

+3E

[

sup
0≤s≤t

∣

∣

∣

∣

∫ s

0
σ(X̃r)dW (r)

∣

∣

∣

∣

2

2

]

≤ 3E
[

‖X0‖2
2

]

+ 3tE

[∫ t

0
|b(X̃r)|22dr

]

+12E

[∫ t

0
‖σ(X̃r)‖2

2dr

]

≤ 3E
[

‖X0‖2
]

+ 3t

∫ t

0
E
[

2|b(0)|22 + 2κL‖X̃r‖2
2

]

dr

+12

∫ t

0
E
[

2‖σ(0)‖2
2 + 2κL‖X̃r‖2

2

]

dr. (C.13)
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The first inequality is a consequence of convexity, the second inequality follows from the Cauchy-

Schwarz inequality and inequality (C.12), and the third inequality used inequalities (C.1) and

(C.9). Combining (C.8) with (C.13) yields the first result.

Using Proposition2.3.1,

E
[

‖X −X†‖2
[0,t],2

]

≤ K2
ℓE
[

‖I(X̃) − I(X̃†)‖2
[0,t],2

]

≤ 3K2
ℓE
[

|X(0) −X†(0)|22
]

+ 3K2
ℓE

[

sup
0≤s≤t

∣

∣

∣

∣

∫ s

0

(

b(X̃r) − b(X̃†
r )
)

dr

∣

∣

∣

∣

2

2

]

+3K2
ℓE

[

sup
0≤s≤t

∣

∣

∣

∣

∫ s

0

(

σ(X̃r) − σ(X̃†
r )
)

dW (r)

∣

∣

∣

∣

2

2

]

≤ 3K2
ℓE
[

‖X0 −X
†
0‖2

2

]

+ 3K2
ℓE

[

sup
0≤s≤t

s

∫ s

0

∣

∣

∣b(X̃r) − b(X̃†
r )
∣

∣

∣

2

2
dr

]

+12K2
ℓE

[∫ t

0

∥

∥

∥σ(X̃r) − σ(X̃†
r )
∥

∥

∥

2

2
dr

]

≤ 3K2
ℓE
[

‖X0 −X
†
0‖2

2

]

+ 3K2
ℓ κL(t+ 4)

∫ t

0
E
[

‖X̃ − X̃†‖2
[−τ,r],2

]

dr

≤ 3K2
ℓ (1 + κLt(t+ 4))E

[

‖X0 −X
†
0‖2

2

]

+ 3K2
ℓ κL(t+ 4)

∫ t

0
E
[

‖X̃ − X̃†‖2
[0,r],2

]

dr

The second inequality used the Cauchy-Schwarz inequality and Doob’s inequality, which we can

use by (C.10) and the analogous inequality involving̃X†, and the third inequality follows from

inequality (C.3).

Theorem C.0.1.Under the global Lipschitz condition (5.1), given anyCd
I -valued,F0-measurable

random variableξ such thatE[‖ξ‖2
2] < ∞, there exists a strong solutionX to (1.1) with initial

conditionX0 = ξ.

The following existence proof is a standard argument using Picard’s iteration tech-

nique. It was adapted from the proof of Theorem 11 in [20].

Proof. Define the processes{X(n)(t), t ≥ −τ}, n = 0, 1, . . . inductively by

X(0)(t) =







ξ(t) for t ∈ I

ξ(0) for t ≥ 0,

and forn ∈ {1, 2, . . . },

X(n+1)(t) =







ξ(t) for t ∈ I

I(X(n))(t) + Y (n+1)(t) for t ≥ 0,
(C.14)
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i.e.,
{(

X(n+1)(t), Y (n+1)(t)
)

, t ≥ 0
}

solves the one-dimensional Skorokhod problem (with

normal reflection) forI(X(n)). Recall that

I(X(n))(t) = ξ(0) +

∫ t

0
b(X(n)

s )ds+

∫ t

0
σ(X(n)

s )dW (s) for t ≥ 0. (C.15)

By definition, for eacht ≥ 0, E
[

‖X(0)(s)‖2
[−τ,t],2

]

= E
[

‖ξ‖2
2

]

< ∞. Assume for

some integern ≥ 0, thatE
[

‖X(n)‖2
[−τ,t],2

]

<∞ for eacht ≥ 0. Then by LemmaC.0.1,

E
[

‖X(n+1)‖2
[−τ,t],2

]

≤ (24d + 1 + 2d)E[‖ξ‖2
2] + 192d‖σ(0)‖2

2t

+48d|b(0)|22t2

+(48t+ 192)κLd

∫ t

0
E
[

‖X(n)
r ‖2

[−τ,t],2

]

dr, (C.16)

which is finite by assumption. So by induction,E
[

‖X(n)‖2
[−τ,t],2

]

<∞ for every integern ≥ 0.

LemmaC.0.1also implies that for eachn ≥ 1,

E
[

‖X(n+1) −X(n)‖2
[0,t],2

]

≤ 3K2
ℓ κL(t+ 4)

∫ t

0
E
[

‖X(n) −X(n−1)‖2
[0,r],2

]

dr, (C.17)

sinceX(n+1)
0 = X

(n)
0 = ξ.

For eachn ∈ {0, 1, . . . }, define

fn(t) := E
[

‖X(n+1) −X(n)‖2
[0,t],2

]

, for t ≥ 0.

It follows from LemmaC.0.1, the fact thatE
[

‖X(0)‖2
[−τ,t],2

]

= E[‖ξ‖2], and inequality (C.16)

with n = 0 that

f0(t) = E

[

sup
0≤s≤t

∣

∣

∣X(1)(s) −X(0)(s)
∣

∣

∣

2

2

]

≤ 2
(

E[|ξ(0)|22] + E
[

‖X(1)‖2
[0,t],2

])

≤ K(t),

whereK(t) is the following quadratic polynomial int:

K(t) = 96d
(

|b(0)|22 + κLE[‖ξ‖2
2]
)

t2 + 384d
(

‖σ(0)‖2
2 + κLE[‖ξ‖2

2]
)

t

+2(24d + 2 + d)E[‖ξ‖2
2]. (C.18)

By induction, we’ll show that for each integern ≥ 0,

fn(t) ≤ K(t)

(

3K2
ℓ κL

)n
(t+ 4)ntn

n!
, for all t ≥ 0, (C.19)
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which is evident forn = 0 (we use the convention that0! = 1). So suppose (C.19) holds for

somen ≥ 0 (we have already shown it holds forn = 0). Using inequality (C.17) and the fact

thatK(t) is increasing onR+, we obtain

fn+1(t) ≤ 3K2
ℓ κL(t+ 4)

∫ t

0
fn(s)ds

≤ 3K2
ℓ κL(t+ 4)

∫ t

0
K(s)

(

3K2
ℓ κL

)n
(s+ 4)nsn

n!
ds

≤ K(t)
(

3K2
ℓ κL

)n+1
(t+ 4)n+1

∫ t

0

sn

n!
ds

= K(t)
(

3K2
ℓ κL

)n+1
(t+ 4)n+1 tn+1

(n+ 1)!
,

so (C.19) holds for alln ≥ 0.

Therefore by Chebychev’s inequality, for eachε > 0 andt ≥ 0,

P

(

∥

∥

∥X(n+1) −X(n)
∥

∥

∥

[0,t],2
> ε

)

≤ ε−2E

[

∥

∥

∥X(n+1) −X(n)
∥

∥

∥

2

[0,t],2

]

≤ ε−2fn(t)

≤ ε−2K(t)

(

3K2
ℓ κL

)n
(t+ 4)ntn

n!
.

Settingε = 1
n

andt = log(n) and using the fact that‖X(n+1)
0 − X

(n)
0 ‖ = 0 for all

n ≥ 0, we have

P

(

∥

∥

∥X(n+1) −X(n)
∥

∥

∥

[−τ,log(n)],2
>

1

n

)

≤ n2K(log(n))

(

3K2
ℓ κL

)n
(log(n) + 4)n(log(n))n

n!
. (C.20)

Using the ratio test and the facts thatlim
n→∞

K(log(n))
K(log(n+1)) = lim

n→∞

(

log(n)+k

log(n+1)+k

)n

= 1

for all k ≥ 0, the terms in the right member of (C.20) sum to a finite quantity. Therefore the

Borel-Cantelli lemma implies that the sequence of processes {X(n)} is P -a.s. Cauchy inCJ for

eacht ≥ 0, and hence uniformly convergent on any compact interval, and thusP -a.s. has a

continuous limit{X(t), t ≥ −τ} in the topology ofCJ. Thus, for eachn ≥ 0 andt ≥ 0, we
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have
∣

∣

∣

∣

∣

∣

‖X −X(n)‖[−τ,t],2 −
∥

∥

∥

∥

∥

∞
∑

k=n

(

X(k+1) −X(k)
)

∥

∥

∥

∥

∥

[−τ,t],2

∣

∣

∣

∣

∣

∣

≤
∥

∥

∥

∥

∥

X −X(n) −
∞
∑

k=n

(

X(k+1) −X(k)
)

∥

∥

∥

∥

∥

[−τ,t],2

=

∥

∥

∥

∥

∥

X −X(n) − lim
N→∞

N
∑

k=n

(

X(k+1) −X(k)
)

∥

∥

∥

∥

∥

[−τ,t],2

=

∥

∥

∥

∥

X − lim
N→∞

X(N)

∥

∥

∥

∥

[−τ,t],2

= 0. (C.21)

Because of (C.19) and the definition offn, for eacht ≥ 0,

(

X(n+1)(t) −X(0)(t)
)

=

n
∑

k=0

(

X(k+1)(t) −X(k)(t)
)

converges absolutely inL2(Ω, P ). Therefore{X(n)(t)}∞n=0 converges inL2(Ω, P ) for each

t ≥ 0. SinceX(n)(t) → X(t) P -a.s. for eacht ≥ 0, we obtain

E
[

|X(n)(t) −X(t)|22
]

→ 0 as n→ ∞. (C.22)
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Also, by (C.21), for eacht ≥ 0 andn ≥ 1,

E
[

‖X −X(n)‖2
[−τ,t],2

]
1
2

= E



 sup
−τ≤s≤t

∣

∣

∣

∣

∣

∞
∑

k=n

(

X(k+1)(s) −X(k)(s)
)

∣

∣

∣

∣

∣

2

2





1
2

≤ E



 sup
−τ≤s≤t

( ∞
∑

k=n

∣

∣

∣
X(k+1)(s) −X(k)(s)

∣

∣

∣

2

)2




1
2

= E





(

sup
−τ≤s≤t

∞
∑

k=n

∣

∣

∣X(k+1)(s) −X(k)(s)
∣

∣

∣

2

)2




1
2

≤ E





( ∞
∑

k=n

sup
−τ≤s≤t

∣

∣

∣
X(k+1)(s) −X(k)(s)

∣

∣

∣

2

)2




1
2

= E



 lim
N→∞

(

N
∑

k=n

sup
−τ≤s≤t

∣

∣

∣X(k+1)(s) −X(k)(s)
∣

∣

∣

2

)2




1
2

≤ lim
N→∞

E





(

N
∑

k=n

sup
−τ≤s≤t

∣

∣

∣
X(k+1)(s) −X(k)(s)

∣

∣

∣

2

)2




1
2

≤ lim
N→∞

N
∑

k=n

E

[

sup
−τ≤s≤t

∣

∣

∣
X(k+1)(s) −X(k)(s)

∣

∣

∣

2

2

] 1
2

≤
∞
∑

k=n

(

K(t)

(

3K2
ℓ κL

)k
(t+ 4)ktk

k!

)
1
2

, (C.23)

which approaches 0 asn → ∞ by the ratio test. Fatou’s Lemma was used for the third inequal-

ity, and the triangle inequality for theL 2(Ω)-norm (with finite sums) was used for the fourth

inequality.

Using inequality (C.3), we obtain fort ≥ 0 andn ≥ 1 fixed,

E

[

sup
0≤s≤t

∣

∣

∣

∣

∫ s

0

(

b(Xr) − b(X(n)
r )

)

dr

∣

∣

∣

∣

2

2

]

≤ E

[

t

∫ t

0

∣

∣

∣b(Xs) − b(X(n)
s )

∣

∣

∣

2

2
ds

]

≤ tE

[∫ t

0
κL‖X −X(n)‖2

[−τ,s],2ds

]

≤ t2κLE
[

‖X −X(n)‖2
[−τ,t],2

]

≤ t2κL





∞
∑

k=n

(

K(t)

(

3K2
ℓ κL

)k
(t+ 4)ktk

k!

)
1
2





2

. (C.24)
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In particular, for eacht ≥ 0,

∫ t

0
b(X(n)

s )ds →
∫ t

0
b(Xs)ds in L2(Ω) asn→ ∞. (C.25)

The Itô isometry yields for eacht ≥ 0,

E

[

∣

∣

∣

∣

∫ t

0

(

σ(Xs) − σ(X(n)
s )

)

dW (s)

∣

∣

∣

∣

2

2

]

= E

[
∫ t

0

∥

∥

∥σ(Xs) − σ(X(n)
s )

∥

∥

∥

2

2
ds

]

≤ E

[
∫ t

0
κL‖X −X(n)‖2

[−τ,s],2ds

]

≤ tκLE
[

‖X −X(n)‖2
[−τ,t],2

]

≤ tκL





∞
∑

k=n

(

K(t)

(

3K2
ℓ κL

)k
(t+ 4)ktk

k!

)
1
2





2

, (C.26)

so that for eachn ≥ 1,
{

∫ t

0

(

σ(Xs) − σ(X
(n)
s )

)

dW (s),Ft, t ≥ 0
}

is a square-integrable mar-

tingale, and for each fixedt ≥ 0,

∫ t

0
σ(X(n)

s )dW (s) →
∫ t

0
σ(Xs)dW (s) in L2(Ω) asn→ ∞. (C.27)

Lines (C.25) and (C.27) imply that for eacht ≥ 0,

I(X(n))(t) → I(X)(t) in L2(Ω) asn→ ∞. (C.28)

By (C.26), we may apply Doob’s inequality to obtain

E

[

sup
0≤s≤t

∣

∣

∣

∣

∫ s

0

(

σ(Xr)dr − σ(X(n)
r )

)

dW (r)

∣

∣

∣

∣

2

2

]

≤ 4E

[∫ t

0

∥

∥

∥σ(Xr) − σ(X(n)
r )

∥

∥

∥

2

2
dr

]

≤ 4tκL





∞
∑

k=n

(

K(t)

(

3K2
ℓ κL

)k
(t+ 4)ktk

k!

)
1
2





2

. (C.29)

SettingY (t) = ψ (I(X)) (t) for t ≥ 0, Proposition2.3.1and inequalities (C.24) and

(C.29) imply that

E
[

|Y (n)(t) − Y (t)|22
]

≤ K2
ℓE
[

‖I(X(n)) − I(X)‖2
[0,t],2

]

→ 0 asn→ ∞. (C.30)
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Taking the limit asn → ∞ in line (C.14), the facts (C.22), (C.28), and (C.30) imply that for

eacht ≥ 0, X(t) satisfies equation (1.1) P -a.s.. SinceX(n)
0 = ξ for all n ≥ 0, X satisfies the

initial conditionX0 = ξ.

By induction,X(n)(t) andY (n)(t) areFt-measurable for eacht ≥ 0. Therefore for

eacht ≥ 0,X(t) andY (t) areFt-measurable, as they are theP -a.s. limits of theFt-measurable

random variablesX(n)(t) andY (n)(t), respectively, and by assumption,Ft is P -complete.

Theorem C.0.2. Fix a Cd
I -valuedF0-measurable random variableξ. Under the Lipschitz con-

dition (5.1), any solutionX to (1.1) with the initial conditionX0 = ξ is unique up to indistin-

guishability.

Proof. Suppose thatX andX ′ both solve (1.1) with the same initial conditionξ, so that for any

t ≥ 0,

X(t) −X ′(t) =

∫ t

0

(

b(Xs) − b(X ′
s)
)

ds

+

∫ t

0

(

σ(Xs) − σ(X ′
s)
)

dW (s) + (Y (t) − Y ′(t)).

HereY = ψ(I(X)) andY ′ = ψ(I(X ′)). For t ≥ 0,

|I(X)(t) − I(X ′)(t)|22 ≤ 2

∣

∣

∣

∣

∫ t

0
(b(Xs) − b(X ′

s))ds

∣

∣

∣

∣

2

2

+2

∣

∣

∣

∣

∫ t

0
(σ(Xs) − σ(X ′

s))dW (s)

∣

∣

∣

∣

2

2

, (C.31)

from which it follows via the Cauchy-Schwarz inequality that

‖I(X) − I(X ′)‖2
[0,t],2 ≤ 2t

∫ t

0

∣

∣b(Xr) − b(X ′
r)
∣

∣

2

2
dr

+ sup
0≤s≤t

2

∣

∣

∣

∣

∫ s

0

(

σ(Xr) − σ(X ′
r)
)

dW (r)

∣

∣

∣

∣

2

2

. (C.32)

Since the coefficientsb andσ are bounded on bounded subsets ofCd
I , by stopping at the

stopping timeηn = 0 ∨ inf{t ≥ −τ : |X(t)|2 ∨ |X ′(t)|2 ≥ n}, we obtain the square-integrable

d-dimensional martingale

{∫ t∧ηn

0

(

σ(Xs) − σ(X ′
s)
)

dW (s),Ft, t ≥ 0

}

.
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Using Doob’s inequality and the fact thatX0 ≡ X ′
0, we have fort ≥ 0,

E

[

sup
0≤s≤t

∣

∣I(X)(s ∧ ηn) − I(X ′)(s ∧ ηn)
∣

∣

2

2

]

≤ 2E

[

t

∫ t∧ηn

0

∣

∣b(Xs) − b(X ′
s)
∣

∣

2

2
ds

]

+8E

[∫ t∧ηn

0

∥

∥σ(Xs) − σ(X ′
s)
∥

∥

2

2
ds

]

≤ 2κL(t+ 4)

∫ t

0
E

[

sup
0≤s≤r

∣

∣X(s ∧ ηn) −X ′(s ∧ ηn)
∣

∣

2

2

]

dr

≤ 2K2
ℓ κL(t+ 4)

∫ t

0
E

[

sup
0≤s≤r

∣

∣I(X)(s ∧ ηn) − I(X ′)(s ∧ ηn)
∣

∣

2

2

]

dr, (C.33)

where the second inequality follows from the remark (C.3), and the third inequality follows from

Proposition2.3.1. Gronwall’s inequality then implies that

E

[

sup
0≤s≤t

∣

∣I(X)(s ∧ ηn) − I(X ′)(s ∧ ηn)
∣

∣

2

2

]

= 0, for all t ≥ 0. (C.34)

Proposition2.3.1and Fatou’s lemma then imply that for eacht ≥ 0,

E

[

sup
0≤s≤t

∣

∣X(s) −X ′(s)
∣

∣

2

2

]

≤ K2
ℓE

[

sup
0≤s≤t

∣

∣I(X)(s) − I(X ′)(s)
∣

∣

2

2

]

≤ lim
n→∞

K2
ℓE

[

sup
0≤s≤t

∣

∣I(X)(s ∧ ηn) − I(X ′)(s ∧ ηn)
∣

∣

2

2

]

= 0. (C.35)

SinceX0 = X ′
0, it follows thatP (X(t) = X ′(t) for all t ≥ −τ) = 1.

Definition C.0.1. The uniqueness proved in TheoremC.0.2 is calledpathwise uniqueness of

solutions for (1.1) (see Definition IV.1.5 of [21], or Definition 5.3.2 of [22]). If instead we had

that for any two weak solutions{(Ω,F , P ), {Ft},X,W} and{(Ω′,F ′, P ′), {F ′
t},X ′,W ′} to

(1.1) with the same initial distribution (i.e.,P (X0 ∈ Λ) = P ′(X ′
0 ∈ Λ) for eachΛ ∈ MI) that

P (X ∈ Γ) = P ′(X ′ ∈ Γ) for eachΓ ∈ MJ, then we say thatuniqueness in lawholds for (1.1).

Since the spacesCd
I ,C

d
J andC0(R+,R

m) are all Polish spaces, the techniques of Ya-

mada and Watanabe (see, e.g., the Corollary to Theorem IV.1.1 in [21], or Proposition 5.3.20 in

[22]) can be applied to our situation to yield the following corollary.

Corollary C.0.1. The Lipschitz condition (5.1) implies that uniqueness in law holds.
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The following corollary will be used to relax the assumptionof global Lipschitz con-

tinuity in TheoremsC.0.1andC.0.2.

Corollary C.0.2. Let Λ ⊂ Cd
I be open, and assume thatb(x) = b′(x) and σ(x) = σ′(x)

for eachx ∈ Λ, and that all four satisfy the global Lipschitz condition (5.1). Denote the unique

strong solutions to the SDDER(1.1) with coefficientsb, σ andb′, σ′ starting with identical initial

conditionsX0 = X ′
0, byX andX ′, respectively. Then the exit timesTΛ(X) := inf{t ≥ 0 :

Xt ∈ Λc} andTΛ(X ′) are identical off a null set, and

P
(

X(t ∧ TΛ(X)) = X ′(t ∧ TΛ(X ′)), for all t ≥ −τ
)

= 1.

Proof. The assumptions on the coefficients imply that

I ′(X ′)(s ∧ TΛ(X ′) ∧ TΛ(X)) = I(X ′)(s ∧ TΛ(X ′) ∧ TΛ(X)) for eachs ≥ 0,

whereI ′ is defined asI but with the coefficientsb′, σ′ in place ofb, σ. Therefore,

E

[

sup
0≤s≤t

∣

∣X(s ∧ TΛ(X ′) ∧ TΛ(X)) −X ′(s ∧ TΛ(X ′) ∧ TΛ(X))
∣

∣

2

2

]

≤ K2
ℓE

[

sup
0≤s≤t

∣

∣I(X)(s ∧ TΛ(X ′) ∧ TΛ(X)) − I ′(X ′)(s ∧ TΛ(X ′) ∧ TΛ(X))
∣

∣

2

2

]

= K2
ℓE

[

sup
0≤s≤t

∣

∣I(X)(s ∧ TΛ(X ′) ∧ TΛ(X)) − I(X ′)(s ∧ TΛ(X ′) ∧ TΛ(X))
∣

∣

2

2

]

. (C.36)

First we assume thatΛ is bounded. The coefficientsb, σ are bounded on bounded sets,

so that
{

∫ s∧TΛ(X′)∧TΛ(X)

0

(

σ(Xr) − σ(X ′
r)
)

dW (r),Fs, s ≥ 0

}

is a square-integrable martingale. Then as in the proof of TheoremC.0.2, we can use Gronwall’s

inequality to obtain equality (C.34) with TΛ(X ′) ∧ TΛ(X) in place ofηn (in fact, they are the

same stopping times whenΛ = B(0, n), whereB(0, n) := {x ∈ Cd
I : ‖x‖2 ≤ n}). Thus the set

F :=
{

X(t ∧ TΛ(X ′) ∧ TΛ(X)) = X ′(t ∧ TΛ(X ′) ∧ TΛ(X)), for all t ≥ −τ
}

has full measure. OnF ∩ {TΛ(X) ≤ TΛ(X ′) < ∞} we have thatX ′(TΛ(X ′) ∧ TΛ(X)) =

X(TΛ(X ′) ∧ TΛ(X)) = X(TΛ(X)) ∈ Λc and thusTΛ(X ′) = TΛ(X). Similarly, TΛ(X ′) =

TΛ(X) onF ∩ {TΛ(X ′) ≤ TΛ(X) < ∞}. OnF ∩ {TΛ(X) = ∞}, X(t) ∈ Λ for all t ≥ 0, so

thatX ′(t∧TΛ(X ′)) = X ′(t∧TΛ(X ′)∧TΛ(X)) = X(t∧TΛ(X ′)∧TΛ(X)) ∈ Λ, which implies
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that t < TΛ(X ′) for all t ≥ 0, and thusTΛ(X ′) = ∞ = TΛ(X). Similarly, TΛ(X ′) = TΛ(X)

onF ∩ {TΛ(X ′) = ∞}, and thusTΛ(X ′) = TΛ(X) on all ofF , and the result follows.

If Λ is not bounded, then considerΛn := Λ ∩ B(0, n) for eachn ≥ 1. It was shown

thatP (X(t ∧ TΛn(X)) = X ′(t ∧ TΛn(X ′)), for all t ≥ −τ) = 1 for eachn ≥ 1. By tightness

of a finite number of distributions, for anyε > 0 andt ≥ 0, there existsN > 0 such that

1 − ε < P
(

‖X‖[−τ,t∧TΛ(X)] ∨ ‖X ′‖[−τ,t∧TΛ(X)] < N
)

≤ P
(

t ∧ TΛ(X) = t ∧ TΛN
(X), t ∧ TΛ(X ′) = t ∧ TΛN

(X ′)
)

≤ P
(

X(t ∧ TΛ(X)) = X ′(t ∧ TΛ(X ′))
)

. (C.37)

Sinceε > 0 was arbitrary,P (X(t∧TΛ(X)) 6= X ′(t∧TΛ(X ′))) = 0. Sincet ≥ 0 was arbitrary

andX0 = X ′
0, continuity ofX andX ′ implies that

P (X(t ∧ TΛ(X)) 6= X ′(t ∧ TΛ(X ′)) for somet ≥ −τ)

= P (X(t ∧ TΛ(X)) 6= X ′(t ∧ TΛ(X ′)) for somet ∈ Q ∩ R+)

≤
∑

t∈Q∩R+

P (X(t ∧ TΛ(X)) 6= X ′(t ∧ TΛ(X ′)))

= 0. (C.38)

The result follows.

We now have a tool that allows us to weaken the conditions of TheoremC.0.1 by

means of a standard technique (see [40], Section V.12) under the assumption thatb andσ are

locally Lipschitz.

Assumption C.0.1. The coefficientsb, σ are locally Lipschitz, i.e., for eachN > 0, there is a

κN such that for allx, y with ‖x‖2, ‖y‖2 ≤ N , we have

|b(x) − b(y)|22 + ‖σ(x) − σ(y)‖2
2 ≤ κN‖x− y‖2

2. (C.39)

Clearly, AssumptionC.0.1follows if the global Lipschitz condition (5.1) holds. When

the local Lipschitz condition does not hold, there are stilloccasions when there will exist a weak

solution to (1.1) that is unique in law, but often times the linear growth conditions (2.1) and (2.2)

will be required to prevent explosion in finite time.
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Theorem C.0.3. Under Assumptions2.1.1and C.0.1, there exists a unique strong solution to

the SDDER (1.1) for anyF0-measurable initial conditionX0.

Proof. Define for eachn ≥ 1, the functionsbn(x) = cn(‖x‖2)b(x) andσn(x) = cn(‖x‖2)σ(x),

wherecn : R+ → [0, 1] is defined ascn(r) = 1− (r− n)+ + (r− (n+ 1))+, so thatcn(r) = 0

wheneverr ≥ n+1, andcn(r) = 1 wheneverr ≤ n. Thenbn, σn are globally Lipschitz. Indeed,

without loss of generality, we can assume that‖x‖2 ≤ ‖y‖2, so thatcn(‖x‖2) ≥ cn(‖y‖2). If

‖x‖2 ≥ n + 1, thenbn(x) = bn(y) = 0. Otherwise, using the triangle inequality and the

Lipschitz continuity ofcn, we obtain

|bn(x) − bn(y)|22 = |(cn(‖x‖2) − cn(‖y‖2))b(x) + cn(‖y‖2)(b(x) − b(y))|22
≤ 2 |(cn(‖x‖2) − cn(‖y‖2))b(x)|22 + 2 |cn(‖y‖2)(b(x) − b(y))|22
≤ 2 |‖x‖2 − ‖y‖2|2 (C1 + C2(n+ 1))2 + 2κn+1‖x− y‖2

2

≤ 2
(

(C1 + C2(n+ 1))2 + κn+1

)

‖x− y‖2
2. (C.40)

A similar inequality holds forσn, so that for allx, y ∈ Cd
I ,

|bn(x) − bn(y)|22 + ‖σn(x) − σn(y)‖2
2

≤
(

4κn+1 + 2
(

C1 + C2(n+ 1)
)2

+ 2
(

C3 + C4(n+ 1)2
)

)

‖x− y‖2. (C.41)

It follows from Assumption2.1.1that bn, σn grow at most linearly with the same growth con-

stantsC1, C2, C3, C4, sincecn(‖x‖2) ≤ 1 for all x ∈ Cd
I .

Thus for eachn ≥ 1 andCd
I -valued random variableξ such thatE[‖ξ‖2

2] < ∞, there

is a unique strong solutionX(n) to (1.1) with the coefficientsbn, σn in place ofb, σ with initial

conditionX(n)
0 = ξ. Corollary C.0.2 implies that these solutions are consistent in the sense

thatX(n+1)(t ∧ TB(0,n)(X
(n+1))) = X(n+1)(t ∧ TB(0,n)(X

(n))) = X(n)(t ∧ TB(0,n)(X
(n)))

for all t ≥ −τ , P -a.s.. Therefore, we can define a solutionX to (1.1) (until the explosion

time T (∞)(X) := lim
n→∞

TB(0,n)(X) = lim
n→∞

TB(0,n)(X
(n))) via localization by settingX(t) =

X(n)(t) whenevert ∈ [−τ, TB(0,n)(X
(n))]. Lemma2.4.1implies that

E
[

‖X(n)‖2
[−τ,t],2

]

≤ F2(E[‖ξ‖2
2], t), for eachn ≥ 1,

sinceF2 depends only on the linear growth constants of the coefficients, which in our case are

the same for eachn. Thus for eacht ≥ 0,

P
(

t > TB(0,n)(X
(n))
)

= P
(

‖X(n)‖[−τ,t],2 > n
)

≤ 1

n2
E
[

‖X(n)‖2
[−τ,t],2

]

≤ 1

n2
F2(E[‖ξ‖2

2], t)

→ 0 as n→ ∞.
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ThereforeX does not explode, i.e.,T (∞) = ∞ P -a.s., and we can define the solution on all of

R+. Since eachX(n)(t) was the unique solution to (1.1) for t ∈ [0, TB(0,n)(X
(n))], it follows

thatX is unique.
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Volume 2: Itô Calculus(2nd Edition). Cambridge University Press, Cambridge.

[41] Scheutzow, M. (1983). Qualitative behaviour of stochastic delay equations with a bounded
memory.Stochastics12 41-80.

[42] Scheutzow, M. (2000). Stability and instability of routings through a queueing network.
Queueing Systems Theory Appl.35 117-128.

[43] Scheutzow, M. (2004). Exponential growth rates for stochastic delay differential equations.
Stochastics and Dynamics5 2 163-174.

[44] Srikant, R. (2004).The Mathematics of Internet Congestion Control.Birkhäuser, Boston.
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