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ABSTRACT OF THE DISSERTATION

Stationary Distributions for Stochastic Delay Differential Equations with
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Deterministic dynamic models with delayed feedback anté stanstraints arise in a
variety of applications in science and engineering. Muckhefanalysis of such deterministic
models has focussed on stability analysis of equilibriunmiso There is interest in understand-
ing what effect noise has on the behavior of such systems Weiconsider a multidimensional
stochastic delay differential equation with normal reflatias a noisy analogue of a determinis-
tic system with delayed feedback and non-negativity cairgs. We obtain sufficient conditions

for existence and uniqueness of stationary distributionse results are applied to examples
from Internet rate control and biochemical reaction system
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Chapter 1

Introduction

1.1 Overview

Dynamical system models with delay are used in a variety pfiegtions in science
and engineering where the dynamics are subject to propagdélay. Examples of such ap-
plication domains include packet level models of Interrae rcontrol where the finiteness of
transmission times leads to delay in receipt of congestignats or prices 32, 44], neuronal
models where the spatial distribution of neurons can résdklayed dynamics, epidemiological
models where incubation periods result in delayed trarsarisof disease?], and biochemical
reactions in gene regulation where lengthy transcriptiod @anslation operations have been
modeled with delayed dynamics, [6, 29]. There is an extensive literature, both theoretical and
applied on ordinary delay differential equations. The bpbH by Hale and Lunel provides an
introduction to this vast subject.

In some applications involving delayed dynamics, the qgtiastof interest are nat-
urally non-negative. For instance, rates and prices inrietemodels are non-negative, con-
centrations of ions or chemical species and proportionspaffaulation that are infected are all
naturally non-negative quantities. In deterministic eliffintial equation models for the delayed
dynamics of such quantities, the dynamics may naturally kee quantities non-negative or
they may need to be adapted to be so, sometimes leading ewpéeccontinuous delay differ-
ential dynamics (see e.g33, 33, 34, 35, 36]). There is some literature, especially applied, on
the latter, although less than for unconstrained delayesysor naturally constrained ones.

Frequently in applications, noise is present in a systemitaisddesirable to under-

stand its effect on the dynamics. For unconstrained systenescan consider ordinary delay



differential equations with an addition to the dynamicsha torm of white noise or even a state
dependent noise. There is a sizeable literature on suchastic delay differential equations
(SDDE) especially when the associated noiseless systera blbally attracting equilibrium
[3, 11, 15, 20, 27, 28, 30, 31, 37, 41, 42, 43]. To obtain the analogue of such SDDE models
with non-negativity constraints, it is not simply a mattéradding a noise term to the ordinary
differential equation dynamics, as this will typically rlead to a solution respecting the state
constraint (even if the deterministic model was naturatigstrained).

As described above, there is natural motivation for comsidestochastic differential
equations where all three features, delay, non-negativitygtraints and noise, are present. How-
ever, there has been little work on systematically studgingh equations. One exception is the
work of Kushner (see e.g.29]), although this focuses on numerical methods for stoahadst
lay differential equations (including those with state stoaints), especially those with bounded
state space. We note that the behavior of constrained systambe quite different from that
of unconstrained analogues, e.g., in the deterministiaydedjuation case, the addition of a non-
negativity constraint can turn an equation with unboundsdillatory solutions into one with
bounded periodic solutions, and in the stochastic delagtemucase, transient behavior can be
transformed into positive recurrence.

Here we seek conditions for existence and uniqueness adrsay distributions for

stochastic delay differential equations with non-neggtigonstraints of the form:
t t
X(t) = X(0) + / b(Xs)ds + / o(Xs)dW(s)+Y(t), t>0, (1.2)
0 0

where X (t) takes values in the positive orthant of some Euclidean space [0, ) is the
length of the delay periodX; = {X (s + u) : —7 < u < 0} tracks the history of the process
over the delay periodiV is a standard (multi-dimensional) Brownian motion noiseree and
the stochastic integral with respectifio is an Itd integralY” is a vector-valued non-decreasing
process which ensures that the non-negativity constrainis are enforced, in particular, thé
component of” can increase only when thi€ component ofX is zero. We refer to equations
of the form (L.1) as stochastic delay differential equations with reflettishere the action of

is termed reflection (at the boundary of the orthant).

This thesis is organized as follows. The rigorous definittba solution of {.1) and
properties of solutions are given in Chapgr Stationary distributions are defined in Chapter
3, and a general condition guaranteeing their existencedssritbed in Section8.2-3.4. This
condition is in terms of uniform moment bounds. Conditionsler which such moment bounds
hold in terms of restrictions ohando are given in Chapte4. While the results here are new,



we do use some results and adapt some techniques develop&dangd Nisio R0] and Mao
[28]. The results of Chaptei3and4 are combined to give sufficient conditions for existence of
a stationary distribution in Sectidhl Conditions for uniqueness of such a stationary distribu-
tion are given in Sectiob.2 Our proofs in that section are an adaptation of methodslcleve
recently by Hairer, Mattingley, and Scheutzo®6] for proving uniqueness of stationary dis-
tributions for stochastic delay differential equationgheut constraints. An important aspect
of the results in16] is that they enable one to obtain uniqueness of stationatyilwlitions for
stochastic delay differential equations when the disparsoefficient depends on the history of
the process over the delay period. Previous results on en&gs of stationary distributions were
often restricted to cases where dispersion coefficienteragal only on the current state of the
process (cf. 11, 25, 37, 41, 43]), with an exception being20]. This is in part due to poten-
tial reconstruction of the initial condition from the quatc variation process §[7, 43]), which
precludes ergodicity of the process and rules out use of Bdbborem (seelll], Theorem
4.2.1). Some applications of our results to a few partical@mples arising from biochemical
reaction systems and Internet rate control are discuss€thapter6. AppendixA contains a
list of the notation that appears throughout this work, Amjie B covers some inequalities that
appear frequently throughout this work, and Appendigiscusses some conditions that imply
that equation.1) is well-posed.

As an example of the applicability of these results, the din@ensional equation (in
differential form)

dX(t) = (A1 — BiX(t—1))dt + (Ay + BoX(t — 1))dW (t) +dY (t), t>0, (1.2)

whereAd; € R, By > 0, A, > 0, By € (0, %), has a unique stationary distribution as long as

By > 5255 See Sectio.2for justification of this result.

1.2 Notation

We shall use the following notation throughout this work.

For each positive integet, let R? denoted-dimensional Euclidean space, andligt
denote the closed positive orthanttf. Whend = 1, we suppress thé and writeR for
(—o0,00) andR for [0,00). Foreachi = 1,...,d, the it component of a column vector
v € R? will be denoted byv’. For two vectorsu, v € R?, the statement > v will mean that

u® > v’ for eachi = 1,...,d. For eachr € R, definer™ = max{r,0} andr~ = max{—r,0}.



For any real numbers, s, 6, , denotes the Kronecker delta, i.e., it is one it= s and zero
otherwise.

Unless specified otherwise, we treat vectors R as column vectors, i.ey =

(', ..., v?). Foru,v € R, u-v = iuiv" denotes the dot product afwith v. Let M?x™
denote the set af x m matrices with r:a_all entries. For a given matrixe Mdxm A;ﬂ denotes the
entry of theith row and thejth column, A* denotes theth row, andA; denotes thg’th column.
The notation/; will denote the(d x d)-identity matrix.

We denote the maximum norm @&f by

V|00 = iirilaxd|vi|, v= ..., vY) e R

Forp € [1, ), we also have the correspondipgorms:
1
ol = (Jo'f? +--+ )", veR
These norms can also be applied to row vectors, i.e.pfer (v!,...,v%), [v], = [v|, for

p € [1,00]. We use some matrix norms as well. Given a mattiX|A||« := ma_x|A§.| denotes
Zh]

d m
the maximum norm of, and||Alls := /> > (A;i)2 denotes the Frobenius norm, 4f
i=1j=1

For any two metric spacés,;, E,, let C(E;, E,) denote the space of continuous func-
tions fromE; into E,. Here,E; will often be a closed interval’ C (—oo, o0), andE, will often
be R? or R< for various dimensiong. For any metric spacE with metric p, we useB(z,r)
(wherez € E andr > 0) to denote the open bafly € E : p(z,y) < r} of radiusr around
x, and we usé3(EE) to denote the associated collection of Borel set&.offhe set of bounded
Borel measurable real-valued functionsIémvill be denoted byB,(E), andCy(E) will denote
the set of bounded continuous real-valued function&on

For any integet and closed interval in (—oo, o), we endowC (1, R?%) andC (I, R%)
with the topologies of uniform convergence on compact irgtksrin . These are Polish spaces.
In the case of”(I,R%), we useM; to denote the associated Boreklgebra. We shall also
use the abbreviation§; = C(I,Ry) andC¢ = C(I,R1). For a given dimensiomn, let
Co(R4,R™) denote the set of continuous functians [0,00) — R™ such thate(0) = 0. For
a given closed bounded interva] metric spacek, andt € I, we define the evaluation map
e : C(I,E) — Ebyelf) = f(t).

Throughout this work, we fix € (0, co), which will be referred to as the delay. Define
[ = [-7,0] and] = [-7,0). As a subset of the vector spacgl, R?), C{ has the equivalent



norms

”pr = Su]II)‘x(t)‘IH S Cﬁla p S [17 OO];
te

that induce its topology of uniform convergence on compatdrials. The associated Borel
o-algebra isM;. Forz € C§ andt > 0, definex; € C{ by z(s) = z(t + s) forall s € I. It
should be emphasized thatt) € R% is a point, whilez, € C{ is a continuous function oh
taking values ifR%. For eacht € R, we define the projectiop, : C¢ — C¢ by p(z) :=
for eachz € C{.

For a closed interval in (—o0o,0), a; < ay in I, and a pathe = (2!,...,2%)" €
C(I,R%), we define the oscillation af over [ay, as] by

Osqz,[a1,a]) =  sup |o(t) —a(s)lw = mhx sup |@(t) —ai(s),  (L.3)

s,t€la1,a2) =1 5 tefar,az]

the modulus of continuity of overl by

d ) .
wr(x,d) := max sup |z'(t) —z'(s)], 0 >0
i=1 s,tel
[s—t|<é

and for eachp € [1, oc|, the supremump-norm ofz overI by

Hw”l,p = SUP’w(t)’p'
tel

WhenI = I, the notation| - ||, described in the previous paragraph will be used as an abbrev
tion for || - ||1,,. Whend = 1, the maximum norm and gli-norms (forp € [1, 00)) are equal to
the absolute value, so we abbrevidte||; := || - |7, = || - ||7,» In this case.

By a filtered probability space, we mean a quadrypler, {F;,t > 0}, P), whereF
is ac-algebra on the set of possible outconigsP is a probability measure on the measurable
space((2, F), and{F;,t > 0} is a filtration of subs-algebras ofF where theusual conditions
are satisfied, i.e(Q2, 7, P) is a complete probability space, and for each 0, F; contains all
P-null sets of F and F,y := sgt]-“s = F;. Given twoo-finite measures:, v on a measurable
space(2, F), the notationu ~ v will mean thaty andv are mutually absolutely continuous,
i.e., foranyA € F, u(A) = 0ifand only if v(A) = 0.

Given a positive integem, by a standardn-dimensional Brownian motion, we mean
a continuous procesdV (t) = (W(t),...,W™(t))',t > 0} taking values irR™ such that

() W(0)=0as.

(i) the coordinate processed/’, ..., W™, are independent,



(i) foreachi =1,...,m, positive integern and0 < t; <ty < ...t, < oo, the increments
Wi(ty) — Wi(ty), Wi(ts) — Wita), ..., W'tn) — Wi t,_1)
are independent, and

(iv) foreachi =1,...,mand0 < s < t < oo, Wi(t) — W(s) is normally distributed with
mean zero and varianc¢e- s.

Given a functionf : {1,2,...} — R anda € (—o0, 0], the notationf(n) " a as
n — oo means thatlim f(n) =aandf(n) < f(n+1) foreachn = 1,2,....

A list of the preceding notation along with other notatioattappears in this work can
be found in the Appendix.



Chapter 2

Stochastic Delay Differential Equations
with Reflection

In this chapter, we define a solution to equatidrl) precisely, and we derive some

useful properties of solutions.

2.1 Definition of a Solution

Recall from Sectiorl.2 that we are fixing a € (0, c0), which will be referred to
as the delay, and we defifie= [—7,0], ] = [-7,00), C{ = C(I,R%), andC¢ = C(J,R%).
Furthermore, we fix positive integefisandm, and functions : C¢ — R ando : C¢ — Md*™

that satisfy the following continuity and linear growth asgtions.

Assumption 2.1.1.The function$ ando are continuous, and there exist non-negative constants
C4, Cy, C5, andCy such that for each: € C¢,

b(z)[z < Ci+ Cofzz, and (2.1)
lo(@)3 < Cs+ Culall3. (2.2)

Definition 2.1.1. A solution of the stochastic delay differential equatiorthwieflection (SD-
DER) associated witlp, o) is ad-dimensional continuous proceds= {X (¢),¢ € J} defined
on some filtered probability spa€@, 7, { F;,t > 0}, P) that P-a.s. satisfiesl(1), where

(i) X(t)is Fo-measurable for eache I, X (¢) is F-measurable for each> 0, and X (¢) €
R4 forall t € J,



(i) Y is ad-dimensional continuous and non-decreasing process BatYi f0) = 0 andY ()

is F;-measurable for each> 0,

(i) W is a standardn-dimensional Brownian motion such th@i' (¢), 7,¢t > 0} is a mar-

tingale underP,

(iv) fo )-dY(s) = 0forallt > 0,ie.,Y? can increase only wheX® is at zero for
1= 17 sy d.

A natural initial condition for equatioril(1) is not an initial state such & (0) = v €
Ri as the dynamics would be indeterminate foe [0, 7] in that case (assuming thator o
depends on a delayed state). The natural initial condigcemiinitial segmenk, = = € C¢,
or more generally, an initial distribution on (C{, My), i.e., P(Xo € A) = u(A) for each
A e M.

Remark. A solution of the SDDER1.1) defines a stochastic proce§X;,t > 0} with state
space(Cﬁl. This process may be considered a more natural “state gescprocess” than the
process{ X (t),t > 0}.

Remark.As a consequence of condition (i) and the continuity of thihpaf X, {X;,t > 0}

is adapted to{F;,t > 0}, andt — X,(w) is continuous fromR . into C¢ for eachw € Q.

It follows that the mapping? : R, x Q — C¢, where F(t,w) = X;(w), is progressively

measurable, being continuoustimnd adapted (see Lemma 11.73.10 88]). Therefore since

o : C¢ — M™ is continuous(o o F)(t,w) = o(X;(w)) is progressively measurable. Since

o(+) is continuous andX.(w) is continuous for eacly, o(X;(w)) is continuous irt, and thus

bounded on compact time intervals, so thﬁ([é lo(Xs)|13ds < oo) = 1 for eacht € R,

o} that{f0 $)dW (s), Fy,t > 0} is a continuousgi-dimensional local martingale. Similarly,

b(X:(w)) is continuous int for eachw € (2, so for each fixed’ > 0, there is a constant

K, € (0,00) such thaﬂb(Xt( )2 < K, for eacht € [0,T]. Therefore fOT (Xt (w))|2dt <

TK, < oo, so that{ fo s)ds,t > 0} is a continuous adapted process whose coordinates

are locally of bounded variation. Sing&”(¢),¢ > 0} is continuous, has nondecreasing (and

therefore locally of bounded variation) coordinates, anddapted to the filtratiofiF;, ¢ > 0},
+f0 s)ds+Y(t), Fy,t > 0} is a continuous adapted process that is locally of bounded

variation. Therefore{ X (¢),t > 0} is a continuous semimartingale with respec{f,¢ > 0}.

Since this work is directed at proving existence and unigasmfstationarydistribu-
tions, we shall assume that the equatidri) is well-posed. That is, in addition to Assumption



2.1.1, we make the following minimal assumption on existence amdueness in law of solu-
tions to (.1).

Assumption 2.1.2.For each deterministic initial conditioX, = = € C%, on some filtered prob-
ability space(Q*, F* {F},t > 0}, P*), there exist a Brownian motion martingal&/*(¢),t >
0} and continuous processeés” = {X7(t),t € J} andY® = {Y*(¢),t € R}, such thatX®
is a solution to the SDDERL(D with (X*,Y* W?) in place of(X,Y, W). Furthermore, the
law of X* is unique given.

Sufficient conditions for strong existence and pathwisguemess for solutions to the
SDDER (L.1) are given in AppendiXC. These conditions imply that Assumptiohd.1and2.1.2
hold.

2.2 Examples

Example 2.2.1.Fix a,v,¢,C > 0. For z € Cy, define

b(x) = and o(z) = ¢ +7.

63
()

The SDDER associated with this p&ir, o) is an example forl = 1 that arises in the study of

(1+@>2 -7

biochemical reaction system29).

Example 2.2.2. Differential delay equations with linear or affine coeffitie are used often in

engineering. An example of an SDDER with affine coefficiarttsei following. Forr € Cp, let

b(x) i=bo — b1zx(0) = Y biw(—r) + Y bi(—ry), (2.3)
=2 i=n+1
and
o(x):=ap+ Zaiw(—si), (2.4)
i=1
where) < r; < 7and0 < s; < rforeachi,n’ >n > 2,n” > 0,andby,...,b,,ag,...,an" >
0.

Example 2.2.3.Paganini and Wang33], Peet and Lall B6], and Papachristadolou, Doyle, and
Low [34, 35], studied a multidimensional deterministic model of Imiefr rate control withd

servers and!’ sources. In this, the dynamics are given by

dX(t) = b(Xy)dt, (2.5)
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where thez'th

component o (¢) represents the price at timehat server charges for the trans-
mission of a packet through it, assuming that the servershgtige Queue Management (AQM)
and that the sources use the Transmission Control Protadd@R(). The drifth is discontinuous;

foreachi = 1,...,d, andz € CY,

d’ d .
-1+ EAU exp <—Bj z Aij’ijk(—rijk)> if wZ(O) >0
j=1 k=1 (2.6)

b'(z) = P J +
(—1 + j;lAij exp <_Bjk§1Aijijk(_rijk)>> if 21(0) =0
for someBy,...,Bg > 0, and A;; > 0, Cy; > 0, andr;;, > Oforall i,k € {1,...,d} and

j €{1,...,d'}. The constants depend on parameters such as the capacitg gfieues at the
servers, the maximal rate of transmission from each sowaeuting matrix that determines
which sources use which servers, and some other parametdrs.solutions of2.5) remain

in the nonnegative orthant by the constructionéqﬁor the meaning of a solution with such
a discontinuous righthand side, see, e.d.3]). It turns out that the solutions of the SDDER

associated witlr = 0 coincide with the solutions o2(5) when the driftb is defined by

d’ d
bz((ﬂ) =—1+ ZAU exp <_BjZAijkjwk(_Tijk)> , 1=1,....,d.

j=1 k=1

Allowing o to be non-zero yields a noisy version of the deterministideho

2.3 Reflection

To ensure that a solution of (1) remains non-negative, we employ Skorokhod'’s well-
known mapping for constraining a continuous real-valuettfion to be non-negative by means
of reflection at the origin. We apply this mapping to each congmt.

For each positive integel, defineC (R, RY) := {z € C(R4,R?) : 2(0) € RL}.

Definition 2.3.1. Given a pathz € C,(R,,R%), we say that a paifz,y) of functions in
C4 (R4, R%) solves the Skorokhod problem ferwith (normal) reflection if

(i) 2(t) = z(t) + y(t) forall t > 0 andz(t) € R for eacht > 0,
(iiy foreachi =1,...,d, y*(0) = 0 andy’ is nondecreasing,

(iii) foreachi =1,...,d, y'(t) = [; 110y (#'(s))dy’(s) forall t > 0, i.e.,y' can increase only

whenz! is at zero.
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The pathz is called the reflection af, and the patly is called the regulator af.

Remark.Here, we consider only normal reflection as described inlloeeadefinition, but there
is a substantial theory for oblique reflection. For a survpythrough 1995, seetp], and for
some applications, se@4]. We have some partial results still under development fdigoe

reflection. In the following, when we use the term reflectiae, mean normal reflection.

We summarize some basic facts about the Skorokhod probléme imext proposition.
With normal reflection, the problem can be solved compongmomnponent in an explicit way.

Proposition 2.3.1. For each pathz € C(R,,R%), there exists a unique solutiofx,) to
the Skorokhod problem far. Thus there exists a pair of functio®, ) : C, (R, RY) —
C. (R, R?) defined by(¢(x),v(x)) = (z,y). The pair(¢,v) satisfies the following:

() Osd¢(z),[a,b]) < Osdz,[a,b]).

(i) There exists a constarit, > 0 such that for eachr,y € C (R, R?), we have for each
t >0,

(@) = ¥W)llog.2 < Kellz = yllo,9,2, and

lo(z) = ¢W)lljo,g,2 < Kellz = yllo,g,2-

Proof. These properties follow from the well-known constructidnyo
! = | — min 2" =1,...,d.
v = (~guinge)) L =1,

For more details, se€l®, 18, 46]. We note thatK, < 2, but we keep the notatiok’, for
convenience. O

Thus the Skorokhod problem with reflection is well-poseé, gsblution mag ¢, v) is
Lipschitz continuous, and oscillations of the reflectigfr) are bounded by the oscillations of
x.

For notational convenience, given a continuous adapteshastic proces$(t),t >
—7} taking values ifR% and anm-dimensional Brownian motiofi” defined on some filtered
probability spacé2, F, {F;}, P), , we define

ﬂwﬂﬁzam+AM®%+Ao@MW®,t20 2.7)

For a solutionX of the SDDER, X (t) = Z(X)(t) + Y (¢),t > 0. In other words{ X (¢),t >
0} can be obtained by reflecting(X), i.e., X = ¢(Z(X)), andY = ¢(Z(X)), because of
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the uniqueness of solutions to the Skorokhod problem. Tagm consequence of Proposition
2.3.1(i), forany0 < a < b <

Osd X, [a,b]) < OsqZ(X),[a,b]). (2.8)

2.4 Bounds for Moments of Supremum Norm over Bounded Inter-
vals

We now state the Burkholder-Davis-Gundy inequalities. égbican be found, e.g., in
[22], Theorem 3.3.28.

Proposition 2.4.1. For eachp > 0, there exist constants,, ¢, > 0 such that for any real-valued
continuous local martingal¢ M (t), F;,t > 0} with quadratic variation proces$(M)(t),t >

0}, and each stopping timgtaking values iR,

B [(0))E] < B (1M, ] < @B [(an)m)F].

Under Assumptior2.1.1, any solutionX to (1.1) satisfies the following supremum
bound.

Lemma 2.4.1. For eachp € [2,00), there exists a continuous functidf : Ry x Ry — Ry

that is nondecreasing in each argument, such that

E[HXH’[’_T’TLP] < F,(E[|X,|[2], T) for eachT > 0. (2.9)

In fact,
Fp(r,s) = kp(3)+kp(3)7°a

where the functiong,, and l?;p are non-decreasing ofD, c0), and they depend only gn the
dimensionsi, m, and the linear growth constants;, Cs, Cs, C4 from Assumptior2.1.1
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Proof. For anyT > 0,

1X Wy, < UK 7y e+ X

| X1(0) + OsdX ™, [0, T])[” + -+ +]X(0) + Osd X, [0, T])[”

27 (IX1 O + (0sd X", [0, T]))7 + -+ + [X(O)" + (Osc(X", [0, T]))")
2771 (|X(0) [P + d(Osq X, [0,77))")

2071 (IX(0); + d(OsAZ(X), [0, 7)))")

27X (0)[p

INIAN IN TN

IN

T
+2P~ g max </ b°(Xy)|dt + 2 sup
¢ 0 s€[0,7]

/Os ai(Xt)dW(t)Dp
)

/O (X)W (1)

< 27UX(0)f

/0 (X)W (1)

T
+2r1q (/ |b(Xy)|odt + 2 sup
0 s€[0,T]

IA

27X (0)]p

T p
+2%72q (( / \b(Xt)\gdt> + 2P sup
0 s€[0,7T

Here, we have used PropositiBn0.1for the third and eighth inequalities.

p
> . (2.10)

2

For each integen > 1, define the stopping timg, := inf{t > 0 : || X||_; 4,2 > n},
with the convention thainf ) = co. The Burkholder-Davis-Gundy inequalities imply that for
eachn, foranyT > 0,

d m s »
YD E| sup /a;l(Xt)de(t)]
i=1j=1 L[s€l0.TAn]1/0
d m T A ‘ , g
< épZZE </ |0§(Xt)|2dt>
i=1j=1 0
T AN, ) g
< &b (/ Ha(Xt)H2dt>
0
T A, g
S GEb (/ (C3+C4HXtH%)dt>
0

P P
< 257! <C§T’£ +CZE

T , £
< /0 \|X||[_T’Mnn]72dt> . (211

The third inequality follows from repeated application néquality 8.2) and the linearity of

integration, the third inequality follows from the linearogvth condition 2.2), and the fourth
inequality follows from Propositio.0.1
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Then, on replacing” by T' A n,, in (2.10), taking expectations, using the linear growth

assumption Z.1) on b, inequality @.11), and repeated application of PropositiBn0.1 and

Holder’s inequality, we have for eaechandT" > 0,

where

B (11X 8y g )

< 7B [||Xo|b] + 2% %dE

( / o \b(Xdet)p]

/ (X)W (1) :]

(/ Gt GolXl) dt)p]

2\ &
+2P724E | sup Z / LX) AW (t)

s€[0,TAnn] \ ;=1 =
TANn p
( / uXtuzdt)
0

2

+2%P"24F sup

s€[0,TAny]

IN

27 E [|| Xo|b] + 2%P72dE

IN

27 E [|| Xo||B] + 2 73dCYT? 4 2% ~3dCYE

[Nl

d m

+2%2dmE E sup ZZ
S€[0,TAny] i=1j=1

[ aiecamio

IN

- T/\77n
op—1p [||X0||§] + 23P—3dCpr + 23p_3dC§T%E |:/ HXtHgdt]
0

+23p— 2dm2 dm ZZE P]

i=1j5=1
1 T
271 [|| Xo[B] + 2% 72dCYT? + 2720y T > / [”XH[—TM% 2] dt
0

sup
€[0,7Any]

| aicxawie

IN

T
+23 235 mp1e <C2Tz +CITTE [/ [B:q thD

IN

T
K\(T) + Ka(T)E [| Xo|[2] + Ks(T) /0 E[IX1% ] (2.12)

D
K\(T) = 2773dCPT? 4 2% =242 mP 16,21 C2 T,

b 2p—2
Ko(T) = 201 4 9334005 q5=1 4 9328 mp—15,28 10277 a5

K3(T) = 2%P-3dCRT"7 db~! + 2325 mP~16,25 10277 a5 L.

For the last inequality, we used the fact that inequaltyb) implies

p

HX” [—7,t],2 ”X0”p+ ”XH[(]t]Q dz"— 1|’X0”p+d§_1”XH[0t]p (2-13)
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Note thatK;, K, K3 are all increasing ifT’, so that for each € [0, T'], we have
t
B (1Xyipgs] € KaD) + KDE (1%00E) + KoT) [ B [1X10,,] ds- 229
Gronwall’s inequality (PropositioB.0.4) now yields for each € [0, T,
E X W i) S (K1) + Ko T)E [ Xo2]) 5P, (2.15)

so that

E [1X0l8) + B [1X I rrn]
E [ Xol2] + (K1(T) + Ko(T)E [|| Xo 2] ) e™*T). (2.16)

E(IXIP, rrns]

IN

The monotone convergence theorem can now be invoked tanobtai
EXIE | < EIXlE] + (Ki(T) + Ka(DE [ Xollp]) ™). (2.17)

Thus, the result holds with),(r, s) = K (s)e*®3(5) 4 (1 + Ko(s)esK3))r for p > 2.

2.5 Feller Property

This section is devoted to proving a type of regularity in thidal condition of the
solutions to 1.1) (referred to as Feller continuity). This will be used indlasections. Indeed,
in the next section it will be shown that under Assumpti@rk.1and2.1.2 the SDDER {.1)
generates a Feller continuous family of transition funwipP; (x, A),t > 0,z € (Cﬂd, A € Mi},
whereP;(x,A) = P(X} € A). The proof of this relies on a standard argument: proverniggg
of solutions with initial conditions converging toe (Cﬁl and show any limit point has law of the
solution starting frome.

Recall the notation for the modulus of continuity of a fupnatintroduced in Section
1.2 We will use the following well-known criterion for tightss onC(I,R%), wherelI is a
closed interval inR and has left endpoirty € R. A proof can be found in Theorem 2.4.10 of
[22], or in the case of a bounded interviglTheorem 7.3 off).

Proposition 2.5.1.For any closed interval of R with left endpoint, € R, a sequencép,, }o° ;
of probability measures on the path spd¢&(1, R?), B(C(I,R%))) is tight if and only if

(i) limsup P, (z € C(I,RY) : |2(tg)| > a) =0, and

a—=0np>1
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(ii) for each fixedI" > tg and A > 0, we have

lim sup P, <w € C(I,RY) : Wigo 7)1 (T, 6) = )\> =0.
=0 p>1 ’

Remark.|f the probability laws of a sequendeX™}>° ; of continuous stochastic processes are
tight then we say that the sequer{cé™ }>° , is tight.

The following two technical lemmas have a general form thdaNow us to use them

again in Sectior8.3.

Lemma 2.5.1. Assume that-7 < t; < t3, and thatX is a solution to {.1) on (2, F, {F;}, P)
with associated Brownian motid’. Then for any, A > 0, we have

P (w[t1,t2} (X7 5) > )‘)
A

< P <w[t1/\0,t2/\0] (X7 5) + 5(C1 + 02|’XH[(t1VO)—T,t2\/O],2) > 5)

+P sup

t1V0<s<t<t2VO
|s—t|<é

/8 (X)W ()

A
>—1. 2.18
23 (2.18)

Proof. The conclusion is obvious #f, < 0, so we assume thas > 0. Fixd > 0 and\ > 0.
Then,

sup  [X(s) = X(t)lo < Winomng(X,0) +  sup  [X(s) — X(t)|eo
s,t€[t1,t2] $,t€[t1V0,t2]
ls—t|<s ls—t|<s
< Wi paoen0 (X, 0) + sup Osq X, [s,t])
t1V0<s<t<ta
[s—t|<o
< w[t1/\0,t2/\0] (Xv 5) + sup OSC(I(X)v [87 t])
t1V0<s<t<ta
[s—t|<o
t
< Wi A0, t2A0] (X,6) + sup / b(X;)dr
t1V0<s<t<ta |Js 00
|s—t]<d
t
+  sup / o(X,)dW (r)
t1V0<s<t<ts |Js 0
[s—t[<é
< Wity N0, AO] (X7 5) +9 (Cl + CZ”XH[(tlvo)—T,tzm)

t
+  sup / (X, )dW (r)
t1V0<s<t<ts |Js
[s—t[<é
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The third inequality follows from Propositio.3.1(i), while the fourth inequality follows from
the form ofZ(X) as in .7). The linear growth condition2(1) and the fact thaw|,, < |v|s for
all v € R? were used for the fifth inequality. Therefore, for any 0, A > 0, we have

P (w[t1,t2](X7 5) > )\) = P sSup ‘X(S) - X(t)’oo > A
svtE[tlth]
|s—t]<d
A
< P wiy 00,200 (X,0) + 6 (C1 + Coll X ||t1v0) 7 t2v0),2) = 3
t A
+P sup / o(X,)dW (r ) >=1. (2.19)
t1V0<s<t<ts |Js 2
[s—t[<é

O

Lemma 2.5.2. Assume that for some index $étand positive real numbér, we have a collec-
tion of closed subinterval§[s,,t,],v € N} of R, such thatt, — s, = T forall v € N, and
we have a collectio X"}, y where for eaclhu € N, X" defined on(Q2”, 7V, {F/}, PV) is a
solutions to L.1) with associated Brownian motidw™, and{|| X" |5, _¢,),2}ven is stochasti-
cally bounded, i.e.,

lim sup P” (|| X"||(s,—rt,12 > @) = 0.

a—0o0 E
Then for eacly, A > 0, there is &, , > 0 such thaty € (0, d. ] implies that for allv € N,

/ta(X;’)dW”(r) o] < - (2.20)

o)

rv sup
s, <s<t<t,
[s—t|<é

Proof. We shall prove this by using a time change to transform thal lo@rtingales

{/Ot o (X)W (1), ¢ > 0}

to Brownian motions (possibly run up to random times).
For eachv € N, defineM" () = (M¥L, ..., M»3)( fo o(XY)dW(s) for all
t > 0 so that

(M™Y( / o' (XY)|3ds. (2.21)

Fors >0, letT}(s) = inf{t > 0: (M) (t) > s} andGy" := FT, . (s)"
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Foreachv € N andi =1,...,d, let
{{W(V,z (1), 7 ¢ > 01, ( Vi) f(u,i)7P(V,i)>}

be a Brownian motion martingale on a filtered space satigfyire usual conditions. Define
Qv = QY x QWD gri = Fv @ F@i) and PY .= PY x P and letA"” be the set
of all subsets of null sets ¥ from G*¢. SetF"i .= ¢ ( GV U./\/"‘") and for eacht > 0,

Gt = no ((f;; (o) ® 7-"3””')) UNW’) andF" = no ((7-‘” © F! ) UN’”)
ConS|der the extended probability spa(cfe’” .7—“’” P¥*) and on it, the processes
MY w”, w®D) = MY (W) and W &9 (w” WD) .= WED (w)), which are adapted to
{F",t >0} and{G"",t > 0}, respectively, and have the same distributions uttéras /"
underP” andW ) underP %), respectively. Also defing,, ;(s) := inf{t > 0 : (M) (t) >
standS,; = tliglJMV’iW)' so that, for instancel}, ;(s)(w”,w®?) = T,,:(s)(w"), {T,; <
£} = [Ty <t} x Q0D and]};ji s G,
For eacht > 0, (M"")(t) is a{Gs", s > 0}-stopping time because

{079 (1) < s} = {Tils) 2 t} € F, < G2,

and thusS,; = lim (M"“")(n) is also a{G¥"' }-stopping time.
The time-change theorem (see, e.g., Theorem 3.4.6 andelRr@o#t.7 in 22], or The-
orem V.1.7 in B8]) implies that

{B79(0) s= WD (@) = WO (e A §y0) + MH(T,,i(0)), 61t > 0}

is a Brownian motion martingale, and tht’ ((J\Z/”’i>(t)> = MY(t).
Equation 2.21) and the linear growth boun@ ) imply that for eachu > 0, on the

eventda,,i == {|| X" |ljs,—rt 100 < a} x QD € F¥ we have for anyg, < s <t <t,,
(C3 + Caa®)(t — ) > (M™)(t) = (M™)(s).

SinceM¥(t) = g ((]\Zl’ﬂ(t)) for eacht > 0, we have on eacH, , ; that

wis, 1, (M, 6) Wis, 1,1 (87 ((M*)()), 0)

Wy iy (s, i) (1)) (BT 6(C + Caa?))

IN

IN

W(RT93) (5, 5T90) (50 (Cat Caa?) (1 —s0 )] (B 0(Cs + Caa®)).
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Therefore for every, > 0,

> A

o0

rv sup
s, <s<t<t,
[s—t[<é

/ (XYY AW (r) P (wpy, 1) (M¥,6) > N)

= P <max w[swty](M””',é) > )\)

S ZP 31/7 u] My’i’ 6) 2 )\)

d

= sz/,i <w[sy,t,,](MV’i, 5) > )\>

=1

=< ZPW ( (5198 (5, (18 3+ (CCaay7) (B 6(Cs + Caa®)) > A,Aa,u,z‘)
+ZPVZ gl/l
d ~ . .
< Y P (W csrcaayry (877, 0(Cs + Cua®)) > N) +ZP’” AS ). (2.22)
=1

The third inequality follows from the fact thadf/*")(s, ) is a{G"'}-stopping time, and Brow-
nian motion restarted at a stopping time is a another Brawmiation. Since the set of random
variables{ || X"||(s,—r,],2}ren is stochastically bounded, there is@nbig enough that

sup PH(AS_ ) = sup P (| X ||fsy—ray2 > a2) < ;—d foreachi=1,...,d.

veN veN
Then since a single measure is tight, g} all have the same distribution under their respec-
tive probability measure®”, there is &\ > 0 such that € (0,9, ,] implies that

o , € .
Sél]}i)[ Pt (w[o,(03+04a?)T} (B, 6(Cs + C’4a§))2)\) < 5 foreachi =1,...,d.

The result follows.
O

Lemma 2.5.3. Assume{z,,}2°; C C¢ such thatlim x,, = = € C{, and for eachn > 1, let
P™ be the distribution on the spad€{ x Co(R4,R™), My ® B(Co(R4,R™))) of the pair
(X W?) associated with a solution ol (1) that has initial conditionz,,. Then{P"}>°, is

tight.

Proof. Fix e > 0. Sincex, — =z, the set{||z,|2 : n > 1} is bounded,so that for each
fixed T > 0, Lemma2.4.1implies thatsupE[HXm |]2 1], o] < 00,80 that the collection
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HIX* |l =72 1521 is stochastically bounded. Because of the boundedne§srgf|o : n >
1}, which follows fromz,, — x asn — oo, we have

lim sup P(| X" (—7)|ooc > a) = lim sup P(|x,(—7)|ec > a)
a— o0 nZl a— 00 TLZl
— 0. (2.23)

Lemma2.5.1limplies that for any, A > 0 andn > 1, we have

A
P (w[_T,T](Xz”,é) > /\) < P <ZU]1(1’”,5) +9 (01 + C2‘|an||[—7—,T],2) > §>

+P sup
0<s<t<T
|s—t|<é

[otxemaw)

A
> —1. .
23 (2.24)

Sincez,, — z in C¢, the set{z,, : n > 1} is precompact irC¢, so that the Arzela-
Ascoli theorem implies that there isééli > 0 such thatw(z,,8) < 4 for everyn > 1 and

(NS (0,521;). Then for eachd € (0, ﬁ A 521;), we have

A
P <w]1(acn,5) + 6 (Cl + CZHX:C”H[—T,T},Z) > 5)

A
< P <5 (C1+ Col| X ([ 1 2) = g)

. s~ O
P X" —r1y2 = : (2.25)

Co
A
Since%{fl — o0 asd — 0, the stochastic boundedness{¢f ™" ||._. 71 .} implies that there
isadl e (0, 1= A L) such that for alb € (0,6%)),

A
P <wﬂ(xn,5) +6(Ch+ ol X7 ry0) > 5) < % forall n > 1. (2.26)

Lemma2.5.2implies that there is ég > (0 such that) € (0, 553;] implies that

t
P sup / o(Xm)ydw* (r)| > A < Ztoralln > 1. (2.27)
0<s<t<T |Js o 2 2
[s—t|<é
Therefore, whenever € (0, 522; A 523;], from (2.24) we have for all» > 1,
P (wi_p (X7, 6) > A) < % + % _ (2.28)

Therefore, by Propositio.5.1, the sequence of stochastic processEs~ } is tight.
Since each element of the sequek®&®" } has the same distribution, this sequence is tight as
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well. Therefore the sequend¢X*~, W)} is also tight (seed0], Lemma 3.1), which shows
that{ P"} is tight.
O

Given a continuous functiori : R, — R that is locally of bounded variation, and
t > 0, denote the total variation of up to timet by 7V,(f). We will use the following
proposition proved ing3] (Theorem 2.2 and Remark 2.3).

Proposition 2.5.2.Let (2, F, P) be a complete probability space and for each integer 1, let
{F{,t > 0} be afiltration satisfying the usual conditions, andét, S™ be { 7" }-adapted pro-
cesses with sample paths@f{R ,, R?) andC(R ., R™), respectively, such th&t" is an {F}*}-
semimartingale with decompositidit* = M"™ + A", whereM™ is an { F]* }-local martingale
and A" is an{F;" }-adapted process locally of bounded variation such thaetmht > 0, the se-
quence of random variablds V,(A™)}>°, is stochastically bounded. (X, S") — (X, S)in
probability in the Skorokhod topology as— oo, then$ is a semimartingale with respect to a fil-
tration to whichX and S are adapted, andXx™, 5™, [; X" (s)dS"(s)) — (X, S, [, X (s)dS(s))

in probability in the Skorokhod topology as— oc.

Remark.Kurtz and Protter actually prove a more general theorem tfamdbove proposition is
a simplification tailored to our needs.

Lemma 2.5.4. Assume thafz,, }2°, C C¢ is such thatr, — 2 € C{ asn — oco. LetP"

be the law of the paif X*», W*) associated with a solution td (1) having initial condition
Xi" = x,. Let@ be any weak limit point of the sequengB™}°° ;. Then,Q is the law of a
pair (X*, W) associated with a solution td (1) having initial conditionX§ = x.

Proof. To simplify notation, we assume (by passing to a subseqi¢haeP™ — () weakly as
n — oo. The by the Skorokhod representation theorem, there is gledenprobability space
(Q, F*, P*) andC{ x Cy(R4, R™)-valued random elemenf§ X", W")}> |, and(X*, W*)
on that probability space such that”, W) — (X*, W*) P*-a.s. in the topology of uniform
convergence on compact time intervals, and such®fais the law of( X", W™) under P* for
eachn > 1, andQ is the law of(X*, W*) underP*. In particular,

P*(Xi = 1) = P* ( lim X7 = w) >1- 3 P(XJ #aq) = 1.

n=1

For eacht > 0, defineF}* = Qt};"’o where F¢° is the subs-algebra of 7* generated by
{(X™(u), W"™(u)) : u < s} and the null sets of ™.
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Fix e,A > 0. Definel(t) = z(0) + [i b(X2)ds + [i o(XZ)dW*(s),t > 0, and
for eachn > 1, I"(t) = z,(0) + fo (X7)ds + fo o(X7?)dW™(s),t > 0. By Section2.3,
X"™(-) = ¢(I™)(:).Then for eacht >0, >0,

PHIXE() = o(D)()]2 > (2 + K¢)A)

< PH(IXT() = XM (D)2 > A) + PH(X () — o(I")(1)]2 > )
+PH([p(I")(t) — o(1)(t)]2 > KeA)
PIXE() = X (0)]2 > A) + PH(I™ = Tl[jo9,2 > A)- (2.29)

IN

The second inequality uses Propositt3.1

SinceX" — X* P*-a.s., we obtainX” — X* in probability. Therefore for each
t > 0, since the evaluation mag is continuous, we hav&™(t) — X*(¢) in probability as
n — oo. Thus there is a\fg (t) > 0 such that

P (IX*(t) — X"(t)|]2 > \) < g whenevem > NE(,IA)(t). (2.30)
For eachr > 0, we have that
P = .2 > M)

< P <\xn(0) — 2(0)]2 +/0 B(XT) — b(XF)|1ds > %)

> %) . (2.31)

Sincez,, — z, we haver,,(0) — z(0), so that there is N( ) > 0 such thatx,,(0) —

+P* | sup
s€[0,t]

/0 U(X;@)dW“(r)—/Osa(Xj)dW*(r)

2

z(0)|2 < 3 whenevem > Ng Therefore, fom > NE(ZA)
' A
p* (!wn(O) —z(0)]2 +/ (X)) — b(X?)|1ds > 5)
0
' A
S (/ b(XS) — b(XT)|ds > Z) . (2.32)
0

For eacht > 0, there is a sef2f € F of P*-measure 1 such that for all € Qf,
[X™(w) = X*(W)l{—r,q,2 — 0 @sn — oo. We then have from the linear growth boundtothat
foreachn > 1, s € [0,t], w € QF,
n * 1 n *
b(XJ (W) —b(XS (W) < d2[b(XJ(w)) — b(XS(w))]2
1 1
< 2d3C; +d2Cs (| X" (W) l=rg.2 + 1X*()]l=r1.2)

1 1
< 25+ by (sl X+ X @l raz )
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which is finite since| X" (w) — X*(w)l[—7,q,2 — 0.

Since for eachs € [0,¢] andw € Q;, X (w) — X} (w) in C¢, the continuity of?
implies that/b( X} (w)) — b(X 7 (w))|1 — 0, so that the dominated convergence theorem implies
that asn — oo, fot |b(X7) — b(X7)|1ds — 0 on QY (i.e., P*-a.s.), and thus in probability.

Therefore there exists]&fg (t) > NS) such that, > Ng (t) implies that
t A €
P (lon@ =2l + [ O b= 5) < 5 @39
0
SetQ) = N ©, which also hasP*-measure one. For each> 0, the function
=1

hy = [0, ] x Cj{ — C%,_defined byh:(s, f) := fs, is continuous (see, for instance, the proof of
Lemma 4.2 in 20)). Since for eachw € Q, {X"(w) : n > 1} U {X*(w)} is a compact set
in C4, [0,¢] x ({X™(w):n>1}U{X*(w)}) is also compact. Therefore its imags (w) :=
{X}(w) :n >1,s € [0,t]} U{X}(w) : s € [0,t]} underh, is also compact. Therefore the
restriction ofo to H;(w) is uniformly continuous (see, e.g1q], Theorem I1.5.15).

Since the functioro and the paths o™ are continuous, the processg&?,s >
0} and {o(X7),s > 0} are continuous. As a consequence of the uniform contindity o
when restricted to each;(w), o(X") — o(X¥), P*-a.s. (and thus in probability), in the
topology of uniform convergence on compact set® of(the Skorokhod topology). To see this,
lett > 0,w € Q,n > 0,0nwt) > 0such thaty,z € H;(w) and|ly — z|l2 < §(n,w,t)
imply |lo(y) — o(2)|l2 < n, and for eachy > 0,w € Q, let N(,w,t) be big enough so

that sup |X"(w)(s) — X*(w)(s)]2 < d foralln > N(6,w,t). Then sup [o(X7(w)) —
se[—T,t] s€[0.4]
o(Xi(w))ll2 <nforalln > N(d(n,w,t),w,1).

Since for eachw € Q*, (X7 (w)) is a continuous function of, (W"(s), Fl',s >
0) is anm-dimensional martingale, an@ (X"), W") — (o(X*),W*) in probability in the
Skorokhod topology, Propositidh5.2implies that there is a filtratiofF;, t > 0} to which X*
andW* are adapted, and with respect to whidh*(¢), F;,t > 0} is a semimartingale, and that

Therefore there is aNe(‘;) (t) > 0 such that, > Ne(f;) (t) implies that

P* | sup
s€(0,t]

In fact, W* is a martingale with respect to the filtration generated Xy, W*) since

— 0 in probability, asn — oo.

| otxmawns) - [ oxaw )

0 0

[0,¢],2

A €
>§> < 1 (2.34)

/Os o(X))dW™(r) — /OS o(X,)dW*(r)

2

this property holds for eaci’” with respect to the filtration generated b¥”, W"), and it is
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preserved in the limit by uniform integrability conferregt the fact thati” is a standardn-
dimensional Brownian motion for eaeh Thus, wheneven > Na(lg (t)v Ng (t) Vv Na(A‘A) (1), it
follows from (2.29), (2.30), (2.3)), (2.33, and @.34) that

PH(|X*(t) = o(I) ()] > (2+ Kp)A)
< PIXT(t) = X" ()] > A) + PH(II" = Il[jo,g.2 > N)
< e (2.35)

Sincee, A > 0 were arbitrary, we have thaf*(¢) = ¢(I)(t), P*-a.s. for eacht > 0.

By consideringt € Q N R, the continuity of the paths of* and¢(I)(¢) imply that X*(¢) =
¢(I)(¢t) forall t > 0, P*-a.s., and thus(* is a solution of the SDDERI(1).

O

Corollary 2.5.1. Assume that the sequenge, } C C{is such thatr,, — x € C{ asn — oo.
Then if P*» is the (unique) law of a solutiotX *» to (1.1) with initial condition X" = z,,
{P*} converges weakly t&*, the unique law of a solutioX” to (1.1) with initial condition

Tr __
X§ ==

Proof. This follows by a standard argument. Tightness| &f~} follows from Lemma2.5.3
since the sequence of marginal distributions of a tight sege is also a tight sequence. Since
each subsequence has a further subsequence that convergdsg tw the same limit law, which

is P* by Lemma2.5.4 it follows that the original sequence converges. O

Theorem 2.5.1.Under Assumptiong.1.1and2.1.2 for each continuous and bounded function
f: C4 — R, the functionz — E[f(X®)] = Jyecs TWP(XT € dy),x € C¢, is a continuous
function onC{.

Proof. Let {z,}°°, C C{ such thatlim z,, = z € C{. Then it follows immediately from the
n—~00

Corollary thatE[f (X*")] — E[f(X")] asn — oc.
U

Corollary 2.5.2. Under Assumption2.1.1and 2.1.2 for eacht > 0 and continuous and
bounded functionf : C¢ — R, the functionz — E[f f(cd P(X} € dy),is a

continuous function o¢.

Proof. This follows from the fact that the function:= f o p; is continuous and bounded @j
if £ is continuous and bounded @f. O
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2.6 Markov Property and Associated Semigroup

We devote this section to proving that under Assumptidrisland?2.1.2 equation
(1.2) generates a family of Markovian transition functions, gratly defined as follows (see
[11])).

Definition 2.6.1. Let (E, £) be a Polish space with Boretalgebra generated by a metricand
recall that we denote b/, (E) (resp.,B,(E)) the bounded and continuous (resp. bounded and

Borel-measurable) real-valued functionsBnwith norm || f||g = sup|f(x)|, for f € B,(E).
zeE
A family of Markovian transition functions ofE, £) is a family { P(-,-),t > 0} of functions

P, :Ex & —[0,1],t > 0, such that
(i) Foreacht > 0,A € &, the functionz — P,(z, A) is measurable ofE, &),
(i) Foreacht > 0,z € E, the functionA — P;(x, A) is a probability measure ofy,
(i) Foreachs,t > 0,2 € E,A € &,

Popi(e,A) = /E Pu(y, )Py (e, dy), (2.36)

(iv) Foreachr € E,A € &, Py(x,A) = 15 ().

For eachf € B,(E),t > 0, we define

(P f)(z) = /Ef(y)Pt(x,dy), forz € E. (2.37)

We call{ P;, ¢ > 0} defined onB;(EE) aMarkovian semigroujf linear operators i P;(-,-),t >

0} is a family of Markovian transition functions.

Definition 2.6.2. A Markovian semigroud P;,t > 0} on B,(E) is calledstochastically contin-
uousif
%ir%Pt(w,B(x,E)) =1

for eachz € E ande > 0.
The following proposition is proved irlfl] (Proposition 2.1.1).

Proposition 2.6.1. A Markovian semigroug P;,t > 0} is stochastically continuous if and only
if for each f € C(E) andz € E, %in(l](Ptf)(az) = f(x).

Lemma 2.6.1. If a Markovian semigroug P;, ¢ > 0} is stochastically continuous, then for each
x € EandA € &, the functiont — P;(x, A) is Borel measurable of), oo).
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Proof. Since{P,} is Markovian, Propositior2.6.1implies that the functiont — P,f(z) on
[0, c0) is right continuous for each € E and f € C,(E). For an open sek € &, the sequence
of continuous functiong f,,}5° ,, wheref, (z) := 1 A np(x, A°), x € E, increases pointwise to

14. Therefore by the monotone convergence theorem,-asoo,

(Pifn)(@) = /Efn(y)Pt(x,dy) //ElA(y)Pt(w,dy) = Py(xz,A),

for eachz € E, t > 0. For eachn > 1, = € E, the functiont — (P, f,,)(x) is right continuous
and therefore measurable. Therefore the funatien P,(z, A) = sup(FP, f,,)(x) is measurable.
Sincef is generated by the open setsBnthe result follows byna standard invocation of the
monotone class theorem.

U

We now explicitly define the family of Markovian transitioarfctions (or equivalently,
the associated Markovian semigroup) induced by the SDOERthat we will work with hence-
forth. For each{z, A) € C¢ x My, define

P(z,A) = P*(XFeA), t>0, (2.38)

where {(X*, Y*, W*), (Q*, F* {F{}, P*)} yields a solution to X.1) with initial condition
X§ = x. Uniqueness in law implies thd? is well-defined. Then conditions (ii) and (iv) of
Definition 2.6.1are clearly satisfied.

The remainder of this section is devoted to proving th&t} is a Feller continuous

and stochastically continuous semigroup of linear opm;ame((Cff).
Lemma 2.6.2. For eachI’ € My, the functionr — P*(X* € I') is measurable.

Proof. Let p be a metric oerl inducing the same topology as that of uniform convergence on
compact sets. As in the proof of Lemmz6.], we first assume thdt is open, and we define
the continuous and bounded functiofiw) := 1 A np(w,I'°), w € C4, forn = 1,2,.... By
Theorem2.5.1, for eachn, E°[f,(X")] is continuous and therefore measurable. The sequence
of functions f,, " 1p pointwise, so by the monotone convergence theoremf, (X )]
Elp(X")] = P(X € I), so thatP*(X* € I') = supE”[f,(X7)] is measurable in.
Applying a monotone class theorem completes the progf.

]

Corollary 2.6.1. For eacht > 0, A € My, the functionx — P;(x, A) is measurable.
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Proof. This follows from the fact thafw € C¢ : w; € A} = p; (M) € Mj. O
We have therefore shown that condition (i) of Definit%.1holds.

Lemma 2.6.3(Chapman-Kolmogorov Equationfor eachs,t > 0,A € My, x € (Cﬁl,

Pl ) = [ Py, DP(a,dy).
(C]I

Proof. Define the canonical spa¢@ := C¢ x Cy (R4, R™), F := B(Q2)). For eachr € C{, we
have a well-defined probability measufe’ := P o (X, W*)~1, on(Q2, F). Define the coor-
dinate mapping procegst, W) on (2, F) by X (w™®,w®) = w® € ¢4 andW (wM,w?) =
w® € Cy(Ry,R™), and defineF” := o(F UN®) andF¥ := F7,, whereN' is the collection
of all subsets ofP-null sets ofQ2, andF¥ := o (N U o(X (s), W (s),s < t)).

We claim that the proces&X (t),t > —7} on (2, F* {W(t),F¥,t > 0}, P%) is a
solution to (L.1) with initial condition Xy = z, P*-a.s..

The usual conditions are satisfied by construction, as igiriti@l condition, and
{W(t), F¥,t > 0} is a Brownian motion martingale undé&¥ by the following.

Forany0 < s < t andl', € FZ, thereis al', € o(X(r), W(r),r < s) such that
P(TsAT) = 0, whereA denotes the symmetric difference. Then we have

EP W), = EP W (t)1p] = EP W (O x wer.)]
= B WH ()1 xe weyeray] = B W () 1y (xe wayer.y s (2.39)

since{W?(t), 7.t > 0} is a martingale undeP® and 1y« y=cr,} € F5. Proceeding in
reverse, we obtaii”* [W (¢)1p,] = EF*[W (s)1r,], so that{ W (), F¥,¢ > 0} is a martingale
under P%. Then Theorem 11.2.8 in38] implies that{W (¢), F,+ > 0} is a martingale under
Pz,

Since for eacht > 0, E7” [fot IIJ(XS)H%ds] < oo by (2.2 and Lemma2.4.1 we
can take a suitable sequence of partition®@fsuch that approximations to the stochastic inte-
gral process{ fot o(XT)dW?*(s),t > O} converge uniformly on compact time interva$-a.s..

Thus, for eachr € (Cﬂd, there exists a subsequendé”"=:}>, of the sequence of processes

n2 . .
{U:B,n(t) = ZO’ (Xg/\t> <W$ <Z—:Ll /\t> — W* <%/\t>> ,t > 0}, n>1,
=1
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such that for eacti” > 0,

=0, P*-—a.s.
2

lim sup
1—00 0<s<T

Ux’n”i(s) _ /08 o’(Xf)dWx(T)

If we define the continuous processes

{U"(t):ia@(w) (W(ij;l/\t>W<;/\t>>,t>O}, n>1, (2.40)
i=1

then the triple(X, W, {U"}2_;) has the same distribution undef as(X=, W=, {U%"}% )
has unde™*. Therefore, for each € C¢, we can define, on the probability spaée 7=, P*),

the Itd integral process

t
/ o(X)dW(s) = 1a lmU™(t), t>0, (2.41)
0 1—00
where
Ay = {'lim sup sup |U"i(s) —U"i(s)|, =0forall T > 0} . (2.42)
=00 > 0<s<T

Since{F7,t > 0} satisfies the usual conditions aftf (A,) = 1, { [ o(X,)dW (s),t > 0} is
adapted tq F¥,¢ > 0}. Then for eachr € C¢,

X(0) + /Ot b(X,)ds + /Ota(XS)dW(s) +Y(t), forallt > 0>

e
8
7~
fa
I

X(t) = X(0) + /0 t b(X,)ds + lim U™ (t) + Y (¢), forall £ > 0)

1— 00

1— 00

(
= P (X””(t) = X*(0) + /0 t b(XT)ds + lim U™ (t) + Y*(t), forall ¢ > o>
(

t t
= P’ Xx(t):Xx(O)—i-/ b(X;’”)der/ o(XD)AW*(s) + Y (t), foralltzO)
0 0
- 1 (2.43)

Thus, (L.1) also holds for the process on (Q, F*, {F{}, P*) with Brownian motion martin-
galeW, and the claim is proved.

Fix s,t > 0 andz € C¢. Define the Brownian motiodW(r) := W(t + r) —
W (t),r > 0}, which underP* is a martingale with respect to the filtratigtF;* := Atﬁr,r >
0} (and thus also with respect {&F;"" := F7,.,r > 0}), and defineX*(r) = X(t + r) for
r € J, so thatX" is a weak solution to1(.1) on the probability spac&, F=, {F+", r > 0}, P¥)

with Brownian motion martingalé&/’‘ and the (random) initial conditioX§ = X.
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Let {P*(I'),w € Q,T € F} be aregular conditional probability distribution fé1°
on (92, F) given theo-algebra generated hy,, G; := o(X(s) : s € [t — 7,t]). Since(Q,F)
and((Cﬁl, M) are countably determined standard spaces (they are Palishtiferefore Lusin)
spaces with their Boret-algebras), we have thdt? ({w' € Q@ : X} (') = X;(w)}) = 1 for
P*-a.aw € Q) (see 1], Theorem 1.3.2, ord9], Theorem 11.89.1). Defind/>* to be the set of
all subsets oP*-null sets of 7, and define#"" := o (N** U o(X (s), W(s),s <t +r)) for
eachr > 0. We now show thatV! is a Brownian motion martingale undéﬁ for P*-a.a.w.

For P*-a.a.w € Q, {Wt(r),ﬁff”’t’“,r > O} is a martingale undeP”. Indeed, fix
ro > 711 > 0. Foranyl'y € F55 andT' € Gy,

/F 2E15$ (B [y \f“’“’] W) r, | P*(dw)
=[] (e WW} ~ W )W) ) P (') P (d)
- / / — W) () PE(d) P (dw)
- /E5[1p1 (Wi(ra) = W(r1))] P*(dw)

Dj

[11’*1 (W (7'2) ) ‘gt] Px(dw)

)

Ir, (w) (W (r2)(w) = W'(r1)(w)) P*(dw)

’1\’1\

)

= | Irynry (w) (W (r2)(w) = Wi(r1)(w)) P*(dw)

Il
o
)

(2.44)

sincel'; N Ty € Fohe, and{Wt(r),ﬁf’t’w,r > 0} is a martingale with respect t8*. By
definition, the functiono — PZ*(T") is G;-measurable for eadh € F. The integral comparison
theorem then implies that faP*-a.a. w € Q, EX[Wh(r)| FHM] = Wi(r,), Pr-as.; i.e.,
{Wt(r),]-“fw,r > 0} is a martingale with respect 8 for P*-a.a.w € . Again, Theorem

11.2.8 in [38] implies that{Wt(r),f“f’t’w = Fo o > 0} is also a martingale unde?* for
P*-a.a.w c Q.
Letly € G, andforeachi =1,...,m, letl'; € o ((Wt(s))i ts > 0) , theo-algebra
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generated byW?)’. Then,
/1"0 (p“gf (ﬁfﬁ') - f[ij (E)) P (dw)
- (7 (An

= 0, (2.45)

sinceW* is a Brownian motion undeP*. We used the fact that undét®, T'; is independent
of Fi'"* for eachi sinceW* is (and X; € F3"). Thus{W(s),s > 0} has independent
coordinates undeP? for P*-a.a.w.
Fixi e {l,...,m},and let0 < rg <7 < --+ <1, < coandv € R", and set
u? = ilvf(rj —1j_1). Then for anyl’ € Gy,
j=

(=

— /F EF” [eXp <\/_1 ]Z:vj (Wh(ry) = (Wt)i(rjl)))
e ()

- g [h exp (ﬂ jz:Uj (WH(ry) - (Wt)"(ml)))]

P exp (%ﬂ)

n 2
exp (ﬁ > (W) - <Wt>"<rj1>))] ~exp (2))

n —u2 —
exp (ﬂzw‘ (W) - <wt>i<rj1>)>] ~ exp (2)) Pe(do)

Jj=1

Qt} (w) P (dw)

i=1

= P*(I) (EP””

~ 0, (2.46)

and thus forP*-a.a.w € Q, underPZ, (W) (r1)— (WH(ro), ..., WH(r,) — (WHi(r,_1))
has a multivariate normal distribution with mean zero anehcances

B [((W!(rg) = (W (ry-0)) (W ) = WY )] = (s = 7y-1).
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In conclusion, there is a s&®! € F such thatP*(Q%!) = 1, and for eachv € Q%?,
(Wt(r), F4 r > 0) is a Brownian motion martingale on the probability sp&@eF=~, P?),
whereF* is the P2-completion ofF.

For eachr € C{, define the process
/ o(X)dW(u) = 14, lm (U™ (t+7r)—U™(t)), r>0, (2.47)
0 1— 00

where A, is defined as in line.42, andU" is defined as in line.40. This process can
be defined on the probability spat@, 7%, P%), or on(Q, F*~, PT) for anyw € Q% Then
as above, forP™-a.a. w € Q%f, PZ(A,) = 1 and{ [, o(X.)dW'(u),r > 0} is adapted to
{FPH r >0},

If we defineY(r) := Y (t +r) — Y(t),r > 0, then forP*-a.a.w € Q, (X!, Wt Y1)
on (0, F& {F2M r > 0}, P?) satisfies (i)-(iv) of Definitior2.1.1 For eacH € G,

/F pr <Xt / b(X" )du + / (X)W (u) + Y'(r), forall r > 0> P(dw)
= /FPw <Xt(r) = X'(0) +/Ob(X5)du +/Oa(X;)th(u) +Y'r),r >0

G, ) ()P (d)
= p* <r N {Xt(r) = X'(0) + /0 b(XE)du + /Ora(Xi)th(u) +Yir),r >0 )

= P (F N {X(t +7)=X(t) +/tb?f>(u)du +/?{Xu)dW(u)+Y(t +7) =Y (t),r > 0})
= P*(D). t t (2.48)

The last equality follows from equality2(43. Therefore, forP*-a.a.w € Q, X! solves (.1)
with initial condition X = X;(w) on the probability spacg?, <, {F*"“ r > 0}, P*) with
driving Brownian motion martingaléW*(r), 7= r > 0}.

By uniqueness in law, foP*-a.a. w € Q, P*(X! € I') = PXW(X € T for
allT" € Mj. Corollary2.6.1and the measurability ab — X;(w) imply that the mapy +—
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Py(Xi(w),A) = PX+@) (X, € A) is G-measurable for each € Myj. Thus,

Ps+t(l’,A) = Px(XsJ’_t S A)
= P*XleAn)
Pw Xt e AN)P*(dw)

)(X, € A)P*(dw)

Y(Xs € AN)Py(x,dy)

\ \\\

A) Py (z, dy). (2.49)

O

We have therefore shown that each condition (i)-(iv) of D&én 2.6.1 holds, and
therefore{ P,(z,A),t > 0,z € (Cﬁl,A € Mi} is a family of Markovian transition functions,
which then generates a semigro(p;,t > 0} of linear operators oan(Cﬁl). Corollary2.5.2

implies that this semigroup is Feller continuous.

Definition 2.6.3. Given a metric spack, a Markovian semigroupP;, ¢t > 0} of linear operators
on By(E) is calledFeller continuousf for any f € Cy(E) andt > 0, P, f(x) is a continuous

function ofx.
Corollary 2.6.2. The semigroup induced by the SDDERY] is Feller continuous.

Remark.The argument in Theorem 1 of Section 2.3 8ff ¢an be used to show that any Feller

continuous Markov process with continuous paths is alscoagtMarkov process.

Lemma 2.6.4. The semigroug P;,t > 0} induced by the SDDERL(J) is stochastically contin-

uous.

Proof. By the definition of a solution, the solutiok ™ to (1.1) with initial condition z < (Cﬁl
is continuous. For each > 0, the functionp, : C¢ — C¢ (recall thatp(f) := f;) is also
continuous (see20], Lemma 4.2). Therefore the functiogn— X (w) is continuous for each
w. So for anyf € C,,(C{), the functiont — f(X;(w)) is continuous for each. It follows by
the bounded convergence theorem Etlﬁ$+(Ptf)(x) = tli%1+Ex[f(Xf)] = f(x). The result
follows by Propositior2.6.1

]



Chapter 3

Stationary Distributions

This chapter is devoted to defining stationary distribugifor the SDDER 1.1), and
to exhibiting a technique often used to prove that a statjodastribution exists. This involves
precompactness of a sequence of averaging measures. Aesuiffiondition for this precom-
pactness is provided in Theore3r8.1 More specific conditions on the coefficierttando are
later given in Chapted. Assumption2.1.1and2.1.2are assumed throughout this chapter, and
{P(z,\) :x € (CHd,A € My, t > 0} is the family of Markovian transition functions induced by
the SDDER L.2).

3.1 Definition of a Stationary Distribution

For eacht > 0 and probability measurg on (C¢, M;), consider the probability
measure.P; on (C¢, M) defined by
(LPy)(A) = Py(z,A)p(dx), for A € M.
ct

Corollary2.6.1shows the required measurability for this integral to be megful.

Definition 3.1.1. A stationary distribution for {.1) is a probability measure on ((C]‘Ii, M) such
that(wP;)(A) = w(A) forall t > 0 andA € M;j.

3.2 Krylov-Bogulyubov Measures

A common method for showing thexistenceof a stationary distribution for a Markov
process is to exhibit a limit point of a sequence of KrylovgBtyubov measures3[ 11, 20, 37)).

33
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In light of that, givenz,, € (C]‘f and7T" > 0, we define the Krylov-Bogulyubov probability measure
%o on (C4, My) by

T
7(A) = —/ Py(0, A)du (3.1)
0

forall A € My.

Remark. The integral in expressior8(1) is well-defined since the function — P,(x,,A) is

measurable by Lemma&s6.1and2.6.4 and it is bounded by one.

The following proposition justifies a “Fubini theorem” (egity (3.3)), which will be
used in the proof of Theore®2.1

Proposition 3.2.1. For eachf ¢ Bb((C]‘f) and probability measurg on C¢,
f@WP) ) = [ (PHwntdy). (3.2
cf cf

Proof. If f = 1, for someA € Mj, then @.2) follows from the definitions of, P, and P, f. By
the linearity of the integral,3.2) also holds for simplg’. The result now follows by invoking a
monotone class theorem.

O

Therefore, for eaclf Bb((C]‘f) and probability measure on C¢,
[ ] s@nwdud = [ f@ep)d)
me(C]‘Ii ye(Cf{ (C]‘Ii
— [N
- [ [ ermdou. @3
yeCd JzeCd

Theorem 3.2.1.Assume that for some, € (C]‘f and some sequenéé, }°° ; such thatl,, " co
asn — oo, the sequencé@%’b}goz1 converges weakly as — oo to some probability measure
wre on ((Cff, My). Thenn®e is a stationary distribution for the SDDER..Q1).

Proof. We use a standard argument.
By Theorem 1.2 of5], it suffices to show that for any bounded and continuous real
valued functionf on C?,

fx)(n®P)(dx) = f(x)m®(dz) forall t > 0. (3.4)
cd cd
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Sofixt > 0, and letf : Cﬁl — R be bounded and continuous. Then,

f@)P)dn) = [ (P )

cf

= lim [ (Pf)(y)Q7; (dy)

n—oo (Cd
il

n Jo c¢
Tn
= Jim g [ 5@ P (2 da) du
n—oo T}, 0 (C](Ii

n—ooT), cd
t+Thn
+ lim —/ f(z)Py (z0,dx) dv
n_>OO . (Cd

= f(@)m*e (dz),
cf

thus proving 8.4). Here, the second equality follows since by the the Feltetiauity of the
semigroup (Corollar®.6.2, (P.f)(-) is a continuous function. Equalitd3(3) and the Markov
property @.36) were used for the fifth equality.

O

3.3 Tightness Criterion for Krylov-Bogulyubov Measures

For eachz,, € C{, let X*° together with Brownian motiof®> define a solution to
(1.1) with initial condition X *> = x,, on some filtered probability spa¢@®°, 7, {F;°}, P*°).

The following theorem provides conditions guaranteeighttiess of the Krylov-Bogu-
lyubov measures, and its proof uses Lemraddsland2.5.2 Kushner (R5]) shows tightness
of these measures under the assumptionitbaids are bounded. The linear growth conditions
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(2.1) and @.2) allow us to bound the oscillations &f*> by moments of| X;"* ||, assuming the

latter are uniformly bounded.

Theorem 3.3.1.Fix z, € C¢ and assume thatup E%[|| X°|[}] < oo for somep > 0.
>0

Then for any sequendd’, }7° ; in (0, oo) increasing toce, the sequencéQy’ 152, of Krylov-

Bogulyubov measures is tight.

Proof. Fixe, A > 0.
By Markov’s inequality, for any: > 0,

1 T
o (reCt: b)) >a) = —/ P (|X7(8)|n0 > a) ds

< 1 / L g (| x7 (s) 2] ds
< LeupET X (0]

aP >0

1
< —supB X (0[]
>0

The last term tends to zero as— oo, independently of". This establishes that condition (i) of
Proposition2.5.1holds for P, = @7, n > 1.
Fix u > 7. Sinceu — 7 > 0, wiy—r)r0,un) (X2, ) = 0, so Lemma2.5.1implies

that for anys > 0 we have

P (wy(X5,0) 2 ) = P () g(X7,6) > )

A
< pee <5 (01 + C2||X%H[u—2ﬂ“}’2) z 5)
¢ A
+P% | sup / o(Xpe)dW(r)| =3 59
u—7<s<t<u > ’
|s—t|<é

By using Markov’s inequality, the assumption thap E*< [|| X ||5] < oo implies that
t>0

1
supP® (|| X*||jj—orpp2 >a) < —supE* [ X% ]
tZE (H H[t 27.4],2 ) o P | ”t 27.4],2

IN

1
o (B[ o] B (1K)

2
o B [IX7 Uy

IN

2
= Zsup B[ X%
PTbiS X ll2]
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which approaches zero as— oo, so that{|| X ||;_s-42,t > 7} is stochastically bounded.
For0 < § < ﬁ, we have from inequalityR.7),

A—2C10
-2

A
Lo Zo > — Lo Zo >
P (5 (C1+ Cal| X fy—27.u) 2) ) P <”X lfu—2ru),2 = 5Cs0
Then stochastic boundedness from above implies that ther&egi; € (0, ﬁ) such that
- . A 3
supPre (5 (C’1 + Co| X 0||[u_277u]72) > §> < 1

u>T

forall d € (0,8°)].
Lemma2.5.2implies that there is f; > 0 such that whenever € (0, 6222], we have

t
A
sup P*° sup / o(X;y)dWo(r)] > = | < = (3.6)
u>T u—7<s<t<u |Js o0 2 4
[s—t|<é
It follows that
P (wr(X°,6) 2 \) < 2
wheneve < § < 4. 5 == 8. A 01 andu > 7.
For anyTl > 2{ V 7 and0 < § < J. 5, on combining the above we have
1 T
zo (ac e C¢: wy(z,0) > )\) - —/ P (wi(X%,8) > \) du
T Jo
1 T
_ 1 / PP (wi(X2,5) > \) du
T Jo
1 T
+T/ P (wH(Xff",é) >\ du
T 1 [Te
< —+4+= —d
i
- € n T — TE
- 2 T 2
< e (3.7)
It follows that condition (i) of Propositior2.5.1 holds, whereP,, = t?fn n > 1, for any
T, / oco. Hence {Q7 }72, is tight.
]

Remark.Obvious modifications of the above proof yield the same tasuhe case that

sup E% [|| X{||5] < oo is replaced byup E* [f (|| X{°]|2)] < oo, wheref : R, — Ry is any

>0 >0

strictly increasing function such th?im f(t) = oo; e.g., a sufficient condition for tightness is
—00

thatsup 7 [log (]| X7 [2)*] < ce.
t>
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3.4 Sufficient Conditions for Existence of a Stationary Digibution

We combine Theoreni.2.1and3.3.1to obtain the following corollary.

Corollary 3.4.1. Assume that Assumptiosl.1and2.1.2hold, and that there exist, < (Cﬁl

andp > 0 such thatsup E%°[|| X/ ||5] < oo. Then there exists a stationary distribution for the
>0

SDDER (.1).

Proof. TheorenB.3.1limplies that for each sequeng€, }°° , such thafl;, , oo asn — oo, the
sequence{Qﬁ o0, Iis tight. Therefore, Prohorov’s theorem implies that thera subsequence
{T, } 1=, such that{Q%jlk 172, converges weakly as — oo to some probability measure’
on ((CHd,MH). Theorem3.2.1then implies thatr*° is a stationary distribution for the SDDER
(1.3.

]

Thus, to ensure existence of a stationary distribution, eexlronly have a uniform (in
t > 0) moment bound offf X;||3, and Chapte# has examples of different sets of assumptions
on b ando that are sufficient to guarantee such uniform moment boufe thing to notice
about each of these sets of assumptions is that beyond tleeAssimptions2.1.1and2.1.2
there are no restrictions on the coefficiehtsndo on the sef{x € C¢ : |2(0)|s < M}, where
M is arbitrarily large. This freedom is possible because thitorm bound on the moments of
| X/||3 just needs to be finite.



Chapter 4

Moment Bounds

Throughout this chapter, we assume thatis a solution of the SDDERI1(1) with
a possibly random initial conditiotXy. We give sufficient conditions oh and o that yield
moment bounds ofl.X;||2 uniformly int > 0. Section4.1introduces an important auxiliary
process, the overshoot process, and develops prelimiaamts on the “positive oscillation” of
a path that are used for obtaining such bounds. Sectichand4.3 develop moment bounds
under the assumption that each component bhs a term providing a push in the negative
direction (towards zero) on the sgt € C{ : |2(0)|o > M} for someM > 0. Sectionst.2and
4.3 are distinguished by differences in the assumptions madbeorestoring force and on the
additional terms composinigand the assumptions @n Sectiord.2allows the additional terms
to grow (in a sufficiently controlled manner) but requires tiregative push at timeto be at least
proportional to a value lying in the range of the segm&ptall on {z € C{ : |z(0)|2 > M}. In
Section4.3, ||o||2 and the components éfare bounded above and the negative push is strictly
negative (uniformly), all oz € C¢ : |2(0)|> > M}. This section also has stronger conclusions

in the form of exponential moment bounds.

4.1 Overshoot and Positive Oscillation

In this section, we introduce two concepts that will be usedudently in what follows.
The overshoot process will enable us to make use of condittord and o that only hold on
{z € C¢: |2(0)| > M} for someM > 0. The concept of positive oscillation is a convenient

tool for studying thencreaseof each component of a reflected process.

39
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4.1.1 Overshoot Process

Let M > 0. Foreach € {1,...,d}, we ignore the dynamics of* whenX, is in the
set{z € C{ : 2°(0) < M} by truncatingX " as follows. For each, define the overshooZ’, of
X' by

Zi(t) = (Xi(t) - M>+, fort > —r. (4.1)

Part (iv) of Definition2.1.1implies that, Lixi(sy>a7ydY"(s) = 0 for eacht > 0 and
i=1,...,d. Thus, by Tanaka’'s formula for continuous semimartingées, e.g., Theorem 1.2
of Chapter VI in B8]), we have that”-a.s., for allt > 0,

dZ'(t) = Lixiysnn (XO)dt + Lo in o (Xe)dW (1) + dLY(t), (4.2)

where L’ is a constant multiple of the local time of’ at M, which can increase only when
X'(-) is atM, and hence only whef’(-) is zero (see, e.g., Proposition VI.1.3 Bg]).

The following application of 1td’s formula will be usefuhiSectionst.2and4.3. For
eacht > 0,

d(ZH(t)? = 2Z4t)dZ'(t) + d(Z')(t)
= 27 ()" (X,)dt 4+ 27" (t)o' (X )dW (t) + 2Z°(t)d L' (t)
Lo xi )y |Ui(Xt)‘§ dt

= 2Z' ()0 (Xo)dt + 22 ()" (Xe)dW ()+ L iy 01y ‘ai(Xt)@dt, (4.3)

where(Z*) denotes the quadratic variation process foZéfand we have used the fact thit
can increase only whef’ is at zero. Thus

a(1z0B) = a((z' @)+ + (2 0)?)
2Z(t))b(X)dt + 2(Z(1)) (X)) dW (t)

d
3 i yoary 07 (X)) . (4.4)
=1

4.1.2 Positive Oscillation

We now introduce the notion of the positive oscillation (@rgest increase) of a path
over an interval. This refinement of the oscillation of a p@tl3) is well suited to our problem,

and it still obeys an inequality analogous to part (i) of Reipon2.3.1
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Definition 4.1.1. Given a pathz € C([a1,a2],R), define thepositive oscillation ofr over
[CLl,CLQ] by

Osc (xz, [a1, as]) = . <Sslilg<a (x(t) — z(s)).

Remark. Note that there is no absolute value in the definition of Qsto that we have the

following obvious inequality:

Osc' (z,[a1,a2]) < Osqx, [a1,as]), =z € C([a1,az2],R).

Remark.We also have the following inequalities: for alle (Cﬁi andi =1,...,d,
Oscr(z',I) < |zl < |lz]2, and (4.5)
|z|lr < a'(—7) 4+ Osch (", T). (4.6)

We have the following property of O$awhen it is applied to a reflected path.
Lemma4.1.1.Fix 0 < t; < ty < oco. Suppose that,y, z € C([t1,t2], R) such that
(i) z(t) =x(t) +y(t) € [0,00) forall t € [ty,1t2],
(i) y(t1) > 0, andy(-) is nondecreasing, and

(iii) y(-) can only increase whenis at zero:

y() = y(t) + /t Loy (2(s))dy(s),  forall te [t1,t].

Then,

OSC+(Z, [tl, tg]) < Osc" (:L', [tl, tg]). 4.7)

Proof. By continuity ofz and compactness of the triandlés, t) : t1 < s <t < t5}, there exist
s,t € [t1,ta] such thats < t and OSC (z, [t1,t2]) = (2(t) — 2(s)). If s = ¢t, then the inequality
(4.7) is clear. So we suppose thak t. Then there are two cases to consider.

Case 1 Assume thay/(s) = y(t). Then

2(t) —z(s) = =(t) —z(s)
< Ose(a [t ) (4.8)
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Case 2 Suppose thaj(s) < y(t). Then there i, € [s, t] such that(u) = 0, by (iii).
Letw = sup{v <t:z(v) = 0}. Thenu' € [u,t], z(v') = 0, andz(v) > 0 forall v € (v, ¢].
Thus,y cannot increase ofi/, t] by (iii), and so by continuityy(«') = y(¢). Then we have that

2(t) — 2(s) < =(b)
= 2(t) — z(u)
= a(t) —2(W) +y(t) — y(u)
= x2(t) —x()
< Osc (z, [t1,t2]), (4.9)

where we have used the facts thét) > 0, z(v’) = 0, andy(t) — y(v') = 0.

We will also need the following technical lemma.

Lemma 4.1.2. Suppose thaX = {X(¢),¢t € J} is a solution of the SDDERL(1). Then for
eachi =1,... ,dandM >0, forany0 <ty < ty < o0, P-a.s.,

. A t2 .
Osch (X%, [t1,ts]) < M+/ L xiuy> 11y (bZ(Xu))+dU
t1
+ sup / Lxitysain @ (Xu)dW(u),  (4.10)
t1<r<s<ta Jr

and for anyt > 0,

t
Osch (X [t —T,t]) < OSC+(X6,H)+M+/
(t—=7)

+  sup /T 1{Xi(u)>M}Ui(Xu)dW(u). (4.12)

(t—7)+<r<s<t

. 1{Xi(u)>M}(bi(Xu))+du

Proof. Fixi € {1,...,d}, M > 0,0 < t; < t; < co. In the definition ofZ, setM = M, so
that Zi(-) := (X'(-) — M)T. Then,

Osc™ (X%, [t1,ta]) < M +Osc(Z%,[ty,ta]). (4.12)
The inequality 4.12) can be readily verified by considering< ¢ in [t1,¢2] such that the left
hand side above is equal 1/ (t) — X(s) and then considering the three cases:X&)) < M,

(b) X*(t) > M and X’(s) > M, and (c)X*(t) > M and X'(s) < M. Thus, it suffices to
estimate OSt(Z, [t1,ts]).
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Since P-a.s. @.2) holds andL’ can increase only whe#' is zero, we may apply

Lemmad4.1.1to yield P-a.s.,
Osch(Z°,[t1,t2]) < Osc™ (T, [t1,t2]), (4.13)
where
I'(t) = ZZ(O)Jr/0 1{Xi(s)>M}bZ(X8)ds+/0 1{Xi(8)>M}al(Xs)dW(s), (4.14)

for¢t > 0. Now,
) t2 .
OSC—F(IZ7 [tl, tg]) < / 1{Xi(u)>]\7[}(bZ(Xu))+du
t1

+ sup (/ 1{Xi(u)>M}ai(Xu)dW(u)>. (4.15)

t1 <r<s<tg

This establishes4(10. Inequality @.11) follows from (4.10 and the observation that for> 0,
Osc™ (X', [t —7,t]) < Osc (X', I)+ Osc" (X, [(t — 1), 1]). (4.16)

O

4.2 Bounded Moments wherb and o Satisfy an Integral Growth

Condition

Throughout this section, we assume that the coefficigntsatisfy Assumptio.2.1

below.

4.2.1 Assumptions orb and o

Assumption 4.2.1. There exist non-negative constaits, B, Bi 1, ..., B4, B2, ..., B2,
Co, Ca,1,...,Caq, M, constantsg; € (0,1],q2 € (0,2], probability measures}, ..., uf,
pd, ..., ug on (I, B(I)), and a measurable functioh: C¢ — R, such that for each: € C¢
andi =1,...,d, ¢(z) € 2/(I) := {2'(s), s € I} for eachi, and

(i) whenever:(0) > M, we have

0
bz(l’) § Bo — BlfL'i(O) — Bl7i€i(l’) + BQJ/ |l’(’l") glluzi(d’l“), (4.17)

-7
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(i) wheneverz?(0) > M, we have
P@f; < Co+Cas [ Latr) i), (4.18)

-7

1
~ d d 1
(III) for & = minBLi and By = (<ZB2,z> N <dzB§Z> ),We have
i i=1 i=1

By + By

1

1
d 2 d d 2
~ 1
> (T (Z(BM Bzﬁ) + Bg) S + (220272 + 4T (ZCQ,iB%,i> ) 8gp.2-
i=1 =1

i=1

Remark.Note that parts (i) and (ii) restrié¢ ando® only on{z € C¢ : 2'(0) > M}, and the
control onk’ is only one-sided. Howevelr,ando will always be required to satisfy the supremum
linear growth bounds2(1) and @.2), which restrict the growth df ando for all z € C¢, though,
oniél{x € C¢ : 21(0) > M}, this supremum growth control dnand||o||» is weaker than the

at-most-integral-linear growth imposed by parts (i) atdofi the above assumption.

Throughout Sectiod.2, we useM = M + 1 in the definition of the overshoot process
Z in (4.1). The simple inequalitiesy’(-) < Zi(-) + M, for eachi, reduce the problem of
bounding the moments dfX; ||, to bounding the moments ¢fZ;||2. The intuition behind the
following proofs is that the dynamics of the overshoot pescé’ whenZ*(t) > 0 are the same
as the dynamics ok’ when X (t) > M, and sincell > M, Assumptior4.2.1is sufficient to
get control over the growth of each componentZof

4.2.2  Uniform Bound on £ [| X (t)]3]

The main result of this subsection is the following theorevhjch holds under As-

sumption4.2.1

Theorem 4.2.1. Suppose thak[|| Xo||3] < oc. Then,sup E[| X (¢)3] < oc.
t>—1

The proof uses Lyapunov/Razumikhin-type arguments sirtoléhose found in a the-
orem of Mao (Theorem 2.1 oRB]). Methods associated with the names Lyapunov and Razu-
mikhin are often used to establish stability of dynamicategns. The proof is broken down into

a series of supporting lemmas.
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Lemma 4.2.1. AssumeE ||| Xo|j3] < co. There exists a constadt/; > 0 such that whenever
t > 7 is such that both

E[lZ(t)5] > M, (4.19)

and
E[|Z(r)3] < E[Z(@)3] forall r € [t — 27,1], (4.20)

then

d
E20Z0))0(X0) + Y 1xiwsan o (X0
=1

Remark.We will refer to inequality 4.20) as the Razumikhin assumption.

Proof. Recall that we have sét/ = M + 1. Assume that we are giventa> 7 such that 4.20)

holds. For each: € C¢, there is amr,, € 1% such that for each= 1, ... ,d,
—l(z) = —2'(r}) < —2%(0) + Osch (24, 1), (4.21)

We note that for each > 0 such thatZ*(u) > 0, we haveX*(u) > M > M and so the
inequalities 4.17) and @.18 hold withz = X,,. Then,

d
(Z()'b(Xe) =Y Z' ()b (Xe)
i=1

< ZZ’(t) <BO - BlXZ(t) - BLZ[Z(Xt) + BQJ;/ ‘X(t + T)‘gllull( )>
i=1 -7
d d
< BolZ(t)h — (B1+ B1)Y Z'(H)X'(t)+ Y B, Z'(t)0sc" (X', [t — 7,t])
i=1 =1
0 .
+ZBZZ 0 [ 1X(e+ )i
d
< BolZ(Oh — (Bi+ B)IZ(0)3 + Y _B1:Z'(t) (0sa X, I) + M)

i=1

+ZBM / i uoany (X)) du

—I-ZBMZi(t) sup
=1

t—7<r<s<t

+|Z(t) <ZBQZ</_T (t +7) |3 i (d )>2>%. (4.22)

[ e (X)W
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Here, Assumptiord.2.1(i) and the non-negativity of the coordinatesfivere used for the first
inequality, and the fact that (s) > Z(s) for all s > —r, Lemma4.1.2with M = M, and the
Cauchy-Schwarz inequality were used for the third inedgyali

Using part (i) of Assumptiod.2.1, for eachi = 1,...,d, we have

t t 0
/t Lxstuyoany (X)) Fdu < / (Bo+Bz,i / |X<u+r>%ma<dr>>du

IN

t 0
Byt + Ba; / / | X (u+7) gl/fl (dr)du. (4.23)

Incorporating part (ii) of Assumptiod.2.1with the above yields

d
(2B + 5D Vi |0 (X0

i=1

d
< Bo|Z(t)|y — (B, + By)|Z(t \%JrZBl,-Zi t) (Osc™ (X, 1) + M)

+ZB1 i <Bo7' + By / / (u+r) gl,ull (dr)du)
+ZBI 20 sw

t Tr<s<t

1201 (Zf@(/ﬁ (t + g pi(d >)2>%

1 0
+§; <Co + C277;/

—T

/ 1xi(uyay 0 (X)W ()

| X (t+7)|9 ,ué(dr)) . (4.24)

Define By := mialecBL,-. Using the Cauchy-Schwarz inequality and taking expemtatin in-
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equality @.24) yields

K

d

(Z0)HX) + 53 Vo [0/ (X0[;
=1

< (Bo+MB1) E[|Z(t)1] — (By+ B1)E[|Z(1)[3]

1Z(t) (Z (Osch (X}, 1) >é]

+BE
=1

0
+E ZBIZ <BOT+B2Z/ / [ X(u+r) glﬂzl(dr)du>]

|

+E ZBliZi(t) sup
Li=1

t—17<r<s<t

+E _ (ZBMU_T (t+7) gmg(dr)>2>1

1 1 0 :
+5dCo + §;CQ,ZE U | X (t + )| ub(d )} : (4.25)

[ 1o ane (KW

—T

We now separately develop estimates for the second anddrting last lines in4.25).

For eachi,

sup .(4.26)

t—17<r<s<t

< 2sup
t—7<s<t

[ s aw

-7

/1{Xi(u)>JV[}Ui(Xu)dW(u)

Part (i) of Assumptior4.2.1, the assumption thaf[|| Xo/3] < co, and Lemme.4.1limply that

for eachi,
{/t 1{Xi(u)>1\/[}0'i(Xu)dW(u),.7:5,S >t — T}

is a square-integrable martingale. Then, Doob’s subngininequality, the.? isometry for
stochastic integrals, the independence of the coordimdtds, and @.18 imply that

|
|
= 4E [/H L( X (wy> M) |ai(Xt)‘§du}

18 || [ 1o G
< ACyT + 40y / E[|X (u+ r)|%] ub(dr)du. (4.27)

TJ—7

E | sup

t—7<s<t

[ 1o ()W (w)

<
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We used Tonelli's theorem in the last inequality. Then, gdime Cauchy-Schwarz inequality

|

| tevean e (u)aw @

(twice) and inequalityB.1), we have

d
E ZBlﬂ-Zi(t) sup
i=1

t—17<r<s<t

/1{Xi(u)>M}Ui(XU)dW(u)

[ d
< 2F ZBl,iZi(t) sup

t—7<s<t

|

- 4 . )
2F |Z(7f)|2 (Z sup Bl,il{Xi(u)>M}UZ(Xu)dW(’LL) > :|

izlt—rgsgt t—1

IN
[NIES

2(E[|1Z(t) %

IN

Z sup

1
2]) |
i— 1t T<s<t

0
uCoTJFZCmBM/ /_EUX(UJFT)’%Q]M@(dT)du)

/t B1711{X1(u)>M}O'Z(Xu)dW(’LL)

—T

D=

AN
S
5
E
/0~
M/\

(AN
W
5
\]
VY
(]
=

%-) CIZOENE

TJ—7

+4(E | % <ZC2’B11/t E [ X (u+r)| 2]ué(dr)du> . (4.28)

For the second last line iM(25, the Cauchy-Schwarz inequality and Tonelli’s theoremlimp

that
[ (ZBQ,</_T (t+ ) Ig >>2>]
< <ZBQZ (fixe+ g ﬂ)

L/ d i/ d 0 . 9 2\ 1
< (E[!Z(t)\%])?(ZB%,; (Z (E ( _rX<t+r>r%1ui<dr>) D) - (4.29)

PropositionB.0.2implies that for anyy > 1, ands > —r, there is a constarit (d, M,~, 2) >0

N

such that

X = (X3 4+ (X(5))?
< K(dM,7,2) + 7 ((Z1()? -+ (2%(5))?)
= K(d,M,~,2)+~|Z(s)]3. (4.30)

N
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Two applications of Holder's inequality, inequalit4.80, Fubini’'s theorem, and the

Razumikhin assumptio®(20 imply that for eachy > 1,

=1

<

IN

IN

IN

IN

and thus

IA

= (2l

</|Xt+r )24 (d )
-7

)
(= [( [ niican) )
(s [/_lXt” w])"

M&

7

M&

7

d 0 4 2q1

> <K (d, M,~,2 ny [1Z(t+ 73] i(dr))

2;1 | .

> (#3112 ’YE 120 i) )

d(K(d,M,~,2) + vE [|Z(#)|3 ])qu, (4.31)

B |12( I2<ZBzz</_T|Xt+r e >>>]

%(ZBm)( (K (d,8,7,2) +7E [|Z(t)|§])2ql>%

1 a

2<dZB2,> ( dM,’y,2)+ny[\Z(t)]§])7. (4.32)

Alternatively, we could have used inequalit.l), Holder’s inequality, 4.30, and @.20), to
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yield for eachy > 1,

[z )2 (ZBM (/_T'X (t+ )| i (d >)>}
E ]Z(t)\ZZBgJ/ X (t+ )2 (d ]
_ ZBZZ [ \z/_T\XHMé“u’l )

<

< t%})%ZBZZ( (/_TIXHTI%% >])1
< (E[Iz@)3] ZBm( [(/_JX””M dr) D
< (E[Z()3 ZB2Z< [/_T|Xt+r|2u1drb71

a1

2

A
N
&

1 d .
(E[IZ®)E])> Y _Bas </ (K (d,81,7,2) +~E UZ(HT)@])uﬁ(dT))
1=1 -7
d 1 - a
(ZBZJ') (E[120B))* (K M,7,2) ++E [Z(1)B]) . (4.33)

i=1

IN

Combining inequalities4.32 and @.33), and using B.1), we have for each > 1,

[z Iz<ZB2Z</ X ()| (d )>2>1

T8 (EUZ(t)I%])%) (E[Z@)B])*.

é B2 <<K(d7M7772)) ’
Continuing from 4.25, by (B.6), the Cauchy-Schwarz inequality}.p), (4.28), and

N[

(4.34)
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(4.34), we have that

E

(Z(t))'b(X, Zl{x (>3 |0 (Xe) \2]

< (B0+(M+B07)B1)\f( Z(t)[3]
+BM( 1Z@)B])? (E [HXoH])

ZBl By 7 / X(utr) %m«dmdu]
t—7 J—71

)2 — (B + BEZ(1)3

N

+4y/Cor (ZB@)% (E1Z1)3])

1 (zozzB“ / BIX () <dr>du> (2[1Z03))?

(21208 +2% (2 [208) ™)

ql

+B2 <<K(daM7fY7 2))
1 1< 0 .
+5dCo + 5;027,- /_ B(IX(+ )l () (4.35)

By Holder’s inequality (used twice)4(30, and the Razumikhin assumptiof.20),
we have for each > 1,

</t G |gwl(dr)du> ]
AT

/ [(/_T’XU‘FTbMdT’) ]

[ (B][) (Rt ez g utan])
.

T/tt (

<K
A
2 (K, 8,7,2) +E | Z(0B]) " . (4.36)

IA

IN

IN

IN

(d, M,~,2) +7/_ E [|Z(u+r)|§] ,uﬁ(dr)) du

IN

K (d,N,7,2) +7E [|1Z(0)]) " du

IN
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Therefore, by the Cauchy-Schwarz inequality (twice), d@d)

d
E | BiiByiZ' / / X(u+7)[5 i (dr)d ]
i=1 t—71 J—1

</t7'/_7_ (u + 1)|2 i (dr)d >]>%

2

IN

(E1Z(1)B])? <§j (BiiBa,)F
i=1

<m

d
T <Z(Bl,iB2,i)2> (K(daM7’Y7 2) +7E [’Z(t)‘%])
=1

N

sk
I Mg
5

IN

(E1Z())) (BiiBa)? (K(d,M,7,2) +7E [!Z(t)\%])’“)

[N

a1
2

IN

(ENZ(0)3)*?

q1

T <zd:(31,iB2,z-)2> 2( (K(d,01,5,2))
i=1

Holder’s inequality, 4.30, the Razumikhin assumptiod.0), and 8.1) also imply

IN

+0% (£ [12008) F) (B120B)* @30

that for eachy > 1,

d t 0
C J-BQZ- E[|X (u+r)%] i(dr)du)
<;2 1,/t_7/_T 2 1M
d t 0 4
Co,iB7 E[|X(u+r)3])? Z(dr)du)
<;2 1/t_7/_T([ 2]) 25

d B w72 ? r u)é
<Z§:;C2,ZBLZ/ /(KdM’y, ) +vE [|Z(u+ ),ﬂ) 1 (dr)d

T

1
2

1
2

IN

IN

a2
4

IN

d
=1

a2

vr (icﬂB %> | (@ t2.2))
=1

By using Holder’s inequality, the fact that, is a probability measure, inequalities
(4.30 and B.1), and the Razumikhin assumptiof 20, we obtain

IN

+~7T(E [yZ(t)\g])qf> . (4.38)

0 ) 0 a .
| Bixesngsan < [ Eixesng)? w

[ (B2 10+ 03]) b

—T

IN

1% (Ez0BR)E. (439

A
VS
=
B
IS
2
)
=
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d
(20D + 53 Vo [0/ (X0[;

Continuing from line 4.35 using inequalities4.37), (4.38), and @.39), we have

i=1

< (Bo+ (M+ Bor + (B [1%012])*) Br) va (E1Z0)B)
]

—(BL+ B)E[|Z(1)]3

J 3
+7 (Z(Bl,iBZi)z) (E[|Z(t)|§])
i=1

2

1B (ZB) (23]}

! ; 1
i (Sount,) (20202 (i stn0) ¥ (e awg) ®

i=1

a1
2

+B: ((K(d i,%,2) * (B 1Z0B])7 +% (B [\Z(t)yg])q1§1>

e (ZC”> << (@.31,,2) " +% (E[|Z<t>|§])‘?>

K1(7) + Ka(9) (E|Z(0)B))? + Ka(y) (E[\Z(t)@])l% + Ka(v) (E[1Z(1)3])

Q
)

FEs() (BIZ@0R) = (B + BOENZ(®)) (4.40)

[
7N
VS
2
S
2
K
N—
o)
+
2
NS
—~
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N
-
~—
=
~—
mlﬂ
N———

53
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where

d . 1 - %
Ki(v) = §Co+§(K(d,Ma%2)> 202,2'7

Ky(y) = (Bo-l-(M+BOT+(E[|’XO|’go])%>Bl>\/g

d 2 a d 2
+7 (Z(BL,-BMF) (K(d,]\;[,fy, 2)) * +4y/Cor (ZB@)

i=1

i=1
d 3 ,
-t a1
Ks(v) = |7 (Z(Bl,iB2,i)2> + B2 [ 72,
i=1
1 o
Ki(y) = 37 202,1'7 and
i=1

d 2
Ks(v) = 47 (ZCQ,Z-BiZ.> ~E.
i=1
By Assumption4.2.1(iii), we can fix ay > 1 such thatB; + By > K3(7)dq 1 +
(K4(v) + K5(7))dg,,2. Therefore,

d
E 2(Z(t))/b(Xt) + Zl{XL(t)>M} ‘O’Z(Xt)@ <0

i=1

wheneverE || Z(t)|3] is large enough. Indeed, define the functjonR, — R by

1+qq

Fr) = Ki(y) + Ka(0)re + Ks(y)r = + Ka(y)r® + Ks(y)r 1% — (B + By)r.

All of the exponents om are at most one, and the above shows that the constant inofir¢ime

highest degree term, namely,
—(B1+ B1) + K3(7)dq, 1 + (Ka(7) + K5(7))dgz 2,
is strictly negative, and this implies that
lim f(r) = —oo,

so there exists a constahf; > 0 such that- > M; implies thatf(r) < 0.
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Lemma 4.2.2. AssumeE[|| Xy||3] < oo. Let M; be defined as in the previous lemma, and
assume that > 7 is such that both4.19 and @.20 hold. Then there exists & > 0 such that

E[|Z(t+5s)|3] < E[Z(t)]3], foreachsc (0,h]. (4.41)

Proof. Settingn,, = ¢t Vinf{s > —7 : |X(s)|> > n} for each integer. > 0. Then the adapted
process{1;,.1(s)(Z(s)) o(Xs),s >t} is bounded, so that the process

(t+h)/\77n
/ (Z(5))' o (Xs)dW (5), Frnsh = 0
t
is a square-integrable martingale, and so

(t+h)/\777l
E / (Z(s)) o(Xs)dW (s)| =0, forallh>0,n>0.
t

We have from equality4.4) that
1Z((t+ k) Amn)l5 = 1Z()]3

(t+h)/\77n , d . 2
- / 2Z())DX) + 3 Lpsgyony |0 (X2 | ds
=1

(t+h) A
+ /t ! 2(Z(s)) o(X,)dW (s), (4.42)

sup | Z(s)[3

SE[—T,t+h]

and sincer < oo by Lemma2.4.1with p = 2, we have

E[|Z((t +h) Ana)3] = E [|Z(1)]3]

(t+h)Ann d ' )
— E/t <2(Z(s))'b(Xs)+21{Xi(s)>m\JZ(XS)\2> ds], (4.43)
i=1
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and then for each > 0, by the dominated convergence theorem,

E[|Z(t + h)[3] — E[|Z(t) 3]
= B[ lim |Z((t+h) Ana)l3] - El|Z(2)]
= lim E[|Z((t +h) Am)[3] — E|1Z(1)]

]
]

(t+h)/\77n d . 2
/ <2(Z(8))’b(Xs) + D xi(s)> it} \U’(Xs)b) ds]
t i=1
t+h d : 2
/t Ls<na} <2(Z(5)),b(Xs) + Zl{Xi(s)M\?l} ‘UZ(XS)E > dS]

1=1

t+h d
i 2
[ it (2908 Sty o )
=1

t+h d '
/t <2(Z ()'0(Xs) + D Lixioiny \a’(Xs)@) ds] . (4.44)
i=1

The second last equality uses dominated convergence oexifey Lemma2.4.1and the linear
growth boundsZ.1) and €.2) onb ando.
Definef : Ry — [0,1] by f(r) = (r — M)* — (r — M)*. SinceM = M +1,

2
2
2
2

= lim F

n—~0o0

= lim F

n—~00

= b

= F

1(19[’00)(7‘) < f(r) < ey (r) forallr > 0. (4.45)
Then by 4.44), (4.45, dominated convergence, and Lebesgue’s differentigtiearem, we have
= EllZ+ml ] E[|Z(t)[3]
h—0+
1 t+h 9
- hll,%lJrE h 2164 +Zl{xz oy |01 (X)5 | ds
1 t+h d ) ) 9
< - (] 7
< lim B hlg&h (2@ +Z;f(x () [o"(XJ)]; | ds

IN

E (4.46)

2Z(1))'b(X0) +21{Xi<t>>wf} o (X0 -

Here, we used the fact that the integrand in the third lagt ina continuous function of.
According to Lemmat.2.], the last line above is strictly negative under the asswnptéd.19
and @.20.
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If there were ndh* > 0 such thatE[|Z(t + s)|3] < E[|Z(t)|3] for eachs € (0, h*],
then we could construct a sequen{dg, }°° , of positive numbers decreasing to zero such that
E[|Z(t + hy)|3] > E[|Z(1)]3] for all n. Then Tim ZIZEEWEI=EIZ0]]

h—0+
contradiction to 4.46). Therefore there is al* > 0 such that4.41) holds.

> 0, which is a

O
We now prove the main theorem of this subsection.

Proof of Theorend.2.1 First of all, as a consequence of Lemg&4.1, the continuity ofZ, and
the dominated convergence theordii},Z (s)|3] is continuous as a function ef> 0.
Let My = sup E[|Z(s)[3] + My, which is finite by Lemm&.4.1and the assump-

SE[—7,7]

tion that E[|| Xo||3] < oo. If there was a; > 7 such thatE[|Z(t1)[3] > M, then since
sup E[|Z(s)3] < M, t == inf{s < t; : E[|Z(s)[3] > M} is a point of(r,#;). We also

:gv;g[\Z(t)]%] = M; by continuity, and thusz[|Z(r)|3] < E[|Z(t)[3] for all » € [t — 27,1].
Since My, > M;, Lemma4.2.2 implies that there is am* > 0 such thatE[|Z(s)|3] <
E[|Z(t)|3] = My for all s € (¢,t + h*], but this contradicts the definition @f Therefore,
sup E[|Z(s)|3] < My which in turn implies that

§>—T

sup E[|X(s)]3] < sup2(EHZ(s)!%]+dM2>

§>—T §>—T

My + 2dM?. (4.47)

IN

4.2.3 Uniform Bound on E[|| X;||3]

Recall that we are assuming Assumpt#@.1holds.

Theorem 4.2.2. Suppose thaE[|| X, 3] < co. Thensup E [[| X;[3] < oco.
£>0

Proof. Recall the definition of the overshoot procegsrom Section4.1.1with M = M + 1.
Theoremd.2.1limplies thatsup E[| X (¢)3] < oc.
t>—T1

For eacht > T, bg (4.6), (4.13-(4.15, PropositionB.0.1, (4.17), and @.26) with M
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in place of M, we have

1Z,)% < (Z(t —7) +Osc(Z, [t — 7,1)))

M-

=1

M-

<Z"(t — 7) 4+ Osc" </0 L (oo iy (0 (X)) Tds, [t — 7, t]>

=1

2
+t—'rs<ur£s<t / 1{XL(S)>M}O-Z(Xu)dW(’LL) )
d 2
S <Z ZZ t—T +Z<OSC </ {Xz >M}(bl( ))+d8, [t—’T,t]>>
=1 =1
* ) 2
+Z <t_fiu£8<t / Lixi(oy»any @ (Xu)dW (u) > >
2
< <|Zt—7|2+Z<BoT+B2Z/ / (s +1) glui(dr)ds>
y 2
+Z4t—§rg€<t /t {XZ(S)>M}U ( Xy)dW (u) ) (4.48)
i=1 > —T
Here, using PropositioB.0.1and the Cauchy-Schwarz inequality, we have for eaghl, . . ., d,

(BOT+BZ,i/ / X(s + ) pi(d >)
2 ((Bm? w5 / T / X+ T)!%lu’i(dr)d8>2>
<BOT + BT /”/_T (s + )2 i (d )s>, (4.49)

and by a similar argument to that fat.27), using @.18 we have for each that

IN

IA

2
E

sup
t—7<s<t

< 4 <C’o7' + O ,/ E[|X (u+r)|%] ,ué(dr)du) . (4.50)
t—7 J—71

By Holder's inequality,2 [| X (s)[5] < E [|X(s)|3]® forall s > —7 and0 < p < 2. So by the
hypotheses of the theorem and the fact tHat< 1 + r for all » > 0 and0 < p < 2, there is a
constant’ > 0 such thatsup E[| X (s)[5] < K forall 0 < p < 2. On combining the above and

S2—T
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taking expectations (48, we obtain fort > 7,

E|lz)3] < 3<E[\Z(t—7)!§]+2d(3m)2
d .
+2ZB§JT / / \X s+7) qu} s (dr)ds
+16CoT + 16202 i /

t—1 J—1

E[|X(u+r)| 2],u§(dr)du>

d
< 3 (K +2d(By7)? + 16Cy7d + 2ZB227Z-T2K +16CyT + 16202,JK> :
i=1 i=1

which is a bound that is independenttaf 7, so that

E[Z:3] < o

t>1

Therefore,
s B[1I3) < 2 (suE (1213 + axr?)
B < oo, (4.51)
and thus for each e [0, 7],
EIXl3] < 2B[Xoll3 + I X-13],

which is finite by @.51) and the assumption that [|| Xol|3] < oo. O

4.3 Bounded Moments whenb and o Satisfy a Boundedness As-

sumption

Throughout this section, we assume that the coefficieatsd o satisfy Assumption
4.3.1below.

4.3.1 Assumptions orb and o

Assumption 4.3.1.There exist non-negative constahfg, M, strictly positive constant&’;, Cy,
and a measurable functioA : C¢ — R<, such that for eachc € C¢ andi = 1,...,d,
¢'(z) € z*(I), and whenever(0) > M, we have:

() b'(2) < Kulpan(l'(z)) — Kalpreo) (€'(x)), and
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(i) |o*(2)f3 < Co.

Remark. Assumption4.3.1 requirest’ and |o?|» to be bounded above on the dat € C¢ :
2'(0) > M}, but this does not necessarily imply that they are boundewealon (Cﬂd. For
instance, forr = d = 1, if we define the functiorf : R, — [0,1] by f(r) := (2—r)"—(1—7)™,
then the drift coefficient

b(x) = |zl f(2(0)) + (1 —2(=1)) (1 = f(x(0)))

is continuous and satisfies part (i) witd = 2, K, = 1, K; = 1, and/(x) = xz(—1), yetitis
unbounded o¢: if for eachn > 1, 2™ € C¢ is defined by:™ (r) = 1—nr,r € [~1,0], then
b(z™) = n + 1. Similarly, one may construct a continuous unbounded dpe coefficient,
o, satisfying part (ii).

Remark.Note that Assumptiod.3.1has no restrictions on the size of the constatsk,, K4,
Cy (beyond strict positivity of; andCy), cf. part (iii) of Assumptiord.2.1

Recall the overshoot procegsdefined in 4.1), where here we led/ = M. In The-
orem4.3.1below, for each = 1,...,d, we will use E [(Z(t))? exp(«Z’(t))] as a Lyapunov-
type function to show thak[exp(aX*(t))] is bounded uniformly it > 0, for somea > 0.

4.3.2 Preliminary Lemma

A key role in the proof of Theorer.3.1is played by the following proposition proved
by I1td6 and Nisio (O], Lemmas 8.1 and 8.2).

Proposition 4.3.1. Assume thaf, g € C([0,00), R) such thatf(0) > 0 anday, as, as > 0.

() IF f(t) < f(s) — a1 [ fu)du + [ g(u)du forall 0 < s <t < oo, then

F(t) < £(0) + /t e~ =W g(y)du, forall ¢ > 0.
0

(i) If g(t) < a1 +aq fg e~ g(y)du for all t > 0, andas > ay, then

aijas

g(t) <

< forall ¢t > 0.
a3 — a9

Remark.This proposition allows us to use an analytical techniga [ti® and Nisio developed.
If for eache > 0, there is a constark. > 0 such thaty(t) < K. + f(t), then the two parts

of the proposition can be combined, and the collective tesui be used in a manner similar to
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that in which Gronwall's inequality is often used. This swur Lyapunov-type argument, where
the role of f(¢) is played byE[(Z¢(t))? exp(aZ(t))], and that ofy(t) by Elexp(aZi(t))]. The
details are in the proof of Theorefn3.1below.

4.3.3 Uniform Bound on Exponential Moments ofX"(¢)

The following theorem depends on some technical lemmastkateferred until after
the proof of the theorem.

Theorem 4.3.1. Suppose thaE[exp (k|| Xo||2)] < oo for eachx > 0. Then there exists > 0

such thatupE[exp(aX*(t))] < oo for eachi = 1,...,d, and consequentlygup E[| X (t)[5] <
>0 t>—7

oo forall p € [1,00).

Proof. Fixi € {1,...,d}. We derive the differential of the proce$§67(t))? exp(aZi(t)),t >
0}. 1td’s formula together with4.2) yield for eacha > 0 andt > 0,

d (exp(aZ'(t)))
= aexp (aZ'(t)) 1{Xi(t)>M}bi(Xt)dt + aexp (aZ'(t)) 1{Xi(t)>M}O'i(Xt)dW(t)
2
+% €Xp (OZZZ(t)) 1{Xi(t)>M} ‘O’Z(Xt)@ dt + o exXp (OZZZ(t)) dLZ(t) (452)

Combining @.52 with the differential 4.3) of (Z(t))?, we obtain for each =
.,dandt > 0,

d((Z'(t))* exp(aZ'(t)))
= (Z'(t))%d (exp(aZ'(t))) + exp(aZ'(t))d ((Z'(t))?) + d ((Z")* exp(aZ")) (t)

= a(Z'(1)  exp (aZi (1)) B (X))t + a (Z(1)) exp (aZi(t)) o (X;)dW (t)

+%2(Z"( t))?exp (@Z'(t)) |o'(X) | dt + a(Z'(t))* exp (aZ'(t)) dL(2)

+2Z'(t) exp (aZ'(t)) b'(X,)dt

+2Z'(t) exp (aZ'(t)) o' (X;)dW (t)

Hlximeany [ (X o exp (aZ (1)) dt + 27 (Daexp (aZ' (1)) |0 (X,)| di

M) exp (aZ'(t)) dt

+27i(t) (bi(Xt) ta \ai(Xt)@) exp(aZi(t))dt

= a(Z(t))? <b"(Xt) +

+1{Xi(t)>M} ‘O’i (X3) @ eXp(OéZi (t))dt
+(a (Z'(1)” +22(1)) exp(aZ! (£)) 0" (X )AW (2). (4.53)
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Here we have used the facts that(t) = 0 on {X*(¢t) < M} and thatL! can increase only
when Z' is zero, which implies that the term(Z*(¢))? exp (Z"(t)) dL(t) contributes zero.
Assumptiord4.3.1can now be applied to the coefficietsandc® in this last expression because
each appears only when multiplied by something that is zévenax‘(t) < M.

Fort > 0, sinceX®(t) > M if and only if Z¢(t) > 0, using @.53, Assumptior4.3.1,
and Lemmat.3.1below, we have that for any choice 9f> 0,

d <(Zi(t))2 exp (ozZi(t)))
< a(Z'®)’ <<Ku + Ka)e M X 017 OSC (XD _ e, 4 QTCO> exp(aZ’(t))dt

+271(t) ((Ku + K )M X 04y 0SCT(XED _ pe, aCo) exp(aZi(t))dt
+Cpexp(aZ'(t))dt + (a(Z'(t))? + 2Z'(t)) exp(aZ'(t))o" (X¢)dW (t) (4.54)

< oKy + K™ (Z4(t))? exp (X' (t) — vX'(t) +~vOsc"(X;,1)) dt
+ <QTCO — Kd> a(ZH(t)? exp(aZ'(t))dt

+2(K,, + Kg)e™ Z(t) exp (oin(t) — yX(t) + v Osc" (X}, I)) dt
+2(aCy — Kq)Z'(t) exp(aZ'(t))dt
+Cpexp(aZ'(t))dt + (a(Z'(t))* + 2Z'(t)) exp(aZ'(t))o' (X¢)dW (t), (4.55)

where the second inequality follows from the facts thatt) > Z(¢) for all t > 0 and that the
exponential function is increasing.

Assumey > «, and consider the function§ (r) = rexp(—(y — a)r) and fa(r) =
r2 exp(—(y — )r). Both f; and f, are bounded o ; in fact, f,(r) < fi (ﬁ) = e
and fo(r) < fa (,Y%a) = W, for all » > 0. Also, Zi(t) < X%(¢t) for all t > 0, so for
k=1,2,(Z/(1)* exp(—(y — )X (1)) < filX'(£)).

Therefore, fort > 0,

d ((Zi(t))2 exp (ozZi(t))>
< a (%C‘o - Kd> (Z1(t))? exp(aZi(t))dt

4 .
+04(Ku + Kd)eﬂme exp (’YOSC+(XZ, ]I)) dt

+2(aCy — Kq)Z'(t) exp (aZ'(t)) dt

1 i
+2(K,, + Kd)e'yM(7 — o) exp (yOsch (X;,1)) dt

+Coexp (aZi(t)) dt + (a (Zi)? + 2Zi(t)> exp (aZ'(t)) o' (X,)dW (t). (4.56)
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Set

K, =

do(Ky + Kg)e™  2(K, + Kg)e?™\  2(K, + Kg)e'™™ 20
< (7 — @)2e? (v — e > - (e (('v—a)eJrl)'

If we choosen & (O, [C{—g) thens := a(Ky — §Cp) > 0, and we obtain

d <(Zi(t))2 exp (aZi(t)))
< —B(Z'(t)*exp(aZ'(t))dt + K; exp (vOsc" (Xf,}l)) dt
+Cp exp (ozZi(t)) dt + Z'(t) exp (ozZi(t)) (ozZi(t) +2) o (X,)dW (t). (4.57)
Here, we used the fact thetCyy — K4)Z*(t) exp (aZ'(t)) < 0 forall t > 0.

Using the fact that there existsra > « such thatr?(ar + 2)%2e297 < ef17 for all

r > 0, we obtain on using Assumptiah3.(ii) that for eacht > 0,

E [ /0 (Z21(5))? exp(20Z(s)) (@ Zi(s) + 2)2 |0 (X,)| ds] E [ /O e exp(mzi(s))ds]

IN

IN

tCoE [ sup exp(/ﬁZi(S))]a
0<s<t

which is finite by Lemma4.3.3below and the assumption that[exp(x|| Xo||2)] < oo for all
k > 0. It follows that{ JEZi(s) exp(aZi(s))(aZi(s) + 2)0% (X,)AW (s), Fi, t > o} is a
square-integrable martingale. Thus, integrating in timé &king expectations i(57), we
obtain for eacht, h > 0,

E[(Z'(t+h)?exp(aZ'(t+h))] < E[(Z'(t)*exp(aZ'(t))]

t+h ‘ ‘
5 [ B (7)) explaZ(5)] ds

t+h ,
+ CoFElexp(aZ'(s))]ds

Ch 4
+ K\ E [exp(yOsch (X},1))] ds
E[(Z(1))* exp(aZ'(t))]

t+h , ,
5 [ B (7)) explaZ(5)] ds

IN

t+h ,
+/t (KlK(’y) + COE[exp(aZZ(s))]) ds, (4.58)

where we have used Lemnda3.3for the finiteness of?[(Z(s))? exp(aZi(s))] and Lemma

4.3.4for the last inequality. By Lemmé.3.3and dominated convergence, the functigits) :=
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E[(Z'(t))? exp(aZ(t))] andg(t) := K1 K (y) + CoE[exp(aZ'(t))] are continuous i > 0.
Then, part (i) of Propositiod.3.1limplies that
E[(Z'(1))* exp(aZ'(t))]

< E[(Z'(0))*exp(aZ'(0))] + /0 exp(—B(t — u)) (CoE [exp(aZ’(u))] + K1K(v)) du

< K+ CO/O exp(—p(t — u))Elexp(aZ(u))]du, (4.59)

whereK = E[(Z1(0))? exp(aZ’(0)|+ 250 < Blexp((2+a)2°(0))]+ 225, by Proposi-

tion B.0.5 and this is finite by hypothesis. Using the fact thab(ar) < eXp(%)—l—&T‘z exp(ar)

for anya,r > 0,¢ > 0 (as can be checked by considering the two cases wh&n% or
r < %), we obtain that for each> 0,

Elexp(aZ!(t)] < evF +<B[(Z(1)) exp(aZ'(1))]
< evE 4 eKy +eCy /t exp(—B(t — u))Elexp(aZt(u))]du. (4.60)
0
Fore < Cﬁo, part (ii) of Propositiord.3.1yields

(6% + EKQ)/B

E Zit))] < 4.61
exp(aZ' (1)) < (4.61)
and therefore,
E Xi))] < eo(&F +eK2)8 4.62
ep(aXi(@)] < Mg (4.62)
and henceupE[exp(aX*(t))] < oo foreachi = 1,...,d. By considering the Taylor expansion

>0
of exp(ar), we can see that for eache R, and positive integen, r" < O% exp(ar), and thus

it follows from (4.62 and Holder’s inequality that for eagh> 1 andi = 1,... ,d,

sup E[(X'(1))!] < oo, (4.63)
>0

and the fact thatup E[| X ()[}] < oo follows.
t>—1

4.3.4 Supporting Lemmas

We now prove the supporting lemmas.



65

Lemma 4.3.1. For eachy > 0 and eachr € C¢ with 2%(0) > M, we have

b(z) < (Ky+ Kqg)e™exp (—v2'(0) +v0sc (2",1)) — K. (4.64)

Proof. Letz € C¢ with 2°(0) > M. Sincel!(x) € z'(I), there is ar, € I such thatt(z) =
2%(r,), and thuse®(0) < 2%(ry) + Osc (2%, 1) = £*(z) + Osc" (x%, 1) by the definition of Ost.
Therefore,

—0(x) < —a'(0) + Osc" (2%, ). (4.65)
From Assumptiors.3.1(i), it follows that for eachy > 0,

b'(x) < Kulpoan(l(2)) — Kalps,eo)(£'(2))
(Ky + K)o (' (2)) — Kq

)
< (Kut Ka)exp (—1(C(z) = M) = Kq
= (Ku+ Kd)e”M exp(—y0'(x)) — Kq
< (Ky+ Kg)e™ exp (—ya “0) + VOSC+(3:i,]I)) - K. (4.66)
O

The next lemma follows from basic growth estimates on sohigito stochastic (unde-
layed) differential equations with coefficients that grawrest linearly. This lemma only uses
(i) of Assumption4.3.1

Lemma 4.3.2. For eacht > 0 andi = 1, ..., d, define the process
y (t—7)T+s )
£9'(s) == exp /( . l{Xi(u)>M}al(Xu)dW(u) ,§>07,
t—r1

whereo satisfies part (i) of Assumptioh3.1 Then, there exists a functidii : (0, 00) x Ry —
R, independent of andi, which can be chosen to be non-decreasing in each coordirath
that for eachp > 0 and7" > 0,

E 1€t 0y] v B (1€ 1] < K. D).
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Proof. For eacht > 0, Itd’s formula tells us that the proce&s’ satisfies the stochastic differen-
tial equation (SDE)

d§t7i(3) = 1{Xi((t—7)++s)>M}§t’i(S)Ui(X(t—T)++s)dW((t - T)+ +5)

0" (X (t—ry+ 1) 13
+ 2

Lixi((t=r)+1s)> €7 ()ds, s >0,  (4.67)
with initial condition¢%¢(0) = 1. The coefficients satisfy linear growth conditions. Indeed
| Lxi(mryt )=y (8)0" (X i—ry+ 48) |, < VCol€M(s)],  and

1{Xi((t—T)++S)>J\/[} ‘O-i(X(t—T)++S)‘%
2

Col€™ (s)]-

N | —

"(s)| <

Therefore by the proof of Theorem V.12.1 #0] (which is similar to the proof of Lemm2.4.1),
for eachp > 2, T > 0, there is aK (p, T') > 0 such that¥ Hit’ino 7| < Kp,T) < oo for
all t andi, since K (p,T) depends only on the growth constants and initial conditi@hich

are independent ofandi. Holder’s inequality can now be used to obtain the sameltrésu
p € (0,2]. The process
4 . (t—7)T+s 4
{(g’l(s)) = exp (/(t_T)+ _I{Xi(u)>]\/I}UZ(Xu)dW(u)> ;82 0}
satisfies a similar SDE whose coefficients satisfy the saraetgrbounds, and thus for each
p > 0andT > 0,
I 5] < K. T) < <.

O

The following lemma is somewhat of an exponential analoguesinma2.4.1in the
case that is bounded of{z € C¢ : z%(0) > M}. It's validity should not be a surprise after
consideration of Theorem 4.7 i2§).

Lemma 4.3.3. Supposer [exp(a||Xo||2)] < oo for eacha > 0. Then for eacH” > 0 and
a >0,

E [l exp(a] X ()[1)ll=rm)] < o0

Remark.This lemma remains valid without assuming part (i) of Asstionp4.3.1as long as the
linear growth condition4.1) and Assumptio.3.1(ii) hold.
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Proof. Fix o > 0. Define the stopping times, := inf{t > 0 : | X|_; 42 > n}, with the
convention thatnf () = oo.
PropositionB.0.3implies that for eacl” > 0,

=

@

”
=
—

a’X(.)h)H[—T,T/\ﬁn]]

—

E [exp(all X[ —rran..1)]

< B [oxp (0l X imrrngn)) - exp (0l X9 o)
1
d

(B [exp(ad| X s )] + - + B [exp(ad| X _rran)]) - (468)

IN

SinceX'(t) < M + Z'(t) for eacht > —r andi = 1,...,d,

E [exp(ad||X* ||+ 7rp,))] E [[lexp(@d X" (:)li—r.zAn.]
M E [||exp(adZ’ ()l )]

< M (E [exp(ad| Z5])] + E [l exp(adZ’(-))lljozana]) -

IN

Convexity of the exponential function implies that for amy, as,a3,a4 € R and
k € (0,1), we have

11—k 11—k 11—k
exp 3 a1 + Kkas + 3 as + 3 a4
1—r 1—k 1—k&
< 3 exp(a1) + kexp(az) + exp(as) +

exp(ay),

which then implies that

11—k 3 a9
exp(a; + a2 +ag+aqg) < exp a1 | + Kkexp (—)
3 11—k K

1—-x& 3 1—-x 3
+ 3 exp<1_ﬁa3>+ 3 eXp<1_Ka4>. (4.69)

Since @.2) holds, as in the proof of Lemm& 1.2 we use Lemmd.1.1to conclude

that
. T ANn )
OSC+(ZZ, [O,T/\T]n]) < /0 1{XL(U)>M}(bZ(Xu))+du

+ sup / 1{XL(U)>M}O-Z(Xu)dW(u)
0<r<s<TAnn Jr

IN

T AN s .
/0 ’b(Xu)‘gdu—i- sup /Ol{XZ(u)>M}UZ(Xu)dW(u)

0<s<TAnm

+ sup /—1{Xi(u)>M}ai(Xu)dW(u), (4.70)
0<r<TAnn JO
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where we used the fact that (X,,)| < [b(X,)]2.

The linear growth conditior 1) and Jensen’s inequality imply that for agy> 0 and

eachT” > 0,

T
P (5 /0 1{||X||[T,t],2<n}!b(Xt)!2dt>
T
P (ﬁ/o Loy ga<n} (C1 F CQHXtHz)dt)

1 T
f/o 5P (TBLx g pen} (Cr + ol X))

IN

IN

IN

1 T
7 | lexp (@ACH+ CoX ORI ring . (.71)

Therefore, for any:. € (0,1),7 > 0,i=1,...,d,

E [[|exp(adZ" (-))lljo,7Am.]]

IN

IA

IN

IN

E [exp (ad (Z°(0) + Osch (27, [0,T Ana))))]

E [eXp (ad <Zi(0) + /0 ) dt

+ sup }/()1{Xz(t)>M}O'Z(Xt)dW(t) + sup /0—1{Xz(t)>M}O'z(Xt)dW(t)>)]

s€[0,TAnn, s€[0,TAnn]

! 3 " [exp <13%dzi(0)>}

K

ad [T
+rE |exp P ; 1{IIX||[7r,t],2<n}|b(Xt)|2dt

1—«k 3ad 5 ,
+ E |exp sup / leyi o' (X)dW (¢
<1 TR ), = (X¢)dW (t)
1—«k 3ad 5 ,
+ E |exp sup / 1y o' (X3)dW (t
<1 TS, Tlxesan (X¢)dW (t)

1—r 3ad
8 o (1% )

1 [T ad
+rE | = exp | T— (Cl + 02|X()|2) dt
T Jo K (=7t Am]

1—k 3ad [* i
+ E | sup exp <1—/ 1{X’i(t)>M}U (Xt)dW(t)>]
s€[0,T] — K Jo
11—k —3ad s ;
+ 3 SSE)%}GXP <1 . /0 {Xi(t)>M}O (X¢)dW ( )>] ( )

Lemma4.3.2(with ¢ = 0) along with @.68 and B.3) now imply that for eacli” > 0
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andx € (0,1),

e M E [| exp (| X ()1l =7 Am]]

1—k& 3ad
< FElexp(ad||Xo|]2)] + —F {GXP <EHX0H2>}

3
T
—i—iexp (T%C1>/ E |||lexp <Tad02 ’X()h) dt
T K 0 R [—7,tANn]
+1_“<K<3O‘d,T>+K<—3O‘d,T>>. (4.73)
3 1—-k 1—-x

If T € (O, ﬁ] we can sets = TdC, € (0,1] and then we obtain for each
T e (0, ﬁ]
E (|l exp(a] X ()[)ll 7,7 7))

T
< Kof) K1) [ [lexn (@l X Ol ] dt (474

where
1
Ko(a) = e*™ Elexp(ad|| Xo|2)] +€adM§E [exp (6ard|| Xo|2)]
2 1
adM ~
+e 3K <6ad, 2dC‘2> , and
adM aCl
Ki(a) = de*™ Coexp| — ).
Cs

Inequality @.74) is obvious forT” = 0 because of inequalityB(6).

The assumptions implhy(a) < co andK;(«) > 0. Therefore, since

1
Hexp(a!X(-)]l)H[_T,Mnn} < HeXp(ad2‘X(')‘Z)H[—Tmn]

exp(adz|| Xo[|2) + exp(adzn), (4.75)

IN

so that the expectation on the left df. 74 is finite, Gronwall’'s inequality implies that

E [H exp(al X (]| < Ko(a)exp <K1<a> (4.76)

1
—T,ﬁmh}] - 2d(12> '
The monotone convergence theorem can then be applied to et oo and obtain for each
a >0,

1
T340,

E[uexp<a|x<->|1>||[ ﬂ < Koo (Ki@ge ). @)

2dCy
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This procedure can be iterated to obtain a finite bound ¢fiexp(aX (-)) /|- 71] for

anyT > 0. Indeed, for eacl > 1, setT(*) = ﬁ. Assume that

E [H exp(aX('))\\[_T7T<k)]] < oo for eacha > 0,
which we have already shown to hold in the case when1. We can extend t@'(*+1) as above

with (%) taking the place o), n, replaced withy\") := inf{t > T®) : ||X|_, 10 > n},

K, («) unchanged, an&’y(«) replaced with

K@) = e Bloxp(ad] Xy p0)0)] + e 2 F [exp (60 X g0
Then,
B lespalX O] < KP@ew (Ki@pe ). @9
Recognizing thal®) — o ask — oo completes the proof.
O

Lemma 4.3.4. Fix a possibly randomX, and assume thaE[exp(«|Xol||2)] < oo for each
a > 0. Then for eachy > 0, there is a constank (y) > 0 such that for each € {1,...,d}
andt > 0,

E [exp (yOsc™ (X7, 1))] < K(v). (4.79)

Proof. Lemmad4.1.2with M = M and Assumptiort.3.1imply that P-a.s.,
exp(yOsc (X{,1))

< eV(M'i‘TKu)exp(fyOsc(Xo,]I))exp< sup vy / ai(Xu)l{xi(u)>M}dW(“)>
(

(t—7)t<s<t J(t—7)*

X exp( sup ’y/( +—1{Xi(u)>M}ai(Xu)dW(u)> . (4.80)

(t—7)t<s<t J(t—71)
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By the Cauchy-Schwarz inequality, we have

E

exp <( sup /(2’}/1{Xi(u)>M}o'i(Xu)dW(u)>

t—7)t<s<tJ(t—7)T

X exp <( sup /(—2’}/1{Xi(u)>M}0'i(Xu)dW(u)>]

t—7)t<s<tJ(t—7)T

s 2
<E exp ( sup /4’71{Xi(u)>M}O'Z(Xu)dW(’LL)>]>
(t=7)+ <s<tJ(t—7)*
X <E exp < sup /—471{X¢(u)>M}gi(Xu)dW(u)>])
(t—)*<s<tJ(t—-)*+

s ) 2
= <E sup  exp </4’71{Xi(u)>M}O'Z(Xu)dW(’LL)>]>
(t—7)t <s<t (t—7)*+
X <E

Therefore, Lemmd.3.2implies that for each > 0,

IN

(SIS

(NI

sup  exp </(8—471{Xi(u)>M}ai(Xu)dW(u)>]) . (4.81)

(t—7)t<s<t t—7)t

E

exp <( sup /(2’71{Xi(u)>M}O'i(Xu)dW(’LL)>

t—7)t<s<tJ(t—7)F

X exp <( sup /(—271{)@(u)>M}0i(Xu)dW(u)>]

t—7)t<s<tJ(t—7)*

< K(4v,71). (4.82)
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Using the Cauchy-Schwarz inequality again we obtain that

E [exp(’yOSCJr (Xtia H))]

< MK B exp(vy0sq Xy, I))
xexp< sup ’y/ 1{Xi(u)>M}ai(Xu)dW(u)>
(t—r)t<s<t J(t—7)*
xexp< sup ’y/ —1{Xi(u)>M}ai(Xu)dW(u)>]
(t—7)t<s<t J(t—7)*
< QU (B exp(29084 X, 1)])?
X (E exp( sup 27/ 1{Xi(u)2M}0'i(Xu)dW(u)>
(t—r)t<s<t J(t—7)*
1
s ) 2
Xexp< sup 27/ —1{Xi(u)>M}O‘Z(Xu)dW(U)>])
(t—r)t<s<t J(t—7)t
< MR (B [exp(29]| Xol|2)])? (K (47,7))2, (4.83)

which is finite by assumption.

4.3.5 Uniform Bound on E[|| X;||3]

Lemma 4.3.5. Assume thatup E[| X (t)|3] < co and E[|| X||3] < oo. Thensup E[|| X;||3] <
t>—7 t>0

0. B B

Proof. After replacingB, by K, and settingB,; = C»; = 0 for eachi, the proof is identical

to the proof of Theorerd.2.2

O
Combining Theorerd.3.1with p = 2 and Lemma}.3.5yields the following.

Corollary 4.3.1. Under Assumptior.3.1, if E [exp (|| Xo|l2)] < oo for all & > 0, then
sup E [[| X[3] < oc.
>0



Chapter 5

Existence and Unigueness of
Stationary Distributions

5.1 Existence of Stationary Distributions

For simplicity of exposition, we introduce the followingsasnption.
Assumption 5.1.1. Either Assumptiod.2.10or 4.3.1holds.
The following is obtained by combining our results from Cteap3 and4.

Theorem 5.1.1.Under Assumption®.1.1, 2.1.2 and5.1.], there exists a stationary distribution
for the SDDERZ1.1).

Proof. For eachr, € (Cﬁl, the hypotheses on the initial conditions of either Theo#ei?2 or
Corollary 4.3.1are met, so thatupE[|| X;°||3] < oo. The result now follows from Corollary
>0

3.4.1
O

5.2 Uniqueness of Stationary Distributions

In this section, we prove uniqueness of a stationary digioh for the SDDER under
the following Assumptiorb.2.1on b ando. We use an asymptotic coupling argument that is
an adaptation to the situation with reflection of a novel argat recently introduced by Hairer,

Mattingley, and Scheutzowl §] for stochastic delay differential equations without refien.

73
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Assumption 5.2.1.

() there exists a bounded right inverse tari.e., there is a constarits > 0 and a measurable
functiono : C¢ — M™*4 such that for al: € C{, o(z)oT () = I, and|joT(z)[]2 < Cg

forall z € C¢, and

(i) the coefficientsh and o are globally Lipschitz continuous, i.e., there exists astant

xr, > 0 such that

(@) = b(y)lz +llo(z) o)} < krlz -yl foralle,yeCf (5.1)

Remark.Part (i) implies thatn > d, since the rank of a product of matrices cannot exceed the
rank of either factor. lfizo’ is uniformly elliptic (or uniformly positive definite), i.ethere is

a constantz > 0 such thato(z)(o(z))v > alv|3 for all z € C{ andv € R%, theno has a
bounded right inverse. Indeed, in this case for each (Cﬂd, let a singular value decomposition
beo(z) = U(x)A(z)V (z), whereU(z) € M?*?¢ andV(x) € M™*™ are unitary matrices,
A(z) € M*™, Al(x) = 0 wheneveri # j, andAi(x) > 0 for eachi = 1,...,d. We
shall drop ther in what follows. Thenoo’ = UAA'U’, and uniform ellipticity implies that
the diagonal entries of thé x d diagonal matrixAA’ are at leastt > 0, so that the diagonal
entries of(AA’)~! are at mos%. Therefore, the maximal diagonal entry of the Moore-Pesiros

pseudoinversd’ = A’(AA’)~! of A is at mostﬁ. Therefore,

ol = o'(o0')! = VIN(AN)'U = VAL,
is a right inverse fow with spectral radius bounded above l\d/aé sinceU andV are unitary.

Also, o' (-) is continuous since(-) ando(-)(c(-))" are continuous, and taking the inverse of a

non-singular matrix is a continuous operation.

Remark.Part (ii) of Assumptiorb.2.1implies that Assumption2.1.1and2.1.2hold (see Ap-
pendixC).

The main result of this is section is the following theorem.

Theorem 5.2.1.Under Assumptiob.2.], there exists at most one stationary distribution for the
SDDER (.1).

A key element to our proof is the following proposition, whiis adapted to our situa-
tion from Corollary 2.2 of 16]. Before stating it, we introduce some notation. Denotesibece

of sequence$z™}2° , in C¢ by (C¢)>°, and endow this with the product topology and associated
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Borel o-algebra. Denote the space of pairs of sequences with via@sby (C¢)> x (C¢)>°,
again with the product topology and associatedlgebra. Denote the space of probability mea-
sures on(C)> x (CH> by P((CH> x (CH>). Let{Pi(z,A),x € CLA € Myt > 0}

be the family of Markovian transition functions associatgth the SDDER {.1) and letu be a
probability measure o@]‘f. Define the probability measur&; on ((C]‘Ii)oo as follows. A cylinder
setA C (C¢)> has the form:

A= {{x“ < e (CH® ;" € A, for all n}

where A,, € M;j for eachn, and there is a hon-negative integ€érsuch that4,, = (Cﬁl for all
n > N + 1. Then,P% is defined on such a set by

Pgo(A) = / / / PT(acN_l,de)---PT(xo,dwl),u(dwo).
ro€A) Jr1€A TNEAN

Kolmogorov's extension theorem (see, e.@1][or [39]) ensures thaP%, extends uniquely to a
probability measure oC¢)>°. Thus, P is the distribution of the sequendeX,,, }>° , when
X is a solution of 1.1) started with distributiori.. Recall that the symbol between two
probability measures means that they are mutually absplotatinuous.

The following proposition follows immediately from Corally 2.2 of [L6] by setting
A = C{ there.

Proposition 5.2.1. Assume that there is afami{yﬁx,y : (z,y) € C¢ x (Cﬁl} of probability mea-
sures on(C%)> x (C¢)> such that for eachr,y € CY,

() Pry(- x (CH™) ~ Pl (-) and P, , (CH™ x ) ~ P(-),
(i) for eachz,y € C¢,
By ()30 (97)320) € (€ x (€)™ : lim [la” —y"l2 = 0) >0,
and for eachl” € B((C%)>® x (C$)>),

(i) the mapping(z,y) — P, (I") is measurable o¢ x CZ.

Then there exists at most one stationary distribution fer sbmigroup that is associated with
{Pt('7 ')7t > 0}

We need to develop some preliminary results before giviagtof of Theoren.2.1

We begin with a stochastic variation of constants formula.
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Proposition 5.2.2. Assume that on some filtered probability spé@eF, {F;}, P), {¢M(t),t >
0} is an adapted process satisfying the following stochasfierdntial equation:
deW(t) = aeW)dt +de@ (), (5.2)
for somen € R and some continuous semimartingég¢? (¢),t > 0}. Then

t
V@) = (o) + / =) de@ (s), t>0, (5.3)
0

and thus for eachh > s > 0,
t
e () = ealt=9)g) (g 4 / 211 4@ (1),
Proof. Denote the right-hand-side d.Q) by £©)(¢). Thenc®)(0) = ¢ (0), and

t
dE® @) = e M (0)dt + e / e~ %d¢? (s)dt
0

+e* 0 deP (1) + d <e°", /0 | e_a8d§(2)(s)> (t)
= aO@)dt + de® (1). (5.4)
Thus,
AV -DW) = a(cVO)-D@)dt,

and it follows that

VWD) = (D0 -D(0) et
0

and so
P (5(1)(t) = ¢B)(¢) forall ¢ > 0) =1.

O

We assume that am-dimensional Brownian motion martingatg? (t),t > 0} is
given on a filtered probability spadg, 7, {F;,t > 0}, P). For eachA > 0, consider the
system of SDDERs

dX(t) = b(Xp)dt + o(X,)dW (t) + dY (), (5.5)
dXMt) = b(XP)dt + NX(t) — X MNt))dt + o (X )dW (t) + dY(t), (5.6)
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whereP-a.s.,(X (t), X (t)) € R% for all t > —7, and whergY, Y?) is a continuous adapted
process such tha-a.s.,Y (0) = Y*(0) = 0 andY” (resp. Y*?) can increase only whei*
(resp. X is zero. We allow possibly random initial conditiod§ = ¢ and X = £. This
is a2d-dimensional system with globally Lipschitz coefficiengsd thus AppendixC implies
that there exists a (pathwise) unique strong solution for @air of square-integrable initial

conditions:
E[|l¢]3] <oo and  E[|€]f3] < oco. (5.7)

We consider a solution pajfX, X*) with initial conditions satisfying.7). The dif-
ferencelU* (t) := X (t) — X (t) satisfies

dUNt) = (b(Xt) - b(X'})) dt — \UM(t)dt

+ (J(Xt) - J(Xg)) AW (t) + d (Y - W) t), t>0. (5.8)

The following lemma is a modified version of Lemma 3.5 B8], where here we have
equations with reflection. Inequalityp.(L]) is the reason that this lemma remains true in the
reflected case. Our proof is very similar to that 16][from (5.14) onwards.

Lemma 5.2.1. For eacha > 0, there exist\ > 0 and K > 0 such that

B [spert|02E] < K [10313).
t>0
wheneveZ[|| U3 [15]]] < oo.

The proof uses the following proposition, which is a sligbhgralization of Lemma
3.4 in [16] for the case wherdV is m-dimensional, and specializes to the case wlieis
continuous. The proof is nearly identical, and so we omitTihe proof uses the representa-
tion V(t) = e fot e*h(s)dW (s), the Burkholder-Davis-Gundy inequality, an integration
by parts, and estimates dn® on the segments%’“WT, W] k =0,...,N — 1, for large

enough integersy.

Proposition 5.2.3. On a filtered probability spac&?, F, {F;}, P), letW be anm-dimensional
Brownian motion martingale, lefh(s),s > 0} be a continuous adapted process taking values
in M!'*™ and assume that for eaech> 0, we have an adapted continuous real-valued process
{Ve(t),t > 0} satisfying the stochastic differential equation

AVE(t) = —aVo(t)dt + h(t)dW (), t>0, (5.9)
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with the initial conditionV*(0) = 0. Then for eacl” > 0 andp > 2, there exists a function

vrp Ry — Ry SatiSfyingO}EI;oVTm(a) = 0 such that for any stopping timg

E

0<t<TAn 0<t<TAn

sup ]Va(t)\p] < vrp()E

sup \h(t)\é’] :

Proof of Lemm&.2.1 Fix o > 0. Without loss of generality, we may assume that 5. From

equation 5.8), we have
d (\Uk(t)g) = 2 (UA(t))/ (b(Xt) - b(Xﬁ)) dt — 2\ UM (t) 2dt
42 (U*(t))' (o(X0) o (X)) dW (1) +2 (U)‘(t)>/d (v -7) )
+ Ha(Xt) . a(Xz)Hz dt. (5.10)

The constraints on whedé andY* can increase and the non-negativityvfand X * imply that
foreacht > s > 0andg € R,

/ PV TR o / N (v - 7 ()
i=1"%

s

d

_ —Z<

i=1

/ t O X (r)dY M (r)

S

+ / t eﬁr)N(A’i(r)in(r)>
< 0. s (5.11)

The Lipschitz continuity condition5(1) onb andeo implies that for any:, y € (C]‘Ii,

2(2(0) = y(0))' (b(x) = b(y)) + llo(x) — o (y)lI3

< 2[z(0) = y(0)[2[b(x) — b(y)l2 + lo(x) — o ()3
< 12(0) — y(0)[3 + [b(z) — b¥)[5 + o(z) — o (y)II3
< 1+ kL)l — yl3- (5.12)

Ité’s formula and equality3.10 yield
d(eNOB) = ae UMD +ed (|UN0)3)

= (o — 20)e™ UMb 2dt + 2¢° U*(t))l (b(Xt) - b(X?)) dt

et [lo(x) - a(fcg)Hz dt. (5.13)
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Then Propositiors.2.2and inequalities’.12) and 6.11) imply that for each fixed; > 0, and
>,

t
G = A 4 2 e (120) ()~ B Y
t1

19 / " (a—2n) (=) yar (UA(T)>' (0(X,) — (X)) (1)

t1

+2 /t ela=2N)(t=r) gar <U>‘(7‘)>/ d (Y - f/A> (r)

t1

t
+/ e(a—2)\)(t—r)6ar
t1

o) — o ()|

dr
2

2

UM dr
2

IA

t
e(a_”‘)(t_tl)|U’\(t1)|§+(1+/<L)/ e(a—2)\)(t—r)ear
t1

+2 / " la-2n(e) gor (2@ (o(Xe) = (X)) aW (1), (5.14)

t1
The remainder of the proof is very similar to that of Lemmai8.516] (following on from the
top of page 15, or the third display of the proof), but for coetgness, we provide the details
and correct a few minor oversights.
For eachg > 0, p > 1, integern > 0, andt, > t{, we have
SE[tl,tz} tl—T,tl] SE[tl,tQ}

sup P |UME < eﬁ7< [Sup P3| UA(s)[5 +  sup eﬁS|U>‘(s)|g>. (5.15)
se

Therefore, continuing fromb(14)

UMD

< UMt
t
+(1 4 Kkr)e" </ e(a_”‘)(t_r)dr> sup e |UMNT)|3 + sup e |UAr)[3
t1 TE[tl—T,tﬂ Te[tl,t]
(s / ~
+2 sup / elam2)(r—u) gau (U)‘(u)) <O‘(Xu) - U(Xé‘)) dW (u)| . (5.16)
TE[tl,t] t1

In a similar manner to that in which inequalit§.69 was derived, using the convexity of— r*

we have for eacl > 1 anday, as,as, a4 € Ry,

3 3 3
(a1 + 4 o 3.4 3y 1 37 1 37 4
1+a2+az+as)” < v%a;+ o— as + o— as + po— ay.

Then, sincef,? e~ dy, = (1 — etth=h)y < L for any ¢ > 0 andty > ¢y, raising both



80

sides of .16 to the fourth power yields fotr > ¢4,
UM
< U0

3y >3 (1+kp)teter dar|7TA (|8 dar|7TA (18
+ sup e UNr)|s+ sup e *|UNr
(,Y ) o e (o PR s s

()
+ | —— ] 2% sup
v—1 re(t,t

By Itd’s formula, the differential of

4
. (5.17)

/ pla=2)(r=w) gou 2 w) (o(x.) — o(X2) )W (u)

t1

V(t) = / " a2 -0 g (@) (#(X) — o (X)) dW(w), 20,

t1

AV (t) = d(éa—”)(tl“) / T a2 o (U)‘(u)>/<a(Xu)—a()~(i‘)) dW(u))

t1

= (o —2)\)ele=2(t+) / Y (UW))' (a(Xu) - a(X'Q)) AW (u)dt

t1
+el@2N)(t1+1) g2A(t1 +1) (U)‘(t1 + t))/ (U(Xt1+t) - U(Xt/\wt)) dW (t1 +1)
= —2X—a)V(t)dt
/ ~
Lol (Ux(tl n t)) (a(Xth) —o(X) +t)) AWt (1), (5.18)

where{W (t) := W (t; +t) — W(t;),t > 0} is a Brownian motion martingale relative to the

filtration {F}* := Fy, 14, > 0}. If we definen,) = inf{r > ¢, : |[U*(r)|, > n}, theny) —t, is
a stopping time relative t§;*}, so Propositiors.2.3and Assumptiors.2. 1(ii) imply that

4]
(UA(h + 7“)>/ (J(X(t1+T)) - J(Xéﬁr))) 4]
4
J

. (5.19)

E sup

rE[ty,(t1+T)An]

/ " pla=2) =) garu (7 w) (o(x) ~ (X)) dW (u)

t1

~E| swp (V)

rel0,7A(mp—t1)]

sup e4oc(t1 +7)
rel0,7(Any—t1)]

< 42X —a)E

< 42X —a)E sup

rE[t1,(t1+T)An]

cor (U)‘(r)>/ (o(X,) (X))

8
64047’ UT)\

< vra(2)\—a)RiE ,

sup
r€[t1,(t1+7)Anp)
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Taking the supremum up to tinfe; 4+7) Az} and then the expectation on both sides of inequality
(5.17), and using %.15 and 6.19, we obtain

E sup e UA1))5

te[tr,(t1+7)An)]

< YE[0@)E]

N 37\ (14 mL)4e4°‘TE
v—1 2\ — )t

sup UM HS +  sup et
te[tr—7,t1] te[ty,(tr+7)An3]

U*(t)f]

)

UA(t)‘Sl , (5.20)

37\’ ar
+ <ﬁ> 241/7—74(2)\ — C)Z)Kl%e‘l
X <E
3 3y \?
< —_— E
< (7 + <7—1> 5(%@))

+ (%)3 SO\, ) E

sup  AMNUMNOE+  sup et
t1—T<t<ty tefty,(tr+7)AmR]

sup e UAt)[5
telty—7,t1)

sup e4at

te(ty,(ti+7)An)]

2

wheres(\, a) = % + 2%, 4(2)\ — @)k el > 0. Note thatAlim 5\, a) = 0 for

each fixech > 0. By the definition ofi)),

E sup U85

te[te,(t1+7)An)]

é e4a(t1 +7) E

A 8 A 8
Lyoa )zt lU (E)]3 + 1ur @) o<ny  SUP (”A 19 (t)|2>
te[tl,tl—i-ﬂ

< et (Blor )] +n°), (5.21)

which is finite if E[|U*(t1)[5] < oo. Thus inequality %.20 implies that for all\ sufficiently

3
large,d(\, ) < (73—;1> and providedE[|U*(t1)[§] < oo, we will have

3
3 3y
Y+ () N a)
E sup el ur)§| < <V 1> E| sup UM . (5.22)
3
tefts,(ti+7)Anp] 1— (%) 5()\7(1) teft1—,t1]
Lettingn — oo, monotone convergence yields
3
3 3y
Y+ () 6\ )
E| sup eUro))S| < <V 1)3 E| sup US|, (5.23)
tefty,t1+] 1— (3_71> S\, @) te[t1—7,t1]
Y— Y
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Define X
7+ () s a)

0= - (%)35@,@) '

3
ThenAIim B(v, A, a) = ~3. Consider) large enough that(\, a) < (73—‘71) . We now prove by
induction that provided?[||Ug'[|5] < oo, we have

E| s MBS (80,0 a)" E U5 (5.24)
(n—1)7<t<nt
forn =0,1,2,.... Forn = 0, this holds trivially since*®* < 1 for all t € I. Now suppose that

(5.24 holds forn = k —1 > 0. SinceE[|UN((k — 1)7)|3] < (B(v, A\, )" E [||U|5] < oo by
the induction hypothesis, setting= (k — 1)7 in (5.23 we obtain

El s o)

(k=1)T<t<kTt

< B\ a)E sup  e*|UMNY)[S

(k—=2)7<t<(k—1)T

e e [[o])].

IN

This completes the inductive step. Now,

E[supeatuvzué] < o (E supeat\wt)\%}+E[supeatrw<t>r§])
>0 | tel >0
o0

sup U@
n—1(n—1)7<t<nr

IN
o
Q
3
7 N
e

I0318] + 2

)

o
26_30‘("_1)7 sup €4at|UA(t)|§
— (n—1)7<t<nt

IN
o
Q
\]
VR
t

10315] + B

)

= B |03 3] (1 N w(v,ma))") , (5.25)

n=1

IN
o
Q
3
7 N
t

I0318] + S0 (0 ) & [HUMED
n=1

which is finite provideds(y, A\, ) < €3*7. To accomplish this, we may first choose> 1
small enough that? < % and then choosa > § large enough that both(\, o) <

3 QT - .
(Vg—;l) and B(y,\, o) < v° + (% —73) < €3°7. Thus, the lemma is proved with

K = T <1 + 63a7 § e—3om7— (6(77 )\’ a))ﬂ) )

n=1

O

Lemmab.2.1provides us with strong asymptotic convergence of the paitbs and

X for large enough\. From this point on, we shall fix & > 0 such that the result of Lemma
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5.2.1holds. For two segments, y < (Cﬁi, let (X””,XW) be the unique strong solution t6.5)
and 6.6) with the initial condition(Xo, X3) = (z,y). For each > 1 andz,y € C¢, define the
stopping time
t ~ - 2
Y™ = inf {t >0: / A2 ‘JT(X;C’y)(Xx(s) - Xx’y(s))‘zds > n} .
0

Lemma 5.2.2. For eachz,y € CY,

P <lim X2 (t) — XTY(t)]p = 0) ~1, and

t—o0

lim P (n™¥" = o00) = 1.

n—oo

Proof. The first claim is a direct consequence of LemBna 1

Define the random variablg := sup e*|| U
>0

2, which is P-a.s. finite by Lemm&.2.1

Then, by Assumptio.2.1(i) and the fact tﬁan UM |2 < e for eacht > 0,

oo - 2 o0 2
/ )\Z‘O'T(X?)U)‘(S) ds < A2062/ ‘U)‘(s)‘ ds
0 2 0 2
< )\205/ e *Yds
0
< NC2. (5.26)

Therefore,

P =o0) = P </Oo° 2 (UT(XQ)UA(S)(zds < n>

P (NCEY < n), (5.27)

v

which increases to one as— oo sinceY < oo, P-a.s..

Proof of Theoren5.2.1 Define the functionV : C¢ x C¢ — {1,2,...} by
2

€ x C¢ 5 (WD, w®) - / 32 [of () (B (s) — w@(s))|ds
0

N(z,y) := inf {n > 1: P(f"¥" = c0) >

N

which is finite by Lemm&.2.2 The map

is measurable because it is the limitirof the measurable maps

n 2
C¢xCds (Wb, w?) / A2 ‘UT(wgm)(u)(l)(s) — w(z)(s))‘2 ds.
0
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It follows from the result of Lemma.6.2that the magz, y) — P((X*, X*¥) € T') is measur-

able for eacl” € Mj ® Mj. Therefore N (-, -) is measurable. Henceforth, we abbreviate
oY = Py V@),
For eachr,y € CY, letv™¥(t) = 1< ean Aol (X[Y) (X””(t) — X:”’y(t)) fort > 0.

Define the process
B t
W) = W(t) + / v (s)ds, t > 0.
0

By construction ofy™¥ andv™Y,
[ee]
| @kas < N,
0

so by Novikov’s criterion (see, e.g., Proposition VIII.%.&f [38]),

pot0) = e (= [ oy awe -3 [eveas). o

defines a uniformly integrable martingale. L#£tY(oo) denote theP-a.s. strictly positive limit
of p™¥(t) ast — oo. It then follows from Girsanov’s theorem (see, e.g., Secficof Chapter
VIII of [ 38]) that the probability measur@®¥, defined byQ*¥(A) = EF[p*Y(c0)14] for all
A € F,is equivalent taP, and undeiQ*, WY is a Brownian motion{ F; }-martingale. Let
X®Y be the unique solution undé€r*¥ to the SDDER

dX(t) = b(X;)dt +o(X)dWSY(t) + dY (t), (5.28)
with initial condition X, = y. Then,P-a.s.,
dX™V(t) = bXPY)dt + 1jyeyman ) <Xx(t)—)~(x’y(t))dt + o (XENYAW (8) + dY (¢), (5.29)
whereW is the Brownian motion undeP. For (.29, we used the facts that’ = I,; and

P (H(vay) = o1 (XPY) forall ¢ € [0,77Y] N R)

> P (X5(t) = X2 forallt € [~r,7"] NR)

- 1L (5.30)

The equality above follows by a very similar proof to that fhe pathwise uniqueness for the

SDDER with Lipschitz coefficients (see the proof of Theor@rf.2with »*¥ in place ofr,).
Since uniqueness in law holds for solutions 6f5, the distribution ofX*¥ under

Q™Y is the same as that of the solutiaf? to (5.5 underP with initial condition Xy = y. Then,
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sinceQ®Y ~ P, the distribution ofX®¥ underP is equivalent to that ok ¥ underP. Thus, if we
let P, ,, be the probability measure ¢@¢)> x (C¢)>° thatis the law of { X2 }2°,, { X0 152

underP, thenﬁw,y satisfies condition (i) of Propositida2.1
Onthe se{n®™¥ = oo}, we haveX®¥ = X*¥ P-a.s. by 6.30. Thus, on{n*¥ = oo},

P-a.s.,
Jim [ X7() — XPU(t)]p = lim | X7 () — X7(t)]
=0 (5.31)

as was shown in Lemnt&2.2 Therefore,

Pry (2"}, 19" Fo20) € (G x () lim |2 — " = 0)

V
!
3

=

&

|
3

SO thatﬁw,y also satisfies condition (ii) of Propositidn2.1
All that remains to show is the measurability @f,y) — P, (I') for eachl’ ¢
B((C#)> x (C&)>°), which would follow from the measurability dfr, y) — P, , (B) for each
Borel measurablé c C(R,,C¢) x C(R;,CY), whereP, , is the law of(X*, X*¥) underP.
This is proved in the lemma below, and completes the proof.
U

Lemma 5.2.3. Using the notation in the proof of Theoredn2.1 for each measurablé C
C(R4,C) x C(R4,CY), the map(z,y) — P, (B) is measurable.

Proof. Using monotone class theorem arguments (see, e.g., Theéb8&ain [39)), it suffices
to prove the measurability dfz, y) — E [g1 (X7, X[Y) - ge (X}, X;¥)] for each collection
of times0 < t; < --- < t;, < oo and functiongy, ..., gx € Cp(C?9) for k = 1,2,.. ..

Fix an integerk > 1. Define the setsly := {0 < n™¥ < t1}, A = {tp < ™Y},
and foreacty = 1,... .k — 1, A; == {t; < n™Y < t;41}, so thatQ is the disjoint union of
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Ag, ..., Ar. Then
E [g1(X7, X5Y) - o (X5, X0Y)]

k [ k
-y ngxz,xzm]
j=0 Li=1

ko [/ k
= ZE (ng’(th,Can’y)) Ly, H 9i(Xi, X1
=0

| \i=1 i=j4+1
N k
= YE (Hgi(xgj,xg’y)> 1L, E || ] e(x2, X5 ‘fnz,y . (5.33)
7=0 i=1 i=j+1
0 k
where we use the standard convention thpt; = [[ a; = 1 for any real numbers;.
i=1 i=k+1
By (5.30,

J J
(ngxz,xzz%) L - (ngxz,xzz%)
i=1 =1

For eachz,# € C{, let P%# denote the law induced ofi (R, C2?) by the pair of strong
solutions to §.5) with the two initial conditionsz, z and the same driving Brownian motid#i.

Now, on{n™¥ < oo}, we define
X2Y(t) .= XT(p™Y +1), and XY(t) := XY™V +t), t> -7,

which satisfy

t

X%Y(t) = X%(n™Y) + / b(XTY)ds + /0 ta(vay)dvay(s)+vay(t), (5.34)

0

and
A — t ~ t A ~ A
XPY(t) = Xx’y(nx’y)Jr/ b(X;”’y)der/ o(XI)dAW™ Y (s) + Y5Y(t), (5.35)
0 0

whereX{¥ = XZ.,, X§¥ = X34, WY(t) := W(n™Y+1) =W (n™¥), Y2 (t) 1= Y2 (™ +
t) —=Y*(n®™Y), andY ™Y (t) := YV (n™Y +t) = Y2Y(n™Y) (here,Y* andY ™ are the regulator
processes ok ® and X*¥). Now, on{n™¥ < oo}, conditioned oNnF ey, W=Y is a standard
m-dimensional Brownian motion independentBf-.». It follows from strong uniqueness for
the pair of solutions to the SDDER that the conditional IaV\(XFvy,XW) is given by P%#
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wherei = X, andi = X,3%. Then on{n™ < oo}, for j <k,

k
1 | [ I1 st || 5

i=j+1
k
— 1B [( I1 gi<Xzivynz,y,X;§vynz,y>) ‘fnz,y
i=j+1
k ~
= 1y T o (@t — 579), do(t: — ™)) PXov s (dud, dud).  (5.36)
g i=Jj+1

(C®R+.C1))

We note that the above expression equalsif j = k. Lethy(z,#,t) = 1 forall (#,2,t) €
C¢ x C¢ x Ry. Forj =0,1,...,k — 1, we define the functions; : C¢ x C¢ x [0, cc) by

k
hy(&,&,t) = [T 9i @(t; — ), (t; — ) P** (dw, daiv), for ¢ < 4,
5 i=j+1

(CRy.CH)
andh;(&,2,t) = 0 fort > ¢;41. The last line in .36 equalslAjhj(ng,y,X,fz’%’y,n””vy).
The functionh; is measurable iz, z) for each fixedt by Lemma2.6.2 and it is piecewise
continuous int for each fixed pair(z, £). Hence,h; is measurable (see, e.g., exercise 11 of
Section 2.1 of 14)).

For eachz,y € (Cﬁl, define P*¥ to be the distribution of X*, X*¥) under P on
(Q:= (CH2, F == B((C$)?)), and denote byw, ) the coordinate mapping process(éh F).
Also, define on(Q2, F)

n = inf {t >0 /Otx ot () (w(s) — @(s)) zds > N(wo,wo)} ,

which is measurable sinc€(-, -) is measurable. The random timés also a stopping time with
respect to{ﬁt =0 (ws, Ws, 8 < t), > 0}. Therefore(w,, wy,,n) is measurable. Combining
all of the above,

E [gl(X£7Xi’y) - gk(Xfi7th:y)]

k J
= ZE (HQZ(XZ,XZ’Z/)> 1Aj hj(ng7an7fz7%/y777x’y)]
7=0 =1
koo i
= ZEP ’ (Hgl(wt”wtz)> 1thj(w777wn7n)] ) (537)
7=0 =1

whereB; is defined in the same mannerg, but withn™¥ replaced withy.
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Lemma2.6.2implies that the mappingz, y) — P*¥(T") is measurable for eadh e

B((ij X (ij), and thus the measurability of the integrand implies thatetkpression inH.37) is
a measurable function @k, y).

U

Corollary 5.2.1. Under AssumptionS.1.1and5.2.], there exists a unique stationary distribu-
tion for the SDDERZX.1).

Proof. The second remark after Assumpt®i2.limplies that Assumption®.1.1and2.1.2hold,
so the result follows from Theorengsl.1and5.2.1 O



Chapter 6

Applications

We now apply the previous results to the Exam@es], 2.2.2 and2.2.3

6.1 Example2.2.1 Biochemical Reaction System

Fix a,v,e,C > 0.

Lemma 6.1.1. The functions

b(x) = % —~, for z € Cy, and

(1+252)

o(x) = ¢ #—i—’y , forx € Cy,

(o=

satisfy the Lipschitz condition in Assumpt®s2. 1(ii).

Proof. Since the derivative of — - is bounded byl for » > 1, we have|; — L| < |r —

for r, s > 1. Therefore, for any, y € Cy,

<1+:Z_T))2— <1+; ))2 a‘<1+x((—;)>_<1+y(;ﬂ>‘

-7
C

IN

2(=7) = y(=7)I. (6.1)

Therefore,

IN

(%) lle - i3, 62)

89
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Using the equality\/r — /s| = \/‘;;f/‘g we have

(2)? ||z — 2

2
1 z((x*"') 2+’Y+ 1 ?!?:"') 2—’_’}/
(1+e7) (1+e7)
2

€% ra\?
o () el (6.3)

(0(z) —o(y)? < &

O

If x € Cy such thate(—7) > C 270“ thenb(z) < —3. The dispersion coefficient is
bounded by\/a + 7. Therefore, Assumptiod.3.1is satisfied with(z) = z(—7), Kq = 3,
K, =a,Cy=¢e*(a+7),andM = C 270‘ Also, o has a measurable right inverse bounded
by a\Lﬁ Therefore, the SDDER associated with tftiso) has a unique stationary distribution.

6.2 Example2.2.2 Affine Coefficients

Set
b(x) i=bo — b1z(0) = Y biw(—r) + Y bia(—ry), (6.4)
=2 i=n+1
and
o(x):=ap+ Zaiw(—si), (6.5)
=1
where2 < n < n/,0 <r; < tforeachi =1,...,n/,0 < s; < 7 anda; > 0 for each

i=0,...,n", by € R,andby, ..., b, > 0. If ag > 0 and

n n’ n 1 n'’ 2 n' n

S h (.Z bi) <1 +¢zbi) . (z) FAVES a3 h

=1 i=n+1 =2 i=1 =1 1=2
then the one-dimensional SDDER

dX(t) = (bo — le(t) — Zn:bZX(t — ’f’i) + Zn: bZX(t — T‘Z)> dt
1=2

i=n-+1
+ <a0 + iaiX(t — SZ)> dW(t) + dY(t)
i=1

will have a unique stationary distribution. The exam@de?(in Chapterl is a special case of

this result.
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Existence follows because the coefficielendo are uniformly Lipschitz continuous
and satisfy Assumptiod.2.1with

n
M =0, By = (bo) ™, B = by, By = > b,
i=2
n’ ‘
By1= > b, =1, 72 =2,
i=n+1
ibir(—m) 2 ity ilaﬁ{—sz-}
é(;p):z—T7 M= =57 po = =,
} ; <o

where? = 0, and for anyy > 1,

2

02,1 = (Zaz> and C(] = K(ao,% 2)
i=1

by using PropositiorB.0.2 Uniqueness follows because has a measurable right inverse
bounded byal—o, so that AssumptioB.2.1is also satisfied.

6.3 Example2.2.3 Internet Congestion Control

Recall, the drift from Exampl@.2.3was given by

d/

d
bi(x) == —1+ ZAU exp (—BjZAij’kjmk(—mjk)> , 1=1,...,d,
k=1

j=1
for someB,...,B; > 0, and4;; > 0, Cy; > 0, andry;, > 0 forall i,k € {1,...,d}
andj € {1,...,d'}. Let us assume that > d, and that there ar@ < a; < ay such that

o: (Cﬁl — M®™ js uniformly Lipschitz continuous and satisfies
ar|v|3 < vo(z)o(z) v < aglvf3 forall z € C¢ andv € RY. (6.6)

Inequality 6.6) implies thatoo’ is invertible, and thus’(co’)~! is a right-inverse for that is
bounded above b?/'lT_l. Inequality 6.6) also implies thaf|o?||2 < ay on all of C{ for all i.
Foreachi =1,...,d,

d’ d
b(z) = —1+) Aijexp <—szf4kj0kﬂk(—wk)>
j=1 k=1
d’ ]
< -1+ ZAij exp (—BjAyCija’ (—riji))
j=1
1
< = 6.7
< -3 (6.7)
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d/
if Z Aij exp (—BinjCijﬂj‘i(—T‘iji)) < %, which will be true whenever
j=1

: 1
Aij exp (—BinjCijwl(—Tiji)) < 2_d/ for eachj =1,... ,d/.

. : .
The latter will be true if4;; = 0 for eachy; otherW|se,maf<Aij > (0 and
‘7:

mlr;é BinjCij > 0,
and 6.7) will be true whenever

J:A;;#0

dl
, In ( 2d'maxA;;
(i) >
min ' (—7;; S )
j=1 = “min BinjCij
JiAi;#0

Therefore,b ando satisfy Assumptiond.3.1and5.2.1with 7 := maxr;jz, '(z) =

2J s

- . d w(amn)
Erglnaj (=7iji), Ku = mlaxjglAij, M = max 1{%{(&?0} W, Kq = 3, Co = ag,
andCy = \/% -
Therefore, the SDDER
d’ d
dXZ(t) = -1+ ZA” exp (—BjZAijijk(—Tijk)> dt
j=1 k=1

+o'(X)dW (t) +dY*(t), i=1,...,d,

has a unique stationary distribution.



Appendix A

Notation List

For the convenience of the reader, we summarize here somgomatised in this paper.
e R=(—00,00), Ry =[0,00), R = (—00,00)?, andR; = [0, 00)?
e 7€ (0,00),I =[-7,0],and] = [—T,0)

o for any real numbers, s, J, ; denotes the Kronecker delta, i.e., it is one i s and zero

otherwise
e for any metric spac€E, p),

— B(z,r) ={y € E: p(x,y) < r}, for eache € E andr > 0
— B(E) denotes the associated Bosehlgebra
— Cy(E) denotes the space of continuous bounded real-valued dmsabinE

— By(E) denotes the space of bounded Borel-measurable real-Viainetions defined

onE with norm|| f|| := sup|f(z)|
zcE

e for metric space&;, Eo, C(E,E,) is the space of continuous functions E; — Es
e for each positive integet, Cy (R4, RY) := {z € C(R,R?) : 2(0) e R%}

e given a vecton = (v',...,v?) € R, |v|o = 'Hiaxdyvi" and for eactp € [1,00),
1=1,...

)

[olp = /TP + -+ ol
e I, denotes théd x d)-identity matrix

e given a matrixA = (Ag'.) € M¥™ .= {(d x m)-matrices with real entrigs

93
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— A’lis the transpose o
— A‘ denotes the' row andA; denotes thg'h column of 4
— || Alloo := max|A}| denotes thé>-norm

Zh]

d m
_ P i\ 2 i
| All2 == Z;];(A;) denotes the Frobenius norm

e Co(Ry,R™) = {x € C(Ry,R™) : 2(0) = 0}
e for any closed intervaF’ C R

— Cp=C(F,Ry)andC% = C(F,RY)

- Mp = B(CY%)

— givenz = (2!,...,2%) € C(F,R%),

x foreachp > 1andG C F,

xHG,p = Slelg’w(r)‘p
T

x foranyd > 0, wp(z,0) = max sup |z'(s) — z°(¢)]

v ositel
|s—t]<8
« foranyla,b] C F, Osqz,[a,b]) := max sup |2%(s) — z(t)]
v stela,b
— for eachz € C(F,R), ||z||r = sup|z(r)| = ||z||F, for anyp € [1, o]

rekl

for eachz € Cy, ||z|| = |||z

for eachz € C¢ andp € [1, 0], |||, = |21

foranyz € C(J,E) andt > 0, the segment; € C(I,E) is defined byx;(r) = z(t +
r),r el

foranyt € F,e; : C(F,E) — E is defined bye,(z) = z(t)

foranyt > 0,p; : C(J,E) — C(I,E) is defined byp;(z) = x4



Appendix B

Useful Inequalities

For referencing purposes, we state here several ine@satitat are used in this paper.
For anyaq, as > 0, we have the inequality

(a1 +az)? < al+al forallqelo,1], (B.1)

which is obvious ifa; = as or if either is 0, and ifay > as > 0 then(a; + a2)? — af <

qa‘{_laQ < ad. A consequence oB(1) is that for anya;, as > 0, we have
(a1 +a2)? > al+al, forallg>1. (B.2)

From @.1), it follows that for anyl < p; < ps < oo, andv € R?, we have

b1

L (G N T O
< (|vl|1”1 +o |vd|1’1>
= |vff}. (B.3)

We also have by Holder’s inequality that for asy > p; > ps > 1,

P1
gy = (' )
P1—P2
< d 7 (]v1]p1+---+\vd]p1)
P1—P2
= d » [P, (B.4)

Combining inequalities§.3) and B.4), we obtain for any;, ps € [1,00), v € R,

(2
loy < d\rz lv[b. (B.5)
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Finally, after raising both sides oB(5) to the powerpil, we obtain

(p1—po)t
Vlpy, < d Pr2 oy, (B.6)

We also have the following comparisons with the maximum ndonanyp € [1, 00),

1
d P
. L1 .
Voo = miax|v’| = (mzax|vl|p); < <Z|U2|p> = oy
—
' 1
. P 1
< (dmax|v’|p> = d7|v]ee, (B.7)
(]

which can also be seen as the limiting caseB6).

The following is a well-known fact that follows from the caxity of power functions.

Proposition B.0.1. For anyp > 1, a4, ..., a, € R, we have

|a1 e an|p < np—l(|a1|p N |an|p).

Proof. Sincef(z) := zP is a convex function oiR, we obtain that
aj+ - +ap|?
n

(Pt lap
n
= 7 (Jaal + -+ ). (B.9)

|a1_|_..._|_an|p e np

IA

O
Sometimes:”~! is too big for our needs, and we will use the following altdive

Proposition B.0.2. For any~ > 1, anda, ¢ > 0, there is aK' = K (a,~, ¢) > 0 such that

(a+t)! <K+~t? forallteR,.

Proof. If ¢ < 1, then we can chooskE = a? because fot, as > 0, we have inequalityR.1).
If ¢ > 1, then for eachK > 0, definefx (t) = yt9+ K — (a + t)? fort > 0. We
must find K so thatfx is nonnegative. Since > 1, tlim fK(t) = oo, and thusfx has a global
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minimum onR .. We have thaif}-(t) = ¢yt9~! — g(a + )7~ is zero only at = —%—, so
ya—t—-1

| 1=

q q
that f (t) > 0 wheneverk > (a + —g¢ > . < P > _
ya—T-1 ~a—T -1
Therefore we can choose

q q
K(a,7,q) =a'V | |a+ ——r ) =7 —— -
yoi —1 yait —1

The following inequality is related to Artin’s inequalitynd the arithmetic-geometric

O

mean inequality, and it is due to the concavity of the loganifunction.

Proposition B.0.3. For anyd € Nanday,...,aq € Ry,

1
arag---ag < E(a‘f—i-"'—i—ag). (B.9)

Proof. The functiont — log(t) is concave (i.et — — log(t) is convex), so

1
log(Way---aq) = Elog(al---ad)

= (log(a) + .. Tog(as))

< log (%) | (8.10)

Since the functiont — exp(t) is increasing,
Yai-ag < 7a1+---—|—ad’
d
from which it follows that
ap---aq < ( +ad>
1

< < ( . ad> (B.11)

where we've used Propositidh0.1for the last inequality. O

We now state Gronwall’s inequality, which is used frequerfor a proof, consultd],
p. 250 and p. 262, o2p], pp. 287-288 and pp. 387-388.
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Proposition B.0.4. Fix T" > 0. Assume thaf, g are Borel measurable, nonnegative, integrable

functions defined of), 7']. Suppose that there isi& > 0 such that

f) <g(®) —I—K/Otf(s)ds, for all ¢t € [0, 7).

Then .
flt) <g(t)+ K/ eK=5)g(s)ds, for all t € [0,T).
0

If g is constant, therf (t) < ge*’.
The following simple estimate is used in SectB.
Proposition B.0.5. For eacha > 0, we have2e® < e(@+2)1 for all ¢ > 0.

Proof. Define f(t) = e(@t2)t — ¢2e2t + > 0. Then, f(0) = 1 and f'(t) = (a + 2)el*+2)t —
2te™ — at?e?, sof'(t) > 0 forallt > 0 if

2
2 > Y g2y t, forallt > 0. (B.12)
a4+ 2 a4+ 2

Inequality B.12) is true because it is true for= 0, and the slope of the left side is at least the
slope of the right side for > 0, sincee? > 2t 4 1 for all t > 0.
O



Appendix C

Sufficient Conditions for Strong
Existence and Unigueness of Solutions

In this appendix, we provide specific assumptions$ amdo that imply that Assump-
tion 2.1.2holds. Assume that there exists a positive constant oo such that inequalityS.1)

holds, i.e., for each,y € C¢,

[b(@) = b3 + lo(z) —ow)lF < selle—yl3.

The equivalence of all matrix norms can be used to show thetiyption2.1.1is a consequence
of this Lipschitz condition.

We consider the SDDERL(1) and show that strong existence and pathwise uniqueness
hold under the Lipschitz conditiorb(l). We assumg (2, F,{F;,t > 0}, P,{W(t),t > 0}}is
given with the properties stated in Definiti@rl.1 First, we state a few remarks for referencing

purposes.

Remark.The Lipschitz conditiong.1) and PropositiorB.0.1imply that

b(z)]; = [b(0) +b(z) — b(O)]3

< 2[b(0)|3 + 2xr|z|2, and (C.1)
lo@)]3 = [lo(0)+ o(x) — o(0)]3

< 2[o(0)]13 + 2|23 (C.2)

for eachz € Cy, where0 here stands for the element(@f that is identically 0 on all of.
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Remark.The Lipschitz condition.1) also implies that for eaclfi, g € C¢,

| () =g + o) = otalE) ds < [ wwlf s
0 0

IN

t
/O Rl —gl?gads  (C3)
Remark. It follows from the definition of the oscillation of that
OSC(:L'v [a> b]) < 2H5L'||[a,b],00' (C4)
We begin with a lemma. Recall the notati®(+) from line 2.7).

Lemma C.0.1. If X (t), X(t), Xt(t), XT(t),t > —7 and Y (t),YT(t),t > 0 are continuous

R? -valued processes such tha, = X,, X) = X/, and (X|g,,Y) solves the Skorokhod
problem forZ(X) and (XT |z, ,YT) solves the Skorokhod problem f6¢XT), then assuming
E [HX’H%_T,M] VE {HXTH[{mm} < o0, we have

B(IXIE,g2] < @4d+1+20)E [|Xo]3] +192d]0(0) 3¢
t
+48d|b(0)|3t? + (48t + 192)/-@Ld/E [||X,\|§} dr, (C.5)
0
and

EIX =X ys| < 3KE0+ ket +0)E [I1Xo - XJI3]

t
+3K£2/<;L(t+4)/0 E[HX—XTH[?OM} dr.  (C.6)

Proof. By inequality B.7) and the definitions, for each> 0,

HX”[20,t},2 = sup [X(s)[3
s€[0,t]

< dsup |X(s)|%
s€[0,t]

2
< d <|X(0)|oo + sup |X(s)— X(?")|oo>
r,s€(0,t]

< 2d|X(0)]3 + 2d(0sd X, [0,1])). (C.7)
It follows from inequality C.4) and Propositior2.3.1(i) that for eacht > 0,

[P e[p

IN

1Xol13 + 11X 11fo,4,2

1Xoll3 + 2d| Xo(0)[3 + 2d(0sdX, [0, 1]))*

(1 + 2d)|| Xo|[3 + 2d(0sdZ(X), [0, 1))

(1 +2d)|| X013 + 8AIIZ(X) [y, 4, 00- (C.8)

IN A

IN
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After fixing ¢t > 0, for eachr € [0, ¢], it follows from inequality C.2) that

IN

Ello(E)IE] < 20008 + 268 |1, 13] (C9)

IN

27(0)13 + 261 [ XIE.] (C.10)

which is finite by assumption.
Therefore, 1td’s isometry implies that for eaghe [0, ¢],

|- 1
— iE /()Si(g;‘_()zr)ydr]

= | [ loCtlBer
E[/O (Cg—l—C&;HXrH%)dr}

tC3 + tCLE [HXH[Z_TJ},Z] , (C.11)

d

D

i=1

E /0 (X)) AW (r) /0 o (%)W (1)

IA

IN

which is finite by assumption.
It follows from (C.11) that {fo P )AW (1), Fs, s € [O,t]} is a square-integrable
martingale. Therefore Doob’s inequality and the I1td istmanmply that

[ aoawin ] < ap [ / oo

For eacht > 0, we have

E

sup
0<s<t

dr] . (C.12)

s 2
E[IZX)Bg2] < 3E[XO0)B]+3E | suwp / b(X»dr]
0<s<t|Jo 2
s B 2
+3E | sup /O’(Xr)dW(T) ]
0<s<t |JO 2
t ~
< 3E[IXo|2] + 3tE [ / |b<XT>|%dr]
+12E[/ lo(X szr}
< 3B [ + 3t /0 [206(0)3 + 261, 3] ar

t
+12/ B [20(0)1 + 2611, ] ar. (C.13)
0
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The firstinequality is a consequence of convexity, the seawequality follows from the Cauchy-
Schwarz inequality and inequalityC(12), and the third inequality used inequalitiesS.{) and
(C.9. Combining C.8) with (C.13 yields the first result.

Using Propositior.3.1,

B[IX - XY, 0] < KEE [IT(X) - Z(XDIR, )

< 3K2E [|X(0) _Xf(o)@] 4 3K2E sup /0 ) (b(f(r) —b(f(;)) dr 2]
<s<t 2
+3K7E osglgg)t /OS (a(f(r) - U(X:[)) dW (r) ]

IN

3K?E [HXO - XSH%] +3K}E { sup s/
0<s<t JO

2
dr}
2

t
< 3K (1% - XJIE] + 3KPwntt+4) [ B[IX =X, ar

V12K2E [/Ot Ha(f(r) — (X))

t
< 3K2(1+ kpt(t+4))E [||X0—X{§\|§} +3K42/4L(t+4)/ E[||X—XH|[2M2 dr
0

The second inequality used the Cauchy-Schwarz inequaliyDemob’s inequality, which we can
use by €.10 and the analogous inequality involvingj’, and the third inequality follows from

inequality C.3).
O

Theorem C.0.1.Under the global Lipschitz conditio® (1), given anyCﬁ—valued,J-“O—measurable
random variable¢ such thatE[||£]|3] < oo, there exists a strong solutiaki to (1.1) with initial

condition Xy = &.

The following existence proof is a standard argument usiicgri's iteration tech-
nique. It was adapted from the proof of Theorem 112@][

Proof. Define the processgsY (™ (t),t > —7},n = 0,1, ... inductively by

X0 — g(t) fortel
a £0) fort>o0,

and forn € {1,2,...},

&(t) fort el

(C.14)
Z(XM) (@) +Y+tD(t)  fort >0,

X(n+l)(t) — {
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e, {(X"D(1),Y"+1(1)) ,t > 0} solves the one-dimensional Skorokhod problem (with

normal reflection) fofZ (X ). Recall that
t t
Z(XM)(t) = £(0) + / b(X™M)ds + / o(XM)dw (s) fort > 0. (C.15)
0 0

By definition, for eacht > 0, E [HX(O)(s)Hf_T’M] = E[||€]3] < oo. Assume for

some integen > 0, that & [HX(”)Hf_T i 2] < oo for eacht > 0. Then by LemmaC.0.1,

E ||X("+1’|If_7,t],2] < (24d + 1+ 2d)E[|[¢][3] + 192d]|o(0)||3¢
+48d|b(0)|3¢2

t
(48t + 192)kd / E [HX,(MH[?_TW] dr,  (C.16)
0

which is finite by assumption. So by inductioﬁ,[ ]2

Xm)|2 } < oo for every integern > 0.

LemmacC.0.1lalso implies that for each > 1,
t
E [HX("“) — XM, ,] < 3K£2/£L(t—|—4)/0 E [HXW —X<"—1>|yf0ﬂ72] dr, (C.17)

sincex("™ = x{" =¢.

Foreachn € {0,1,... }, define
Fult) = E [HX("H) - X(")||[207t},2} , fort > 0.

It follows from LemmaC.0.1, the fact thate [HX(O)H[?_T,M] = E[||€]|?], and inequality C.16)
with n = 0 that

h(o) = B[ s [x00) - xO)]

0<s<t 2

< 2(BlIEOB] + B [IXVI,2) )
< K1),

whereK (t) is the following quadratic polynomial itt

K(t) = 96d (|b(0)]3 + xrE[|€]3]) ¢* + 384d ([0(0)[13 + wrE[I€]13]) ¢
+2(24d + 2 + d)E[||€]13]. (C.18)

By induction, we’ll show that for each integer> 0,

(3KZkL)" (t+4)"

, forallt > 0, (C.19)
n!

fa(t) < K(t)
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which is evident forn = 0 (we use the convention that = 1). So supposed.19 holds for
somen > 0 (we have already shown it holds for= 0). Using inequality C.17) and the fact
that K (¢) is increasing ofiR ;, we obtain

t
funlt) < 3KE(t+4) [ fu(s)as

3KZkL)" (s +4)"s"

ds
n!

< 3KZrp(t+4) /OtK(s)(

t n

K(t) (3K2r)"" (t+4)"+1/ %ds
O .

tn—i—l
(n+ 1)V

IN

— K(t) (3K7kp)" " (t + 4yt

so (C.19 holds for alln > 0.
Therefore by Chebychev’s inequality, for each- 0 andt > 0,

2
P HX<"+1>—X<"> >e) < 2B HX<"+1>—X<">
[0,2],2 [0,¢],2
< 5_2fn(t)
3K2k)" (t + 4)"t"
< E_2K(t)( Z’%L) (+ ) )

n!

Settinge = 1 andt = log(n) and using the fact thatx ("t — x| = 0 for all

n > 0, we have

P <HX<n+1> )

1 >
> —
[—T,log(N)},Z n
(3K7rr)" (log(n) + 4)" (log(n))"

< n2K (log(n)) ' (C.20)
n.
Using the ratio test and the facts t@iﬁ% = nler;O (%) =1

for all £ > 0, the terms in the right member o€(20 sum to a finite quantity. Therefore the
Borel-Cantelli lemma implies that the sequence of proce§&e™ } is P-a.s. Cauchy i} for
eacht > 0, and hence uniformly convergent on any compact intervad, tans P-a.s. has a
continuous limit{ X (¢),¢t > —7} in the topology ofCy. Thus, for eacln > 0 andt > 0, we
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have
1X = X g — |3 (XD — x®)
k=n [—7,t],2
< |x-x™ % ( x (k+1) X(k))
k=n [—7,t],2
N
= x-x™— 1im }° (X(k+1) —X(k))
N_wok:" [—7,t],2
= ||X — lim X<N>H
N—oo [—T,t],2
= 0. (C.21)

Because of€.19 and the definition off,,, for eacht > 0,

(X("+1)(t) —x© (t)) - f: (X(k“)(t) ~x® (t))

k=0

converges absolutely ii?(€2, P). Therefore{ X (™ (t)}>, converges inL?((, P) for each
t > 0. SinceX ™ (t) — X(t) P-a.s. for eacht > 0, we obtain

E[|x™ ) —X(t)g] —0 as n— oo. (C.22)
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Also, by (C.22), for eacht > 0 andn > 1,

- 1

) oo 27 2
X - x = E| su XKD gy = x(®) (g
B{I1X =Xy, o [ (X0 - xe)|

IN
&

k-l—l
(X L) }
— S (k ) (k
= F (_fgqukz::‘)( +1 - X ‘2>

(S

< F su ‘X(kﬂ X(k
o (,;L—ngq

N 2] 2
~ B lim (z sup X(’f+1><s>X<k><s>2>]
k

N—o0 — —7<s<t
=n

1

N 212
<Z sup ‘X(k“)(s) - X(k)(s)L) ]
k:n—rgsgt

N
lim ZE [ sup ‘X(kﬂ)(s) - X(k)(s)ﬂ

N—oop— —7<s<t 2

0o k kaok %
< ¥ (K(t) (3KZkL) k!(t+4) ! > : (C.23)

k=n

IN

lim F

N—oo

IN

which approaches 0 as— oo by the ratio test. Fatou’s Lemma was used for the third inequa
ity, and the triangle inequality for th&”?(Q2)-norm (with finite sums) was used for the fourth
inequality.

Using inequality C.3), we obtain fort > 0 andn > 1 fixed,

s 2
| (o0 =) ar J

t 2
< E[t/ ‘b(Xs)—b(Xén))Lds]
0
t
tE [/ KLl X —X(")H[z_ns},zds}
0

PrLE [|X = XP2, g,

o k % 2
2, (Z (K(t) (3K52/€L)k!(t+4)ktk> ) ' (©.24)

E | sup

0<s<t

IN

IN

IN

k=n
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In particular, for eacht > 0,

t t
/ b(XM)ds — / b(X,)ds in L*() asn — oo. (C.25)
0 0

t 2
/O (o(X) — (X)) v (s) J

= &[[ o0 - otxt)

t
E [/ KLl X — X(n)Hf_T,s],zdS]

0
< tkE [HX — X(n)||[2—7,t],2}

0o k % ?
thr (Z (K(t) (3K52/€L)k!(t+4)ktk> ) ’ (C.26)

The Itd isometry yields for each> 0,

E

IA

IA

k=n

so that for eachn > 1, o(X,) —o(Xs s), Fi,t > 0¢ is a square-integrable mar-
hat for each o X)) dw (s), F i i b
tingale, and for each fixetd> 0,

/ o (XMYdW (s —>/ )in L*(Q) asn — oo. (C.27)
Lines (C.25 and .27 imply that for eacht > 0,
Z(X™)(t) — Z(X)(t) in L*(Q) asn — oc. (C.28)

By (C.26), we may apply Doob’s inequality to obtain

FE Os;zt /OS (J( r)dr —o(X, x(n ))) AW (r )]
<4E U H —JX("))‘2dr]
1\ 2
< 4tny (I; <K( )(3Ké RL)k!(t+4)ktk> ) | .29

SettingY (t) = ¢ (Z(X)) (¢) for t > 0, Proposition2.3.1and inequalities.24) and
(C.29 imply that

BllY®®)-Y®B] < KB [IT(X") = (X[}, —0asn — 0. (C30)
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Taking the limit asn — oo in line (C.14), the facts C.22), (C.28, and C.30 imply that for
eacht > 0, X (t) satisfies equationl(l) P-a.s.. SinceXO(") = ¢ foralln > 0, X satisfies the
initial condition Xy = &.

By induction, X ™ () andY (™) (t) are F;-measurable for each> 0. Therefore for
eacht > 0, X (t) andY (t) areF;-measurable, as they are tRea.s. limits of theF;-measurable
random variabless (™) (¢) andY (") (¢), respectively, and by assumptiof, is P-complete.

]

Theorem C.0.2. Fix aC?-valued]-’o-measurable random variable Under the Lipschitz con-
dition (5.1), any solutionX to (1.1) with the initial condition.Xy = £ is unique up to indistin-
guishability.

Proof. Suppose thak and X’ both solve L.1) with the same initial conditiod, so that for any
t >0,
t
X(t) - X'(t) = / (b(X,) — b(X")) ds
0
t
+ [ (o) = o) aW(s) + (¥ (1) ~ Y'(0)
0

HereY = ¢(Z(X)) andY’ = ¢(Z(X")). Fort > 0,

2

TX) (1) - TXD(OE < 2 /O (b(Xa) — b(X!))ds

2

t 2
+2 / (0(Xs) — o(XL))dW (s)| (C.31)
0 2
from which it follows via the Cauchy-Schwarz inequality tha
t
2
170 =T < 2 [ ) —bOXD
s 2
+ sup 2 / (0(Xy) — o(X))) dW (r) (C.32)
0<s<t 0 2

Since the coefficientsando are bounded on bounded subset@@,fby stopping at the
stopping timey,, = 0V inf{t > —7 : | X (¢)|]2 V |X'(¢)]2 > n}, we obtain the square-integrable

d-dimensional martingale

{/0“"" (o(Xs) = o(X9)) dW (s), Fi, t > 0} .



109

Using Doob’s inequality and the fact thay = X, we have fort > 0,

E [Os:;}it |Z(X)(s Am) —Z(X")(s A %)!3]

<2E {t /0 o [b(X,) — b(X2)[? ds}
+8E UOM% (X)) — J(X;)szs}

t
SQRL(t—l-él)/ E[sup \X(sAnn)—X’(SAnn)\z} dr
0

0<s<r

< 2Kg/{L(t+4)/O E [ sup |Z(X)(s A1) —I(X’)(s/\nn)@] dr, (C.33)

0<s<r

where the second inequality follows from the rematk3), and the third inequality follows from

Proposition2.3.1 Gronwall’s inequality then implies that

E [ sup |Z(X)(s Amn) —Z(X')(s A nn)@] =0, forallt > 0. (C.39)
0<s<t

Proposition2.3.1and Fatou’s lemma then imply that for eack 0,

| 10 - XGIE] < w28 | sup 7009 - 2K
<l KPE | swp [Z00(sAm) - )6 A
_— o (C.35)

SinceX, = X|, it follows thatP (X (¢) = X'(¢) forallt > —7) = 1.
U

Definition C.0.1. The uniqueness proved in Theord&d0.2is calledpathwise uniqueness of
solutions for {.1) (see Definition IV.1.5 of21], or Definition 5.3.2 of 2]). If instead we had
that for any two weak solution§(Q2, 7, P),{F:}, X, W} and{(Y', 7', P"),{F{}, X', W'} to
(1.1) with the same initial distribution (i.eP (X, € A) = P/(X{, € A) for eachA € M) that
P(X €T') = P/(X' eT) for eachl’ € My, then we say thainiqueness in lavaolds for (.1).

Since the space&?, (ij andCy(R4,R™) are all Polish spaces, the techniques of Ya-
mada and Watanabe (see, e.g., the Corollary to TheoreniIvi]121], or Proposition 5.3.20 in
[22]) can be applied to our situation to yield the following cibaioy.

Corollary C.0.1. The Lipschitz condition5(1) implies that uniqueness in law holds.
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The following corollary will be used to relax the assumptamfrglobal Lipschitz con-
tinuity in Theorem<C.0.1andC.0.2

Corollary C.0.2. Let A C C{ be open, and assume thatz) = V'(z) and o(z) = o'()
for eachz € A, and that all four satisfy the global Lipschitz conditidhl). Denote the unique
strong solutions to the SDDER.1) with coefficientd, o andd’, o’ starting with identical initial
conditions X, = X{, by X and X', respectively. Then the exit tim&g(X) := inf{t > 0 :
X, € A°} and Ty (X') are identical off a null set, and

P(X(tATA(X)) = X'(t ANTA(X)), forall t > —7) = 1.

Proof. The assumptions on the coefficients imply that
(X)) (s NTA(X") ANTA(X)) = Z(X")(s ATA(X') A TA(X)) for eachs > 0,
whereZ’ is defined ag but with the coefficient®’, o’ in place ofb, o. Therefore,

E [ sup |X (s A Ta(X') A TA(X)) — X'(s A TA(X) A TA<X>>\§]

0<s<t

< K!E L)s;igt |I(X)(s ATA(X)ATA(X)) = Z/(X)(s ATA(X') A TA(X))@

= K!FE [Oiggt |Z(X)(s ANTA(X") ANTA(X)) = Z(X") (s ANTA(X") A TA(X))@] .(C.36)

First we assume that is bounded. The coefficientso are bounded on bounded sets,

SATA(X)ATA(X)
{/0 (0(X)) — (X)) dW (1), Fs, s > 0}

so that

is a square-integrable martingale. Then as in the proof ebflémC.0.2 we can use Gronwall’s
inequality to obtain equalityG.34) with T (X’) A Tx(X) in place ofn, (in fact, they are the
same stopping times when= B(0,n), whereB(0,n) := {z € C{ : ||z|s < n}). Thus the set

F:={X{EATANX)ANTA(X)) = X' (t ATA(X') ATA(X)), forallt > —7}

has full measure. O N {Tx(X) < TA(X') < oo} we have thatX’ (T (X') A Tx (X))
X(TA(X') NTA(X)) = X(Ta(X)) € A and thusT) (X') = Ta(X). Similarly, Th (X') =
TA(X)on FN{TxA(X") <TA(X) < o0} ONF N{TA(X) = o0}, X(t) € Aforallt >0, so
that X' (t ATA (X)) = X' (tATA(X')ATA(X)) = X(EATA(X)ATA(X)) € A, which implies



111

thatt < T (X’) for all t > 0, and thusI’y (X') = co = T (X). Similarly, Ta(X") = Tx(X)
on F'N{Tx(X') = oo}, and thusl’y (X') = T (X) on all of ', and the result follows.

If A is not bounded, then considar, := A N B(0,n) for eachn > 1. It was shown
that P(X (t AT, (X)) = X'(t ATy, (X)), forallt > —7) = 1 for eachn > 1. By tightness
of a finite number of distributions, for any> 0 andt > 0, there existsV > 0 such that

1—e < P(IXll—rinryx) VX sy < N)
< PAATA(X) =t ATay (X),t ATA(X) = t AT (X))
<

P (X(tATA(X)) = X'(t ATA(X))) . (C.37)

Sinces > 0 was arbitrary,P(X (t ATa (X)) # X' (t ANTA(X"))) = 0. Sincet > 0 was arbitrary
and X, = X{), continuity of X and X’ implies that

P(X(tANTA(X)) # X'(t ATy (X)) for somet > —1)

P(X(t ANTA(X)) # X' (t NTA(X")) for somet € Q NR,)

< ) P(X(tATA(X)) # X't ATA(X')))
teQNR4
— (C.38)

The result follows.
O

We now have a tool that allows us to weaken the conditions @&ofémC.0.1by
means of a standard technique (s4@,[ Section V.12) under the assumption tlthaind o are

locally Lipschitz.

Assumption C.0.1. The coefficient$, o are locally Lipschitz, i.e., for eaciVv > 0, there is a

k. such that for allz, y with |||z, |y||2 < N, we have

(@) = b3 + lo(z) —o@)lF < wnle -yl (C.39)

Clearly, AssumptiorC.0.1follows if the global Lipschitz conditionH.1) holds. When
the local Lipschitz condition does not hold, there are stitasions when there will exist a weak
solution to (.1) that is unique in law, but often times the linear growth dtinds (2.1) and .2)

will be required to prevent explosion in finite time.
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Theorem C.0.3. Under Assumptiong.1.1and C.0.], there exists a unique strong solution to
the SDDERZ1.1) for any Fy-measurable initial conditionXy.

Proof. Define for eachn > 1, the functiond,,(x) = ¢, (||z]]2)b(x) ando,,(z) = c,(||z|]2)o(x),
wherec,, : Ry — [0, 1] is defined ag,,(r) = 1— (r —n)" + (r — (n+1))*, so thate,,(r) = 0
whenever > n+1, ande, (r) = 1 whenever < n. Thenb,, o,, are globally Lipschitz. Indeed,
without loss of generality, we can assume thafls < ||y||2, so thate, (||z]l2) > cn(]y]l2). If
|zll2 > n + 1, thenb,(z) = b,(y) = 0. Otherwise, using the triangle inequality and the
Lipschitz continuity ofc,,, we obtain

(@) = bn@)13 = I(ealllzll2) = ealllyll2)b(@) + cnllyll2)(b(x) — b(y))3
2|(cnlllzll2) = enlllyll2))b(@)]5 + 2]en(llyll2) (b(x) — b(y)[3

< 2||lzllz = lyll2]* (C1 + Co(n + 1)) + 2kn 41|z — yll3

2((Cr+ Ca(n+1))* + Kng) 2 — yl3- (C.40)

IA

IA

A similar inequality holds fow,,, so that for allz, y € C¢,

b (%) = b ()3 + llon(x) — on ()3

< <4/~£n+1 +2(Cy + Ca(n+1))* +2(Cs + Ca(n + 1)2)) |z —y|%. (C.41)

It follows from Assumption2.1.1thatb,,, o,, grow at most linearly with the same growth con-
stantsCt, Ca, Cs, Cy, sincec, (||z|2) < 1 for all z € CY.

Thus for each > 1 andC¢-valued random variablé such that?[[|¢||2] < oo, there
is a unique strong solutio (™ to (1.1) with the coefficients,,, o,, in place ofb, o with initial
condition Xé”) = £. Corollary C.0.2implies that these solutions are consistent in the sense
that X "D (£ A T, (X)) = XHD(# A T(g ) (X™)) = XM (¢ A Tg.0) (X ™))
for all t > —7, P-a.s.. Therefore, we can define a soluti&nto (1.1) (until the explosion
time 7()(X) := lim Tp(o,n)(X) = lim Tr(0,)(X ™)) via localization by setting (t) =
XM (¢) whenevert € CEO—T, Tr0.n) (X(”T)L)].OOLemmaZA.limplies that

B[IxM2, | < Ba(ElEI3.0).  foreachn > 1,
(-7t

since I, depends only on the linear growth constants of the coeffigjevhich in our case are
the same for each. Thus for eacht > 0,

P (> Tooum(X™)) = P (IX®|rg2 > n)

1 . 1
< mE [||X( >\|f_77t}72} < mFﬂEHIéII%],t)

— 0 as n— oo.
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ThereforeX does not explode, i.e1}(>®) = oo P-a.s., and we can define the solution on all of
R,. Since eachX ™ (t) was the unique solution td.(1) for t € [0, 50, (X ™)], it follows
that X is unigue.

]
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