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Abstract
Species‐rich	plant	communities	have	been	shown	to	be	more	productive	and	to		exhibit	
increased	long‐term	soil	organic	carbon	(SOC)	storage.	Soil	microorganisms	are	central	
to	the	conversion	of	plant	organic	matter	into	SOC,	yet	the	relationship	between	plant	
diversity,	soil	microbial	growth,	turnover	as	well	as	carbon	use	efficiency	(CUE)	and	SOC	
accumulation	is	unknown.	As	heterotrophic	soil	microbes	are	primarily	carbon	limited,	it	
is	important	to	understand	how	they	respond	to	increased	plant‐derived	carbon	inputs	
at	higher	plant	species	richness	(PSR).	We	used	the	long‐term	grassland	biodiversity	ex‐
periment	in	Jena,	Germany,	to	examine	how	microbial	physiology	responds	to	changes	
in	plant	diversity	and	how	this	affects	SOC	content.	The	Jena	Experiment	considers	dif‐
ferent	numbers	of	species	(1–60),	functional	groups	(1–4)	as	well	as	functional	identity	
(small	herbs,	tall	herbs,	grasses,	and	legumes).	We	found	that	PSR	accelerated	microbial	
growth	and	turnover	and	increased	microbial	biomass	and	necromass.	PSR	also	accel‐
erated	microbial	 respiration,	but	this	effect	was	 less	strong	than	for	microbial	growth.	
In	contrast,	PSR	did	not	affect	microbial	CUE	or	biomass‐specific	respiration.	Structural	
equation	models	 revealed	 that	 PSR	 had	 direct	 positive	 effects	 on	 root	 biomass,	 and	
thereby	on	microbial	growth	and	microbial	biomass	carbon.	Finally,	PSR	increased	SOC	
content	via	its	positive	influence	on	microbial	biomass	carbon.	We	suggest	that	PSR	fa‐
vors	faster	rates	of	microbial	growth	and	turnover,	likely	due	to	greater	plant	productivity,	
resulting	in	higher	amounts	of	microbial	biomass	and	necromass	that	translate	into	the	
observed	increase	in	SOC.	We	thus	identify	the	microbial	mechanism	linking	species‐rich	
plant	communities	to	a	carbon	cycle	process	of	importance	to	Earth's	climate	system.

K E Y W O R D S

microbial	activity,	microbial	carbon	use	efficiency,	microbial	necromass,	microbial	turnover,	
plant	diversity,	soil	organic	carbon

1  | INTRODUC TION

Biodiversity	 loss	 through	 anthropogenic	 changes	 in	 the	 global	
environment	 is	 threatening	 ecosystem	 functions	 and	 ser‐
vices.	 Grassland	 ecosystems	 are	 predicted	 to	 experience	 most	

biodiversity	 losses	 as	 a	 consequence	 of	 land‐use	 change,	 such	
as	 the	conversion	of	grasslands	 into	croplands	 (Sala	et	al.,	2000)	
and	recent	studies	revealed	concomitant	negative	impacts	on	soil	
carbon	cycling	(Chen	&	Chen,	2019;	Tang	et	al.,	2019).	Terrestrial	
ecosystems	 store	 most	 organic	 carbon	 in	 soils	 where	 it	 has	 the	
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potential	 to	 become	 stable	 soil	 carbon	 and	 thus	 can	 be	 seques‐
tered	for	longer	time	periods.

Globally,	terrestrial	carbon	storage	is	dominated	by	forests	(39%	
of	the	total	terrestrial	organic	carbon	stored	in	forest	soils	and	veg‐
etation),	 but	 grasslands	 also	 contribute	 substantially	 (34%	of	 the	
total	 terrestrial	 carbon)	 as	 they	 cover	 a	 large	 part	 of	 the	world’s	
landmass,	with	~53	×	106	km2	grassland	area	versus	~29	×	106	km2 
forest	area	(White,	Murray,	&	Rohweder,	2000).	Soil	organic	carbon	
(SOC)	represents	the	largest	carbon	reservoir	in	global	grasslands,	
with	up	to	98%	carbon	stored	belowground	(Hungate	et	al.,	1997).	
As	 such,	 understanding	 the	 mechanisms	 that	 sustain	 grassland	
SOC	storage	is	of	utmost	 importance	for	estimating	the	potential	
of	grasslands	to	reduce	atmospheric	carbon	dioxide	(CO2)	concen‐
trations	and	mitigate	feedbacks	from	the	biosphere	to	the	climate	
system.

Plant	diversity	is	increasingly	recognized	to	be	central	to	grass‐
land	SOC	storage,	with	observations	from	biodiversity	experiments	
demonstrating	clear	links	between	plant	diversity,	primary	produc‐
tivity,	 and	 ecosystem	 carbon	 cycling	 (Cong	 et	 al.,	 2014;	De	Deyn	
et	 al.,	 2011;	 Fornara	 &	 Tilman,	 2008;	 Lange	 et	 al.,	 2015;	 Naeem,	
Thompson,	Lawler,	Lawton,	&	Woodfin,	1994).

Hereafter,	 we	 use	 plant	 diversity	 as	 a	 term	 to	 describe	 both	
plant	 species	 number	 and	 functional	 composition,	 and	 specify	
when	 referring	 specifically	 to	 plant	 species	 richness	 (PSR),	 func‐
tional	 group	 richness,	 or	 functional	 group	 identity.	 Higher	 abo‐
veground	plant	productivity	as	a	consequence	of	 increased	plant	
diversity	 is	 usually	 also	 accompanied	 by	 increased	 belowground	
plant	biomass	production,	although	the	latter	may	occur	only	after	
a	delay	(Cong	et	al.,	2014;	Fornara	&	Tilman,	2008;	Ravenek	et	al.,	
2014).	However,	while	 there	 is	 evidence	 that	 increasing	plant	di‐
versity	 translates	 into	 greater	 aboveground	 primary	 productivity	
(Roscher	et	al.,	2005;	Spehn	et	al.,	2005;	Tilman,	Wedin,	&	Knops,	
1996),	few	studies	have	investigated	the	mechanisms	linking	plant	
diversity	and	plant	productivity	with	SOC	dynamics.	This	is	partly	
due	to	the	paucity	of	long‐term	biodiversity	experiments	that	allow	
for	exploration	of	 typically	slow	changes	 in	SOC	storage.	 Indeed,	
we	 are	 aware	 of	 only	 four	 of	 such	 grassland	 biodiversity	 experi‐
ments	globally.	Studies	from	these	experiments	have	consistently	
shown	positive	effects	of	plant	diversity	on	SOC	storage,	and	have	
largely	ascribed	this	to	increased	rhizosphere	carbon	inputs	(Cong	
et	al.,	2014;	De	Deyn	et	al.,	2011;	Fornara	&	Tilman,	2008;	Lange	 
et	al.,	2015;	Steinbeiss,	Beßler,	et	al.,	2008).	Yet,	how	this	mecha‐
nism	is	 linked	to	microbial	carbon	processing	has	rarely	been	em‐
pirically	tested,	 limiting	our	ability	to	 implement	microbial	carbon	
dynamics	in	climate‐carbon	models	and	dynamic	global	vegetation	
models	(Crowther	et	al.,	2016).

The	build‐up	of	organic	carbon	ultimately	depends	on	 the	bal‐
ance	between	 carbon	 inputs	 and	outputs	 from	 the	 system,	which	
is	determined	by	plant	biomass	production,	and	SOC	formation	and	
decomposition,	and	is	therefore,	to	a	high	degree,	governed	by	the	
activity	of	soil	microbes.	Most	plant‐derived	carbon	is	taken	up	by	
soil	microbes	and	used	to	either	generate	energy	(and	thus	CO2)	or	

generate	biomass.	After	death,	microbial	necromass	becomes	part	of	
the	nonliving	soil	organic	matter	pool	 (Miltner,	Bombach,	Schmidt‐
Brucken,	&	Kastner,	2012).	Estimates	of	the	proportion	of	microbi‐
ally	derived	carbon	transformed	into	nonliving	SOC	range	from	40%	
(Kindler,	Miltner,	Richnow,	&	Kastner,	2006)	to	80%	(Liang	&	Balser,	
2011),	but	the	role	of	necromass	carbon	for	SOC	build‐up	is	not	well	
tested	in	the	context	of	changing	PSR.	It	is,	therefore,	important	to	
distinguish	 between	microbial	 catabolic	 and	 anabolic	 pathways	 in	
order	to	disentangle	their	specific	contributions	to	SOC	accumula‐
tion.	One	way	to	synthesize	microbial	physiology	is	the	widely	used	
metric	of	microbial	carbon	use	efficiency	(CUE),	which	describes	the	
efficiency	 by	which	microbes	 convert	 organic	 carbon	 into	 growth	
(Manzoni,	 Taylor,	 Richter,	 Porporato,	 &	 Agren,	 2012;	 Sinsabaugh,	
Manzoni,	Moorhead,	&	Richter,	2013).	When	incorporated	into	mi‐
crobial	biomass,	carbon	has	the	potential	to	become	part	of	the	soil	
organic	matter	pool	and	can	reside	in	soils	for	longer	time	periods.	
Accordingly,	 a	 high	 microbial	 CUE	 favors	 SOC	 storage,	 although	
other	physiological	characteristics	of	 the	soil	microbial	community	
like	microbial	 growth	 and	 turnover	may	 equally	 promote	 SOC	 ac‐
cumulation.	Moreover,	microbial	CUE	was	shown	to	scale	positively	
with	microbial	growth	 (Zheng	et	al.,	2019)	and	to	be	maximized	at	
highest	growth	 rates	 (Manzoni	et	al.,	2017).	Nevertheless,	despite	
the	general	 importance	of	these	microbial	processes	to	SOC	accu‐
mulation,	their	relationships	with	plant	diversity	are	almost	entirely	
unknown.

In	this	study,	we	explicitly	addressed	the	question	of	how	soil	
microbial	 physiology	 responds	 to	 increasing	 plant	 diversity.	 PSR,	
functional	group	richness,	and	functional	composition	have	all	been	
shown	to	promote	aboveground	and	belowground	plant	productiv‐
ity	 in	the	Jena	Experiment	 (Marquard	et	al.,	2009;	Ravenek	et	al.,	
2014).	However,	increases	in	root	biomass	were	more	strongly	de‐
termined	by	PSR	than	by	functional	group	richness	(Ravenek	et	al.,	
2014)	and	further	led	to	greater	rhizosphere	carbon	inputs	in	high‐
diversity	plant	communities	(Chen	et	al.,	2017;	Lange	et	al.,	2015).	
We	here	focus	on	how	microbial	activity	 impacts	the	transforma‐
tion	of	detrital	organic	material	to	unravel	the	causal	physiological	
pathways	through	which	soil	microbes	promote	SOC	accumulation	
(Figure	1).	 Specifically,	we	used	 the	 long‐term	biodiversity	 exper‐
iment	 in	Jena	(Roscher	et	al.,	2004)	to	measure	gross	rates	of	mi‐
crobial	 community	 growth,	 turnover,	 and	 CUE	 in	 grassland	 plots	
differing	in	plant	diversity.	Plant	diversity	was	considered	in	three	
metrics:	PSR	(1,	2,	4,	8,	16,	and	60	plant	species);	plant	functional	
group	richness	 (one,	 two,	 three,	and	four	plant	 functional	groups,	
composed	 of	 grasses,	 legumes,	 small	 herbs,	 and	 tall	 herbs);	 and	
plant	functional	group	identity	(the	presence/absence	of	a	certain	
plant	 functional	group).	As	depicted	 in	Figure	1,	we	hypothesized	
(a)	 that	microbial	 growth	 and	 turnover	 rates	would	 increase	with	
increasing	 PSR,	 resulting	 in	 higher	 amounts	 of	microbial	 biomass	
and	necromass	that	in	turn	lead	to	SOC	accumulation;	and	(b)	that	
higher	PSR	would	increase	microbial	growth	more	than	respiration,	
correspondingly	promoting	microbial	CUE	and	leading	to	increased	
SOC	storage.
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2  | MATERIAL S AND METHODS

2.1 | Study site and experimental design

This	 study	 was	 performed	 in	 the	 long‐term	 plant	 diversity	 grass‐
land	experiment	in	Jena,	Germany	(50°55′N,	11°35′E;	130	m	a.s.l.).	
The	field	site	 is	 located	on	an	upland	area	of	the	floodplain	of	the	
River	Saale,	with	a	mean	annual	temperature	of	9.1°C	and	mean	an‐
nual	precipitation	of	610	mm	(1980–2010)	(Hoffmann,	Bivour,	Früh,	
Koßmann,	&	Voß,	2014).	The	experiment	was	created	in	2002	on	a	
former	arable	field	that	had	been	under	continuous	cropland	man‐
agement	 for	more	 than	40	 years.	 The	 soil	was	 classified	 as	 Eutric	
Fluvisol	 (FAO‐UNESCO,	 1997)	 and	 changes	 markedly	 in	 texture	
from	sandy	loam	to	silty	clay	with	increasing	distance	from	the	river	
(Steinbeiss,	Temperton,	&	Gleixner,	2008).	The	experimental	design	

is	described	in	detail	by	Roscher	et	al.	(2004).	Briefly,	the	study	site	
consists	of	82	plots	(20	m	×	20	m)	that	differ	in	levels	of	sown	PSR	
(1,	2,	4,	8,	16,	60	species)	and	plant	functional	group	richness	(one,	
two,	three,	four	functional	groups	of	grasses,	small	herbs,	tall	herbs,	
legumes).	The	plots	are	arranged	in	a	randomized	block	design	with	
four	blocks	arranged	to	account	for	edaphic	variations	that	arise	as	a	
consequence	of	the	changing	soil	texture	mentioned	above.	Each	of	
the	blocks	represents	a	subset	of	the	complete	design	and	covers	the	
whole	 range	of	PSR	and	plant	 functional	group	richness,	 including	
one	bare	plot	with	no	vegetation.	The	grassland	plants	were	chosen	
from	a	60‐species	pool,	representing	species	typical	for	seminatural,	
species‐rich	mesophilic	Molinio‐Arrhenatheretea	meadows	(Ellenberg	
&	Leuschner,	2010).	The	management	of	the	field	site	is	adapted	to	
extensive	hay	meadows,	with	two	mowings	per	year	and	no	fertilizer	
application.	In	order	to	ensure	that	only	target	species	develop,	all	
plots	are	weeded	by	hand	three	times	per	year.

2.2 | Soil sampling and analyses

Soil	samples	were	taken	in	September	2015	from	all	plots	(N = 85; 
one	monoculture	plot	was	abandoned	because	of	poor	plant	perfor‐
mance).	Bare	plots	were	excluded	from	later	data	evaluations	as	we	
were	primarily	interested	in	plant	diversity	effects	and	not	in	differ‐
ences	between	bare	and	vegetated	plots,	leaving	81	plots	for	further	
analysis.	Five	soil	cores	(diameter	2.5	cm)	were	taken	from	each	plot	
up	to	a	depth	of	10	cm,	pooled	to	make	one	composite	sample	and	
sieved	to	2	mm.	Fine	roots	(<2	mm)	were	removed	by	hand,	washed,	
dried	at	65°C	for	24	hr,	and	weighed.	Fresh	sieved	soil	samples	were	
kept	at	15°C	(in	situ	soil	temperature)	for	3	days	prior	to	analyses.	
Soil	samples	were	dried	at	105°C	for	24	hr	to	determine	gravimetric	
soil	water	content.	Dried	samples	were	then	ground	with	a	ball	mill	
(MM2000)	 and	analyzed	 for	 total	 carbon	and	nitrogen	content	by	
an	elemental	analyzer	(EA	1110;	CE	Instruments).	SOC	content	was	
determined	from	samples	pretreated	with	2	M	HCl	prior	to	drying	
and	grinding	to	remove	carbonates.	For	determination	of	root	car‐
bon	content	and	root	carbon	to	nitrogen	ratios,	fine	root	dry	mass	
was	treated	identically	to	the	dried	soil	samples,	that	is,	ground	and	
measured	by	an	elemental	analyzer.	We	calculated	root	carbon	mass	
per	area	(in	g	root	C/m2)	that	hereafter	is	referred	to	as	root	biomass	
carbon.	Given	the	focus	here	on	soil	carbon	dynamics,	all	important	
carbon	pools	and	processes	are	given	as	carbon	equivalents.

Soil	extractable	carbon	and	nitrogen	pools	were	determined	by	
extraction	of	4	g	fresh	soil	with	30	ml	1	M	KCl,	shaken	for	30	min	
and	filtered	through	ash‐free	cellulose	filters.	To	determine	total	dis‐
solved	organic	 carbon,	 1	M	 KCl	 soil	 extracts	were	 analyzed	using	
a	 TOC/TN	 analyzer	 (Shimadzu	 TOC‐VCPH	 with	 TNM‐1	 and	 ASI	
Autosampler;	 Shimadzu).	Microbial	 biomass	 carbon	 content	 (here‐
after	 used	 synonymously	with	microbial	 biomass)	was	determined	
using	the	chloroform	fumigation	extraction	(CFE)	method	(Schinner,	
Öhlinger,	 Kandeler,	 &	 Margesin,	 1996).	 The	 fumigation	 was	 per‐
formed	 in	parallel	 to	18O‐water	 incubation	and	DNA	extraction	of	
soil	 samples	 for	 accurate	 determination	 of	 the	 factor	 converting	
microbial	DNA	 into	microbial	 biomass	 (fDNA,	 see	below).	Microbial	

F I G U R E  1  Conceptual	model	depicting	the	hypothetical	
relationships	between	plant	species	richness	and	microbial	
physiology	that	are	expected	to	promote	soil	organic	carbon	(SOC)	
build‐up	in	species‐rich	plant	communities	(pool	sizes	within,	
microbial	processes	without	text	frames;	mic,	microbial;	CUE,	
carbon	use	efficiency)
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biomass	 carbon	 concentrations	 were	 determined	 as	 the	 differ‐
ence	 between	 fumigated	 and	 unfumigated	 soil	 samples	measured	
by	the	TOC/TN	analyzer	by	using	an	extraction	factor	kEC	of	0.45	
(Jenkinson,	Brookes,	&	Powlson,	2004).	Soil	DNA	content	and	mi‐
crobial	 biomass	 carbon	 measured	 by	 CFE	 were	 demonstrated	 to	
be	 strongly	 positively	 correlated	 (Marstorp,	Guan,	&	Gong,	 2000;	
Widmer,	 Rasche,	 Hartmann,	 &	 Fliessbach,	 2006),	 indicating	 that	
these	two	methods	are	equivalent	to	estimating	soil	microbial	bio‐
mass.	 Soil	 microbial	 necromass	 was	 quantified	 by	 acid	 hydrolysis	
of	 soils	 (50	mg)	 with	 4	M	 methane	 sulfonic	 acid	 (2	ml)	 and	 high‐ 
performance	anion‐exchange	chromatography	with	pulsed	ampero‐
metric	detection	(Dionex	ICS	3000),	following	separation	of	amino	
acids	and	amino	sugars	on	a	PA20	column.	The	HPLC	gradient	used	
was	 adapted	 from	 Martens	 and	 Loeffelmann	 (2003).	 Calculation	
of	bacterial	and	fungal	necromass	 followed	the	protocol	proposed	
by	Appuhn	and	 Joergensen	 (2006).	 In	brief,	 given	a	molar	 ratio	of	
muramic	acid	and	glucosamine	of	1:1	in	bacterial	cell	walls,	we	sub‐
tracted	bacterial	glucosamine	from	total	glucosamine	yielding	fungal	
glucosamine.	To	obtain	bacterial	and	fungal	necromass	carbon,	bac‐
terial‐borne	muramic	acid	was	multiplied	with	an	average	conversion	
factor	of	45	and	fungal	glucosamine	was	multiplied	by	9	(Appuhn	&	
Joergensen,	2006).

Gross	rates	of	growth	and	turnover	of	microbial	biomass,	as	well	
as	microbial	CUE,	were	determined	based	on	the	incorporation	of	iso‐
topically	 labeled	oxygen	 (18O)	from	18O‐labeled	water	 into	microbial	
genomic	DNA	(double‐stranded	DNA,	dsDNA)	and	concurrent	mea‐
surements	of	basal	respiration	(Spohn,	Klaus,	Wanek,	&	Richter,	2016;	
Walker	et	al.,	2018;	Zheng	et	al.,	2019).	Specifically,	soil	samples	were	
incubated	with	18O‐labeled	water	(97	at%	18O;	Campro	Scientific)	for	
24	hr	and	thereafter	 the	18O	abundance	and	the	total	O	content	of	
the	DNA	were	measured	using	a	thermochemical	elemental	analyzer	
(TC/EA	Thermo	 Fisher)	 coupled	with	 an	 IRMS	 (Delta	V	Advantage;	
Thermo	Fisher).	In	parallel,	soil	samples	amended	with	the	same	vol‐
ume	of	nonlabeled	water	were	incubated	for	the	same	time	period	to	
serve	as	natural	18O	abundance	(NA)	controls.	DNA	of	18O‐labeled	and	
‐unlabeled	 samples	was	extracted	 (FastDNA™	SPIN	Kit	 for	Soil;	MP	
Biomedicals)	 and	 its	 concentration	 was	 determined	 fluorimetrically	
(Sandaa,	Enger,	&	Torsvik,	1998)	using	a	PicoGreen	assay	(Quant‐iT™	
PicoGreen®	dsDNA	Reagent;	Life	Technologies).	After	24	hr	of	incuba‐
tion,	gas	samples	were	taken	from	each	sample	and	the	CO2 concen‐
trations	measured	by	a	Gas	GC	 (Trace	GC	Ultra;	Thermo	Fischer)	 to	
determine	microbial	respiration.

where t	 (hr)	 is	 the	 incubation	 time,	 p	 is	 the	 atmosphere	 pressure	
(kPa),	n	is	the	molecular	mass	of	the	element	C	(12.01	g/mol),	R	is	the	
ideal	gas	constant	(8.314	J	mol	−1	K−1),	T	is	the	absolute	temperature	
of	the	gas	(295.15	K),	Vhs	is	the	volume	(L)	of	the	head	space	vials,	and	
DCO2

	(ppm)	is	the	increase	in	CO2	concentration	produced	during	the	
24	hr	incubation	period.

Newly	formed	DNA	was	quantified	by	multiplying	sample	O	con‐
tent	by	the	18O	excess	of	DNA	relative	to	the	natural	abundance	of	
18O	 in	DNA	measured	 in	 control	 samples.	A	DNA‐oxygen	content	
of	31.21%	was	applied	to	estimate	the	dsDNA	formed	by	microbial	
growth	during	the	incubation	period.

Ototal	 is	 the	 total	 O	 content	 (µg)	 of	 the	 dried	 DNA	 extract,	
	at%excess	 is	 the	at%	excess	

18O	of	the	 labeled	sample	compared	to	
the	mean	at%	18O	of	NA	samples,	and	31.21%	is	the	DNA‐oxygen	
content,	and	at%label	is	the	

18O	enrichment	of	soil	water.
Then,	for	each	sample,	a	conversion	factor	(fDNA)	was	applied	to	

translate	the	concentration	of	DNA	produced	during	the	incubation	
period	 into	 microbial	 biomass	 carbon	 production	 over	 24	 hr.	 The	
conversion	 factor	was	 obtained	 by	 dividing	 the	microbial	 biomass	
carbon	content	of	each	sample	by	 its	corresponding	DNA	content	
(both	in	µg/g	soil	DW).

where	DW	is	the	dry	mass	of	soil	 in	grams,	and	t	 is	the	incubation	
time	in	hours.

The	amount	of	carbon	taken	up	by	microbial	biomass	was	calcu‐
lated	as	the	sum	of	microbial	growth	and	respiration.

We	also	expressed	respiration,	growth,	and	carbon	uptake	on	a	micro‐
bial	biomass	basis	 to	obtain	biomass‐specific	 respiration,	 growth,	 and	
carbon	uptake.	Under	steady‐state	conditions	where	microbial	biomass	
does	not	change	(e.g.,	over	24	hr),	biomass‐specific	growth	is	equivalent	
to	microbial	biomass	turnover	rate,	and	its	inverse	corresponds	to	mi‐
crobial	biomass	turnover	time.	Finally,	microbial	CUE	was	calculated	by	
the	following	equation	(Manzoni	et	al.,	2012;	Sinsabaugh	et	al.,	2013):

where	Cgrowth	is	the	carbon	allocated	to	microbial	biomass	produc‐
tion,	 that	 is,	microbial	growth,	and	Crespiration	 is	 the	organic	carbon	
respired	to	CO2.

2.3 | Statistics

Statistical	 analyses	were	 performed	 using	 the	 software	 R	 version	
3.1.3	(R	Core	Team,	2015).	Where	necessary,	data	were	transformed	
to	meet	model	assumptions	and	rechecked	for	linearity	prior	to	sta‐
tistical	 analysis.	 Statistics	 are	 based	 on	 sown	 PSR	which	 was	 the	
experimental	treatment	factor,	with	the	only	exception	being	piece‐
wise	structural	equation	modeling	 (SEM)	 (see	below)	for	which	we	
obtained	data	on	realized	PSR,	but	no	records	of	plant	species	com‐
position,	for	the	year	2015.	This	approach	was	supported	by	the	fact	

Crespiration (µg C g
−1

day−1)=
DCO2

DW∗ t
∗

p∗n

R∗T
∗Vhs ∗1,000,

DNAproduced (µg)=Ototal ∗
at%excess

100
∗

100

at%label

∗
100

31.21
,

Cgrowth (µg C g
−1

day−1)=
fDNA ∗DNAproduced ∗1,000

DW∗ t
,

Cuptake (µg C g
−1

day−1)=Crespiration+Cgrowth.

CUE=
Cgrowth

(Cgrowth+Crespiration)
,
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that	sown	and	realized	PSR	were	very	strongly	correlated	(p	<	.001,	
R2	=	0.95).

We	 tested	 for	 effects	 of	 PSR	 (log‐transformed	 for	 linearity),	
plant	functional	group	richness,	and	plant	functional	group	iden‐
tity	 on	 all	measured	 soil‐,	 plant‐,	 and	microbial‐related	 variables	
using	linear	mixed	effect	models	(LMMs)	with	the	lme	function	in	
the	nlme	package	(Pinheiro,	Bates,	DebRoy,	Sarkar,	&	R	Core	Team,	
2017),	including	block	as	a	random	intercept.	We	added	fixed	fac‐
tors	 PSR	 (log‐transformed)	 and	 plant	 functional	 group	 richness	
sequentially,	with	plant	functional	group	identity	effects	tested	in	
models	already	containing	block,	PSR	and	plant	functional	group	
richness.	Significance	was	determined	using	likelihood	ratio	tests	
(L)	including	and	excluding	explanatory	terms.	We	explored	asso‐
ciations	between	 response	variables	using	 a	Pearson	 correlation	
matrix	with	the	package	Hmisc	(Harrell	et	al.,	2016).	Block	effects	
were	 corrected	 prior	 to	 correlation	 analysis,	 by	 first	 calculating	
block	means	and	the	grand	mean	across	all	blocks.	The	difference	
in	block	mean	to	the	grand	mean	was	then	added	to	each	individ‐
ual	value	within	the	block.

By	 combining	 correlation	 and	 LMM	 results	with	 pre‐existing	
knowledge	of	the	experiment,	we	established	a	conceptual	model	
of	PSR	effects	on	SOC	to	be	tested	(Figure	1).	We	used	path	anal‐
ysis	 to	 combine	 multiple	 linear	 models	 into	 a	 single	 causal	 net‐
work	in	which	variables	could	act	as	both	predictors	and	responses	
(Lefcheck,	2016;	Shipley,	2009).	For	this	analysis,	we	used	directed	
acyclic/piecewise	SEM	using	the	packages	nlme and piecewiseSEM 
(Lefcheck,	 2016;	 Pinheiro	 et	 al.,	 2017).	 The	 piecewise	 SEM	 ap‐
proach	 is	more	 flexible	 than	 the	 traditional	 variance–covariance	
SEM	as	it	enables	fitting	of	LMMs	to	a	range	of	distributions.	The	
overall	model	fit	was	assessed	using	Shipley's	test	of	directed	sep‐
aration,	for	which	a	good	model	fit	is	obtained	when	Fisher's	C	is	
statistically	nonsignificant	(p	>	.05)	(Shipley,	2009).	Furthermore,	
as	the	piecewiseSEM	package	reports	missing	or	incomplete	path‐
ways,	such	pathways	were	tested	in	parallel	models	and	included	
in	the	model	if	the	respective	pathway	was	statistically	significant	
(p	<	.05)	and	mechanistically	meaningful.	Nonsignificant	pathways	
(if	missing	or	not)	were	generally	excluded.	Models	constructed	in	
this	manner	differ	only	in	the	linkage	of	pathways	but	contain	the	
same	dataset	 and	 thus	 can	be	 compared	using	 the	Akaike	 infor‐
mation	criterion	 (AIC)	and	the	AICc	 (for	small	sample	sizes).	Path	
coefficients	were	standardized	(β‐coefficients)	to	enable	compari‐
sons	across	responses	of	varying	units	and	finally	conditional	(R2

c,	
all	 factors)	 and	marginal	 (R2

m,	 fixed	 factors	 only)	 coefficients	 of	
determination	were	reported	for	each	LMM.

As	our	conceptual	model	did	not	produce	a	SEM	with	an	ade‐
quate	fit,	we	tested	other	related	model	structures	as	follows.	First,	
we	excluded	microbial	CUE,	which	is	fully	numerically	derived	from	
microbial	 growth	 and	 respiration,	 did	 not	 significantly	 explain	 the	
target	variables	in	the	SEM	and	did	not	respond	to	PSR	in	the	LMM.	
Second,	although	microbial	turnover	increased	with	PSR	in	the	LMM	
and	 may	 partially	 explain	 increases	 in	 microbial	 necromass	 and	
SOC,	SEMs	including	microbial	biomass	and	microbial	turnover	did	
not	work	out	and	we,	therefore,	omitted	microbial	 turnover	 in	the	

final	SEM.	Third,	we	 removed	bacterial	necromass	 since	 it	did	not	
respond	to	changes	in	either	PSR	or	functional	group	richness	(see	
LMM	 results).	 Finally,	 although	microbial	 (fungal)	 necromass	 posi‐
tively	responded	to	PSR	in	the	LMM	it	was	not	significantly	 linked	
to	 SOC	 storage	 in	 SEM	models	 containing	microbial	 biomass	 and	
was,	therefore,	omitted	from	the	final	SEM	(but	see	Figure	S3).	The	
strong	link	between	microbial	biomass	and	SOC	storage,	therefore,	
masked	any	other	possible	and	causally	linked	intermediate	drivers	
such	as	microbial	turnover	and	necromass.	In	an	additional	attempt	
we,	therefore,	ran	SEM	structures	that	excluded	microbial	biomass	
but	included	microbial	(fungal)	necromass.

The	resulting	final	model	was	tested	for	both	sown	and	realized	
PSR	(Figure	S2).	In	addition,	we	tested	the	final	model	(Figure	3)	with	
sown	PSR	plus	downstream	diversity	metrics	(i.e.,	functional	group	
richness	and	the	presence/absence	of	specific	functional	groups)	to	
enable	comparisons	with	the	SEM	containing	PSR	only	(Figure	S4).	
One	shortcoming	of	the	piecewise	SEM	approach	is	the	impossibility	
of	implementing	bidirectional	relationships.	We	thus	reanalyzed	our	
final	piecewise	model	using	 the	 traditional	SEM	 technique	 (Grace,	
2006).	For	this,	variables	were	block‐corrected	analogous	to	the	data	
used	for	the	correlation	matrix	prior	to	model	construction	with	the	
lavaan	 package	 (Rosseel,	 2012).	 The	overall	model	 goodness‐of‐fit	
statistic	 is	 based	on	 a	 chi‐squared	distribution	with	 a	 good	model	
fit	being	indicated	by	an	insignificant	(p	>	.05)	test	statistics.	To	de‐
scribe	 the	 extent	 of	match	 between	 the	 specified	model	 and	 the	
sample	covariance	matrix	we	followed	the	two‐index	strategy	pro‐
posed	by	Hu	and	Bentler	(1999)	and	reported	the	root	mean	square	
error	 of	 approximation	 (RMSEA)	 and	 its	 90%	 confidence	 intervals	
(CI90)	 (Steiger	&	 Lind,	 1980),	 together	with	 the	 standardized	 root	
mean	square	residual	(SRMR).	These	absolute	fit	indices	are	approx‐
imate	‘badness‐of‐fit’	measures	that	indicate	worsening	absolute	fits	
as	the	index	value	increases.	An	indication	for	good	model‐data	fit	is	
reached	when	RMSEA	≤	0.06	and	SRMR	≤	0.08	(Hu	&	Bentler,	1999).	
Both	 the	 piecewise	 and	 the	 variance–covariance	 SEM	 approach	
further	enabled	the	determination	of	indirect	effects	(i.e.,	the	rela‐
tionship	between	 two	variables	 caused	by	one	or	more	mediating	
variables)	 by	multiplying	 the	 standardized	path	 coefficients	of	 the	
respective	pathways	to	give	indirect	effect	strengths.

3  | RESULTS

3.1 | Plant species richness effects

Increases	in	PSR	positively	influenced	most	measured	soil	physico‐
chemical‐,	plant‐,	and	microbial‐related	parameters	(Tables	1	and	2,	
Figure	2).	 SOC	and	dissolved	organic	 carbon	content	were	 signifi‐
cantly	positively	affected	by	PSR	(p	<	.001	and	p	=	.043,	respectively;	
Table	2).	SOC	concentrations	increased	by	29%	from	monocultures	
to	plots	containing	60	plant	species	(Table	1,	Figure	2a).	Belowground	
plant	carbon	(root	biomass	carbon	per	area)	and	root	carbon	to	ni‐
trogen	ratios	increased	with	increasing	PSR	(p	<	.001	and	p = .094; 
Table	2),	although	the	latter	only	showed	a	trend	and	not	a	signifi‐
cant	response	(p	≤	.10).	The	strongest	effect	of	PSR	on	soil	microbial	



674  |     PROMMER Et al.

parameters	was	on	microbial	biomass,	which	increased	by	58%	from	
PSR	values	of	1–60	(Table	1,	Figure	2g).	This	result	was	accompanied	
by	increased	microbial	activity,	in	terms	of	respiration,	growth,	and	
carbon	uptake	with	increasing	PSR	(p	=	.008,	p	<	.001,	and	p	<	.001;	
Table	2).	However,	the	response	of	microbial	growth	was	more	pro‐
nounced	 than	 the	 response	 of	 microbial	 respiration.	 Specifically,	
microbial	growth	increased	twofold	from	monoculture	plots	to	60‐
species	plots,	whereas	respiration	increased	only	1.5‐fold	(Table	1,	

Figure	2c,d,	respectively).	Not	only	soil	mass‐based	microbial	growth	
but	 also	 biomass‐specific	 growth	 increased	 significantly	with	 PSR	
(p	=	 .019;	Table	2,	Figure	2f).	Accordingly,	microbial	 turnover	 time	
decreased	with	 increasing	 PSR,	 thus	 indicating	 an	 acceleration	 of	
microbial	proliferation,	growth,	and	death.	The	latter	was	confirmed	
by	an	increase	in	microbial	necromass	carbon	at	higher	levels	of	PSR	
(p	<	.001;	Table	2,	Figure	2h).	While	fungal	necromass	carbon	signifi‐
cantly	increased,	bacterial	necromass	carbon	did	not	show	significant	

TA B L E  1  Summary	statistics	of	SOC	in	mg	carbon	(C)/g	soil	DW,	soil	C	to	nitrogen	ratio,	root	C	in	g	C/m2	soil,	root	C	to	nitrogen	ratio,	
microbial	biomass	C	(Cmic)	in	µg	C/g	soil	DW,	microbial	growth	(Growthmic)	in	µg	Cmic day−1 g−1	soil	DW,	microbial	respiration	(Respirationmic)	
in	µg	CO2‐C	day

−1 g−1	soil	DW,	and	fungal	necromass	C	in	mg	C/g	DW

PSR n

Mean (SD)

SOC Soil C:N Root C Root C:N Cmic Growthmic Respirationmic Necromassfungi

1 15 20.4	(2.7) 10.7	(0.5) 17.2	(10.9) 40.4	(11.9) 744.2	(167.6) 7.0	(4.6) 14.6	(6.0) 3.9	(0.6)

2 16 20.8	(2.6) 10.8	(0.6) 26.5	(24.1) 40.8	(10.1) 838.1	(122.0) 10.1	(4.4) 18.2	(4.4) 4.0	(0.4)

4 16 22.2	(2.3) 10.8	(0.4) 41.7	(33.6) 45.0	(10.1) 958.8	(142.5) 10.8	(3.5) 16.6	(7.2) 4.4	(0.5)

8 16 21.9	(1.9) 10.9	(0.5) 23.9	(15.3) 46.2	(9.6) 952.0	(130.5) 10.8	(4.6) 19.8	(6.1) 4.3	(0.5)

16 14 24.1	(2.4) 11.1	(0.7) 47.7	(25.1) 44.7	(11.2) 1,103.8	(118.4) 12.1	(3.2) 19.8	(5.4) 4.7	(0.6)

60 4 26.3	(2.9) 11.1	(0.2) 49.1	(28.5) 46.3	(2.6) 1,175.8	(103.9) 13.9	(2.3) 21.1	(7.4) 5.1	(0.7)

Abbreviations:	DW,	dry	weight;	PSR,	plant	species	richness;	SD,	standard	deviation;	SOC,	soil	organic	carbon.

TA B L E  2  Summary	of	linear	mixed	effect	model	analyses	of	plant	diversity	effects	on	(A)	soil,	(B)	plants,	and	(C)	microbial	related	
variables

PSR (log) PFGR SH TH GR LEG

L Sign. L Sign. L Sign. L Sign. L Sign. L Sign.

(A)	Soil

Soil	organic	carbon 25.72 ***  0.05 n.s. 6.37 *  2.92 †  1.15 n.s. 3.24 † 

Dissolved organic carbon 4.11 *  0.20 n.s. 0.37 n.s. 0.04 n.s. 4.60 *  8.72 ** 

(B)	Plants

Root	biomass	carbon 11.91 ***  0.16 n.s. 0.45 n.s. 1.80 n.s. 5.43 *  21.38 *** 

Root	carbon	to	nitrogen	ratio 2.80 †  0.55 n.s. 0.95 n.s. 0.39 n.s. 17.11 ***  36.37 *** 

(C)	Microbes

Biomass	carbon 47.77 ***  5.19 *  8.23 **  1.44 n.s. 2.39 n.s. 10.01 ** 

Growth 15.21 ***  0.61 n.s. 4.27 *  1.00 n.s. 2.10 n.s. 6.19 * 

Biomass‐specific	growth 5.50 *  0.05 n.s. 0.11 n.s. 0.00 n.s. 2.93 †  3.66 † 

Turnover	time 5.50 *  0.05 n.s. 0.11 n.s. 0.00 n.s. 2.93 †  3.66 † 

Respiration 6.94 **  0.04 n.s. 0.33 n.s. 0.01 n.s. 0.00 n.s. 0.41 n.s.

Biomass‐specific	respiration 0.95 n.s. 1.47 n.s. 1.00 n.s. 0.63 n.s. 0.25 n.s. 0.46 n.s.

Carbon	uptake 12.96 ***  0.05 n.s. 2.11 n.s. 0.19 n.s. 0.29 n.s. 2.37 n.s.

Biomass‐specific	carbon	uptake 0.14 n.s. 0.76 n.s. 0.07 n.s. 0.23 n.s. 0.00 n.s. 0.03 n.s.

Carbon	use	efficiency 2.65 n.s. 1.29 n.s. 2.29 n.s. 1.42 n.s. 1.73 n.s. 2.30 n.s.

Necromass	carbon	(fungi) 26.16 ***  0.02 n.s. 0.03 n.s. 0.13 n.s. 5.84 *  4.67 * 

Necromass	carbon	(bacteria) 2.47 n.s. 0.00 n.s. 5.21 *  0.35 n.s. 6.48 *  0.71 n.s.

Necromass	carbon	(total) 18.03 ***  0.00 n.s. 0.56 n.s. 0.00 n.s. 7.14 **  3.36 † 

Abbreviations:	GR,	grasses;	LEG,	legumes;	PFGR,	plant	functional	group	richness;	PSR,	plant	species	richness;	SH,	small	herbs;	TH,	tall	herbs.
In	the	models	PSR	(log)	was	fitted	before	PFGR	and	plant	functional	group	identity	effects	were	analyzed	in	separate	models	already	containing	PSR	
and	PFGR.	Significant	positive	effects	are	marked	in	green,	significant	negative	effects	are	colored	red.
†p	≤	.1;	*p	≤	.05;	**p	≤	.01;	***p	≤	.001.	



     |  675PROMMER Et al.

changes	over	the	range	of	PSR	levels	(p	<	.001	and	p	=	.116,	respec‐
tively;	Table	2),	effectively	causing	increases	in	fungal:bacterial	nec‐
romass	 ratios	 (Figure	2i).	Other	 parameters	 representing	 different	
aspects	of	microbial	physiology,	including	biomass‐specific	respira‐
tion	 rates,	 biomass‐specific	 organic	 carbon	 uptake,	 and	 microbial	
CUE	did	not	significantly	respond	to	manipulations	of	PSR	(p	=	.331,	
.710,	and	.104;	Table	2).

The	 substantial	 increase	 in	 SOC	with	 increasing	PSR	 and	 the	
concomitant	greater	microbial	biomass	was	 reflected	 in	a	 signifi‐
cant	and	highly	positive	correlation	between	microbial	biomass	and	
SOC	(r	=	.76,	p	<	.001;	Table	3).	Moreover,	root	carbon,	microbial	

growth,	and	microbial	necromass	carbon	were	also	strongly	posi‐
tively	related	to	SOC	(r	=	.41,	.40,	and	.41,	respectively, p	<	.001;	
Table	3).

Applying	 path	 analysis,	 performed	 by	 piecewise	 SEM,	 the	
best‐fitting	SEM	adequately	fitted	the	data	(C14	=	11.36,	p	=	.657,	
AIC	 =	 57.36,	 AICc	 =	 76.73,	 Figure	 3).	 In	 this	 model,	 (log‐trans‐
formed)	 PSR	 positively	 affected	microbial	 growth,	 both	 directly	
(β	=	.25)	and	indirectly	via	root	carbon	input	(β	=	.15).	At	the	same	
time,	PSR	promoted	microbial	biomass	directly	(β	=	.42)	and	indi‐
rectly	through	microbial	growth	and	root	carbon	input.	However,	
growth	 had	 a	 stronger	 indirect	 effect	 (β	 =	 .09)	 on	 microbial	

F I G U R E  2  Linear	regressions	of	plant	species	richness	(log)	and	soil,	plant,	and	microbial	parameters.	(a)	Soil	organic	carbon	is	in	mg/g	soil	
dry	weight	(DW),	(b)	root	carbon	(log)	in	g/m2	soil,	(c)	microbial	growth	(sqrt)	in	µg	microbial	biomass	carbon	g−1	soil	DW	day−1,	(d)	microbial	
respiration	in	µg	CO2‐carbon	g

−1	soil	DW	day−1,	(e)	microbial	CUE	is	in	absolute	fractions,	(f)	biomass‐specific	growth	(log)	in	ng	carbon	
growth	µg−1 microbial biomass carbon day−1,	(g)	microbial	biomass	carbon	in	µg/g	soil	DW,	(h)	total	microbial	necromass	in	mg	necromass	
carbon/g	soil	DW,	and	(i)	fungal:bacterial	necromass	ratio	(log)	represents	fungal	necromass	carbon	divided	by	bacterial	necromass	carbon.	
Significance	levels	are	indicated	by	asterisks	(*p	≤	.05,	**p	≤	.01,	***p	≤	.001)	and	significant	relationships	are	presented	by	solid	lines;	p 
values	are	given	in	brackets	next	to	the	adjusted	R2	value	if	p	≤	.1,	with	dashed	lines
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biomass	than	root	carbon	(β	=	.06).	In	contrast,	SOC	was	only	as‐
sociated	with	microbial	biomass,	which	had	a	significant	positive	
effect	 (β	 =	 .68).	 Respiration	 showed	 no	 significant	 relationships	
with	either	microbial	biomass	or	SOC,	but	was	significantly	posi‐
tively	affected	by	microbial	growth.	To	account	for	the	strong	pos‐
itive	correlation	between	growth	and	microbial	biomass	 (r	=	 .65,	
p	<	.001;	Table	3),	we	constructed	the	same	model	with	the	tradi‐
tional	variance–covariance	SEM	approach	(Figure	S1).	Even	though	
this	 approach	did	 not	 allow	 implementation	of	 LMMs	 it	 enabled	
us	to	consider	bidirectional	relationships	of	endogenous	variables	

by	calculating	their	shared	variance	(residual	variance),	which	we	
did	for	microbial	growth	and	biomass.	Overall,	this	analysis	repro‐
duced	 the	data	well	 (χ2

6	=	5.25,	p	=	 .513;	RMSEA	=	0.000,	CI90	
(0.000;	0.134),	 SRMR	=	0.035)	 and	yielded	 similar	 results	 to	 the	
piecewise	SEM.	Nevertheless,	the	piecewise	approach	explained	a	
larger	proportion	of	variance	due	to	its	ability	to	incorporate	ran‐
dom	effects	(R2

c).
The	piecewise	SEM	using	realized	PSR	(Figure	S2)	was	very	simi‐

lar	to	the	model	using	sown	PSR	and	resulted	in	the	same	significant	
paths	and	overall	model	structure.	Replacing	microbial	biomass	by	
fungal	necromass	in	the	final	model	(Figure	S3b)	explained	SOC	to	
a	 smaller	 proportion	of	 variance	 and	 fungal	 necromass	was	 solely	
driven	by	PSR.

The	 SEM	 including	 PSR	 plus	 functional	 group	 richness	 re‐
vealed	PSR	to	be	of	greater	 importance	 for	 the	microbially	me‐
diated	SOC	build‐up.	This	is	because	PSR	directly	and	indirectly	
promoted	 microbial	 biomass	 more	 than	 functional	 group	 rich‐
ness,	which	only	had	a	direct	and	weaker	effect	on	microbial	bio‐
mass	(Figure	S4e).	Models	testing	for	effects	of	functional	group	
identity	 indicated	 that	 legumes	 adversely	 affected	 microbial	
biomass	 through	negative	effects	on	 root	biomass	 (Figure	S4a),	 
whereas	the	contrasting	was	true	for	grasses	(Figure	S4b).	Both	
small	herbs	and	tall	herbs	were	not	linked	to	root	biomass	(Figure	
S4c,d).	 However,	 small	 herbs	 promoted	 microbially	 mediated	
SOC	accumulation	through	positive	effects	on	microbial	growth	
and	 biomass	 (Figure	 S4c),	 while	 this	 was	 not	 the	 case	 for	 tall	
herbs	(Figure	S4d).

3.2 | Plant functional group richness effects

The	 only	 parameter	 that	 was	 affected	 by	 plant	 functional	 group	
richness	was	microbial	biomass,	which	significantly	 increased	with	
increasing	plant	functional	group	richness	after	accounting	for	spe‐
cies	richness	effects	(p	=	.023;	Table	2).	The	majority	of	parameters	
analyzed	that	showed	a	significant	response	to	changes	in	plant	di‐
versity	when	PSR	was	fitted	before	functional	group	richness	in	the	

F I G U R E  3  Structural	equation	model	(piecewise	SEM)	of	
plant	species	richness	(PSR	log),	microbial	activity	(Growthmic,	
microbial	growth;	Respirationmic,	microbial	respiration),	and	
biomass	(root	C,	root	carbon;	Cmic,	microbial	biomass	carbon)	as	
predictors	for	soil	organic	carbon	(SOC)	(C14	=	11.36,	p	=	.657).	
Arrows	show	significant	paths	(p	≤	.05),	numbers	next	to	them	
are	standardized	path	coefficients	with	asterisks	indicating	their	
significance	(*p	≤	.05,	**p	≤	.01,	***p	≤	.001).	Numbers	in	the	boxes	
of	endogenous	variables	are	the	explained	variances	of	fixed	(R2

m)	
and	fixed	plus	random	factors	(R2

c)

TA B L E  3  Pearson	correlation	matrix	of	block‐corrected	variables	(n	=	81)

Variable SOC Cmic Growth qGrowth CUE Respiration qCO2 Root C

1.	SOC

2.	Cmic 0.76*** 

3.	Growth 0.40***  0.65*** 

4.	qGrowth 0.15 0.33**  0.77*** 

5.	CUE 0.24*  0.39***  0.62***  0.50*** 

6.	Respiration 0.21†  0.31**  0.41***  0.26*  −0.40*** 

7.	qCO2 −0.24*  −0.27*  0.02 0.07 −0.65***  0.81*** 

8.	Root	C 0.41***  0.50***  0.48***  0.40***  0.24*  0.23*  −0.03

9.	Necromass	C 0.41***  0.54***  0.16 0.01 0.07 0.14 −0.17 0.29** 

Abbreviations:	Cmic,	microbial	biomass	carbon;	CUE,	microbial	carbon	use	efficiency;	growth,	microbial	growth;	necromass	C,	microbial	necromass	
carbon;	qCO2,	microbial	biomass‐specific	respiration;	qGrowth,	microbial	biomass‐specific	growth;	respiration,	microbial	respiration;	root	C,	root	
carbon;	SOC,	soil	organic	carbon.
†p	<	.1;	*p	<	.05;	**p	<	.01;	***p	<	.001.	
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model	remained	significant	when	the	latter	was	fitted	first	(Table	S1).	
The	exceptions	to	this	were	DOC	and	root	carbon	to	nitrogen	ratio,	
where	the	significant	PSR	effect	was	eliminated	if	plant	functional	
group	 richness	was	 included	 first	 (p	=	 .199	and	 .410,	 respectively;	
Table	S1).	These	findings	indicate	that	the	effects	of	PSR	generally	
exceeded	those	of	plant	functional	group	richness	on	the	soil	micro‐
bial	system.

3.3 | Plant functional group identity effects

We	found	contrasting	effects	of	grasses	and	legumes	on	many	of	
the	parameters	analyzed	 (Table	2),	and	 this	was	most	striking	 for	
root	carbon	and	root	carbon	to	nitrogen	ratios.	Specifically,	while	
grasses	significantly	increased	root	carbon	and	carbon	to	nitrogen	
ratio	 (p = .020 and p	 <	 .001;	 Table	 2),	 legumes	 had	 a	 significant	
negative	effect	(p	<	.001	and	.001;	Table	2).	Furthermore,	the	pres‐
ence	of	grasses	increased	DOC	content,	biomass‐specific	growth,	
and	microbial	necromass	carbon	(p	=	.032,	.087,	and	.008;	Table	2),	
whereas	legumes	again	showed	the	opposite	effect	(p	=	.003,	.056,	
and	 .067;	 Table	 2).	 Concordant	 with	 effects	 on	 biomass‐specific	
growth,	 microbial	 turnover	 time	 decreased	 in	 the	 presence	 of	
grasses	 and	 increased	 in	 the	 presence	 of	 legumes.	 Legumes	 also	
had	a	negative	impact	on	microbial	biomass	and	microbial	growth	
(p	=	.002	and	.013,	respectively;	Table	2),	but	these	variables	were	
additionally	 positively	 affected	 by	 the	 functional	 group	 of	 small	
herbs	(p	=	.004	and	.039;	Table	2).	Finally,	small	herbs	had	a	signifi‐
cant	positive	effect	on	SOC	content	(p	=	.012;	Table	2).	Tall	herbs	
did	 not	 exhibit	 any	 significant	 impact	 on	 measured	 parameters	
(Table	2).

4  | DISCUSSION

Species‐rich	grasslands	are	fundamental	for	many	ecosystem	pro‐
cesses	 and	 services	 and	 are	 important	 for	 increasing	 the	 carbon	
storage	 of	 terrestrial	 ecosystems	 (Hungate	 et	 al.,	 2017).	 Higher	
SOC	 storage	 is	 believed	 to	be	 either	 due	 to	 greater	 plant	 inputs	
and/or	 due	 to	 lower	 losses	 of	 organic	 carbon	 at	 high	 levels	 of	
plant	diversity,	 the	 latter	of	which	 reflects	a	higher	efficiency	of	
soil	microbial	carbon	cycling.	We	found	here	 that	 increasing	PSR	
promoted	microbial	biomass	both	directly	and	 indirectly	 through	
higher	plant	carbon	inputs	(as	indicated	by	higher	root	carbon	mass	
per	 area)	 and	 faster	microbial	 growth.	 This	 increase	 in	microbial	
biomass	was,	in	turn,	mechanistically	coupled	with	the	build‐up	of	
SOC,	 as	 shown	by	piecewise	SEM.	Moreover,	microbial	 turnover	
rates	increased	with	increasing	PSR,	which	most	likely	triggered	in‐
creases	in	microbial	necromass	and	thus	contributed	to	the	higher	
SOC	 content	 found	 in	 species‐rich	 plant	 communities.	 Although	
these	connections	could	not	be	demonstrated	in	a	single	common	
SEM,	fungal	necromass	significantly	determined	SOC	in	a	reduced	
structure	of	the	SEM	(Figure	S3b).	In	contrast,	changes	in	microbial	
respiration	or	CUE	were	not	causally	linked	to	the	increase	in	SOC	
content	with	increasing	PSR.

The	established	positive	relationship	between	plant	diversity	and	
productivity	is	commonly	coupled	with	increased	aboveground	living	
and	dead	plant	biomass,	as	well	as	with	higher	belowground	biomass	
production	and	root	exudation	 (El	Moujahid	et	al.,	2017;	Fornara	&	
Tilman,	2008;	Ravenek	et	al.,	2014;	Roscher	et	al.,	2005).	Root	bio‐
mass	 and	 root‐associated	products,	 such	as	belowground	 litter	 and	
root	exudates,	are	the	main	forms	of	carbon	input	into	soils	and	repre‐
sent	important	carbon	sources	for	soil	microbes.	Greater	root	inputs	
into	soils,	however,	can	trigger	decreases	(Steinbeiss,	Temperton,	et	
al.,	 2008)	or	 increases	 in	SOC	storage	 (Xu,	 Liu,	&	Sayer,	2013),	 de‐
pending	 on	 the	 responses	 of	microbial	 carbon	metabolism	 and	 the	
extent	of	rhizosphere	priming	effects.	Our	findings	of	higher	micro‐
bial	biomass	and	activity	in	response	to	increasing	PSR	concomitant	
with	 increased	belowground	carbon	 input	as	evidenced	by	a	higher	
root	 biomass	 carbon	 is	 in	 line	 with	 earlier	 studies	 from	 the	 Jena	
Experiment	 (Eisenhauer	et	al.,	2010;	Lange	et	al.,	2015;	Strecker	et	
al.,	 2015).	 However,	 when	 splitting	 overall	 ‘microbial	 activity’	 into	
anabolic	and	catabolic	processes,	we	observed	a	more	pronounced	
increase	in	growth	(twofold)	than	in	respiration	(1.5‐fold),	 indicating	
a	relatively	greater	anabolic	capacity	of	soil	microbial	communities	at	
high	PSR	levels.	We	suggest	that	this	caused	soil	microbial	biomass	to	
increase,	which	explains	the	higher	growth	rates	observed	per	unit	of	
soil	mass.	Interestingly,	biomass‐specific	respiration	rates	and	micro‐
bial	CUE	did	not	respond	to	changes	 in	PSR,	while	biomass‐specific	
growth	rates	 increased	significantly	with	 increasing	PSR.	This	 is	 im‐
portant	because	biomass‐specific	rates	represent	the	microbial	phys‐
iology	 independently	 of	microbial	 biomass.	 The	 latter	 is	 equivalent	
to	microbial	turnover	at	steady	state	conditions	(i.e.,	when	microbial	
biomass	remains	constant	 in	the	short	term,	as	expected	 in	a	24	hr	
measurement	period,	and	as	shown	by	Zheng	et	al.	(2019)),	explain‐
ing	why	both	microbial	growth	and	microbial	biomass	turnover	rates	
accelerated	under	increasing	PSR.	In	the	long	term	(at	decadal	scales),	
accelerated	microbial	growth	and	faster	microbial	turnover	rates	will	
promote	microbial	necromass	formation.	This	accelerated	production	
and	turnover	of	microbial	biomass	is	expected	to	promote	SOC	stor‐
age	via	ongoing	iterative	cycles	of	microbial	proliferation,	growth,	and	
death,	ultimately	leading	to	incorporation	of	higher	amounts	of	micro‐
bial‐derived	carbon	 in	 the	SOC	pool	of	more	diverse	plant	commu‐
nities.	Thus,	microbial	growth	increased	through	higher	plant	carbon	
inputs	has	the	potential	to	fuel	the	soil	organic	matter	reservoir	with	
microbially	derived	carbon	due	to	both	accelerated	biomass	and	nec‐
romass	formation	(Liang,	Cheng,	Wixon,	&	Balser,	2011).	We	further	
stress	the	importance	of	measuring	microbial	respiration	and	growth	
simultaneously,	when	assessing	microbial	contributions	to	SOC	accu‐
mulation,	as	both	processes	affect	SOC	dynamics	 in	different	ways	
(Data	S1).

The	observed	increase	in	microbial	necromass	carbon	with	PSR	
was	mainly	 driven	 by	 increases	 in	 the	 formation	 of	 fungal	 necro‐
mass,	since	bacterial	necromass	did	not	respond	to	manipulations	in	
PSR.	As	such,	the	fungal	to	bacterial	necromass	ratio	also	increased	
with	 increasing	PSR.	Fungal‐derived	necromass	was	 shown	 to	 sig‐
nificantly	 contribute	 to	 soil	 organic	matter	 accumulation	 that	was	
also	 strongly	 promoted	 by	 efficient	microbial	 biomass	 production	
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(Kallenbach,	Frey,	&	Grandy,	2016;	Li	et	al.,	2015).	While	a	previous	
study	 from	 the	 same	experiment	 reported	no	PSR	but	plant	 func‐
tional	 group	 richness	effects	on	 fungal	 to	bacterial	biomass	 ratios	
based	 on	 phospholipid	 fatty	 acid	 analysis	 (Lange	 et	 al.,	 2014),	we	
found	 that	 the	 corresponding	 necromass	 ratio	was	more	 strongly	
driven	by	PSR	(Table	2)	than	by	functional	group	richness	(Table	S1).	 
More	diverse	plant	mixtures	most	likely	support	soil	microbial	com‐
munities	 with	 a	 larger	 amount	 and	 higher	 diversity	 of	 resources,	
which	is	supported	by	previous	work	at	this	experiment	demonstrat‐
ing	a	higher	diversity	of	organic	compounds	of	low	molecular	weight,	
such	 as	 organic	 acids,	 at	 higher	 levels	 of	 PSR	 (El	Moujahid	 et	 al.,	
2017).	This	suggests	that	the	diversity	of	more	complex	compounds,	
such	as	lignins,	proteins,	and	condensed	tannins,	may	also	be	higher	
with	increasing	PSR.	Both	the	quality	and	quantity	of	substrates	are	
known	 to	 affect	 bacterial	 and	 fungal	 growth,	 with	 fungal	 growth	
being	more	promoted	by	complex	carbon	substrates	and	increased	
loading	 rates	 of	 available	 substrate	 compared	 to	 bacterial	 growth	
(Rousk	&	Baath,	 2011).	 This	 could	 have	 translated	 into	 the	 higher	
fungal	 to	 bacterial	 necromass	 ratios	 observed	 here.	 Alternatively,	
it	cannot	be	ruled	out	that	the	recycling	of	bacterial	necromass	by	
the	active	microbial	community	is	faster	than	that	of	the	fungal	nec‐
romass	 at	 higher	 PSR,	 for	 example,	 because	 bacterial	 remains	 are	
thought	to	be	richer	in	nutrients	(Sterner	&	Elser,	2002)	or	because	
fungal	necromass	decomposition	is	retarded	by	melanin	impregna‐
tion	(Fernandez,	Langley,	Chapman,	McCormack,	&	Koide,	2016).

Increased	 labile	 carbon	 inputs	 can	 trigger	 the	 activation	 of	 dor‐
mant	 microbes	 (Blagodatskaya	 &	 Kuzyakov,	 2013)	 by	 alleviation	 of	
their	carbon	limitation	(Demoling,	Figueroa,	&	Baath,	2007).	We	found	
little	evidence,	however,	that	soil	microbes	were	released	from	carbon	
limitation	through	increased	plant	carbon	inputs	at	higher	PSR,	since	
we	observed	no	response	in	microbial	CUE	and	in	biomass‐specific	res‐
piration.	Microbial	CUE	was	shown	to	decrease	and	biomass‐specific	
respiration	to	increase	under	conditions	of	increasing	carbon	availabil‐
ity	(Manzoni	et	al.,	2012;	Spohn	&	Chodak,	2015).	However,	biomass‐ 
specific	 respiration,	 determined	 as	 the	 ratio	of	 soil	 basal	 respiration	
to	 soil	 microbial	 biomass,	 does	 not	 provide	 any	 information	 about	
how	much	of	the	carbon	taken	up	by	microbes	 is	used	for	microbial	
growth	and	thereby	is	incorporated	into	microbial	biomass.	Therefore,	
although	biomass‐specific	respiration	and	CUE	both	refer	to	microbial	
utilization	of	carbon,	biomass‐specific	respiration	should	not	be	used	
as	a	proxy	for	microbial	CUE,	which	is	defined	by	the	ratio	of	growth	
over	carbon	uptake.	Nonetheless	biomass‐specific	respiration	is	a	valu‐
able	indicator	as	a	relative	measure	of	the	degree	of	substrate	limita‐
tion	of	the	soil	microbial	community	(Wardle	&	Ghani,	1995).

No	response	of	microbial	biomass‐specific	respiration	and	CUE	
implies	 that	although	more	plant‐derived	carbon	will	have	entered	
the	soil	 in	more	diverse	plant	communities,	the	soil	microbial	com‐
munity	most	 likely	did	not	change	 in	nutritional	 limitations	but	 re‐
mained	carbon	limited	or	carbon	to	nutrient	colimited,	even	at	high	
PSR	 levels.	 This	 is	 in	 concordance	with	 observations	 from	 a	 large	
suite	of	soils	differing	in	land	use,	soil	organic	matter	content,	nutri‐
ent	status,	soil	pH,	and	spanning	a	wide	range	of	soil	carbon	to	nitro‐
gen	ratios,	which	have	shown	that	soil	microbial	growth,	determined	

by	radiotracer	incorporation	approaches,	is	most	commonly	limited	
by	 a	 lack	 of	 carbon	 or	 energy	 (Alden,	 Demoling,	 &	 Baath,	 2001;	
Demoling	et	al.,	2007;	Kamble	&	Baath,	2014).

We	did	not	find	support	for	our	expectation	that	microbial	CUE	
would	change	with	PSR.	Changes	in	microbial	CUE,	therefore,	can‐
not	explain	the	increase	in	SOC	accumulation	with	PSR.	Increasing	
resource	 carbon	 to	 nutrient	 ratios	 for	 soil	 microbial	 communities	
have	been	shown	to	decrease	microbial	CUE	(Manzoni	et	al.,	2012).	
In	the	Jena	Experiment,	not	only	the	quantity	but	also	the	quality	
of	plant	biomass	responded	to	changes	in	plant	diversity	as	carbon	
to	nitrogen	ratios	increased	significantly	with	PSR.	This	 is	thought	
to	be	a	consequence	of	altered	nutrient	allocation	and	carbon	fixa‐
tion	patterns	of	aboveground	vegetation	(Abbas	et	al.,	2013;	Vogel,	
Eisenhauer,	 Weigelt,	 &	 Scherer‐Lorenzen,	 2013),	 and	 because	 of	
shifts	 in	 the	 identity	 and	 proportional	 composition	 of	 plant	 func‐
tional	groups,	especially	in	the	case	of	root	stoichiometry	(Chen	et	
al.,	2017).	Plant	detrital	material	can	be	expected	to	have	even	wider	
carbon	 to	 nutrient	 ratios	 compared	 to	 living	 plant	 tissues,	 due	 to	
remobilization	of	nutrients	prior	to	litter	production.	These	changes	
in	carbon	to	nitrogen	ratios	of	plant	biomass	and	detritus	most	likely	
translated	into	unfavorable	substrate	stoichiometries	for	soil	micro‐
bial	 communities,	 as	 also	 reflected	 in	 the	 increasing	 root	 and	 soil	
carbon	to	nitrogen	ratios	observed	here	with	increasing	PSR	(Tables	
1	and	2	for	root	stoichiometry	only).	Constant	microbial	CUE,	there‐
fore,	also	suggests	that	microbial	communities	here	operate	below	
their	 threshold	 element	 ratio	 and	 therefore	 experience	persistent	
carbon	limitation	(Mooshammer,	Wanek,	Zechmeister‐Boltenstern,	
&	Richter,	2014).

When	compared	 to	PSR,	 functional	group	 richness	was	of	 less	
importance	 to	microbially	 driven	 SOC	 build‐up.	 Specifically,	while	
functional	 group	 richness	 also	 promoted	 microbial	 biomass	 in‐
creases	 that	 translated	 into	 the	 build‐up	 of	 SOC,	 this	 effect	 was	
less	 pronounced	 and	 was	 neither	 mediated	 through	 root	 carbon	
input	 nor	 through	 microbial	 growth.	 This	 is	 important	 because	
previous	 findings	have	shown	that	both	PSR	and	 functional	group	
richness	 increase	 aboveground	 community	 biomass	 (Marquard	 
et	al.,	2009),	but	we	demonstrate	here	that	only	PSR	effects	extend	
belowground.	Despite	this,	we	found	clear	effects	of	the	presence	
versus	 absence	 of	 different	 functional	 groups,	 and	 particularly	 of	
legumes,	on	the	soil	microbial	system.	Specifically,	we	found	that	le‐
gumes	decreased	root	biomass,	microbial	growth,	microbial	biomass,	
and	 turnover	 rates.	 While	 we	 did	 not	 observe	 a	 legume‐induced	
reduction	 in	 biomass‐specific	 respiration,	 as	 previously	 reported	
from	the	same	experiment	 (Strecker	et	al.,	2015),	our	findings	add	
support	to	the	notion	that	 legumes	have	a	negative	 impact	on	soil	
microbial	processes.	This	is	coupled	with	the	fact	that	legumes	have	
been	shown	to	decrease	 root	biomass	 (Ravenek	et	al.,	2014).	As	a	
consequence,	our	 findings	suggest	 that	 legumes,	as	the	only	func‐
tional	group	here	with	negative	effects	on	the	soil	microbial	system,	
are	responsible	for	the	reductions	in	SOC	content	observed	in	this	 
experiment,	and	act	via	their	inhibitory	influence	on	community‐level	
root	 biomass,	 and	 thereby	 on	microbial	 biomass	 and	 activity.	We	
posit	that	this	legume	effect	arises	due	to	the	ability	of	legumes	to	
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fix	nitrogen	through	symbioses	with	nitrogen‐fixing	bacteria,	caus‐
ing	increased	soil	nitrogen	availability	and	leading	to	a	reduced	need	
to	allocate	photosynthetic	carbon	to	root	biomass	at	the	community	
level.	By	comparison,	grasses	are	known	to	invest	relatively	exten‐
sively	in	root	biomass,	which	may	be	responsible	for	our	observations	
that	grasses	supported	microbially	driven	SOC	build‐up	(Figure	S4b).	 
Tall	 herbs	 did	 not	 affect	 the	 soil	 microbial	 system,	whereas	 small	
herbs	significantly	increased	microbial	growth	and	biomass	and	thus	
led	 to	 increases	 in	 SOC	 (Figure	 S4c).	 This	 positive	 effect	 of	 small	
herbs	was	rather	unexpected	and	needs	further	clarification.

In	conclusion,	species‐rich	plant	communities,	most	likely	through	
greater	plant	organic	matter	inputs,	promoted	the	growth	of	soil	mi‐
crobial	 communities	 more	 strongly	 than	 their	 respiratory	 activity,	
triggering	increases	in	microbial	biomass.	At	the	same	time,	microbial	
biomass	turnover	rates	increased,	thereby	promoting	microbial	nec‐
romass	formation.	We	show	that	these	mechanisms	together	 led	to	
SOC	accumulation.	Clearly	changes	to	the	soil	system	are	themselves	
a	driver	of	change	in	the	plant	community,	and	thus	the	changes	we	
observed	to	some	extent	reflect	the	coupling	between	shifts	in	plant	
communities	and	the	soil	system.	This	is	the	first	evidence	of	causal	
links	between	microbial	physiology,	microbial	biomass,	and	necromass	
build‐up	and	SOC	storage	in	the	context	of	plant	biodiversity.
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