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Correlation-informed ordered dictionary

learning for imaging in complex media

M. Moscoso∗, A. Novikov†, G. Papanicolaou‡and C. Tsogka§

March 20, 2024

Abstract

We propose a method for imaging in scattering media when large
and diverse data sets are available. It has two steps. Using a dic-
tionary learning algorithm the first step estimates the true Green’s
function vectors as columns in an unordered sensing matrix. The ar-
ray data comes from many sparse sets of sources whose location and
strength are not known to us. In the second step the columns of
the estimated sensing matrix are ordered for imaging using the Multi-
Dimensional Scaling algorithm with connectivity information derived
from cross correlations of its columns, as in time reversal. For these
two steps to work together we need data from large arrays of receivers
so the columns of the sensing matrix are incoherent for the first step,
as well as from sub-arrays so that they are coherent enough to obtain
connectivity needed in the second step. Through simulation experi-
ments, we show that the proposed method is able to provide images in
complex media whose resolution is that of a homogeneous medium.

1 Introduction

High-resolution imaging in complex media faces challenges due to wavefront
distortion caused by scattering from inhomogeneities. In this paper we in-
troduce a new method for imaging in a randomly inhomogeneous medium
involving two basic algorithms. The first is a sparse dictionary learning
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algorithm [17] in order to estimate Green’s function vectors between focal
or source points in the image window and receiver locations on the array.
The second is a Multi-Dimensional Scaling (MDS) algorithm [10] to convert
information about correlations of Green’s function vectors into positions of
the focal points in the image window.

To accomplish the first step, we use a sparsity promoting modification
of the Method of Optimal Directions (MOD) [14] to learn an (unordered)
dictionary of Green’s function vectors that characterize the propagation of
signals from a set of focal points, or sources in the image window, to the
array. Here unordered means that we do not know which focal points are
associated with the estimated column vectors of the dictionary. In this step
we assume that an abundance of sensing measurements is available. Specif-
ically, we have access to measurements for multiple signals emanating from
many sparse sets of sources, but we do not have prior knowledge of their
locations or amplitudes. This dictionary learning algorithm enables us to es-
timate Green’s function vectors with high accuracy under the condition that
these vectors are sufficiently incoherent, which means that their normalized
inner product is sufficiently small. Given a configuration of sources or focal
points in the image window, this implies that the receiver array must be
large enough. We present this dictionary learning step in Section 33.1.

The goal of the second step is to associate each Green’s function vector
with its corresponding focal point in the image window, which means that
we want to find the correct order of the columns in the estimated matrix of
Green’s function vectors. We could back propagate these vectors into the
image window using a reference homogeneous medium. This is the Kirch-
hoff’s migration approach that only works well when the fluctuations are
weak [8]. For a given set of Green’s function vectors we could also try to es-
timate the position of their focal points using source localization algorithms,
commonly used in wireless communications [4, 25, 27, 26]. However, these
algorithms use information based on distances between sources and receivers
and are therefore very sensitive to noise. They are not suitable for imaging
in media with strong fluctuations.

Instead of estimating the distance between a focal point and a receiver,
we can obtain a much more accurate estimate of the distance between two
nearby focal points. The correlation of the estimated Green’s function vec-
tors gives such an estimate but, of course, we do not know where their focal
points are located in the image window. By cross correlating each Green’s
function vector with all the others we can identify its nearest neighbors.
This is a key observation that allows us to generate a proxy distance be-
tween column or Green’s function vectors by counting the smallest number
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of neighborhoods that connect them. This provides a connectivity-based
proxy distance between all pairs of column vectors that we can use with
the Multidimensional Scaling (MDS) algorithm [10] for identifying Green’s
function vectors with their focal points up to a rotation, translation and
scaling. The resulting relative configuration of points can be spatially fixed
with a few (two or three) known reference points in the two dimensional im-
age window. The use of a proxy metric based on connectivity is done by the
MDS-MAP algorithm [24, 21]. Constructing the connectivity-based proxy
distance using cross correlations is described in Section 33.2. We should
point out that this use of cross-correlations is different from another use of
cross-correlations in imaging, in fields such as geophysics [16, 5], where the
gathered data is cross-correlated to estimate the Green’s function between
two receivers in complex media.

2 Imaging problem setup

Suppose that an array of N receivers records waves generated by sources
located over a region of interest, called the image window. The receivers
are located at points r⃗j , and the sources at unknown locations z⃗i. In Figure
1, it is assumed that the array is one-dimensional. The coordinates parallel
to this array are the cross-range coordinates, and the ones orthogonal to it
the range coordinates. The medium between the array and the unknown
sources fluctuates randomly in space as illustrated in Figure 1. The Green’s
function that characterizes wave propagation of a signal of frequency ω from
a point z⃗ to a point r⃗ in the random medium satisfies the wave equation

∆G(z⃗, r⃗) + κ2 n2(z⃗)G(z⃗, r⃗) = δ(z⃗ − r⃗), (1)

where κ = ω/c0 is the wavenumber with constant reference wave speed c0.
The random index of refraction is n(z⃗) = c0/c(z⃗) with local wave speed c(z⃗).
In a homogeneous medium, c(z⃗) ≡ c0 for any location z⃗ and, in this case,
G(z⃗, r⃗) = G0(z⃗, r⃗), where

G0(z⃗, r⃗) =
exp(i κ |z⃗ − r⃗|)

4π|z⃗ − r⃗|
. (2)

In random media, however, the wave speed c(z⃗) depends on the position z⃗.
We consider a variable wave speed satisfying

1

c2(z⃗)
=

1

c20

(
1 + σµ(

z⃗

l
)

)
, (3)
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where l is the correlation length of the inhomogeneities that is characteristic
of their size. In (3), σ determines the strength of the fluctuations around
the constant speed c0, and µ(·) is a stationary random process with zero
mean and normalized autocorrelation function R(|z⃗i− z⃗i′ |) = E(µ(z⃗i)µ(z⃗i′)),
so R(0) = 1. .

r⃗N

r⃗j

r⃗1

L

z⃗i′

z⃗i

z⃗i′′
xi′G(r⃗j, z⃗i′)
xiG

(r⃗j, z⃗i
)

xi′′G(r⃗j, z⃗i′′)

Figure 1: Schematic of the data collected on the array when three sources
located at z⃗i, z⃗i′ and z⃗i′′ simultaneously emit signals. It is the superposition
of these signals that are recorded on the array of receivers located at points
r⃗j , j = 1, . . . ,N .

We write the data received on the array of N receivers in vector form,
with Green’s function vector

g(z⃗) = [G(r⃗1, z⃗),G(r⃗2, z⃗), . . . ,G(r⃗N , z⃗)]T , (4)

and we introduce the N ×K sensing matrix

G = [g(z⃗1) · · · g(z⃗K)] (5)

defined on a grid {z⃗i}i=1,...,K spanning the image window. The sensing
matrix G maps a distribution of sources in the image window to the (single
frequency) data received on the array. The multi-frequency case is described
in Section 4. For a given configuration of sources on the grid represented by
the vector x ∈ CK , the data recorded on the array is given by

y = G x , (6)

where y ∈ CN . Here, x is a vector whose jth component represents the com-
plex amplitude of the source at location z⃗j in the image window, j = 1, . . . ,K.

Because the medium is random, the sensing matrix G in (6) is not known.
Our imaging problem is to estimate this matrix from a set of M samples or
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observations {yi}i=1,...,M , with yi = G xi. The number of observations is
large with respect to the dimension of the vectors xi, i.e., M ≫ K. Note
that xi is also unknown but we assume that it is sparse, implying that the
samples yi can be represented as a linear combination of a small number of
columns of the unknown sensing matrix G. Since we do not know xi, both
the locations and the amplitudes of the sources are unknown. We assume
that for the few sources that are active for every sample the modulus of their
amplitude takes values in a bounded interval away from zero.

(a)

a

Zoom of the

refocused spots

(b)

a/2

L

Figure 2: Refocused spots with (a) a large array used in the first step of the
algorithm and (b) a small array used in the second step.

We note that, for imaging problems, the coherence between the columns
of the sensing matrix G increases as the grid in the image window becomes
finer. This can be challenging for the sparse dictionary learning algorithm,
described in the next section, as its convergence is guaranteed under incoher-
ence or restricted isometry property assumptions [1]. Coherence is defined
as the maximum of the normalized inner product between different columns
of the matrix, i.e.,

ν =
K

max
i,j=1

i ̸=j

|g(z⃗i)∗g(z⃗j)|
||g(z⃗i)|| ||g(z⃗j)||

. (7)
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Given the size of the recording array and the bandwidth, in order to limit
the coherence between the columns of G we assume that the grid in the
image window is not finer than the support of the point spread function in
a reference homogeneous medium; see Figure 2-(a). This is essential for the
first step of the imaging method, the dictionary learning step. The point
spread function of an imaging system is the image one obtains when the
signal from a single source is used as input. The proposed two-step imaging
method is described next.

3 The two-step imaging method

The first step of our imaging method uses a dictionary learning algorithm
and allows us to recover the columns of the sensing matrix up to a permuta-
tion. Although in most of the applications of dictionary learning the order
of the columns is not an issue, it is essential in the imaging case. That is
because even though we recover the Green’s function vectors, the imaging
problem is still not solved as we do not know their correspondence with the
grid points in the image window. To create an image we need to associate
each column of the estimated matrix Ĝ with the corresponding focal point
in the image window. This is challenging since the propagation medium is
unknown, so we cannot just back-propagate the recovered Green’s function
vectors, as it is done in time reversal.

In the second step of our method, we deal with the focal spot localization
problem where we associate each recovered Green’s function vector ĝi with
its corresponding focal or source point in the image window. The key idea is
the use of cross-correlations between the columns of the estimated matrix Ĝ
to identify the nearest neighbors of their focal or source points in the image
window and then infer their associated focal points on the grid. Coherence
becomes crucial in this step, as we cannot identify the nearest neighbors
of each focal point if Ĝ is column-incoherent. We can do this, however,
by using for the cross-correlations a suitable subset of the elements of the
estimated columns ĝi corresponding to a fraction of the size of the recording
array. An example is illustrated in Figure 2-(b) where a subarray of half the
size is used. The grid reconstruction problem is then solved using the MDS
algorithm with a proxy distance, as in sensor network localization problems
[21]. No Euclidian distance information is known but a proxy distance is
obtained from connectivity information at limited range that is recovered
from cross-correlations.

The cross-correlations formed can be interpreted as time reversal exper-
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iments. That is, the signals recorded on the array are re-emitted in the
same medium and given the time-reversibility of the wave equation, those
signals will focus at the location from which the original signal was emitted.
Our connectivity reconstruction relies on this fundamental property of the
wave equation and therefore is robust to the complexity of the medium. Our
numerical simulations confirm that this is the case.

3.1 Step one: Dictionary learning

We discuss here an algorithm aimed at learning from the gathered data a
dictionary A ∈ CN×K that represents the normalized sensing matrix (5).
We assume that the recorded signals yi ∈ CN , i = 1, . . . ,M , the data,
come from only a few sources and can therefore be represented as a linear
combination of a small number of columns in the dictionary A we want
to determine. This means that yi = Axi, where xi ∈ CK are sparse
vectors that represent unknown collections of sources firing at the same
time. For imaging applications, we can assume that the columns of A have
unit lengths. We also assume that we know the dimension K (with usually
K ≫ N), which is the number of points in the image window and therefore
specifies the resolution of the image. An estimate of K can be based on the
resolution of the imaging setup expected in a homogeneous medium. In a
random medium resolution in time reversal, but not in imaging, will improve
[15, 7] and therefore K could be larger. We assume here that K is chosen
based on a homogeneous medium.

To find the dictionary A and the layout of sources, we define the matrix
X = [x1, . . . ,xM ] ∈ CK×M and the data matrix Y = [y1, . . . ,yM ] ∈ CN×M ,
and solve the problem

min
A,X

∥AX−Y∥2F
s.t. ∥xi∥0 ≤ s, i = 1, . . . ,M ,

(8)

where ∥ · ∥0 counts the number of non-zero elements and s is the expected
sparsity level. The decomposition Y = AX is unique up to permutations of
the columns of A and rows of X provided that the data Y is rich enough
[3].

How much data do we need, that is, how big should M be? As al-
ready noted, in imaging we usually have K ≫ N . If the sparsity s is fixed
independent of N then the condition

M > K logK (9)

is sufficient for a suitable probabilistic model of A,X,Y [2, 20].
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Problem (8) is non-convex, as the constraint is not convex and both A
and X are unknown. However, its solution can be found efficiently by means
of an alternating optimization procedure that uses the ℓ1-norm instead of
the sparsity count, provided the initialization is close enough to the true
solution and the columns of X are sparse enough. We refer the reader to [1]
for local convergence guarantees.

Specifically, if A is known, then X can be obtained from the ℓ1-norm
minimization problem

min ∥X∥1 subject to AX = Y , (10)

that can be easily solved by several different algorithms [12, 22, 13, 6].
Here we solve (10) using a Generalized Lagrangian Multiplier Algorithm
(GeLMA) [18]. In the next step, if X is known, the minimization problem
for A

min
A

∥AX−Y∥2F , (11)

can be easily solved. The exact solution is A = YXT (XXT )−1, provided
XXT is invertible (actually stably invertible). Once A has been computed
we normalize its columns to one.

To summarize, in order to solve (8), we alternate between problems (10)
and (11) to update X and A sequentially one after the other. Each iteration
has two steps, starting from an initial guess X0 and A0. At the beginning
of iteration l ≥ 1 we have Al−1 and Xl−1, and we solve (10) with A = Al−1

to obtain Xl using GeLMA. Then, we solve (11) with X = Xl fixed to find

Al = YXT
l (XlX

T
l )

−1 (12)

in the second step. This is very much like the Method of Optimal Directions
(MOD) algorithm proposed in [14] for signal compression that uses Matching
Pursuit for finding Xl instead of GeLMA in the first step.

Our numerical experiments indicate that, given a suitable initialization,
this dictionary learning algorithm can construct the matrix of Green’s func-
tions for wave propagation in random media. However, the columns of this
matrix, the dictionary, are unordered. They cannot be used for imaging
because we do not know the points where they focus in the image window.
The next Section addresses this problem.

3.2 Step two: Grid reconstruction

We describe now an algorithm for finding the focal spots in the image window
from the estimated Green’s function vectors {ĝi}Ki=1. It is the range-free or
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connectivity based sensor localization algorithm [24], analyzed in [21]. Our
main contribution here is to determine connectivity from cross-correlations
of the Green’s function vectors {ĝi}Ki=1, which now must retain some co-
herence. However, the dictionary learning algorithm of the previous section
requires incoherence, which means that the ν in (7) for the estimated {ĝi}Ki=1

is small. By using a subset of the components of the {ĝi}Ki=1, corresponding
to a subarray as illustrated in Figure 2, we increase their coherence. In this
Section we use the same notation {ĝi}Ki=1 for their subsampled components.

This increased coherence is essential for the connectivity-based localiza-
tion algorithm because it allows us to introduce a graph G = (V ,E) where
the vertex set V = {1, 2, . . . ,K} is associated with the estimated Green’s
function vectors {ĝi}Ki=1. A pair of vertices (i, j) is then connected by an
edge in E, and assigned the value one in the adjacency matrix of the graph,
if the cross-correlation ĝ∗

i ĝj is sufficiently close to one in absolute value.
Otherwise, the pair (i, j) is not connected, and zero is entered in the adja-
cency matrix. The size of the subarray of receivers is adjusted so that each
vertex has up to k = 2r edges, where r = 2, 3 is the ambient dimension of
the image window.

The proxy distance between two Green’s function vectors is now the
geodesic graph distance between their corresponding vertices. That is, the
proxy distance between ĝi and ĝj , denoted by d̂ij , is the number of edges
in the shortest path connecting i and j. We use this proxy distance as
a replacement of the Euclidean distance between pairs of focal points in
the image window associated with Green’s function vectors in the MDS
algorithm. The resulting configuration of focal points Ẑ = [̂⃗z1, ̂⃗z2, . . . , ̂⃗zK ]T

in the image window provides an estimate for the true configuration of focal
points Z = [z⃗1, z⃗2, . . . , z⃗K ]T , up to rotation, translation and scaling. This is
the MDS-MAP algorithm [24] with our correlation-based proxy distance as
in Algorithm 1.

When the true Euclidean distance D = (dij) is used instead of D̂ = (d̂il)
the classical metric MDS algorithm [10] recovers the configuration of focal
points Z = [z⃗1, z⃗2, . . . , z⃗K ]T up to rotation and translation. In this case
the input is a K × K squared distance matrix D with entries dij , dij =
(z⃗i − z⃗j)

T (z⃗i − z⃗j), and the output the K × r configuration matrix of focal
points Z. We have that [10]

−1

2
LDL = LZZTL , (13)

where L = IK −1lK1lTK/K is a centering matrix, with IK the K×K identity
matrix, and 1lK the column vector of all ones. This means that the matrices
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Algorithm 1 Reconstruction of focal points in image window

INPUT: N ×K matrix Ĝ with columns ĝi, space dimensions r = 2, 3.
OUTPUT:Matrix Ẑ whose column vectors are the estimated coordinates
of the grid points ̂⃗zi, i = 1, . . . ,K.

Compute G = (V ,E), with V = {1, 2, . . . ,K} and E so that each node
is connected to 2r neighbors; those corresponding to the 2r-largest values
of |ĝ∗

i ĝj |.
Compute the proxy for distance matrix D̂:

if (i, j) ∈ E then

d̂ij = 1.

else

d̂ij = shortest path along G

end if

Compute P = −1
2LD̂LT , where L = IK − 1lK1lTK/K.

Diagonalize P : P = UΣUT .

Compute Ẑ = UrΣ
1/2
r .

ZZT and −D/2 are equal when the center of mass of the configuration is
moved to zero. For the Euclidean distance matrixD, Algorithm 1 determines
the Euclidean coordinates of the focal points.

The rank of the matrix P = −1
2LDL equals the ambient dimension r of

the image window when the Euclidian distance matrix D is used in the MDS
algorithm. When we use the geodesic distance D̂ on the graph then the rank
of P is not equal to r any more. However, the first r singular vectors of P
are close to the true coordinates Z (up to centering and rotation) [21]. This
is illustrated in Figure 3. The absolute location of the focal points in the
image window can be determined using the true location of a few of them,
the anchors. These anchors allow us to find the proper rigid transformation
and scaling to superimpose the given configuration over them. The anchors
can be known a priori or their location can be estimated using coherent
interferometric imaging [9]. The number of anchors needed is small, typically
r + 1.
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Figure 3: The singular values of the doubly centered distance matrix P
normalized by the maximal one are plotted with red circles when D is used
(rank is exactly 2) and with blue stars when D̂ is used. There are exactly 2
top singular values in the second case as well, plotted with blue stars, and
the lower eigenvalues drop to zero fast but are not immediately zero as with
the red circles.

4 Numerical experiments

To simulate wave propagation in random media we use the random travel
time model ([9, 19] and references therein) which provides an analytical
approximation for the Green’s function in (1) in the high-frequency regime in
random media with weak fluctuations and large correlation lengths ℓ = 100λ
compared to the central wavelength λ, given by

G(z⃗, r⃗) = G0(z⃗, r⃗) exp

[
iσκ|z⃗ − r⃗|

∫ 1

0
µ(

z⃗

l
+

s

l
(r⃗ − z⃗)) ds

]
. (14)

Comparing Eqs. (14) and (2) for an homogeneous medium we see that, in
this regime, only the phases are perturbed by the random medium while the
magnitudes remain unchanged. This model is widely used in adaptive optics
as it captures well waveform distortions in heterogeneous media [23]. It does
not capture, however, the delay spread (coda) due to multiple scattering and
does not provide cross-range diversity.

In our numerical experiments the distance between the array and the
image window L = 100ℓ is large, so the small distortions produced by each
inhomogeneity build up over the propagation distance and are significant at
the receivers. The strength of the fluctuations σ is scaled by the dimension-
less parameter λ/

√
lL, for which the standard deviation of the random phase
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Figure 4: Cross-correlations of the sensing matrix. Left: cross-correlations
of the sensing matrix in the random medium. Center: cross-correlations of
the sensing matrix in the homogeneous medium. Right cross-correlations be-
tween the sensing matrix in the random and homogeneous media. Strength
of the fluctuations of the random medium σ̃ = 0.8.

fluctuations in the Green’s function is O(1). The strength of the fluctuations
σ̃ = σ/(λ/

√
lL) in the simulations is σ̃ = 0.6 or σ̃ = 0.8.

The challenge is to obtain statistically stable results in these media.
Some previously proposed methods, such as coherent interferometry, provide
stable images but at the expense of resolution, causing some blurring [9].
Our approach produces stable images whose resolution is comparable to that
of a homogeneous medium.
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Figure 5: Maximum correlation between each estimated column and the true
ones in the sensing matrix, as in (15). In red the results when the columns
of the matrix are more incoherent (a = 48ℓ). In blue the results when the
columns of the matrix are more coherent (a = 24ℓ). Sparsity s = 4 on the
left and s = 8 on the right.

We consider the following setup for our numerical simulations. In the
first step of dictionary learning for the sensing matrix G we use the multi-
frequency data recorded with a large array aperture a = 48ℓ with Nr =
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145 equally spaced receivers (see Fig. 2). In the second step for the grid
reconstruction, we use the data corresponding to half the array aperture,
so a = 24ℓ. The bandwidth [0.5f , f ], with f = c0/λ, is discretized with
Nf = 10 equally spaced frequencies, and is the same for both steps of the
algorithm. We organize the multiple frequency data column-wise, so

Y = [Y(f1)
⊺,Y(f2)

⊺, . . . ,Y(fNf
)⊺]⊺ .

The multi-frequency sensing matrix is now

gi = [g(z⃗i, f1)
⊺, g(z⃗i, f2)

⊺, . . . , g(z⃗i, fNf
)⊺]⊺,

i = 1, . . . ,K. Thus, the sensing matrix G = [g1 · · · gK ] has dimensions
N ×K with N = Nr ·Nf . The sampling of the 20× 20 points in the image
window is based on the homogeneous medium array resolution, O(λL/a) in
cross-range and O(c0/B) in range [11, 7]. This means that we implicitly
assume that the sources are far part in the sense that the random Green’s
function vectors corresponding to this discretization are non-coherent, i.e.,
the coherence ν (7) is small.

In Figure 4, we assume that the sensing matrices corresponding to a
random medium G and to the homogeneous medium G0 are known, and we
show the cross-correlation matrices of G∗G (left), G∗

0G0 (center), and G∗G0

(right). For the homogeneous medium the Green’s function used is given by
(2). Each row i in these images corresponds to a time reversal experiment
where a source located at z⃗i emits a pulse, and the recorded signals are
time reversed and emitted back into the medium. When the waves are re-
emitted into the same medium in which the measurements were obtained, as
in the left and center images of Figure 4, they retrace the original scattering
process and arrive back approximately at the point at which they were
emitted, that is, the focal point. However, when the back-propagation is
done in a different medium, as in the right image of this figure, there is no
re-focusing. In Figure 4, the large values (lighter blue color) correspond to
re-focusing points. This figure shows that (a) time reversal of waves into
random and homogeneous media are similar, and (b) that we cannot use the
homogeneous medium to recover this structure if there is scattering.

In our numerical experiments, we assume that we have a diverse set
of data Y = [y1,y2, . . . ,yM ], with yi = G xi. Both the sensing matrix
G ∈ CN×K and the sparse vectors xi ∈ CK are unknown. We assume
data corresponding to a large number of experiments, so M ≫ K. Given
this set of data, we want to recover the columns of the sensing matrix
G = [g1 · · · gK ], whose rank is approximately 200 < K = 400 and whose
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Figure 6: From left to right: Grid reconstruction from true Euclidean dis-
tances using the MDS algorithm when all the pairwise distances are assumed
known; from true Euclidean distances when only distances corresponding to
the four nearest neighbors are assumed known; using the MDS-MAP algo-
rithm with geodesic graph distances for σ̃ = 0.6; and using the MDS-MAP
algorithm with geodesic graph distances for σ̃ = 0.8. Sparsity s = 8 in all
cases.

coherence is ν = 0.7. The sensing matrix is rank-deficient because the reso-
lution of the image window is high, with pixel sizes λL/a in cross-range and
c0/B in range.

The results of the first step of the proposed strategy are depicted in
Figure 5 for large (red lines) and small (blue lines) arrays. We solve problem
(8) as described in Section 33.1 and measure the success of this first step
as follows. We form, for every (normalized) recovered column ĝi, the cross-
correlations with all the columns of the true sensing matrix G and represent
in Figure 5 the maximum value

Cmax(i) = max
j

|ĝT
i gj | (15)

for a sparsity level s = 4 (left) and s = 8 (right). We observe values very
close to 1 in both cases when the columns of the sensing matrices are for
large array apertures (red lines). This means that the true Green’s function
vectors are recovered when large arrays are used because they are incoherent.
However, when smaller arrays are used (blue lines) the Green’s function
vectors are coherent and some of them are not recovered. It is important
to recover accurately all, or almost all, Green’s function vectors because,
otherwise, we cannot establish their connectivity properly and, therefore,
we cannot reconstruct the grid in the image window in the second step.

Figure 6 shows the results for the grid reconstructions accomplished with
Algorithm 1 described in Section 33.2 using k = 4 neighbors. This algorithm
provides the correspondence between the Green’s function vectors found in
the first step and their focal points in the image window. From left to
right we show the results when (left) all the pairwise Euclidean distances
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Figure 7: Using three points as anchors, i.e. assuming the location of those
three points is known, we can estimate the scaling and the rotation needed
to recover the absolute grid positions. We compare the recovered locations
(red stars) with the true ones (blue circles) where σ̃ = 0.6 (left) and σ̃ = 0.8
(right). Sparsity s = 8 in both cases.

between the focal points are known in a homogeneous medium, (second from
the left) when only Euclidean distances between the four nearest neighbors
are known in a homogeneous medium, (second from the right) using only
connectivity information in a random medium with σ̃ = 0.6, and (right)
using only connectivity information in a random medium with σ̃ = 0.8. In
all the cases, the sparsity is s = 8.

Algorithm 1 provides grid positions up to a rigid transformation and
scaling. In Figure 7, we post-process the results shown in the second from the
right and right images in Figure 6 to transform them to absolute positions
using three anchors. We observe that the grids are quite well reconstructed
near the center but bent towards the edges. This occurs because our geodesic
graph distance is the scaled l1 distance on the grid, and an embedding of such
distances into Euclidean spaces leads to such distortions. Naturally, there
is no grid deformation shown in the left image of Figure 6 since Euclidean
distances are used for all focal points.

After the two steps of the proposed strategy, we recover the ordered
sensing matrix Ĝ, so we can image any signal measured at the array into the
image window. In Figure 8, we back-propagate a signal g(z⃗j) from a source
located at z⃗j using the recovered Green’s function vectors. Thus, the image
formed at points z⃗i, i = 1, . . . ,K, is

I(z⃗i; z⃗j) = |ĝ(z⃗i)∗g(z⃗j)| . (16)

As before, the hat in (16) denotes the recovered Green’s function vectors of
the sensing matrix using the two step method introduced here. As illustrated
in Figure 8, the produced image (right) is similar to the one obtained using
the true Green’s functions (left) and significantly better than the one ob-
tained using the homogeneous Green’s function (center). This figure shows
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the need for recovering accurate estimates of the Green’s function vectors
for imaging in random media since the ones corresponding to a reference
homogeneous medium provide very noisy, useless images with (16). The top
and bottom rows are images obtained in different realizations of the random
media with σ̃ = 0.6 and σ̃ = 0.8, respectively.

Figure 8: From left to right, image formed with (16) using the true random
Green’s functions, the homogeneous Green’s functions and the recovered
ones with the proposed method. Here the sparsity is s = 8. The strength of
the fluctuations is σ̃ = 0.6 for the top row and σ̃ = 0.8 for the bottom row.

5 Discussion

We propose here a data-driven approach for imaging in random media. The
data are multiple signals recorded by an array of receivers and coming from
many sets of sparse sources whose location and strengths are unknown.
Imaging is done with a two step method. In the first step, we show that
dictionary learning algorithms can estimate the random Green’s function
vectors as columns of an unordered matrix. Ordering is not an issue in
other applications of dictionary learning but it is essential for imaging as we
need to know the correspondence between them and the grid points in the
image window. This is done in the second step using a multidimensional
scaling algorithm that uses local information at each grid point to compute
the global layout of the grid points. A key element of the proposed approach
is that the local information is obtained from the cross-correlations of the
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estimated Green’s function vectors. These cross-correlations determine the
connectivity between the grid points.

The numerical experiments show that using these two basic algorithms,
dictionary learning and multidimensional scaling, we can form stable images
in random media without loss of resolution. This demonstration of principle
can be extended to imaging in more complex ambient media but this may
require additional steps in the imaging method.

6 Materials and methods

All the imaging data used in the numerical experiments are generated nu-
merically as described in detail in Section 4. The implementation of the
two-step imaging method that we are proposing is also described in detail
in this section.
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