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Selectivity metrics provide misleading estimates of the selectivity of single units in
neural networks

Ella M. Gale, Ryan Blything, Nicholas Martin & Jeffrey S. Bowers
(ella.gale, ryan.blything, nm13850, j.bowers@bristol.ac.uk)

School of Psychological Science, University of Bristol, 12a Priory Road Bristol BS8 1TU, UK

Anh Nguyen (anhnguyen@auburn.edu)
Department of Computer Science and Software Engineering, Auburn University, AL, USA

Abstract
To understand the representations learned by neural networks
(NNs), various methods of measuring unit selectivity have
been developed. Here we undertake a comparison of four such
measures on AlexNet: localist selectivity (Bowers et al., 2014);
precision (Zhou et al., 2015); class-conditional mean activity
selectivity CCMAS (Morcos et al., 2018); and top-class se-
lectivity. In contrast with previous work on recurrent neural
networks (RNNs), we fail to find any 100% selective ‘local-
ist units’ in AlexNet, and demonstrate that the precision and
CCMAS measures are misleading and suggest a much higher
level of selectivity than is warranted. We also generated ac-
tivation maximization (AM) images that maximally activated
individual units and found that under (5%) of units in fc6 and
conv5 produced interpretable images of objects, whereas fc8
produced over 50% interpretable images. Furthermore, the
interpretable images in the hidden layers were not associated
with highly selective units. We also consider why localist rep-
resentations are learned in RNNs and not AlexNet.
Keywords: localist representation; grandmother cells; dis-
tributed representations.

Introduction
There have been recent attempts to understand how neural
networks (NNs) work by analyzing hidden units one at a time
using various measures such as localist selectivity (Bowers
et al., 2014), class-conditional mean activity selectivity (CC-
MAS) (Morcos et al., 2018), precision (Zhou et al., 2015),
and activation maximization (AM) (Erhan et al., 2009). These
measures are defined below, and they all provide evidence
that some units respond selectively to categories under some
conditions.

Our goal here is to directly compare different measures of
object selectivity on a common network trained on a single
task. We chose AlexNet (Krizhevsky et al., 2012) because it
is a well-studied CNN and many authors have reported high
levels of selectivity in its hidden layers via both quantitative
(Zhou et al., 2018, 2015) and qualitative methods using Ac-
tivation Maximization (AM) images (Nguyen et al., 2017;
Yosinski et al., 2015; Simonyan et al., 2013). Our main find-
ings are:

1. The different measures provide very different estimates of
selectivity.

2. The precision and CCMAS measures are misleading with
near perfect selectivity scores associated with units that
strongly respond to many different image categories. CC-
MAS scores are also ambiguous, as explained below.

3. There are no localist ‘grandmother cell’ representations
in AlexNet, in contrast with the localist representations
learned in some RNNs.

4. Units with interpretable AM images do not necessarily cor-
respond to highly selective representations.

5. New selectivity measures are required to provide a better
assessment of the learned hidden representations in NNs.

Bowers et al. (2014, 2016) assessed the selectivity of hid-
den units in recurrent NNs using networks similar to those
developed by Botvinick & Plaut (2006) designed to explain
human short-term memory performance. They reported many
‘localist’ units that are 100% selective for specific letters or
words, where all members of the selective category were
more active than and disjoint from all non-members, as can
be shown in jitterplots (Berkeley et al., 1995), see Fig. 1 for a
unit selective to the letter ‘j’).

These localist representations were compared to ‘grand-
mother cells’ as discussed in neuroscience (Bowers, 2017a).
Bowers et al. (2014) argued that the network learned these
representations in order to co-activate multiple letters or
words at the same time in short-term memory without pro-
ducing ambiguous blends of overlapping distributed patterns
(the so-called ‘superposition catastrophe’). Consistent with
this hypothesis, localist units did not emerge when the model
was trained on letters or words one-at-a-time (a condition in
which the model did not need to overcome the superposition
catastrophe (Bowers et al., 2014)), see Fig. 1 for an example
of a non-selective unit)

In parallel, researchers have reported selective units in the
hidden layers of various CNNs trained to classify images into
one of multiple categories ((Zhou et al., 2015; Morcos et al.,
2018; Zeiler & Fergus, 2014; Erhan et al., 2009), for a review
see (Bowers, 2017a)). For example, Zhou et al. (2015) as-
sessed the selectivity of units in the pool5 layer of two CNNs
trained to classify images into 1000 objects and 205 scene
categories, respectively. They reported multiple ‘object de-
tectors’ (as defined below) in both networks. Similarly, Mor-
cos et al. (2018) reported that CNNs trained on CIFAR-10 and
ImageNet learned many highly selective hidden units, with
CCMAS scores often approaching the maximum of 1.0.

Note that these later studies show that selective represen-
tations develop in CNNs trained to classify images one-at-
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Figure 1: Examples of selectivity measures used. Top left: jitterplot of unit 113 in an RNN under the superposition constraint
selective the letter ‘j’. Top middle: jitterplot of non-selective unit 160 found when RNN trained on words one-at-a-time;
from (Bowers et al., 2016). Top right: activation maximization (AM) image of a unit in conv5 of AlexNet that looks like a
lighthouse; from (Nguyen et al., 2016). Bottom: highest activation images for a ‘lamp’ detector with 84% precision in layer
pool5 of AlexNet; from (Zhou et al., 2015).

a-time. This appears to be inconsistent with Bowers et al.
(2016) who (a) failed to obtain selective representations for
letters or words under these conditions (see Fig. 1); and (b)
it suggests that there are additional pressures for CNNs to
learn selective representations above and beyond the chal-
lenge of overcoming the superposition catastrophe. How-
ever, the measures of selectivity that have been applied across
studies are different, and accordingly, it is difficult to directly
compare results.

In order to directly compare and have a better understand-
ing of the different selectivity measures we assessed (1) lo-
calist, (2) precision, and (3) CCMAS selectivity on the prob,
fc8, fc7, fc6, and conv5 layers of AlexNet. We also introduce
a new measure called top-class selectivity, and show that the
precision and CCMAS measures provide much higher esti-
mates of object selectivity compared to other measures. Im-
portantly, we do not find any localist ‘grandmother cell’ rep-
resentations in the hidden layers of AlexNet, consistent with
the hypothesis that the superposition catastrophe provides a
pressure to learn more selective representations (Bowers et
al., 2014, 2016).

In addition, we compared these selectivity measures to a
state-of-the-art activation maximization (AM) method for vi-
sualizing single-unit representations in CNNs (Nguyen et al.,
2017). AM images are generated to strongly activate individ-
ual units, and some of them are interpretable by humans (e.g.,
a generated image that looks like a lighthouse, see Fig. 1). For
the first time, we systematically evaluated the interpretability
of the AM images in an on-line experiment and compare these
ratings with the selectivity measures for corresponding units.
We show that hidden units with interpretable AM images are
not highly selective.

It is important to emphasize that these different measures
have all been used to provide insights into the same set of
issues. For example, both interpretability of generated im-
ages (Le et al., 2011) and localist selectivity (Bowers et al.,
2014) have been used to make claims about ‘grandmother

cells’. The different measures have also been directly com-
pared to one another. For example, Zhou et al. (2015) claim
that the object detectors learned in CNNs play an important
role in identifying specific objects, whereas Morcos et al.
(2018) challenge this conclusion based on their finding that
units with high CCMAS measures were not especially impor-
tant in the performance of their CNNs. Indeed, based on the
finding that high CCMAS scores were not predictive of per-
formance, Morcos et al. wrote: “...it implies than methods for
understanding neural networks based on analyzing highly se-
lective single units, or finding optimal inputs for single units,
such as activation maximization (Erhan et al., 2009) may be
misleading”. This makes a direct comparison between mea-
sures all the more important.

Methods
Networks and Datasets All ∼1.2M photos from Ima-
geNet2010 (Deng et al., 2009) were cropped to 277× 277
pixels and classified by the pre-trained AlexNet CNN
(Krizhevsky et al., 2012) shipped with Caffe (Jia et al.,
2014), resulting in 721,536 correctly classified images.
Once classified, the images are not re-cropped nor subject
to any changes. In Caffe, the softmax operation (Denker
& leCun, 1991) is applied at the ‘prob’(ability) output
layer that contains 1000 units (one for each class). We
analyzed these prob units, the fully connected (fc) layers:
fc8 (1000 units) that encodes the outputs prior to the
softmax operation, fc6 and fc7 (4096 units), and the top
convolutional layer conv5 which has 256 filters. We only
recorded the activations of correctly classified images. The
activation files are stored in .h5 format and can be retrieved at
https://bristol.codersoffortune.net/AlexNet Merged/.
We selected 233 conv5, 2738 fc6, 2239 fc7, 911 fc8, and 954
prob units for analysis.

Localist selectivity Here we define a unit to be localist for
class A if the set of activations for class A was disjoint with
those of not A (¬A).

Localist selectivity is easily depicted with jitterplots in
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which a scatter plot for each unit is generated (see Figs. 3
and 4). Each point in a plot corresponds to a unit’s activation
in response to a single image, and only correctly classified
images are plotted. The level of activations is coded along
the x-axis, and an arbitrary value is assigned to each point on
the y-axis (they are jittered).

Top-Class selectivity Top-class selectivity is related to lo-
calist selectivity except that it provides a continuous rather
than discrete measure. We counted the number of images
from the same class that were more active than all images
from all other classes (what we called the top cluster size)
and divided the cluster size by the total number of correctly
identified images from this class. 100% top-class selectivity
is equivalent to a localist representation.

Precision The precision method of finding object detectors
(Zhou et al., 2015, 2018) involves identifying a small subset
of images that most strongly activate a unit and then identi-
fying the critical part of these images that are responsible for
driving the unit. Zhou et al. (2015) took the 60 images that ac-
tivated a unit the most strongly and asked independent raters
to interpret the critical image patches. Zhou et al. (2015) de-
veloped a precision metric that calculated the percentage of
the 60 images that raters judged to depict the same class of
object (e.g., if 50 of the 60 images were labeled as ‘lamp’,
the unit would have a precision index of 50/60 or 83%; see
Fig. 1). Object detectors were defined as units with a pre-
cision > 75%: they reported multiple such detectors. Here
we approximate this approach by considering the 100 images
that most strongly activate a given unit and assess the highest
percentage of images from a given output class.

CCMAS Morcos et al. (2018) introduced a selectivity in-
dex based on the ‘class-conditional mean activation’ selectiv-
ity (CCMAS). The CCMAS for class A compares the mean
activation of all images in class A, µA, with the mean ac-
tivation of all images not in class A, µ¬A, and is given by:
(µA−µ¬A)/(µA +µ¬A). Morcos et al. (2018) states that this
metric should vary within [0,1], with 0 meaning that a unit’s
average activity was identical for all classes, and 1 meaning
that a unit was only active for inputs of a single class. Here,
we assessed class selectivity for the highest mean activation
class (CCMAS) as well as for the class with the second high-
est mean activation µA (what we call CCMAS 2) in order to
assess the extent to which CCMAS reflects the selectivity to
one class.

Activation Maximization We harnessed an activation
maximization method called Plug & Play Generative Net-
works (Nguyen et al., 2017) in which an image generator
network was used to generate images (hereafter, AM im-
ages) that highly activate a unit. We generated 100 sepa-
rate images that maximally activated each unit in the conv5,
fc6 and fc8 layers of AlexNet and displayed them in a grid
format. We then asked 333 participants to judge whether
they could identify any repeating objects, animals, or places
in images after receiving some practice trials. Participants
were recruited using Prolific (Attrition, n.d.; Palan & Schit-

ter, 2018), with the experiment run online using gorilla (Go-
rilla Experiment Builder, n.d.). Readers can test themselves
at: https://research.sc/participant/login/dynamic/63907FB2-
3CB9-45A9-B4AC-EFFD4C4A95D5.

Results
Comparison of selectivity measures.
The mean top-class, precision, and CCMAS selectivities
across the conv5, fc6 and fc7 layers are displayed in Fig. 2a–
c. We did not plot localist selectivity as there were no localist
‘grandmother units’ at any internal level (and only 10% at
the prob layer, due to the softmax function). The first point to
note is that the top-class, precision, and CCMAS measures all
increased in the higher layers, showing that they capture de-
grees of selectivity ignored by the localist measure. Second,
the top-class selectivity was extremely low across the hidden
layers, with means below 0.25% in the the conv5, fc6, and fc7
layers. Third, the different measures provided very different
estimates of selectivity. In contrast with top-class selectiv-
ity, the mean precision scores are over an order of magnitude
larger in the hidden layers of network, with average precision
scores of 9.6%, 12.1%, and 15.4% in layers conv5, fc6, and
fc7, respectively. Similarly, the CCMAS measure suggests
a much higher level of selectivity than top-class selectivity,
with mean scores of .49, .84, and .85 in the conv5, fc6, and
fc7 layers, respectively.

This discrepancy is most striking for the units with the
highest precision and CCMAS scores. For example, in Fig. 3
we illustrate why the unit fc6.1199 with the highest preci-
sion (95%) in fc6 should not be considered a Monarch but-
terfly detector. Fig. 3a depicts a jitterplot of activations to all
accurately identified images, with Monarch butterfly images
found across the range of activations. Fig. 3b shows a his-
togram that plots the distribution of activations for Monarch
butterflies. By far the most common activation to correctly
identified Monarch butterflies is 0 and the mean is 39.2±0.6.
Figures 3 displays example images with 0 (right top), mean
(right middle) and maximal (right bottom) activations, and all
are identifiable as Monarch butterflies. Thus, classifying this
unit as a Monarch butterfly detector is misleading.

Another surprising result is that we did not obtain any
100% top-class selectivity units (localist units) in the prob
layer of AlexNet. Rather, the mean top-class selectivity was
∼80% in the prob layer, and only ∼5% in fc8 (prior to the
softmax being applied). Fig. 4 depicts the pattern of activa-
tion for units fc8.11 and prob.11 that are examples of the most
top-class selective units in these layers (responding to im-
ages of ‘goldfinch’ birds with top-class selectivity measures
of 8.4% and 95.2%, respectively). Clearly these units do re-
spond much more selectively than the most selective units in
earlier layers (c.f. Fig. 3), and at the same time, the jitter-
plots show why we did not observe any localist units (a few
‘goldfinch’ images were less active than a few images from
other categories).

These jitterplots also show that top-class and localist se-
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Figure 2: Selectivity measures across different layers of AlexNet. Left: top-class selectivity. Middle: precision 100 (the
percentage of the top 100 images which are members of the top class). Right: Class-conditional mean activity selectivity
(CCMAS), N.B. as the mean of the unselected classes (µ¬A can be less than zero) the CCMAS can go above its expected
maximum of 1.

Figure 3: Data for unit fc6.1199. Left: activation jitterplot: black squares: Monarch butterfly images; grey circles: all other
classes. Middle: histogram of activations of Monarch butterflies. Right: example ImageNet images with activations of 0.0
(top), the mean (middle), and the maximum (bottom) of the range. Unit fc6.1199 has a precision of 95% over the top 100
images (98.3% over the top 60) and is thus classified as a butterfly detector, yet there are Monarch butterfly images covering
the whole range of values, with 72 images (5.8% of the total) having an activation of 0.0.

Figure 4: Example data from the fc8 and prob layers. Left:
jitterplot activations for unit fc8.11 that has a top-class selec-
tivity of 8.4%. Right: jitterplot activations for prob.11 (i.e.
post-softmax) that has top-class selectivity of 95.2%. Acti-
vations for the ‘ground truth’ class ‘goldfinch’ are shown as
black squares, all other classes are shown as greyscale circles.

lectivity provide somewhat misleading estimates of selectiv-
ity as well. Consider Fig. 4(left) that depicts a substantial
overlap between goldfinch and non-goldfinch activations on
unit fc8.11. The 8.4% top-class selectivity score captures the
selectivity for the most highly active goldfinch images, but

it is blind to the fact that almost all goldfinch images have
a reasonably high level of activation (more than most non-
goldfinch images). The problem with localist selectivity is
highlighted in Fig. 4(right) that shows that the measure misses
all but the most extreme version of selectivity. Together, these
findings suggest that new selectivity measures are required to
better characterize the representations in NNs: precision and
CCMAS measures strongly overestimate selectivity, and lo-
calist and top-class selectivity provide either a too strict or
too narrow a measure of selectivity.

Additional problems with the CCMAS measure

The main problem with the precision and CCMAS measures
is that they provide misleadingly high estimates of selectiv-
ity, but the CCMAS measure has some additional limitations.
First, if the CCMAS provided a good measure of a unit’s class
selectivity then one should expect that a high measure of se-
lectivity for one class would imply that the unit is not highly
selective for other classes. However, the CCMAS score for
the most selective category and the second most selective cat-
egory CCMAS 2 were similar across the conv5, fc6 and fc7
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a. One active item from one class. b. Archetypal ‘grandmother’ unit. c. One class more active than the others.
CCMAS = 1, CCMAS = 1, CCMAS = 0.06,

precision = 11%, TCS = 1%. precision = 100%,TCS = 100%. precision = 100%, TCS = 100%.

Figure 5: Example of where the CCMAS does not match intuitive understandings of selectivity. Generated example data:
(a) If a unit is off to all but a single image from a large class of objects, the CCMAS for that class is 1 (maximum possible
selectivity). (b) If a unit is strongly activated to all members of one class and off to everything else (an archetypal ‘grandmother’
cell) the CCMAS is the same as for (a) although the precision and top-class selectivity is vastly different. (c): If a unit has high
activations for all classes, but one class (black squares) is 0.1 more than all others (coloured circles), the CCMAS is very low
(0.06) despite being %100 top-class selective. The generated examples are for 10 classes of 100 items

Figure 6: Example AM images that were either judged by all participants to contain objects (top row) or judged by all par-
ticipants to be uninterpretable as objects (bottom row). The human judgement for conv5.183 (top left) was ‘dogs’ and the
top-class was ‘flat-coated retriever’. For fc6.319 (top middle) subjects reported ‘green peppers’ or ‘apples’ (all classified as
the same broad class in our analysis), and the CCMAS and top-class was ‘Granny Smith apples’. For fc8.969 (top right) hu-
mans suggested ‘beverage’ or ‘drink’: ground truth class for this unit is ‘eggnog’. The ground-truth for fc8.865 (bottom right)
is‘toy-store’.

layers, with the mean CCMAS scores .491, .844, and .848,
and the CCMAS 2 scores .464, .821, .831. For example,
unit fc7.0 has a CCMAS of .813 for the class ‘maypole’,
and a CCMAS 2 score of .808 for ‘chainsaw’ (with neither of
these categories corresponding ‘orangutan’ that had the high-
est precision of score of 14% and a top-class selectivity score
of .001%).

Second, the CCMAS measure provides an ambiguous mea-
sure of selectivity. To illustrate, consider the artificial scatter
plots depicted in Figs. 5a,b. Here we obtain the same per-
fect CCMAS scores for one unit that selectively responds to
one member of a category and another unit that selectively
responds to all members of a category. This is problematic
for a measure designed to assess *class* selectivity. Third, as
shown in Fig. 5c, it is even possible to have a low CCMAS
score for a unit with 100 percent top-class selectivity (that is,
a low CCMAS selectivity for a grandmother cell). Together,
these characteristics of the CCMAS measure may help ex-
plain why why Morcos et al. failed to observe the functional
importance of units with high CCMAS scores.

Human interpretation AM images

For the behavioral experiment, one hundred generated im-
ages were made for every unit in layers conv5, fc6 and fc8 in
AlexNet, as in Nguyen et al. (2017), and displayed as 10×10
image panels. A total of 3,299 image panels were used in the
experiment (995 fc8, 256 conv5, and 2048 randomly selected
fc6 image panels) and were divided into 64 counterbalanced
lists for testing. To assess the interpretability for these units
as object detectors, paid volunteers were asked to look at im-
age panels and asked if the images had an object / animal or
place in common. If the answer was yes, they were asked to
name that object simply (i.e. fish rather than goldfish). Anal-
yses of common responses was done for any units where over
80% of humans agreed there was an object present.

The results of the behavioral experiment in which humans
rated AM images are reported in Table 1. Consistent with
past research, the generated images in the output fc8 layer
were often interpreted as objects, and when they were given
a consistent interpretation, they almost always (95.4%) cor-
respond to the trained category. By contrast, less than 5%
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Table 1: Interpretability judgements. Number of judgments for conv5, fc6 and fc8 were 1332, 10,656 and 5,181, respectively.

LAYER % YES % OF UNITS % OVERLAP % OVERLAP
RESPONSES WITH ≥ 80% AMONG BETWEEN HUMANS AND:

YES RESPONSE HUMANS TOP CLASS CCMAS CLASS

conv5 21.7% ±1.1% 4.3% ± 1.3% 89.5%±5.7% 34.1%±14.4% 0%
fc6 21.0% ±0.4% 3.1% ± 0.4% 80.4%±4.1% 23.3%±5.9% 18.9% ±5.9%
fc8 71.2% ±0.6% 59.3% ±1.6% 96.5%±0.4% 95.4%±0.6% 94.6% ±0.7%

of units in conv5 or fc6 were associated with consistently in-
terpretable images, and as can be seen in Table 1, the inter-
pretations only weakly matched the category with the highest
top-class or CCMAS selectivity. The frequency with which
objects were seen by the participants was similar in layers
conv5 and fc6 layers and increased in fc8, consistent with the
top-class and and precision measures of selectivity.

Apart from showing that there are few interpretable units in
the hidden layers of AlexNet, our findings show that the inter-
pretability of images does not imply a high level of selectivity
given the maximum top-class selectivity for the hidden units
is well under 10% (Fig. 2). In most cases, the top-class selec-
tivity of the interpretable units was well under 1%. To briefly
illustrate the types of images that participants rated as objects
or non-objects see Fig. 6.

Discussions and Conclusions
Our central finding is that different measures of activation
selectivity support very different conclusions when applied
to the same units in AlexNet. In contrast with the precision
(Zhou et al., 2015) and CCMAS (Morcos et al., 2018) mea-
sures that revealed some highly selective units for objects in
layers conv5, fc6, and fc8, we found no localist representa-
tions, and the mean top-class selectivity in these layers was
well under 1%. These findings are in stark contrast with the
many localist ‘grandmother cell’ representations learned in
RNNs (Bowers et al., 2014, 2016; Bowers, 2017b).

Not only did the different measures provide very different
assessments of selectivity, we found that the precision and
CCMAS measures provided highly misleading estimates. For
example, a unit with over a 75% precision score for Monarch
butterflies had a top-class selectivity of under 5%. Although
Zhou et al. (2015) used 75% precision scores as the crite-
rion for ‘object detectors’, it is inappropriate to call this unit
a Monarch butterfly detector given that it did not respond
strongly to the majority of Monarch butterfly images (and in-
deed, the modal response was 0.0; see Fig. 3).

At the same time, we identified problems with the local-
ist, top-class, and activation maximization (AM) methods
as well. The localist selectivity measure failed to obtain
any localist representations, even at the output prob layer of
AlexNet. This measure is so extreme that it misses highly
selective representations that are of theoretical interest. The

top-class selectivity does provide a graded measure of selec-
tivity (with 100% top-class selectivity equivalent to a localist
grandmother cell), but it can underestimate selectivity when
a few member from outside the top-class are highly activated
(see Fig. 4 (right) for an example). At the same time, the
human interpretation of AM images provides a poor measure
of hidden-unit selectivity given that interpretable AM images
were associated with low top-class selectivity scores. These
findings highlight the need to provide better measures of se-
lectivity in order to better characterize the learned represen-
tations in NNs.

What should be made of the contrasting findings that lo-
calist representations are found in RNNs, but not in AlexNet?
The failure to observe localist units in the hidden layers of
AlexNet is consistent with the Bowers et al. (2014) claim that
these units only emerge in order to support the co-activation
of multiple items at the same time in short-term memory.
That is, localist representations may be the solution to the su-
perposition catastrophe, and AlexNet only has to identify one
image at a time. This may help explain the reports of highly
selective neurons in cortex given that the cortex needs to co-
activate multiple items at the same time in order to support
short-term memory (Bowers et al., 2016). It should be noted
that the RNNs that learned localist units were very small in
scale compared to AlexNet, and accordingly, it is possible
that the contrasting results reflect the size of the networks
rather than the superposition catastrophe per se. Relevant to
this issue, Karpathy et al. (2016) reported examples of se-
lective representations in a larger RNN with long-short term
memory (LSTM) trained to predict text. Although they did
not systematically assess the degree of selectivity, they re-
ported examples that are consistent with 100% selective units,
for similar findings see Lakretz et al. (2019). It will be in-
teresting to apply our measures of selectivity to these larger
RNNs. It should also be noted that there are recent reports of
selective representations in Generative Adversarial Networks
(Bau et al., 2019) and Variational Autoencorder Networks
(Burgess et al., 2018) where the superposition catastrophe is
not an issue. Again, it will be interesting to assess the se-
lectivity of these units according to our measures in order to
see whether there are additional computational pressures to
learn highly selective or even grandmother cells. We will be
exploring these issues in future work.
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