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Abstract

New variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continue 

to arise and prolong the coronavirus disease 2019 (COVID-19) pandemic. Here we used a 

cell-free expression workflow to rapidly screen and optimize constructs containing multiple 

computationally designed miniprotein inhibitors of SARS-CoV-2. We found the broadest efficacy 

with a homo-trimeric version of the 75-residue angiotensin converting enzyme 2 (ACE2) mimic 

AHB2 (TRI2–2) designed to geometrically match the trimeric spike architecture. In the cryo-

electron microscopy structure, TRI2 formed a tripod on top of the spike protein which engaged 

all three receptor binding domains (RBDs) simultaneously as in the design model. TRI2–2 

neutralized Omicron (B.1.1.529), Delta (B.1.617.2), and all other variants tested with greater 

potency than that of monoclonal antibodies used clinically for the treatment of COVID-19. TRI2–

2 also conferred prophylactic and therapeutic protection against SARS-CoV-2 challenge when 

administered intranasally in mice. Designed miniprotein receptor mimics geometrically arrayed to 

match pathogen receptor binding sites could be a widely applicable antiviral therapeutic strategy 

with advantages over antibodies and native receptor traps. By comparison, the designed proteins 

have resistance to viral escape and antigenic drift by construction, precisely tuned avidity, and 

greatly reduced chance of autoimmune responses.

ONE SENTENCE SUMMARY

Computationally designed trivalent minibinders provide therapeutic protection in mice against 

emerging SARS-CoV-2 variants of concern.

INTRODUCTION

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to cause a global 

pandemic with more than 300 million infections and 5.5 million deaths as of January 2022 

(https://covid19.who.int/). Monoclonal antibodies (mAbs) targeting the SARS-CoV-2 spike 

(S) glycoprotein (1) have been an effective treatment for improving outcomes for patients 

with coronavirus disease 2019 (COVID-19) (2–5), but many are sensitive to viral escape 

through point mutations in their epitopes on the S trimer (6, 7), and producing mAbs in 

Hunt et al. Page 3

Sci Transl Med. Author manuscript; available in PMC 2022 July 06.

H
H

M
I A

uthor M
anuscript

H
H

M
I A

uthor M
anuscript

H
H

M
I A

uthor M
anuscript

https://covid19.who.int/


sufficient quantities for population scale use during a global pandemic is technically and 

financially challenging (8). Indeed, the continued emergence of variants of concern (VOCs) 

jeopardizes the effectiveness of currently approved mAb treatments and vaccines (9–14). In 

particular mutations in the rapidly spreading B.1.1.529 (Omicron) variant disrupt binding of 

most receptor binding motif-targeted mAbs, and have been shown to reduce neutralization 

potency more than 100-fold for five of the seven clinical mAbs used for the prophylactic or 

therapeutic treatment of COVID-19 (15–18). Thus, there is an urgent need for interventions 

whose efficacy is not disrupted by the observed ongoing antigenic drift, as is the case for a 

few mAbs (19–24).

As an alternative to mAbs, we previously computationally designed two classes of 

minibinder proteins that block the SARS-CoV-2 receptor binding domain (RBD) interaction 

with its host receptor, angiotensin converting enzyme 2 (ACE2) (25). The first class, 

exemplified by AHB2, adopts a similar binding mode to and incorporates residues from 

the main RBD-interacting helix of ACE2 in a custom designed 3-helix bundle that has 

low overall sequence similarity with ACE2 (fig. S1). The second class, exemplified 

by LCB1 and LCB3, contain an entirely new designed RBD binding interface. These 

minibinders neutralize the WA1/2020 SARS-CoV-2 virus with half maximal inhibitory 

concentration (IC50) values in the range of 23 pM (LCB1) to 15 nM (AHB2) (25). The 

designs express at high concentrations in Escherichia coli and are highly thermostable 

(25), which could considerably streamline manufacturing and decrease the cost of goods 

for clinical development. LCB1 has demonstrated protective activity as both pre-exposure 

prophylaxis and post-exposure therapy in human ACE2 (hACE2)-expressing transgenic 

mice, but mutations in the B.1.351 (Beta) and P.1 (Gamma) VOCs were shown to reduce 

binding potency (26, 27).

Here, we sought to develop constructs containing three minibinder domains that could 

simultaneously engage all three RBDs on a single S protein, and by virtue of this multivalent 

binding, potently neutralize SARS-CoV-2 variants. Multivalency can increase the apparent 

affinity for target antigens (28–30), including against SARS-CoV-2 (31–36). We considered 

two classes of constructs. The first contain multiple distinct minibinder domains linked 

together to maximize RBD binding avidity; these constructs have the advantages that LCB1 

and LCB3 are very high affinity binders on their own, and the three domains contain 

different sets of contacts with the RBD, making escape in principle more difficult (32, 37). 

The second consists of self-assembling homotrimers of minibinders geometrically matched 

to the 3 RBDs on a single spike; although AHB2 is lower affinity than LCB1 and LCB3, 

and the sites targeted are less diverse than the first class, homotrimers of AHB2 have the 

advantage that the ACE2 binding site is inherently less mutable as the virus must bind ACE2 

to infect cells (24, 38). We describe the design, optimization, and escape resistance of both 

classes of constructs. We find that the top constructs have considerable promise as potential 

countermeasures in the ongoing COVID-19 pandemic.

Hunt et al. Page 4

Sci Transl Med. Author manuscript; available in PMC 2022 July 06.

H
H

M
I A

uthor M
anuscript

H
H

M
I A

uthor M
anuscript

H
H

M
I A

uthor M
anuscript



RESULTS

RBD mutations impact minibinder binding.

To determine the potential for mutations to arise that disrupt LCB1 and AHB2 binding to 

the RBD, we performed deep mutational scans using site saturation mutagenesis of the RBD 

(38). We found that for LCB1, the widely observed K417N mutation results in a greater than 

10-fold reduction in affinity and the E406W and Y453K/R mutations result in a greater than 

100-fold reduction in affinity (fig. S2). For AHB2, we similarly observed several mutations, 

including K417N, E406W, and Y453K/R, that reduce the affinity of the minibinder for the 

RBD.

Multivalent minibinders bind to SARS-CoV-2 RBDs.

To improve the ability of the minibinders to neutralize circulating SARS-CoV-2 variants, we 

developed multivalent versions with geometries enabling simultaneous engagement of all 3 

RBDs in a single S trimer (1) to increase binding avidity. Multivalent minibinders might be 

less sensitive to mutations that would escape binding of the monovalent minibinders; a 100x 

reduction in binding affinity of a sub-picomolar binder would still result in an affinity in a 

therapeutic range in a multivalent construct (39). We also hypothesized that constructs with 

binding domains containing different sets of contacts with the target epitope could prevent 

escape (32, 37). To design multivalent constructs, we started from optimized versions of 

the previously described LCB1, AHB2, and LCB3 minibinders (hereafter referred to as 

monomers MON1, MON2, and MON3, respectively; table S1) (25).

To rapidly prototype multivalent minibinder designs, we developed a cell-free protein 

synthesis (CFPS) workflow which combines an in vitro DNA assembly step followed by 

polymerase chain reaction (PCR) to generate linear expression templates that are used to 

drive CFPS and enable rapid prototyping of new minibinder designs (fig. S3). The workflow 

enables assembly and translation of synthetic genes and generation of purified protein in 

as little as 6 hours, is compatible with high-throughput, automated experimentation using 

an acoustic liquid handler (Echo 525), and is easily scaled for the production of mg 

quantities of protein (40, 41). To assess multivalent binding, we coupled the workflow to 

an AlphaLISA protein-protein interaction (PPI) competition assay to enable comparison of 

dissociation rates of the designed proteins against either the monomeric RBD or the trimeric 

HexaPro SARS-CoV-2-S-glycoprotein (S6P) (42).

Because multivalency largely impacts dissociation rate constants of protein-protein 

interactions, we reasoned that an in-solution off-rate screen could distinguish differences 

between mono- and multivalent binding (43). Multivalent minibinders were allowed to 

fully associate with the target protein, then reactions were split in two and either 100-

fold molar excess of untagged competitor (to prevent reassociation) or buffer was added. 

MON1, MON2, and MON3 target overlapping epitopes (25), and thus mono- or multivalent 

versions of these minibinders were selected as competitors. The ratio of the competitor 

to no-competitor condition measurements were calculated to determine the fraction of the 

complex dissociated (44).
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Paralleling previous work where trimeric binders were targeted to the sialic acid-binding site 

on influenza hemagglutinin (30), we first designed self-assembling homotrimeric versions 

of the MON1, MON2, and MON3 miniproteins geometrically matched to the three RBDs 

in the S trimer (hereafter referred to as TRI; for example, TRI1–1 represents a homotrimer 

of MON1 with homotrimerization domain 1, table S1, data file S1). We designed and 

screened more than 100 different homotrimeric minibinders, with varied linker lengths 

and homotrimzeriation domains, using the CFPS workflow. We observed that many of 

the homotrimeric constructs exhibited slower dissociation rates than the corresponding 

monomers; much larger effects were observed with dissociation from the S trimer than 

monomeric RBD, consistent with multivalent binding (Fig. 1 and fig. S4). In total, we tested 

eleven different oligomerization domains and found that nine of these domains yielded 

at least one design with a linker length that improved dissociation rates on par with the 

top binders (fig. S4). Designs with domains four and eleven exhibited slower dissociation 

rates compared to their monomeric counterpart, but faster than the top designs (fig. S4E); 

this is likely indicative of an inability to simultaneously engage all three target epitopes 

or dissociation of the oligomerization domains themselves. The top binders exhibited little 

to no dissociation from S trimer after 7 days of incubation with competitor, indicating 

a likely apparent dissociation rate constant of 1×10−7 s−1 or slower (Fig. 1B). This is 

a marked improvement, more than four orders of magnitude for the TRI2 proteins, over 

the dissociation rate constants of the corresponding monomeric minibinders (fig. S5). We 

selected two trimeric scaffolds, the designed two ring helical bundle SB175 (domain 2) and 

the T4 foldon (domain 1) (45) (table S2), to proceed with based on the screening results and 

previous experience with these scaffolds.

Next, we generated two- and three-domain fusions of the MON1, MON2, and MON3 

minibinders separated by flexible linkers (hereafter referred to as FUS; for example, FUS31-

P12 represents a fusion of MON3 to MON1 separated by a 12 amino acid proline-alanine-

serine (P12) linker, table S1, data file S1). We screened more than 100 different fusions 

using the CFPS workflow, evaluating different minibinder orderings and a range of linker 

compositions and lengths that span the distances between the termini of the domains 

when bound to the “open” and “closed” states of the RBD (Fig. 1, and fig. S4, A, B, 

and F) (1). We evaluated both glycine-serine (denoted as G) and proline-alanine-serine 

(denoted as P) linkers (46) and observed similar binding characteristics (Fig. 1 and fig. 

S4). We observed occasional truncation of the G linkers during expression and purification 

by E. coli proteases; however, this was less frequent for the P linkers than for the G 

linkers. FUS31 and FUS231 constructs showed slower dissociation against S6P than RBD, 

and exhibited slower dissociation than all monomeric minibinders tested, consistent with 

multivalent S6P engagement (Fig. 1). The top binders exhibited little dissociation from 

S6P after 7 days, indicating a likely apparent dissociation rate constant of 1×10−7 s−1 or 

slower, representing one order of magnitude or greater improvement over the corresponding 

monomeric minibinder dissociation rate constant (fig. S5). Finally, to determine the potential 

for low-cost purification by heat treatment, we recombinantly expressed MON1, FUS231-

P12, and TRI2–2 in E. coli. The heat-treated soluble fraction was enriched with the 

expressed minibinder and contaminating background proteins were largely precipitated (fig. 

S6).

Hunt et al. Page 6

Sci Transl Med. Author manuscript; available in PMC 2022 July 06.

H
H

M
I A

uthor M
anuscript

H
H

M
I A

uthor M
anuscript

H
H

M
I A

uthor M
anuscript



Structural studies of minibinders in complex with SARS-CoV-2 S.

We next determined how the designed multivalent proteins engage multiple RBDs on 

a single S trimer; multivalent engagement on a virion typically requires binding of a 

single S trimer due to the relatively sparse S distribution (47–49). For some designs, 

FUS31-G8 and TRI1–5-G2 for example (table S1), initial screening using negative stain 

EM revealed considerable cross-linking and aggregation of S trimers upon addition of the 

constructs (fig. S7), consistent with binding to RBDs on different S trimers. In contrast, 

for constructs TRI2–2, FUS231-G10, FUS231-P24 and FUS31-G10, we observed less cross-

linking, consistent with multivalent engagement of a single S trimer for each minibinder. 

To determine the binding modes of these compounds to the S trimer and characterize the 

structure of the MON2 and RBD interactions at high resolution, we carried out cryogenic 

electron microscopy (cryoEM) characterization of these complexes (Fig. 2).

The cryoEM structures of the TRI2–2, FUS31-G10, and the FUS231-P24 constructs in 

complex with S6P were determined at resolutions of 2.8, 4.6, and 3.9 Å respectively (Fig. 

2A to D, fig. S8 to S11, and table S3), and a negative stain reconstruction was obtained with 

FUS231-G10 in complex with S6P (Fig. 2E). The TRI2–2/S6P cryoEM structure closely 

matched the TRI2–2 trimer design, with all three RBDs in the open state bound to MON2 

(Fig. 2A and B, fig. S8 and S9). In the FUS31-G10 and S6P complex, FUS31-G10 is 

bound to two RBDs adopting an open conformation (Fig. 2C, fig. S8 and S10). The distance 

between the two RBDs in the open conformation is shorter in the FUS31-G10 than in 

the FUS231-P24 structure (Fig. 2C and D), suggesting that the bound minibinder holds 

the RBDs together, in agreement with the shorter linkers used in the former minibinder 

construct. In the structure, two molecules of FUS31-G10 are bound to a single S trimer 

with the third RBD being occupied by a second FUS31-G10 molecule. In the structure of 

FUS231-P24 bound to S6P, the three RBDs are participating in complex formation (Fig. 

2D, fig. S8 and S11). The limited resolution in the region comprising the minibinder-bound 

RBDs and linkers precludes definitive assignment of minibinder identity at each binding 

site and relative connectivity between each minibinder module. The distances between the 

termini of the minibinder domains, however, is compatible with the computational design 

models and suggestive of engagement of either 2 (FUS31-G10) or 3 of the RBDs (FUS231-

P24) in a single S trimer by the multivalent minibinders.

The structure of MON2 in complex with the S trimer has not previously been determined. 

Starting from the TRI2–2/S6P cryoEM data, we improved the RBD/MON2 densities using 

focused classification and local refinement, yielding a map at 2.9 Å resolution enabling 

visualization of the interactions formed by MON2 with the RBD (Fig. 2B). Superimposition 

of the design MON2 model to the corresponding cryoEM structure, using the RBD 

as reference, shows that the MON2 minibinder closely matched the design model with 

backbone Cɑ RMSD of 1.3 Å (fig. S8E and F). Together with previous structures of MON1 

and MON3 (25), these data illustrate the accuracy with which both protein scaffolds and 

binding interfaces can now be computationally designed.
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Multivalent minibinders enable rapid detection of SARS-CoV-2 S protein.

Having confirmed the binding mode of the FUS231 proteins by cryoEM, we designed an 

S trimer sensor, reasoning that the high affinity binding of the FUS231 proteins to the S 

trimer could make a useful diagnostic (50). We hypothesized that it would be possible to 

construct a bioluminescence resonance energy transfer (BRET) sensor for S trimer, where 

simultaneous engagement of all three minibinders in FUS231 with the S trimer would bring 

the N- and C-termini close enough together to enable efficient energy transfer. Towards this 

goal, we designed a BRET sensor based on FUS231-P12 with teLuc and mCyRFP3 fused to 

the N- and C-terminus of FUS231-P12 respectively (Fig. 3A) (51, 52). Upon binding of the 

sensor protein to a stabilized S protein with 2 proline mutations (S2P) (1, 50), we observed 

a 350% increase in the 590 nm:470 nm BRET ratio, which was not observed when bound to 

the RBD alone, and determined the limit of detection to be 11 pM S2P (Fig. 3B and C, and 

fig. S12). Furthermore, these results support the proposed multivalent binding mode for the 

FUS231 proteins.

Multivalent minibinders bind tightly to SARS-CoV-2 variants.

We next evaluated the resiliency of the binding of multivalent minibinders to the previously 

identified MON1 and MON2 escape mutants as well as mutations present in the B.1.1.7 

(Alpha), B.1.351 (Beta), and P.1 (Gamma) SARS-CoV-2 VOCs. We first measured the 

off-rate of the best multivalent minibinders using competition AlphaLISA with TRI2–1 

against a panel of mutant S glycoproteins (Fig. 4A). Multivalent minibinders were allowed 

to fully associate with mutant S trimers and subsequently were competed with 100-fold 

molar excess of untagged TRI2–1 to measure dissociation of the complex. The two-domain 

fusions (FUS23 and FUS31) did not show improved binding to the tested point mutants. 

The three-domain fusions (FUS231) retained binding to the tested mutants, indicating that 

they are more resistant to mutations than their monomeric counterparts, although E406W, 

Y453R, and the combination of K417N, E484K, and N501Y mutations (present in the 

B.1.351 S trimer) increased the dissociation rate more than 100-fold. Consistent with these 

results, we also observed increased dissociation rates for the FUS231 proteins against the 

B.1.351 and P.1 spikes by surface plasmon resonance (SPR) (fig. S13). The TRI1 and 

TRI3 homotrimers showed similar mutational tolerance in the competition experiment, 

with the same E406W, Y453R, and B.1.351 mutations causing increased dissociation rates. 

Strikingly, the TRI2 designs showed little dissociation after 24 hours against any of the 

tested S trimer mutants.

We subsequently screened the top multivalent minibinders for binding to mutant S trimers 

by an ACE2 competition enzyme-linked immunosorbent assay (ELISA), which correlates 

with neutralization potency (53). The minibinders were pre-incubated with the S6P variants 

before binding to immobilized ACE2 (Fig. 4B and fig. S14). In line with deep mutational 

scanning data, we observed impaired binding to the E406W, K417N, and Y453R mutants 

in addition to several other mutants. Two mutations, Y453F and E484K, improved MON2 

binding, consistent with MON2 mimicry of the ACE2 interaction interface (38). Compared 

to the monovalent minibinders, we observed reduced effects of mutations in the competition 

IC50 values of the FUS231 and TRI2 minibinders and, to a lesser extent, of the TRI1 
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and TRI3 minibinders against the tested S6P variants, except for E406W (Fig. 4B and fig. 

S14D).

Multivalent minibinders potently neutralize circulating SARS-CoV-2 variants.

To investigate the efficacy of the multivalent minibinders for preventing viral infection, we 

performed neutralization assays with the inhibitors using both pseudotyped lentiviruses and 

authentic SARS-CoV-2 variants (Fig. 4C to F, fig. S15). Against pseudoviruses displaying 

S proteins corresponding to the B.1.1.7, B.1.351, P.1, B.1.617.1, B.1.617.2 (Delta), and 

B.1.617.2.1 (Delta plus, AY.1) variants, all three monomer minibinders showed reduced 

neutralization capacity as compared to the Wuhan-Hu-1 D614G strain; in contrast, many 

of the multivalent minibinders were less affected in an ACE2 overexpressing cell line 

(Fig. 4C and E, and fig. S15A and C). The same proteins were also evaluated against 

pseudoviruses containing the E406W, L452R, and Y453F mutations, which again had little 

impact on neutralization for most multivalent minibinders tested (fig. S15A and C). This 

suggests that the increase in affinity from multivalency improved neutralization breadth. 

The top neutralizing minibinders from this screen were tested for neutralization of a panel 

of authentic SARS-CoV-2 viruses including a historical WA1/2020 strain, B.1.1.7, B.1.526 

(Iota), B.1.1.529 (Omicron), B.1.617.1, B.1.617.2, and B.1.617.2.1 natural isolates, and 

chimeric WA1/2020 strains encoding spike genes corresponding to those of B.1.351 (Wash-

B.1.351), and P.1 (Wash-P.1) variants. Again, the top candidates maintained pM-range IC50 

values (Fig. 4D and F, and fig. S15B and D), except for the FUS231 proteins, which did not 

fully neutralize the B.1.1.529 variant in the tested concentration range. The TRI2 proteins 

maintained potent neutralization across all tested variants, notably including the B.1.1.7, 

Wash-B.1.351, Wash-P.1, B.1.617.2, and B.1.1.529 variants. Impressively, the TRI2 proteins 

potently neutralized the B.1.1.529 variant whereas many clinical mAbs for the treatment of 

COVID-19 do not (table S4) (15–17).

Although Vero-hACE2-TMPRSS2 (transmembrane serine protease 2) cells are useful for 

neutralization studies, they likely do not fully reflect the human cell infectivity. Recent 

findings highlight the relevance of using non-transformed human organoid models for 

SARS-CoV-2 research (54). SARS-CoV-2 can infect and replicate in human kidney 

organoids, specifically targeting kidney tubular epithelial cells expressing ACE2 receptors, 

responsible for viral entry (55, 56). Therefore, we generated kidney organoids from the H9 

human embryonic stem cell line (57) (fig. S16) and evaluated the ability of the multivalent 

minibinders to prevent SARS-CoV-2 viral entry and replication. Replication of the 

B.1.351 variant was inhibited when the virus was pre-incubated with designed multivalent 

minibinders FUS231-G10 and TRI2–2, but not with MON1 (Fig. 4G). Quantitative reverse 

transcription PCR (RT-qPCR) analysis of viral RNA from the kidney organoids also showed 

reduced SARS-CoV-2 envelope protein (SARS-CoV2-E) gene expression in the presence 

of either FUS231-G10 or TRI2–2 (Fig. 4H). These data show that designed multivalent 

minibinders are potent neutralizers of the B.1.351 variant in a human organoid system.

Multivalent minibinders resist viral escape.

Given the promising data showing that multivalent minibinders can neutralize SARS-CoV-2 

VOCs, we tested the multivalent minibinders for resistance against viral escape mutations in 
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the S trimer (Fig. 5A and B) (6). Plaque assays were performed with a VSV-SARS-CoV-2 

S chimera on Vero CCL-81 cells with minibinders included in the overlay to halt spread of 

non-resistant viruses. In positive control wells, inclusion in the overlay of 2B04, a potent 

neutralizing antibody targeting the RBD (6, 58–60), resulted in multiple escape mutants 

in each plate similar to previously reported escape mutants (Fig. 5A) (6). In contrast, for 

both FUS231-P12 and TRI2–2, escape mutants were not isolated in 36 replicate wells for 

each protein (fig. S17). These data indicate that both the FUS231-P12 and TRI2–2 proteins 

are more difficult to escape than 2B04. Given the known mutation rate of the VSV RNA 

polymerase L (61) and the number of viral particles screened, we estimated (table S5) that, 

for the multivalent minibinders, the screened pool of viral mutants contains a large fraction 

of the possible single amino acid substitutions (34% to 88%) and a small fraction of the 

possible double amino acid substitutions (0.4% to 9.6%) within the region of the RBD 

that contacts the minibinders. Taken together with the results of the single site saturation 

mutagenesis studies for the monovalent minibinders (fig. S2) these findings indicate that 

at least two or more mutations in the RBD are likely necessary to escape binding of the 

multivalent minibinders.

Multivalent minibinder confers protection in human ACE2-expressing transgenic mice.

To determine whether the multivalent minibinders can prevent or treat SARS-CoV-2 

infection in vivo, we performed pre-exposure prophylaxis or post-exposure therapy studies 

in highly susceptible K18-hACE2 transgenic mice (62) with TRI2 multivalent minibinders, 

which retained the most consistent binding to all S trimer variants tested. For prophylaxis, 

a single 50 μg dose (about 2.5 mg/kg) of TRI2–1 or TRI2–2 was administered directly 

to the nasal cavity (intranasal administration) one day prior to inoculation with 103 focus 

forming units (FFU) of the indicated SARS-CoV-2 VOCs (Fig. 6A). In all cases, intranasal 

administration of TRI2–1 or TRI2–2 protected mice against SARS-CoV-2-induced weight 

loss (Fig. 6B). At 6 days post infection, viral burden in tissues was reduced in almost all 

primary (lung and nasal wash) and secondary sites (heart, spleen, brain) of viral replication 

in TRI2–1 and TRI2–2 treated animals (Fig. 6C). To determine the therapeutic potential 

of TRI2–2, we inoculated K18-hACE2 mice with 103 FFU of Wash-B.1.351 or B.1.617.2 

and one day later, administered a single 50 μg dose of minibinder intranasally (Fig. 6D). 

Treatment with TRI2–2 protected against weight loss and reduced viral burden in all 

tissues except nasal washes (Wash-B.1.351) or the spleen (B.1.617.2) (Fig. 6E and F). 

TRI2–2 therapy at D+1 reduced infectious virus titers in the lungs of Wash-B.1.351- and 

B.1.617.2-infected mice (fig. S18). We determined the pharmacokinetics of TRI2–2 after 

intranasal administration by quantitative competition ELISA. Substantial concentrations of 

TRI2–2 were detected in the lung lysate and serum 48 hours after administration (fig. S19) 

but was too low for confident quantification in nasal turbinates after the first time point 

and for confident quantification in nasal washes at all time points. These results indicate 

that intranasal administration of TRI2–1 or TRI2–2 confer protection against SARS-CoV-2 

infection as both pre-exposure prophylaxis and post-exposure therapy in a stringent model of 

disease.
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DISCUSSION

Both strategies for generating multivalent S protein binders from miniproteins, self-

assembling homotrimers (TRI) and multi-domain fusions (FUS), yielded designs with 

improved affinity, neutralization of current and historical VOCs, and resistance to escape 

mutants over their monovalent counterparts (25, 26). The TRI2 proteins maintained the 

strongest binding across all S trimer variants tested, likely because MON2 is an ACE2 

mimic, similar to the recently reported S2K146 mAb (15, 24). This combination of 

trivalency and receptor mimicry could be a useful general approach for combating viral 

escape and antigenic drift (15, 24, 36, 53, 63, 64).

The designs also have potential advantages as therapeutics over ACE2 receptor traps and 

mAbs. When compared to receptor traps (55, 65–67), TRI2–2 has a low risk of eliciting 

host-directed anti ACE2 responses due to low sequence similarity between MON2 and 

ACE2 (fig. S1). On a per mass basis, the TRI2 proteins are more potent neutralizers than all 

currently authorized mAbs for the treatment of COVID-19 (15, 16), and, unlike most clinical 

mAbs, they maintain activity against Omicron (table S4). The multivalent minibinders are 

amenable to large-scale production in microorganisms like E. coli, making them more 

cost-effective to manufacture than mAbs (8). Furthermore, their small size and stability may 

enable direct nebulization into the human upper respiratory tract (3, 68–70), a strategy that 

could increase accessibility for patients over the typical intravenous or subcutaneous routes 

used for administering neutralizing mAbs.

The high potency of the multivalent constructs, in particular TRI2–2 against Omicron, Delta, 

and the other tested VOCs, makes them promising candidate SARS-CoV-2 therapeutics, 

and they are currently undergoing further preclinical development and investigational new 

drug (IND) enabling studies. These efforts will address limitations in our current study. 

First, anti-drug antibodies are a concern with non-human proteins and, although MON1 

and other minibinders (26, 71) elicit little or no immune response, additional studies are 

required to determine the immunogenicity of the multivalent constructs. Second, it will be 

important to assess the pharmacokinetics following different modes of administration; in 

humans, it may be necessary to distribute the compound deeper into the respiratory system 

for post infection efficacy. Third, as with any new drug candidate going through the drug 

development pipeline, it will be necessary to assess its stability as well as its potency and 

toxicity after prolonged administration.

In summary, our integration of structure-guided computational protein design, cell-free 

DNA assembly, cell-free expression, and a competition-based off-rate screen enabled the 

rapid design and optimization of S trimer-engaging multivalent minibinders. Scaling cell-

free expression to manufacture mg quantities of endotoxin-free protein for cell-based 

neutralization assays further reduced the time required to evaluate lead molecules. The 

developed pipeline has direct relevance to diagnostics as well; the FUS231-based BRET 

sensor is easy to use, fast, and has the potential to be less expensive than state-of-the-

art lateral flow assay-based antigen tests (72, 73). Our integrated computational and 

experimental pipeline should enable the rapid generation of potent protein-based medical 

countermeasures and diagnostic reagents against newly emerging pathogens.
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MATERIALS AND METHODS

Study design

The objective of this study was to design and evaluate multivalent minibinders that 

neutralize SARS-CoV-2 variants containing mutations within the RBD. At the outset, we 

hypothesized that multivalency would overcome mutations that reduce binding for individual 

monomeric minibinders. Designed proteins were evaluated in controlled laboratory 

experiments, first using biophysical methods with purified proteins (AlphaLISA and ELISA 

competition assays) followed by in vitro methods requiring cell culture (pseudovirus and 

authentic virus neutralization assays). The top candidates from neutralization assays were 

screened by electron microscopy for cross-linking multiple S trimers and the candidates 

that were found to minimally cross-link S trimers were subjected to structural analysis by 

cryoEM. The most promising proteins were evaluated in vivo in mice. In all studies where 

cell lines were used, the cell line is noted in the corresponding materials and methods 

section. The total number and type of experimental replicates is noted in each figure legend. 

Details on the in vivo mouse study compliance with best practices can be found in the 

corresponding materials and methods section. No sample-size calculations were performed 

to power each in vivo study. Instead, sample sizes and study endpoints were determined 

based on previous in vivo virus challenge experiments. For all other experiments, sample 

size was selected based on previous literature and previous experience. In the animal studies, 

mice were randomly assigned to the control and treatment groups. Animal caretakers and 

researchers were not blinded to the study groups or during the assessment of the outcomes. 

Data that underlie the results reported in this article can be found in data file S2, data file S3, 

and in the deposited data listed in the data and materials availability statement.

Statistical analysis

Statistical significance was determined by a P value < 0.05 using GraphPad Prism 9 

software. Only non-parametric tests were used throughout this article. Analysis of mouse 

weight changes was performed using a two-way analysis of variance (ANOVA) with 

Sidak’s post-test for multiple comparisons. Statistical analysis of viral load between two 

groups was performed using either a Kruskal-Wallis test with Dunn’s post-hoc analysis 

for multiple comparisons or a two-tailed Mann-Whitney test as noted in the corresponding 

figure captions.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Data and Materials Availability:

All data associated with this study are in the paper or supplementary materials. Structural 

models and density maps have been deposited in the Protein Data Bank (PDB) (SARS-

CoV-2/TRI2–2: 7UHC and SARS-CoV-2/TRI2–2 (local refinement): 7UHB) and Electron 

Microscopy Data Bank (EMDB) (SARS-CoV-2/TRI2–2: EMD-26512, SARS-CoV-2/TRI2–

2 (local refinement): EMD-26511, SARS-CoV-2/FUS31-G10 (2RBD-open): EMD-26509, 

SARS-CoV-2/FUS31-G10 (3RBD-open): EMD-26510, SARS-CoV-2/FUS231-P24 (2RBD-

open): EMD-26507, and SARS-CoV-2/FUS231-P24 (3RBD-open): EMD-26508). Illumina 

sequencing data for the deep mutational scanning experiments are available on NCBI 

SRA, BioSample SAMN19925005. Code for the analysis of the deep mutational scanning 

experiments are available on Zenodo https://doi.org/10.5281/zenodo.6377268. Requests for 

reagents (antibodies, viruses, and other proteins) should be directed to the corresponding 

authors and will be made available after completion of a Materials Transfer Agreement with 

the University of Washington. This work is licensed under a Creative Commons Attribution 

4.0 International (CC BY 4.0) license, which permits unrestricted use, distribution, and 

reproduction in any medium, provided the original work is properly cited. To view a copy of 

this license, visit http://creativecommons.org/licenses/by/4.0/. This license does not apply to 

figures/photos/artwork or other content included in the article that is credited to a third party; 

obtain authorization from the rights holder before using this material.
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Fig 1. Multivalent minibinders exhibit very slow dissociation rates upon binding to the prefusion 
SARS-CoV-2-S glycoprotein trimer.
Dissociation of the minibinder construct was monitored by competition with 100-fold molar 

excess of untagged MON1 using AlphaLISA (Mean ± SEM, n = 3 technical replicates from 

a single experiment). (A) Dissociation was measured for indicated minibinder constructs 

complexed with the receptor-binding domain of SARS-CoV-2 (RBD). (B) Dissociation was 

measured for the indicated minibinder constructs complexed with the S trimer (S6P).
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Fig 2. CryoEM structures of multivalent minibinders in complex with the SARS-CoV-2 S6P 
glycoprotein.
TRI2–2 is a homotrimer of MON2 using the SB175 homotrimerization domain, FUS31-G10 

is a fusion of MON3 to MON1 with a 10 amino acid glycine-serine linker, FUS213-P24 

is a fusion of MON2 to MON1 to MON 3 with a 24 amino acid proline-alanine-serine 

linker, and FUS213-G10 is a fusion of MON2 to MON1 to MON 3 with a 10 amino acid 

glycine-serine linker. (A) A CryoEM map of TRI2–2 in complex with the S6P in two 

orthogonal orientations is shown. (B) A zoomed-in view of the TRI2–2 and RBD complex 

was obtained using focused 3D classification and local refinement. The RBD and MON2 

built in the 2.9 Å resolution cryoEM map are shown in yellow and blue, respectively. (C) A 

cryoEM map of FUS31-G10 bound to S6P is shown. (D) A cryoEM map of FUS231-P24 

bound to S6P is shown. (E) A negative-stain EM map of FUS231-G10 in complex with S6P 

is shown. S and minibinder models were docked in the whole map by rigid body fitting 

for visualization. In all panels, the EM density is shown as a transparent gray surface, S 
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protomers (PDB 7JZL) are rendered in yellow, cyan, and pink and minibinders (PDB 7JZU, 

7JZM, and MON2 structure was determined in this study) are shown in orange.
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Fig 3. FUS231-P12 enables detection of SARS-CoV-2 S trimer through BRET.
(A) A schematic representation of the BRET sensor, teluc-FUS231-P12-mCyRFP3, to detect 

S trimer is shown. (B) Luminescence emission spectra and image of the BRET sensor 

(100 pM) in the presence (orange trace, 100 pM) and absence (blue trace) of S2P are 

shown. Emission color change was observed using a mobile phone camera (inset top right). 

RLU, relative light units. (C) Titration of S2P with 100 pM sensor protein is shown. LOD 

indicates limit of detection. R2 value is shown on the graph. Data are presented as mean ± 

SEM with n = 3 technical replicates from a single experiment.
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Fig 4. Multivalency enhances both the breadth and potency of neutralization against SARS-
CoV-2 variants by minibinders.
(A) Dissociation of minibinder constructs from S6P variants after 24 hours was measured 

by competition with untagged TRI2–1 using AlphaLISA. Means are shown with n = 3 

technical replicates from a single experiment. Cells containing an X indicate insufficient 

signal in the absence of a competitor to quantify the fraction of protein bound. (B) 
Competition of minibinder constructs with ACE2 for binding S6P were measured by 

ELISA. Data are presented as mean values for n = 2 technical replicates representative 

of two independent experiments. (C) Neutralization of SARS-CoV-2 pseudovirus variants by 

minibinder constructs are shown. Data are presented as means of n = 2 technical replicates 

representative of two independent experiments. (D) Neutralization of authentic SARS-

CoV-2 by minibinder constructs was measured. Data are presented as mean ± SEM with 
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n = 4 technical replicates from two independent experiments for all but B.1.1.529, where n 

= 8 technical replicates from four independent experiments. (E) Summary of neutralization 

potencies of multivalent minibinder constructs against SARS-CoV-2 pseudovirus variants 

are shown. N/A indicates an IC50 value above the tested concentration range and an IC50 

greater than 50,000 pM. (F) Summary of neutralization potencies of multivalent minibinder 

constructs against authentic SARS-CoV-2 variants are shown. N/A indicates an IC50 value 

above the tested concentration range and an IC50 greater than 30,000 pM. NT indicates not 

tested. (G) Replicating authentic B.1.351 virus in the presence of minibinder constructs (0.3 

μM) was quantified in human kidney organoids. Data are presented as mean ± SEM, n = 4 

biological replicates with 2 to 3 technical replicates per experiment. Data were compared to 

the no inhibitor control by a Kruskal-Wallis test with Dunn’s post-hoc analysis; ** P < 0.01, 

*** P < 0.001. Dashed line indicates lower limit of detection of plaque assay. (H) Relative 

gene expression of SARS-CoV-2 envelope protein (SARS-CoV2-E) was measured in kidney 

organoids post viral infection with and without multivalent minibinders (0.3 μM). Data are 

presented as mean ± SEM of n = 4 biological replicates with 2 to 3 technical replicates per 

experiment. Data were compared to the no inhibitor control by a Kruskal-Wallis test with 

Dunn’s post-hoc analysis; * P < 0.05, *** P < 0.001.

Hunt et al. Page 29

Sci Transl Med. Author manuscript; available in PMC 2022 July 06.

H
H

M
I A

uthor M
anuscript

H
H

M
I A

uthor M
anuscript

H
H

M
I A

uthor M
anuscript



Fig 5. Top multivalent minibinder candidates are resistant to viral escape.
(A) Plaque assays were performed to isolate VSV-SARS-CoV-2 S chimera virus escape 

mutants against a control neutralizing antibody (2B04) and the FUS231-P12 and TRI2–2 

multivalent minibinders. For each inhibitor tested, Vero CCL-81 cells were incubated with 

VSV-SARS-CoV-2 S chimera virus for one hour, followed by addition of the inhibitor 

protein at a fully neutralizing concentration and further incubation to allow for replication 

and spread of resistant viruses. Thirty-six independent selections were carried out for 

each minibinder compound in a single experiment; representative examples are shown in 

the images. Small plaques are indicative of inhibited viral spreading and large plaques, 

highlighted by black arrows, are indicative of viral escape mutants spreading. (B) A 

summary of the results of the viral escape screen are shown. NAb, neutralizing antibody.
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Fig 6. Top multivalent minibinder candidates protect mice from SARS-CoV-2 challenge.
(A) K18-hACE2-transgenic mice (n = 6 from two independent experiments) were dosed 

with 50 μg of the indicated minibinder by intranasal (i.n.) administration (50 μl total) 24 

hours prior (D-1) to infection with 103 focus forming units (FFU) of SARS-CoV-2 variants 

B.1.1.7, Wash-B.1.351, or Wash-P.1 i.n. on Day 0. (B) Daily weight change following 

inoculation was measured. Data are presented as mean ± SEM. Data were analyzed by a 

two-way ANOVA with Sidak’s post-test; * P < 0.05, ** P < 0.01, *** P < 0.001, **** P < 

0.0001 as compared to the control minibinder. (C) At 6 days post infection (dpi), animals 

(n = 6 from two independent experiments) were euthanized and analyzed for SARS-CoV-2 

viral RNA by RT-qPCR in the lung, heart, spleen, brain, and nasal wash. Horizontal bars 

indicate median; dashed lines represent the limit of detection. Data were analyzed by a 
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Kruskal-Wallis test with Dunn’s post-hoc analysis; ns, not significant, * P < 0.05, ** P 

< 0.01, *** P < 0.001. (D) K18-hACE2-transgenic mice (n = 6 from two independent 

experiments) were dosed with 50 μg of the indicated minibinder by i.n. administration (50 

μl total) 24 hours after (D+1) infection with 103 FFU of the SARS-CoV-2 Wash-B.1.351 or 

B.1.617.2 variant on Day 0. (E) Daily weight change following inoculation was measured. 

Data are presented as mean ± SEM. Data were analyzed by two-way ANOVA with Sidak’s 

post-test; * P < 0.05, ** P < 0.01, *** P < 0.001, **** P < 0.0001). (F) At 6 dpi (B.1.351) 

or 7 dpi (B.1.617.2), animals (n = 6 from two independent experiments) were euthanized 

and analyzed for SARS-CoV-2 viral RNA by RT-qPCR in the lung, heart, spleen, brain, and 

nasal wash. Horizontal bars indicate median; dashed lines represent the limit of detection. 

Data were analyzed by a two-tailed Mann-Whitney test; ns, not significant, * P < 0.05, ** P 

< 0.01.
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