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Disease in Electronic Health Records
Mingzhou Fu1,2, UCLA Precision Health Data Discovery Repository Working Group,
UCLA Precision Health ATLAS Working Group and Timothy S. Chang1*
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Alzheimer’s disease (AD) is the most common form of dementia and a growing public
health burden in the United States. Significant progress has been made in identifying
genetic risk for AD, but limited studies have investigated how AD genetic risk may
be associated with other disease conditions in an unbiased fashion. In this study,
we conducted a phenome-wide association study (PheWAS) by genetic ancestry
groups within a large academic health system using the polygenic risk score (PRS)
for AD. PRS was calculated using LDpred2 with genome-wide association study
(GWAS) summary statistics. Phenotypes were extracted from electronic health record
(EHR) diagnosis codes and mapped to more clinically meaningful phecodes. Logistic
regression with Firth’s bias correction was used for PRS phenotype analyses. Mendelian
randomization was used to examine causality in significant PheWAS associations. Our
results showed a strong association between AD PRS and AD phenotype in European
ancestry (OR = 1.26, 95% CI: 1.13, 1.40). Among a total of 1,515 PheWAS tests
within the European sample, we observed strong associations of AD PRS with AD
and related phenotypes, which include mild cognitive impairment (MCI), memory loss,
and dementias. We observed a phenome-wide significant association between AD PRS
and gouty arthropathy (OR = 0.90, adjusted p = 0.05). Further causal inference tests
with Mendelian randomization showed that gout was not causally associated with AD.
We concluded that genetic predisposition of AD was negatively associated with gout,
but gout was not a causal risk factor for AD. Our study evaluated AD PRS in a real-
world EHR setting and provided evidence that AD PRS may help to identify individuals
who are genetically at risk of AD and other related phenotypes. We identified non-
neurodegenerative diseases associated with AD PRS, which is essential to understand
the genetic architecture of AD and potential side effects of drugs targeting genetic risk
factors of AD. Together, these findings expand our understanding of AD genetic and
clinical risk factors, which provide a framework for continued research in aging with the
growing number of real-world EHR linked with genetic data.

Keywords: Alzheimer’s disease, polygenic risk score, phenome-wide association study, electronic health record,
Mendelian randomization
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INTRODUCTION

Dementia is one of the largest unmet medical needs worldwide.
Alzheimer’s disease (AD) is the most prevalent form of dementia,
which accounts for 60–70% of the total cases (Alzheimer’s
Association, 2021). In the United States, an estimated 6.2 million
individuals aged 65 and older are living with AD, which results in
an economic cost of $355 billion (Alzheimer’s Association, 2021).
Multiple factors, both genetic and environmental, are associated
with AD (Xu et al., 2015). Genome-wide association studies
(GWASs) have identified multiple common variants, which
together contribute to 7.1% of the risk for AD (Kunkle et al.,
2019). Well-established genetic risk factors include the ε4 allele
of the apolipoprotein E (APOE) gene, the five repeat allele of very
low-density lipoprotein receptor (VLDL-R) gene, and deletion in
exon 18 of the α2 macroglobulin (A2M) gene (Tilley et al., 1998).
Environmental factors, such as air pollution, dyslipidemia, and
type 2 diabetes, are also associated with higher risk of AD (Tsuno
and Homma, 2009; Fu et al., 2021; Ware et al., 2021). Given the
large public health burden, determining the relationship between
AD genetic risk and other disease conditions can improve our
understanding of the genetic architecture of AD and disease
conditions that may be the risk factors for AD.

A phenome-wide association study (PheWAS) can identify
the shared genetic etiology between AD and other diseases.
A PheWAS is considered a genotype-to-phenotype approach
where multiple phenotypes are tested for association with one
genetic loci (Hebbring, 2014). As a way of exploring gene-
disease associations, PheWAS has been used by investigators
with extensively phenotyped cohorts such as large biobanks
(Bycroft et al., 2018) and electronic health record (EHR) systems
(Denny et al., 2013).

To define phenotypes, PheWASs use computable phenotypes
derived from EHR databases. Standard PheWASs have primarily
focused on correlating single-nucleotide polymorphisms (SNPs)
to a spectrum of phenotypes, which may result in limited power
due to the small effect size of each SNP (Fritsche et al., 2018).
A polygenic risk score (PRS) is a summary score calculated
by aggregating the risk carried by multiple genetic variants,
weighted by their effect sizes from a GWAS (Escott-Price et al.,
2015). As a measurement of genetic liability to a trait, the PRS
has shown promise in predicting human complex traits and
diseases and may facilitate early detection, risk stratification, and
prevention of common complex diseases (Chatterjee et al., 2016).
For instance, one study reported an area under the curve (AUC)
of 0.57 using APOE region only to predict AD (Tosto et al.,
2017), whereas another study reported an AUC of 0.84 with
an AD PRS using more than 2,00,000 variants including APOE
(Escott-Price et al., 2017).

Because a PheWAS identifies multiple phenotypes associated
with AD genetic risk, it is possible that these PheWAS significant
phenotypes are the causal risk factors for AD. For example,
AD genetic risk may lead to a PheWAS significant phenotype,
which may lead to AD. Mendelian randomization (MR) is a
method using genetic variants as the instrumental variables to
assess causality between two phenotypes known as the exposure
and the outcome. It is analogous to a randomized control trial

where individuals are randomized to carry genetic variants that
may modify the risk of an exposure. Since genetic variants are
fixed at conception, preceding the onset of health disorders and
environmental exposures, MR can overcome many drawbacks of
observational studies, such as confounding and reverse causation
(Smith and Ebrahim, 2003).

Our study is the first to perform a comprehensive PheWAS
from AD PRS in an academic health center EHR with different
ancestry populations. We first constructed AD PRS based on
the largest AD GWAS (Kunkle et al., 2019). Then, we linked
EHR information with genotypic data to explore phenotype
associations of AD genetic risk. When a PRS-based PheWAS
led to the association with other phenotypes (e.g., gout), we
performed MR to evaluate their causal relationships.

SUBJECTS AND METHODS

University of California, Los Angeles
ATLAS Cohort
Participants were recruited through University of California,
Los Angeles (UCLA) Health System. Written informed consent
was obtained from the participants for the study of remnant
biosamples in the UCLA ATLAS Precision Health Biobank
(Chang et al., 2021; GenomicsDB, 2021; Johnson et al., 2021).
Genetic data obtained from remnant biosamples as described
below were linked to the deidentified EHR from the UCLA
Health System known as the UCLA Data Discovery Repository
(DDR), developed under the auspices of the UCLA Health
Office of Health Informatics Analytics and the UCLA Institute
of Precision Health. This study was considered human subject
research exempt because all genetic and EHRs were deidentified
(UCLA IRB# 21-000435).

Data Preprocessing
Genotyping and Sample Quality Control
Genotype collection, quality control, processing, and imputation
were performed by the UCLA ATLAS Precision Health Biobank
(GenomicsDB, 2021; Johnson et al., 2021). Briefly, DNA was
extracted from participant blood samples and genotyped on a
custom Illumina Global Screening Array that included a standard
GWAS backbone and an additional set of pathogenic variants
selected from ClinVar (Landrum et al., 2018). Preprocessing of
the genotyped data includes removing contaminated samples,
unmapped SNPs, high missing rate samples, high missing rate
SNPs, duplicates, and performing strand flip (PLINK v.1.90)
(Chang et al., 2015; Johnson et al., 2021). After performing array-
level genotype quality control, genotypes were imputed from the
Michigan Imputation Server (2021). After filtered by R2 > 0.90
and minor allele frequency (MAF) > 0.01, 8,048,268 polymorphic
variants and 30,118 participants remained.

Population stratification, defined as the presence of systematic
allele frequency differences between populations, can distort the
true effect estimates between genetic variants and disease (Price
et al., 2006). To adjust for population stratification, we conducted
all analyses within samples of the same genetic ancestry group.
We inferred samples’ genetic ancestry by projecting all genotyped
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samples into the principal components (PCs) space of the 1,000
Genome Project (phase 3) (Internationalgenome1000, 2021)
reference panel using the R package “bigsnpr” (Privé et al., 2018).
We limited the principal component analysis (PCA) to variants
that were shared between the 1,000 Genome reference and the
UCLA ATLAS data, had a MAF > 0.01, and remained after
linkage disequilibrium (LD) clumping (R2 > 0.2, prioritizing
variants by higher minor allele counts). PCs were stored and
used for further association tests. Genetic ancestry of each sample
was inferred using k-nearest neighbor (k-NN) (Altman, 1992)
(multiclass classification) with the first 20 PCs of the genotyped
data. Genetic ancestry classes were assigned to European, African,
American, East Asian, or South Asian ancestry. We compared
patients’ inferred genetic ancestry with self-reported race or
ethnicity, and results are shown in Supplementary Table 1.

Phenotype Generation
International Classification of Disease (ICD) codes are standard
diagnosis codes used in the EHR. ICD codes are arranged
hierarchically to describe diseases and syndromes. It has
fine granularity but are considered too detailed to represent
clinically meaningful phenotypes and to replicate known genetic
associations (Wei et al., 2017). Instead, we used phecodes in
our study to reduce complexity of phenotypes in the EHR.
Phecodes are defined as a combination of ICD codes and have
been validated by experts to better represent clinical disease
phenotypes (Denny et al., 2010). As such, this improves power
to detect an association by increasing the number of cases
and reducing multiple hypothesis testing. We extracted the
diagnosis data (ICD-9/10 codes) from all types of encounters
(including appointment, hospital encounter, office visit, history,
telephone, patient message, orders, transcribed document,
scanned document, billing encounter, refill, letter, laboratory
visit, health maintenance letter, procedure pass, ancillary orders,
historical scanned document, and ancillary procedure) from the
UCLA EHR and mapped the ICD codes to phecodes using the
R package “PheWAS” (Carroll et al., 2014). Cases for a given
PheWAS code were defined if an individual had at least one
assignment of that phecode in their longitudinal records. The
remaining individuals that did not have phecodes from exclusion
criteria previously defined (Carroll et al., 2014) were considered
as control subjects. In each ancestry sample, we only tested
phenotypes with ≥ 50 cases and ≥ 50 controls to increase
statistical power in the PheWAS analyses. A total of 1,515 case–
control studies were generated for further analyses.

Construction of Alzheimer’s Disease
Polygenic Risk Score
To construct the AD PRS, we used the summary statistics of a
late-onset AD GWAS conducted by Kunkle et al. (2019) in which
included 21,982 cases and 41,944 controls (N SNP = 11,480,632).
Variant positions were converted to GRCh38 using variant IDs
from dbSNP build 151 (UCSC Genome Browsers) (Karolchik
et al., 2004). The set of SNPs that overlapped between GWAS
summary statistics and ATLAS genotyped data was retained for
PRS construction. We also restricted our analyses to only the
HapMap3 SNPs and removed outliers (SNPs) from the summary

statistics as recommended by Privé et al. (2020). A total of
953,397 SNPs passed the above quality control steps and were
used for PRS construction. We then used LDpred2 to build
the AD PRS (Privé et al., 2020). For the first step of LDpred2,
we used a reference dataset from 1,000 Genome (European
samples only, n = 522) to extract overlapping GWAS hits and
estimated pairwise LD using the available allele dosages of the
corresponding controls. LDpred2 updated weights (β) based on
LD information and then the updated weights were applied to
all UCLA ATLAS samples accordingly. The PRS was calculated
by the sum of an individual’s risk allele dosages, weighted by risk
allele effect sizes. Namely, for subject j, the PRS was of the form
PRSj =

∑
i βiGij where βi was the updated weight for locus i,

and Gij was the measured dosage data from the risk allele on
locus i in subject j. The same methods were applied to construct
AD PRS for each ancestry group. Finally, we normalized all PRSs
(mean = 0, standard deviation = 1) to a reference population (the
1,000 Genome, European sample).

Statistical Analysis
To validate the AD PRS, we examined the association between
PRS and AD phenotype (phecode = 290.11) using logistic
regression. To avoid selection bias introduced by younger,
healthier participants, we only selected people aged over 65
without AD as our controls (vs. AD cases). We first determined
the PRS quartiles within each ancestry sample, categorized all
samples according to these PRS quartiles, and fitted logistic
regression adjusting for age, sex, and the first five PCs. We
reported area under the receiver operating characteristic (ROC)
curve (AUC) (Receiver Operating Characteristic, 2021) and odds
ratios (ORs) corresponding to the top vs. the bottom quartile PRS
(reference), referred to as PRS OR. We also used continuous PRS
as the covariate to increase statistical power.

For our primary PRS PheWAS, we conducted logistic
regression for each phenotype, adjusting for age, sex, and the
first five PCs. We used Firth’s bias reduction method in logistic
regression models to avoid the problem of separation, which is
introduced by very small observed value of the outcome that
leads to large parameter estimates and standard errors in a binary
or categorical outcome logistic regression (Wang, 2014). We
applied the false discovery rate (FDR) p-value correction to adjust
for multiple testing (Korthauer et al., 2019). The results were
presented as ORs and raw or adjusted p-values.

For significant PheWAS hits on AD PRS, we first reexamined
their associations with AD PRS within non-AD controls only. We
also tested their relationship with AD phenotype in our sample
using logistic regression and one-sample MR. Confounders
used for model adjustments were health conditions that were
associated with both phenotypes. The conceptual directed acyclic
graph and MR assumptions are shown in Supplementary
Figure 1. For one-sample MR, sequential probit models were
used to calculate the causal effect controlling for confounders
at each step (Davies et al., 2018). We also used two-sample
MR, which uses large GWAS summary statistics (Hartwig et al.,
2016), to test the robustness of our one-sample MR results.
In two-sample MR, identified SNPs at significance thresholds
(liberal: P < 1E-06; conservative: P < 5E-08) were clumped
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for independence using PLINK clumping (R2
≤ 0.001, window

size = 10,000 kb) within a European reference panel, where
SNPs with the lowest p-value were retained. We applied multiple
robust methods in our study including inverse variance weighted
(IVW, with multiplicative random effects model), MR-Egger,
weighted median, and weighted mode. Beta coefficient, standard
error, and p-value were reported for each method. Finally, we
performed multiple sensitivity analyses to test whether those
MR assumptions were met. F-statistics was used to check
instrumental variable strength, with > 10, which indicates a
sufficiently strong instrument (Burgess et al., 2011). Cochran’s
Q-test, MR-Egger intercept, and MR-PRESSO global test were
used to examine the existence of horizontal pleiotropy and
outliers (Bowden et al., 2018; Verbanck et al., 2018). Additionally,
I2 statistics was calculated as a measure of heterogeneity between
causal estimates, with a low I2 which indicates estimates biased
toward the null (Bowden et al., 2016).

All analyses were carried out separately for different genetic
ancestries. If not stated otherwise, analyses were performed using
R version 4.1.0 (R: The R Project For Statistical Computing,
2019).

RESULTS

The study cohort included 30,118 genotyped samples with EHR
data (see summary characteristics of the cohort in Table 1). The
study cohort contained 54.6% women and the median age was 61
years. Of these samples, 0.92% had a diagnosis of AD. Compared
to non-European genetic ancestry samples, the European sample
was older and had a lower AD PRS. The African and South Asian
samples had a higher proportions of AD cases.

Validation of Alzheimer’s Disease
Polygenic Risk Score
To validate the construction of AD PRS, we determined the
association between AD PRS and AD in our UCLA ATLAS
sample by ancestry (Table 2). AD PRS was positively associated
with AD phenotype in the European and East Asian ancestry
sample. After adjusting for age, sex, and first five PCs, European
participants falling in the top quartile of AD PRS (>0.954) were
associated with 1.81 (95%CI: 1.18, 2.82) times higher odds of AD
relative to the bottom quartile (≤ -0.854); the odds were higher in
East Asian participants, though with a wider confidence interval
(OR = 5.11, 95% CI: 1.09, 37.77). A one standard deviation unit
increase in AD PRS was associated with 1.26 (95% CI: 1.13, 1.40)
times higher odds of AD in European ancestry and 1.88 (95%
CI: 1.22, 2.98) times higher in East Asian ancestry. For European
ancestry, the AUC for AD PRS alone to predict AD in the logistic
regression model was 0.58 (95% CI: 0.53, 0.63) and increased to
0.79 (95% CI: 0.74, 0.83) with covariates including age, sex, and
first five PCs. However, no association was observed between AD
PRS and AD in other ancestry groups. Taken results together,
the AD PRS built using GWAS summary statistic from European
ancestry individuals (Kunkle et al., 2019) was confirmed to be a
valid instrument for further analyses in the European and East

Asian ancestry but should be used with caution for other ancestry
samples.

Alzheimer’s Disease Polygenic Risk
Score Phenome-Wide Association Study
We evaluated AD PRS across 1515 EHR-derived phenotypes
with at least 50 case and control subjects in the European
sample as our primary analyses (Supplementary Table 2A).
Through a PheWAS plot, we present -ln(FDR corrected p-values)
corresponding to each of the 1,515 association tests for H0:
βPRS = 0 (Figure 1). After FDR p-value correction, we found
strongest associations of AD PRS with the AD and related
phenotypes, which include mild cognitive impairment (MCI)
(OR = 1.18, FDR = 0.013), memory loss (OR = 1.10, FDR = 0.004),
and dementias (OR = 1.14, FDR = 0.046) (Table 3). We
observed a borderline association between AD PRS and delirium
dementia and amnestic and other cognitive disorders (OR = 1.11,
FDR = 0.059). In addition, we identified a PRS association
with a secondary trait besides cognitive disorders. We observed
an inverse association of AD PRS with gouty arthropathy
(OR = 0.90, FDR = 0.05). PRS PheWAS was also conducted
in other ancestry samples with phenotypes of at least 50 case
and control subjects each (Supplementary Tables 2B–E), but no
significant associations were found.

Determining Causality Between
Alzheimer’s Disease and Secondary
Phenotypes
To investigate whether the secondary association of gouty
arthropathy and AD PRS was due to patients with both
AD and gouty arthropathy, we reexamined the AD PRS-gout
association after excluding AD cases. After adjusting for the same
demographic variables (age, sex, number of follow-up years, and
first five genetic PCs), the inverse association between AD PRS
and gouty arthropathy was still significant (OR = 0.91, p = 0.01).
We also evaluated the association between gouty arthropathy
and AD phenotype in our European sample. Variables that
influence both the exposure (gouty arthropathy) and outcome
(AD) can cause a spurious association in observational studies
(McNamee, 2005). We performed bivariate analyses to find
factors that potentially confound the association between gouty
arthropathy and AD (Supplementary Table 3). Hypertension,
diabetes, stroke, and hyperlipid were significantly associated
with both gouty arthropathy and AD. These were adjusted
as confounders in subsequent models. Although there was a
crude positive association between gouty arthropathy and AD
(OR = 2.48, 95% CI: 1.11, 4.79), no significant association
was found after adjustments of demographic and comorbidity
variables mentioned above (Table 4).

Next, we examined whether a lower risk of AD was a
consequence of gouty arthropathy with a one-sample MR
framework (Supplementary Figure 1). A test of inferred causality
of gouty arthropathy on AD was conducted using AD PRS as the
instrumental variable since its association with gouty arthropathy
was statistically significant (Table 3), which met the relevance
assumption of MR. As shown in Table 4, the causality of gouty
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TABLE 1 | Demographics and clinical characteristics of UCLA ATLAS sample.a

Genetic ancestry sample

All sample European African American East Asian South Asian Overall P-valueb

Characteristic n = 30,118 n = 19,934 n = 1,663 n = 4,991 n = 2,982 n = 548

Females, N (%) 16,434 (54.6%) 10,288 (51.6%) 1,027 (61.8%) 3,004 (60.2%) 1,816 (60.9%) 299 (54.6%) < 0.001*

Age (years), Median [25th;75th] 61.0 [45.0;72.0] 63.0 [48.0;73.0] 60.0 [46.0;71.0] 53.0 [39.0;66.0] 57.0 [42.0;70.0] 49.0 [38.0;66.0] < 0.001*

Encounters per participant,
Median [25th;75th]c

59.0 [25.0;119] 59.0 [26.0;119] 73.0 [29.0;152] 55.0 [22.0;119] 54.0 [25.0;105] 49.0 [23.0;106] < 0.001*

Unique diagnosis per
participant, Median [25th;75th]

59.0 [32.0;103] 60.0 [33.0;103] 71.0 [38.0;125] 59.0 [29.0;107] 50.0 [28.0;88.0] 51.0 [28.0;83.0] < 0.001*

Timespan of records (years),
Median [25th;75th]

6.00 [3.10;8.10] 6.20 [3.30;8.10] 6.50 [3.30;8.20] 5.20 [2.50;7.90] 5.80 [3.00;8.00] 5.30 [2.90;7.80] < 0.001*

PRS for Alzheimer’s disease,
Mean (SD)

0.46 (1.64) 0.16 (1.43) 3.63 (1.58) 0.23 (1.40) 1.07 (1.34) 0.19 (1.39) < 0.001*

Alzheimer’s disease case
count, N (%)

241 (0.92%) 168 (0.97%) 15 (1.06%) 34 (0.78%) 17 (0.63%) 7 (1.42%) 0.21

PRS, polygenic risk score; SD, standard deviation.
aAll the statistics were calculated based on non-missing data for each variable.
bDepending whether the row variable is considered as continuous normal distributed (1), continuous non-normal distributed (2) or categorical (3), the following descriptives
and tests are performed: 1- mean, sd, and ANOVA; 2- median, 1st and 3rd quartiles, and Kruskal–Wallis test; (3), absolute and relative frequencies and chi-squared
or exact Fisher’s test when the expected frequency is less than 5 in some cells from chi-square test for categorical variables as appropriate, interpreted as differences
between groups.
cAll types of encounters extracted from the EHRs were included, see details in section “Subjects and Methods.” *significant test statistics (p < 0.05).

TABLE 2 | Associations between AD PRS and AD, UCLA ATLAS sample, by genetic ancestry.a

Categorical (top vs. bottom quartile) PRS Continuous PRS

Nb Odds Ratio (95%CI) Nb Odds Ratio (95%CI) AUC: PRS alone (95%CI)

European 3,829 1.81 (1.18, 2.82) 7,620 1.26 (1.13, 1.40) 0.58 (0.53, 0.63)

African 262 0.91 (0.11, 7.79) 521 0.95 (0.63, 1.41) 0.55 (0.40, 0.70)

American 544 0.62 (0.21, 1.72) 1,084 0.97 (0.74, 1.26) 0.50 (0.40, 0.61)

East Asian 448 5.11 (1.09, 37.77) 905 1.88 (1.22, 2.98) 0.66 (0.53, 0.79)

South Asian 65 0.46 (0.01, 7.46) 123 0.80 (0.40, 1.51) 0.60 (0.31, 0.88)

AD, Alzheimer’s Disease; CI, confidence interval; PRS, polygenic risk score.
aAll the values were based on results from multivariable logistic regression analyses in each sample, in which “no AD” was used as the reference group. ORs were
reported from the models which further adjusted for age, sex, and first five PC sets. AUCs were reported from the models with PRS alone.
bThis number include both AD cases and controls.

arthropathy on AD no longer held after adjusting for the same
demographic and comorbidity variables mentioned above (one-
sample MR with sequential probit models, p = 0.06). The results
suggest that gouty arthropathy is not a causal protective factor of
AD in our European ancestry sample.

We further tested whether gout is the causal protective risk
factors for AD using a two-sample MR approach. This two-
sample MR method does not directly test whether AD PRS is the
instrumental variable, but rather uses multiple variants below a
given p-value threshold from GWAS as the instrumental variable.
We used the Kunkle et al. (2019) AD GWAS and the gout
GWAS conducted by Tin et al. (2019) to perform two-sample
MR analyses. Similar to our one-sample MR, no significant
causal relationship was consistently found from gout to AD
using multiple methods that include IVW, MR-Egger, weighted
median, and weighted mode (Table 5). The F-statistic indicates
adequate instrument strength (liberal: 86.76 > 10; conservative:
123.49 > 10). There was no heterogeneity across different

methods or directional pleiotropy found using multiple measures
(see “Subjects and Methods”). We also performed a sensitivity
analysis to examine the reverse causality of AD on gout. Both one-
sample and two-sample MR results showed no causal relationship
between AD and gout (Supplementary Table 4).

DISCUSSION

Alzheimer’s disease is a complex disease determined by
interactions between genetic risk factors and environmental
modifiers (Baumgart et al., 2015; Xu et al., 2015; Fu et al., 2021;
Ware et al., 2021). In our study, we conducted a comprehensive,
ancestry specific PheWAS study using cumulative genetic risk
of AD in a real-world academic medical center population.
We provided evidence for the value of AD PRS to aid in
identifying individuals who are genetically at risk of AD, and
also other related phenotypes including MCI, memory loss
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FIGURE 1 | PheWAS plot for Alzheimer’s disease polygenic risk score, European ancestry sample (N = 19,934). 1515 traits (number of cases/controls ≥ 50) are
grouped into 17 color-coded categories as shown on the horizontal axis; the p-values for testing the associations of PRS with the traits were adjusted by FDR and
transformed to minus natural logarithms, shown on the vertical axis. The size of the dot refers to effect size (OR) of AD PRS on traits. All values were based on results
from multivariable logistic regression analyses, in which “no disease/symptom” was used as the reference group, adjusted for age, sex, and first five PCs. The solid
horizontal line for adjusted p = 0.05 cutoff.

TABLE 3 | Significant PheWAS results of Alzheimer’s disease polygenic risk score in the full European ancestry sample (N = 19,934).a

Phecodes Description Group N total N Cases N Controls OR Raw P-value Adjusted P-valueb

290.11 Alzheimer’s disease Mental disorders 17,290 168 17,122 1.26 3.17E-05 0.015

292.2 Mild cognitive impairment Mental disorders 17,470 359 17,111 1.18 1.81E-05 0.013

292.3 Memory loss Mental disorders 18,583 1,470 17,113 1.10 2.88E-06 0.004

290.1 Dementias Mental disorders 17,585 479 17,106 1.14 1.26E-04 0.046

274.11 Gouty arthropathy Endocrine/metabolic 19,489 656 18,833 0.90 1.73E-04 0.050

OR, odds ratio.
aAll the values were based on results from multivariable logistic regression analyses in each sample, in which “no disease/symptom” was used as the reference group,
and adjusted for age, sex, and first five PC sets.
bThe adjusted p-value was calculated by controlling the FDR.

TABLE 4 | Results of logistic regression and one-sample Mendelian randomization testing associations and causality between gouty arthropathy and Alzheimer’s
disease, European ancestry (N = 14,511).a

Logistic regression test for association One-sample MR test for causality

Odds ratio (95 CI%) Beta coefficientd p-value

Crude 2.48 (1.11, 4.79) –29.71 0.04*

Adjusted demographicsb 1.13 (0.49, 2.28) –5.71 0.03*

Adjusted health conditionsc 1.02 (0.44, 2.09) –3.62 0.06

AD, Alzheimer’s disease; CI, Confidence Interval; MR, Mendelian randomization; PRS, polygenic risk score.
aAll the values were based on results from multivariable logistic regression analyses in each sample, in which “no Alzheimer’s disease” was used as the reference group.
bAdjusted for age, sex, number of follow-up years, and five ancestry-specific PC sets.
cAdjusted for history of hypertension, diabetes, stroke, and hyperlipid in addition to variables in b.
dBeta coefficients for the causal estimates from gouty arthropathy to AD. *significant test statistics (p < 0.05).

and dementias in the European ancestry. We identified non-
neurodegenerative diseases, especially gout, associated with AD
PRS. Understanding horizontal pleiotropy for AD genetic risk

is essential to broaden our understanding for the genetic
architecture of AD. These PheWAS results also provide insights
on potential side effects of drugs targeting these genetic risk
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TABLE 5 | Two-sample Mendelian randomization to test causal relationship between gout status and Alzheimer’s disease.a

Instrument Mendelian randomization method Beta SE P-value Sensitivity test Results

Evaluate gout causal for AD

Liberal IVW (fixed effects) 0.022 0.019 0.24 F statistic (combined instrument) 86.76

p < 1E-06 IVW (multiplicative random effects) 0.022 0.020 0.25 Cochran’s Q (for IVW) p = 0.34

(n_SNP = 48) MR Egger 0.079 0.032 0.02* MR-Egger intercept p = 0.03

Weighted median 0.057 0.029 0.05 MR-PRESSO global test p = 0.26

Weighted mode 0.054 0.028 0.06 I2 test 0.99

Conservative IVW (fixed effects) 0.025 0.021 0.22 F statistic (combined instrument) 123.49

p < 5E-08 IVW (multiplicative random effects) 0.025 0.019 0.19 Cochran’s Q (for IVW) p = 0.67

(n_SNP = 29) MR Egger 0.059 0.034 0.10 MR-Egger intercept p = 0.22

Weighted median 0.054 0.030 0.07 MR-PRESSO global test p = 0.20

Weighted mode 0.056 0.030 0.08 I2 test 0.99

IVW, inverse variance weighted; SE, standard error.
aThe F-statistics was not able to be calculated because the Kunkle GWAS summary statistics did not report allele frequency. *significant test statistics (p < 0.05).

factors in AD (Nguyen et al., 2019). For example, because AD
PRS and gout have a negative association, drugs targeting
AD genetic risk factors may increase risk of gout. Finally, we
performed thorough analyses evaluating the causality between
significant associations, which shows that gout was not a causal
risk factor for AD. The evaluation of causality is an important
component to infer the temporal order of diseases and better
understand protective and risk factors of AD.

We constructed an AD PRS that summarized the aggregated
AD genetic risks based on prior GWAS. We found moderate
prediction power of the AD PRS in the European and East
Asian ancestry sample, but poor predictive power in other non-
European ancestry samples. We expected poor performance in
non-European ancestry samples as our methods for computing
the AD PRS depended on summary statistics from a GWAS
including only participants of the European ancestry (Kunkle
et al., 2019). Prior studies have found in multiple diseases that
PRS constructed from European ancestry GWAS results in poor
predictive performance in non-European ancestry populations
(Duncan et al., 2019; Martin et al., 2019). Furthermore, we
had small sample sizes for PheWAS in non-European ancestry
samples (Table 2). The significant association of the European
GWAS-based AD PRS with East Asian ancestry may be due
to some shared genetic architecture for AD genetic risk. Prior
studies found associations between a polygenic risk model using
significant AD risk loci from European AD GWAS and AD in
Chinese cohorts (Xiao et al., 2015; Zhou et al., 2020).

We then performed a primary PheWAS. In the European
samples, we observed a significant positive association between
AD PRS and AD, along with multiple cognitive phenotypes (MCI,
memory loss, and dementias). Prior studies have identified an
association of AD PRS with MCI (Logue et al., 2019) and the
conversion of MCI to AD (Chaudhury et al., 2019; Logue et al.,
2019). Our study further supports that AD PRS is associated with
MCI in an EHR cohort. We also observed a borderline association
between AD PRS and delirium dementia and amnestic and other
cognitive disorders. Whereas it is known Alzheimer’s disease and
dementias are risk factors for delirium (Fick et al., 2002; Fong
et al., 2009), prior work has not evaluated the association of AD

PRS and delirium. The association of AD PRS and these cognitive
phenotypes including memory loss and dementias may also be
due to the fact they are comorbid with or precede a diagnosis
of Alzheimer’s disease (Varatharajah et al., 2019; Alzheimer’s
Association, 2021). Our results from an EHR cohort suggest that
using AD PRS to predict not only AD but also MCI and delirium
should be further explored.

We also found a significant association between gouty
arthropathy and AD PRS. We conducted multiple sensitivity
analyses to explore whether the associations of AD PRS with
gout and AD PRS with AD were driven by horizontal pleiotropy,
in which genetic variants convey risk independently to two
different phenotypes, or vertical pleiotropy, in which genetic
variants convey risk to one phenotype, which in turn raises or
lowers risk for the secondary phenotype (Zheutlin et al., 2019).
In the European ancestry sample, we observed that gout was not
causally related to AD using one-sample and two-sample MR.
This result was also consistent with the null association found
between gout and AD given by logistic regressions testing gout
and AD without considering AD genetic risk and correcting for
confounders (Table 4). Although gout commonly has an earlier
age of onset than AD (Lu et al., 2016), which indicates that
there is unlikely to be a causal relationship from AD to gout,
we tested for reversal causality from AD to gout in our study as
a sensitivity analysis and the null-causal relationship still held.
Taken as a whole, gout is a horizontal pleiotropic factor of AD;
that is, AD genetic variants have a negative effect on gout, but
gout is not a causal risk factor for AD when considering other
confounders.

The association of gout with AD has had mixed findings in
prior work. Hyperuricemia is the key causal precursor for gout
and has been proposed as a mechanistic link to AD (Lu et al.,
2016). Uric acid is considered as a major natural antioxidant
in plasma that reduces oxidative stress and protects against free
radicals, which are elevated in AD (Tuppo and Forman, 2001;
Polidori and Mecocci, 2002; Reddy, 2006; Al-Khateeb et al.,
2015). Other cross-sectional studies of serum uric acid reported
no difference in concentration in AD and MCI patients compared
to healthy controls (Polidori and Mecocci, 2002).
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There are several distinct aspects to our study. We used
LDpred2 method to build our AD PRS. Since association tests in
GWASs are typically performed one SNP at a time, the presence
of strong correlation structures across the genome, also known as
LD, will likely cause bias in the independent effect estimates (Choi
et al., 2020). LDpred is a popular method for deriving polygenic
scores to account for LD. It implements a Bayesian shrinkage
model which uses a prior on effect sizes and LD information
from an external reference panel to infer the posterior mean
effect size of each SNP (Vilhjálmsson et al., 2015). LDpred2 is
an updated version of LDpred that addresses the issues of model
misspecification while improving the computational efficiency.
Specifically, LDpred2 (auto model) allows the learning of the two
LDpred parameters (the proportion of causal variants p and the
SNP heritability h2) from data, which can therefore be applied
to data without the need of a validation dataset to choose best-
performing hyperparameters (Privé et al., 2020). In addition, we
used Firth’s corrected logistic regression in our PheWAS analyses.
The Firth’s bias correction can solve the problem of separation
in logistic regression and provide well-controlled type I error
rates for unbalanced case–control studies with relatively small
sample counts (Wang, 2014). Finally, we used thorough MR
analyses to study causal inferences of gout and AD. MR has the
advantages of removing unmeasured confounding, and the use of
both one-sample and two-sample MR could be complementary
to each other. The advantage of one-sample MR is the use of
individual participant data rather than summary data, whereas
the advantage of two-sample MR is the increased statistical power
and thus can provide more robust causal results. However, some
assumptions, such as the exclusion restriction assumption, are
difficult to completely verify as all true confounders for gout and
AD are unknown (Burgess et al., 2015).

There are limitations to this study. Given the non-significant
results of AD PRS and AD in non-European ancestry samples, the
PheWAS results may not be generalizable to these populations.
Although large AD GWAS is not currently available in other
ancestry groups, future work should perform PheWAS with
AD PRS from ancestry specific GWAS. Because thorough MR
analysis did not identify a causal relationship between gout and
AD, and MR methods do not consider temporal data, we did not
consider the temporal ordering of gout and AD diagnosis.

In summary, this study expands our understanding of AD
genetic and clinical risk factors and provides a framework for
evaluating horizontal and vertical pleiotropy that can be used
in aging research. With the growing number of real-world EHR
linked with genetic data, continued research will improve our
ability to use genetics, biomarkers, and clinical risk factors, some
of which will be causal, for early disease prediction and treatment.
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