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ABSTRACT
Background: Vitamin D is critical to embryonic neuronal differentiation and other developmental processes that may

affect future neurocognitive function. However, observational studies have found inconsistent associations between

gestational vitamin D and neurocognitive outcomes.

Objectives: We examined the association of gestational 25-hydroxyvitamin D [25(OH)D] with children’s IQ at 4–6 y,

and explored whether associations differed by race.

Methods: This study used data from the CANDLE (Conditions Affecting Neurocognitive Development and Learning in

Early Childhood) cohort. Between 2006 and 2011, CANDLE recruited 1503 women in their second trimester of healthy

singleton pregnancies. Inclusion criteria for this analysis were gestation of ≥34 wk and availability of 25(OH)D and IQ

data. Associations between second-trimester 25(OH)D plasma concentration and Stanford-Binet IQ scores in offspring

at 4–6 y were examined using multivariable linear regression; interaction terms were used to explore possible effect

modification by race.

Results: Mean ± SD 25(OH)D concentration among 1019 eligible dyads was 21.6 ± 8.4 ng/mL, measured at a

mean ± SD gestational age of 23.0 ± 3.0 wk. Vitamin D deficiency [25(OH)D < 20 ng/mL] was observed in 45.6%.

Maternal 25(OH)D differed by race with a mean ± SD of 19.8 ± 7.2 ng/mL in Blacks sand 25.9 ± 9.3 ng/mL in Whites (

P < 0.001). In adjusted models a 10-ng/mL increase in 25(OH)D was associated with a 1.17-point higher Full Scale IQ

(95% CI: 0.27, 2.06 points), a 1.17-point higher Verbal IQ (95% CI: 0.19, 2.15 points), and a 1.03-point higher Nonverbal

IQ (95% CI: 0.10, 1.95 points). We observed no evidence of effect modification by race.

Conclusions: Second-trimester maternal 25(OH)D was positively associated with IQ at 4–6 y, suggesting that

gestational vitamin D status may be an important predictor of neurocognitive development. These findings may help

inform prenatal nutrition recommendations and may be especially relevant for Black and other dark-skinned women at

high risk of vitamin D deficiency. J Nutr 2021;151:132–139.
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Introduction
Vitamin D deficiency is a worldwide problem affecting the
general public and women of childbearing age (1, 2), especially
among those with darker skin (3). Observational studies have
linked low perinatal and prenatal vitamin D to developmental
brain disorders including schizophrenia and autism (4–6),

and some (7–9) but not all (10–13) cohort studies have
found positive associations between gestational vitamin D
and childhood IQ. During gestation vitamin D influences the
expression of genes that regulate the production, migration, and
differentiation of neuronal structures, setting the foundation for
many aspects of future neurocognitive development (14–16).
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The vitamin D receptor (VDR) is expressed in the mam-
malian brain as early as 12 d into gestation (17) and VDRs
are found throughout brain matter (18). Maternal vitamin D is
transported through the placenta (19), and by binding to VDR
in the fetal brain, it exerts transcriptional control over many
genes related to structural brain development (20). Vitamin
D influences embryonic neuronal differentiation (21, 22),
regulates neurotransmitter concentrations (23–25), and plays
a role in regulating neuronal calcium, reactive oxygen species,
and neurotrophic factors (26). Therefore, gestational vitamin
D status may have important implications for neurocognitive
development in offspring.

Cutaneous synthesis is a major source of vitamin D for
many individuals, because the modern diet has few rich sources
of vitamin D. Cutaneous synthesis is reduced in Blacks and
others with pigmented skin due to the absorption of UV
radiation by melanin (3), making these populations especially
vulnerable to deficiency. Vitamin D deficiency in the general
population is defined by the Institute of Medicine (IOM) as
25-hydroxyvitamin D [25(OH)D] concentrations <20 ng/mL,
and is based on bone health (27). Desirable concentrations in
pregnant women have yet to be established and may differ from
those in the general public (28). Nationally representative data
from 2001–2006 indicated that 13% of White pregnant women
in the United States had 25(OH)D concentrations <20 ng/mL
compared with 80% of pregnant Black women (2). Thus, the
potential consequences of gestational vitamin D deficiency may
disproportionately affect children of Black women.

We previously reported that maternal 25(OH)D status
during pregnancy was associated with receptive language
in offspring at age 2 y in a majority Black cohort, the
CANDLE (Conditions Affecting Neurocognitive Development
and Learning in Early Childhood) study (29). Whether or not
this association persists beyond age 2 y in this population with
high vulnerability to vitamin D deficiency has not yet been
explored. The aim of this study was to examine the hypothesis
that maternal 25(OH)D during pregnancy is associated with
neurocognitive development through 4–6 y of age.

Methods
Study design and population
The CANDLE study, which has been described in detail previously (30),
was designed to examine biological and environmental influences on
early childhood neurocognitive development. CANDLE is a prospective
pregnancy cohort study in Shelby County, Tennessee, that recruited
pregnant women between December 2006 and July 2011. Women were
eligible for participation if they were between 16 and 28 weeks of
gestation, had a singleton low-risk pregnancy, resided in Shelby County,

ECHO PATHWAYS is funded by NIH grants 1UG3OD023271-01 (to SS)
and 4UH3OD023271-03 (to SS). The Conditions Affecting Neurocognitive
Development and Learning in Early Childhood (CANDLE) study was funded by
the Urban Child Institute (to FAT) and NIH grant R01 HL109977 (to FAT).
Author disclosures: The authors report no conflicts of interest.
Supplemental Table 1 is available from the “Supplementary data” link in the
online posting of the article and from the same link in the online table of contents
at https://academic.oup.com/jn/.
Address correspondence to MMM (e-mail: melissa.melough@
seattlechildrens.org).
Abbreviations used: BSID-III, Bayley Scales of Infant and Toddler Development,
Third Edition; CANDLE, Conditions Affecting Neurocognitive Development and
Learning in Early Childhood; FSIQ, full scale IQ; HEI, Healthy Eating Index;
IOM, Institute of Medicine; NVIQ, nonverbal IQ; SB5, Stanford-Binet Intelligence
Scales, Fifth Edition; VDR, vitamin D receptor; VIQ, verbal IQ; 25(OH)D, 25-
hydroxyvitamin D.

and planned to deliver at one of the 5 participating health care settings
in the county. The CANDLE study conducted 2 clinic visits during
pregnancy, 1 at labor and delivery, annual visits after birth, frequent
phone visits, and 2 home visits during early childhood.

Mother–child dyads in the CANDLE study were excluded from
this analysis if mothers delivered earlier than 34 weeks of gestation
(n = 34), if data were unavailable for second-trimester 25(OH)D plasma
concentration (n = 26), or if children did not have complete and valid
IQ testing at the age 4–6 y visit (n = 448).

Maternal measures
At baseline clinic visits conducted during the second trimester, research
staff collected maternal demographic information. Women self-reported
their race and ethnicity, household income, educational attainment,
and marital status. Self-reported health insurance status was collapsed
to a binary variable, coded as either public (Medicare, Medicaid,
or TennCare) or private/other (employer, union, private, military, or
other source). Women also reported whether they had used alcohol
or tobacco during this pregnancy and responses were coded as binary.
Prepregnancy BMI was calculated from women’s self-reported weight
and height (in kg/m2). Research staff administered the Block 2005
FFQ, a validated 111-item questionnaire used to estimate usual dietary
intake over the preceding 3 mo (31). FFQ data were used to estimate
diet quality using the Healthy Eating Index (HEI) 2010, a measure
with a maximum score of 100 that assesses conformance with US
dietary guidance (32). Maternal IQ was assessed using the Wechsler
Abbreviated Scale of Intelligence (33).

Venous blood was collected from mothers during baseline visits
at 16–28 weeks of gestation. Blood samples were transported on
ice, centrifuged at 4◦C, divided into aliquots, and frozen at −20◦C
within 6 h of collection. Plasma concentrations of 25(OH)D, the most
reliable marker of vitamin D status (34), were measured using a
commercial enzymatic immunoassay kit (Immunodiagnostic Systems)
according to the manufacturer’s instructions. Assays were performed at
the University of Tennessee Health Science Center in a laboratory that
participates in the College of American Pathology Quality Assessment
Program for 25(OH)D assays. National Institute of Standards and
Technology SRM972 Vitamin D was used for quality assurance of
25(OH)D. The minimum detection range of the assay was 2 ng/mL. The
interassay variability was <6% for the laboratory assay controls, and
precision was within 1 SD of the mean vitamin D concentration.

Child IQ assessment
Child IQ was measured at the age 4–6 y study visit using the Stanford-
Binet Intelligence Scales, Fifth Edition (SB5) (35). The SB5 was normed
and standardized using a diverse sample of 4800 individuals in the
United States (36, 37) and has been extensively tested for reliability and
validity (38, 39). The SB5 is composed of 10 subtests, 5 of which are
verbal and 5 nonverbal. The 5 verbal subtests yield a Verbal IQ (VIQ)
and the 5 nonverbal subtests yield a Nonverbal IQ (NVIQ). The VIQ
and NVIQ are then combined to yield a composite score, Full Scale IQ
(FSIQ), with a mean of 100 and an SD of 15. FSIQ was examined as
the primary outcome in this study; VIQ and NVIQ were examined as
secondary outcomes.

Data analysis
All data analysis was conducted using SAS version 9.4 (SAS Institute).
Descriptive statistics were calculated to characterize the study sample
overall and by vitamin D status defined using the IOM deficiency cutoff
of 20 ng/mL (27).

Associations of maternal vitamin D status with IQ outcomes were
examined through multivariable linear regression with robust SEs
using maximum likelihood type robust estimates as introduced by
Huber (40). All model covariates were chosen a priori based on
existing evidence with no reliance on statistical significance. Minimally
adjusted models included the child’s sex and age (continuous) at the
time of the age 4–6 y assessment as covariates. The fully adjusted
models also included the following suspected confounders and precision
variables: HEI 2010 score (41, 42) (continuous), insurance status (43,
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44) (public, private/other), maternal IQ (43, 45) (continuous), maternal
education (44, 45) (less than high school, high school diploma, technical
school, college degree, graduate or professional degree), maternal
age (46) (continuous), marital status (44, 45) (cohabitation, single),
prepregnancy BMI (47, 48) (continuous), tobacco use during pregnancy
(49, 50) (yes, no), alcohol use during pregnancy (51, 52) (yes, no),
race (53–55) (Black, White, other/multiple races), mother’s parity (45)
(continuous), and annual household income adjusted for the number of
children and adults supported by the income (43, 44, 56) (continuous).
Because of differences in vitamin D metabolism between Blacks and
Whites (57, 58) we examined the possibility of effect modification by
race using additional models that included an interaction term between
race and 25(OH)D concentration. These interaction models excluded
the small portion of women who identified as multiple/other races
(6.5%) in order to specifically examine the implications of differing
vitamin D metabolism between Black and White women.

Complete data for the covariates used in the fully adjusted regression
models were available for 88% of the eligible sample. Missingness of
each covariate was <1% except for HEI score, which was missing
among 11% of eligible participants. Covariate data were assumed
to be missing at random, and were multiply imputed by fully
conditional specification, a validated method ideal for imputation in
large epidemiologic data sets consisting of variables on differing scales
and with complex relations (59). The discriminant function was used
to impute variables with binary or nominal responses, whereas the
regression method was used for continuous variables. Imputed data sets
(n = 10) were used to conduct regression analyses and data were pooled
to generate inferential statistics.

Supplemental analyses were conducted to examine potential non-
linearity in dose-response between 25(OH)D concentration and IQ.
We explored the association of vitamin D status as a binary variable
[25(OH)D < 20 ng/mL compared with ≥20 ng/mL] with IQ scores
in our fully adjusted regression models. In addition, to allow a more
flexible fit to the data, we created fully adjusted regression models
applying a natural cubic spline effect to the 25(OH)D variable.

Results
Participant characteristics

Mean age of mothers at the time of enrollment was 26 y and
most (63.2%) identified as Black (Table 1). Over half (59.3%)
were insured through Medicaid or Medicare and 32% had
earned a college degree or above at the time of enrollment.
Approximately two-thirds (67.1%) had an adjusted annual
income of <$22,000. Mean ± SD age of children at the time of
IQ assessment was 4.4 ± 0.6 y (minimum: 3.8 y; 5th percentile:
4.0 y; 95th percentile: 5.4 y; maximum: 8.0 y). Participants who
were enrolled in CANDLE but excluded from this analysis were
generally similar in sociodemographic characteristics to those
included in the analysis (Supplemental Table 1).

Mean ± SD maternal 25(OH)D was 21.6 ± 8.4 ng/mL
and nearly half (45.6%) of participants had 25(OH)D
concentrations < 20 ng/mL. Compared with women with
lower 25(OH)D, those with concentrations ≥20 ng/mL were
more likely to experience socioeconomic advantages including
higher educational attainment, greater income, and higher diet
quality. Mean ± SD 25(OH)D concentration was higher in
White women (25.9 ± 9.3 ng/mL) than in Black women
(19.8 ± 7.2 ng/mL) (P < 0.001).

Modeling of gestational 25(OH)D and IQ scores

In multivariable linear regression models adjusted for child
sex and age, plasma 25(OH)D was significantly and positively
associated with FSIQ, VIQ, and NVIQ (Figure 1). After
additional adjustment for socioeconomic and demographic
factors, a 10-ng/mL increase in 25(OH)D was associated with

a 1.17-point (95% CI: 0.27, 2.06 points) greater FSIQ, 1.17-
point (95% CI: 0.19, 2.15 points) greater VIQ, and 1.03-point
(95% CI: 0.10, 1.95 points) greater NVIQ. Interaction terms
used to examine potential effect modification by race were
nonsignificant (P-interaction: FSIQ: 0.22; VIQ: 0.42; NVIQ:
0.12) (Table 2).

When we examined vitamin D as a binary variable in fully
adjusted models, having 25(OH)D concentrations ≥20 ng/mL
was associated with a 2.23-point (95% CI: 0.76, 3.70 points)
greater FSIQ, 1.65-point (95% CI: 0.04, 3.25 points) greater
VIQ, and 2.61-point (95% CI: 1.10, 4.12 points) greater NVIQ
than predicted for those with 25(OH)D deficiency (<20 ng/mL).
A natural cubic spline used to visualize the bivariate association
of 25(OH)D with FSIQ suggested no marked departures from
linearity through 25(OH)D concentrations of ∼40 ng/mL,
a range that encompassed the observed 25(OH)D values of
992 (97%) of the 1019 mothers (Figure 2). In fully adjusted
regression models, the natural cubic spline effect added to the
25(OH)D variable (knots at 22.0, 37.5, and 52.9 ng/mL) did
not meaningfully improve model fit. Residual plots from models
both with and without spline effects exhibited homoscedasticity
without detectable outliers or patterns.

Discussion
We observed that maternal 25(OH)D during pregnancy is
positively associated with children’s FSIQ, VIQ, and NVIQ at
age 4–6 y. We previously reported that maternal 25(OH)D
was positively associated with receptive language development
at 2 y in CANDLE, as assessed using the Bayley Scales of
Infant and Toddler Development, Third Edition (BSID-III) (29).
This analysis suggests that an association between gestational
25(OH)D and neurocognitive development may persist through
age 4–6 y. Associations between 25(OH)D concentrations and
offspring IQ were similar between races. Because of the high risk
of vitamin D deficiency in Black women due to skin melanin
content, the implications of these findings may be especially
relevant to this population.

The observed effect size of 1.17-point greater FSIQ per 10-
ng/mL 25(OH)D may translate meaningfully to other positive
future outcomes. It has been estimated that for each IQ point
decrement, males experience a 1.93% decrease in lifetime
earnings and females experience a 3.23% decrease (60). In
addition, a meta-analysis revealed that a 1-SD advantage in
cognitive test scores was associated with a 24% lower risk of
death during 17–69 y of follow-up (61).

Our findings are consistent with results from several other
prospective cohorts around the world. In rural Vietnam, infants
born to mothers with 25(OH)D < 15 ng/mL had significantly
lower BSID-III developmental language scores at 6 mo of
age than those born to mothers with sufficient 25(OH)D
(defined as ≥30 ng/mL) (9). Gestational 25(OH)D was also
associated with greater BSID-III mental and psychomotor
development scores at 14 mo in a Spanish cohort (8). Similarly,
among Caucasian women in an Australian cohort gestational
25(OH)D was inversely associated with language impairment
at ages 5 and 10 y (7). In 2 other predominantly Caucasian
cohorts from Australia and Denmark, neonatal and cord
blood 25(OH)D concentrations, which correlate with maternal
25(OH)D (62, 63), were positively associated with language
development at 18 mo and 4 y (64), and with IQ at 19 y
(65).
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TABLE 1 Characteristics of the study population, overall and with stratification by plasma 25(OH)D
status1

Second-trimester maternal 25(OH)D status

Overall <20 ng/mL ≥20 ng/mL

n 1019 465 554
Maternal age, y 26.4 ± 5.6 25.4 ± 5.4 27.3 ± 5.6
Maternal race

Black 644 (63.2) 348 (74.8) 296 (53.4)
White 309 (30.3) 77 (16.6) 232 (41.9)
Other or multiple races 66 (6.5) 40 (8.6) 26 (4.7)

Maternal education2

Less than high school diploma 119 (11.7) 81 (17.5) 38 (6.9)
High school diploma or GED 477 (46.9) 238 (51.2) 239 (43.1)
Technical school 96 (9.4) 48 (10.3) 48 (8.7)
College degree 206 (20.2) 63 (13.6) 143 (25.8)
Graduate/professional degree 120 (11.8) 34 (7.3) 86 (15.5)

Maternal IQ2,3

<85 278 (27.6) 174 (37.9) 104 (18.9)
85 to <100 327 (32.4) 160 (34.9) 167 (30.4)
100 to <115 270 (26.8) 89 (19.4) 181 (32.9)
≥115 134 (13.3) 36 (7.8) 98 (17.8)

Prepregnancy BMI status2,4

Underweight 48 (4.7) 23 (5.0) 25 (4.5)
Normal weight 384 (37.8) 147 (31.8) 237 (42.8)
Overweight 245 (24.1) 117 (25.3) 128 (23.1)
Obese 339 (33.4) 175 (37.9) 164 (29.6)

Maternal marital status2

Cohabitation 570 (55.9) 212 (45.6) 358 (64.6)
Single 448 (44.0) 252 (54.2) 196 (35.4)

Health insurance status
Public 604 (59.3) 340 (73.1) 264 (47.7)
Private/other 415 (40.7) 125 (26.9) 290 (52.4)

Adjusted household income,2 $
<10k 438 (43.1) 273 (59.1) 165 (29.8)
10k to <16k 136 (13.4) 57 (12.3) 79 (14.3)
16k to <22k 108 (10.6) 38 (8.2) 70 (12.6)
22k to <40k 188 (18.5) 59 (12.8) 129 (23.3)
≥40k 146 (14.4) 35 (7.6) 111 (20.0)

Prenatal alcohol use (yes)2 88 (8.6) 30 (6.5) 58 (10.5)
Prenatal tobacco use (yes)2 93 (9.1) 48 (10.3) 45 (8.1)
Maternal 25(OH)D, ng/mL 21.6 ± 8.4 14.4 ± 3.1 27.6 ± 6.4
Maternal 25(OH)D status

<20 ng/mL 465 (45.6) 465 (100) —
20 to <30 ng/mL 413 (40.5) — 413 (74.6)
≥30 ng/mL 141 (13.8) — 141 (25.5)

Maternal HEI 2010 score2 60.2 ± 11.3 57.7 ± 11.1 62.0 ± 11.1
Child age at assessment, y 4.4 ± 0.6 4.5 ± 0.6 4.3 ± 0.5
Child sex

Male 504 (49.5) 226 (48.6) 278 (50.2)
Female 515 (50.5) 239 (51.4) 276 (49.8)

Child IQ3

Full Scale IQ 100.0 ± 14.9 96.0 ± 14.5 103.3 ± 14.5
Verbal IQ 99.3 ± 15.2 95.5 ± 14.8 102.4 ± 14.8
Nonverbal IQ 101.1 ± 14.7 97.3 ± 14.3 104.3 ± 14.4

1Values are mean ± SDs or n (%). HEI, Healthy Eating Index; 25(OH)D, 25-hydroxyvitamin D.
2Maternal education, marital status, alcohol use, and tobacco use were missing for 1 participant each; prepregnancy BMI (in kg/m2)
and adjusted household income were missing for 3 participants each; maternal IQ was missing for 10 participants; HEI score was
missing for 112 participants; percentages were calculated after excluding missing cases from the denominator.
3Maternal IQ was assessed using the Wechsler Abbreviated Scale of Intelligence; child IQ was assessed using the Stanford-Binet
Intelligence Scales, Fifth Edition.
4BMI status was classified using CDC guidelines: BMI < 18.5 was considered underweight; BMI ≥ 18.5 and <25 was considered
normal weight; BMI ≥ 25 and <30 was considered overweight; BMI ≥ 30 was considered obese.
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FIGURE 1 Estimated difference in offspring Stanford-Binet Intelligence Scales, Fifth Edition IQ per 10-ng/mL increase in maternal plasma
25-hydroxyvitamin D. The minimal model adjusted for child sex (male, female) and child age at year 4 assessment (continuous). The full model
adjusted for the covariates in the minimal model plus prepregnancy BMI (continuous), race (Black, White, other/multiple races), mother’s IQ
(continuous), mother’s education (less than high school, high school diploma, technical school, college degree, graduate/professional degree),
marital status (cohabitation, single), previous pregnancies to term (continuous), health insurance (public, private/other), alcohol use (yes, no),
tobacco use (yes, no), mother’s age at baseline (continuous), Healthy Eating Index 2010 score (continuous), and income (continuous).

Results of other studies, however, have not fully confirmed
an association. In a cohort in Greece, maternal vitamin D
was not associated with cognitive function at age 4 y, but
was negatively associated with behavioral difficulties, hyper-
activity/inattention, and externalizing behavior (66). Another
cohort in England found that gestational vitamin D was
not significantly associated with IQ at age 8 y, but was
positively associated with motor and social development in
children <4 y old (67). Other observational studies detected
no association between gestational 25(OH)D and children’s
neurodevelopmental outcomes (10–13, 68, 69).

Differences in findings between studies may be related to
several factors including differences in the vitamin D status
of participants. Nearly half of the mothers in CANDLE were
classified as deficient in 25(OH)D (<20 ng/mL), which is likely
related to the predominance of Black participants. In contrast,
several studies that did not detect significant associations were
comprised of populations in which deficiency was relatively
uncommon (67, 69) or not observed at all (10). In addition,
whereas we separately examined 25(OH)D as a continuous
and a binary variable, others have considered vitamin D only
as a categorical exposure (12, 66, 67, 70). Our categorical

TABLE 2 Estimated regression coefficients (95% CIs) for association of maternal plasma 25(OH)D concentration and IQ at 4–6 y
with interaction of race and 25(OH)D1

Outcome

Model term Full Scale IQ Verbal IQ Nonverbal IQ

Maternal 25(OH)D (ng/mL) × race (Black)2 0.11 (−0.07, 0.29) 0.08 (−0.12, 0.28) 0.15 (−0.04, 0.33)
Maternal 25(OH)D, ng/mL 0.06 (−0.07, 0.20) 0.08 (−0.07, 0.23) 0.03 (−0.11, 0.17)
Maternal race, Black − 6.22 (−11.09, −1.37) − 5.74 (−11.04, −0.44) − 6.11 (−11.14, −1.09)
Maternal age, y 0.23 (0.04, 0.43) 0.15 (−0.07, 0.36) 0.24 (0.04, 0.44)
Maternal education

Less than high school diploma − 2.18 (−6.30, 1.94) − 2.82 (−7.32, 1.67) − 1.93 (−6.19, 2.32)
High school diploma or GED − 0.33 (−3.52, 2.86) − 2.00 (−5.49, 1.48) 0.75 (−2.55, 4.05)
Technical school 1.80 (−1.80, 5.39) − 0.17 (−4.09, 3.75) 2.60 (−1.11, 6.31)
College degree 0.71 (−1.98, 3.41) − 0.90 (−3.84, 2.04) 2.03 (−0.76, 4.82)
Graduate/professional degree — — —

Maternal IQ 0.19 (0.12, 0.26) 0.18 (0.10, 0.26) 0.18 (0.11, 0.25)
Prepregnancy BMI, kg/m2 − 0.09 (−0.19, 0.00) − 0.09 (−0.19, 0.01) − 0.09 (−0.18, 0.01)
Maternal marital status (single) − 0.39 (−2.16, 1.37) 0.18 (−1.75, 2.11) − 1.04 (−2.87, 0.79)
Health insurance (public) − 0.51 (−2.68, 1.65) − 0.64 (−3.01, 1.72) − 0.41 (−2.65, 1.83)
Adjusted household income (in thousands of dollars) 0.04 (0.00, 0.12) 0.07 (0.00, 0.10) 0.02 (−0.10, 0.10)
Prenatal alcohol use (no) − 2.07 (−4.63, 0.47) − 2.21 (−4.99, 0.57) − 1.56 (−4.20, 1.07)
Prenatal tobacco use (no) 2.65 (0.07, 5.23) 2.95 (0.13, 5.76) 2.46 (−0.21, 5.13)
Parity − 1.59 (−2.30, −0.87) − 1.47 (−2.26, −0.69) − 1.50 (−2.25, −0.76)
Maternal HEI 2010 score 0.07 (−0.01, 0.14) 0.07 (−0.01, 0.16) 0.05 (−0.03, 0.14)
Child age at assessment, y − 1.06 (−2.42, 0.30) − 0.96 (−2.45, 0.53) − 0.94 (−2.35, 0.47)
Child sex (male) − 3.69 (−5.10, −2.28) − 4.55 (−6.09, −3.01) − 2.86 (−4.32, −1.41)
Intercept 84.80 (71.65, 97.95) 86.47 (72.13, 100.82) 85.07 (71.46, 98.68)

1Interaction models were created using data from participants identified as either White or Black (n = 953). HEI, Healthy Eating Index; 25(OH)D, 25-hydroxyvitamin D.
2Interaction coefficients represent the estimated difference in the slope of the relation between 25(OH)D (ng/mL) and IQ predicted for Blacks compared with Whites.
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FIGURE 2 Natural cubic spline regression of maternal plasma 25(OH)D concentration and offspring Full Scale IQ. 25(OH)D,
25-hydroxyvitamin D.

and continuous modeling approaches both revealed positive
associations between 25(OH)D and IQ. However, it is possible
that use of certain categorization schemas may obscure a true
relationship, particularly in cohorts with little variation in
vitamin D concentrations or those with few cases of vitamin
D deficiency.

Findings from observational studies may also differ because
of the timing of vitamin D assessment during pregnancy. This
study and multiple others have found that first- (66, 71) or
second-trimester (7, 8, 29) maternal vitamin D was significantly
and positively associated with neurocognitive outcomes, but
only 1 (64) of several studies (4, 10, 64, 68) that examined
vitamin D at delivery found a significant relationship. These
observations may suggest that a critical window exists early in
gestation, yet experimental data from animals have suggested a
critical window in late pregnancy (72). Further study is needed
to clarify these potential critical periods.

Animal studies support the biological plausibility of our
findings, demonstrating that gestational vitamin D deficiency
can alter brain morphology in offspring (73, 74) and disrupt
normal regulation of the cell cycle and apoptosis in the
developing brain (75). Experimental studies also indicate that
vitamin D deficiency may impair the synthesis of neurotrophic
factors and reduce the expression of neurotrophic receptors
(73, 76, 77). Deficiency may affect genes related to speech and
language development (74) and lead to disturbed brain function
in adult offspring (72, 78). Localization studies in humans
have shown that 1α-hydroxylase, the enzyme responsible for
formation of active vitamin D, is present throughout the
cytoplasm of neurons and glial cells (79), suggesting that the
human brain metabolizes vitamin D locally and that vitamin D
may have similar roles in the human brain to those observed in
animal studies.

Our findings highlight the importance of assessing 25(OH)D
status in pregnant women and addressing deficiencies. This
study and others (80) have called attention to the high

prevalence of vitamin D deficiency among Black women, which
is thought to be largely related to reduced cutaneous synthesis
of 25(OH)D (81). Vitamin D supplementation may be indicated
for women who have poor dietary intake of vitamin D and/or
reduced cutaneous synthesis related to skin pigmentation,
geographic setting, or lifestyle factors affecting sun exposure.
Popular prenatal supplements, which typically contain 400–
600 IU vitamin D, are likely insufficient to correct 25(OH)D
deficiencies. Randomized controlled trials have suggested that
daily supplementation of 800 (82) to 1000 IU (83) may
be needed for repletion in pregnancy, and that doses as
high as 4000 IU may be ideal in cases of severe deficiency
(84). Importantly, there is currently no established consensus
regarding optimal 25(OH)D concentrations during pregnancy,
and additional research in diverse populations is needed to
develop guidelines, which may need to be population-specific,
for treating deficiency during pregnancy.

Primary strengths of this study include its large size and
racial diversity. CANDLE includes large numbers of White
and Black mothers, which allowed for the exploration of
potential effect modification by race. Mothers in this study all
resided in 1 county, which reduced potential confounding by
geographic variation in sunlight exposure, a critical factor in
cutaneous vitamin D synthesis. This study also has limitations.
This study did not examine genetic makeup, but future studies
should consider several known single-nucleotide polymor-
phisms in vitamin D pathway genes (85) that may modify
an association between gestational vitamin D and cognitive
outcomes.

In conclusion, gestational vitamin D concentrations were
positively associated with IQ at age 4–6 y, suggesting that
vitamin D plays an important role in programming neurocog-
nitive development. Vitamin D status may therefore be an
important modifiable factor during pregnancy that can be
optimized through appropriate nutritional recommendations
and guidance. Vitamin D deficiency was especially prevalent
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among Black women in this cohort, suggesting a height-
ened need for screening and nutritional intervention in this
vulnerable population. Future studies examining vitamin D
status throughout pregnancy should be conducted to elucidate
potential critical windows during gestation.
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