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1 Introduction

Searches for resonant new physics has been a cornerstone of high energy physics since at
least the discovery of the ρ meson [1] and up to and including the Higgs boson discovery
by the ATLAS and CMS Collaborations at the Large Hadron Collider (LHC) [2, 3]. Since
that time, there have been many proposals to widen the sensitivity of bump hunt analyses
using machine learning (ML) [4–49] (see also ref. [50]). While searching for a peak in the
invariant mass of two or more objects is a generic strategy for searching for the signature of
new particles, it is not particularly sensitive to any given new physics model. Recent ML
proposals identify patterns in high dimensional data, which can improve discovery potential
while maintaining a low degree of signal-model and background-model dependence. The
ML-assisted bump hunt has also been extended beyond the LHC to astrophysics, in the
pursuit of stellar streams [51].

The goal of the current paper is to explore the potential of resonant anomaly detection
at a future e+e− collider. The identification of anomalous elements is done through a partic-
ular class of algorithms based on weakly supervised learning. Most ML applications in high
energy physics are based on supervised learning, whereby training examples are produced
from simulations with a known origin. Training ML methods directly on data must be able
to cope with the lack of labels for what inputs are background or a potential new signal. The
strategy used here leverages noisy labels on high-dimensional hadronic final state inputs.
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The choice of studying advanced analysis strategies at future colliders is timely given
the ongoing discussions of next generation energy frontier experiments [52–64]. This is
particularly true if new techniques require dedicated detector modifications or computing
resources. Additionally, an increased sensitivity from ML methods may increase the case for
one future machine over another. This result explores the use of machine learning without
signal/background labels (weak supervision) in e+e− collisions and the input features can
be high-dimensional and vary in size from event to event (variable-dimensional1).

Unlike at a hadron collider, the particles in a lepton collider are designed to have a
fixed center-of-mass energy (

√
s). One can perform resonant anomaly detection by sifting

through the collision debris for a range of center-of-mass energies. While beam energy
scans are one approach to exploring different

√
s values, we consider a complementary

setting in this paper: radiative return. Due to initial state photon radiation that can carry
a variable amount of energy away from the collision, collisions at fixed beam energies span
a wide range in e+e− √ŝ ≤

√
s, where

√
ŝ is the effective collision energy. These radiative

return events are often considered a nuisance for physics analysis, but they may provide a
unique setting for new physics searches. The radiative return final state has been studied
extensively for hadron spectroscopy at past e+e− colliders [66–69] and was considered in
ref. [70] for classical resonance searches at future colliders. We extend this study to the
case of an ML-assisted bump hunt.

Machine learning has been studied in the context of future e+e− colliders [71, 72] for
probing Higgs boson properties. In addition to exploring the use of ML for direct new
physics searches at a future e+e− collider, we also use a deep neural network architecture
that is capable of handling complex hadronic final states. In particular, high energy e+e−

events can produce a variable number of hadrons, with no inherent order. This is a point
cloud, which can be processed with graph neural networks or set-based architectures. We
use the latter, employing the Deep Sets architecture [73] implemented as a Particle Flow
Network (PFN) [74]. Most of the previous weakly supervised methods used at most a hand-
ful of high-level observables, while we will be able to use high-dimensional, low-level inputs.

This paper is organized as follows. The simulations used for our empirical studies
are presented in section 2. Section 3 introduces machine learning-based resonant anomaly
detection methodology and technical details related to the training setup. Our numerical
results are shown in section 4 and a discussion about the impact on future detector design
is provided in section 5. The paper ends with conclusions and outlook in section 6.

2 Simulated samples and processing

We consider e+e− collisions at a nominal center-of-mass (CoM) energy of
√
s = 1TeV

that produce final states with jets and a photon from initial state radiation (ISR). The
signal process studied is the production of a BSM heavy scalar X that decays into a
pair of scalars a, each decaying to two b-quarks, in association with an ISR photon:
e+e− → Xγ → aaγ → bb̄bb̄γ. The following two sets of values for the invariant masses of

1Earlier studies of weak supervision with high-dimensional features can be found in ref. [65] and earlier
studies of high-dimensional weak supervision for anomaly detection can be found in ref. [26].
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Figure 1. Feynman diagrams of the background (a) and signal (b) processes considered.

particles X and a are examined: mX ,ma = 350, 40GeV and 700, 100GeV. The background
originates from multijet production in association with an ISR photon, with a cross-section
that is dominated by the Drell-Yan γ∗/Z production and extends to close to the nominal
1TeV CoM energy. Leading-order Feynman diagrams of the signal and background pro-
cesses are shown in figure 1. Note that while we have selected two specific signal models,
the methods studied here are largely2 signal model agnostic.

The generation of background and signal events is done with Mad-
Graph5_aMC@NLO 2.8.0 [75]. The background is generated at next-to-leading
order in the strong coupling constant while the signal is simulated at leading order
(MadGraph syntax: e+ e- > j j a [QCD] and e+ e- > a h, respectively, where a
is the photon). Additional background processes are not included, as they are small,
non-resonant in the regions we target, and thus do not change our conclusions. Fu-
ture work will investigate the impact of more heterogeneous background data. In our
study, simulated events are then passed to parton showering and hadronization using
Pythia 8.244 [76] with its default settings. A minimum ET threshold of 10GeV is placed
on the photon, with a pseudo-rapidity that extends to ±5.

The detector simulation is parameterized with Delphes 3.4.2 [77], using a card for a
generic ILC detector.3 A particle flow algorithm is used to combine tracking and calorimeter
information and define the final reconstructed objects. Photons are built from energy
deposits in the electromagnetic calorimeter, using the central and forward calorimeter
systems with pseudo-rapidity coverages of |η| < 3.0 and 3.0 < |η| < 4.0, respectively.
Jets are built from particle flow objects (except isolated muons, electrons and photons)
measured in the tracker (with an acceptance of up to |η| < 3.0), electromagnetic and
hadronic calorimeters (the latter with an acceptance of up to 2.8 in the central system and
up to 3.8 in the forward system in absolute pseudo-rapidity). The jet clustering is performed
with the anti-kt [79] algorithm with a radius R = 1.0 implemented in FastJet 3.3.2 [80, 81].

Events are selected for analysis if they contain at least two jets with a minimum
transverse momentum (pT ) of 5GeV. An effective CoM energy can be calculated for all

2The signal model only plays a role in the choice of the features used for learning and if it does not have
a narrow width, in the size of the invariant mass windows.

3The code for this detector card is available at https://github.com/iLCSoft/ILCDelphes. The parame-
terizations are mostly based on the ILD detector design [78].
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Figure 2. Effective center-of-mass energy calculated from truth-level quantities for the background
and two signal processes considered.

events based on the energy of the colliding e+e− pair after the photon radiation, as shown
in figure 2 for all generated samples and based on truth-level quantities. Distributions of
the photon transverse energy and pseudo-rapidity at detector-level are shown on figure 3
for the background and signal processes considered. For detector-level

√
ŝ studies, we

select the highest pT photon.

3 Methodology

AML-assisted bump hunt is performed by scanning three different
√
ŝmeasures in e+e− col-

lisions: truth
√
ŝ, where the truth-level energy of the photon is subtracted from the in-

coming electron and positron beam energies; the γ-measured
√
ŝ, relying on the measured

energy of the detected photon; and the hadron-measured
√
ŝ, computed using all the mea-

sured particles (in this case hadrons) with the exception of the photon. The truth-level
analysis is presented as nominal, representing the ideal performance of the method without
consideration of detector effects in the construction of the signal regions (detector effects are
always included for the classification). Further description of the measured

√
ŝ quantities

and their impact on performance is given in section 5.
Signal regions are defined for both mass points as windows of 50GeV centered at the

resonance massmX . The sideband region then extends 50GeV in both directions, excluding
the signal region. A summary of these definitions can be found in table 1. The training
(which is described later in more detail) is performed with a fixed luminosity over events
from each of the three

√
ŝ measures. The luminosity is determined from a normalization

chosen to give 25000 events in the mX = 350GeV sideband region. A total of 5000225
background and 90001 signal events were generated. These events are split into three
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Figure 3. Distributions at detector-level of the photon transverse energy and pseudo-rapidity for
the background and two signal processes. A minimum cut of 200GeV is placed on the truth

√
ŝ.

orthogonal categories for training, validation, and testing, which ensures that statistical
fluctuations are uncorrelated.

In particular, the unpolarized cross-section for the background process in our fiducial
region is about 1 pb (as reported by MadGraph5_aMC@NLO). This amount of statistics
would correspond to a collected luminosity of approximately 6.5 ab-1, well within the
integrated luminosity estimates of the operating scenarios for colliders at 1TeV [82]. While
we have used this particular setup to provide concrete conclusions, the methodology and
qualitative conclusions apply more generally to any future e+e− collider.

For a given
√
ŝ distribution, training utilizes one label for background events and

another label for pseudodata, which is composed of background and a number of signal
contamination events. The number of injected signal events is calculated in terms of the
local signal significance σ in the signal region, where σ ≡ S/

√
B, the approximate statisti-

cal significance, where S is the number of signal events and B is the number of background
events, both in the pseudodata input class which draws events from the signal region√
ŝ window. The training for a given configuration is run seven times, with signal con-
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Signal region [GeV] Sideband region [GeV]
mX , ma= 350GeV, 40GeV [325, 375) [275, 325) ∪ [375, 425)
mX , ma= 700GeV, 100GeV [675, 725) [625, 675) ∪ [725, 775)

Table 1. Table of selections on
√
ŝ that define the analysis signal and sideband regions.

Signal Region Sideband Region

Truth
√
ŝ mX = 350GeV

Background 12133 25000
Signal 76 0

mX = 700GeV
Background 10832 22407
Signal 68 0

γ-measured
√
ŝ mX = 350GeV

Background 12121 25000
Signal 76 0

mX = 700GeV
Background 10441 21928
Signal 65 0

Hadron-measured
√
ŝ mX = 350GeV

Background 12147 25000
Signal 76 2

mX = 700GeV
Background 11754 24459
Signal 74 1

Table 2. Training yields for all
√
ŝ measures, using the region definitions given in table 1, for an

example signal injection corresponding to a 1.0σ significance.

taminations that correspond to σ = 0, 0.5, 1, 2, 3, 5 and ∞ (100% signal). The background
events are the same in each training, while the signal events added to the pseudodata are
randomly selected. Event yields used in training for the background and signal samples in
each region can be found in table 2, for all three

√
ŝ measures.

Two different training configurations for classification are used, which vary in how the
two input labeled classes are populated.

• A semi-supervised scenario is studied as a benchmark. In this case, a neural network
is trained to classify background events from a combination of signal and background
events in the signal region, where the amount of signal contamination varies. In a
context where real e+e− collision data is available, this would correspond to clas-
sifying background-only simulation from data (where a potential signal could be
included) [4, 7]. The assumption is made that the simulation perfectly describes the
data; though this is not achievable with current simulations, future advancements
may make such a strategy feasible.

• Weakly supervised learning can be used to enhance the presence of potential localized
signals in data, without relying on simulation. Here, the classification without labels
(CWoLa) approach is used, where a classifier is trained to distinguish events in the
signal region from those in the sidebands. When a signal is present, this method

– 6 –
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takes advantage of the different compositions in signal and sideband regions to learn
how to distinguish background from signal [5, 6, 23, 83].

The envisioned analysis strategy in real data would be to define a signal-enriched region
using the classifier score, and then estimate the background with a completely data-driven
bump hunt (e.g. a parametric fit to the sidebands).

In both the semi-supervised and weakly-supervised scenarios, classifiers are parame-
terized with a Deep Sets model [73], using the Particle Flow Networks (PFN) implementa-
tion [74] in the EnergyFlow package.4 A PFN is composed of a per-jet5 function Φ and an
event-level function F , both learnable and each with 3 layers and 20 nodes per layer. The
inputs to the PFN are the variable-length set of jets, considering up to 15 jets per event.
For each jet, 10 variables are considered: its four-vector, 5 angular radiation moments
(N -subjettiness [84, 85] for 1 ≤ N ≤ 5) and a flavor-tagging discriminant encoding 4 bins
of b-tagging efficiency (50%, 70%, 90%, 100%). Plots of the input variables for leading and
sub-leading jets in signal and background processes are shown in appendix A.

The neural networks are trained using keras [86] with the tensorflow [87, 88]
backend. The categorical cross-entropy loss function was minimized, using the Adam op-
timizer [89] with an initial learning rate of 0.0001. Starting with higher (up to 0.01) and
lower (down to 10−5) learning rates was found to be suboptimal. Adagrad [90] and RM-
SProp [91] optimizers were also studied, with no significant impact on the performance.
The PFN was trained for 30 epochs with a batch size of 100. A longer training time of 100
epochs was also considered and did not strongly affect the final performance.

In the weakly supervised scenario where training utilizes events from different bins of√
ŝ, care must be taken to ensure that the network output is agnostic to the

√
ŝ of the events.

A per-event normalization procedure is implemented to mitigate the
√
ŝ correlation. Each

jet’s η and φ is centered on the average value for all jets in the event, and its pT is scaled
by the sum of jet transverse momentum in the event. The efficacy of the normalization
procedure is verified by training the network to identify background events in the signal
region from background events in the sideband. Since these events should only vary in
their

√
ŝ values, the normalization procedure can be deemed functional if the classifier is

unable to discern these two classes of background events. Figure 4 shows the result of this
training, confirming that the chosen normalization is sufficiently able to remove significant
correlations of learned information with

√
ŝ.

Considerable variance in performance was observed across models with identical train-
ing scenarios. An ensemble procedure was developed to mitigate the effect of these fluc-
tuations. Each training result presented here represents the average of 50 trained models,
each with a random signal injection. The predicted values on the test set are subject to a
non-linear transform known as quantile scaling, after which they follow a normal distribu-
tion. Models are then combined by averaging the quantile-scaled results for all 50 models.
The results should therefore be interpreted as the expected/average sensitivity.

4https://energyflow.network/.
5We also investigated using all particle-flow candidates directly instead of jets, but the sensitivity was

worse than the jet-based learning. Further details are provided in section 4.
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Figure 4. Receiver operating characteristic (ROC) curves from the weakly supervised training
setup, comparing background in the sideband vs. background in the signal region, for the mX =
350GeV signal region on the left and the mX = 700GeV signal region on the right. Each curve
represents a different signal contamination in the training set.

4 Results

The results of the training are displayed in two forms. The first is the receiver operating
characteristic curve (ROC), which shows background rejection (inverse of the false positive
rate, FPR) as a function of the signal efficiency (true positive rate, TPR), and demonstrates
the discriminating power of the output net score. Additionally, the significance improve-
ment characteristic (SIC, TPR/

√
FPR) is provided, which shows the signal sensitivity as

a function of signal efficiency.
The SIC can be used as a proxy of how the output network score can enhance a signal

excess in a physics analysis context. In particular, if 1σ of signal is injected and the SIC
value at a particular signal efficiency is n, then a cut on the classifier corresponding to that
efficiency is expected to increase the amount of signal to about nσ (local significance). We
do not perform a background fit, so the signal and background yield used to compute the
SIC are determined by counting the number of events of each type in the signal region
after a particular cut on the classifier output. In practice, the actual significance would
slightly degrade from uncertainties in the fit, but as with other recent papers on anomaly
detection in HEP, we decouple the network performance and the background fit quality in
order to focus on the classifier methodology.

4.1 Particle flow networks

The semi-supervised training results are discussed first, as they provide a benchmark of the
ideal classifier performance when separating signal from background in the signal region
only. Figure 5 gives the ROC and SIC curves for both signal mass hypotheses as a result
of the semi-supervised training configuration. The 0% signal contamination curve is shown
as a reference. In this figure and in subsequent results, the lack of signal leads to a network
that learns arbitrary discriminating information about the training inputs, resulting in
small deviations of the area-under-curve (AUC) value from that of a completely random
classifier (which can lead to an apparently ‘anti-tagging’). A similar trend in the 0.3%
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Figure 5. Semi-supervised training results in the form of ROC (left) and SIC (right) curves for two
signals, mX = 350GeV (top) and mX = 700GeV (bottom) vs. background. The dashed grey line
indicates no improvement from the use of the neural network score. A significance of ∞ indicates
the case of pure signal versus pure background.

contamination result indicates that this amount of signal is consistently too small for the
network to reliably learn and distinguish it from background.

With semi-supervised training, the network is able to detect an mX = 700GeV signal
contamination of 0.6% from background in a single bin of

√
ŝ and increase its significance

by a factor of 11. The setup is considerably less sensitive to the mX = 350GeV signal,
where the 0.6% contamination is indistinguishable, but doubled significance is achieved for
a 1.3% contamination. Details on the impact of the neural net output selection can be
found in table 3. Both of these signal injections correspond to excesses of 2σ sensitivity or
less, making the role of the neural network substantial in elevating potential new physics
to the discovery level of sensitivity.

Figure 6 shows the training results for the weakly supervised training scenario for both
signal mass hypotheses. The network is similarly able to enhance a signal contamination
down to 0.6% for both signal mass hypotheses, again with specific sensitivity increase
factors given in table 3. The comparable results in figures 5 and 6 show that differences in
the background-only case between the signal region and sideband region are not reducing
the signal sensitivity.

An even higher level of input complexity is possible through utilizing the PFN archi-
tecture with all particles in the event. This representation was tried in the training, but

– 9 –



J
H
E
P
0
4
(
2
0
2
2
)
1
5
6

0.0 0.2 0.4 0.6 0.8 1.0
Signal efficiency (TPR)

0.0

0.2

0.4

0.6

0.8

1.0

Ba
ck

gr
ou

nd
 re

je
ct

io
n 

(1
-F

PR
)

ROC: Signal (mX = 350 GeV) vs. background, 
truth s

0.0% ( =0.0): AUC=0.66
0.3% ( =0.5): AUC=0.65
0.6% ( =1.0): AUC=0.73
1.3% ( =2.0): AUC=0.82
1.9% ( =3.0): AUC=0.86
3.1% ( =5.0): AUC=0.91
100.0% ( = ): AUC=0.99

0.0 0.2 0.4 0.6 0.8 1.0
Signal efficiency (TPR)

10 2

10 1

100

101

Si
gn

al
 se

ns
iti

vi
ty

 (T
PR

/
(F

PR
) )

SIC: Signal (mX = 350 GeV) vs. background, 
truth s

0.0% ( =0.0): AUC=0.66
0.3% ( =0.5): AUC=0.65
0.6% ( =1.0): AUC=0.73
1.3% ( =2.0): AUC=0.82
1.9% ( =3.0): AUC=0.86
3.1% ( =5.0): AUC=0.91
100.0% ( = ): AUC=0.99

0.0 0.2 0.4 0.6 0.8 1.0
Signal efficiency (TPR)

0.0

0.2

0.4

0.6

0.8

1.0

Ba
ck

gr
ou

nd
 re

je
ct

io
n 

(1
-F

PR
)

ROC: Signal (mX = 700 GeV) vs. background, 
truth s

0.0% ( =0.0): AUC=0.42
0.3% ( =0.5): AUC=0.75
0.6% ( =1.0): AUC=0.81
1.3% ( =2.0): AUC=0.89
1.9% ( =3.0): AUC=0.89
3.1% ( =5.0): AUC=0.93
100.0% ( = ): AUC=0.99

0.0 0.2 0.4 0.6 0.8 1.0
Signal efficiency (TPR)

10 2

10 1

100

101

Si
gn

al
 se

ns
iti

vi
ty

 (T
PR

/
(F

PR
) )

SIC: Signal (mX = 700 GeV) vs. background, 
truth s

0.0% ( =0.0): AUC=0.42
0.3% ( =0.5): AUC=0.75
0.6% ( =1.0): AUC=0.81
1.3% ( =2.0): AUC=0.89
1.9% ( =3.0): AUC=0.89
3.1% ( =5.0): AUC=0.93
100.0% ( = ): AUC=0.99

Figure 6. Weakly supervised training results in the form of ROC (left) and SIC (right) curves
for two signals, mX = 350GeV (top) and mX = 700GeV (bottom) vs. background. The dashed
grey line indicates no improvement from the use of the neural network score. A significance of ∞
indicates the case of pure signal versus pure background.

it was found to be less performant than the jet-level PFN studied here. This indicates a
clear dependency of classifier performance on both input dimensionality and accordingly
the amount of input statistics available in training.

4.2 Event level

To contextualize the results from the PFN training, we perform the same weakly supervised
training procedure over input events described solely by event-level kinematic quantities
and event shape variables.

The event-level network setup also utilized the EnergyFlow package, but replaced the
PFN architecture with a dense neural network (DNN) with 15 input dimensions and two
dense layers with 100 nodes each. A dropout rate of 0.2 was added to mitigate observed
overtraining. As with the PFN, the DNN was trained for 30 epochs with a batch size
of 100. Fifteen variables were used to describe input events: the leading and subleading
large-radius jet masses and transverse momenta, the leading photon pT , the X particle
pT , the particle and jet multiplicity, the ratio of leading jet and X pT to leading photon
pt, lny23, aplanarity, sphericity, transverse sphericity, and total jet mass. Distributions of
these variables for signal and background events can be found in appendix B.
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Figure 7. Weakly supervised training results using event-level input variables, in the form of ROC
(left) and SIC (right) curves for mX = 350GeV (top) and mX = 700GeV (bottom). The dashed
grey line indicates no improvement from the use of the neural network score. A significance of ∞
indicates the case of pure signal versus pure background.

Results are shown in figure 7 for the weakly supervised training scenario. The inability
of the DNN to distinguish signal from background, except in the 100% signal contamina-
tion scenario, indicates that the event-level variables are suboptimal for the signal of this
study. Comparison to figure 6, which gives the analogous result for the PFN training,
demonstrates the benefit of using high-dimensional input representations for the task of
anomaly detection. Comparable signal sensitivity is delivered by a fully supervised signal
vs. background training on event-level variables, and a PFN weakly supervised training
with only 3.1% signal contamination.

5 Future detector considerations

To extrapolate these results to a search in real collision data, the same method is applied
using regions defined with a measured

√
ŝ instead of one computed with truth-level quan-

tities. Two different methods for measuring the total available energy are considered. One
assumes that the ISR photon is captured by the detector, and therefore uses the measure-
ment of its energy subtracted from the incoming electron-positron

√
ŝ as a proxy for the

amount of energy available in the collision. This is referred to as the photon-measured√
ŝ. The second is the hadron-measured

√
ŝ, which covers the scenario where the photon

is lost and the collision CoM must be obtained through measurements of the final-state
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Figure 8. Distributions of the measured collision
√
ŝ when the outgoing photon is captured and

subtracted from the initial collision energy (left), and computed using only the final state hadrons
in the event (right).

hadrons. Note that the highest pT photon is always used for these calculations. In the
photon-measured case, if the true ISR photon is out of acceptance, the predicted

√
ŝ will be

significantly different from the true one. In the hadron-measured case, the selected photon
is excluded from the calculation of

√
ŝ.

Figure 8 shows distributions of these two
√
ŝ measurements for the background and

both signal hypotheses. The incorporation of detector information gives each resonance
a non-negligible width due to smearing introduced by detector resolution. As a result,
the signal-to-noise in the signal region is lower. As seen in table 2, this width can also
create some signal contamination in the sideband. Both of these effects make the discrim-
ination task more challenging. In the photon-measured case, the signal and Z peaks are
approximately symmetric, with the width dominated by the photon energy resolution. The
high-

√
ŝ tail in the 750GeV case is the result of events where the true ISR photon is out of

acceptance and a random photon (the next highest pT one) is used to compute
√
ŝ. In the

hadron-measured case, the signal peaks are asymmetric because there are both resolution
and acceptance effects playing a role. The Z peak is sharper for the hadron-measured
case compared with the photon-measured case because the absolute energy resolution is
better at low pT : for the hadron-measured case, all of the particles are . mZ while for the
photon-measured case, the photon energy is nearly

√
s.

Performance of the method can be found in figures 9 and 10, for the photon-measured
and hadron-measured

√
ŝ, respectively. The signal significance is calculated using the signal

region that is defined by the
√
ŝ measure of interest, and is not normalized to the original

truth sensitivity. Although the sensitivity is generally diminished by detector effects, there
is still strong enhancement for a variety of signal injections, representing potential for this
method in real collision data. Future innovations on hardware (e.g. increased acceptance)
and software (e.g. combining photon- and hadron-measurements) may be able to close any
remaining gaps between the truth

√
ŝ and the reconstructed version(s).

These studies also indicate the effectiveness of the method in a real analysis context
where a sliding window would be used to define sets of signal regions and sidebands across
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Figure 9. Weakly supervised PFN training results using photon-measured
√
ŝ, in the form of

ROC (left) and SIC (right) curves for mX = 350GeV (top) and mX = 700GeV (bottom) vs.
background. The dashed grey line indicates no improvement from the use of the neural network
score. A significance of ∞ indicates the case of pure signal versus pure background.

√
ŝ. In this case, there would necessarily be some sidebands with more signal events than

the signal region, leading to suboptimal sensitivity, though at least one such region will
exist where the signal is mostly in the signal region. Here a cross-training procedure can
be useful to mitigate the effect of a large trials factor,6 and it is worth noting that this is
not accounted for in the significances provided here.

A summary of all training configurations and the impact of the neural net on the
achievable signal sensitivity can be found in table 3.

6 Conclusions

We present results of high- and variable-dimensional anomaly detection applied to the
search for new physics at a future e+e− collider. Radiative return events are leveraged to
scan

√
ŝ for new resonant particles decaying to hadrons, while remaining agnostic to the

mass scale of new physics. The analysis methodology uses different regions of
√
ŝ to obtain

training regions with varying signal-to-background ratios, allowing for the construction of
a classifier that uses noisy labels for sensitivity to signal characteristics without relying on

6In the simplest, case one could divide the data in half, train on half and test on the other. This avoids
any trials factor, since the two are independent. The two sets can then also be swapped to use all data for
training and testing (although never more than half are used for training/testing at a given time).
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Figure 10. Weakly supervised PFN training results using hadron-measured
√
ŝ, in the form of

ROC (left) and SIC (right) curves for mX = 350GeV (top) and mX = 700GeV (bottom) vs.
background. The dashed grey line indicates no improvement from the use of the neural network
score. A significance of ∞ indicates the case of pure signal versus pure background.

an input model. Classifiers are trained over e+e− events modeled as particle flow networks,
with up to 150 values characterizing each event.

When training over a simulated dataset with a realistic luminosity, signals with an
initial signal-to-background ratio of . 1σ are distinguishable by this classifier, and their
sensitivity can be enhanced by over an order of magnitude. A normalization procedure
is employed that removes correlation of the result with

√
ŝ and ensures that no spurious

signals are found in background-only analyses. Together, these results indicate the strong
potential for this method to facilitate new physics searches in future e+e− datasets. Further
studies can be used to inform the design of future detectors by understanding the impact
of detector acceptance and resolution on the sensitivity to generic new physics, as well as
utilizing full detector simulation. The examination of different input features or even higher
input dimensionality could also broaden application of this method beyond hadronically
decaying resonant new physics to an even more generic search. These avenues are both
closely linked to the development of a robust and exciting physics program at a next-
generation e+e− collider experiment.

Code and data. Our code can be found at https://github.com/bnachman/ILCAnomalies
and the data are available at Zenodo.7

7https://zenodo.org/record/5181211.
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Max SIC (new σ) 1.0 (0.0) 1.0 (0.5) 10.2 (10.2) 12.7 (25) 18.6 (56) 14.7 (74) 12.3 (∞)
Weakly
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ŝ
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AUC 0.66 0.65 0.73 0.82 0.86 0.91 0.99

Max SIC (new σ) 1.0 (0.0) 1.0 (0.5) 1.6 (1.6) 2.3 (4.6) 4.1 (12) 4.6 (23) 7.2 (∞)

mX = 700GeV
AUC 0.42 0.75 0.81 0.89 0.89 0.93 0.99

Max SIC (new σ) 1.0 (0.0) 2.4 (1.2) 2.9 (2.9) 7.2 (14) 9.4 (28) 7.8 (39) 12.0 (∞)
Weakly
supervised,
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AUC 0.27 0.38 0.61 0.73 0.82 0.87 0.99
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mX = 700GeV
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AUC 0.27 0.43 0.79 0.84 0.9 0.91 0.99

Max SIC (new σ) 1.0 (0.0) 1.0 (0.5) 2.3 (2.3) 8.6 (17) 9.9 (30) 8.0 (40) 10.5 (∞)

Table 3. Summary of all considered training scenarios, the resulting area-under-curve (AUC), and
maximum value of the significance improvement characteristic (SIC) curve. A significance of ∞
indicates the case of pure signal versus pure background. The “new σ” refers to the sensitivity of
the signal excess after a neural net selection, which is dictated by the max SIC value.
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Figure 11. Leading jet input PFN variables.

A Particle flow network variable distributions

Figures 11 and 12 show example distributions of the PFN variables used in training for
both signals and the background. Only the leading and subleading jet inputs are shown,
though training is done over the same variables for up to 15 jets per event.

B Event level variable distributions

The following 15 variables were used as input to the event-level DNN approach.

• Leading and subleading large-R jet masses

• Leading and subleading large-R jet transverse momenta
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Figure 12. Subleading jet input PFN variables.

• Leading photon pT

• Measured X pT , defined by the two leading jets

• Number of particles per event

• Number of jets per event

• Ratio of leading jet pT to leading photon pT

• Ratio of measured X pT to leading photon pT

• lny23, calculated with all reconstructed jets in the event [92, 93].
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Figure 13. Event-level variables used in training, overlaying background and both signal mass
hypothesis distributions.

• Aplanarity, sphericity, and transverse sphericity [94, 95]

• Total jet mass [96].

Figure 13 show the distributions of the event-level variables used in training for the
background, mX = 350GeV signal, and mX = 700GeV signal. The two leading jet masses
and pT distributions are also used in the PFN training, and can be seen in appendix A.
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