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1Department of Pediatrics, University of California San Diego, La Jolla, California, USA

2School of Medicine, China Medical University, Taichung, Taiwan
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Abstract

The primary defect in cystic fibrosis (CF) is abnormal chloride and bicarbonate transport in the 

cystic fibrosis transmembrane conductance regulator (CFTR) epithelial ion channel. The apical 

surface of the respiratory tract is lined by an airway surface liquid layer (ASL) composed 

of mucin comprising mainly MUC5A and MUC5B glycoproteins. ASL homeostasis depends 

on sodium bicarbonate secretion into the airways and secretion deficits alter mucus properties 

leading to airway obstruction, inflammation, and infections. Downstream effects of abnormal ion 

transport in the lungs include altered intrinsic immune defenses. We observed that neutrophils 

killed Pseudomonas aeruginosa more efficiently when it had been exposed to sodium bicarbonate, 

and formation of neutrophil extracellular traps (NETs) by neutrophils was augmented in the 

presence of increasing bicarbonate concentrations. Physiological levels of bicarbonate sensitized P. 
aeruginosa to the antimicrobial peptide cathelicidin LL-37, which is present in both lung ASL and 

in NETs. Sodium bicarbonate has various uses in clinical medicine and in the care of CF patients, 

and could be further explored as a therapeutic adjunct against Pseudomonas infections.

Keywords

cystic fibrosis; bicarbonate; mucus; pneumonia; bacterial infection; neutrophil; cathelicidin; 
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Introduction

Cystic fibrosis (CF) is one of the most common life-shortening genetic diseases affecting 

about 31,000 people in the United States and an additional 70,000 people worldwide. While 
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life expectancy continues to rise due to earlier detection and recent treatment advances, 

the median age of death is calculated to be 34.1 years old in the CF Foundation Patient 
Registry 2020 Annual Data Report.1 CF is caused by a mutation in the gene encoding 

the CF transmembrane conductance regulator (CFTR) and inherited through an autosomal 

recessive pattern. CFTR is a transmembrane ATP-binding cassette ion transporter that is 

required for chloride and bicarbonate secretion on epithelial surfaces, and loss-of-function 

mutations lead to severe reduction or absence of these anions in the CF lung. Over 2000 

CFTR mutations have been identified2 with the most common mutation being deletion of 

phenylalanine at the 508 position, referred to as Phe508del or ΔF508, which is present in 

70% of CFTR alleles worldwide.3 As a multi-organ systemic disease, CF can manifest as 

chronic sinusitis, chronic respiratory infections, pancreatic exocrine insufficiency, diabetes 

mellitus, meconium ileus, cirrhosis, and infertility due to obstruction of the vas deferens.4 

Vast heterogeneity exists in the clinical presentation and severity of the disease depending on 

the underlying CFTR mutation(s), combination of alleles, and other factors such as modifier 

genes, environment, and lifestyle.5,6

Cystic fibrosis and altered innate lung defenses

Hallmark characteristics of CF involve a vicious cycle of mucus-obstructed airways, 

inflammation, and recurrent pulmonary infections. Signs of early lung disease are detected 

even in young infants with CF. Multiple studies have demonstrated proinflammatory 

mediators in the CF lung even in the absence of (and prior to) the development of lung 

infections.7,8 However, infection is no doubt a trigger and accelerator of the chronic 

inflammatory process.9 The first lower respiratory tract pathogens acquired in CF are 

typically Staphylococcus aureus and Haemophilus influenzae. Later on, patients can acquire 

the Gram-negative opportunistic pathogen Pseudomonas aeruginosa, which is the most 

common colonizer of the CF respiratory tract, with 45% of patients having culture-positive 

respiratory samples. The median age of first infection is 1 year,10 and once acquired, CF 

lung infections are almost impossible to eradicate despite aggressive and repeated antibiotic 

regimens. Antibiotic resistance rates are high and almost a quarter of strains are multidrug-

resistant (MDR).1 Pseudomonas infections in particular are associated with a decline in lung 

function and poor outcomes in CF.11

The host immune system mounts a response to bacterial infections by recruiting key effector 

leukocytes, which provoke a cascade of airway inflammation. Circulating neutrophils are 

signaled to migrate to the site of infection via microbial pathogen-associated molecular 

patterns. Once activated, neutrophils generate reactive oxygen and nitrogen species (ROS 

and RNS, respectively), release proteases, and perform phagocytic functions. Stimulated 

neutrophils can also be activated to release elaborate web-like structures called neutrophil 

extracellular traps (NETs) through a specialized cell death process termed NETosis. NETs 

are formed via the extravasation of chromatin structures, ie, nuclear or mitochondrial DNA 

and histones, into the extracellular space and have the ability to ensnare and kill invading 

pathogens.12,13

Found within NET complexes are antimicrobial peptides (AMPs) that are naturally 

occurring endogenous defense molecules. AMPs are also expressed in neutrophil granules, 
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macrophages, and epithelial cells, including those in the airway—examples include 

lactoferrin, lysozyme, surfactant B, cationic defensins, and cathelicidin LL-37. AMPs have 

a measure of direct antimicrobial effect on a broad spectrum of microorganisms,14–16 

which has received attention toward clinical translation against antibiotic-resistant strains 

of S. aureus and P. aeruginosa.17,18 These host defense peptides can also have synergistic 

and additive properties when combined with conventional antibiotics, which may be of 

particular significance in the current era of expanding drug resistance.19–21 A prevalent and 

well-studied AMP, human cathelicidin LL-37, exemplifies the killing activity of this class 

of defense molecules, specifically targeting the lipid bilayer of bacterial cell membranes 

to form transmembrane pores leading to bacterial lysis.22 In addition to their antimicrobial 

functions, NETs and AMPs also contribute to immune cell differentiation, chemoattraction 

of neutrophils and monocytes, and cytokine release.23,24 Furthermore, these immune defense 

factors can play an immunomodulatory role in autoimmune diseases,25–27 and can promote 

re-epithelialization in wound healing.28

Chronic inflammation in CF is driven by an underlying dysfunctional immune response. 

Neutrophils are activated in this highly inflammatory environment in the airways, but 

are unable to effectively clear bacterial infections due to innate defects in apoptosis, 

phagocytosis, and the generation of ROS.29–32 Excessive neutrophil degranulation occurs 

in acidic cytosolic pH levels, leading to the release of primary granules that contain enzymes 

such as myeloperoxidase (MPO) and neutrophil elastase (NE).33–36 Indeed, NE can serve as 

a longitudinal biomarker for lung function in CF and is inversely associated with a decline 

in lung function.37,38 It has been proposed that imbalanced levels of inflammatory NE 

proteases cause breakdown of lung parenchyma, leading to lung damage.39

Excessive activation of NETosis and the release of NE and extracellular DNA have been 

associated with ex vivo CF patient neutrophils and in vivo CF pig neutrophils in response 

to clinical isolates of P. aeruginosa.40–42 Using bicarbonate to increase the pH to an alkaline 

level also boosted ROS production, histone cleavage, and bacterially induced NETosis. 

P. aeruginosa, S. aureus, and the Gram-negative cell wall component lipopolysaccharide 

(LPS) contributed to increased NETs in an alkaline pH.43 Differences in NETs induced 

by P. aeruginosa have been differentiated between “early” bacterial isolates (obtained 

from CF patients from 3 months to 11 years) and “late” bacterial isolates (obtained 5–

20 years later than the earlier sample) with more NETs formed in response to the early 

isolates.41 Acquired resistance to NET-mediated killing is associated with late stage P. 
aeruginosa isolates and their mucoid phenotype.42 Given the early age of acquisition of 

P. aeruginosa and our understanding of NET-killing with late clinical isolates, the CF 

Foundation recommends the use of recombinant deoxyribonuclease or rDNase, an inhaled 

enzyme medication that catalyzes the breakdown of DNA, starting at the age of 6. While 

CF inflammation secondary to neutrophil and related NET formation is well-supported in 

literature, anti-inflammatory treatment options are not routinely used as we have yet to 

consolidate our experimental findings with the clinical response in human patients.
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Mucus and bicarbonate within the airway surface liquid

Airway mucus is composed mainly of water and a much smaller fraction of mucin 

glycoproteins. There are 21 types of mucins, which are encoded by corresponding MUC 
genes, and they are subcategorized between gel-forming and membrane-bound mucins. 

Gel-forming mucins MUC5AC and MUC5B are the primary structural components of 

airway mucus; MUC5B is predominantly expressed in the healthy airway and MUC5AC 

is upregulated in response to inflammatory conditions including CF.44 Goblet cells secrete 

mucus in a process that is dependent on functional CFTR and bicarbonate.45,46 Treatment 

of bronchial epithelial cells with the Th-2 cytokine IL-4 led to goblet cell hyperplasia, 

increased bicarbonate permeability and secretion, and further augmented release of mucus.47 

Native mucus and isolated mucin-glycans dispersed bacterial cells within a mature biofilm 

into the planktonic state and prevented bacterial attachment to human cells. As such, mucins 

are innately equipped to regulate bacterial virulence phenotypes.48 A thin layer of mucus 

covers the apical (luminal) surface of ciliated respiratory epithelium that comprises the 

airway surface liquid (ASL). As a major driving factor of airway homeostasis, the ASL 

regulates ciliary function and mucociliary transport to move entrapped microbes and foreign 

particles towards the pharynx to be expelled or removed. It also contains innate immune 

AMPs that contribute to airway defenses.

Normal function of the ASL and airway host defenses depend on bicarbonate transport into 

the airway lumen.45,49–52 Small airways concomitantly secrete and absorb bicarbonate to 

precisely maintain its steady state concentration within the thin ASL layer.53 Comparing 

airway epithelia from CF, non-CF, and CFTR heterozygous individuals in the piglet model, 

CFTR expression had a direct relationship to bicarbonate secretion and bacterial killing 

of S. aureus, ASL pH, and ASL viscosity.54 Dysfunctional bicarbonate secretion leads 

to ASL acidification and changes in ASL volume and ionic concentrations. Increased 

sodium reabsorption draws water away from the ASL and contributes to the low volume/

dehydration hypothesis of CF lung disease.51 A landmark observation was made by Quinton 

about the role of bicarbonate secretion on CF “mucoviscidosis”. Mucin glycoproteins have 

large negative repulsive charges but remain in compacted granules through cationic Ca2+ 

interactions. When mucin is released in the presence of normal bicarbonate levels, the 

bicarbonate anion (HCO3−) binds Ca2+ and unshields mucin. This exposed electronegative 

repulsion allows for rapid mucin expansion.55 In line with these findings, gastrointestinal 

tract mucus in CF mice was thick and adherent to the epithelium but was restored to 

normal mucus when secreted into 100mM sodium bicarbonate buffer.45 Clinically, thickened 

and inspissated mucus in the airways causes airway inflammation, resulting in progressive 

airway disease with structural lung changes. Ultimately this process drives the significant 

morbidity and mortality in the CF population.55–57

Bicarbonate is a robust buffer that maintains a tightly regulated physiologic pH in the blood. 

The renal system reabsorbs sodium bicarbonate when the blood acid-base system becomes 

acidotic. A pH of 7.40 is ideal for aerobic cellular respiration and other biochemical 

processes. Physiologic concentrations of bicarbonate vary depending on the organ and 

designated function. The pancreas is a major bicarbonate secretor, and the pancreatic 

ductular fluid concentration is maintained at 150mM. Bicarbonate in the blood and salivary 
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glands are 24mM and 60mM, respectively. In vivo measurements of ASL bicarbonate 

concentrations have varied widely due to technical challenges such as effects of the 

measuring electrode on transport equilibrium and CO2 variations during breathing,58,59 but 

there is a general consensus that pH is more alkaline in the lower airways (eg, bronchi) 

than in the upper airways (eg, nasal mucosa).58,60 ASL pH has also been estimated in 

vitro using monolayers of the human bronchial adenocarcinoma cell line Calu3, which 

exhibit cyclic adenosine monophosphate (cAMP)-stimulated, CFTR-dependent bicarbonate 

transport. Calu3 model estimates of ASL bicarbonate concentrations have ranged from 

10–20mM61 to 25–30mM,62,63 likely reflecting a measure of dynamic responsiveness to 

experimental conditions. However, from both in vivo and in vitro experimental studies, the 

pH and bicarbonate buffering capacity calculated in normal respiratory ASL (CFTR function 

intact) has always been higher than in CF ASL.64–66 For example, one study reported a 

normal ASL pH of 7.18 and a CF ASL pH of 6.57,64 and another investigation calculated 

the bicarbonate buffering capacity of ASL from CFTR-deficient Calu3 monolayers dropping 

by more than 50% compared to that from normal Calu3 cells.67

Bicarbonate administration in clinical medicine

In patient care settings, sodium bicarbonate is given intravenously in cases of severe 

sepsis or metabolic acidosis to raise the blood pH if it becomes exceedingly acidotic.68,69 

Treatment with sodium bicarbonate in patients with chronic kidney disease and chronic 

metabolic acidosis delays further progression of disease and prevents contrast-induced 

kidney disease when undergoing contrast procedures.70,71 Sodium bicarbonate is an 

antidote for cardiac arrhythmias caused by antidepressants and other sodium channel 

blocker medications.72 Bicarbonate also reverses toxic ingestions of salicylate and methanol 

ingestion.73 There have been studies on improving performance levels of severe intensity 

exercises with sodium bicarbonate supplementation. The use of sodium bicarbonate as an 

antibacterial agent was initially described against periodontal pathogens,74,75 and has been 

implicated for dental hygiene use.76 The varied interest in the use of bicarbonate can be 

attributed to being widely accessible, having a favorable side effect profile, low toxicity, and 

low cost.

Inhaled bicarbonate use has been safe and tolerated as a therapeutic agent in the care of 

CF patients. The anion can be given via inhalation as a mucolytic in CF and possibly in 

other mucus-obstructed airway diseases such as chronic obstructive pulmonary disease and 

non-CF bronchiectasis. A small prospective clinical study was recently published on the 

use of twice daily inhaled sodium bicarbonate. There were no adverse events associated 

with taking the aerosolized agent. Following a 10-week administration period, sputum pH 

increased as well as sputum rheology moduli (elasticity, viscosity, viscoelasticity) and this 

correlated favorably to lung function and quality of life.77 Other clinical trials using inhaled 

sodium bicarbonate in CF patients are in progress. These studies are measuring the effect 

of sodium bicarbonate on mucociliary clearance, sputum pH, and pre- and post-treatment 

pulmonary function tests.78,79 Successful case study reports of inhaled sodium bicarbonate 

in COVID-19 have also prompted clinical trials investigating this urgent area of study.80,81
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Direct and indirect antimicrobial effects of bicarbonate

Sodium bicarbonate can function as an antimicrobial agent either alone82 or synergistically 

with other antimicrobials.83,84 Bicarbonate was first shown to inhibit the growth of 

various aerobic and anaerobic microorganisms, such as Escherichia coli, Pseudomonas 
species, Lactobacillus plantarum, and Saccharomyces yeast species, and later extended 

to S. aureus.82,83 Subsequent studies validated its effectiveness in artificial sputum 

media that more closely mimics physiologic conditions.85 Aminoglycosides demonstrated 

synergistic growth inhibition of E. coli in the presence of bicarbonate.83 Tobramycin, an 

aminoglycoside commonly used in CF clinical care, synergistically killed P. aeruginosa in 

the planktonic form and further antagonized biofilm formation.84

The transition from planktonic bacteria to biofilms is a sign of chronic colonization 

in the CF respiratory airways. Early bacterial aggregates stimulate neutrophil activation, 

but are able to evade neutrophil killing and continue to form biofilms.86–88 Mature 

biofilms self-produce extracellular matrix components such as alginate, polysaccharide 

synthesis locus (Psl), and pellicle (Pel) that protect them from host defenses. The biofilm 

bacteria become tolerant and eventually resistant to antibiotics. Ongoing inflammation and 

recurrent infections lead to challenges in diagnosis and clinical treatment of patients.89,90 

Interestingly, P. aeruginosa biofilm formation can be impeded in 100mM sodium 

bicarbonate via increased production of intracellular cAMP production in P. aeruginosa, 
independent of osmolality or the ionic strength of the solution.91

Selected experimentation

Performing studies that mimic CF airways remains challenging. Greater knowledge 

regarding the antimicrobial and innate immune system response to bicarbonate in the context 

of CF pathogens and their interactions with neutrophils inspired the short, focused set of 

research studies below.

Bacterial strains and growth conditions

P. aeruginosa strains used include the widely studied reference strain PAO1 initially isolated 

from a human wound, P4, an MDR human clinical lung isolate obtained from a tertiary 

academic hospital in the New York metropolitan area, and two clinical strains (101 and 103) 

cultured from the sputum of CF patients at Rady Children’s Hospital San Diego. Bacterial 

strains were routinely streaked from glycerol stocks onto Luria Broth (LB) plates biweekly 

and overnight cultures in LB were diluted 1:10 in LB +/− 25mM sodium bicarbonate and 

incubated at 37 °C with shaking to mid-log phase (OD600 = 0.4).

Ethics statement

All procedures performed in studies involving human participants were in accordance with 

the ethical standards of the institution and with the 1964 Helsinki Declaration and its later 

amendments. Under a UC San Diego approved IRB protocol (approval #131002, annual 

approval latest Jun 15, 2022) with informed consent, healthy adult human donors provided 

venous blood collected with heparin as an anticoagulant.
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P. aeruginosa exposed to bicarbonate are more efficiently killed by neutrophils

Neutrophils were isolated from human blood with PolymorphPrep (Axis-Shield) per 

manufacturer’s instructions, diluted to 1×107 cells/mL in Hank’s balanced salt solution, 

and seeded into a 2 mL Eppendorf tube at 3×106 cells/mL. Sodium bicarbonate buffers 

of varying concentration were prepared from a 1 M stock solution (Sigma-Aldrich, Cat 

# S6014) in Roswell Park Memorial Institute medium (RPMI, Gibco, Cat # 11835030) + 

10% LB added to Eppendorf tubes. PAO1 bacteria were added at a multiplicity of infection 

(MOI) of 0.01 bacteria/neutrophil, tubes were rotated at 37 °C for 1 hour, then neutrophils 

were lysed by sonication and dilution plated on LB to enumerate bacterial colony forming 

units (CFU). P. aeruginosa grown in physiologic bicarbonate (25mM) were more efficiently 

killed by human neutrophils compared with bacteria grown in the absence of bicarbonate 

(Figure 1A).

Bicarbonate enhances NET formation

ASL is the site of complex ionic interactions that are perturbed in CF. We previously 

showed that NETosis was reduced in the absence of extracellular chloride, the first deficient 

anion discovered in CF.92 To study the effect of bicarbonate on NET formation, we seeded 

human neutrophils at 2×105 cells/well onto 48-well plates with sodium bicarbonate at 4mM 

(buffer alone), 10mM (low) and 24mM (physiologic) concentrations. Phorbol 12-myristate 

13-acetate (PMA, 25nM) was added to stimulate NET formation at 37 °C + 5% CO2 for 

3 hours. After this, micrococcal nuclease was added at 500 mU to digest extracellular 

DNA and the reaction was stopped with 5mM ethylenediaminetetraacetic acid (EDTA). 

Samples were centrifuged at 200×g for 8 minutes. The supernatant was transferred to a 

separate 96-well flat bottom plate and extracellular DNA was quantified using the Quant-iT 

PicoGreen assay kit (Life Technologies). As shown in Figure 1B, we observed a significant 

difference in the production of NETs between the lowest concentration at 4mM and both 

the 10mM and 24mM concentrations (P = 0.04, P = 0.001, respectively); more NETs were 

produced at 24mM compared to 10mM (P = 0.004).

NETs were visualized per a protocol previously described by von Köckritz-Blickwede et 

al.93,94 Briefly, slides were fixed by adding paraformaldehyde at a final concentration of 

4%. Slides were blocked by adding 2% bovine serum albumin (BSA)-phosphate buffered 

saline (PBS)+2% goat serum. Slides were washed with PBS 3 times between each step. 

Rabbit anti-human MPO (Dako #A0398) was added and after 1 hour incubation, the second 

antibody AlexaFluor488 goat anti-rabbit IgG (Invitrogen #A11070) was added. Slides were 

then embedded in ProlongGold antifade + DAPI (Invitrogen #P36931). Samples were 

examined using an inverted confocal laser-scanning 2-photon Olympus Fluoview FV1000 

microscope with Fluoview Spectral Scanning Technology (Olympus) and representative 

images are shown in Figure 1C.

Sodium bicarbonate enhances the intrinsic activity of innate AMP LL-37

LL-37 facilitates the formation and stabilization of NETs,95 and an optimal ionic 

environment is crucial for AMP activity, as pH buffering changes can influence their native 

cationic charge and killing properties.96,97 We performed kinetic killing curves for LL-37 

against P. aeruginosa strains over a range of bicarbonate concentrations, using bicarbonate 
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concentrations of 30mM as a representative of bicarbonate concentration in the normal lung 

and 15mM as a reduced concentration approximating a secretion defect as might be found in 

the CF lung. Log phase bacteria at OD600 = 0.4 were washed twice and diluted with RPMI 

with 10% LB to an initial inoculum of 2×106 CFU/mL. LL-37 (Bachem, Cat # 4042456) 

and a 1M sodium bicarbonate stock solution were diluted in the same media to the desired 

concentrations as indicated. Assays were conducted in a flat 96-well plate with a total 

volume of 200 μL and each condition was tested in triplicate. Plates were placed into a 37 

°C incubator with shaking and removed after 4 hours. Aliquots were taken from the plate 

and serially diluted for CFU enumeration. We found that AMP activity of LL-37 could be 

augmented with sodium bicarbonate and was greater at higher (physiologic) concentrations 

vs. lower (CF) concentrations (Figure 1D).

Direct antimicrobial effect of bicarbonate on P. aeruginosa

Airway cells cultured from CF patients possess inherent defects in AMP activity compared 

to cells from non-CF patients, and aerosolizing high-dose sodium bicarbonate (100mM) 

into the airway ASL of CF pigs enhanced killing of S. aureus-coated grids.66 Prior reports 

of direct antimicrobial activity of bicarbonate against P. aeruginosa tested concentrations 

of 100mM or greater.85,91 Using the MDR human lung clinical P. aeruginosa isolate 

P4, we found dose-dependent reduction in P. aeruginosa CFUs occurred at bicarbonate 

concentrations of 60mM or 120mM, suggesting the potential of the aerosolized agent to 

exert direct antimicrobial activity against the pathogen (Figure 1E).

Statistical analyses

Statistical analyses were performed using GraphPad Prism, v8.1.2 (GraphPad Software Inc., 

La Jolla, CA, USA). Unpaired parametric t-tests and 2-way ANOVA were performed and P 
< 0.05 was considered statistically significant.

Conclusions and areas for future study

A defect in bicarbonate secretion into the airways in CF causes pathophysiologic changes 

in mucus biology, the ASL, and components within the ASL. Here we have outlined 

our understanding of sodium bicarbonate as an antimicrobial agent against various 

microorganisms, and specifically MDR and CF clinical isolates of P. aeruginosa, and 

bicarbonate in concert with ASL antimicrobial peptides including cathelicidin LL-37. The 

antimicrobial effect seen at higher concentrations of bicarbonate is not due to osmolality 

or ionic strength.91 This suggests that increased concentrations may contribute as a defense 

mechanism against bacterial infection and chronic colonization in the lungs. Obstructive CF 

sputum consists of extracellular DNA98–100 and clinical treatment targets the breakdown 

of NETs. We present a novel perspective on how alterations in sodium bicarbonate 

affect the innate immune system. We found that sodium bicarbonate stimulates NETosis, 

and pretreating P. aeruginosa with sodium bicarbonate enhanced bacterial killing effects 

of neutrophils. Sodium bicarbonate appears to increase bacterial susceptibility to killing 

through increasing intracellular bacterial cAMP levels and disrupting the pH gradient of the 

proton motive force across the cytoplasmic membrane of Gram-negative and Gram-positive 

bacteria.91,101 It is possible that commensal lung bacteria may also be impacted with 
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augmented levels of bicarbonate. The extent of such effects likely depends on the condition 

of the lung, since the physiologic level of bicarbonate is dynamic in nature. Introduction 

of bacteria due to an acute infection may result in a precipitous decrease in bicarbonate 

levels. Treatment with sodium bicarbonate can theoretically raise bicarbonate to levels 

those pathogenic bacteria are not accustomed to, and thus perhaps more susceptible to, in 

comparison to commensal bacteria of the upper respiratory tract. The multifaceted potential 

contributions of bicarbonate to airway host defense are summarized schematically in Figure 

1F.

Given the above considerations, the use of inhaled bicarbonate continues to be investigated 

as a potential therapeutic in CF and other respiratory diseases. The development of CFTR 

modulators within the last decade has created landmark shifts in the treatment and outcome 

of patients with CF. These treatments have led to increased lung function, weight gain, 

reduction of pulmonary exacerbations, and improvement in quality of life. Gene-directed 

therapies are currently available for 82%–90% of CF patients worldwide, as a result of the 

inclusion of one copy of DF508 as a qualifying mutation.102 These small molecules target 

CFTR mutations, alter the malfunctioning protein, and restore functional expression. Drugs 

are classified based on their effect on the gene and are either termed “potentiators”, which 

increase the gating of the CFTR chloride-bicarbonate ion channel at the cell surface, or 

“correctors”, which act to rescue post-translational folding, processing, and trafficking of 

the protein. In the presence of CFTR modulating drugs, restored chloride conductance can 

result in normalization of sweat chloride levels. Bicarbonate transport activity was rescued 

in cells expressing p.F508del-CFTR. By calculating HCO3
- influx from the pH, a HCO3

- 

influx of 17 – 25.8mM occurred in the presence of one corrector and 45.9mM with two 

correctors.103 Since CFTR modulators treat the underlying defect, the downstream effects 

of an abnormal CFTR are mitigated. For 10%–18% of patients or more in countries where 

the prevalence of ΔF508 is higher and who do not have therapeutic options, the use of 

sodium bicarbonate as a therapeutic may be more relevant. The safety and tolerability profile 

of bicarbonate makes it an agreeable medication to be considered for long-term use. As 

such, its therapeutic application can be considered a step towards restoring the depressed 

bicarbonate levels characteristic of CF airways. Long-term inhaled bicarbonate therapy may 

create an environment in which colonized P. aeruginosa is constantly exposed to sodium 

bicarbonate, which renders it more sensitized to the defenses of the immune system. There 

likely also exists a synergistic effect of pretreated bacteria with additional host innate 

immune factors that can be further investigated.
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Figure 1. Effects of bicarbonate concentration on Pseudomonas aeruginosa innate immune 
susceptibility and virulence.
A: Neutrophil killing of P. aeruginosa strain P4 grown in the presence or absence of 25mM 

bicarbonate in the overnight culture. B: PicoGreen quantification of PMA-induced human 

neutrophil extracellular trap (NET) DNA release in different bicarbonate concentrations. C: 

Representative images of PMA-induced NETs in different bicarbonate concentrations by 

anti-human myeloperoxidase antibody and AlexaFluor488-conjugated secondary antibody. 

D: Survival of P. aeruginosa strains in the presence (+) or absence (−) of 4 μM LL-37 at 

the indicated bicarbonate concentrations. E: Killing kinetics of P. aeruginosa in increasing 

concentrations of bicarbonate. F: Schematic summary of the effects of bicarbonate on 

P. aeruginosa innate immune susceptibility and virulence. Unpaired parametric t-tests (A, 

B) and 2-way ANOVA (D, E) were performed; *P < 0.05, **P < 0.01, *** P < 0.005. 

AMPs: antimicrobial peptides; CFU: colony forming units; NET: neutrophil extracellular 

trap; PMA: phorbol 12-myristate 13-acetate.
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