
UC Santa Barbara
UC Santa Barbara Electronic Theses and Dissertations

Title
PERRY: A Flexible and Scalable Data Preprocessing System for "ML for Networks" Pipelines

Permalink
https://escholarship.org/uc/item/6p42s4w9

Author
Battula, Navya

Publication Date
2023

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6p42s4w9
https://escholarship.org
http://www.cdlib.org/

University of California
Santa Barbara

PERRY: Flexible and scalable data preprocessing
system for “ML for Networks” pipelines

A Thesis submitted in partial satisfaction
of the requirements for the degree

Master of Science
in

Computer Science

by

Navya Battula

Committee in charge:

Professor Arpit Gupta, Chair
Professor Elizabeth Belding
Professor Amr El Abadi

September 2023

The Dissertation of Navya Battula is approved.

Professor Elizabeth Belding

Professor Amr El Abadi

Professor Arpit Gupta, Committee Chair

August 2023

PERRY: Flexible and scalable data preprocessing system for “ML for Networks”

pipelines

Copyright © 2023

by

Navya Battula

iii

Dedicated to Daddy, mom and Deepak who stood as my pillars

of support during the toughest times in my Master’s journey.

iv

Acknowledgements

My journey through my Master’s degree was a challenging one, filled with constant

ups and downs. The unwavering support of some remarkable individuals was the beacon

of hope that sustained me throughout this journey. Expressing my gratitude towards

them in these acknowledgments is the least I can do.

First and foremost, I want to extend my deepest gratitude and love to my parents

and my brother. They have been the source of my happiness since the beginning of my

Master’s journey and the reason I persevered through the toughest times. When things

became exceptionally challenging towards the end of my Master’s degree, I faced moments

of despair and self-doubt. The persistent feeling that had haunted me since the beginning

of grad school — ”Maybe I wasn’t good enough?” — had grown due to circumstances and

the people around me. At my lowest point, feeling desperate, unemployed, and deeply

depressed, I contemplated giving up. It was during these trying times that my family

supported me like no one else could. My Dad would call me every morning just to talk,

allowing me to share my feelings and providing a distraction from my hardships. His

unwavering moral support during my darkest moments is something I can never repay.

My mom’s care for my well-being, ensuring I ate properly during those challenging times,

was a constant source of comfort. Talking to my brother was therapeutic; he made me

feel like the proud big sister and is the best brother anyone could wish for. Thank you,

Dad, Mom, and Chintu, for being the best family I could ever ask for. I am forever

indebted to you for your support during this difficult period.

Secondly, to my best friend Srilu, I express my heartfelt gratitude for being my

ultimate source of support and guidance throughout my Master’s journey. Thank you

for always being there, offering valuable advice, and helping me process my grief by

sharing it with me. You are a friend that not everyone deserves, but I am fortunate to

v

have you.

Thirdly, I want to extend my sincere thanks to Rajesh Varma Uncle and Gowthami

Aunty for welcoming me during my challenging times. I am deeply grateful for your care,

treating me like your own daughter, and I am forever indebted to you. I also want to

mention my adorable nephew Bhavyansh, who brought me solace during this period.

I want to thank my professional colleagues for their mentorship and support during

my Master’s journey. Special thanks go to Ph.D. student and fellow lab mate Roman

Beltiukov for guiding me in my work, your patience, and unwavering support. I also

extend my gratitude to my coworker and fellow lab mate Satyandra Guthula for your

support and patience in our project. Your wisdom and mentorship contributed signifi-

cantly to the development of PERRY. I also want to thank all my lab mates for their

guidance and support during my Master’s journey.

I am grateful to Professor Elizabeth Belding, Professor Amr El Abadi, and Professor

Arpit Gupta for being on my committee.

Describing my Master’s degree as just a milestone would be an understatement. I

thank everyone who has been part of this incredible journey. To anyone reading this, I

want to share a message based on my experience as a grad student at UCSB. I worked hard

to secure a place at a prestigious institution like UCSB, coming from a less prestigious

undergraduate school. It was natural for me to experience imposter syndrome for a while.

But when you realize that imposter syndrome is taking over, seek help from mental health

services, change your work environment, and surround yourself with positive influences

before it’s too late. I hope this message resonates with you.

Love,

Navya

vi

Abstract

PERRY: Flexible and scalable data preprocessing system for “ML for Networks”

pipelines

by

Navya Battula

The integration of machine learning techniques into networking research has catalyzed

significant advancements in areas such as traffic classification, intrusion detection, and

quality of experience (QoE) estimation. This progress has been fueled by remarkable

developments in deep learning, leading to state-of-the-art models in various domains,

leveraging powerful neural networks, encoders, transformers, and language model archi-

tectures.

Developing these complex ML-based models relies heavily on the data pre-processing

module to extract features from the raw network data (e.g., packet traces) and add labels

to different data points. Different model specifications require extracting disparate sets of

features. Currently, there is a tight coupling between the data pre-processing and model

training modules in the ML pipelines used for developing ML artifacts for networking.

Specifically, the pre-processing modules are only suited to extract a limited set of fea-

tures (e.g., extract time series features) that are suitable for specific downstream model

specifications (e.g., LSTM). Consequently, researchers exploring new learning models

for different networking problems end up spending a significant amount of their time

developing custom data pre-processing modules, impeding the pace of innovation.

This thesis focuses on decoupling data pre-processing from model training in ML

pipelines for networking. Specifically, we present the design and implementation of

PERRY, a flexible data pre-processing module for networking that can extract a wide

vii

range of (high-quality) features at scale that can be consumed by disparate model spec-

ifications for model training. PERRY offers an intuitive user interface that allows de-

velopers to express their data pre-processing intents. More concretely, PERRY supports

three distinct classes of features: packet content, time series, and aggregate statistics.

For each class, it lets the user specify different parameters. For instance, the user can

express which set of fields (e.g., timestamp, number of bytes, etc.) to use for time series

features and at what granularity (e.g., per packet, burst, or flow). Similarly, it lets the

user select which set of aggregate features to extract and at what granularity.

To scale the pre-processing tasks, PERRY leverages state-of-the-art data analytics

and storage tools—making the best use of limited computing and storage resources.

Specifically, it decomposes the pre-processing task at flow-level granularity. Such decom-

position offers horizontal scalability offered by existing tools without compromising the

semantic integrity of the extracted features. Further, to minimize wasteful data process-

ing, it offers a hybrid schema that aims to strike a balance between expressiveness and

scale. Specifically, this schema only exposes a subset of popular features to the user,

offering pointers to raw data. Such an approach ensures that only a subset of features is

extracted for network traffic, and more complex features are dynamically extracted from

a subset of network traffic on demand. By decoupling data pre-processing and model

training in ML pipelines for networking, PERRY lowers the threshold for developing

new ML models in networking. PERRY represents a step forward in simplifying and

enhancing data processing in networking research and opens new possibilities for future

innovations in the field.

viii

Contents

Abstract vii

1 Introduction 1
1.1 Existing challenge . 3
1.2 Our solution . 5

2 Related Work 7
2.1 Literature Review . 7

3 Data and Design 15
3.1 Network Data Processing Tasks . 15
3.2 Network Feature sets . 16
3.3 Design goals for PERRY . 20

4 Proposed Framework 23
4.1 Architecture . 23
4.2 Packet processing . 24
4.3 Feature Extraction . 26
4.4 Labeling . 28
4.5 Storage . 30
4.6 Querying . 31
4.7 Database schema . 32

5 Addressing the scalability issues 34
5.1 Challenges to Scalability . 35
5.2 Addressing These Challenges . 35

6 Conclusion 41
6.1 Conclusion and further work . 41

A Datasets information 43
A.1 Feature sets of different network data formats 43

ix

Chapter 1

Introduction

Constructing networking systems necessitates a comprehensive understanding of the net-

work’s overall state, enabling developers to align the system’s design with specific re-

quirements. However, this endeavor encounters a fundamental obstacle: the restricted

visibility into the network’s state. Achieving a holistic perspective is imperative for the

successful development of any robust networking system. Additionally, it is important

to note that networks are characterized by intricate closed-loop interactions occurring

across various spatial and temporal scales. These interactions encompass diverse pat-

terns that can be harnessed to glean insights into the network’s condition. Consequently,

the incorporation of learning mechanisms becomes imperative, enabling the utilization

of these patterns to address the challenge of limited visibility into the network’s state.

Learning can be effectively applied to networking solutions through two distinct ap-

proaches. The first approach entails the utilization of uncomplicated rule-based heuris-

tics, which operate by leveraging explicitly defined rules and algorithms. To illustrate,

consider the adaptive bitrate algorithm used in video streaming applications. This algo-

rithm forecasts the forthcoming channel bandwidth and optimally adjusts the bit rate to

align with the prevailing streaming requirements, ensuring an enhanced streaming expe-

1

Introduction Chapter 1

rience devoid of pixelation and buffering interruptions. Another instance of rule-based

heuristics includes congestion control algorithms, as well as selected traffic classification

algorithms employing port numbers to categorize the protocol within ongoing traffic.

While simple heuristics are notably efficient in numerous scenarios, they do exhibit lim-

itations when confronted with dynamic network conditions.

To address the challenges posed by the limitations of simple heuristics under dynamic

network conditions, we turn to the efficacy of Machine Learning techniques, which have

demonstrated notable efficiency when compared to their predecessors. Both conventional

machine learning algorithms and modern neural network architectures have exhibited

effectiveness in discerning inherent patterns and adeptly adapting to the intricacies of

dynamic network scenarios. Moreover, these Machine Learning techniques are adept at

handling various data types, extracting diverse patterns, thereby enhancing their capacity

for more comprehensive learning.

Early approaches to Machine Learning in Networking primarily relied on straight-

forward traditional ML algorithms such as Random Forest and Naive Bayes, featuring

simpler workflows. Data were typically gathered in the form of packet traces, and pro-

cessing involved deploying pre-existing tools tailored to extract a narrow range of specific

features. The feature space was often rudimentary and fixed, and model tuning lacked

sophistication.

However, the landscape shifted dramatically with the emergence of well-defined neural

networks. These networks brought the capability to process diverse data types, encom-

passing text, images, and sequence patterns. This transformative shift revolutionized the

application of machine learning in developing cutting-edge learning solutions, a shift that

was equally apparent in networking contexts.

This transition empowered researchers to delve into neural network architectures,

processing data in distinct formats such as raw byte-based image representation or ex-

2

Introduction Chapter 1

tracting time series features through network packet attributes. This concept spurred

significant research, culminating in machine learning becoming a preferred approach for

cultivating enhanced learning and constructing advanced systems within the realm of

networking.

1.1 Existing challenge

Illustrated in Figure 1.1, a conventional Machine Learning (ML) workflow for net-

works follows a structure encompassing both data processing and model training mod-

ules. When addressing a specific problem, the workflow should ideally align with its

specifications. For instance, when tackling a traffic classification issue, the process would

involve transforming packet traces into time series data using a suitably tailored data

processing module, optimally designed for the intended LSTM model.

Figure 1.1: A typical machine learning workflow.

However, challenges arise when even slight modifications to the problem specification

prompt consequential ripples throughout the pipeline. This predicament stems from

the inherent tight coupling that exists between the data processing and model training

modules within the ML workflow. Such rigid coupling confines data processing to the

specific model at hand, offering minimal adaptability when confronted with evolving

problem specifications.

Consequently, as the system becomes governed by two interdependent components,

3

Introduction Chapter 1

complexity intensifies, making the incorporation of adjustments a convoluted endeavor.

Each minor alteration inadvertently introduces redundant supplementary processing steps,

thereby needlessly compounding the complexity. As we can observe in Figure 1.2, numer-

ous iterations create multiple copies of the current pipeline, which are often redundant

and unnecessary.

Figure 1.2: The iterative modifications result in a lagged progress and hamper productivity

The iterative refinement of the data processing module consumes valuable time and

hampers productivity that could otherwise be channeled into devising efficient models.

Repeatedly reconfiguring and reconstructing pipelines to suit specific demands does not

yield innovation or improvement; it merely alters the approach. Consequently, the pursuit

of a generic data processing system emerges as a far more compelling endeavor, poised

to alleviate this burden on developers.

The true challenge lies in skillfully crafting a framework that comprehensively ad-

dresses all data processing requirements, enabling the effective decoupling of data pro-

cessing from model training. Herein enters our solution, PERRY: A Flexible and

Scalable Data Preprocessing System for ”ML for Networks” Pipelines.

4

Introduction Chapter 1

1.2 Our solution

As previously indicated, our primary emphasis has been on formulating a network

data processing framework that effectively tackles the conundrum of the closely inter-

linked data processing and model design components. In this context, we have meticu-

lously crafted our framework, PERRY, with a distinct objective: to extricate dependen-

cies on models and endow users with a seamless avenue for data processing through an

intuitive user interface. By doing so, it streamlines the data processing phase, negating

the necessity for supplementary development efforts. PERRY stands as a comprehensive

solution capable of processing network data across diverse types and granularity. Refer

to Figure 1.3, which illustrates the significant transformations introduced by PERRY in

the system. PERRY simplifies the system by consolidating the number of moving parts

into just one. As a result, researchers can dedicate more time to developing improved

models and making well-informed decisions.

Figure 1.3: Our proposed workflow with PERRY. Notice how PERRY creates a sep-
arate data processing platform making it independent of other components in the
pipeline.

The subsequent sections of this thesis are structured as follows: In Chapter 2, we

delve into the realm of related works, painting a comprehensive picture of current net-

work data processing solutions. Through this exploration, we aim to discern how our

present model has been shaped, taking inspiration from the challenges addressed in these

5

Introduction Chapter 1

existing works. Chapter 3 provides a holistic overview of network data processing tasks,

encompassing feature sets and the design objectives we embraced in the development of

our framework. The subsequent Chapter 4 delves into the architecture we have devised

for our framework, meticulously dissecting each constituent element in detail. Turning

to Chapter 5, we elucidate the performance evaluation results of our framework, closely

observing the impact of the optimization techniques we implemented on the run time

of the pipeline framework. Chapter 6 offers the culmination, presenting the concluding

remarks and insights into potential future directions. In the Appendix section, we fur-

nish an exhaustive account of the diverse network feature spaces employed, organized in

tabular formats for ease of reference.

6

Chapter 2

Related Work

2.1 Literature Review

The challenge of processing networking data has persisted over time. Initial works

heavily relied on tools like NetMate [1] to process data, generate flows, and compute

feature values for datasets. The data processing requirements then were minimal owing

to the lower complexity of the models and the problem specifications.

Works such as [2], [3], and [4] utilized traditional machine learning models for traffic

classification, with [2] and [3] focusing on flow-based statistics for protocol identification

(DNS, SMTP, HTTP) and encrypted traffic classification, respectively, utilizing tools

like NetMate for data processing. NetMate was the data processing standard heavily

employed in the early prominent works in the field. However, the landscape of learning

in network changed soon, leading to dramatic changes in data processing techniques.

Authors in [5] employed 248 flow features for supervised Naive Bayes classification,

encompassing packet-wise time series features like inter-arrival time and packet size. This

kind of work marked the beginning of exploration into a diverse feature space in network

data.

7

Related Work Chapter 2

Later approaches, exemplified by [6], [7], [8], and [9], heavily relied on flow statis-

tics using flowmeters like ISCX Flowmeter (CICFlowmeter) [10] and YAF [11]. Drastic

changes were observed with the rise of deep neural networks [12], [13], [14], [15], [16],

triggering a paradigm shift in networking machine learning models and the representation

of network data.

Approaches that incorporate spatio-temporal attributes [17] and methods leveraging

raw byte formats [18], time series features, and various derived attributes have become

widespread due to the capabilities of neural networks in processing them. Consequently,

the data processing step has become more and more specific, offering a tightly coupled

architecture incorporated with the model training part that necessitated the installation

of numerous flowmeters and constructing specific pipelines for data extraction in specific

formats. Despite advancements in model architectures and networking solutions, the

data processing step remains rudimentary with minimum to no attention paid to solving

this.

The solution to this challenge is surprisingly simple when we analyze network data

formats through the lens of three fundamental categories: Packet Content Features, Time

Series Features, and Flow-wise Statistical Features. Our exploration of various works in

the field that employ network datasets for training models revealed that the majority of

these formats, as outlined in prevalent literature, can be categorized within these three

foundational data formats. In this section, we compile references from the literature to

substantiate and elucidate our selection of these three formats. We also delineate the

distinctions of PERRY from other approaches and highlight the challenges that other

methods present to networking researchers. Subsequently, we delve into renowned con-

tributions within the community and emphasize challenges that have arisen from their

designs. These challenges serve as a source of inspiration for the development of our

framework, which aims to effectively address and mitigate them.

8

Related Work Chapter 2

The first part of our literature review is structured around these three primary net-

work data formats. We provide succinct insights into the data formats employed in these

works, elucidate their methodologies, and detail how our approach, PERRY, efficiently

incorporates them.

1. Flow aggregate statistics: In the networking community, flowmeters are widely

embraced tools for extracting and assessing various aspects of flows, encompassing

flow-based attributes like statistics and byte counts. Previous methodologies heav-

ily emphasized flow statistical features due to their inherent simplicity and capacity

to encapsulate diverse flow information. Within the landscape of flow data, three

predominant categories emerge based on established data export standards: Net-

Flow (Network Flow), IPFIX (Internet Protocol Flow Information Export), and

S-Flow. While these standards exhibit similarities, they are differentiated by their

data export conventions. IPFIX, serving as an open standard, has been adopted by

flowmeters like Argus [19] and YAF [11], due to its expansive support for various

record formats and adaptable design. However, YAF’s intricate configuration and

composite 38-feature set necessitate further preprocessing to segregate distinct data

formats. Conversely, flowmeters such as nProbe [20], centered around the NetFlow

format, have been pivotal in generating flow data and inspiring the development of

YAF.

Despite the multitude of flowmeters and data export standards, a comprehensive

representation capable of concisely encapsulating aggregate flow statistics remains

elusive. Flowmeters such as YAF and Argus adhere to specific export formats and

have been employed in certain studies for feature extraction purposes. However,

their feature sets comprise a mixture of aggregate statistics, specific packet content

features, and traces of other data features. This combination of features can pose

9

Related Work Chapter 2

challenges when trying to use them as generic flowmeters, as this set of features

might not be optimally suited for all types of problem statements.

In our exploration, we acknowledge CICFlowmeter’s [10] efficacy in capturing cru-

cial flow aggregate statistical features separately without any mix-up, as evidenced

by its widespread adoption in significant research endeavors [6], [7], [8], [9] for

constructing feature sets and training data for models. When juxtaposed against

alternative flowmeters, CICFlowmeter’s performance shines through due to its pro-

ficiency in data representation and seamless integration with tools. Its user-friendly

interface and versatility in harmonizing with various components further validate

its pertinence as a valuable addition to our framework. We provide a brief account

of the flow aggregate statistical features in the next chapter.

2. Time Series Sequences and Data: The advent of sequential models in deep

learning has markedly facilitated the handling of time series data. Architectures

such as Recurrent Neural Networks (RNNs), Long Short-Term Memory (LSTM),

and Gated Recurrent Unit (GRU) have wrought transformations in time series

forecasting, prediction, and classification, sparking a parallel exploration of their

application in network time series data (refer to Appendix A for a comprehensive

overview of Packet-wise Time Series data). Interestingly, time series data has his-

torically been included in network feature sets, intermingled with other attributes

in prior works [5], but it has surged into the limelight as an individualized data

format following the proliferation of sequential models. The realm of time series

feature space rapidly gained traction, displaying continuous evolution that consis-

tently yields enhanced outcomes. Owing to its inherently representative character,

time series features are harnessed to tackle a spectrum of problems, emerging as a

distinctive format adept at capturing multifaceted patterns across varying levels of

10

Related Work Chapter 2

granularity.

Numerous studies have thrived by harnessing the time series format across vari-

ous categories and applications, establishing it as a predominant format within the

research community [21], [22], [23], [24]. For instance, in [25], authors extracted

time series features in conjunction with IP and TCP headers, employing LSTM for

encrypted traffic classification. Similarly, in [26], time series features like packet

size and timestamp were utilized, accompanied by statistical, distribution-based,

and frequency-based features, temporally taken for the analysis of single-flow time

series. Moreover, in [27], flow-based time series features and packet content fea-

tures were extracted and used for training CNN models, followed by LSTM mod-

els. Another approach, outlined in [28], devised an ensemble model that integrates

three data formats—aggregate statistics, packet content features, and time series

features—each fed individually to distinct networks (MLP, CNN, and LSTM, re-

spectively). The weights of these networks are then connected to a single MLP.

This method employs time series features in the form of 1024x3 sequences, com-

prising packet size, timestamp, and direction. They demonstrate higher F1 scores

of 95% using their approach in encrypted traffic classification. Furthermore, in

[29], burst-wise time series features were leveraged to model traffic from platforms

like Netflix and YouTube, utilizing the Dynamic Adaptive Streaming over HTTP

(DASH) protocol. These features were employed as a time series of down/up/all

bytes-per-second and down/up/all packets-per-second. By analyzing the ”bursti-

ness” of traffic at different time points, they achieved over 98% accuracy in iden-

tifying the streamed video titles, even under encryption. Our framework adopts

the format presented in [28] for our packet-wise time series representation and the

format from [29] for our burst-wise representation, owing to their efficiency in cap-

11

Related Work Chapter 2

turing underlying patterns succinctly.

Acquiring time series features entails a consistent workflow across various scenarios.

Irrespective of the granularity, the fundamental attributes of timestamps and packet

sizes are pivotal. These raw attributes undergo processing and transformation to

generate features at diverse levels of granularity, achieved through straightforward

grouping and aggregation operations. Within our framework, we have adeptly

integrated these functions, empowering users to select the desired granularity and

set of time series features for processing. Further elaboration on the time series

data format is provided in the subsequent chapter.

3. Packet content features: Raw bytes and packet header bytes constitute the

most fundamental network data format. Raw packet bytes have maintained promi-

nence over time and have featured in numerous works within the field [27], [30].

The packet content features encompass critical information extracted directly from

various headers, rendering them invaluable components of any feature set. These

features have been strategically incorporated in tandem with other formats, implic-

itly acknowledged for their basic nature and direct extraction.

Additionally, the rise of convolutional neural networks has sparked researchers’

interest in exploring packet content features for image representation. For instance,

in [31], authors utilize TCP and IP packet headers in conjunction with Bayesian

Networks for traffic classification. Similarly, in [32], a selective inclusion of specific

fields from various headers forms the basis of packet content feature representation.

This feature vector is trained using CNN and SAE for packet-level fingerprinting.

Payload bytes are also harnessed for classification, as demonstrated by [33], who

employ Support Vector Machine (SVM) for accurate traffic classification. The

approach in [28] capitalizes on TLS handshake packets as raw bytes in its ensemble

12

Related Work Chapter 2

model. Payload bytes, along with flow statistical features, find application in traffic

classification through Bayesian networks, as depicted in [34].

Among the explored data representations, we found that, apart from [32], no other

approach or representation focused comprehensively on all packet content features.

Comparing this approach with [35], we observed that the former exhibited specific

feature selection implementation, whereas the latter presented a more generalizable

approach. Notably, the nPrint [35] representation stands as a unique standardized

packet content representation, featuring a fixed-field, fixed-size structure comprising

1080 fields from IP, TCP, UDP, and ICMP headers, complete with padding for

absent fields to maintain consistency. This representation also offers the choice

of payload size. Considering these factors, the nPrint representation became our

natural choice for integration into our framework.

In the previous section, we established the various data categories and outlined our

chosen tools for their processing. In this second part, we delve into the overarching issue

we highlighted earlier: the problem of coupling. The heavy interdependence between

the data processing module and the model training module serves as a prime example of

suboptimal design, introducing numerous complications. This coupling severely restricts

flexibility, necessitates redundant redesign efforts, and overall falls short of an ideal system

architecture.

For instance, in [36], the authors employ SVM specifically to model TCP traffic, a

strategy that may not be suitable for other problem domains. Similarly, [37] introduces a

novel approach of converting packet-wise time series features into image representations

for CNN-based training. However, this method is closely tied to a specific model spec-

ification, making it cumbersome to adapt to different problem specifications. In [38], a

unique neural network architecture is proposed for processing datagram-level data, but

13

Related Work Chapter 2

its data processing approach of segmenting datagrams into byte segments is tailored to its

Byte Segment Neural Network architecture. Meanwhile, in [39], genetic algorithms are

harnessed for traffic classification, ensuring the selection of crucial features to avoid erro-

neous predictions. However, their exploration is confined to time series and packet-wise

features.

In [28], the authors leverage all three data categories in their respective suitable

formats. Nevertheless, a significant challenge lies in the intricate data processing system,

intricately designed for their ensemble model. Across these works, the presence of a tight

coupling between model training and data processing is evident. In each case, even a

slight shift in the problem specification necessitates a comprehensive reimagining of the

entire system design, resulting in extensive redevelopment efforts.

As a primary step in our design process, we have resolved to decouple the data

processing and model training phases. By implementing this separation, we aim to

achieve greater freedom in shaping our data processing framework and, consequently, in

designing our model specifications. In the upcoming chapter, we delve deeper into these

aspects within the context of our design goals.

14

Chapter 3

Data and Design

Before delving into the framework’s structural intricacies, it is imperative to compre-

hensively detail data processing tasks, network feature sets, and our design objectives.

This entails providing a concise overview of typical network data processing tasks, the

formats integrated into our framework, and the foundational principles underpinning our

framework’s design.

3.1 Network Data Processing Tasks

Network data processing tasks generally encompass two fundamental aspects: feature

extraction and labeling. The initial raw packet traces garnered from the network serve as

the foundation for extracting diverse feature sets spanning various types (e.g., timeseries)

and granularities (e.g., flow level). Feature extraction entails the selective extraction

of specific fields from network packets or flows, followed by transformative processing

that generates refined datasets. In parallel, the labeling task involves the extraction of

hostnames from packets, furnishing insights into their associated services or applications.

Let us try to understand each task in a more detailed way:

15

Data and Design Chapter 3

1. Feature extraction: Central to the feature extraction process are the considerations

of feature category, granularity, and processing approach. Users are empowered

to make judicious choices regarding the specific feature category and granularity

tailored to their data processing needs. Leveraging data analytics tools, raw packet

traces undergo processing to extract targeted features, either from individual pack-

ets or higher-level granularities. The complexity of processing varies; while some

cases involve straightforward scripting for direct feature extraction in a single step,

others demand more intricate procedures, often spanning multiple steps and trans-

formations to attain the desired feature spaces. A comprehensive exploration of

feature spaces is expounded upon in the subsequent section.

2. Labeling: The labeling task constitutes an optional step, affording users the discre-

tion to include or omit it. As previously highlighted, the labeling process entails

the extraction of hostnames. This extraction is facilitated through the utilization

of the Server Name Indication (SNI) field from TLS handshake bytes and/or the

Domain Name System (DNS) query name from headers within the payload. These

extracted hostnames can subsequently undergo parsing, enabling the assignment of

labels based on services or applications.

3.2 Network Feature sets

Network data can be tersely described as either individual packet data or an aggre-

gation of packet data. However, the simplicity of this description belies the intricate and

multifaceted nature of the network feature space. A deeper comprehension of this space

proves essential for a comprehensive grasp of network data processing.

Broadly classified, network data features can be grouped into three distinct categories.

Most contemporary data formats align with these primary categories:

16

Data and Design Chapter 3

1. Packet Content Features

2. Time Series Features

3. Aggregate Statistics Features

Moreover, network data features can be extracted across three different granularities:

1. Packet Level

2. Burst Level

3. Flow Level Features

This categorization framework furnishes a structured lens through which to perceive

the diverse facets of network data.

Let us briefly understand these network data granularities and feature categories.

Network data Granularity

1. Packet Level Granularity: This pertains to features derived from packet-level at-

tributes. Positioned at the lowest stratum within the hierarchy of network data

granularity, packet-level features offer a meticulous depiction, encapsulating com-

prehensive information in intricate detail.

2. Burst Level Granularity: Positioned at an intermediate tier, this level encompasses

features pertaining to a temporal grouping of several packets within a network

session. Serving as a bridge between packet level and flow level granularity, burst

level granularity establishes a vital connection between these two tiers.

3. Flow Level Granularity: Operating at a higher tier of granularity, flow level encom-

passes the aggregation of features across a singular session. This level of granularity

finds frequent application in prominent studies within the field.

17

Data and Design Chapter 3

Network data Features

1. Packet Content Features: This feature set encompasses a concise array of fields

directly extracted from packets. These fields encapsulate headers at the packet

level as well as payload bytes. Formulating a unified representation entails the

compilation of fields from IP, TCP/UDP, ICMP headers, as well as HTTPS, DNS,

and TLS application headers drawn from the payload bytes. Packet content features

provide a standardized feature space for the following reasons:

1. They offer a concise view of the packet-level granularity in its rawest form.

2. The header fields and payload bytes often contain crucial information for iden-

tifying packet details, such as protocols and flags.

3. Packet content features are straightforward to work with, as they can be easily

extracted and processed.

While packet content features are easy to extract, assembling them in a single

representation might be a little tricky. The task of crafting such a representation

is inherently challenging, stemming from the variable availability of fields. Amid

these challenges, we acknowledge the nPrint approach as a benchmark. nPrint’s

unique fixed-size, fixed-field representation has emerged as a standard, notable for

its consistent implementation across packets, accompanied by appropriate padding

to accommodate non-existent fields. This characteristic significantly simplifies de-

velopers’ engagement with this feature space, negating the necessity for intricate

data processing to address inconsistencies.

2. Time Series Features: This feature subset encompasses the time-dependent at-

tributes of network data specific to a given granularity. For instance, at the

packet level, time series features comprise packet size, timestamps, and direction.

18

Data and Design Chapter 3

Renowned for succinctly capturing traffic patterns, time series features provide an

accurate reflection of temporal dynamics by unveiling diverse patterns across mul-

tiple granularities. Time series features play a pivotal role in the network data

feature space for several compelling reasons:

1. Time series features effectively depict the traffic’s temporal pattern, offering a

precise representation of its dynamic behavior over time.

2. They are easily extracted and processed, requiring no additional tool installation

beyond tshark.

3. These features are instrumental in capturing patterns while being protocol-

agnostic, making them invaluable for encrypted traffic classification challenges.

4. Time series features can be further transformed into diverse data formats or tok-

enized for training purposes, leveraging self-supervised and semi-supervised learning

tasks.

Typically, time series attributes are extracted at both burst and packet level gran-

ularities. At the burst level, attributes such as burst size, timestamps, bytes per

second, packets per second, and average packet length are extracted. At the flow

level, attributes like packet size, timestamp, and direction are gathered. Extracting

time series features from packet traces involves a straightforward process, leveraging

raw fields such as timestamps and packet sizes through tools like tshark. Subse-

quent processing can be seamlessly executed using data processing tools such as

pandas and pyspark.

3. Aggregate Statistical Features: This category encompasses statistical attributes

such as mean, maximum, minimum, standard deviation, and others, applied to

network data features. These aggregate statistical features provide a concise sum-

19

Data and Design Chapter 3

mary of the features within a given granularity, serving as a vital tool for extracting

patterns, particularly in the flow level granularity. Widely employed in prior re-

search for their representative nature, aggregate features contribute significantly to

the understanding of the data. The flow-based statistical features emerge as pivotal

for three reasons:

1. Flow statistics holistically portray a statistical overview of a flow, enhancing the

understanding of its nature.

2. Flow statistical features exhibit a simplified data representation format.

3. Obtaining and training on flow statistical features is comparably straightforward.

For capturing flow level aggregate features, CICFlowmeter has emerged as a prevail-

ing choice. Comprising a standard set of 84 aggregate statistics, CICFlowmeter’s

offerings are at the forefront of representing flow level granularity. Within our

framework, we seamlessly integrate CICFlowmeter to capture aggregate statistical

features, a decision guided by the notable effectiveness of this tool.

We make use of the UCSB dataset for all our experiments that we describe in

our evaluation section. We have obtained the dataset in different sizes to test the

efficiency of our framework. Please check chapter 5 for details on this.

3.3 Design goals for PERRY

Selecting appropriate design goals is a pivotal step in constructing any system. When

creating our framework, our primary objective was to develop an optimized pipeline ca-

pable of fulfilling the data processing needs of networking researchers in a user-friendly

manner. In Sections 1.1 and 1.2, we discussed the significance of design for a data pro-

cessing system and how it impacts the pipeline based on shifts in the problem statement.

20

Data and Design Chapter 3

To address this, we intentionally made certain decisions to break the interdependence

between the data processing and model training steps. With this aim in mind, we aimed

to formulate a design that would mitigate this issue, enhancing the framework’s flexibil-

ity, autonomy, and utility. As a result, we identified two fundamental design goals as

the foundation of our framework: Flexibility and Scalability. We firmly believe that our

chosen design goals align precisely with the requirements of a framework capable of sur-

passing existing rudimentary design principles, offering researchers an improved tool to

effectively fulfill their data processing needs. Let’s delve into each design goal in depth.

1. Flexibility: In the context of our framework, flexibility refers to the extent of free-

dom granted to users during their interaction with the system. For a data processing

system, a flexible framework should empower users to make decisions within the

system and maintain control over the entire process. Users should have a significant

level of authority over the system, thus enhancing their overall interaction expe-

rience. While the notion of flexibility can encompass diverse interpretations and

broader perspectives, for the sake of brevity, we will define the aspects of flexibility

that characterize PERRY and delve into how we achieve them in the upcoming

chapter. The subsequent points outline a few considerations through which we

incorporate flexibility into PERRY:

1. Our framework incorporates an intuitive user interface that ensures ease of use

and offers a wide array of options for interaction.

2. PERRY extends support for diverse feature sets across all granularity levels,

saving users substantial time and effort. The data formats generated by PERRY

are versatile, enabling users to either utilize them as they are or engage in further

processing, tokenization, and more.

3. Users enjoy comprehensive control over the feature space and data processing

21

Data and Design Chapter 3

methodologies within our framework. This level of control empowers users to tailor

their data processing steps according to their preferences.

2. Scalability: Our second design goal, scalability, is aimed at ensuring the efficiency

and reliability of our framework. Even though frameworks with a wide range of

features might appear impressive, their performance shortcomings can leave users

dissatisfied. Users value a seamless performance experience as much as they ap-

preciate innovation and distinctiveness. Therefore, we have taken care to ensure

that PERRY offers outstanding performance and scalability when deployed on the

user’s end. We have achieved scalability for our framework through the following

considerations:

1. Our scalable pipeline employs a hybrid schema that minimizes unnecessary

processing, significantly enhancing framework speed and efficiency.

2. By adopting a flow-level decomposition design during data processing, we enable

easy parallelization, reducing processing times exponentially.

3. Incorporating various optimization techniques, we ensured expediting the entire

process.

These design goals are dedicated to providing an optimal user experience and delivering a

state-of-the-art interface that makes data processing tasks easier than ever before. Most

importantly, PERRY stands as an intuitive data processing solution for machine learning

in network pipelines.

22

Chapter 4

Proposed Framework

4.1 Architecture

Our proposed framework is underpinned by the dual pillars of scalability and flexibil-

ity, incorporating cutting-edge tools such as PySpark and PostgreSQL. Comprising four

core modules - Packet Processing, Feature Extraction, Labeling, and Storage & Query

- as depicted in Figure 1, users are empowered to make informed decisions at each step

of the pipeline. This engagement is facilitated through an intuitive user interface that

streamlines interaction with the framework.

The framework harnesses optimization strategies such as multiprocessing and PyS-

park’s features like caching and the omission of User Defined Functions (UDFs), leading

to a significant reduction in processing time and a commendable boost in performance.

The workflow itself adheres to a straightforward pattern: flow-level data decomposition

and feature extraction. This approach streamlines the organization of extracted features

in a coherent manner under this uniform level. For instance, in the context of burst-

related time series features, data pertaining to all bursts within a single flow can be

systematically organized within a CSV file. This method permits the extraction of all

23

Proposed Framework Chapter 4

features or specifically tailored subsets in line with unique requirements.

The orchestrated arrangement also confers a noteworthy degree of flexibility, substan-

tially enhancing the ease of implementing multiprocessing techniques.

Figure 4.1: The architectural overview of PERRY. Notice the flexibility and Scalability
aspects embedded in the framework.

Within the packet processing and feature extraction modules, the focal point lies

predominantly on data processing, orchestrating the transformation of raw files into re-

fined and manipulated datasets. Transitioning to the labeling module, users possess the

option to imbue their datasets with labels, thus invoking the utilization of Server Name

Indication (SNI) and Domain Name System (DNS) protocols to extract host names for

individual flows. In the storage and query module, a database framework is employed to

house processed data efficiently, laying the foundation for subsequent resourceful infor-

mation retrieval through queries.

4.2 Packet processing

Within the framework, the packet processing segment undertakes the task of parsing

packet traces and extracting rudimentary feature sets from these traces. Depending on

24

Proposed Framework Chapter 4

specific cases, these raw features can either serve as feature sets themselves or necessi-

tate further transformation into enriched feature sets. The workflow encompassing this

packet processing phase leverages straightforward tools such as pcap splitter, nPrint, and

tshark. In alignment with our design goals, our framework adopts a flow-level decompo-

sition approach during packet processing. This decomposition facilitates multi-threading

and multiprocessing, thereby enhancing the framework’s efficiency and expediting its op-

eration. The process entails dividing extensive pcap files into numerous smaller flow-level

pcaps, a procedure facilitated by the pcap splitter tool.

Figure 4.2: The packet processing module. The flow level decomposition is taken care
of in this section utilizing the Pcap splitter, and feature vectors are extracted using
tools like nPrint and tshark.

Subsequent to the flow-level decomposition of pcap files, the nPrint and tshark tools

come into play, extracting raw nPrint and time series vectors. The integration of the

nPrint tool into our framework was accomplished seamlessly, incorporating the neces-

sary commands for efficient extraction of nPrint vectors. This integration was facilitated

through an intuitive interface that empowers users to select their preferred vector cap-

ture method, offering options such as different flags, payload bytes, and more. Similarly,

for the tshark scripts, the commands essential for extracting timestamps, flow IDs, and

packet sizes have been incorporated into the scripts. These scripts have the capability to

25

Proposed Framework Chapter 4

process multiple files concurrently, resulting in the generation of processed raw feature

sets. These raw vectors subsequently serve as the foundational materials for the ensu-

ing feature extraction phase. Remarkably swift, the packet processing stage efficiently

handles processing for thousands of files within seconds to minutes, a notable achieve-

ment attributed to the multi-threading and multiprocessing capabilities embedded in the

framework.

4.3 Feature Extraction

Positioned as the second segment in the framework’s pipeline, this phase encompasses

diverse classes dedicated to processing distinct feature spaces. Within PERRY, the fea-

ture extraction module has been extensively crafted, harnessing the capabilities of the

advanced analytics tool, PySpark. This tool provides a plethora of optimizations that

significantly accelerate the data processing stride.

Figure 4.3: The Feature extraction module supports various data processing tasks.

Within the nPrint processing class, the nPrint vectors undergo transformation to shift

26

Proposed Framework Chapter 4

from a singular binary vector representation to a more manageable field-wise or byte-wise

format. This flexible representation choice facilitates ease of operation compared to the

initial single feature vector. Users retain the freedom to selectively opt for specific fields

or bytes based on their preferences during feature space selection. The subsequent step

involves the horizontal grouping of different bits from the vector representation into

distinct fields or bytes, facilitated by the utilization of the PySpark tool. Users are

provided the flexibility to select between field-wise and byte-wise formats, which triggers

the nPrint class to initiate grouping based on the chosen format. This grouping operation

results in the creation of separate columns in the dataframe for each field/byte, including

the payload. Furthermore, the processing of the 5-tuple flow ID is conducted, effectively

preparing the entire dataframe for writing into the file system.

In the packet time series processing class, raw time series features are harnessed

to generate refined packet-level time series attributes, encompassing packet size, times-

tamps, packet direction, and the 5-tuple flow identifier. A parallel workflow is observed

in the burst-wise processing class, with a focus on burst-level features. Here, the raw time

series attributes are initially segregated into burst-level attributes, subsequently subject

to further processing, leading to diverse fields such as packet count, byte count, pack-

ets per second, bytes per second, average packet length, and inter-arrival time between

bursts. The processing of packet-wise time series features is executed by first handling

the inter-arrival time through the application of the window functionality in PySpark.

Subsequently, the direction is determined using a lambda function instead of user-defined

functions (UDFs) to enhance processing efficiency significantly. The resulting processed

dataframe is then primed for writing into the file system. On the other hand, the pro-

cessing of burst-wise time series features entails vertical grouping of packets within the

dataframe based on the flow ID. These packets are divided into bursts by considering

inter-arrival times falling within specified time interval thresholds. Following the segmen-

27

Proposed Framework Chapter 4

tation into bursts, window functions are harnessed for performing aggregate operations

such as mean, count, lag, sum, etc., thereby generating attributes like average packet

length, packets per second, and bursts per second for each burst. Once the processing

concludes, the dataframe is prepared for storage in the file system.

Incorporated within the feature extraction phase is the CICFlowmeter jar file, which

can be readily invoked to generate aggregate flow-based statistical features. The provided

jar file takes flow-level pcap files as input and produces corresponding aggregate flow

statistical features in the form of CSV files. Our interface streamlines the process by

automatically supplying the necessary pcap files to the command that invokes the jar

file. This action results in the generation of these features, which are subsequently stored

in our pre-established flow-level directory structure, all without requiring any intervention

from the user.

All extracted feature files, alongside their raw counterparts, are systematically stored

within the flow-wise directory structure, a strategic arrangement designed for efficient

retrieval and grouping purposes.

This phase shoulders the heft of processing within the framework, and consequently,

it constitutes a significant portion of the overall processing time. To ensure scalability

and efficiency, optimizations play a pivotal role. The forthcoming chapter will delve into

a comprehensive exploration of these optimizations, accompanied by their associated

results.

4.4 Labeling

PERRY offers users the autonomy to opt for labeling or abstain from it. When users

choose to label their dataset, the corresponding labeling section activates, initiating the

extraction of hostnames using two distinct components: the Server Name Indication

28

Proposed Framework Chapter 4

(SNI) extractor and the Domain Name System (DNS) query name resolver.

Figure 4.4: The labeling module along with two of its components - SNI extractor
and DNS processing class.

Within this section, the integration of tshark scripts enables the extraction of SNI

values for each flow as the flow-wise directory structure is traversed. These extracted

SNI values are then employed to generate separate label tags within the respective flow

directories. However, the challenge with SNI-based labeling pertains to its limited pres-

ence, typically encompassing only 5-10% of the captured traffic’s flows. Consequently,

the need arises for a more dependable approach to labeling flows devoid of SNI values.

Hence, our framework incorporates an alternative approach by leveraging DNS queries

to execute the labeling task. This involves the extraction of all DNS query values and

their corresponding resolved addresses, subsequently compiled into a global table. This

table then serves as the basis for mapping addresses to hostnames, ensuring a more

reliable and comprehensive labeling solution for both SNI-present and SNI-absent flows.

29

Proposed Framework Chapter 4

4.5 Storage

Our framework’s completeness extends beyond curated datasets, encompassing a sys-

tematic approach to data storage and access that enhances efficiency, robustness, and reli-

ability. Recognizing the need for structured data management, we introduced a database

system to facilitate seamless querying, filtering, and manipulation of the data with min-

imal complexity.

Figure 4.5: The storage module showing insertion of data into the database.

In this pursuit, we identified PostgreSQL as the optimal solution, aligning with two

crucial considerations. Firstly, its relational database management system (RDBMS)

nature simplifies storage and retrieval, especially when managing file locations. This

contrasts with a NoSQL document database, as most of our processed files are in CSV

format, easily transformed into dataframes with file paths. Such an approach proves more

efficient than retrieving entire documents from the database. Secondly, PostgreSQL’s

support for the JSON data type enhances storage in a queryable format, enabling the

embedding of filter options for data manipulation. By leveraging cutting-edge tools

like PostgreSQL, we elevate our pipeline’s speed and efficiency, further enriching its

capabilities.

After processing all the files, we invoke the DB Packing class in our framework that

encapsulates all the data into an intermediate CSV file. For this, all the file path infor-

mation and feature information are inserted into a CSV file progressively and parallely,

and the burst-based feature set is wrapped into a JSON type and placed into the CSV

30

Proposed Framework Chapter 4

file in a type-preserving format without violating the CSV data requirements. Once all

the flows have been processed and file paths captured into the intermediate file, the DB

Main class is invoked. In this stage, the script expertly handles schema creation, data

insertion from the CSV file into the table, and concludes by displaying the finalized table.

Remarkably, this entire process takes no longer than a few minutes, even when dealing

with a thousand files.

Following the completion of file processing, our framework invokes the DB Packing

class, a pivotal step where all data is encapsulated into an intermediate CSV file. During

this process, file path information and feature data are progressively inserted into the

CSV file. Simultaneously, burst-based feature sets are encapsulated as JSON objects,

preserving data types, and seamlessly incorporated into the CSV file, all while adhering

to CSV data standards.

Upon processing all flows and systematically capturing file paths in the intermediate

file, the DB Main class is engaged. In this stage, the script expertly handles schema

creation, data insertion from the CSV file into the table, and concludes by displaying the

finalized table. Remarkably, this entire process takes no longer than a few minutes, even

when dealing with a thousand files.

4.6 Querying

Within the querying phase, users can leverage the PostgreSQL interface to interact

with the database efficiently. Our framework provides an interface through which users

can input queries to the PostgreSQL interface, facilitating streamlined data retrieval. The

integration of burst features in JSON format enhances querying efficiency, as PostgreSQL

effectively processes JSON data. This design choice results in a more simplified schema,

supporting layered querying and affording users greater flexibility in customizing their

31

Proposed Framework Chapter 4

queries. Furthermore, PostgreSQL offers a superior querying experience, boasting built-

in optimizations that elevate the overall experience compared to alternative tools.

4.7 Database schema

We also aim to provide an overview of the database schema that we have integrated

into our framework. Within this schema, there are up to 15 fields, each encompassing

various data types and containing specific information about the dataset. Our schema

consists primarily of identifier fields, file path fields, and feature fields, all of which

contribute to simplifying the retrieval process. To facilitate comprehension, we have

presented a tabular format below, listing all the fields alongside their corresponding data

types. This format should aid in your understanding of the schema’s composition.

Table 4.1: Table illustrating the database schema for PERRY

32

Proposed Framework Chapter 4

Field Name Description Datatype

UID Unique FlowID + Timestamp String

Flow ID 5 tuple flow ID String

Flow Pcap Path Path to flow wise pacp file String

Npt path Path to flow wise nPrint vector file String

Npt Processed Path Path to processed nPrint vectors file string

Timeseries Path Path to time series features file String

Timeseries Processed Path Path to time series features file String

Burstwise path Path to Burst features file String

CICFlow path Path to CICFlowmeter features file String

Label Label value string

Flow Duration Total flow duration in seconds Float/Double

Flow size Sum of packet sizes in a flow Float/Double

Flow packets Number of packets in a flow Integer

Flow bytes Number of bytes in a flow Integer

Burst features The JSON object of burst features JSONB

33

Chapter 5

Addressing the scalability issues

Our framework design diligently adheres to our established design goals, providing a

blueprint for an adaptable, user-friendly framework with an intuitive interface that boasts

scalability, efficiency, and robustness. While we stand by these commitments, it’s im-

perative that we identify potential challenges that can arise when designing a scalable

framework and proactively devise solutions to tackle these challenges.

The data processing phase, in particular, is renowned for presenting scalability chal-

lenges due to handling sizable datasets and the limitations of data processing tools in

effectively managing such voluminous data while ensuring fault tolerance. These obstacles

can impede framework performance, resulting in extended processing times, frustrating

user experiences, and, in many cases, reduced reusability.

To address these concerns, the incorporation of optimizations becomes crucial, erad-

icating these challenges and furnishing an efficient interface that expedites execution,

enhances the user experience, and boosts reusability. In this chapter, we succinctly out-

line these challenges and elaborate on the optimizations we’ve harnessed to surmount

them, presenting outcomes that demonstrate how PERRY achieves tasks within an ac-

celerated timeframe.

34

Addressing the scalability issues Chapter 5

5.1 Challenges to Scalability

Amajor obstacle for data processing frameworks is effectively managing large datasets

within limited time constraints. Successful frameworks address this challenge by iden-

tifying the underlying issues responsible for this problem. A substantial hindrance in

this regard is the scarcity of resources like computational power and memory, which

strongly impact overall performance. Hence, leveraging tools like PySpark and Post-

greSQL, known for their outstanding performance even in resource-constrained scenarios,

offers a significant advantage.

In numerous cases, modern hardware incorporates multi-core architecture, allowing

simultaneous execution of multiple threads. Developing a framework should encompass

strategies that maximize the utilization of available resources. Additionally, hindrances

can arise from poorly designed data processing methods, such as User Defined Functions

(UDFs), which are notorious for their resource-intensive nature and time-consuming pro-

cessing. An efficient data processing solution should effectively tackle these challenges.

Another significant hurdle during data processing involves the necessity for extensive

shuffling, which is suboptimal for framework optimization. Therefore, effective strategies

must be implemented to address this issue.

In the following section, we elaborate on the optimizations we employed to overcome

these challenges and showcase the outcomes that highlight our enhanced performance.

5.2 Addressing These Challenges

Our framework embraces four distinct types of optimizations, each significantly influ-

encing runtime performance. For our experimentation, we employed the UCSB dataset,

considering various samples comprising 1000 flows, 10000 flows, and 100000 flows. We

35

Addressing the scalability issues Chapter 5

meticulously detail each optimization, providing dedicated results for every dataset sam-

ple, thereby illustrating how these enhancements influenced runtime for each scenario.

The ensuing optimizations are integral to PERRY, enhancing its scalability and efficiency:

1. Multi-processing: Leveraging multi-processing functionality to handle multiple

files using parallel threads concurrently can profoundly enhance the framework’s

efficiency. Our approach of decomposing larger pcap files into smaller flow-level

files through a flow-level decomposition design facilitates this optimization. This

strategy efficiently distributes tasks across multiple threads, ensuring reliable and

timely completion. Multi-processing has emerged as a significant stride towards

minimizing runtime, resulting in exponential reductions in processing time.

2. Eliminating the UDFs: As previously mentioned, the usage of User Defined

Functions (UDFs) in data processing can be resource-intensive and time-consuming.

In certain cases within PERRY, we encountered instances where UDFs were neces-

sary, such as when extracting the 5-tuple flow ID during nPrint vector processing

or calculating packet direction within time series features. To mitigate the UDF-

related overhead, we developed alternative methods. For instance, we replaced

UDFs with simpler lambda functions for processing direction, incurring no addi-

tional costs. Moreover, we explored alternative approaches, like directly processing

the flow ID during vector curation. These adjustments led to a 50% reduction in

processing time.

3. Caching: The caching mechanism is a crucial optimization inherent to PySpark,

utilized in PERRY to enhance performance. In PySpark, when an action is executed

on a DataFrame, the operation’s result is stored in memory. Subsequent actions

on the same DataFrame would require the DataFrame to be recomputed from

the beginning, which could be time-consuming, particularly for sizable datasets.

36

Addressing the scalability issues Chapter 5

By implementing the ‘cache()‘ function, PERRY instructs PySpark to retain the

DataFrame in memory following the initial action. This enables subsequent actions

to leverage the cached data rather than recompute the entire DataFrame, resulting

in significant acceleration of data processing tasks.

4. Reducing the Grouping and Reshuffling: An additional optimization incorpo-

rated into our framework involves minimizing grouping and reshuffling operations

whenever feasible. Grouping and reshuffling entail reordering the rows within the

dataframe based on the specific requirements of the problem. This process can

be resource-intensive, especially for larger datasets, as it necessitates altering the

entire dataframe’s structure. Even seemingly straightforward select statements can

inadvertently trigger reshuffling to some extent. To mitigate these challenges, we

emphasize avoiding reshuffling wherever possible and employing functions that mit-

igate the need for reshuffling. Throughout the framework’s design, we’ve meticu-

lously identified instances where unnecessary grouping and reshuffling could occur,

and we’ve taken measures to curtail these operations, thereby contributing to re-

duced processing times.

The following tables show the time taken for 1000 flows, 10000 flows, and 100000

flows of the UCSB data to be completely processed by PERRY. For context, All refers

to processing nPrint vectors, processing packet time series, processing burst-

wise time series, processing CICFlowmeter features, and labeling. The experi-

ments labeled nPrint refer to just extracting the nPrint vectors and horizontally

grouping them into fields, which is a costly operation. Similarly, for timeseries

and burstwise, it means extracting raw time series features and processing

them in a specific format. The three tables give a breakdown of the estimated time

taken to finish these experiments while using and not using any optimizations.

37

Addressing the scalability issues Chapter 5

Table 5.1: Table showing results for 1000 flows with and without optimizations.

Optimiz

ation

Time

taken for

all

Time

taken by

nPrint

Time

taken by

Time-

Series

Time

taken by

Burst

wise

No Multi

threading

more than

5hours

more than

5 hours

more than

5 hours

more than

5 hours

With Multi

threading

1 hr 55

minutes - 2

hrs

1 hr 2 mins more than

22 mins

more than

32 mins

Removal of

UDF

1 hr 4 mins 45 - 55

mins

less than

10 mins

less than

10 mins

Caching 35 mins ≤ 15mins less than

10 mins

less than

10 mins

Reducing

grouping

and

reshuffling

≤ 30mins ≤ 15mins less than

10 mins

less than

10 mins

38

Addressing the scalability issues Chapter 5

Table 5.2: Table showing results for 10000 flows with and without optimizations.

Optimiz

ation

Time

taken for

all

Time

taken by

nPrint

Time

taken by

Time-

Series

Time

taken by

Burst

wise

No Multi

threading

more than

a day

more than

a day

more than

a day

more than

a day

With Multi

threading

22 hours 45

minutes

12 hour 45

minutes -

13 hours

more than

3 hours

more than

4 hours

Removal of

UDF

12 hours 8 hours less than

hour

less than a

hour

Caching ≤ 7hours ≤ 4hours less than

hour

less than

hour

Reducing

grouping

and

reshuffling

≤ 6hours ≤ 4hours less than

hour

less than

hour

39

Addressing the scalability issues Chapter 5

Table 5.3: Table showing results for 100000 flows with and without optimizations.

Optimiz

ation

Time

taken for

all

Time

taken by

nPrint

Time

taken by

Time-

Series

Time

taken by

Burst

wise

No Multi

threading

more than

a week

more than

a week

more than

a week

more than

a week

With Multi

threading

3 - 4 days 2 -3 days ≤ 1day ≤ 2days

Removal of

UDF

1 - 2 days 22 hours 45

mins

less than 6

hours

less than 6

hours

Caching less than 1

day

≤ 12hours ≤ 3hours ≤ 3hours

Reducing

grouping

and

reshuffling

less than 1

day

≤ 12hours ≤ 3hours ≤ 3hours

40

Chapter 6

Conclusion

6.1 Conclusion and further work

Within this thesis, we have addressed the inherent issue of the tight interdependence

between existing data processing techniques and the subsequent model training stages

within machine learning pipelines. This constrained linkage has been shown to hinder the

development process and impede the exploration of innovative research methodologies

aimed at crafting superior models. By examining various works in the field, we have

gained insights into specific design goals that offer potential solutions to counteract these

challenges.

In the subsequent part of this thesis, we delve into two crucial design goals: Flexibility

and Scalability. We extensively elaborate on how these goals materialize through our

chosen system design. This design incorporates an interactive user interface, affords users

unlimited choices in data processing methods throughout the pipeline, and seamlessly

integrates state-of-the-art tools. Subsequently, we provide an in-depth walkthrough of

our pipeline framework, PERRY, detailing the role of each individual component. This

encompassing analysis covers packet processing, feature extraction, labeling, storage, and

41

Conclusion Chapter 6

querying modules. Together, these components not only streamline data processing tasks

but also establish a robust storage and querying infrastructure.

In the concluding segment, we delve into the optimizations we implemented to elevate

the framework’s performance and present corresponding results across various sample

sizes. This thesis endeavors to introduce an efficient data processing solution tailored

for network data, aiming to effectively address existing challenges. Our adaptable and

scalable design positions this framework as a broadly applicable solution within the net-

work community. By streamlining data processing, we anticipate researchers will be

empowered to channel their efforts towards innovation, thereby enhancing their overall

experience and productivity.

For future development, the framework could explore various avenues for expan-

sion. Currently, we focus on processing fundamental formats of network data. However,

there’s potential to extend our approach to incorporate intermediary and derived for-

mats, thereby eliminating the necessity for additional processing steps. Additionally, an

interesting direction for improvement could involve utilizing robust languages like Rust

to build a lightweight and potentially faster framework compared to Python.

42

Appendix A

Datasets information

A.1 Feature sets of different network data formats

In this chapter, our aim is to provide a comprehensive breakdown of the various

feature sets generated by PERRY. As discussed in earlier chapters, we categorize these

feature sets into three main categories. Here, we present detailed information about four

distinct formats derived from multiple granularities (for timeseries data) presented in

tabular form. It’s important to note that certain fields, such as the 5-tuple flow ID,

remain consistent across all formats. The nPrint vector representation has a total of 42

fields, including fields from IP, TCP, UDP, and ICMP headers. The packet-wise time

series has a total of six features, and the burst-wise time series has seven features, as

shown in the figure. The CICFlowmeter features are a collection of 84 features consisting

of various aggregate flow statistics.

43

Datasets information Chapter A

Table A.1: nPrint vector fields [35].

Begin of Table

Fields Number of bits

Source IP 32

Destination IP 32

TCP Source Port 16

TCP Dest Port 16

UDP Source Port 16

UDP Dest Port 16

IP Proto 8

IP ver 4

IP hl 4

IP tos 8

IP tl 16

IP id 16

IP rbit 1

IP dfbit 1

IP mfbit 1

IP foff 13

IP ttl 8

IP cksum 16

IP opt 320

TCP seq 32

TCP ackn 32

44

Datasets information Chapter A

Continuation of Table A.1

Fields Number of bits

TCP doff 4

TCP res 3

TCP ns 1

TCP cwr 1

TCP ece 1

TCP urg 1

TCP ackf 1

TCP psh 1

TCP rst 1

TCP syn 1

TCP fin 1

TCP wsize 16

TCP cksum 16

TCP urp 16

TCP opt 320

UDP len 16

UDP cksum 16

ICMP type 8

ICMP code 8

ICMP cksum 16

ICMP roh 32

End of Table

45

Datasets information Chapter A

Figure A.1: Packet wise timeseries features

Figure A.2: Burst wise timeseries features

Table A.2: CICFlowmeter feature space fields [10].

Begin of Table

Field Description

Flow duration Duration of the flow in Microsecond

total Fwd Packets Total packets in the forward direction

total Bwd packets Total packets in the backward direction

total Length of Fwd Packet Total size of packet in forward direction

total Length of Bwd Packet Total size of packet in backward direction

Fwd Packet Length Min Minimum size of packet in forward direction

Fwd Packet Length Max Maximum size of packet in forward direction

Fwd Packet Length Mean Mean size of packet in forward direction

Fwd Packet Length Std Std deviation size of packet in forward direction

Bwd Packet Length Min Minimum size of packet in backward direction

Bwd Packet Length Max Maximum size of packet in backward direction

Bwd Packet Length Mean Mean size of packet in backward direction

Bwd Packet Length Std Std deviation size of packet in backward direction

Flow Bytes/s Number of flow bytes per second

Flow Packets/s Number of flow packets per second

46

Datasets information Chapter A

Continuation of Table A.2

Field Description

Flow IAT Mean Mean time btw 2 packets sent in the flow

Flow IAT Std Std deviation time btw 2 packets sent in the flow

Flow IAT Max Max time btw 2 packets sent in the flow

Flow IAT Min Min time btw 2 packets sent in the flow

Fwd IAT Min Min time btw 2 packets sent in the fwd dir

Fwd IAT Max Max time btw 2 packets sent in the fwd dir

Fwd IAT Mean Mean time btw 2 packets sent in the fwd dir

Fwd IAT Std Std deviation time btw 2 packets sent in the fwd dir

Fwd IAT Total Total time btw 2 packets sent in the fwd dir

Bwd IAT Min Min time btw 2 packets sent in the bwd dir

Bwd IAT Max Max time between 2 packets sent in the bwd dir

Bwd IAT Mean Mean time btw 2 packets sent in the bwd dir

Bwd IAT Std Std deviation time btw 2 packets sent in the bwd dir

Bwd IAT Total Total time btw 2 packets sent in the bwd dir

Fwd PSH flags No of times the PSH flag set in fwd packets

Bwd PSH Flags No of times the PSH flag set in bwd packets

Fwd URG Flags No of times the URG flag set in fwd packets

Bwd URG Flags No of times the URG flag set in bwd packets

Fwd Header Length Total bytes used for headers in the fwd dir

Bwd Header Length Total bytes used for headers in the bwd dir

FWD Packets/s Number of forward packets per second

Bwd Packets/s Number of backward packets per second

Packet Length Min Minimum length of a packet

47

Datasets information Chapter A

Continuation of Table A.2

Field Description

Packet Length Max Maximum length of a packet

Packet Length Mean Mean length of a packet

Packet Length Std Standard deviation length of a packet

Packet Length Variance Variance length of a packet

FIN Flag Count Number of packets with FIN

SYN Flag Count Number of packets with SYN

RST Flag Count Number of packets with RST

PSH Flag Count Number of packets with PUSH

ACK Flag Count Number of packets with ACK

URG Flag Count Number of packets with URG

CWR Flag Count Number of packets with CWR

ECE Flag Count Number of packets with ECE

down/Up Ratio Download and upload ratio

Average Packet Size Mean size of packet

Fwd Segment Size Avg Mean size observed in the fwd dir

Bwd Segment Size Avg Mean size observed in the bwd dir

Fwd Bytes/Bulk Avg Mean bytes bulk rate in the fwd dir

Fwd Packet/Bulk Avg Mean packets bulk rate in the fwd dir

Fwd Bulk Rate Avg Mean bulk rate in the fwd dir

Bwd Bytes/Bulk Avg Mean bytes bulk rate in the bwd dir

Bwd Packet/Bulk Avg Mean packets bulk rate in the bwd dir

Bwd Bulk Rate Avg Mean bulk rate in the bwd dir

Subflow Fwd Packets The mean packets in a sub flow in the fwd

48

Continuation of Table A.2

Field Description

Subflow Fwd Bytes The mean bytes in a sub flow in the fwd

Subflow Bwd Packets The mean packets in a sub flow in the bwd

Subflow Bwd Bytes The mean bytes in a sub flow in the bwd

Fwd Init Win bytes The total bytes sent in initial window in the fwd

Bwd Init Win bytes The total bytes sent in initial window in the bwd

Fwd Act Data Pkts No of packets with at least byte of TCP payload

Fwd Seg Size Min Min segment size observed in the fwd

Active Min Min time a flow was active before becoming idle

Active Mean Mean time a flow was active before becoming idle

Active Max Max time a flow was active before becoming idle

Active Std Std deviation time a flow was active before idle

Idle Min Min time a flow was idle before becoming active

Idle Mean Mean time a flow was idle before becoming active

Idle Max Maximum time a flow was idle before becoming active

Idle Std Std deviation time a flow was idle before active

End of Table

49

Bibliography

[1] “Netmate.” http://sourceforge.net/projects/netmate-meter/.

[2] N. Williams, S. Zander, and G. Armitage, A preliminary performance comparison
of five machine learning algorithms for practical ip traffic flow classification,
SIGCOMM Comput. Commun. Rev. 36 (oct, 2006) 5–16.

[3] R. Alshammari and A. Nur Zincir-Heywood, A flow based approach for ssh traffic
detection, in 2007 IEEE International Conference on Systems, Man and
Cybernetics, pp. 296–301, 2007.

[4] R. Alshammari and A. Zincir-Heywood, Machine learning based encrypted traffic
classification: Identifying ssh and skype, Computational Intelligence for Security
and Defense Applications, 2009. CISDA 2009. IEEE Symposium on (01, 2009) 1–8.

[5] A. W. Moore and D. Zuev, Internet traffic classification using bayesian analysis
techniques, in Proceedings of the 2005 ACM SIGMETRICS International
Conference on Measurement and Modeling of Computer Systems, SIGMETRICS
’05, (New York, NY, USA), p. 50–60, Association for Computing Machinery, 2005.

[6] A. Habibi Lashkari., G. Draper Gil., M. S. I. Mamun., and A. A. Ghorbani.,
Characterization of tor traffic using time based features, in Proceedings of the 3rd
International Conference on Information Systems Security and Privacy - ICISSP,
pp. 253–262, INSTICC, SciTePress, 2017.

[7] E. Glatz and X. Dimitropoulos, Classifying internet one-way traffic, IMC ’12,
(New York, NY, USA), p. 37–50, Association for Computing Machinery, 2012.

[8] s. Ndichu, S. Okoth, H. Okoyo, and C. Wekesa, Detecting remote access network
attacks using supervised machine learning methods, International Journal of
Computer Network and Information Security 15 (04, 2023) 48–61.

[9] A. Habibi Lashkari, G. Draper Gil, M. Mamun, and A. Ghorbani, Characterization
of encrypted and vpn traffic using time-related features, 02, 2016.

[10] “Cicflowmeter.” https://github.com/ahlashkari/CICFlowMeter.

50

http://sourceforge.net/projects/netmate-meter/
https://github.com/ahlashkari/CICFlowMeter

[11] C. M. Inacio and B. Trammell, Yaf: Yet another flowmeter, in Proceedings of the
24th International Conference on Large Installation System Administration,
LISA’10, (USA), p. 1–16, USENIX Association, 2010.

[12] K. O’Shea and R. Nash, An introduction to convolutional neural networks, 2015.

[13] S. Hochreiter and J. Schmidhuber, Long short-term memory, Neural Comput. 9
(nov, 1997) 1735–1780.

[14] D. Bank, N. Koenigstein, and R. Giryes, Autoencoders, 2021.

[15] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and I. Polosukhin, Attention is all you need, 2023.

[16] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, Empirical evaluation of gated
recurrent neural networks on sequence modeling, 2014.

[17] Y. Zeng, Z. Qi, W. Chen, and Y. Huang, Test: an end-to-end network traffic
classification system with spatio-temporal features extraction, in 2019 IEEE
International Conference on Smart Cloud (SmartCloud), pp. 131–136, 2019.

[18] G. Zhao, Z. Wang, and Z. Yang, An encrypted traffic classification model based on
the raw traffic and spatiotemporal characteristics, EITCE ’22, (New York, NY,
USA), p. 1208–1213, Association for Computing Machinery, 2023.

[19] L. QOSIENT, “Argus:auditingnetworkactivity.” http://www.qosient.com/argus.

[20] L. DERI, “nprobe–netflow/ipfixnetworkprobe.”
http://www.ntop.org/nProbe.html,Oct2006., 2006.

[21] Y. Pan, X. Zhang, H. Jiang, and C. Li, A network traffic classification method
based on graph convolution and lstm, IEEE Access 9 (2021) 158261–158272.

[22] M. S. Towhid and N. Shahriar, Encrypted network traffic classification using
self-supervised learning, in 2022 IEEE 8th International Conference on Network
Softwarization (NetSoft), pp. 366–374, 2022.

[23] Z. Shi, N. Luktarhan, Y. Song, and H. Yin, Tsfn: A novel malicious traffic
classification method using bert and lstm, Entropy 25 (05, 2023) 821.

[24] A. Dietmüller, S. Ray, R. Jacob, and L. Vanbever, A new hope for network model
generalization, in Proceedings of the 21st ACM Workshop on Hot Topics in
Networks, HotNets ’22, (New York, NY, USA), p. 152–159, Association for
Computing Machinery, 2022.

51

http://www.qosient.com/argus.
http://www.ntop.org/nProbe.html,Oct2006.

[25] L. Vu, H. V. Thuy, Q. U. Nguyen, T. N. Ngoc, D. N. Nguyen, D. T. Hoang, and
E. Dutkiewicz, Time series analysis for encrypted traffic classification: A deep
learning approach, in 2018 18th International Symposium on Communications and
Information Technologies (ISCIT), pp. 121–126, 2018.

[26] J. Koumar, K. Hynek, and T. Čejka, Network traffic classification based on single
flow time series analysis, 2023.

[27] Z. Zou, J. Ge, H. Zheng, Y. Wu, C. Han, and Z. Yao, Encrypted traffic
classification with a convolutional long short-term memory neural network, in 2018
IEEE 20th International Conference on High Performance Computing and
Communications; IEEE 16th International Conference on Smart City; IEEE 4th
International Conference on Data Science and Systems (HPCC/SmartCity/DSS),
pp. 329–334, 2018.

[28] I. Akbari, M. A. Salahuddin, L. Ven, N. Limam, R. Boutaba, B. Mathieu,
S. Moteau, and S. Tuffin, A look behind the curtain: Traffic classification in an
increasingly encrypted web, Proc. ACM Meas. Anal. Comput. Syst. 5 (feb, 2021).

[29] R. Schuster, V. Shmatikov, and E. Tromer, Beauty and the burst: Remote
identification of encrypted video streams, in 26th USENIX Security Symposium
(USENIX Security 17), (Vancouver, BC), pp. 1357–1374, USENIX Association,
Aug., 2017.

[30] H. Singh, Performance analysis of unsupervised machine learning techniques for
network traffic classification, in 2015 Fifth International Conference on Advanced
Computing Communication Technologies, pp. 401–404, 2015.

[31] T. Auld, A. W. Moore, and S. F. Gull, Bayesian neural networks for internet traffic
classification, IEEE Transactions on Neural Networks 18 (2007), no. 1 223–239.

[32] M. Lotfollahi, M. Jafari Siavoshani, R. Shirali Hossein Zade, and M. Saberian,
Deep packet: a novel approach for encrypted traffic classification using deep
learning, Soft Computing 24 (Feb, 2020) 1999–2012.

[33] R. Yuan, Z. Li, X. Guan, and L. Xu, An svm-based machine learning method for
accurate internet traffic classification, Information Systems Frontiers 12 (Apr,
2010) 149–156.

[34] F. Dehghani, N. Movahhedinia, M. R. Khayyambashi, and S. Kianian, Real-time
traffic classification based on statistical and payload content features, in 2010 2nd
International Workshop on Intelligent Systems and Applications, pp. 1–4, 2010.

[35] J. Holland, P. Schmitt, N. Feamster, and P. Mittal ACM, nov, 2021.

52

[36] A. Este, F. Gringoli, and L. Salgarelli, Support vector machines for tcp traffic
classification, Computer Networks 53 (2009), no. 14 2476–2490.

[37] T. Shapira and Y. Shavitt, Flowpic: A generic representation for encrypted traffic
classification and applications identification, IEEE Transactions on Network and
Service Management 18 (2021), no. 2 1218–1232.

[38] R. Li, X. Xiao, S. Ni, H. Zheng, and S. Xia, Byte segment neural network for
network traffic classification, in 2018 IEEE/ACM 26th International Symposium
on Quality of Service (IWQoS), pp. 1–10, 2018.

[39] S. Ahn, J. Kim, S. Y. Park, and S. Cho, Explaining deep learning-based traffic
classification using a genetic algorithm, IEEE Access 9 (2021) 4738–4751.

53

	Abstract
	Introduction
	Existing challenge
	Our solution

	Related Work
	Literature Review

	Data and Design
	Network Data Processing Tasks
	Network Feature sets
	Design goals for PERRY

	Proposed Framework
	Architecture
	Packet processing
	Feature Extraction
	Labeling
	Storage
	Querying
	Database schema

	Addressing the scalability issues
	Challenges to Scalability
	Addressing These Challenges

	Conclusion
	Conclusion and further work

	Datasets information
	Feature sets of different network data formats

